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The DeepChem project aims to democratize deep learning for science.

GET STARTED 1



deepchem, Release 2.8.0

2 GET STARTED



CHAPTER

ONE

WHAT IS DEEPCHEM?

The DeepChem project aims to build high quality tools to democratize the use of deep learning in the sciences. The
origin of DeepChem focused on applications of deep learning to chemistry, but the project has slowly evolved past its
roots to broader applications of deep learning to the sciences.

The core DeepChem Repo serves as a monorepo that organizes the DeepChem suite of scientific tools. As the project
matures, smaller more focused tool will be surfaced in more targeted repos. DeepChem is primarily developed in
Python, but we are experimenting with adding support for other languages.

What are some of the things you can use DeepChem to do? Here’s a few examples:

• Predict the solubility of small drug-like molecules

• Predict binding affinity for small molecule to protein targets

• Predict physical properties of simple materials

• Analyze protein structures and extract useful descriptors

• Count the number of cells in a microscopy image

• More coming soon. . .

We should clarify one thing up front though. DeepChem is a machine learning library, so it gives you the tools to solve
each of the applications mentioned above yourself. DeepChem may or may not have prebaked models which can solve
these problems out of the box.

Over time, we hope to grow the set of scientific applications DeepChem can address. This means we need lots of help!
If you’re a scientist who’s interested in open source, please pitch on building DeepChem.
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CHAPTER

TWO

QUICK START

The fastest way to get up and running with DeepChem is to run it on Google Colab. Check out one of the DeepChem
Tutorials.

If you’d like to install DeepChem locally,

pip install deepchem

Then open your IDE or text editor of choice and try running the following code with python.

import deepchem

5
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CHAPTER

THREE

ABOUT US

DeepChem is managed by a team of open source contributors. Anyone is free to join and contribute! DeepChem has
weekly developer calls. You can find meeting minutes on our forums.

DeepChem developer calls are open to the public! To listen in, please email X.Y@gmail.com, where X=bharath and
Y=ramsundar to introduce yourself and ask for an invite.

Important:
Join our community gitter to discuss DeepChem.
Sign up for our forums to talk about research, development, and general questions.

3.1 Installation

3.1.1 Stable version

Install deepchem via pip or conda by simply running,

pip install deepchem

or

conda install -c conda-forge deepchem

3.1.2 Nightly build version

The nightly version is built by the HEAD of DeepChem.

For using general utilites like Molnet, Featurisers, Datasets, etc, then, you install deepchem via pip.

pip install --pre deepchem

Deepchem provides support for tensorflow, pytorch, jax and each require a individual pip Installation.

For using models with tensorflow dependencies, you install using

pip install --pre deepchem[tensorflow]

For using models with Pytorch dependencies, you install using
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pip install --pre deepchem[torch]

For using models with Jax dependencies, you install using

pip install --pre deepchem[jax]

If GPU support is required, then make sure CUDA is installed and then install the desired deep learning framework
using the links below before installing deepchem

1. tensorflow - just cuda installed

2. pytorch - https://pytorch.org/get-started/locally/#start-locally

3. jax - https://github.com/google/jax#pip-installation-gpu-cuda

In zsh square brackets are used for globbing/pattern matching. This means you need to escape the square brack-
ets in the above installation. You can do so by including the dependencies in quotes like pip install --pre
'deepchem[jax]'

Note: Support for jax is not available in windows (jax is not officially supported in windows).

3.1.3 Google Colab

The fastest way to get up and running with DeepChem is to run it on Google Colab. Check out one of the DeepChem
Tutorials or this forum post for Colab quick start guides.

3.1.4 Docker

If you want to install using a docker, you can pull two kinds of images from DockerHub.

• deepchemio/deepchem:x.x.x
– Image built by using a conda (x.x.x is a version of deepchem)

– This image is built when we push x.x.x. tag

– Dockerfile is put in `docker/tag`_ directory

• deepchemio/deepchem:latest
– Image built from source codes

– This image is built every time we commit to the master branch

– Dockerfile is put in `docker/nightly`_ directory

First, you pull the image you want to use.

docker pull deepchemio/deepchem:latest

Then, you create a container based on the image.

docker run --rm -it deepchemio/deepchem:latest

If you want GPU support:
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# If nvidia-docker is installed
nvidia-docker run --rm -it deepchemio/deepchem:latest
docker run --runtime nvidia --rm -it deepchemio/deepchem:latest

# If nvidia-container-toolkit is installed
docker run --gpus all --rm -it deepchemio/deepchem:latest

You are now in a docker container which deepchem was installed. You can start playing with it in the command line.

(deepchem) root@xxxxxxxxxxxxx:~/mydir# python
Python 3.10.13 |Anaconda, Inc.| (default, Aug 24 2023, 12:59:26)
[GCC 7.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import deepchem as dc

If you want to check the tox21 benchmark:

# you can run our tox21 benchmark
(deepchem) root@xxxxxxxxxxxxx:~/mydir# wget https://raw.githubusercontent.com/deepchem/
→˓deepchem/master/examples/benchmark.py
(deepchem) root@xxxxxxxxxxxxx:~/mydir# python benchmark.py -d tox21 -m graphconv -s␣
→˓random

3.1.5 Jupyter Notebook

Installing via these steps will allow you to install and import DeepChem into a jupyter notebook within a conda
virtual environment.
Prerequisite

• Shell: Bash, Zsh, PowerShell

• Conda: >4.6

First, please create a conda virtual environment (here it’s named “deepchem-test”) and activate it.

conda create --name deepchem-test
conda activate deepchem-test

Install DeepChem, Jupyter and matplotlib into the conda environment.

conda install -y -c conda-forge nb_conda_kernels matplotlib
pip install tensorflow
pip install --pre deepchem

You may need to use pip3 depending on your Python 3 pip installation. Install pip dependencies after deepchem-test
is activated.

While the deepchem-test environment is activated, open Jupyter Notebook by running jupyter notebook. Your
terminal prompt should be prefixed with (deepchem-test). Once Jupyter Notebook opens in a browser, select the new
button, and select the environment “Python[conda env:deepchem-test].” This will open a notebook running in the
deepchem-test conda virtual environment.

3.1. Installation 9
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3.1.6 From source with conda

Installing via these steps will ensure you are installing from the source.

Prerequisite
• Shell: Bash, Zsh, PowerShell

• Conda: >4.6

First, please clone the deepchem repository from GitHub.

git clone https://github.com/deepchem/deepchem.git
cd deepchem

Then, execute the shell script. The shell scripts require two arguments, python version and gpu/cpu.

source scripts/install_deepchem_conda.sh 3.10 cpu

If you want GPU support (we supports only CUDA 11.8):

source scripts/install_deepchem_conda.sh 3.10 gpu

If you are using the Windows and the PowerShell:

.\scripts\install_deepchem_conda.ps1 3.10 cpu

Sometimes, PowerShell scripts can’t be executed due to problems in Execution Policies.
In that case, you can either change the Execution policies or use the bypass argument.

powershell -executionpolicy bypass -File .\scripts\install_deepchem_conda.ps1 3.10 cpu

Before activating deepchem environment, make sure conda has been initialized.
Check if there is a (XXXX) in your command line.
If not, use conda init <YOUR_SHELL_NAME> to activate it, then:

conda activate deepchem
pip install -e .
pytest -m "not slow" deepchem # optional

3.1.7 From source lightweight guide

Installing via these steps will ensure you are installing from the source.

Prerequisite
• Shell: Bash, Zsh, PowerShell

• Conda: >4.6

First, please clone the deepchem repository from GitHub.
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git clone https://github.com/deepchem/deepchem.git
cd deepchem

We would advise all users to use conda environment, following below-

conda create --name deepchem python=3.10
conda activate deepchem
pip install -e .

DeepChem provides diffrent additional packages depending on usage & contribution If one also wants to build the
tensorflow environment, add this

pip install -e .[tensorflow]

If one also wants to build the Pytorch environment, add this

pip install -e .[torch]

If one also wants to build the Jax environment, add this

pip install -e .[jax]

DeepChem has soft requirements, which can be installed on the fly during development inside the environment but if
you want to install all the soft-dependencies at once, then take a look at deepchem/requirements

3.2 Requirements

3.2.1 Hard requirements

DeepChem officially supports Python 3.8 through 3.10 and requires these packages on any condition.

• joblib

• NumPy

• pandas

• scikit-learn

• SymPy

• SciPy

3.2.2 Soft requirements

DeepChem has a number of “soft” requirements.

3.2. Requirements 11
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Package name Version Location where this package is used (dc: deepchem)
BioPython latest dc.utlis.genomics_utils
Deep Graph Li-
brary

0.5.x dc.feat.graph_data, dc.models.torch_models

DGL-LifeSci 0.2.x dc.models.torch_models
HuggingFace
Transformers

Not Testing dc.feat.smiles_tokenizer

HuggingFace
Tokenizers

latest dc.feat.HuggingFaceVocabularyBuilder

LightGBM latest dc.models.gbdt_models
matminer latest dc.feat.materials_featurizers
MDTraj latest dc.utils.pdbqt_utils
Mol2vec latest dc.utils.molecule_featurizers
Mordred latest dc.utils.molecule_featurizers
NetworkX latest dc.utils.rdkit_utils
OpenAI Gym Not Testing dc.rl
OpenMM latest dc.utils.rdkit_utils
PDBFixer latest dc.utils.rdkit_utils
Pillow latest dc.data.data_loader, dc.trans.transformers
PubChemPy latest dc.feat.molecule_featurizers
pyGPGO latest dc.hyper.gaussian_process
Pymatgen latest dc.feat.materials_featurizers
PyTorch 2.2.1 dc.models.torch_models
PyTorch Geo-
metric

latest (with Py-
Torch 2.2.1)

dc.feat.graph_data dc.models.torch_models

RDKit latest Many modules (we recommend you to install)
simdna latest dc.metrics.genomic_metrics, dc.molnet.dnasim
TensorFlow 2.15 dc.models deepchem>=2.4.0 depends on TensorFlow v2(2.3.x)

deepchem<2.4.0 depends on TensorFlow v1(>=1.14)
Tensorflow Prob-
ability

0.23.x dc.rl

Weights & Bi-
ases

Not Testing dc.models.keras_model, dc.models.callbacks

XGBoost latest dc.models.gbdt_models
Tensorflow Ad-
dons

latest dc.models.optimizers

pySCF latest dc.models.torch_models.ferminet
pysam latest dc.feat.bio_seq_featurizer dc.models.data_loader

3.3 Tutorials

If you’re new to DeepChem, you probably want to know the basics. What is DeepChem? Why should you care about
using it? The short answer is that DeepChem is a scientific machine learning library. (The “Chem” indicates the
historical fact that DeepChem initially focused on chemical applications, but we aim to support all types of scientific
applications more broadly).

Why would you want to use DeepChem instead of another machine learning library? Simply put, DeepChem maintains
an extensive collection of utilities to enable scientific deep learning including classes for loading scientific datasets,
processing them, transforming them, splitting them up, and learning from them. Behind the scenes DeepChem uses a
variety of other machine learning frameworks such as scikit-learn, TensorFlow, and XGBoost. We are also experiment-
ing with adding additional models implemented in PyTorch and JAX. Our focus is to facilitate scientific experimentation
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using whatever tools are available at hand.

In the rest of this tutorials, we’ll provide a rapid fire overview of DeepChem’s API. DeepChem is a big library so we
won’t cover everything, but we should give you enough to get started.

Contents

• Data Handling

• Feature Engineering

• Data Splitting

• Model Training and Evaluating

• More Tutorials

3.3.1 Data Handling

The dc.datamodule contains utilities to handle Dataset objects. These Dataset objects are the heart of DeepChem.
A Dataset is an abstraction of a dataset in machine learning. That is, a collection of features, labels, weights, alongside
associated identifiers. Rather than explaining further, we’ll just show you.

>>> import deepchem as dc
>>> import numpy as np
>>> N_samples = 50
>>> n_features = 10
>>> X = np.random.rand(N_samples, n_features)
>>> y = np.random.rand(N_samples)
>>> dataset = dc.data.NumpyDataset(X, y)
>>> dataset.X.shape
(50, 10)
>>> dataset.y.shape
(50,)

Here we’ve used the NumpyDataset class which stores datasets in memory. This works fine for smaller datasets and
is very convenient for experimentation, but is less convenient for larger datasets. For that we have the DiskDataset
class.

>>> dataset = dc.data.DiskDataset.from_numpy(X, y)
>>> dataset.X.shape
(50, 10)
>>> dataset.y.shape
(50,)

In this example we haven’t specified a data directory, so this DiskDataset is written to a temporary folder. Note
that dataset.X and dataset.y load data from disk underneath the hood! So this can get very expensive for larger
datasets.

3.3. Tutorials 13
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3.3.2 Feature Engineering

“Featurizer” is a chunk of code which transforms raw input data into a processed form suitable for machine learning.
The dc.feat module contains an extensive collection of featurizers for molecules, molecular complexes and inorganic
crystals. We’ll show you the example about the usage of featurizers.

>>> smiles = [
... 'O=Cc1ccc(O)c(OC)c1',
... 'CN1CCC[C@H]1c2cccnc2',
... 'C1CCCCC1',
... 'c1ccccc1',
... 'CC(=O)O',
... ]
>>> properties = [0.4, -1.5, 3.2, -0.2, 1.7]
>>> featurizer = dc.feat.CircularFingerprint(size=1024)
>>> ecfp = featurizer.featurize(smiles)
>>> ecfp.shape
(5, 1024)
>>> dataset = dc.data.NumpyDataset(X=ecfp, y=np.array(properties))
>>> len(dataset)
5

Here, we’ve used the CircularFingerprint and converted SMILES to ECFP. The ECFP is a fingerprint which is a
bit vector made by chemical structure information and we can use it as the input for various models.

And then, you may have a CSV file which contains SMILES and property like HOMO-LUMO gap. In such a case, by
using DataLoader, you can load and featurize your data at once.

>>> import pandas as pd
>>> # make a dataframe object for creating a CSV file
>>> df = pd.DataFrame(list(zip(smiles, properties)), columns=["SMILES", "property"])
>>> import tempfile
>>> with dc.utils.UniversalNamedTemporaryFile(mode='w') as tmpfile:
... # dump the CSV file
... df.to_csv(tmpfile.name)
... # initizalize the featurizer
... featurizer = dc.feat.CircularFingerprint(size=1024)
... # initizalize the dataloader
... loader = dc.data.CSVLoader(["property"], feature_field="SMILES",␣
→˓featurizer=featurizer)
... # load and featurize the data from the CSV file
... dataset = loader.create_dataset(tmpfile.name)
... len(dataset)
5
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3.3.3 Data Splitting

The dc.splits module contains a collection of scientifically aware splitters. Generally, we need to split the original
data to training, validation and test data in order to tune the model and evaluate the model’s performance. We’ll show
you the example about the usage of splitters.

>>> splitter = dc.splits.RandomSplitter()
>>> # split 5 datapoints in the ratio of train:valid:test = 3:1:1
>>> train_dataset, valid_dataset, test_dataset = splitter.train_valid_test_split(
... dataset=dataset, frac_train=0.6, frac_valid=0.2, frac_test=0.2
... )
>>> len(train_dataset)
3
>>> len(valid_dataset)
1
>>> len(test_dataset)
1

Here, we’ve used the RandomSplitter and splitted the data randomly in the ratio of train:valid:test = 3:1:1. But, the
random splitting sometimes overestimates model’s performance, especially for small data or imbalance data. Please
be careful for model evaluation. The dc.splits provides more methods and algorithms to evaluate the model’s
performance appropriately, like cross validation or splitting using molecular scaffolds.

3.3.4 Model Training and Evaluating

The dc.models contains an extensive collection of models for scientific applications. Most of all models inherits dc.
models.Model and we can train them by just calling fit method. You don’t need to care about how to use specific
framework APIs. We’ll show you the example about the usage of models.

>>> from sklearn.ensemble import RandomForestRegressor
>>> rf = RandomForestRegressor()
>>> model = dc.models.SklearnModel(model=rf)
>>> # model training
>>> model.fit(train_dataset)
>>> valid_preds = model.predict(valid_dataset)
>>> valid_preds.shape
(1,)
>>> test_preds = model.predict(test_dataset)
>>> test_preds.shape
(1,)

Here, we’ve used the SklearnModel and trained the model. Even if you want to train a deep learning model which is
implemented by TensorFlow or PyTorch, calling fit method is all you need!

And then, if you use dc.metrics.Metric, you can evaluate your model by just calling evaluate method.

>>> # initialze the metric
>>> metric = dc.metrics.Metric(dc.metrics.mae_score)
>>> # evaluate the model
>>> train_score = model.evaluate(train_dataset, [metric])
>>> valid_score = model.evaluate(valid_dataset, [metric])
>>> test_score = model.evaluate(test_dataset, [metric])

3.3. Tutorials 15
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3.3.5 More Tutorials

DeepChem maintains an extensive collection of addition tutorials that are meant to be run on Google Colab, an online
platform that allows you to execute Jupyter notebooks. Once you’ve finished this introductory tutorial, we recommend
working through these more involved tutorials.

3.4 Examples

We show a bunch of examples for DeepChem by the doctest style.

• We match against doctest’s ... wildcard on code where output is usually ignored

• We often use threshold assertions (e.g: score['mean-pearson_r2_score'] > 0.92), as this is what matters
for model training code.

Contents

• Delaney (ESOL)

– MultitaskRegressor

– GraphConvModel

• ChEMBL

– MultitaskRegressor

– GraphConvModel

Before jumping in to examples, we’ll import our libraries and ensure our doctests are reproducible:

>>> import numpy as np
>>> import tensorflow as tf
>>> import deepchem as dc
>>> import random
>>>
>>> # Run before every test for reproducibility
>>> def seed_all():
... np.random.seed(456)
... tf.random.set_seed(456)
... random.seed(456)

3.4.1 Delaney (ESOL)

Examples of training models on the Delaney (ESOL) dataset included in MoleculeNet.

We’ll be using its smiles field to train models to predict its experimentally measured solvation energy (expt).
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MultitaskRegressor

First, we’ll load the dataset with load_delaney() and fit a MultitaskRegressor:

>>> seed_all()
>>> # Load dataset with default 'scaffold' splitting
>>> tasks, datasets, transformers = dc.molnet.load_delaney()
>>> tasks
['measured log solubility in mols per litre']
>>> train_dataset, valid_dataset, test_dataset = datasets
>>>
>>> # We want to know the pearson R squared score, averaged across tasks
>>> avg_pearson_r2 = dc.metrics.Metric(dc.metrics.pearson_r2_score, np.mean)
>>>
>>> # We'll train a multitask regressor (fully connected network)
>>> model = dc.models.MultitaskRegressor(
... len(tasks),
... n_features=1024,
... layer_sizes=[500])
>>>
>>> model.fit(train_dataset)
0...
>>>
>>> # We now evaluate our fitted model on our training and validation sets
>>> train_scores = model.evaluate(train_dataset, [avg_pearson_r2], transformers)
>>> assert train_scores['mean-pearson_r2_score'] > 0.7, train_scores
>>>
>>> valid_scores = model.evaluate(valid_dataset, [avg_pearson_r2], transformers)
>>> assert valid_scores['mean-pearson_r2_score'] > 0.3, valid_scores

GraphConvModel

The default featurizer for Delaney is ECFP, short for “Extended-connectivity fingerprints.” For a GraphConvModel,
we’ll reload our datasets with featurizer='GraphConv':

>>> seed_all()
>>> tasks, datasets, transformers = dc.molnet.load_delaney(featurizer='GraphConv')
>>> train_dataset, valid_dataset, test_dataset = datasets
>>>
>>> model = dc.models.GraphConvModel(len(tasks), mode='regression', dropout=0.5)
>>>
>>> model.fit(train_dataset, nb_epoch=30)
0...
>>>
>>> # We now evaluate our fitted model on our training and validation sets
>>> train_scores = model.evaluate(train_dataset, [avg_pearson_r2], transformers)
>>> assert train_scores['mean-pearson_r2_score'] > 0.5, train_scores
>>>
>>> valid_scores = model.evaluate(valid_dataset, [avg_pearson_r2], transformers)
>>> assert valid_scores['mean-pearson_r2_score'] > 0.3, valid_scores

3.4. Examples 17
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3.4.2 ChEMBL

Examples of training models on ChEMBL dataset included in MoleculeNet.

ChEMBL is a manually curated database of bioactive molecules with drug-like properties. It brings together chemical,
bioactivity and genomic data to aid the translation of genomic information into effective new drugs.

MultitaskRegressor

>>> seed_all()
>>> # Load ChEMBL 5thresh dataset with random splitting
>>> chembl_tasks, datasets, transformers = dc.molnet.load_chembl(
... shard_size=2000, featurizer="ECFP", set="5thresh", split="random")
>>> train_dataset, valid_dataset, test_dataset = datasets
>>> len(chembl_tasks)
691
>>> f'Compound train/valid/test split: {len(train_dataset)}/{len(valid_dataset)}/
→˓{len(test_dataset)}'
'Compound train/valid/test split: 19096/2387/2388'
>>>
>>> # We want to know the RMS, averaged across tasks
>>> avg_rms = dc.metrics.Metric(dc.metrics.rms_score, np.mean)
>>>
>>> # Create our model
>>> n_layers = 3
>>> model = dc.models.MultitaskRegressor(
... len(chembl_tasks),
... n_features=1024,
... layer_sizes=[1000] * n_layers,
... dropouts=[.25] * n_layers,
... weight_init_stddevs=[.02] * n_layers,
... bias_init_consts=[1.] * n_layers,
... learning_rate=.0003,
... weight_decay_penalty=.0001,
... batch_size=100)
>>>
>>> model.fit(train_dataset, nb_epoch=5)
0...
>>>
>>> # We now evaluate our fitted model on our training and validation sets
>>> train_scores = model.evaluate(train_dataset, [avg_rms], transformers)
>>> assert train_scores['mean-rms_score'] < 10.00
>>>
>>> valid_scores = model.evaluate(valid_dataset, [avg_rms], transformers)
>>> assert valid_scores['mean-rms_score'] < 10.00

18 Chapter 3. About Us
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GraphConvModel

>>> seed_all()
>>> # Load ChEMBL dataset
>>> chembl_tasks, datasets, transformers = dc.molnet.load_chembl(
... shard_size=2000, featurizer="GraphConv", set="5thresh", split="random")
>>> train_dataset, valid_dataset, test_dataset = datasets
>>>
>>> # RMS, averaged across tasks
>>> avg_rms = dc.metrics.Metric(dc.metrics.rms_score, np.mean)
>>>
>>> model = dc.models.GraphConvModel(
... len(chembl_tasks), batch_size=128, mode='regression')
>>>
>>> # Fit trained model
>>> model.fit(train_dataset, nb_epoch=5)
0...
>>>
>>> # We now evaluate our fitted model on our training and validation sets
>>> train_scores = model.evaluate(train_dataset, [avg_rms], transformers)
>>> assert train_scores['mean-rms_score'] < 10.00
>>>
>>> valid_scores = model.evaluate(valid_dataset, [avg_rms], transformers)
>>> assert valid_scores['mean-rms_score'] < 10.00

3.5 Known Issues & Limitations

3.5.1 Broken features

A small number of Deepchem features are known to be broken. The Deepchem team will either fix or deprecate these
broken features. It is impossible to know of every possible bug in a large project like Deepchem, but we hope to save
you some headache by listing features that we know are partially or completely broken.

Note: This list is likely to be non-exhaustive. If we missed something, please let us know
[here](https://github.com/deepchem/deepchem/issues/2376).

Feature Deepchem response Tracker and notes
ANIFeatur-
izer/ANIModel

Low Priority Likely depre-
cate

The Deepchem team recommends using TorchANI in-
stead.

3.5. Known Issues & Limitations 19



deepchem, Release 2.8.0

3.5.2 Experimental features

Deepchem features usually undergo rigorous code review and testing to ensure that they are ready for production
environments. The following Deepchem features have not been thoroughly tested to the level of other Deepchem
modules, and could be potentially problematic in production environments.

Note: This list is likely to be non-exhaustive. If we missed something, please let us know
[here](https://github.com/deepchem/deepchem/issues/2376).

Feature Tracker and notes
Mol2 Loading Needs more testing.
Interaction Fingerprints Needs more testing.

If you would like to help us address these known issues, please consider contributing to Deepchem!

3.6 Docker Tutorial

Docker is a software used for easy building, testing and deploying of software. Docker creates an isolated workspace
called containers which can avoid dependency version clashes making development of software faster. Also, software
can be modularized in different containers, which allows it to be tested without impacting other components or the host
computer. Containers contain all the dependencies and the user need not worry about required packages

This makes it easy for users to access older version of deepchem via docker and to develop with them.
Docker works with the following layers:

• Images:

Images are the instructions for creating docker containers. It specifies all the packages and their version to be installed
fo the application to run. Images for deep chem can found at docker Hub.

• Containers:

Containers are live instances of Images and are lightweight isolated work-spaces(it does not put much workload on
your PC), where you can run and devlop on previous deepchem versions.

• Docker engine:

It is the main application that manages, runs and build containers and images. It also provides a means to interact
with the docker container after its built and when it is run.

• Registries:

It is a hub or place where docker images can be found. For deepchem, the default registry is the Docker Hub.

For docker installation, visit: https://docs.docker.com/engine/install/
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3.6.1 Using deepchem with docker:

To work with deepchem in docker, we first have to pull deepchem images from docker hub. It can be done in the
following way.

if latest deepchem version is needed, then:-

#if latest:
docker pull deepchemio/deepchem:latest

Else if one wants to work with older version, then the following method should be used:-

docker pull deepchemio/deepchem:x.x.x
#x.x.x refers to the version number

Now, wait for some time until the image gets downloaded. Then we have to create a container using the image. Then,
you have to create a container and use it.

docker run --rm -it deepchemio/deepchem:x.x.x
#x.x.x refers to the version number
#replace "x.x.x" with "latest" if latest version is used

If you want GPU support:

# If nvidia-docker is installed
nvidia-docker run --rm -it deepchemio/deepchem:latest
docker run --runtime nvidia --rm -it deepchemio/deepchem:latest

# If nvidia-container-toolkit is installed
docker run --gpus all --rm -it deepchemio/deepchem:latest

Now, you have successfully entered the container’s bash where you can execute your programs. To exit the container
press “Ctrl+D”. This stops the container and opens host computer’s bash.

To view all the containers present, open up a new terminal/bash of the host computer, then:-

docker ps -a

This gives a containers list like this:

CONTAINER ID IMAGE COMMAND CREATED STATUS ␣
→˓PORTS NAMES

Thus you can see all the created container’s Names and its details.

Now you can develop code in you host computer(development environment) and test it in a container having specific
version of the deepchem(testing environment).

To test the program you have written, you should copy the program to the container. Open a new host computer’s
terminal:

docker cp host-file-path <container-id>:path-in-container
#container ID should be check in a separate terminal

Similarly if you want to copy files out from a container, then open a new host computer’s terminal:
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docker cp <container-id>:path-in-container host-file-path
#container ID should be check in a separate terminal

3.6.2 Hands-on tutorial

Lets create a simple deepchem script and work it out in the docker container of deepchem 2.4.0.

Let the script be named deepchem.py in the host computer’s location: /home/

deepchem.py contents:

import deepchem as dc

print(dc.__version__)

Step 1: pull deepchem 2.4.0 image and wait for it to be dowloaded

$docker pull deepchemio/deepchem:2.4.0

Step 2: Create a container

$docker run --rm -it deepchemio/deepchem:2.4.0
(deepchem) root@51b1d2665016:~/mydir#

Step 3: Open a new terminal/bash and copy deep.py

$docker ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS ␣
→˓PORTS NAMES
51b1d2665016 deepchemio/deepchem:2.4.0 "/bin/bash" 5 seconds ago Up 4 seconds ␣
→˓ friendly_lehmann
$docker cp /home/deepchem.py 51b1d2665016:/root/mydir/deepchemp.py

step 4: return back to the previous terminal in which container is runing

(deepchem) root@51b1d2665016:~/mydir#python3 deepchem.py>>output.txt
2022-01-12 15:33:27.967170: I tensorflow/stream_executor/platform/default/dso_loader.
→˓cc:48] Successfully opened dynamic library libcudart.so.10.1

This should have created a output file in the container having the deepchem version number. The you should copy it
back to host container.

step 5: In a new terminal execute the following commands.

$docker cp 51b1d2665016:/root/mydir/output.txt ~/output.txt
$cat ~/output.txt
2.4.0

Thus you have successfully executed the program in deepchem 2.4.0!!!
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3.7 Documentation Tutorial

This page provides instructions on how to build and test DeepChem documentation.

3.7.1 Building the Documentation

To build the docs, you can use the Makefile that’s been added to this directory. To generate docs in HTML, run the
following commands:

$ pip install -r requirements.txt
$ make html
# Clean build
$ make clean html
$ open build/html/index.html

3.7.2 Testing

To check if the changes to the docs rendered properly, open build/html on a web browser.

If you want to confirm logs in more detail, use the following command:

$ make clean html SPHINXOPTS=-vvv

If you want to confirm the example tests, run:

$ make doctest_examples

3.8 Data

DeepChem dc.data provides APIs for handling your data.

If your data is stored by the file like CSV and SDF, you can use the Data Loaders. The Data Loaders read your data,
convert them to features (ex: SMILES to ECFP) and save the features to Dataset class. If your data is python objects
like Numpy arrays or Pandas DataFrames, you can use the Datasets directly.

Contents

• Datasets

– NumpyDataset

– DiskDataset

– ImageDataset

• Data Loaders

– CSVLoader

– UserCSVLoader

– ImageLoader
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– JsonLoader

– SDFLoader

– FASTALoader

– FASTQLoader

– InMemoryLoader

– Density Functional Theory YAML Loader

– SAM Loader

– BAM Loader

– CRAM Loader

• Data Classes

– Graph Data

– Density Functional Theory Data

• Base Classes (for develop)

– Dataset

– DataLoader

3.8.1 Datasets

DeepChem dc.data.Dataset objects are one of the core building blocks of DeepChem programs. Dataset objects
hold representations of data for machine learning and are widely used throughout DeepChem.

The goal of the Dataset class is to be maximally interoperable with other common representations of machine learning
datasets. For this reason we provide interconversion methods mapping from Dataset objects to pandas DataFrames,
TensorFlow Datasets, and PyTorch datasets.

NumpyDataset

The dc.data.NumpyDataset class provides an in-memory implementation of the abstract Dataset which stores its
data in numpy.ndarray objects.

class NumpyDataset(X: _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool |
int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes], y:
_SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int |
float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes] | None
= None, w: _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]]
| bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str |
bytes] | None = None, ids: _SupportsArray[dtype[Any]] |
_NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes |
_NestedSequence[bool | int | float | complex | str | bytes] | None = None, n_tasks: int = 1)

A Dataset defined by in-memory numpy arrays.

This subclass of Dataset stores arrays X,y,w,ids in memory as numpy arrays. This makes it very easy to construct
NumpyDataset objects.
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Examples

>>> import numpy as np
>>> dataset = NumpyDataset(X=np.random.rand(5, 3), y=np.random.rand(5,), ids=np.
→˓arange(5))

__init__(X: _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int |
float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes], y:
_SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float |
complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes] | None = None, w:
_SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float |
complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes] | None = None, ids:
_SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float |
complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes] | None = None,
n_tasks: int = 1)→ None

Initialize this object.

Parameters
• X (np.ndarray) – Input features. A numpy array of shape (n_samples,. . . ).

• y (np.ndarray, optional (default None)) – Labels. A numpy array of shape
(n_samples, . . . ). Note that each label can have an arbitrary shape.

• w (np.ndarray, optional (default None)) – Weights. Should either be 1D array
of shape (n_samples,) or if there’s more than one task, of shape (n_samples, n_tasks).

• ids (np.ndarray, optional (default None)) – Identifiers. A numpy array of shape
(n_samples,)

• n_tasks (int, default 1) – Number of learning tasks.

__len__()→ int
Get the number of elements in the dataset.

get_shape()→ Tuple[Tuple[int, ...], Tuple[int, ...], Tuple[int, ...], Tuple[int, ...]]
Get the shape of the dataset.

Returns four tuples, giving the shape of the X, y, w, and ids arrays.

get_task_names()→ ndarray
Get the names of the tasks associated with this dataset.

property X: ndarray

Get the X vector for this dataset as a single numpy array.

property y: ndarray

Get the y vector for this dataset as a single numpy array.

property ids: ndarray

Get the ids vector for this dataset as a single numpy array.

property w: ndarray

Get the weight vector for this dataset as a single numpy array.

iterbatches(batch_size: int | None = None, epochs: int = 1, deterministic: bool = False, pad_batches: bool
= False)→ Iterator[Tuple[ndarray, ndarray, ndarray, ndarray]]

Get an object that iterates over minibatches from the dataset.

Each minibatch is returned as a tuple of four numpy arrays: (X, y, w, ids).
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Parameters
• batch_size (int, optional (default None)) – Number of elements in each batch.

• epochs (int, default 1) – Number of epochs to walk over dataset.

• deterministic (bool, optional (default False)) – If True, follow deterministic
order.

• pad_batches (bool, optional (default False)) – If True, pad each batch to
batch_size.

Returns
Generator which yields tuples of four numpy arrays (X, y, w, ids).

Return type
Iterator[Batch]

itersamples()→ Iterator[Tuple[ndarray, ndarray, ndarray, ndarray]]
Get an object that iterates over the samples in the dataset.

Returns
Iterator which yields tuples of four numpy arrays (X, y, w, ids).

Return type
Iterator[Batch]

Examples

>>> dataset = NumpyDataset(np.ones((2,2)))
>>> for x, y, w, id in dataset.itersamples():
... print(x.tolist(), y.tolist(), w.tolist(), id)
[1.0, 1.0] [0.0] [0.0] 0
[1.0, 1.0] [0.0] [0.0] 1

transform(transformer: Transformer, **args)→ NumpyDataset
Construct a new dataset by applying a transformation to every sample in this dataset.

The argument is a function that can be called as follows: >> newx, newy, neww = fn(x, y, w)

It might be called only once with the whole dataset, or multiple times with different subsets of the data.
Each time it is called, it should transform the samples and return the transformed data.

Parameters
transformer (dc.trans.Transformer) – The transformation to apply to each sample in
the dataset

Returns
A newly constructed NumpyDataset object

Return type
NumpyDataset

select(indices: Sequence[int] | ndarray, select_dir: str | None = None)→ NumpyDataset
Creates a new dataset from a selection of indices from self.

Parameters
• indices (List[int]) – List of indices to select.
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• select_dir (str, optional (default None)) – Used to provide same API as Disk-
Dataset. Ignored since NumpyDataset is purely in-memory.

Returns
A selected NumpyDataset object

Return type
NumpyDataset

make_pytorch_dataset(epochs: int = 1, deterministic: bool = False, batch_size: int | None = None)
Create a torch.utils.data.IterableDataset that iterates over the data in this Dataset.

Each value returned by the Dataset’s iterator is a tuple of (X, y, w, id) containing the data for one batch, or
for a single sample if batch_size is None.

Parameters
• epochs (int, default 1) – The number of times to iterate over the Dataset

• deterministic (bool, default False) – If True, the data is produced in order. If
False, a different random permutation of the data is used for each epoch.

• batch_size (int, optional (default None)) – The number of samples to return in
each batch. If None, each returned value is a single sample.

Returns
torch.utils.data.IterableDataset that iterates over the data in this dataset.

Return type
torch.utils.data.IterableDataset

Note: This method requires PyTorch to be installed.

static from_DiskDataset(ds: DiskDataset)→ NumpyDataset
Convert DiskDataset to NumpyDataset.

Parameters
ds (DiskDataset) – DiskDataset to transform to NumpyDataset.

Returns
A new NumpyDataset created from DiskDataset.

Return type
NumpyDataset

to_json(fname: str)→ None
Dump NumpyDataset to the json file .

Parameters
fname (str) – The name of the json file.

static from_json(fname: str)→ NumpyDataset
Create NumpyDataset from the json file.

Parameters
fname (str) – The name of the json file.

Returns
A new NumpyDataset created from the json file.

Return type
NumpyDataset
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static merge(datasets: Sequence[Dataset])→ NumpyDataset
Merge multiple NumpyDatasets.

Parameters
datasets (List[Dataset]) – List of datasets to merge.

Returns
A single NumpyDataset containing all the samples from all datasets.

Return type
NumpyDataset

Example

>>> X1, y1 = np.random.rand(5, 3), np.random.randn(5, 1)
>>> first_dataset = dc.data.NumpyDataset(X1, y1)
>>> X2, y2 = np.random.rand(5, 3), np.random.randn(5, 1)
>>> second_dataset = dc.data.NumpyDataset(X2, y2)
>>> merged_dataset = dc.data.NumpyDataset.merge([first_dataset, second_dataset])
>>> print(len(merged_dataset) == len(first_dataset) + len(second_dataset))
True

static from_dataframe(df: DataFrame, X: str | Sequence[str] | None = None, y: str | Sequence[str] | None
= None, w: str | Sequence[str] | None = None, ids: str | None = None)

Construct a Dataset from the contents of a pandas DataFrame.

Parameters
• df (pd.DataFrame) – The pandas DataFrame

• X (str or List[str], optional (default None)) – The name of the column or
columns containing the X array. If this is None, it will look for default column names that
match those produced by to_dataframe().

• y (str or List[str], optional (default None)) – The name of the column or
columns containing the y array. If this is None, it will look for default column names that
match those produced by to_dataframe().

• w (str or List[str], optional (default None)) – The name of the column or
columns containing the w array. If this is None, it will look for default column names that
match those produced by to_dataframe().

• ids (str, optional (default None)) – The name of the column containing the ids.
If this is None, it will look for default column names that match those produced by
to_dataframe().

get_statistics(X_stats: bool = True, y_stats: bool = True)→ Tuple[ndarray, ...]
Compute and return statistics of this dataset.

Uses self.itersamples() to compute means and standard deviations of the dataset. Can compute on large
datasets that don’t fit in memory.

Parameters
• X_stats (bool, optional (default True)) – If True, compute feature-level mean

and standard deviations.

• y_stats (bool, optional (default True)) – If True, compute label-level mean and
standard deviations.
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Returns
• If X_stats == True, returns (X_means, X_stds).

• If y_stats == True, returns (y_means, y_stds).

• If both are true, returns (X_means, X_stds, y_means, y_stds).

Return type
Tuple

make_tf_dataset(batch_size: int = 100, epochs: int = 1, deterministic: bool = False, pad_batches: bool =
False)

Create a tf.data.Dataset that iterates over the data in this Dataset.

Each value returned by the Dataset’s iterator is a tuple of (X, y, w) for one batch.

Parameters
• batch_size (int, default 100) – The number of samples to include in each batch.

• epochs (int, default 1) – The number of times to iterate over the Dataset.

• deterministic (bool, default False) – If True, the data is produced in order. If
False, a different random permutation of the data is used for each epoch.

• pad_batches (bool, default False) – If True, batches are padded as necessary to
make the size of each batch exactly equal batch_size.

Returns
TensorFlow Dataset that iterates over the same data.

Return type
tf.data.Dataset

Note: This class requires TensorFlow to be installed.

to_csv(path: str)→ None
Write object to a comma-seperated values (CSV) file

Example

>>> import numpy as np
>>> X = np.random.rand(10, 10)
>>> dataset = dc.data.DiskDataset.from_numpy(X)
>>> dataset.to_csv('out.csv')

Parameters
path (str) – File path or object

Return type
None

to_dataframe()→ DataFrame
Construct a pandas DataFrame containing the data from this Dataset.
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Returns
Pandas dataframe. If there is only a single feature per datapoint, will have column “X” else
will have columns “X1,X2,. . . ” for features. If there is only a single label per datapoint, will
have column “y” else will have columns “y1,y2,. . . ” for labels. If there is only a single weight
per datapoint will have column “w” else will have columns “w1,w2,. . . ”. Will have column
“ids” for identifiers.

Return type
pd.DataFrame

DiskDataset

The dc.data.DiskDataset class allows for the storage of larger datasets on disk. Each DiskDataset is associated
with a directory in which it writes its contents to disk. Note that a DiskDataset can be very large, so some of the
utility methods to access fields of a Dataset can be prohibitively expensive.

class DiskDataset(data_dir: str)
A Dataset that is stored as a set of files on disk.

The DiskDataset is the workhorse class of DeepChem that facilitates analyses on large datasets. Use this class
whenever you’re working with a large dataset that can’t be easily manipulated in RAM.

On disk, a DiskDataset has a simple structure. All files for a given DiskDataset are stored in a data_dir. The
contents of data_dir should be laid out as follows:

data_dir/
|
—> metadata.csv.gzip
|
—> tasks.json
|
—> shard-0-X.npy
|
—> shard-0-y.npy
|
—> shard-0-w.npy
|
—> shard-0-ids.npy
|
—> shard-1-X.npy
.
.
.

The metadata is constructed by static method DiskDataset._construct_metadata and saved to disk by Disk-
Dataset._save_metadata. The metadata itself consists of a csv file which has columns (‘ids’, ‘X’, ‘y’, ‘w’,
‘ids_shape’, ‘X_shape’, ‘y_shape’, ‘w_shape’). tasks.json consists of a list of task names for this dataset.

The actual data is stored in .npy files (numpy array files) of the form ‘shard-0-X.npy’, ‘shard-0-y.npy’, etc.
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The basic structure of DiskDataset is quite robust and will likely serve you well for datasets up to about 100 GB
or larger. However note that DiskDataset has not been tested for very large datasets at the terabyte range and
beyond. You may be better served by implementing a custom Dataset class for those use cases.

Examples

Let’s walk through a simple example of constructing a new DiskDataset.

>>> import deepchem as dc
>>> import numpy as np
>>> X = np.random.rand(10, 10)
>>> dataset = dc.data.DiskDataset.from_numpy(X)

If you have already saved a DiskDataset to data_dir, you can reinitialize it with

>> data_dir = “/path/to/my/data” >> dataset = dc.data.DiskDataset(data_dir)

Once you have a dataset you can access its attributes as follows

>>> X = np.random.rand(10, 10)
>>> y = np.random.rand(10,)
>>> w = np.ones_like(y)
>>> dataset = dc.data.DiskDataset.from_numpy(X)
>>> X, y, w = dataset.X, dataset.y, dataset.w

One thing to beware of is that dataset.X, dataset.y, dataset.w are loading data from disk! If you have a large
dataset, these operations can be extremely slow. Instead try iterating through the dataset instead.

>>> for (xi, yi, wi, idi) in dataset.itersamples():
... pass

data_dir

Location of directory where this DiskDataset is stored to disk

Type
str

metadata_df

Pandas Dataframe holding metadata for this DiskDataset

Type
pd.DataFrame

legacy_metadata

Whether this DiskDataset uses legacy format.

Type
bool

Note: DiskDataset originally had a simpler metadata format without shape information. Older DiskDataset
objects had metadata files with columns (‘ids’, ‘X’, ‘y’, ‘w’) and not additional shape columns. DiskDataset
maintains backwards compatibility with this older metadata format, but we recommend for performance reasons
not using legacy metadata for new projects.
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__init__(data_dir: str)→ None
Load a constructed DiskDataset from disk

Note that this method cannot construct a new disk dataset. Instead use static methods Disk-
Dataset.create_dataset or DiskDataset.from_numpy for that purpose. Use this constructor instead to load
a DiskDataset that has already been created on disk.

Parameters
data_dir (str) – Location on disk of an existing DiskDataset.

static create_dataset(shard_generator: Iterable[Tuple[ndarray, ndarray, ndarray, ndarray]], data_dir:
str | None = None, tasks: _SupportsArray[dtype[Any]] |
_NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str |
bytes | _NestedSequence[bool | int | float | complex | str | bytes] | None = None)
→ DiskDataset

Creates a new DiskDataset

Parameters
• shard_generator (Iterable[Batch]) – An iterable (either a list or generator) that pro-

vides tuples of data (X, y, w, ids). Each tuple will be written to a separate shard on disk.

• data_dir (str, optional (default None)) – Filename for data directory. Creates a
temp directory if none specified.

• tasks (Sequence, optional (default [])) – List of tasks for this dataset.

Returns
A new DiskDataset constructed from the given data

Return type
DiskDataset

load_metadata()→ Tuple[List[str], DataFrame]
Helper method that loads metadata from disk.

static write_data_to_disk(data_dir: str, basename: str, X: ndarray | None = None, y: ndarray | None =
None, w: ndarray | None = None, ids: ndarray | None = None)→ List[Any]

Static helper method to write data to disk.

This helper method is used to write a shard of data to disk.

Parameters
• data_dir (str) – Data directory to write shard to.

• basename (str) – Basename for the shard in question.

• X (np.ndarray, optional (default None)) – The features array.

• y (np.ndarray, optional (default None)) – The labels array.

• w (np.ndarray, optional (default None)) – The weights array.

• ids (np.ndarray, optional (default None)) – The identifiers array.

Returns
List with values [out_ids, out_X, out_y, out_w, out_ids_shape, out_X_shape, out_y_shape,
out_w_shape] with filenames of locations to disk which these respective arrays were written.

Return type
List[Optional[str]]
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save_to_disk()→ None
Save dataset to disk.

move(new_data_dir: str, delete_if_exists: bool | None = True)→ None
Moves dataset to new directory.

Parameters
• new_data_dir (str) – The new directory name to move this to dataset to.

• delete_if_exists (bool, optional (default True)) – If this option is set, delete
the destination directory if it exists before moving. This is set to True by default to be
backwards compatible with behavior in earlier versions of DeepChem.

Note: This is a stateful operation! self.data_dir will be moved into new_data_dir. If delete_if_exists is
set to True (by default this is set True), then new_data_dir is deleted if it’s a pre-existing directory.

copy(new_data_dir: str)→ DiskDataset
Copies dataset to new directory.

Parameters
new_data_dir (str) – The new directory name to copy this to dataset to.

Returns
A copied DiskDataset object.

Return type
DiskDataset

Note: This is a stateful operation! Any data at new_data_dir will be deleted and self.data_dir will be
deep copied into new_data_dir.

get_task_names()→ ndarray
Gets learning tasks associated with this dataset.

reshard(shard_size: int)→ None
Reshards data to have specified shard size.

Parameters
shard_size (int) – The size of shard.

Examples

>>> import deepchem as dc
>>> import numpy as np
>>> X = np.random.rand(100, 10)
>>> d = dc.data.DiskDataset.from_numpy(X)
>>> d.reshard(shard_size=10)
>>> d.get_number_shards()
10

Note: If this DiskDataset is in legacy_metadata format, reshard will convert this dataset to have non-legacy
metadata.
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get_data_shape()→ Tuple[int, ...]
Gets array shape of datapoints in this dataset.

get_shard_size()→ int
Gets size of shards on disk.

get_number_shards()→ int
Returns the number of shards for this dataset.

itershards()→ Iterator[Tuple[ndarray, ndarray, ndarray, ndarray]]
Return an object that iterates over all shards in dataset.

Datasets are stored in sharded fashion on disk. Each call to next() for the generator defined by this function
returns the data from a particular shard. The order of shards returned is guaranteed to remain fixed.

Returns
Generator which yields tuples of four numpy arrays (X, y, w, ids).

Return type
Iterator[Batch]

iterbatches(batch_size: int | None = None, epochs: int = 1, deterministic: bool = False, pad_batches: bool
= False)→ Iterator[Tuple[ndarray, ndarray, ndarray, ndarray]]

Get an object that iterates over minibatches from the dataset.

It is guaranteed that the number of batches returned is math.ceil(len(dataset)/batch_size). Each minibatch
is returned as a tuple of four numpy arrays: (X, y, w, ids).

Parameters
• batch_size (int, optional (default None)) – Number of elements in a batch. If

None, then it yields batches with size equal to the size of each individual shard.

• epoch (int, default 1) – Number of epochs to walk over dataset

• deterministic (bool, default False) – Whether or not we should should shuffle
each shard before generating the batches. Note that this is only local in the sense that it
does not ever mix between different shards.

• pad_batches (bool, default False) – Whether or not we should pad the last batch,
globally, such that it has exactly batch_size elements.

Returns
Generator which yields tuples of four numpy arrays (X, y, w, ids).

Return type
Iterator[Batch]

itersamples()→ Iterator[Tuple[ndarray, ndarray, ndarray, ndarray]]
Get an object that iterates over the samples in the dataset.

Returns
Generator which yields tuples of four numpy arrays (X, y, w, ids).

Return type
Iterator[Batch]
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Examples

>>> dataset = DiskDataset.from_numpy(np.ones((2,2)), np.ones((2,1)))
>>> for x, y, w, id in dataset.itersamples():
... print(x.tolist(), y.tolist(), w.tolist(), id)
[1.0, 1.0] [1.0] [1.0] 0
[1.0, 1.0] [1.0] [1.0] 1

transform(transformer: Transformer, parallel: bool = False, out_dir: str | None = None, **args)→
DiskDataset

Construct a new dataset by applying a transformation to every sample in this dataset.

The argument is a function that can be called as follows: >> newx, newy, neww = fn(x, y, w)

It might be called only once with the whole dataset, or multiple times with different subsets of the data.
Each time it is called, it should transform the samples and return the transformed data.

Parameters
• transformer (dc.trans.Transformer) – The transformation to apply to each sample

in the dataset.

• parallel (bool, default False) – If True, use multiple processes to transform the
dataset in parallel.

• out_dir (str, optional (default None)) – The directory to save the new dataset
in. If this is omitted, a temporary directory is created automaticall.

Returns
A newly constructed Dataset object

Return type
DiskDataset

make_pytorch_dataset(epochs: int = 1, deterministic: bool = False, batch_size: int | None = None)
Create a torch.utils.data.IterableDataset that iterates over the data in this Dataset.

Each value returned by the Dataset’s iterator is a tuple of (X, y, w, id) containing the data for one batch, or
for a single sample if batch_size is None.

Parameters
• epochs (int, default 1) – The number of times to iterate over the Dataset

• deterministic (bool, default False) – If True, the data is produced in order. If
False, a different random permutation of the data is used for each epoch.

• batch_size (int, optional (default None)) – The number of samples to return in
each batch. If None, each returned value is a single sample.

Returns
torch.utils.data.IterableDataset that iterates over the data in this dataset.

Return type
torch.utils.data.IterableDataset

Note: This method requires PyTorch to be installed.
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static from_numpy(X: _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] |
bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str
| bytes], y: _SupportsArray[dtype[Any]] |
_NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes
| _NestedSequence[bool | int | float | complex | str | bytes] | None = None, w:
_SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool |
int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str |
bytes] | None = None, ids: _SupportsArray[dtype[Any]] |
_NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes
| _NestedSequence[bool | int | float | complex | str | bytes] | None = None, tasks:
_SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool |
int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str |
bytes] | None = None, data_dir: str | None = None)→ DiskDataset

Creates a DiskDataset object from specified Numpy arrays.

Parameters
• X (np.ndarray) – Feature array.

• y (np.ndarray, optional (default None)) – Labels array.

• w (np.ndarray, optional (default None)) – Weights array.

• ids (np.ndarray, optional (default None)) – Identifiers array.

• tasks (Sequence, optional (default None)) – Tasks in this dataset

• data_dir (str, optional (default None)) – The directory to write this dataset to.
If none is specified, will use a temporary directory instead.

Returns
A new DiskDataset constructed from the provided information.

Return type
DiskDataset

static merge(datasets: Iterable[Dataset], merge_dir: str | None = None)→ DiskDataset
Merges provided datasets into a merged dataset.

Parameters
• datasets (Iterable[Dataset]) – List of datasets to merge.

• merge_dir (str, optional (default None)) – The new directory path to store the
merged DiskDataset.

Returns
A merged DiskDataset.

Return type
DiskDataset

subset(shard_nums: Sequence[int], subset_dir: str | None = None)→ DiskDataset
Creates a subset of the original dataset on disk.

Parameters
• shard_nums (Sequence[int]) – The indices of shard to extract from the original Disk-

Dataset.

• subset_dir (str, optional (default None)) – The new directory path to store the
subset DiskDataset.
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Returns
A subset DiskDataset.

Return type
DiskDataset

sparse_shuffle()→ None
Shuffling that exploits data sparsity to shuffle large datasets.

If feature vectors are sparse, say circular fingerprints or any other representation that contains few nonzero
values, it can be possible to exploit the sparsity of the vector to simplify shuffles. This method implements
a sparse shuffle by compressing sparse feature vectors down into a compressed representation, then shuffles
this compressed dataset in memory and writes the results to disk.

Note: This method only works for 1-dimensional feature vectors (does not work for tensorial featuriza-
tions). Note that this shuffle is performed in place.

complete_shuffle(data_dir: str | None = None)→ Dataset
Completely shuffle across all data, across all shards.

Note: The algorithm used for this complete shuffle is O(N^2) where N is the number of shards. It simply
constructs each shard of the output dataset one at a time. Since the complete shuffle can take a long time,
it’s useful to watch the logging output. Each shuffled shard is constructed using select() which logs as it
selects from each original shard. This will results in O(N^2) logging statements, one for each extraction of
shuffled shard i’s contributions from original shard j.

Parameters
data_dir (Optional[str], (default None)) – Directory to write the shuffled dataset
to. If none is specified a temporary directory will be used.

Returns
A DiskDataset whose data is a randomly shuffled version of this dataset.

Return type
DiskDataset

shuffle_each_shard(shard_basenames: List[str] | None = None)→ None
Shuffles elements within each shard of the dataset.

Parameters
shard_basenames (List[str], optional (default None)) – The basenames for
each shard. If this isn’t specified, will assume the basenames of form “shard-i” used by cre-
ate_dataset and reshard.

shuffle_shards()→ None
Shuffles the order of the shards for this dataset.

get_shard(i: int)→ Tuple[ndarray, ndarray, ndarray, ndarray]
Retrieves data for the i-th shard from disk.

Parameters
i (int) – Shard index for shard to retrieve batch from.

Returns
A batch data for i-th shard.
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Return type
Batch

get_shard_ids(i: int)→ ndarray
Retrieves the list of IDs for the i-th shard from disk.

Parameters
i (int) – Shard index for shard to retrieve weights from.

Returns
A numpy array of ids for i-th shard.

Return type
np.ndarray

get_shard_y(i: int)→ ndarray
Retrieves the labels for the i-th shard from disk.

Parameters
i (int) – Shard index for shard to retrieve labels from.

Returns
A numpy array of labels for i-th shard.

Return type
np.ndarray

get_shard_w(i: int)→ ndarray
Retrieves the weights for the i-th shard from disk.

Parameters
i (int) – Shard index for shard to retrieve weights from.

Returns
A numpy array of weights for i-th shard.

Return type
np.ndarray

add_shard(X: ndarray, y: ndarray | None = None, w: ndarray | None = None, ids: ndarray | None = None)
→ None

Adds a data shard.

Parameters
• X (np.ndarray) – Feature array.

• y (np.ndarray, optioanl (default None)) – Labels array.

• w (np.ndarray, optioanl (default None)) – Weights array.

• ids (np.ndarray, optioanl (default None)) – Identifiers array.

set_shard(shard_num: int, X: ndarray, y: ndarray | None = None, w: ndarray | None = None, ids: ndarray |
None = None)→ None

Writes data shard to disk.

Parameters
• shard_num (int) – Shard index for shard to set new data.

• X (np.ndarray) – Feature array.

• y (np.ndarray, optioanl (default None)) – Labels array.
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• w (np.ndarray, optioanl (default None)) – Weights array.

• ids (np.ndarray, optioanl (default None)) – Identifiers array.

select(indices: Sequence[int] | ndarray, select_dir: str | None = None, select_shard_size: int | None = None,
output_numpy_dataset: bool | None = False)→ Dataset

Creates a new dataset from a selection of indices from self.

Examples

>>> import numpy as np
>>> X = np.random.rand(10, 10)
>>> dataset = dc.data.DiskDataset.from_numpy(X)
>>> selected = dataset.select([1, 3, 4])
>>> len(selected)
3

Parameters
• indices (Sequence) – List of indices to select.

• select_dir (str, optional (default None)) – Path to new directory that the se-
lected indices will be copied to.

• select_shard_size (Optional[int], (default None)) – If specified, the shard-
size to use for output selected DiskDataset. If not output_numpy_dataset, then this is set
to this current dataset’s shard size if not manually specified.

• output_numpy_dataset (Optional[bool], (default False)) – If True, output
an in-memory NumpyDataset instead of a DiskDataset. Note that select_dir and se-
lect_shard_size must be None if this is True

Returns
A dataset containing the selected samples. The default dataset is DiskDataset. If out-
put_numpy_dataset is True, the dataset is NumpyDataset.

Return type
Dataset

property ids: ndarray

Get the ids vector for this dataset as a single numpy array.

property X: ndarray

Get the X vector for this dataset as a single numpy array.

property y: ndarray

Get the y vector for this dataset as a single numpy array.

property w: ndarray

Get the weight vector for this dataset as a single numpy array.

property memory_cache_size: int

Get the size of the memory cache for this dataset, measured in bytes.

__len__()→ int
Finds number of elements in dataset.
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get_shape()→ Tuple[Tuple[int, ...], Tuple[int, ...], Tuple[int, ...], Tuple[int, ...]]
Finds shape of dataset.

Returns four tuples, giving the shape of the X, y, w, and ids arrays.

get_label_means()→ DataFrame
Return pandas series of label means.

get_label_stds()→ DataFrame
Return pandas series of label stds.

static from_dataframe(df: DataFrame, X: str | Sequence[str] | None = None, y: str | Sequence[str] | None
= None, w: str | Sequence[str] | None = None, ids: str | None = None)

Construct a Dataset from the contents of a pandas DataFrame.

Parameters
• df (pd.DataFrame) – The pandas DataFrame

• X (str or List[str], optional (default None)) – The name of the column or
columns containing the X array. If this is None, it will look for default column names that
match those produced by to_dataframe().

• y (str or List[str], optional (default None)) – The name of the column or
columns containing the y array. If this is None, it will look for default column names that
match those produced by to_dataframe().

• w (str or List[str], optional (default None)) – The name of the column or
columns containing the w array. If this is None, it will look for default column names that
match those produced by to_dataframe().

• ids (str, optional (default None)) – The name of the column containing the ids.
If this is None, it will look for default column names that match those produced by
to_dataframe().

get_statistics(X_stats: bool = True, y_stats: bool = True)→ Tuple[ndarray, ...]
Compute and return statistics of this dataset.

Uses self.itersamples() to compute means and standard deviations of the dataset. Can compute on large
datasets that don’t fit in memory.

Parameters
• X_stats (bool, optional (default True)) – If True, compute feature-level mean

and standard deviations.

• y_stats (bool, optional (default True)) – If True, compute label-level mean and
standard deviations.

Returns
• If X_stats == True, returns (X_means, X_stds).

• If y_stats == True, returns (y_means, y_stds).

• If both are true, returns (X_means, X_stds, y_means, y_stds).

Return type
Tuple
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make_tf_dataset(batch_size: int = 100, epochs: int = 1, deterministic: bool = False, pad_batches: bool =
False)

Create a tf.data.Dataset that iterates over the data in this Dataset.

Each value returned by the Dataset’s iterator is a tuple of (X, y, w) for one batch.

Parameters
• batch_size (int, default 100) – The number of samples to include in each batch.

• epochs (int, default 1) – The number of times to iterate over the Dataset.

• deterministic (bool, default False) – If True, the data is produced in order. If
False, a different random permutation of the data is used for each epoch.

• pad_batches (bool, default False) – If True, batches are padded as necessary to
make the size of each batch exactly equal batch_size.

Returns
TensorFlow Dataset that iterates over the same data.

Return type
tf.data.Dataset

Note: This class requires TensorFlow to be installed.

to_csv(path: str)→ None
Write object to a comma-seperated values (CSV) file

Example

>>> import numpy as np
>>> X = np.random.rand(10, 10)
>>> dataset = dc.data.DiskDataset.from_numpy(X)
>>> dataset.to_csv('out.csv')

Parameters
path (str) – File path or object

Return type
None

to_dataframe()→ DataFrame
Construct a pandas DataFrame containing the data from this Dataset.

Returns
Pandas dataframe. If there is only a single feature per datapoint, will have column “X” else
will have columns “X1,X2,. . . ” for features. If there is only a single label per datapoint, will
have column “y” else will have columns “y1,y2,. . . ” for labels. If there is only a single weight
per datapoint will have column “w” else will have columns “w1,w2,. . . ”. Will have column
“ids” for identifiers.

Return type
pd.DataFrame
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ImageDataset

The dc.data.ImageDataset class is optimized to allow for convenient processing of image based datasets.

class ImageDataset(X: ndarray | List[str], y: ndarray | List[str] | None, w: _SupportsArray[dtype[Any]] |
_NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes |
_NestedSequence[bool | int | float | complex | str | bytes] | None = None, ids:
_SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int |
float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes] | None
= None)

A Dataset that loads data from image files on disk.

__init__(X: ndarray | List[str], y: ndarray | List[str] | None, w: _SupportsArray[dtype[Any]] |
_NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes |
_NestedSequence[bool | int | float | complex | str | bytes] | None = None, ids:
_SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float |
complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes] | None = None)→
None

Create a dataset whose X and/or y array is defined by image files on disk.

Parameters
• X (np.ndarray or List[str]) – The dataset’s input data. This may be either a single

NumPy array directly containing the data, or a list containing the paths to the image files

• y (np.ndarray or List[str]) – The dataset’s labels. This may be either a single
NumPy array directly containing the data, or a list containing the paths to the image files

• w (np.ndarray, optional (default None)) – a 1D or 2D array containing the
weights for each sample or sample/task pair

• ids (np.ndarray, optional (default None)) – the sample IDs

__len__()→ int
Get the number of elements in the dataset.

get_shape()→ Tuple[Tuple[int, ...], Tuple[int, ...], Tuple[int, ...], Tuple[int, ...]]
Get the shape of the dataset.

Returns four tuples, giving the shape of the X, y, w, and ids arrays.

get_task_names()→ ndarray
Get the names of the tasks associated with this dataset.

property X: ndarray

Get the X vector for this dataset as a single numpy array.

property y: ndarray

Get the y vector for this dataset as a single numpy array.

property ids: ndarray

Get the ids vector for this dataset as a single numpy array.

property w: ndarray

Get the weight vector for this dataset as a single numpy array.

iterbatches(batch_size: int | None = None, epochs: int = 1, deterministic: bool = False, pad_batches: bool
= False)→ Iterator[Tuple[ndarray, ndarray, ndarray, ndarray]]
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Get an object that iterates over minibatches from the dataset.

Each minibatch is returned as a tuple of four numpy arrays: (X, y, w, ids).

Parameters
• batch_size (int, optional (default None)) – Number of elements in each batch.

• epochs (int, default 1) – Number of epochs to walk over dataset.

• deterministic (bool, default False) – If True, follow deterministic order.

• pad_batches (bool, default False) – If True, pad each batch to batch_size.

Returns
Generator which yields tuples of four numpy arrays (X, y, w, ids).

Return type
Iterator[Batch]

itersamples()→ Iterator[Tuple[ndarray, ndarray, ndarray, ndarray]]
Get an object that iterates over the samples in the dataset.

Returns
Iterator which yields tuples of four numpy arrays (X, y, w, ids).

Return type
Iterator[Batch]

transform(transformer: Transformer, **args)→ NumpyDataset
Construct a new dataset by applying a transformation to every sample in this dataset.

The argument is a function that can be called as follows:

>> newx, newy, neww = fn(x, y, w)

It might be called only once with the whole dataset, or multiple times with different subsets of the data.
Each time it is called, it should transform the samples and return the transformed data.

Parameters
transformer (dc.trans.Transformer) – The transformation to apply to each sample in
the dataset

Returns
A newly constructed NumpyDataset object

Return type
NumpyDataset

select(indices: Sequence[int] | ndarray, select_dir: str | None = None)→ ImageDataset
Creates a new dataset from a selection of indices from self.

Parameters
• indices (Sequence) – List of indices to select.

• select_dir (str, optional (default None)) – Used to provide same API as Disk-
Dataset. Ignored since ImageDataset is purely in-memory.

Returns
A selected ImageDataset object

Return type
ImageDataset
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make_pytorch_dataset(epochs: int = 1, deterministic: bool = False, batch_size: int | None = None)
Create a torch.utils.data.IterableDataset that iterates over the data in this Dataset.

Each value returned by the Dataset’s iterator is a tuple of (X, y, w, id) containing the data for one batch, or
for a single sample if batch_size is None.

Parameters
• epochs (int, default 1) – The number of times to iterate over the Dataset.

• deterministic (bool, default False) – If True, the data is produced in order. If
False, a different random permutation of the data is used for each epoch.

• batch_size (int, optional (default None)) – The number of samples to return in
each batch. If None, each returned value is a single sample.

Returns
torch.utils.data.IterableDataset that iterates over the data in this dataset.

Return type
torch.utils.data.IterableDataset

Note: This method requires PyTorch to be installed.

static from_dataframe(df: DataFrame, X: str | Sequence[str] | None = None, y: str | Sequence[str] | None
= None, w: str | Sequence[str] | None = None, ids: str | None = None)

Construct a Dataset from the contents of a pandas DataFrame.

Parameters
• df (pd.DataFrame) – The pandas DataFrame

• X (str or List[str], optional (default None)) – The name of the column or
columns containing the X array. If this is None, it will look for default column names that
match those produced by to_dataframe().

• y (str or List[str], optional (default None)) – The name of the column or
columns containing the y array. If this is None, it will look for default column names that
match those produced by to_dataframe().

• w (str or List[str], optional (default None)) – The name of the column or
columns containing the w array. If this is None, it will look for default column names that
match those produced by to_dataframe().

• ids (str, optional (default None)) – The name of the column containing the ids.
If this is None, it will look for default column names that match those produced by
to_dataframe().

get_statistics(X_stats: bool = True, y_stats: bool = True)→ Tuple[ndarray, ...]
Compute and return statistics of this dataset.

Uses self.itersamples() to compute means and standard deviations of the dataset. Can compute on large
datasets that don’t fit in memory.

Parameters
• X_stats (bool, optional (default True)) – If True, compute feature-level mean

and standard deviations.

• y_stats (bool, optional (default True)) – If True, compute label-level mean and
standard deviations.
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Returns
• If X_stats == True, returns (X_means, X_stds).

• If y_stats == True, returns (y_means, y_stds).

• If both are true, returns (X_means, X_stds, y_means, y_stds).

Return type
Tuple

make_tf_dataset(batch_size: int = 100, epochs: int = 1, deterministic: bool = False, pad_batches: bool =
False)

Create a tf.data.Dataset that iterates over the data in this Dataset.

Each value returned by the Dataset’s iterator is a tuple of (X, y, w) for one batch.

Parameters
• batch_size (int, default 100) – The number of samples to include in each batch.

• epochs (int, default 1) – The number of times to iterate over the Dataset.

• deterministic (bool, default False) – If True, the data is produced in order. If
False, a different random permutation of the data is used for each epoch.

• pad_batches (bool, default False) – If True, batches are padded as necessary to
make the size of each batch exactly equal batch_size.

Returns
TensorFlow Dataset that iterates over the same data.

Return type
tf.data.Dataset

Note: This class requires TensorFlow to be installed.

to_csv(path: str)→ None
Write object to a comma-seperated values (CSV) file

Example

>>> import numpy as np
>>> X = np.random.rand(10, 10)
>>> dataset = dc.data.DiskDataset.from_numpy(X)
>>> dataset.to_csv('out.csv')

Parameters
path (str) – File path or object

Return type
None

to_dataframe()→ DataFrame
Construct a pandas DataFrame containing the data from this Dataset.
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Returns
Pandas dataframe. If there is only a single feature per datapoint, will have column “X” else
will have columns “X1,X2,. . . ” for features. If there is only a single label per datapoint, will
have column “y” else will have columns “y1,y2,. . . ” for labels. If there is only a single weight
per datapoint will have column “w” else will have columns “w1,w2,. . . ”. Will have column
“ids” for identifiers.

Return type
pd.DataFrame

3.8.2 Data Loaders

Processing large amounts of input data to construct a dc.data.Dataset object can require some amount of hacking.
To simplify this process for you, you can use the dc.data.DataLoader classes. These classes provide utilities for
you to load and process large amounts of data.

CSVLoader

class CSVLoader(tasks: List[str], featurizer: Featurizer, feature_field: str | None = None, id_field: str | None =
None, smiles_field: str | None = None, log_every_n: int = 1000)

Creates Dataset objects from input CSV files.

This class provides conveniences to load data from CSV files. It’s possible to directly featurize data from CSV
files using pandas, but this class may prove useful if you’re processing large CSV files that you don’t want to
manipulate directly in memory. Note that samples which cannot be featurized are filtered out in the creation of
final dataset.

Examples

Let’s suppose we have some smiles and labels

>>> smiles = ["C", "CCC"]
>>> labels = [1.5, 2.3]

Let’s put these in a dataframe.

>>> import pandas as pd
>>> df = pd.DataFrame(list(zip(smiles, labels)), columns=["smiles", "task1"])

Let’s now write this to disk somewhere. We can now use CSVLoader to process this CSV dataset.

>>> import tempfile
>>> import deepchem as dc
>>> with dc.utils.UniversalNamedTemporaryFile(mode='w') as tmpfile:
... df.to_csv(tmpfile.name)
... loader = dc.data.CSVLoader(["task1"], feature_field="smiles",
... featurizer=dc.feat.CircularFingerprint())
... dataset = loader.create_dataset(tmpfile.name)
>>> len(dataset)
2

Of course in practice you should already have your data in a CSV file if you’re using CSVLoader. If your data is
already in memory, use InMemoryLoader instead.
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Sometimes there will be datasets without specific tasks, for example datasets which are used in unsupervised
learning tasks. Such datasets can be loaded by leaving the tasks field empty.

Example

>>> x1, x2 = [2, 3, 4], [4, 6, 8]
>>> df = pd.DataFrame({"x1":x1, "x2": x2}).reset_index()
>>> with dc.utils.UniversalNamedTemporaryFile(mode='w') as tmpfile:
... df.to_csv(tmpfile.name)
... loader = dc.data.CSVLoader(tasks=[], id_field="index", feature_field=["x1",
→˓"x2"],
... featurizer=dc.feat.DummyFeaturizer())
... dataset = loader.create_dataset(tmpfile.name)
>>> len(dataset)
3

__init__(tasks: List[str], featurizer: Featurizer, feature_field: str | None = None, id_field: str | None =
None, smiles_field: str | None = None, log_every_n: int = 1000)

Initializes CSVLoader.

Parameters
• tasks (List[str]) – List of task names

• featurizer (Featurizer) – Featurizer to use to process data.

• feature_field (str, optional (default None)) – Field with data to be featurized.

• id_field (str, optional, (default None)) – CSV column that holds sample iden-
tifier

• smiles_field (str, optional (default None) (DEPRECATED)) – Name of field
that holds smiles string.

• log_every_n (int, optional (default 1000)) – Writes a logging statement this
often.

create_dataset(inputs: Any | Sequence[Any], data_dir: str | None = None, shard_size: int | None = 8192)
→ Dataset

Creates and returns a Dataset object by featurizing provided files.

Reads in inputs and uses self.featurizer to featurize the data in these inputs. For large files, automatically
shards into smaller chunks of shard_size datapoints for convenience. Returns a Dataset object that contains
the featurized dataset.

This implementation assumes that the helper methods _get_shards and _featurize_shard are implemented
and that each shard returned by _get_shards is a pandas dataframe. You may choose to reuse or override
this method in your subclass implementations.

Parameters
• inputs (List) – List of inputs to process. Entries can be filenames or arbitrary objects.

• data_dir (str, optional (default None)) – Directory to store featurized dataset.

• shard_size (int, optional (default 8192)) – Number of examples stored in each
shard.

Returns
A DiskDataset object containing a featurized representation of data from inputs.
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Return type
DiskDataset

UserCSVLoader

class UserCSVLoader(tasks: List[str], featurizer: Featurizer, feature_field: str | None = None, id_field: str | None
= None, smiles_field: str | None = None, log_every_n: int = 1000)

Handles loading of CSV files with user-defined features.

This is a convenience class that allows for descriptors already present in a CSV file to be extracted without any
featurization necessary.

Examples

Let’s suppose we have some descriptors and labels. (Imagine that these descriptors have been computed by an
external program.)

>>> desc1 = [1, 43]
>>> desc2 = [-2, -22]
>>> labels = [1.5, 2.3]
>>> ids = ["cp1", "cp2"]

Let’s put these in a dataframe.

>>> import pandas as pd
>>> df = pd.DataFrame(list(zip(ids, desc1, desc2, labels)), columns=["id", "desc1",
→˓"desc2", "task1"])

Let’s now write this to disk somewhere. We can now use UserCSVLoader to process this CSV dataset.

>>> import tempfile
>>> import deepchem as dc
>>> featurizer = dc.feat.UserDefinedFeaturizer(["desc1", "desc2"])
>>> with dc.utils.UniversalNamedTemporaryFile(mode='w') as tmpfile:
... df.to_csv(tmpfile.name)
... loader = dc.data.UserCSVLoader(["task1"], id_field="id",
... featurizer=featurizer)
... dataset = loader.create_dataset(tmpfile.name)
>>> len(dataset)
2
>>> dataset.X[0, 0]
1

The difference between UserCSVLoader and CSVLoader is that our descriptors (our features) have already been
computed for us, but are spread across multiple columns of the CSV file.

Of course in practice you should already have your data in a CSV file if you’re using UserCSVLoader. If your
data is already in memory, use InMemoryLoader instead.

__init__(tasks: List[str], featurizer: Featurizer, feature_field: str | None = None, id_field: str | None =
None, smiles_field: str | None = None, log_every_n: int = 1000)

Initializes CSVLoader.

Parameters
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• tasks (List[str]) – List of task names

• featurizer (Featurizer) – Featurizer to use to process data.

• feature_field (str, optional (default None)) – Field with data to be featurized.

• id_field (str, optional, (default None)) – CSV column that holds sample iden-
tifier

• smiles_field (str, optional (default None) (DEPRECATED)) – Name of field
that holds smiles string.

• log_every_n (int, optional (default 1000)) – Writes a logging statement this
often.

create_dataset(inputs: Any | Sequence[Any], data_dir: str | None = None, shard_size: int | None = 8192)
→ Dataset

Creates and returns a Dataset object by featurizing provided files.

Reads in inputs and uses self.featurizer to featurize the data in these inputs. For large files, automatically
shards into smaller chunks of shard_size datapoints for convenience. Returns a Dataset object that contains
the featurized dataset.

This implementation assumes that the helper methods _get_shards and _featurize_shard are implemented
and that each shard returned by _get_shards is a pandas dataframe. You may choose to reuse or override
this method in your subclass implementations.

Parameters
• inputs (List) – List of inputs to process. Entries can be filenames or arbitrary objects.

• data_dir (str, optional (default None)) – Directory to store featurized dataset.

• shard_size (int, optional (default 8192)) – Number of examples stored in each
shard.

Returns
A DiskDataset object containing a featurized representation of data from inputs.

Return type
DiskDataset

ImageLoader

class ImageLoader(tasks: List[str] | None = None, sorting: bool = True)
Creates Dataset objects from input image files.

This class allows for loading of images in various formats. For user convenience, also accepts zip-files and
directories of images and uses some limited intelligence to attempt to traverse subdirectories which contain
images.

Currently, only .png and .tif files are supported. If the inputs or labels are given as a list of files, the list must
contain only image files.
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Examples

For this example, we will be using the BBBC001 Dataset. This dataset contains 6 images of human HT29 colon
cancer cells. We will use the images as inputs and we will assign the labels as integers ranging from 1 to 6 for
the sake of simplicity.

To learn more about this dataset, please visit: https://data.broadinstitute.org/bbbc/BBBC001/ and also see our
loader for this dataset: deepchem.molnet.loadbbbc001.

Let’s begin by importing the necessary modules and downloading the dataset. >>> import os
>>> import deepchem as dc >>> data_dir = dc.utils.data_utils.get_data_dir() >>> dataset_file =
os.path.join(data_dir, “BBBC001_v1_images_tif.zip”) >>> BBBC1_IMAGE_URL = ‘https://data.
broadinstitute.org/bbbc/BBBC001/BBBC001_v1_images_tif.zip’ >>> if not os.path.exists(dataset_file):
. . . dc.utils.data_utils.download_url(url=BBBC1_IMAGE_URL, dest_dir=data_dir)

Now that we have the dataset, let’s create a list of labels for each image.

>>> labels = np.array([1,2,3,4,5,6])

Let’s now write this to disk somewhere. We can now use ImageLoader to process this Image dataset. We do not
use a featurizer here, hence the UserDefinedFeaturizer with an empty list.

>>> featurizer = dc.feat.UserDefinedFeaturizer([])
>>> loader = dc.data.ImageLoader(tasks=['demo-task'], sorting=False)
>>> dataset = loader.create_dataset(inputs=(dataset_file, labels),
... in_memory=False)

We can confirm that we have 6 images in our dataset and 6 labels. The images are of size 512x512 while the
labels are just integers.

>>> len(dataset)
6
>>> dataset.X.shape
(6, 512, 512)
>>> dataset.y.shape
(6,)

The label files can also be images similar to the inputs, in which case we can provide a list of label files instead
of a list of labels.

To show this, we will use the input data as the ground truths, this is often seen when making autoencoders.
Similar to the above example, let’s use ImageLoader to process this Image dataset.

>>> featurizer = dc.feat.UserDefinedFeaturizer([])
>>> loader = dc.data.ImageLoader(tasks=['demo-task'], sorting=False)
>>> dataset = loader.create_dataset(inputs=(dataset_file, dataset_file),
... in_memory=False)

We can confirm that we have 6 images in our dataset and 6 labels. The images are of size 512x512 while the
labels are also images of size 512x512.

>>> len(dataset)
6
>>> dataset.X.shape
(6, 512, 512)
>>> dataset.y.shape
(6, 512, 512)
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__init__(tasks: List[str] | None = None, sorting: bool = True)
Initialize image loader.

At present, custom image featurizers aren’t supported by this loader class.

Parameters
• tasks (List[str], optional (default None)) – List of task names for image la-

bels.

• sorting (bool, optional (default True)) – Whether to sort image files by file-
name.

create_dataset(inputs: str | Sequence[str] | Tuple[Any] | Tuple[str, Any], data_dir: str | None = None,
shard_size: int | None = 8192, in_memory: bool = False)→ Dataset

Creates and returns a Dataset object by featurizing provided image files and labels/weights.

Parameters
• inputs (Union[OneOrMany[str], Tuple[Any]]) – The inputs provided should be one of

the following

– filename

– list of filenames

– Tuple (list of filenames, labels)

– Tuple (list of filenames, list of label filenames)

– Tuple (list of filenames, labels, weights)

– Tuple (list of filenames, list of label filenames, weights)

Each file in a given list of filenames should either be of a supported image format (.png,
.tif only for now) or of a compressed folder of image files (only .zip for now). If labels or
weights are provided, they must correspond to the sorted order of all filenames provided,
with one label/weight per file. Labels can be filenames too, in which case the labels are
loaded as images.

• data_dir (str, optional (default None)) – Directory to store featurized dataset.

• shard_size (int, optional (default 8192)) – Shard size when loading data.

• in_memory (bool, optioanl (default False)) – If true, return in-memory Numpy-
Dataset. Else return ImageDataset.

Returns
• if in_memory == False, the return value is ImageDataset.

• if in_memory == True and data_dir is None, the return value is NumpyDataset.

• if in_memory == True and data_dir is not None, the return value is DiskDataset.

Return type
ImageDataset or NumpyDataset or DiskDataset
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JsonLoader

JSON is a flexible file format that is human-readable, lightweight, and more compact than other open standard formats
like XML. JSON files are similar to python dictionaries of key-value pairs. All keys must be strings, but values can
be any of (string, number, object, array, boolean, or null), so the format is more flexible than CSV. JSON is used for
describing structured data and to serialize objects. It is conveniently used to read/write Pandas dataframes with the
pandas.read_json and pandas.write_json methods.

class JsonLoader(tasks: List[str], feature_field: str, featurizer: Featurizer, label_field: str | None = None,
weight_field: str | None = None, id_field: str | None = None, log_every_n: int = 1000)

Creates Dataset objects from input json files.

This class provides conveniences to load data from json files. It’s possible to directly featurize data from json
files using pandas, but this class may prove useful if you’re processing large json files that you don’t want to
manipulate directly in memory.

It is meant to load JSON files formatted as “records” in line delimited format, which allows for sharding. list
like [{column -> value}, ... , {column -> value}].

Examples

Let’s create the sample dataframe.

>>> composition = ["LiCoO2", "MnO2"]
>>> labels = [1.5, 2.3]
>>> import pandas as pd
>>> df = pd.DataFrame(list(zip(composition, labels)), columns=["composition", "task
→˓"])

Dump the dataframe to the JSON file formatted as “records” in line delimited format and load the json file by
JsonLoader.

>>> import tempfile
>>> import deepchem as dc
>>> with dc.utils.UniversalNamedTemporaryFile(mode='w') as tmpfile:
... df.to_json(tmpfile.name, orient='records', lines=True)
... featurizer = dc.feat.ElementPropertyFingerprint()
... loader = dc.data.JsonLoader(["task"], feature_field="composition",␣
→˓featurizer=featurizer)
... dataset = loader.create_dataset(tmpfile.name)
>>> len(dataset)
2

__init__(tasks: List[str], feature_field: str, featurizer: Featurizer, label_field: str | None = None,
weight_field: str | None = None, id_field: str | None = None, log_every_n: int = 1000)

Initializes JsonLoader.

Parameters
• tasks (List[str]) – List of task names

• feature_field (str) – JSON field with data to be featurized.

• featurizer (Featurizer) – Featurizer to use to process data

• label_field (str, optional (default None)) – Field with target variables.

• weight_field (str, optional (default None)) – Field with weights.
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• id_field (str, optional (default None)) – Field for identifying samples.

• log_every_n (int, optional (default 1000)) – Writes a logging statement this
often.

create_dataset(input_files: str | Sequence[str], data_dir: str | None = None, shard_size: int | None =
8192)→ DiskDataset

Creates a Dataset from input JSON files.

Parameters
• input_files (OneOrMany[str]) – List of JSON filenames.

• data_dir (Optional[str], default None) – Name of directory where featurized
data is stored.

• shard_size (int, optional (default 8192)) – Shard size when loading data.

Returns
A DiskDataset object containing a featurized representation of data from input_files.

Return type
DiskDataset

SDFLoader

class SDFLoader(tasks: List[str], featurizer: Featurizer, sanitize: bool = False, log_every_n: int = 1000)
Creates a Dataset object from SDF input files.

This class provides conveniences to load and featurize data from Structure Data Files (SDFs). SDF is a standard
format for structural information (3D coordinates of atoms and bonds) of molecular compounds.

Examples

>>> import deepchem as dc
>>> import os
>>> current_dir = os.path.dirname(os.path.realpath(__file__))
>>> featurizer = dc.feat.CircularFingerprint(size=16)
>>> loader = dc.data.SDFLoader(["LogP(RRCK)"], featurizer=featurizer, sanitize=True)
>>> dataset = loader.create_dataset(os.path.join(current_dir, "tests", "membrane_
→˓permeability.sdf"))
>>> len(dataset)
2

__init__(tasks: List[str], featurizer: Featurizer, sanitize: bool = False, log_every_n: int = 1000)
Initialize SDF Loader

Parameters
• tasks (list[str]) – List of tasknames. These will be loaded from the SDF file.

• featurizer (Featurizer) – Featurizer to use to process data

• sanitize (bool, optional (default False)) – Whether to sanitize molecules.

• log_every_n (int, optional (default 1000)) – Writes a logging statement this
often.
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create_dataset(inputs: Any | Sequence[Any], data_dir: str | None = None, shard_size: int | None = 8192)
→ Dataset

Creates and returns a Dataset object by featurizing provided sdf files.

Parameters
• inputs (List) – List of inputs to process. Entries can be filenames or arbitrary objects.

Each file should be supported format (.sdf) or compressed folder of .sdf files

• data_dir (str, optional (default None)) – Directory to store featurized dataset.

• shard_size (int, optional (default 8192)) – Number of examples stored in each
shard.

Returns
A DiskDataset object containing a featurized representation of data from inputs.

Return type
DiskDataset

FASTALoader

class FASTALoader(featurizer: Featurizer | None = None, auto_add_annotations: bool = False, legacy: bool =
True)

Handles loading of FASTA files.

FASTA files are commonly used to hold sequence data. This class provides convenience files to lead FASTA
data and one-hot encode the genomic sequences for use in downstream learning tasks.

__init__(featurizer: Featurizer | None = None, auto_add_annotations: bool = False, legacy: bool = True)
Initialize FASTALoader.

Parameters
• featurizer (Featurizer (default: None)) – The Featurizer to be used for the

loaded FASTA data.

If featurizer is None and legacy is True, the original featurization logic is used, creating a
one hot encoding of all included FASTA strings of shape (number of FASTA sequences,
number of channels + 1, sequence length, 1).

If featurizer is None and legacy is False, the featurizer is initialized as a OneHotFeaturizer
object with charset (“A”, “C”, “T”, “G”) and max_length = None.

• auto_add_annotations (bool (default False)) – Whether create_dataset will au-
tomatically add [CLS] and [SEP] annotations to the sequences it reads in order to assist
tokenization. Keep False if your FASTA file already includes [CLS] and [SEP] annota-
tions.

• legacy (bool (default True)) – Whether to use legacy logic for featurization. Legacy
mode will create a one hot encoding of the FASTA content of shape (number of FASTA
sequences, number of channels + 1, max length, 1).

Legacy mode is only tested for ACTGN charsets, and will be deprecated.

create_dataset(input_files: str | Sequence[str], data_dir: str | None = None, shard_size: int | None =
None)→ DiskDataset

Creates a Dataset from input FASTA files.

At present, FASTA support is limited and doesn’t allow for sharding.
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Parameters
• input_files (List[str]) – List of fasta files.

• data_dir (str, optional (default None)) – Name of directory where featurized
data is stored.

• shard_size (int, optional (default None)) – For now, this argument is ignored
and each FASTA file gets its own shard.

Returns
A DiskDataset object containing a featurized representation of data from input_files.

Return type
DiskDataset

FASTQLoader

class FASTQLoader(featurizer: Featurizer | None = None, auto_add_annotations: bool = False,
return_quality_scores: bool = False)

Handles loading of FASTQ files.

FASTQ files are commonly used to hold very large sequence data. It is a variant of FASTA format. This class
provides convenience files to load FASTQ data and one-hot encode the genomic sequences for use in downstream
learning tasks.

Example

>>> import os
>>> from deepchem.feat.molecule_featurizers import OneHotFeaturizer
>>> from deepchem.data.data_loader import FASTQLoader
>>> current_dir = os.path.dirname(os.path.abspath(__file__))
>>> input_file = os.path.join(current_dir, "tests", "sample1.fastq")
>>> loader = FASTQLoader()
>>> sequences = loader.create_dataset(input_file)

See also:
Info on the structure of FASTQ files <https://support.illumina.com/bulletins/2016/04/fastq-files-explained.html>

__init__(featurizer: Featurizer | None = None, auto_add_annotations: bool = False, return_quality_scores:
bool = False)

Initialize FASTQLoader.

Parameters
• featurizer (Featurizer (default: None)) – The Featurizer to be used for the

loaded FASTQ data. The featurizer is initialized as a OneHotFeaturizer object with charset
(“A”, “C”, “T”, “G”) and max_length = None.

• auto_add_annotations (bool (default False)) – Whether create_dataset will au-
tomatically add [CLS] and [SEP] annotations to the sequences it reads in order to assist
tokenization. Keep False if your FASTQ file already includes [CLS] and [SEP] annota-
tions.

• return_quality_scores (bool (default True)) – returns the quality (likelihood)
score of the nucleotides in the sequence.
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create_dataset(input_files: str | Sequence[str], data_dir: str | None = None, shard_size: int | None =
4096)→ DiskDataset

Creates a Dataset from input FASTQ files.

Parameters
• input_files (List[str]) – List of fastQ files.

• data_dir (str, optional (default None)) – Name of directory where featurized
data is stored. shard_size: int, optional (default 4096)

Returns
A DiskDataset object containing a featurized representation of data from input_files.

Return type
DiskDataset

InMemoryLoader

The dc.data.InMemoryLoader is designed to facilitate the processing of large datasets where you already hold the
raw data in-memory (say in a pandas dataframe).

class InMemoryLoader(tasks: List[str], featurizer: Featurizer, id_field: str | None = None, log_every_n: int =
1000)

Facilitate Featurization of In-memory objects.

When featurizing a dataset, it’s often the case that the initial set of data (pre-featurization) fits handily within
memory. (For example, perhaps it fits within a column of a pandas DataFrame.) In this case, it would be conve-
nient to directly be able to featurize this column of data. However, the process of featurization often generates
large arrays which quickly eat up available memory. This class provides convenient capabilities to process such
in-memory data by checkpointing generated features periodically to disk.

Example

Here’s an example with only datapoints and no labels or weights.

>>> import deepchem as dc
>>> smiles = ["C", "CC", "CCC", "CCCC"]
>>> featurizer = dc.feat.CircularFingerprint()
>>> loader = dc.data.InMemoryLoader(tasks=["task1"], featurizer=featurizer)
>>> dataset = loader.create_dataset(smiles, shard_size=2)
>>> len(dataset)
4

Here’s an example with both datapoints and labels

>>> import deepchem as dc
>>> smiles = ["C", "CC", "CCC", "CCCC"]
>>> labels = [1, 0, 1, 0]
>>> featurizer = dc.feat.CircularFingerprint()
>>> loader = dc.data.InMemoryLoader(tasks=["task1"], featurizer=featurizer)
>>> dataset = loader.create_dataset(zip(smiles, labels), shard_size=2)
>>> len(dataset)
4

Here’s an example with datapoints, labels, weights and ids all provided.
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>>> import deepchem as dc
>>> smiles = ["C", "CC", "CCC", "CCCC"]
>>> labels = [1, 0, 1, 0]
>>> weights = [1.5, 0, 1.5, 0]
>>> ids = ["C", "CC", "CCC", "CCCC"]
>>> featurizer = dc.feat.CircularFingerprint()
>>> loader = dc.data.InMemoryLoader(tasks=["task1"], featurizer=featurizer)
>>> dataset = loader.create_dataset(zip(smiles, labels, weights, ids), shard_size=2)
>>> len(dataset)
4

create_dataset(inputs: Sequence[Any], data_dir: str | None = None, shard_size: int | None = 8192)→
DiskDataset

Creates and returns a Dataset object by featurizing provided files.

Reads in inputs and uses self.featurizer to featurize the data in these input files. For large files, automatically
shards into smaller chunks of shard_size datapoints for convenience. Returns a Dataset object that contains
the featurized dataset.

This implementation assumes that the helper methods _get_shards and _featurize_shard are implemented
and that each shard returned by _get_shards is a pandas dataframe. You may choose to reuse or override
this method in your subclass implementations.

Parameters
• inputs (Sequence[Any]) – List of inputs to process. Entries can be arbitrary objects so

long as they are understood by self.featurizer

• data_dir (str, optional (default None)) – Directory to store featurized dataset.

• shard_size (int, optional (default 8192)) – Number of examples stored in each
shard.

Returns
A DiskDataset object containing a featurized representation of data from inputs.

Return type
DiskDataset

__init__(tasks: List[str], featurizer: Featurizer, id_field: str | None = None, log_every_n: int = 1000)
Construct a DataLoader object.

This constructor is provided as a template mainly. You shouldn’t ever call this constructor directly as a user.

Parameters
• tasks (List[str]) – List of task names

• featurizer (Featurizer) – Featurizer to use to process data.

• id_field (str, optional (default None)) – Name of field that holds sample iden-
tifier. Note that the meaning of “field” depends on the input data type and can have a
different meaning in different subclasses. For example, a CSV file could have a field as a
column, and an SDF file could have a field as molecular property.

• log_every_n (int, optional (default 1000)) – Writes a logging statement this
often.
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Density Functional Theory YAML Loader

class DFTYamlLoader

Creates a Dataset object from YAML input files.

This class provides methods to load and featurize data from a YAML file. Although, in this class, we only focus
on a specfic input format that can be used to perform Density Functional Theory calculations.

Examples

>>> from deepchem.data.data_loader import DFTYamlLoader
>>> import deepchem as dc
>>> import pytest
>>> inputs = 'deepchem/data/tests/dftdata.yaml'
>>> data = DFTYamlLoader()
>>> output = data.create_dataset(inputs)

Notes

Format (and example) for the YAML file:

• e_type : ‘ae’ true_val : ‘0.09194410469’ systems : [{

‘moldesc’: ‘Li 1.5070 0 0; H -1.5070 0 0’, ‘basis’: ‘6-311++G(3df,3pd)’

}]

Each entry in the YAML file must contain the three parameters : e_type, true_val and systems in this particular
order. One entry object may contain one or more systems. This data class does not support/ require an additional
featurizer, since the datapoints are featurized within the methods. To read more about the parameters and their
possible values please refer to deepchem.feat.dft_data.

__init__()

Initialize DFTYAML loader

create_dataset(inputs: Any | Sequence[Any], data_dir: str | None = None, shard_size: int | None = 1)→
Dataset

Creates and returns a Dataset object by featurizing provided YAML files.

Parameters
• input_files (OneOrMany[str]) – List of YAML filenames.

• data_dir (Optional[str], default None) – Name of directory where featurized
data is stored.

• shard_size (int, optional (default 1)) – Shard size when loading data.

Returns
A DiskDataset object containing a featurized representation of data from inputs.

Return type
DiskDataset
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SAM Loader

class SAMLoader(featurizer: Featurizer | None = None)
Handles loading of SAM files. Sequence Alignment Map (SAM) is a text-based format used for storing biological
sequences aligned to a reference sequence.It is generally used for storing nucleotide sequences, generated by next
generation sequencing technologies, and unmapped sequences. SAM files have a header section and an alignment
section.Alignment sections have 11 mandatory fields, as well as a variable number of optional fields. Here, we
extract Query Name, Query Sequence, Query Length, Reference Name, Reference Start, CIGAR and Mapping
Quality of each read in the SAM file. This class provides methods to load and featurize data from SAM files.

Examples

>>> from deepchem.data.data_loader import SAMLoader
>>> import deepchem as dc
>>> inputs = 'deepchem/data/tests/example.sam'
>>> data = SAMLoader()
>>> output = data.create_dataset(inputs)

Note: This class requires pysam to be installed. Pysam can be used with Linux or MacOS X. To use Pysam on
Windows, use Windows Subsystem for Linux(WSL).

__init__(featurizer: Featurizer | None = None)
Initialize SAMLoader.

Parameters
featurizer (Featurizer (default: None)) – The Featurizer to be used for the loaded
SAM data.

create_dataset(input_files: str | Sequence[str], data_dir: str | None = None, shard_size: int | None =
None)→ DiskDataset

Creates a Dataset from input SAM files.

Parameters
• input_files (List[str]) – List of SAM files.

• data_dir (str, optional (default None)) – Name of directory where featurized
data is stored.

• shard_size (int, optional (default None)) – For now, this argument is ignored
and each SAM file gets its own shard.

Returns
A DiskDataset object containing a featurized representation of data from input_files.

Return type
DiskDataset
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BAM Loader

class BAMLoader(featurizer: Featurizer | None = None)
Handles loading of BAM files. Binary Alignment Map (BAM) is the comprehensive raw data of genome se-
quencing. It consists of the lossless, compressed binary representation of the Sequence Alignment Map files.
BAM files are smaller and more efficient to work with than SAM files, saving time and reducing costs of compu-
tation and storage. BAM files store alignment data and often have corresponding BAM index files.The structure
of BAM files include a header section and an alignment section. Here, we extract Query Name, Query Sequence,
Query Length, Reference Name, Reference Start, CIGAR and Mapping Quality of each read in the BAM file.
This class provides methods to load and featurize data from BAM files.

Examples

>>> from deepchem.data.data_loader import BAMLoader
>>> import deepchem as dc
>>> inputs = 'deepchem/data/tests/example.bam'
>>> data = BAMLoader()
>>> output = data.create_dataset(inputs)

Note: This class requires pysam to be installed. Pysam can be used with Linux or MacOS X. To use Pysam on
Windows, use Windows Subsystem for Linux(WSL).

__init__(featurizer: Featurizer | None = None)
Initialize BAMLoader.

Parameters
featurizer (Featurizer (default: None)) – The Featurizer to be used for the loaded
BAM data.

create_dataset(input_files: str | Sequence[str], data_dir: str | None = None, shard_size: int | None =
None)→ DiskDataset

Creates a Dataset from input BAM files.

Parameters
• input_files (List[str]) – List of BAM files, with their corresponding index files.

• data_dir (str, optional (default None)) – Name of directory where featurized
data is stored.

• shard_size (int, optional (default None)) – For now, this argument is ignored
and each BAM file gets its own shard.

Returns
A DiskDataset object containing a featurized representation of data from input_files.

Return type
DiskDataset
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CRAM Loader

class CRAMLoader(featurizer: Featurizer | None = None)
Handles loading of CRAM files. Compressed Reference-oriented Alignment Map (CRAM) is a compressed
columnar file format for storing biological sequences aligned to a reference sequence. CRAM is an efficient
reference-based alternative to the Sequence Alignment Map (SAM) and Binary Alignment Map (BAM) file
formats. The basic structure of a CRAM file has a series of containers, the first of which holds a compressed
copy of the SAM header. Subsequent containers consist of a container Compression Header followed by a series
of slices which hold the alignment records, formatted as a series of blocks. Here, we extract Query Name, Query
Sequence, Query Length, Reference Name, Reference Start, CIGAR and Mapping Quality of each read in the
CRAM file. This class provides methods to load and featurize data from CRAM files.

Examples

>>> from deepchem.data.data_loader import CRAMLoader
>>> import deepchem as dc
>>> inputs = 'deepchem/data/tests/example.cram'
>>> data = CRAMLoader()
>>> output = data.create_dataset(inputs)

Note: This class requires pysam to be installed. Pysam can be used with Linux or MacOS X. To use Pysam on
Windows, use Windows Subsystem for Linux(WSL).

__init__(featurizer: Featurizer | None = None)
Initialize CRAMLoader.

Parameters
featurizer (Featurizer (default: None)) – The Featurizer to be used for the loaded
CRAM data.

create_dataset(input_files: str | Sequence[str], data_dir: str | None = None, shard_size: int | None =
None)→ DiskDataset

Creates a Dataset from input CRAM files.

Parameters
• input_files (List[str]) – List of CRAM files.

• data_dir (str, optional (default None)) – Name of directory where featurized
data is stored.

• shard_size (int, optional (default None)) – For now, this argument is ignored
and each CRAM file gets its own shard.

Returns
A DiskDataset object containing a featurized representation of data from input_files.

Return type
DiskDataset
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3.8.3 Data Classes

DeepChem featurizers often transform members into “data classes”. These are classes that hold all the informa-
tion needed to train a model on that data point. Models then transform these into the tensors for training in their
default_generator methods.

Graph Data

These classes document the data classes for graph convolutions. We plan to simplify these classes (ConvMol,
MultiConvMol, WeaveMol) into a joint data representation (GraphData) for all graph convolutions in a future version
of DeepChem, so these APIs may not remain stable.

The graph convolution models which inherit KerasModel depend on ConvMol, MultiConvMol, or WeaveMol. On the
other hand, the graph convolution models which inherit TorchModel depend on GraphData.

class ConvMol(atom_features, adj_list, max_deg=10, min_deg=0)
Holds information about a molecules.

Resorts order of atoms internally to be in order of increasing degree. Note that only heavy atoms (hydrogens
excluded) are considered here.

__init__(atom_features, adj_list, max_deg=10, min_deg=0)

Parameters
• atom_features (np.ndarray) – Has shape (n_atoms, n_feat)

• adj_list (list) – List of length n_atoms, with neighor indices of each atom.

• max_deg (int, optional) – Maximum degree of any atom.

• min_deg (int, optional) – Minimum degree of any atom.

get_atoms_with_deg(deg)
Retrieves atom_features with the specific degree

get_num_atoms_with_deg(deg)
Returns the number of atoms with the given degree

get_atom_features()

Returns canonicalized version of atom features.

Features are sorted by atom degree, with original order maintained when degrees are same.

get_adjacency_list()

Returns a canonicalized adjacency list.

Canonicalized means that the atoms are re-ordered by degree.

Returns
Canonicalized form of adjacency list.

Return type
list

get_deg_adjacency_lists()

Returns adjacency lists grouped by atom degree.

Returns
Has length (max_deg+1-min_deg). The element at position deg is itself a list of the neighbor-
lists for atoms with degree deg.
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Return type
list

get_deg_slice()

Returns degree-slice tensor.

The deg_slice tensor allows indexing into a flattened version of the molecule’s atoms. Assume atoms are
sorted in order of degree. Then deg_slice[deg][0] is the starting position for atoms of degree deg in flattened
list, and deg_slice[deg][1] is the number of atoms with degree deg.

Note deg_slice has shape (max_deg+1-min_deg, 2).

Returns
deg_slice – Shape (max_deg+1-min_deg, 2)

Return type
np.ndarray

static get_null_mol(n_feat, max_deg=10, min_deg=0)
Constructs a null molecules

Get one molecule with one atom of each degree, with all the atoms connected to themselves, and containing
n_feat features.

Parameters
n_feat (int) – number of features for the nodes in the null molecule

static agglomerate_mols(mols, max_deg=10, min_deg=0)

Concatenates list of ConvMol’s into one mol object that can be used to feed
into tensorflow placeholders. The indexing of the molecules are preseved during the combination, but
the indexing of the atoms are greatly changed.

Parameters
mols (list) – ConvMol objects to be combined into one molecule.

class MultiConvMol(nodes, deg_adj_lists, deg_slice, membership, num_mols)
Holds information about multiple molecules, for use in feeding information into tensorflow. Generated using the
agglomerate_mols function

__init__(nodes, deg_adj_lists, deg_slice, membership, num_mols)

get_deg_adjacency_lists()

get_atom_features()

get_num_atoms()

get_num_molecules()

__module__ = 'deepchem.feat.mol_graphs'

class WeaveMol(nodes, pairs, pair_edges)
Molecular featurization object for weave convolutions.

These objects are produced by WeaveFeaturizer, and feed into WeaveModel. The underlying implementation is
inspired by1.

1 Kearnes, Steven, et al. “Molecular graph convolutions: moving beyond fingerprints.” Journal of computer-aided molecular design 30.8 (2016):
595-608.
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References

__init__(nodes, pairs, pair_edges)

get_pair_edges()

get_pair_features()

get_atom_features()

get_num_atoms()

get_num_features()

__module__ = 'deepchem.feat.mol_graphs'

class GraphData(node_features: ndarray, edge_index: ndarray, edge_features: ndarray | None = None,
node_pos_features: ndarray | None = None, **kwargs)

GraphData class

This data class is almost same as torch_geometric.data.Data.

node_features

Node feature matrix with shape [num_nodes, num_node_features]

Type
np.ndarray

edge_index

Graph connectivity in COO format with shape [2, num_edges]

Type
np.ndarray, dtype int

edge_features

Edge feature matrix with shape [num_edges, num_edge_features]

Type
np.ndarray, optional (default None)

node_pos_features

Node position matrix with shape [num_nodes, num_dimensions].

Type
np.ndarray, optional (default None)

num_nodes

The number of nodes in the graph

Type
int

num_node_features

The number of features per node in the graph

Type
int
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num_edges

The number of edges in the graph

Type
int

num_edges_features

The number of features per edge in the graph

Type
int, optional (default None)

Examples

>>> import numpy as np
>>> node_features = np.random.rand(5, 10)
>>> edge_index = np.array([[0, 1, 2, 3, 4], [1, 2, 3, 4, 0]], dtype=np.int64)
>>> edge_features = np.random.rand(5, 5)
>>> global_features = np.random.random(5)
>>> graph = GraphData(node_features, edge_index, edge_features, z=global_features)
>>> graph
GraphData(node_features=[5, 10], edge_index=[2, 5], edge_features=[5, 5], z=[5])

__init__(node_features: ndarray, edge_index: ndarray, edge_features: ndarray | None = None,
node_pos_features: ndarray | None = None, **kwargs)

Parameters
• node_features (np.ndarray) – Node feature matrix with shape [num_nodes,

num_node_features]

• edge_index (np.ndarray, dtype int) – Graph connectivity in COO format with
shape [2, num_edges]

• edge_features (np.ndarray, optional (default None)) – Edge feature matrix
with shape [num_edges, num_edge_features]

• node_pos_features (np.ndarray, optional (default None)) – Node position
matrix with shape [num_nodes, num_dimensions].

• kwargs (optional) – Additional attributes and their values

to_pyg_graph()

Convert to PyTorch Geometric graph data instance

Returns
Graph data for PyTorch Geometric

Return type
torch_geometric.data.Data

Note: This method requires PyTorch Geometric to be installed.

to_dgl_graph(self_loop: bool = False)
Convert to DGL graph data instance

Returns
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• dgl.DGLGraph – Graph data for DGL

• self_loop (bool) – Whether to add self loops for the nodes, i.e. edges from nodes to them-
selves. Default to False.

Note: This method requires DGL to be installed.

numpy_to_torch(device: str = 'cpu')
Convert numpy arrays to torch tensors. This may be useful when you are using PyTorch Geometric with
GraphData objects.

Parameters
device (str) – Device to store the tensors. Default to ‘cpu’.

Example

>>> num_nodes, num_node_features = 5, 32
>>> num_edges, num_edge_features = 6, 32
>>> node_features = np.random.random_sample((num_nodes, num_node_features))
>>> edge_features = np.random.random_sample((num_edges, num_edge_features))
>>> edge_index = np.random.randint(0, num_nodes, (2, num_edges))
>>> graph_data = GraphData(node_features, edge_index, edge_features)
>>> graph_data = graph_data.numpy_to_torch()
>>> print(type(graph_data.node_features))
<class 'torch.Tensor'>

subgraph(nodes)
Returns a subgraph of nodes indicies.

Parameters
nodes (list, iterable) – A list of node indices to be included in the subgraph.

Returns
subgraph_data – A new GraphData object containing the subgraph induced on nodes.

Return type
GraphData

Example

>>> import numpy as np
>>> from deepchem.feat.graph_data import GraphData
>>> node_features = np.random.rand(5, 10)
>>> edge_index = np.array([[0, 1, 2, 3, 4], [1, 2, 3, 4, 0]], dtype=np.int64)
>>> edge_features = np.random.rand(5, 3)
>>> graph_data = GraphData(node_features, edge_index, edge_features)
>>> nodes = [0, 2, 4]
>>> subgraph_data, node_mapping = graph_data.subgraph(nodes)
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Density Functional Theory Data

These Data classes are used to create entry objects for DFT calculations.

3.8.4 Base Classes (for develop)

Dataset

The dc.data.Dataset class is the abstract parent class for all datasets. This class should never be directly initialized,
but contains a number of useful method implementations.

class Dataset

Abstract base class for datasets defined by X, y, w elements.

Dataset objects are used to store representations of a dataset as used in a machine learning task. Datasets contain
features X, labels y, weights w and identifiers ids. Different subclasses of Dataset may choose to hold X, y, w,
ids in memory or on disk.

The Dataset class attempts to provide for strong interoperability with other machine learning representations for
datasets. Interconversion methods allow for Dataset objects to be converted to and from numpy arrays, pandas
dataframes, tensorflow datasets, and pytorch datasets (only to and not from for pytorch at present).

Note that you can never instantiate a Dataset object directly. Instead you will need to instantiate one of the
concrete subclasses.

__init__()→ None

__len__()→ int
Get the number of elements in the dataset.

Returns
The number of elements in the dataset.

Return type
int

get_shape()→ Tuple[Tuple[int, ...], Tuple[int, ...], Tuple[int, ...], Tuple[int, ...]]
Get the shape of the dataset.

Returns four tuples, giving the shape of the X, y, w, and ids arrays.

Returns
The tuple contains four elements, which are the shapes of the X, y, w, and ids arrays.

Return type
Tuple

get_task_names()→ ndarray
Get the names of the tasks associated with this dataset.

property X: ndarray

Get the X vector for this dataset as a single numpy array.

Returns
A numpy array of identifiers X.

Return type
np.ndarray
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Note: If data is stored on disk, accessing this field may involve loading data from disk and could potentially
be slow. Using iterbatches() or itersamples() may be more efficient for larger datasets.

property y: ndarray

Get the y vector for this dataset as a single numpy array.

Returns
A numpy array of identifiers y.

Return type
np.ndarray

Note: If data is stored on disk, accessing this field may involve loading data from disk and could potentially
be slow. Using iterbatches() or itersamples() may be more efficient for larger datasets.

property ids: ndarray

Get the ids vector for this dataset as a single numpy array.

Returns
A numpy array of identifiers ids.

Return type
np.ndarray

Note: If data is stored on disk, accessing this field may involve loading data from disk and could potentially
be slow. Using iterbatches() or itersamples() may be more efficient for larger datasets.

property w: ndarray

Get the weight vector for this dataset as a single numpy array.

Returns
A numpy array of weights w.

Return type
np.ndarray

Note: If data is stored on disk, accessing this field may involve loading data from disk and could potentially
be slow. Using iterbatches() or itersamples() may be more efficient for larger datasets.

iterbatches(batch_size: int | None = None, epochs: int = 1, deterministic: bool = False, pad_batches: bool
= False)→ Iterator[Tuple[ndarray, ndarray, ndarray, ndarray]]

Get an object that iterates over minibatches from the dataset.

Each minibatch is returned as a tuple of four numpy arrays: (X, y, w, ids).

Parameters
• batch_size (int, optional (default None)) – Number of elements in each batch.

• epochs (int, optional (default 1)) – Number of epochs to walk over dataset.

• deterministic (bool, optional (default False)) – If True, follow deterministic
order.
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• pad_batches (bool, optional (default False)) – If True, pad each batch to
batch_size.

Returns
Generator which yields tuples of four numpy arrays (X, y, w, ids).

Return type
Iterator[Batch]

itersamples()→ Iterator[Tuple[ndarray, ndarray, ndarray, ndarray]]
Get an object that iterates over the samples in the dataset.

Examples

>>> dataset = NumpyDataset(np.ones((2,2)))
>>> for x, y, w, id in dataset.itersamples():
... print(x.tolist(), y.tolist(), w.tolist(), id)
[1.0, 1.0] [0.0] [0.0] 0
[1.0, 1.0] [0.0] [0.0] 1

transform(transformer: Transformer, **args)→ Dataset
Construct a new dataset by applying a transformation to every sample in this dataset.

The argument is a function that can be called as follows: >> newx, newy, neww = fn(x, y, w)

It might be called only once with the whole dataset, or multiple times with different subsets of the data.
Each time it is called, it should transform the samples and return the transformed data.

Parameters
transformer (dc.trans.Transformer) – The transformation to apply to each sample in
the dataset.

Returns
A newly constructed Dataset object.

Return type
Dataset

select(indices: Sequence[int] | ndarray, select_dir: str | None = None)→ Dataset
Creates a new dataset from a selection of indices from self.

Parameters
• indices (Sequence) – List of indices to select.

• select_dir (str, optional (default None)) – Path to new directory that the se-
lected indices will be copied to.

get_statistics(X_stats: bool = True, y_stats: bool = True)→ Tuple[ndarray, ...]
Compute and return statistics of this dataset.

Uses self.itersamples() to compute means and standard deviations of the dataset. Can compute on large
datasets that don’t fit in memory.

Parameters
• X_stats (bool, optional (default True)) – If True, compute feature-level mean

and standard deviations.

• y_stats (bool, optional (default True)) – If True, compute label-level mean and
standard deviations.
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Returns
• If X_stats == True, returns (X_means, X_stds).

• If y_stats == True, returns (y_means, y_stds).

• If both are true, returns (X_means, X_stds, y_means, y_stds).

Return type
Tuple

make_tf_dataset(batch_size: int = 100, epochs: int = 1, deterministic: bool = False, pad_batches: bool =
False)

Create a tf.data.Dataset that iterates over the data in this Dataset.

Each value returned by the Dataset’s iterator is a tuple of (X, y, w) for one batch.

Parameters
• batch_size (int, default 100) – The number of samples to include in each batch.

• epochs (int, default 1) – The number of times to iterate over the Dataset.

• deterministic (bool, default False) – If True, the data is produced in order. If
False, a different random permutation of the data is used for each epoch.

• pad_batches (bool, default False) – If True, batches are padded as necessary to
make the size of each batch exactly equal batch_size.

Returns
TensorFlow Dataset that iterates over the same data.

Return type
tf.data.Dataset

Note: This class requires TensorFlow to be installed.

make_pytorch_dataset(epochs: int = 1, deterministic: bool = False, batch_size: int | None = None)
Create a torch.utils.data.IterableDataset that iterates over the data in this Dataset.

Each value returned by the Dataset’s iterator is a tuple of (X, y, w, id) containing the data for one batch, or
for a single sample if batch_size is None.

Parameters
• epochs (int, default 1) – The number of times to iterate over the Dataset.

• deterministic (bool, default False) – If True, the data is produced in order. If
False, a different random permutation of the data is used for each epoch.

• batch_size (int, optional (default None)) – The number of samples to return in
each batch. If None, each returned value is a single sample.

Returns
torch.utils.data.IterableDataset that iterates over the data in this dataset.

Return type
torch.utils.data.IterableDataset

Note: This class requires PyTorch to be installed.
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to_dataframe()→ DataFrame
Construct a pandas DataFrame containing the data from this Dataset.

Returns
Pandas dataframe. If there is only a single feature per datapoint, will have column “X” else
will have columns “X1,X2,. . . ” for features. If there is only a single label per datapoint, will
have column “y” else will have columns “y1,y2,. . . ” for labels. If there is only a single weight
per datapoint will have column “w” else will have columns “w1,w2,. . . ”. Will have column
“ids” for identifiers.

Return type
pd.DataFrame

static from_dataframe(df: DataFrame, X: str | Sequence[str] | None = None, y: str | Sequence[str] | None
= None, w: str | Sequence[str] | None = None, ids: str | None = None)

Construct a Dataset from the contents of a pandas DataFrame.

Parameters
• df (pd.DataFrame) – The pandas DataFrame

• X (str or List[str], optional (default None)) – The name of the column or
columns containing the X array. If this is None, it will look for default column names that
match those produced by to_dataframe().

• y (str or List[str], optional (default None)) – The name of the column or
columns containing the y array. If this is None, it will look for default column names that
match those produced by to_dataframe().

• w (str or List[str], optional (default None)) – The name of the column or
columns containing the w array. If this is None, it will look for default column names that
match those produced by to_dataframe().

• ids (str, optional (default None)) – The name of the column containing the ids.
If this is None, it will look for default column names that match those produced by
to_dataframe().

to_csv(path: str)→ None
Write object to a comma-seperated values (CSV) file

Example

>>> import numpy as np
>>> X = np.random.rand(10, 10)
>>> dataset = dc.data.DiskDataset.from_numpy(X)
>>> dataset.to_csv('out.csv')

Parameters
path (str) – File path or object

Return type
None
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DataLoader

The dc.data.DataLoader class is the abstract parent class for all dataloaders. This class should never be directly
initialized, but contains a number of useful method implementations.

class DataLoader(tasks: List[str], featurizer: Featurizer, id_field: str | None = None, log_every_n: int = 1000)
Handles loading/featurizing of data from disk.

The main use of DataLoader and its child classes is to make it easier to load large datasets into Dataset objects.`

DataLoader is an abstract superclass that provides a general framework for loading data into DeepChem. This
class should never be instantiated directly. To load your own type of data, make a subclass of DataLoader and
provide your own implementation for the create_dataset() method.

To construct a Dataset from input data, first instantiate a concrete data loader (that is, an object which is an
instance of a subclass of DataLoader) with a given Featurizer object. Then call the data loader’s create_dataset()
method on a list of input files that hold the source data to process. Note that each subclass of DataLoader is
specialized to handle one type of input data so you will have to pick the loader class suitable for your input data
type.

Note that it isn’t necessary to use a data loader to process input data. You can directly use Featurizer objects to
featurize provided input into numpy arrays, but note that this calculation will be performed in memory, so you
will have to write generators that walk the source files and write featurized data to disk yourself. DataLoader
and its subclasses make this process easier for you by performing this work under the hood.

__init__(tasks: List[str], featurizer: Featurizer, id_field: str | None = None, log_every_n: int = 1000)
Construct a DataLoader object.

This constructor is provided as a template mainly. You shouldn’t ever call this constructor directly as a user.

Parameters
• tasks (List[str]) – List of task names

• featurizer (Featurizer) – Featurizer to use to process data.

• id_field (str, optional (default None)) – Name of field that holds sample iden-
tifier. Note that the meaning of “field” depends on the input data type and can have a
different meaning in different subclasses. For example, a CSV file could have a field as a
column, and an SDF file could have a field as molecular property.

• log_every_n (int, optional (default 1000)) – Writes a logging statement this
often.

featurize(inputs: Any | Sequence[Any], data_dir: str | None = None, shard_size: int | None = 8192)→
Dataset

Featurize provided files and write to specified location.

DEPRECATED: This method is now a wrapper for create_dataset() and calls that method under the hood.

For large datasets, automatically shards into smaller chunks for convenience. This implementation assumes
that the helper methods _get_shards and _featurize_shard are implemented and that each shard returned
by _get_shards is a pandas dataframe. You may choose to reuse or override this method in your subclass
implementations.

Parameters
• inputs (List) – List of inputs to process. Entries can be filenames or arbitrary objects.

• data_dir (str, default None) – Directory to store featurized dataset.

• shard_size (int, optional (default 8192)) – Number of examples stored in each
shard.
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Returns
A Dataset object containing a featurized representation of data from inputs.

Return type
Dataset

create_dataset(inputs: Any | Sequence[Any], data_dir: str | None = None, shard_size: int | None = 8192)
→ Dataset

Creates and returns a Dataset object by featurizing provided files.

Reads in inputs and uses self.featurizer to featurize the data in these inputs. For large files, automatically
shards into smaller chunks of shard_size datapoints for convenience. Returns a Dataset object that contains
the featurized dataset.

This implementation assumes that the helper methods _get_shards and _featurize_shard are implemented
and that each shard returned by _get_shards is a pandas dataframe. You may choose to reuse or override
this method in your subclass implementations.

Parameters
• inputs (List) – List of inputs to process. Entries can be filenames or arbitrary objects.

• data_dir (str, optional (default None)) – Directory to store featurized dataset.

• shard_size (int, optional (default 8192)) – Number of examples stored in each
shard.

Returns
A DiskDataset object containing a featurized representation of data from inputs.

Return type
DiskDataset

3.9 MoleculeNet

The DeepChem library is packaged alongside the MoleculeNet suite of datasets. One of the most important parts of
machine learning applications is finding a suitable dataset. The MoleculeNet suite has curated a whole range of datasets
and loaded them into DeepChem dc.data.Dataset objects for convenience.

3.9.1 MoleculeNet Cheatsheet

When training a model or performing a benchmark, the user needs specific datasets. However, at the beginning, this
search can be exhaustive and confusing. The following cheatsheet is aimed at helping DeepChem users identify more
easily which dataset to use depending on their purposes.

Each row reprents a dataset where a brief description is given. Also, the columns represents the type of the data;
depending on molecule properties, images or materials and how many data points they have. Each dataset is referenced
with a link of the paper. Finally, there are some entries that need further information.

Cheatsheet

Table 1: MoleculeNet description

Name Description Type Data Points Reference
BACE (Regression) Provides bindings results for a set of inhibitors of human beta-secretase (BACE-1) Molecules 1513 ref
BACE (Classification) Provides bindings results for a set of inhibitors of human beta-secretase (BACE-1) Molecules 1513 ref

continues on next page
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Table 1 – continued from previous page
Name Description Type Data Points Reference
BBBC (BBBC001) Images of HT29 colon cancer cells Images 6 ref
BBBC (BBBC002) Images of Drosophilia Kc167 cells Images 50 ref
BBBC (BBBC003) DIC Images of Mouse Embryos Images 15 ref
BBBC (BBBC004) Synthetic Images of clustered nuclei Images 20 ref
BBBC (BBBC004) Synthetic Images of clustered nuclei Images 19200 ref
BBBP Blood-Brain Barrier Penetration designed for the modeling and prediction of barrier permeability Binary labels on permeability properties 2000 ref
Cell Counting Synthetic emulations of fluorescence microscopic images of bacterial cells Images 200 ref
ChEMBL (set = ‘sparse’) A sparse subset of ChEMBL with activity data for one target Molecules 244 245 ref
ChEMBL (set = ‘5thresh’) A subset of ChEMBL with activity data for at least five targets Molecules 23 871 ref
ChEMBL25 Molecules ref
Clearance ref
Clintox Compares drugs approved by the FDA and drugs that have failed clinical trials for toxicity reasons. Molecules 1491 ref
Delaney A regression dataset containing structures and water solubility data Molecules 1128 ref
Factors Merck in-house compounds that were measured for IC50 of inhibition on 12 serine proteases Molecules 1500
Freesolv A collection of experimental and calculated hydration free energies for small molecules in water Molecules 643 ref
HIV A dataset wich tested the ability to inhibit HIV replication Molecules 40 000 ref
HOPV Harvard Organic Photovoltaic dataset utilized as p-type materials Molecules 350
HPPB Thermosynamic solubility datasets
KAGGLE in-house compounds that were measured on 15 enzyme inhibition and ADME/TOX datasets. Molecules 100 000 ref
KINASE In-house compounds that were measured for IC50 of inhibition on 99 protein kinases Molecules 2 500
LIPO Experimental results of octanol/water distribution coefficient (logD at pH 7.4) Molecules 4 200 ref
Band Gap Experimentally measured band gaps for inorganic crystal structure Materials 4 604 ref
Perovskite Contains Perovskite structures and their formation energies Materials 18 928 ref
MP Formation Energy Contains calculated formation energies and inorganic crystal structures from the Materials Project database Materials 132 752 ref
MP Metallicity Contains inorganic crystal structures from the Materials Project database labeled as metals or nonmetals Materials 106 113 ref
MUV Benchmark dataset selected from PubChem BioAssay by applying a refined nearest neighbor analysis Molecules 90 000 ref
NCI
PCBA Database consisting of biological activities of small molecules generated by high-throughput screening Molecules 400 000 ref
PDBBIND Experimental binding affinity data and structures of protein-ligand complexes Molecules “refined set” 4 852 - “general set” 12 800 - “core set” 193 ref
PPB
QM7 Subset of GDB-13 containing up to 7 heavy atoms CNOS Molecules 7 165 ref
QM8 Dataset used in a study on modeling quantum mechanical calculations of electronic spectra and excited state energy of small molecules Molecules 20 000 ref
QM9 Dataset that provides geometric/energetic/electronic and thermodynamic properties for a subset of GDB-17 database Molecules 134 000 ref
SAMPL Similat to FreeSolv dataset which provides experimental and calculated hydration free energy of small molecules in water
SIDER The Side Effect Resource (SIDER) is a database of marketed drugs and adverse drug reactions (ADR) Molecules 1 427 ref
Thermosol Thermodynamic solubility datasets
Tox21 The “Toxicology in the 21st Century” (Tox21) initiative created a public database measuring the toxicity of compounds Molecules 8 000 ref
Toxcast Toxicology data for an extensive library of compounds based on in vitro high-throughput screening Molecules 8 000 ref
USPTO Subsets of USPTO dataset of organic chemical reactions extracted from US patents and patent applications Chemical reactions SMILES MIT 479 000 - STEREO 1 M - 50K 50 000 ref
UV The UV dataset tests Merck’s internal compounds on 190 absorption wavelengths between 210 and 400 nm Molecules 10 000
ZINC15 Purchasable compounds for virtual screening of small molecules to identify structures that are likely to bind to drug targets Molecules 250K - 1M - 10M ref
Platinum Adsorption Different configurations of Adsorbates (i.e N and NO) on Platinum surface represented as Lattice and their formation energy Adsorbate Configurations 648

74 Chapter 3. About Us

https://data.broadinstitute.org/bbbc/BBBC001/
https://data.broadinstitute.org/bbbc/BBBC002/
https://data.broadinstitute.org/bbbc/BBBC003/
https://data.broadinstitute.org/bbbc/BBBC004/
https://data.broadinstitute.org/bbbc/BBBC005/
https://pubs.rsc.org/en/content/articlehtml/2018/sc/c7sc02664a
http://www.robots.ox.ac.uk/~vgg/research/counting/index_org.html.
https://www.ebi.ac.uk/chembl/.
https://www.ebi.ac.uk/chembl/.
https://www.ebi.ac.uk/chembl/.
https://arxiv.org/abs/1703.00564
https://pubs.rsc.org/en/content/articlehtml/2018/sc/c7sc02664a
https://arxiv.org/abs/1703.00564
https://pubs.rsc.org/en/content/articlehtml/2018/sc/c7sc02664a
https://pubs.rsc.org/en/content/articlehtml/2018/sc/c7sc02664a
https://pubmed.ncbi.nlm.nih.gov/25635324/
https://arxiv.org/abs/1703.00564
https://pubs.acs.org/doi/10.1021/acs.jpclett.8b00124
https://pubs.rsc.org/en/content/articlelanding/2012/ee/c2ee22341d
https://pubs.aip.org/aip/apm/article/1/1/011002/119685/Commentary-The-Materials-Project-A-materials
https://pubs.aip.org/aip/apm/article/1/1/011002/119685/Commentary-The-Materials-Project-A-materials
https://arxiv.org/abs/1703.00564
https://pubs.rsc.org/en/content/articlehtml/2018/sc/c7sc02664a
https://pubmed.ncbi.nlm.nih.gov/19358517/
https://pubs.rsc.org/en/content/articlehtml/2018/sc/c7sc02664a
https://pubs.rsc.org/en/content/articlehtml/2018/sc/c7sc02664a
https://pubs.rsc.org/en/content/articlehtml/2018/sc/c7sc02664a
https://pubs.rsc.org/en/content/articlehtml/2018/sc/c7sc02664a
https://pubs.rsc.org/en/content/articlehtml/2018/sc/c7sc02664a
https://pubs.rsc.org/en/content/articlehtml/2018/sc/c7sc02664a
https://doi.org/10.6084/m9.figshare.5104873.v1
http://pubs.acs.org/doi/abs/10.1021/acs.jcim.5b00559.


deepchem, Release 2.8.0

3.9.2 Contributing a new dataset to MoleculeNet

If you are proposing a new dataset to be included in the MoleculeNet benchmarking suite, please follow the instructions
below. Please review the datasets already available in MolNet before contributing.

0. Read the Contribution guidelines.

1. Open an issue to discuss the dataset you want to add to MolNet.

2. Write a DatasetLoader class that inherits from deepchem.molnet.load_function.molnet_loader._MolnetLoader
and implements a create_dataset method. See the _QM9Loader for a simple example.

3. Write a load_dataset function that documents the dataset and add your load function to
deepchem.molnet.__init__.py for easy importing.

4. Prepare your dataset as a .tar.gz or .zip file. Accepted filetypes include CSV, JSON, and SDF.

5. Ask a member of the technical steering committee to add your .tar.gz or .zip file to the DeepChem AWS bucket.
Modify your load function to pull down the dataset from AWS.

6. Add documentation for your loader to the MoleculeNet docs.

7. Submit a [WIP] PR (Work in progress pull request) following the PR template.

3.9.3 Example Usage

Below is an example of how to load a MoleculeNet dataset and featurizer. This approach will work for any dataset
in MoleculeNet by changing the load function and featurizer. For more details on the featurizers, see the Featurizers
section.

import deepchem as dc
from deepchem.feat.molecule_featurizers import MolGraphConvFeaturizer

featurizer = MolGraphConvFeaturizer(use_edges=True)
dataset_dc = dc.molnet.load_qm9(featurizer=featurizer)
tasks, dataset, transformers = dataset_dc
train, valid, test = dataset

x,y,w,ids = train.X, train.y, train.w, train.ids

Note that the “w” matrix represents the weight of each sample. Some assays may have missing values, in which case
the weight is 0. Otherwise, the weight is 1.

Additionally, the environment variable DEEPCHEM_DATA_DIR can be set like os.environ['DEEPCHEM_DATA_DIR']
= path/to/store/featurized/dataset. When the DEEPCHEM_DATA_DIR environment variable is set, molnet
loader stores the featurized dataset in the specified directory and when the dataset has to be reloaded the next time, it
will be fetched from the data directory directly rather than featurizing the raw dataset from scratch.
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3.9.4 BACE Dataset

load_bace_classification(featurizer: Featurizer | str = 'ECFP', splitter: Splitter | str | None = 'scaffold',
transformers: List[TransformerGenerator | str] = ['balancing'], reload: bool =
True, data_dir: str | None = None, save_dir: str | None = None, **kwargs)→
Tuple[List[str], Tuple[Dataset, ...], List[Transformer]]

Load BACE dataset with classification labels.

BACE dataset with classification labels (“class”). The BACE dataset contains 1513 compounds and the dataset
is a binary classification dataset with labels 0 or 1.

Parameters
• featurizer (Featurizer or str) – the featurizer to use for processing the data. Alter-

natively you can pass one of the names from dc.molnet.featurizers as a shortcut.

• splitter (Splitter or str) – the splitter to use for splitting the data into training, val-
idation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters
as a shortcut. If this is None, all the data will be included in a single dataset.

• transformers (list of TransformerGenerators or strings) – the Transformers
to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one
of the names from dc.molnet.transformers.

• reload (bool) – if True, the first call for a particular featurizer and splitter will cache the
datasets to disk, and subsequent calls will reload the cached datasets.

• data_dir (str) – a directory to save the raw data in

• save_dir (str) – a directory to save the dataset in

load_bace_regression(featurizer: Featurizer | str = 'ECFP', splitter: Splitter | str | None = 'scaffold',
transformers: List[TransformerGenerator | str] = ['normalization'], reload: bool = True,
data_dir: str | None = None, save_dir: str | None = None, **kwargs)→ Tuple[List[str],
Tuple[Dataset, ...], List[Transformer]]

Load BACE dataset, regression labels

The BACE dataset provides quantitative IC50 and qualitative (binary label) binding results for a set of inhibitors
of human beta-secretase 1 (BACE-1).

All data are experimental values reported in scientific literature over the past decade, some with detailed crystal
structures available. A collection of 1522 compounds is provided, along with the regression labels of IC50. The
number of tasks in the dataset is one.

Scaffold splitting is recommended for this dataset.

The raw data csv file contains columns below:

• “mol” - SMILES representation of the molecular structure

• “pIC50” - Negative log of the IC50 binding affinity

• “class” - Binary labels for inhibitor

Parameters
• featurizer (Featurizer or str) – the featurizer to use for processing the data. Alter-

natively you can pass one of the names from dc.molnet.featurizers as a shortcut.

• splitter (Splitter or str) – the splitter to use for splitting the data into training, val-
idation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters
as a shortcut. If this is None, all the data will be included in a single dataset.
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• transformers (list of TransformerGenerators or strings) – the Transformers
to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one
of the names from dc.molnet.transformers.

• reload (bool) – if True, the first call for a particular featurizer and splitter will cache the
datasets to disk, and subsequent calls will reload the cached datasets.

• data_dir (str) – a directory to save the raw data in

• save_dir (str) – a directory to save the dataset in

References

3.9.5 BBBC Datasets

load_bbbc001(splitter: Splitter | str | None = 'index', transformers: List[TransformerGenerator | str] = [], reload:
bool = True, data_dir: str | None = None, save_dir: str | None = None, **kwargs)→
Tuple[List[str], Tuple[Dataset, ...], List[Transformer]]

Load BBBC001 dataset

This dataset contains 6 images of human HT29 colon cancer cells. The task is to learn to predict the cell counts
in these images. This dataset is too small to serve to train algorithms, but might serve as a good test dataset.
https://data.broadinstitute.org/bbbc/BBBC001/

Parameters
• splitter (Splitter or str) – the splitter to use for splitting the data into training, val-

idation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters
as a shortcut. If this is None, all the data will be included in a single dataset.

• transformers (list of TransformerGenerators or strings) – the Transformers
to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one
of the names from dc.molnet.transformers.

• reload (bool) – if True, the first call for a particular featurizer and splitter will cache the
datasets to disk, and subsequent calls will reload the cached datasets.

• data_dir (str) – a directory to save the raw data in

• save_dir (str) – a directory to save the dataset in

load_bbbc002(splitter: Splitter | str | None = 'index', transformers: List[TransformerGenerator | str] = [], reload:
bool = True, data_dir: str | None = None, save_dir: str | None = None, **kwargs)→
Tuple[List[str], Tuple[Dataset, ...], List[Transformer]]

Load BBBC002 dataset

This dataset contains data corresponding to 5 samples of Drosophilia Kc167 cells. There are 10 fields of view
for each sample, each an image of size 512x512. Ground truth labels contain cell counts for this dataset. Full
details about this dataset are present at https://data.broadinstitute.org/bbbc/BBBC002/.

Parameters
• splitter (Splitter or str) – the splitter to use for splitting the data into training, val-

idation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters
as a shortcut. If this is None, all the data will be included in a single dataset.

• transformers (list of TransformerGenerators or strings) – the Transformers
to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one
of the names from dc.molnet.transformers.
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• reload (bool) – if True, the first call for a particular featurizer and splitter will cache the
datasets to disk, and subsequent calls will reload the cached datasets.

• data_dir (str) – a directory to save the raw data in

• save_dir (str) – a directory to save the dataset in

load_bbbc003(load_segmentation_mask: bool = False, splitter: Splitter | str | None = 'index', transformers:
List[TransformerGenerator | str] = [], reload: bool = True, data_dir: str | None = None, save_dir:
str | None = None, **kwargs)→ Tuple[List[str], Tuple[Dataset, ...], List[Transformer]]

Load BBBC003 dataset

This dataset contains data corresponding to 15 samples of Mouse embryos with DIC. Each image is of size
640x480. Ground truth labels contain cell counts and segmentation masks for this dataset. Full details about this
dataset are present at https://data.broadinstitute.org/bbbc/BBBC003/.

Parameters
• load_segmentation_mask (bool) – if True, the dataset will contain segmentation masks

as labels. Otherwise, the dataset will contain cell counts as labels.

• splitter (Splitter or str) – the splitter to use for splitting the data into training, val-
idation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters
as a shortcut. If this is None, all the data will be included in a single dataset.

• transformers (list of TransformerGenerators or strings) – the Transformers
to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one
of the names from dc.molnet.transformers.

• reload (bool) – if True, the first call for a particular featurizer and splitter will cache the
datasets to disk, and subsequent calls will reload the cached datasets.

• data_dir (str) – a directory to save the raw data in

• save_dir (str) – a directory to save the dataset in

Examples

Importing necessary modules

>>> import deepchem as dc
>>> import numpy as np

We can load the BBBC003 dataset with 2 types of labels: segmentation masks and cell counts. We will first load
the dataset with cell counts as labels.

>>> loader = dc.molnet.load_bbbc003(load_segmentation_mask=False)
>>> tasks, dataset, transformers = loader
>>> train, val, test = dataset

We now have a dataset with 15 samples, each with 300 cells. The images are of size 640x480. The labels are
cell counts. We can verify this as follows:

>>> train.X.shape
(12,)
>>> train.y.shape
(12,)

We will now load the dataset with segmentation masks as labels.
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>>> loader = dc.molnet.load_bbbc003(load_segmentation_mask=True)
>>> tasks, dataset, transformers = loader
>>> train, val, test = dataset

We now have a dataset with 15 samples, each with 300 cells. The images are of size 640x480. The labels are
segmentation masks. We can verify this as follows:

>>> print(train.X.shape)
(12,)
>>> print(train.y.shape)
(12,)

Note: The image labelled ‘7_19_M2E15.tif’ is transposed to 480x640 in the source file along with it’s segemen-
tation mask. To match it with the other images, we need to transpose it back to 640x480.

This image is found at index 6 in the train dataset (Assuming no shuffling has taken place).

First, we load the dataset as usual and split it into X, y, w and ids. Here, X is the list of input images, y is the list
of labels, w is the list of weights and ids is the list of IDs for each sample.

>>> train_x, train_y, train_w, train_ids = train.X, train.y, train.w, train.ids

We can now transpose the image at index 6 in the input data (train_x): >>> train_x[6] = train_x[6].T

We can now verify that the image is of size 640x480: >>> print(train_x[6].shape) (640, 480)

This is also seen in the segmentation mask with the same filename and index, in which case, we transpose the
label (train_y) instead of the input data:

>>> train_y[6] = train_y[6].T

We can now verify that the image is of size 640x480: >>> train_y[6].shape (640, 480)

load_bbbc004(overlap_probability: float = 0.0, load_segmentation_mask: bool = False, splitter: Splitter | str |
None = 'index', transformers: List[TransformerGenerator | str] = [], reload: bool = True, data_dir:
str | None = None, save_dir: str | None = None, **kwargs)→ Tuple[List[str], Tuple[Dataset, ...],
List[Transformer]]

Load BBBC004 dataset

This dataset contains data corresponding to 20 samples of synthetically generated fluorescent cell popula-
tion images. There are 300 cells in each sample, each an image of size 950x950. Ground truth labels
contain cell counts and segmentation masks for this dataset. Full details about this dataset are present at
https://data.broadinstitute.org/bbbc/BBBC004/.

Parameters
• overlap_probability (float from list {0.0, 0.15, 0.3, 0.45, 0.6}) – the

overlap probability of the synthetic cells in the images

• load_segmentation_mask (bool) – if True, the dataset will contain segmentation masks
as labels. Otherwise, the dataset will contain cell counts as labels.

• splitter (Splitter or str) – the splitter to use for splitting the data into training, val-
idation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters
as a shortcut. If this is None, all the data will be included in a single dataset.

• transformers (list of TransformerGenerators or strings) – the Transformers
to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one
of the names from dc.molnet.transformers.
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• reload (bool) – if True, the first call for a particular featurizer and splitter will cache the
datasets to disk, and subsequent calls will reload the cached datasets.

• data_dir (str) – a directory to save the raw data in

• save_dir (str) – a directory to save the dataset in

Examples

Importing necessary modules

>>> import deepchem as dc
>>> import numpy as np

We can load the BBBC004 dataset with 2 types of labels: segmentation masks and cell counts. We will first load
the dataset with cell counts as labels.

>>> loader = dc.molnet.load_bbbc004(overlap_probability=0.0, load_segmentation_
→˓mask=False)
>>> tasks, dataset, transformers = loader
>>> train, val, test = dataset

We now have a dataset with 20 samples, each with 300 cells. The images are of size 950x950. The labels are
cell counts. We can verify this as follows:

>>> train.X.shape
(16, 950, 950)
>>> train.y.shape
(16,)

We will now load the dataset with segmentation masks as labels.

>>> loader = dc.molnet.load_bbbc004(overlap_probability=0.0, load_segmentation_
→˓mask=True)
>>> tasks, dataset, transformers = loader
>>> train, val, test = dataset

We now have a dataset with 20 samples, each with 300 cells. The images are of size 950x950. The labels are
segmentation masks. We can verify this as follows:

>>> train.X.shape
(16, 950, 950)
>>> train.y.shape
(16, 950, 950, 3)

load_bbbc005(splitter: Splitter | str | None = 'index', transformers: List[TransformerGenerator | str] = [], reload:
bool = True, data_dir: str | None = None, save_dir: str | None = None, **kwargs)→
Tuple[List[str], Tuple[Dataset, ...], List[Transformer]]

Load BBBC005 dataset

This dataset contains data corresponding to 19,200 samples of synthetically generated fluorescent cell population
images. These images were simulated for a given cell count with a clustering probablity of 25% and a CCD noise
variance of 0.0001. Focus blur was simulated by applying varying Guassian filters to the images. Each image
is of size 520x696. Ground truth labels contain cell counts for this dataset. Full details about this dataset are
present at https://data.broadinstitute.org/bbbc/BBBC005/.
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Parameters
• splitter (Splitter or str) – the splitter to use for splitting the data into training, val-

idation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters
as a shortcut. If this is None, all the data will be included in a single dataset.

• transformers (list of TransformerGenerators or strings) – the Transformers
to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one
of the names from dc.molnet.transformers.

• reload (bool) – if True, the first call for a particular featurizer and splitter will cache the
datasets to disk, and subsequent calls will reload the cached datasets.

• data_dir (str) – a directory to save the raw data in

• save_dir (str) – a directory to save the dataset in

Examples

Importing necessary modules

>> import deepchem as dc >> import numpy as np

We will now load the BBBC005 dataset with cell counts as labels.

>> loader = dc.molnet.load_bbbc005() >> tasks, dataset, transformers = loader >> train, val, test = dataset

We now have a dataset with a total of 19,200 samples with cell counts in the range of 1-100. The images are of
size 520x696. The labels are cell counts. We have a train-val-test split of 80:10:10. We can verify this as follows:

>> train.X.shape (15360, 520, 696) >> train.y.shape (15360,)

3.9.6 BBBP Datasets

BBBP stands for Blood-Brain-Barrier Penetration

load_bbbp(featurizer: Featurizer | str = 'ECFP', splitter: Splitter | str | None = 'scaffold', transformers:
List[TransformerGenerator | str] = ['balancing'], reload: bool = True, data_dir: str | None = None,
save_dir: str | None = None, **kwargs)→ Tuple[List[str], Tuple[Dataset, ...], List[Transformer]]

Load BBBP dataset

The blood-brain barrier penetration (BBBP) dataset is designed for the modeling and prediction of barrier per-
meability. As a membrane separating circulating blood and brain extracellular fluid, the blood-brain barrier
blocks most drugs, hormones and neurotransmitters. Thus penetration of the barrier forms a long-standing issue
in development of drugs targeting central nervous system.

This dataset includes binary labels for over 2000 compounds on their permeability properties.

Scaffold splitting is recommended for this dataset.

The raw data csv file contains columns below:

• “name” - Name of the compound

• “smiles” - SMILES representation of the molecular structure

• “p_np” - Binary labels for penetration/non-penetration

Parameters
• featurizer (Featurizer or str) – the featurizer to use for processing the data. Alter-

natively you can pass one of the names from dc.molnet.featurizers as a shortcut.
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• splitter (Splitter or str) – the splitter to use for splitting the data into training, val-
idation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters
as a shortcut. If this is None, all the data will be included in a single dataset.

• transformers (list of TransformerGenerators or strings) – the Transformers
to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one
of the names from dc.molnet.transformers.

• reload (bool) – if True, the first call for a particular featurizer and splitter will cache the
datasets to disk, and subsequent calls will reload the cached datasets.

• data_dir (str) – a directory to save the raw data in

• save_dir (str) – a directory to save the dataset in

References

3.9.7 Cell Counting Datasets

load_cell_counting(splitter: Splitter | str | None = None, transformers: List[TransformerGenerator | str] = [],
reload: bool = True, data_dir: str | None = None, save_dir: str | None = None, **kwargs)
→ Tuple[List[str], Tuple[Dataset, ...], List[Transformer]]

Load Cell Counting dataset.

Loads the cell counting dataset from http://www.robots.ox.ac.uk/~vgg/research/counting/index_org.html.

Parameters
• splitter (Splitter or str) – the splitter to use for splitting the data into training, val-

idation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters
as a shortcut. If this is None, all the data will be included in a single dataset.

• transformers (list of TransformerGenerators or strings) – the Transformers
to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one
of the names from dc.molnet.transformers.

• reload (bool) – if True, the first call for a particular featurizer and splitter will cache the
datasets to disk, and subsequent calls will reload the cached datasets.

• data_dir (str) – a directory to save the raw data in

• save_dir (str) – a directory to save the dataset in

3.9.8 Chembl Datasets

load_chembl(featurizer: Featurizer | str = 'ECFP', splitter: Splitter | str | None = 'scaffold', transformers:
List[TransformerGenerator | str] = ['normalization'], set: str = '5thresh', reload: bool = True,
data_dir: str | None = None, save_dir: str | None = None, **kwargs)→ Tuple[List[str],
Tuple[Dataset, ...], List[Transformer]]

Load the ChEMBL dataset.

This dataset is based on release 22.1 of the data from https://www.ebi.ac.uk/chembl/. Two subsets of the data are
available, depending on the “set” argument. “sparse” is a large dataset with 244,245 compounds. As the name
suggests, the data is extremely sparse, with most compounds having activity data for only one target. “5thresh” is
a much smaller set (23,871 compounds) that includes only compounds with activity data for at least five targets.

Parameters
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• featurizer (Featurizer or str) – the featurizer to use for processing the data. Alter-
natively you can pass one of the names from dc.molnet.featurizers as a shortcut.

• splitter (Splitter or str) – the splitter to use for splitting the data into training, val-
idation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters
as a shortcut. If this is None, all the data will be included in a single dataset.

• transformers (list of TransformerGenerators or strings) – the Transformers
to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one
of the names from dc.molnet.transformers.

• set (str) – the subset to load, either “sparse” or “5thresh”

• reload (bool) – if True, the first call for a particular featurizer and splitter will cache the
datasets to disk, and subsequent calls will reload the cached datasets.

• data_dir (str) – a directory to save the raw data in

• save_dir (str) – a directory to save the dataset in

3.9.9 Chembl25 Datasets

load_chembl25(featurizer: Featurizer | str = 'ECFP', splitter: Splitter | str | None = 'scaffold', transformers:
List[TransformerGenerator | str] = ['normalization'], reload: bool = True, data_dir: str | None =
None, save_dir: str | None = None, **kwargs)→ Tuple[List[str], Tuple[Dataset, ...],
List[Transformer]]

Loads the ChEMBL25 dataset, featurizes it, and does a split.

Parameters
• featurizer (Featurizer or str) – the featurizer to use for processing the data. Alter-

natively you can pass one of the names from dc.molnet.featurizers as a shortcut.

• splitter (Splitter or str) – the splitter to use for splitting the data into training, val-
idation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters
as a shortcut. If this is None, all the data will be included in a single dataset.

• transformers (list of TransformerGenerators or strings) – the Transformers
to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one
of the names from dc.molnet.transformers.

• reload (bool) – if True, the first call for a particular featurizer and splitter will cache the
datasets to disk, and subsequent calls will reload the cached datasets.

• data_dir (str) – a directory to save the raw data in

• save_dir (str) – a directory to save the dataset in

3.9.10 Clearance Datasets

load_clearance(featurizer: Featurizer | str = 'ECFP', splitter: Splitter | str | None = 'scaffold', transformers:
List[TransformerGenerator | str] = ['log'], reload: bool = True, data_dir: str | None = None,
save_dir: str | None = None, **kwargs)→ Tuple[List[str], Tuple[Dataset, ...], List[Transformer]]

Load clearance datasets.

Parameters
• featurizer (Featurizer or str) – the featurizer to use for processing the data. Alter-

natively you can pass one of the names from dc.molnet.featurizers as a shortcut.
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• splitter (Splitter or str) – the splitter to use for splitting the data into training, val-
idation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters
as a shortcut. If this is None, all the data will be included in a single dataset.

• transformers (list of TransformerGenerators or strings) – the Transformers
to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one
of the names from dc.molnet.transformers.

• reload (bool) – if True, the first call for a particular featurizer and splitter will cache the
datasets to disk, and subsequent calls will reload the cached datasets.

• data_dir (str) – a directory to save the raw data in

• save_dir (str) – a directory to save the dataset in

3.9.11 Clintox Datasets

load_clintox(featurizer: Featurizer | str = 'ECFP', splitter: Splitter | str | None = 'scaffold', transformers:
List[TransformerGenerator | str] = ['balancing'], reload: bool = True, data_dir: str | None = None,
save_dir: str | None = None, **kwargs)→ Tuple[List[str], Tuple[Dataset, ...], List[Transformer]]

Load ClinTox dataset

The ClinTox dataset compares drugs approved by the FDA and drugs that have failed clinical trials for toxicity
reasons. The dataset includes two classification tasks for 1491 drug compounds with known chemical structures:

1. clinical trial toxicity (or absence of toxicity)

2. FDA approval status.

List of FDA-approved drugs are compiled from the SWEETLEAD database, and list of drugs that failed clinical
trials for toxicity reasons are compiled from the Aggregate Analysis of ClinicalTrials.gov(AACT) database.

Random splitting is recommended for this dataset.

The raw data csv file contains columns below:

• “smiles” - SMILES representation of the molecular structure

• “FDA_APPROVED” - FDA approval status

• “CT_TOX” - Clinical trial results

Parameters
• featurizer (Featurizer or str) – the featurizer to use for processing the data. Alter-

natively you can pass one of the names from dc.molnet.featurizers as a shortcut.

• splitter (Splitter or str) – the splitter to use for splitting the data into training, val-
idation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters
as a shortcut. If this is None, all the data will be included in a single dataset.

• transformers (list of TransformerGenerators or strings) – the Transformers
to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one
of the names from dc.molnet.transformers.

• reload (bool) – if True, the first call for a particular featurizer and splitter will cache the
datasets to disk, and subsequent calls will reload the cached datasets.

• data_dir (str) – a directory to save the raw data in

• save_dir (str) – a directory to save the dataset in
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3.9.12 Delaney Datasets

load_delaney(featurizer: Featurizer | str = 'ECFP', splitter: Splitter | str | None = 'scaffold', transformers:
List[TransformerGenerator | str] = ['normalization'], reload: bool = True, data_dir: str | None =
None, save_dir: str | None = None, **kwargs)→ Tuple[List[str], Tuple[Dataset, ...],
List[Transformer]]

Load Delaney dataset

The Delaney (ESOL) dataset a regression dataset containing structures and water solubility data for 1128 com-
pounds. The dataset is widely used to validate machine learning models on estimating solubility directly from
molecular structures (as encoded in SMILES strings).

Scaffold splitting is recommended for this dataset.

The raw data csv file contains columns below:

• “Compound ID” - Name of the compound

• “smiles” - SMILES representation of the molecular structure

• “measured log solubility in mols per litre” - Log-scale water solubility
of the compound, used as label

Parameters
• featurizer (Featurizer or str) – the featurizer to use for processing the data. Alter-

natively you can pass one of the names from dc.molnet.featurizers as a shortcut.

• splitter (Splitter or str) – the splitter to use for splitting the data into training, val-
idation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters
as a shortcut. If this is None, all the data will be included in a single dataset.

• transformers (list of TransformerGenerators or strings) – the Transformers
to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one
of the names from dc.molnet.transformers.

• reload (bool) – if True, the first call for a particular featurizer and splitter will cache the
datasets to disk, and subsequent calls will reload the cached datasets.

• data_dir (str) – a directory to save the raw data in

• save_dir (str) – a directory to save the dataset in

References

3.9.13 Factors Datasets

load_factors(shard_size=2000, featurizer=None, split=None, reload=True)
Loads FACTOR dataset; does not do train/test split

The Factors dataset is an in-house dataset from Merck that was first introduced in the following paper: Ram-
sundar, Bharath, et al. “Is multitask deep learning practical for pharma?.” Journal of chemical information and
modeling 57.8 (2017): 2068-2076.

It contains 1500 Merck in-house compounds that were measured for IC50 of inhibition on 12 serine proteases.
Unlike most of the other datasets featured in MoleculeNet, the Factors collection does not have structures for
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the compounds tested since they were proprietary Merck compounds. However, the collection does feature pre-
computed descriptors for these compounds.

Note that the original train/valid/test split from the source data was preserved here, so this function doesn’t allow
for alternate modes of splitting. Similarly, since the source data came pre-featurized, it is not possible to apply
alternative featurizations.

Parameters
• shard_size (int, optional) – Size of the DiskDataset shards to write on disk

• featurizer (optional) – Ignored since featurization pre-computed

• split (optional) – Ignored since split pre-computed

• reload (bool, optional) – Whether to automatically re-load from disk

3.9.14 Freesolv Dataset

load_freesolv(featurizer: ~deepchem.feat.base_classes.Featurizer | str = MATFeaturizer[], splitter:
~deepchem.splits.splitters.Splitter | str | None = 'random', transformers:
~typing.List[~deepchem.molnet.load_function.molnet_loader.TransformerGenerator | str] =
['normalization'], reload: bool = True, data_dir: str | None = None, save_dir: str | None = None,
**kwargs)→ Tuple[List[str], Tuple[Dataset, ...], List[Transformer]]

Load Freesolv dataset

The FreeSolv dataset is a collection of experimental and calculated hydration free energies for small molecules
in water, along with their experiemental values. Here, we are using a modified version of the dataset with the
molecule smile string and the corresponding experimental hydration free energies.

Random splitting is recommended for this dataset.

The raw data csv file contains columns below:

• “mol” - SMILES representation of the molecular structure

• “y” - Experimental hydration free energy

Parameters
• featurizer (Featurizer or str) – the featurizer to use for processing the data. Alter-

natively you can pass one of the names from dc.molnet.featurizers as a shortcut.

• splitter (Splitter or str) – the splitter to use for splitting the data into training, val-
idation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters
as a shortcut. If this is None, all the data will be included in a single dataset.

• transformers (list of TransformerGenerators or strings) – the Transformers
to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one
of the names from dc.molnet.transformers.

• reload (bool) – if True, the first call for a particular featurizer and splitter will cache the
datasets to disk, and subsequent calls will reload the cached datasets.

• data_dir (str) – a directory to save the raw data in

• save_dir (str) – a directory to save the dataset in
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3.9.15 HIV Datasets

load_hiv(featurizer: Featurizer | str = 'ECFP', splitter: Splitter | str | None = 'scaffold', transformers:
List[TransformerGenerator | str] = ['balancing'], reload: bool = True, data_dir: str | None = None,
save_dir: str | None = None, **kwargs)→ Tuple[List[str], Tuple[Dataset, ...], List[Transformer]]

Load HIV dataset

The HIV dataset was introduced by the Drug Therapeutics Program (DTP) AIDS Antiviral Screen, which tested
the ability to inhibit HIV replication for over 40,000 compounds. Screening results were evaluated and placed
into three categories: confirmed inactive (CI),confirmed active (CA) and confirmed moderately active (CM). We
further combine the latter two labels, making it a classification task between inactive (CI) and active (CA and
CM).

Scaffold splitting is recommended for this dataset.

The raw data csv file contains columns below:

• “smiles”: SMILES representation of the molecular structure

• “activity”: Three-class labels for screening results: CI/CM/CA

• “HIV_active”: Binary labels for screening results: 1 (CA/CM) and 0 (CI)

Parameters
• featurizer (Featurizer or str) – the featurizer to use for processing the data. Alter-

natively you can pass one of the names from dc.molnet.featurizers as a shortcut.

• splitter (Splitter or str) – the splitter to use for splitting the data into training, val-
idation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters
as a shortcut. If this is None, all the data will be included in a single dataset.

• transformers (list of TransformerGenerators or strings) – the Transformers
to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one
of the names from dc.molnet.transformers.

• reload (bool) – if True, the first call for a particular featurizer and splitter will cache the
datasets to disk, and subsequent calls will reload the cached datasets.

• data_dir (str) – a directory to save the raw data in

• save_dir (str) – a directory to save the dataset in

References

3.9.16 HOPV Datasets

HOPV stands for the Harvard Organic Photovoltaic Dataset.

load_hopv(featurizer: Featurizer | str = 'ECFP', splitter: Splitter | str | None = 'scaffold', transformers:
List[TransformerGenerator | str] = ['normalization'], reload: bool = True, data_dir: str | None = None,
save_dir: str | None = None, **kwargs)→ Tuple[List[str], Tuple[Dataset, ...], List[Transformer]]

Load HOPV datasets. Does not do train/test split

The HOPV datasets consist of the “Harvard Organic Photovoltaic Dataset. This dataset includes 350 small
molecules and polymers that were utilized as p-type materials in OPVs. Experimental properties include: HOMO
[a.u.], LUMO [a.u.], Electrochemical gap [a.u.], Optical gap [a.u.], Power conversion efficiency [%], Open circuit
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potential [V], Short circuit current density [mA/cm^2], and fill factor [%]. Theoretical calculations in the original
dataset have been removed (for now).

Lopez, Steven A., et al. “The Harvard organic photovoltaic dataset.” Scientific data 3.1 (2016): 1-7.

Parameters
• featurizer (Featurizer or str) – the featurizer to use for processing the data. Alter-

natively you can pass one of the names from dc.molnet.featurizers as a shortcut.

• splitter (Splitter or str) – the splitter to use for splitting the data into training, val-
idation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters
as a shortcut. If this is None, all the data will be included in a single dataset.

• transformers (list of TransformerGenerators or strings) – the Transformers
to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one
of the names from dc.molnet.transformers.

• reload (bool) – if True, the first call for a particular featurizer and splitter will cache the
datasets to disk, and subsequent calls will reload the cached datasets.

• data_dir (str) – a directory to save the raw data in

• save_dir (str) – a directory to save the dataset in

3.9.17 HPPB Datasets

load_hppb(featurizer: Featurizer | str = 'ECFP', splitter: Splitter | str | None = 'scaffold', transformers:
List[TransformerGenerator | str] = ['log'], reload: bool = True, data_dir: str | None = None, save_dir:
str | None = None, **kwargs)→ Tuple[List[str], Tuple[Dataset, ...], List[Transformer]]

Loads the thermodynamic solubility datasets.

Parameters
• featurizer (Featurizer or str) – the featurizer to use for processing the data. Alter-

natively you can pass one of the names from dc.molnet.featurizers as a shortcut.

• splitter (Splitter or str) – the splitter to use for splitting the data into training, val-
idation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters
as a shortcut. If this is None, all the data will be included in a single dataset.

• transformers (list of TransformerGenerators or strings) – the Transformers
to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one
of the names from dc.molnet.transformers.

• reload (bool) – if True, the first call for a particular featurizer and splitter will cache the
datasets to disk, and subsequent calls will reload the cached datasets.

• data_dir (str) – a directory to save the raw data in

• save_dir (str) – a directory to save the dataset in
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3.9.18 KAGGLE Datasets

load_kaggle(shard_size=2000, featurizer=None, split=None, reload=True)
Loads kaggle datasets. Generates if not stored already.

The Kaggle dataset is an in-house dataset from Merck that was first introduced in the following paper:

Ma, Junshui, et al. “Deep neural nets as a method for quantitative structure–activity relationships.” Journal of
chemical information and modeling 55.2 (2015): 263-274.

It contains 100,000 unique Merck in-house compounds that were measured on 15 enzyme inhibition and
ADME/TOX datasets. Unlike most of the other datasets featured in MoleculeNet, the Kaggle collection does not
have structures for the compounds tested since they were proprietary Merck compounds. However, the collection
does feature pre-computed descriptors for these compounds.

Note that the original train/valid/test split from the source data was preserved here, so this function doesn’t allow
for alternate modes of splitting. Similarly, since the source data came pre-featurized, it is not possible to apply
alternative featurizations.

Parameters
• shard_size (int, optional) – Size of the DiskDataset shards to write on disk

• featurizer (optional) – Ignored since featurization pre-computed

• split (optional) – Ignored since split pre-computed

• reload (bool, optional) – Whether to automatically re-load from disk

3.9.19 Kinase Datasets

load_kinase(shard_size=2000, featurizer=None, split=None, reload=True)
Loads Kinase datasets, does not do train/test split

The Kinase dataset is an in-house dataset from Merck that was first introduced in the following paper: Ramsundar,
Bharath, et al. “Is multitask deep learning practical for pharma?.” Journal of chemical information and modeling
57.8 (2017): 2068-2076.

It contains 2500 Merck in-house compounds that were measured for IC50 of inhibition on 99 protein kinases.
Unlike most of the other datasets featured in MoleculeNet, the Kinase collection does not have structures for
the compounds tested since they were proprietary Merck compounds. However, the collection does feature pre-
computed descriptors for these compounds.

Note that the original train/valid/test split from the source data was preserved here, so this function doesn’t allow
for alternate modes of splitting. Similarly, since the source data came pre-featurized, it is not possible to apply
alternative featurizations.

Parameters
• shard_size (int, optional) – Size of the DiskDataset shards to write on disk

• featurizer (optional) – Ignored since featurization pre-computed

• split (optional) – Ignored since split pre-computed

• reload (bool, optional) – Whether to automatically re-load from disk
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3.9.20 Lipo Datasets

load_lipo(featurizer: Featurizer | str = 'ECFP', splitter: Splitter | str | None = 'scaffold', transformers:
List[TransformerGenerator | str] = ['normalization'], reload: bool = True, data_dir: str | None = None,
save_dir: str | None = None, **kwargs)→ Tuple[List[str], Tuple[Dataset, ...], List[Transformer]]

Load Lipophilicity dataset

Lipophilicity is an important feature of drug molecules that affects both membrane permeability and solubil-
ity. The lipophilicity dataset, curated from ChEMBL database, provides experimental results of octanol/water
distribution coefficient (logD at pH 7.4) of 4200 compounds.

Scaffold splitting is recommended for this dataset.

The raw data csv file contains columns below:

• “smiles” - SMILES representation of the molecular structure

• “exp” - Measured octanol/water distribution coefficient (logD) of the
compound, used as label

Parameters
• featurizer (Featurizer or str) – the featurizer to use for processing the data. Alter-

natively you can pass one of the names from dc.molnet.featurizers as a shortcut.

• splitter (Splitter or str) – the splitter to use for splitting the data into training, val-
idation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters
as a shortcut. If this is None, all the data will be included in a single dataset.

• transformers (list of TransformerGenerators or strings) – the Transformers
to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one
of the names from dc.molnet.transformers.

• reload (bool) – if True, the first call for a particular featurizer and splitter will cache the
datasets to disk, and subsequent calls will reload the cached datasets.

• data_dir (str) – a directory to save the raw data in

• save_dir (str) – a directory to save the dataset in

References

3.9.21 Materials Datasets

Materials datasets include inorganic crystal structures, chemical compositions, and target properties like formation
energies and band gaps. Machine learning problems in materials science commonly include predicting the value of
a continuous (regression) or categorical (classification) property of a material based on its chemical composition or
crystal structure. “Inverse design” is also of great interest, in which ML methods generate crystal structures that have a
desired property. Other areas where ML is applicable in materials include: discovering new or modified phenomeno-
logical models that describe material behavior

load_bandgap(featurizer: ~deepchem.feat.base_classes.Featurizer | str =
ElementPropertyFingerprint[data_source='matminer'], splitter: ~deepchem.splits.splitters.Splitter |
str | None = 'random', transformers:
~typing.List[~deepchem.molnet.load_function.molnet_loader.TransformerGenerator | str] =
['normalization'], reload: bool = True, data_dir: str | None = None, save_dir: str | None = None,
**kwargs)→ Tuple[List[str], Tuple[Dataset, ...], List[Transformer]]
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Load band gap dataset.

Contains 4604 experimentally measured band gaps for inorganic crystal structure compositions. In benchmark
studies, random forest models achieved a mean average error of 0.45 eV during five-fold nested cross validation
on this dataset.

For more details on the dataset see [1]_. For more details on previous benchmarks for this dataset, see [2]_.

Parameters
• featurizer (Featurizer or str) – the featurizer to use for processing the data. Alter-

natively you can pass one of the names from dc.molnet.featurizers as a shortcut.

• splitter (Splitter or str) – the splitter to use for splitting the data into training, val-
idation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters
as a shortcut. If this is None, all the data will be included in a single dataset.

• transformers (list of TransformerGenerators or strings) – the Transformers
to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one
of the names from dc.molnet.transformers.

• reload (bool) – if True, the first call for a particular featurizer and splitter will cache the
datasets to disk, and subsequent calls will reload the cached datasets.

• data_dir (str) – a directory to save the raw data in

• save_dir (str) – a directory to save the dataset in

Returns
tasks, datasets, transformers –

tasks
[list] Column names corresponding to machine learning target variables.

datasets
[tuple] train, validation, test splits of data as deepchem.data.datasets.Dataset in-
stances.

transformers
[list] deepchem.trans.transformers.Transformer instances applied to dataset.

Return type
tuple

References

Examples

>>>
>> import deepchem as dc
>> tasks, datasets, transformers = dc.molnet.load_bandgap()
>> train_dataset, val_dataset, test_dataset = datasets
>> n_tasks = len(tasks)
>> n_features = train_dataset.get_data_shape()[0]
>> model = dc.models.MultitaskRegressor(n_tasks, n_features)
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load_perovskite(featurizer: ~deepchem.feat.base_classes.Featurizer | str = DummyFeaturizer[], splitter:
~deepchem.splits.splitters.Splitter | str | None = 'random', transformers:
~typing.List[~deepchem.molnet.load_function.molnet_loader.TransformerGenerator | str] =
['normalization'], reload: bool = True, data_dir: str | None = None, save_dir: str | None =
None, **kwargs)→ Tuple[List[str], Tuple[Dataset, ...], List[Transformer]]

Load perovskite dataset.

Contains 18928 perovskite structures and their formation energies. In benchmark studies, random forest models
and crystal graph neural networks achieved mean average error of 0.23 and 0.05 eV/atom, respectively, during
five-fold nested cross validation on this dataset.

For more details on the dataset see [1]_. For more details on previous benchmarks for this dataset, see [2]_.

Parameters
• featurizer (Featurizer or str) – the featurizer to use for processing the data. Alter-

natively you can pass one of the names from dc.molnet.featurizers as a shortcut.

• splitter (Splitter or str) – the splitter to use for splitting the data into training, val-
idation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters
as a shortcut. If this is None, all the data will be included in a single dataset.

• transformers (list of TransformerGenerators or strings) – the Transformers
to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one
of the names from dc.molnet.transformers.

• reload (bool) – if True, the first call for a particular featurizer and splitter will cache the
datasets to disk, and subsequent calls will reload the cached datasets.

• data_dir (str) – a directory to save the raw data in

• save_dir (str) – a directory to save the dataset in

Returns
tasks, datasets, transformers –

tasks
[list] Column names corresponding to machine learning target variables.

datasets
[tuple] train, validation, test splits of data as deepchem.data.datasets.Dataset in-
stances.

transformers
[list] deepchem.trans.transformers.Transformer instances applied to dataset.

Return type
tuple

References

Examples

>>> import deepchem as dc
>>> tasks, datasets, transformers = dc.molnet.load_perovskite()
>>> train_dataset, val_dataset, test_dataset = datasets
>>> model = dc.models.CGCNNModel(mode='regression', batch_size=32, learning_rate=0.
→˓001)
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load_mp_formation_energy(featurizer: ~deepchem.feat.base_classes.Featurizer | str =
SineCoulombMatrix[max_atoms=100, flatten=True], splitter:
~deepchem.splits.splitters.Splitter | str | None = 'random', transformers:
~typing.List[~deepchem.molnet.load_function.molnet_loader.TransformerGenerator
| str] = ['normalization'], reload: bool = True, data_dir: str | None = None,
save_dir: str | None = None, **kwargs)→ Tuple[List[str], Tuple[Dataset, ...],
List[Transformer]]

Load mp formation energy dataset.

Contains 132752 calculated formation energies and inorganic crystal structures from the Materials Project
database. In benchmark studies, random forest models achieved a mean average error of 0.116 eV/atom dur-
ing five-folded nested cross validation on this dataset.

For more details on the dataset see [1]_. For more details on previous benchmarks for this dataset, see [2]_.

Parameters
• featurizer (Featurizer or str) – the featurizer to use for processing the data. Alter-

natively you can pass one of the names from dc.molnet.featurizers as a shortcut.

• splitter (Splitter or str) – the splitter to use for splitting the data into training, val-
idation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters
as a shortcut. If this is None, all the data will be included in a single dataset.

• transformers (list of TransformerGenerators or strings) – the Transformers
to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one
of the names from dc.molnet.transformers.

• reload (bool) – if True, the first call for a particular featurizer and splitter will cache the
datasets to disk, and subsequent calls will reload the cached datasets.

• data_dir (str) – a directory to save the raw data in

• save_dir (str) – a directory to save the dataset in

Returns
tasks, datasets, transformers –

tasks
[list] Column names corresponding to machine learning target variables.

datasets
[tuple] train, validation, test splits of data as deepchem.data.datasets.Dataset in-
stances.

transformers
[list] deepchem.trans.transformers.Transformer instances applied to dataset.

Return type
tuple
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References

Examples

>>>
>> import deepchem as dc
>> tasks, datasets, transformers = dc.molnet.load_mp_formation_energy()
>> train_dataset, val_dataset, test_dataset = datasets
>> n_tasks = len(tasks)
>> n_features = train_dataset.get_data_shape()[0]
>> model = dc.models.MultitaskRegressor(n_tasks, n_features)

load_mp_metallicity(featurizer: ~deepchem.feat.base_classes.Featurizer | str =
SineCoulombMatrix[max_atoms=100, flatten=True], splitter:
~deepchem.splits.splitters.Splitter | str | None = 'random', transformers:
~typing.List[~deepchem.molnet.load_function.molnet_loader.TransformerGenerator | str]
= ['balancing'], reload: bool = True, data_dir: str | None = None, save_dir: str | None =
None, **kwargs)→ Tuple[List[str], Tuple[Dataset, ...], List[Transformer]]

Load mp formation energy dataset.

Contains 106113 inorganic crystal structures from the Materials Project database labeled as metals or nonmetals.
In benchmark studies, random forest models achieved a mean ROC-AUC of 0.9 during five-folded nested cross
validation on this dataset.

For more details on the dataset see [1]_. For more details on previous benchmarks for this dataset, see [2]_.

Parameters
• featurizer (Featurizer or str) – the featurizer to use for processing the data. Alter-

natively you can pass one of the names from dc.molnet.featurizers as a shortcut.

• splitter (Splitter or str) – the splitter to use for splitting the data into training, val-
idation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters
as a shortcut. If this is None, all the data will be included in a single dataset.

• transformers (list of TransformerGenerators or strings) – the Transformers
to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one
of the names from dc.molnet.transformers.

• reload (bool) – if True, the first call for a particular featurizer and splitter will cache the
datasets to disk, and subsequent calls will reload the cached datasets.

• data_dir (str) – a directory to save the raw data in

• save_dir (str) – a directory to save the dataset in

Returns
tasks, datasets, transformers –

tasks
[list] Column names corresponding to machine learning target variables.

datasets
[tuple] train, validation, test splits of data as deepchem.data.datasets.Dataset in-
stances.

transformers
[list] deepchem.trans.transformers.Transformer instances applied to dataset.
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Return type
tuple

References

Examples

>>>
>> import deepchem as dc
>> tasks, datasets, transformers = dc.molnet.load_mp_metallicity()
>> train_dataset, val_dataset, test_dataset = datasets
>> n_tasks = len(tasks)
>> n_features = train_dataset.get_data_shape()[0]
>> model = dc.models.MultitaskRegressor(n_tasks, n_features)

3.9.22 MUV Datasets

load_muv(featurizer: Featurizer | str = 'ECFP', splitter: Splitter | str | None = 'scaffold', transformers:
List[TransformerGenerator | str] = ['balancing'], reload: bool = True, data_dir: str | None = None,
save_dir: str | None = None, **kwargs)→ Tuple[List[str], Tuple[Dataset, ...], List[Transformer]]

Load MUV dataset

The Maximum Unbiased Validation (MUV) group is a benchmark dataset selected from PubChem BioAssay by
applying a refined nearest neighbor analysis.

The MUV dataset contains 17 challenging tasks for around 90 thousand compounds and is specifically designed
for validation of virtual screening techniques.

Scaffold splitting is recommended for this dataset.

The raw data csv file contains columns below:

• “mol_id” - PubChem CID of the compound

• “smiles” - SMILES representation of the molecular structure

• “MUV-XXX” - Measured results (Active/Inactive) for bioassays

Parameters
• featurizer (Featurizer or str) – the featurizer to use for processing the data. Alter-

natively you can pass one of the names from dc.molnet.featurizers as a shortcut.

• splitter (Splitter or str) – the splitter to use for splitting the data into training, val-
idation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters
as a shortcut. If this is None, all the data will be included in a single dataset.

• transformers (list of TransformerGenerators or strings) – the Transformers
to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one
of the names from dc.molnet.transformers.

• reload (bool) – if True, the first call for a particular featurizer and splitter will cache the
datasets to disk, and subsequent calls will reload the cached datasets.

• data_dir (str) – a directory to save the raw data in

• save_dir (str) – a directory to save the dataset in
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3.9.23 NCI Datasets

load_nci(featurizer: Featurizer | str = 'ECFP', splitter: Splitter | str | None = 'random', transformers:
List[TransformerGenerator | str] = ['normalization'], reload: bool = True, data_dir: str | None = None,
save_dir: str | None = None, **kwargs)→ Tuple[List[str], Tuple[Dataset, ...], List[Transformer]]

Load NCI dataset.

Parameters
• featurizer (Featurizer or str) – the featurizer to use for processing the data. Alter-

natively you can pass one of the names from dc.molnet.featurizers as a shortcut.

• splitter (Splitter or str) – the splitter to use for splitting the data into training, val-
idation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters
as a shortcut. If this is None, all the data will be included in a single dataset.

• transformers (list of TransformerGenerators or strings) – the Transformers
to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one
of the names from dc.molnet.transformers.

• reload (bool) – if True, the first call for a particular featurizer and splitter will cache the
datasets to disk, and subsequent calls will reload the cached datasets.

• data_dir (str) – a directory to save the raw data in

• save_dir (str) – a directory to save the dataset in

3.9.24 PCBA Datasets

load_pcba(featurizer: Featurizer | str = 'ECFP', splitter: Splitter | str | None = 'scaffold', transformers:
List[TransformerGenerator | str] = ['balancing'], reload: bool = True, data_dir: str | None = None,
save_dir: str | None = None, **kwargs)→ Tuple[List[str], Tuple[Dataset, ...], List[Transformer]]

Load PCBA dataset

PubChem BioAssay (PCBA) is a database consisting of biological activities of small molecules generated by
high-throughput screening. We use a subset of PCBA, containing 128 bioassays measured over 400 thousand
compounds, used by previous work to benchmark machine learning methods.

Random splitting is recommended for this dataset.

The raw data csv file contains columns below:

• “mol_id” - PubChem CID of the compound

• “smiles” - SMILES representation of the molecular structure

• “PCBA-XXX” - Measured results (Active/Inactive) for bioassays:
search for the assay ID at https://pubchem.ncbi.nlm.nih.gov/search/#collection=bioassays for details

Parameters
• featurizer (Featurizer or str) – the featurizer to use for processing the data. Alter-

natively you can pass one of the names from dc.molnet.featurizers as a shortcut.

• splitter (Splitter or str) – the splitter to use for splitting the data into training, val-
idation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters
as a shortcut. If this is None, all the data will be included in a single dataset.
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• transformers (list of TransformerGenerators or strings) – the Transformers
to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one
of the names from dc.molnet.transformers.

• reload (bool) – if True, the first call for a particular featurizer and splitter will cache the
datasets to disk, and subsequent calls will reload the cached datasets.

• data_dir (str) – a directory to save the raw data in

• save_dir (str) – a directory to save the dataset in

References

3.9.25 PDBBIND Datasets

load_pdbbind(featurizer: ComplexFeaturizer, splitter: Splitter | str | None = 'random', transformers:
List[TransformerGenerator | str] = ['normalization'], reload: bool = True, data_dir: str | None =
None, save_dir: str | None = None, pocket: bool = True, set_name: str = 'core', **kwargs)→
Tuple[List[str], Tuple[Dataset, ...], List[Transformer]]

Load PDBBind dataset.

The PDBBind dataset includes experimental binding affinity data and structures for 4852 protein-ligand com-
plexes from the “refined set” and 12800 complexes from the “general set” in PDBBind v2019 and 193 complexes
from the “core set” in PDBBind v2013. The refined set removes data with obvious problems in 3D structure,
binding data, or other aspects and should therefore be a better starting point for docking/scoring studies. Details
on the criteria used to construct the refined set can be found in [4]_. The general set does not include the refined
set. The core set is a subset of the refined set that is not updated annually.

Random splitting is recommended for this dataset.

The raw dataset contains the columns below:

• “ligand” - SDF of the molecular structure

• “protein” - PDB of the protein structure

• “CT_TOX” - Clinical trial results

Parameters
• featurizer (ComplexFeaturizer or str) – the complex featurizer to use for process-

ing the data. Alternatively you can pass one of the names from dc.molnet.featurizers as a
shortcut.

• splitter (Splitter or str) – the splitter to use for splitting the data into training, val-
idation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters
as a shortcut. If this is None, all the data will be included in a single dataset.

• transformers (list of TransformerGenerators or strings) – the Transformers
to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one
of the names from dc.molnet.transformers.

• reload (bool) – if True, the first call for a particular featurizer and splitter will cache the
datasets to disk, and subsequent calls will reload the cached datasets.

• data_dir (str) – a directory to save the raw data in

• save_dir (str) – a directory to save the dataset in

• pocket (bool (default True)) – If true, use only the binding pocket for featurization.
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• set_name (str (default 'core')) – Name of dataset to download. ‘refined’, ‘general’,
and ‘core’ are supported.

Returns
tasks, datasets, transformers –

tasks: list
Column names corresponding to machine learning target variables.

datasets: tuple
train, validation, test splits of data as deepchem.data.datasets.Dataset instances.

transformers: list
deepchem.trans.transformers.Transformer instances applied to dataset.

Return type
tuple

References

3.9.26 PPB Datasets

load_ppb(featurizer: Featurizer | str = 'ECFP', splitter: Splitter | str | None = 'scaffold', transformers:
List[TransformerGenerator | str] = ['normalization'], reload: bool = True, data_dir: str | None = None,
save_dir: str | None = None, **kwargs)→ Tuple[List[str], Tuple[Dataset, ...], List[Transformer]]

Load PPB datasets.

Parameters
• featurizer (Featurizer or str) – the featurizer to use for processing the data. Alter-

natively you can pass one of the names from dc.molnet.featurizers as a shortcut.

• splitter (Splitter or str) – the splitter to use for splitting the data into training, val-
idation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters
as a shortcut. If this is None, all the data will be included in a single dataset.

• transformers (list of TransformerGenerators or strings) – the Transformers
to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one
of the names from dc.molnet.transformers.

• reload (bool) – if True, the first call for a particular featurizer and splitter will cache the
datasets to disk, and subsequent calls will reload the cached datasets.

• data_dir (str) – a directory to save the raw data in

• save_dir (str) – a directory to save the dataset in

3.9.27 QM7 Datasets

load_qm7(featurizer: ~deepchem.feat.base_classes.Featurizer | str = CoulombMatrix[max_atoms=23,
remove_hydrogens=False, randomize=False, upper_tri=False, n_samples=1, seed=None], splitter:
~deepchem.splits.splitters.Splitter | str | None = 'random', transformers:
~typing.List[~deepchem.molnet.load_function.molnet_loader.TransformerGenerator | str] =
['normalization'], reload: bool = True, data_dir: str | None = None, save_dir: str | None = None,
**kwargs)→ Tuple[List[str], Tuple[Dataset, ...], List[Transformer]]
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Load QM7 dataset

QM7 is a subset of GDB-13 (a database of nearly 1 billion stable and synthetically accessible organic molecules)
containing up to 7 heavy atoms C, N, O, and S. The 3D Cartesian coordinates of the most stable conformations
and their atomization energies were determined using ab-initio density functional theory (PBE0/tier2 basis set).
This dataset also provided Coulomb matrices as calculated in [Rupp et al. PRL, 2012]:

Stratified splitting is recommended for this dataset.

The data file (.mat format, we recommend using scipy.io.loadmat for python users to load this original data)
contains five arrays:

• “X” - (7165 x 23 x 23), Coulomb matrices

• “T” - (7165), atomization energies (unit: kcal/mol)

• “P” - (5 x 1433), cross-validation splits as used in [Montavon et al.
NIPS, 2012]

• “Z” - (7165 x 23), atomic charges

• “R” - (7165 x 23 x 3), cartesian coordinate (unit: Bohr) of each atom in
the molecules

Parameters
• featurizer (Featurizer or str) – the featurizer to use for processing the data. Alter-

natively you can pass one of the names from dc.molnet.featurizers as a shortcut.

• splitter (Splitter or str) – the splitter to use for splitting the data into training, val-
idation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters
as a shortcut. If this is None, all the data will be included in a single dataset.

• transformers (list of TransformerGenerators or strings) – the Transformers
to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one
of the names from dc.molnet.transformers.

• reload (bool) – if True, the first call for a particular featurizer and splitter will cache the
datasets to disk, and subsequent calls will reload the cached datasets.

• data_dir (str) – a directory to save the raw data in

• save_dir (str) – a directory to save the dataset in

Note: DeepChem 2.4.0 has turned on sanitization for this dataset by default. For the QM7 dataset, this means
that calling this function will return 6838 compounds instead of 7160 in the source dataset file. This appears
to be due to valence specification mismatches in the dataset that weren’t caught in earlier more lax versions of
RDKit. Note that this may subtly affect benchmarking results on this dataset.
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3.9.28 QM8 Datasets

load_qm8(featurizer: ~deepchem.feat.base_classes.Featurizer | str = CoulombMatrix[max_atoms=26,
remove_hydrogens=False, randomize=False, upper_tri=False, n_samples=1, seed=None], splitter:
~deepchem.splits.splitters.Splitter | str | None = 'random', transformers:
~typing.List[~deepchem.molnet.load_function.molnet_loader.TransformerGenerator | str] =
['normalization'], reload: bool = True, data_dir: str | None = None, save_dir: str | None = None,
**kwargs)→ Tuple[List[str], Tuple[Dataset, ...], List[Transformer]]

Load QM8 dataset

QM8 is the dataset used in a study on modeling quantum mechanical calculations of electronic spectra and
excited state energy of small molecules. Multiple methods, including time-dependent density functional theories
(TDDFT) and second-order approximate coupled-cluster (CC2), are applied to a collection of molecules that
include up to eight heavy atoms (also a subset of the GDB-17 database). In our collection, there are four excited
state properties calculated by four different methods on 22 thousand samples:

S0 -> S1 transition energy E1 and the corresponding oscillator strength f1

S0 -> S2 transition energy E2 and the corresponding oscillator strength f2

E1, E2, f1, f2 are in atomic units. f1, f2 are in length representation

Random splitting is recommended for this dataset.

The source data contain:

• qm8.sdf: molecular structures

• qm8.sdf.csv: tables for molecular properties

• Column 1: Molecule ID (gdb9 index) mapping to the .sdf file

• Columns 2-5: RI-CC2/def2TZVP

• Columns 6-9: LR-TDPBE0/def2SVP

• Columns 10-13: LR-TDPBE0/def2TZVP

• Columns 14-17: LR-TDCAM-B3LYP/def2TZVP

Parameters
• featurizer (Featurizer or str) – the featurizer to use for processing the data. Alter-

natively you can pass one of the names from dc.molnet.featurizers as a shortcut.

• splitter (Splitter or str) – the splitter to use for splitting the data into training, val-
idation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters
as a shortcut. If this is None, all the data will be included in a single dataset.

• transformers (list of TransformerGenerators or strings) – the Transformers
to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one
of the names from dc.molnet.transformers.

• reload (bool) – if True, the first call for a particular featurizer and splitter will cache the
datasets to disk, and subsequent calls will reload the cached datasets.

• data_dir (str) – a directory to save the raw data in

• save_dir (str) – a directory to save the dataset in
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Note: DeepChem 2.4.0 has turned on sanitization for this dataset by default. For the QM8 dataset, this means
that calling this function will return 21747 compounds instead of 21786 in the source dataset file. This appears
to be due to valence specification mismatches in the dataset that weren’t caught in earlier more lax versions of
RDKit. Note that this may subtly affect benchmarking results on this dataset.

References

3.9.29 QM9 Datasets

load_qm9(featurizer: ~deepchem.feat.base_classes.Featurizer | str = CoulombMatrix[max_atoms=29,
remove_hydrogens=False, randomize=False, upper_tri=False, n_samples=1, seed=None], splitter:
~deepchem.splits.splitters.Splitter | str | None = 'random', transformers:
~typing.List[~deepchem.molnet.load_function.molnet_loader.TransformerGenerator | str] =
['normalization'], reload: bool = True, data_dir: str | None = None, save_dir: str | None = None,
**kwargs)→ Tuple[List[str], Tuple[Dataset, ...], List[Transformer]]

Load QM9 dataset

QM9 is a comprehensive dataset that provides geometric, energetic, electronic and thermodynamic properties
for a subset of GDB-17 database, comprising 134 thousand stable organic molecules with up to 9 heavy atoms.
All molecules are modeled using density functional theory (B3LYP/6-31G(2df,p) based DFT).

Random splitting is recommended for this dataset.

The source data contain:

• qm9.sdf: molecular structures

• qm9.sdf.csv: tables for molecular properties

• “mol_id” - Molecule ID (gdb9 index) mapping to the .sdf file

• “A” - Rotational constant (unit: GHz)

• “B” - Rotational constant (unit: GHz)

• “C” - Rotational constant (unit: GHz)

• “mu” - Dipole moment (unit: D)

• “alpha” - Isotropic polarizability (unit: Bohr^3)

• “homo” - Highest occupied molecular orbital energy (unit: Hartree)

• “lumo” - Lowest unoccupied molecular orbital energy (unit: Hartree)

• “gap” - Gap between HOMO and LUMO (unit: Hartree)

• “r2” - Electronic spatial extent (unit: Bohr^2)

• “zpve” - Zero point vibrational energy (unit: Hartree)

• “u0” - Internal energy at 0K (unit: Hartree)

• “u298” - Internal energy at 298.15K (unit: Hartree)

• “h298” - Enthalpy at 298.15K (unit: Hartree)

• “g298” - Free energy at 298.15K (unit: Hartree)

• “cv” - Heat capavity at 298.15K (unit: cal/(mol*K))

• “u0_atom” - Atomization energy at 0K (unit: kcal/mol)
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• “u298_atom” - Atomization energy at 298.15K (unit: kcal/mol)

• “h298_atom” - Atomization enthalpy at 298.15K (unit: kcal/mol)

• “g298_atom” - Atomization free energy at 298.15K (unit: kcal/mol)

“u0_atom” ~ “g298_atom” (used in MoleculeNet) are calculated from the differences between “u0” ~ “g298”
and sum of reference energies of all atoms in the molecules, as given in https://figshare.com/articles/Atomref%
3A_Reference_thermochemical_energies_of_H%2C_C%2C_N%2C_O%2C_F_atoms./1057643

Parameters
• featurizer (Featurizer or str) – the featurizer to use for processing the data. Alter-

natively you can pass one of the names from dc.molnet.featurizers as a shortcut.

• splitter (Splitter or str) – the splitter to use for splitting the data into training, val-
idation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters
as a shortcut. If this is None, all the data will be included in a single dataset.

• transformers (list of TransformerGenerators or strings) – the Transformers
to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one
of the names from dc.molnet.transformers.

• reload (bool) – if True, the first call for a particular featurizer and splitter will cache the
datasets to disk, and subsequent calls will reload the cached datasets.

• data_dir (str) – a directory to save the raw data in

• save_dir (str) – a directory to save the dataset in

Note: DeepChem 2.4.0 has turned on sanitization for this dataset by default. For the QM9 dataset, this means
that calling this function will return 132480 compounds instead of 133885 in the source dataset file. This appears
to be due to valence specification mismatches in the dataset that weren’t caught in earlier more lax versions of
RDKit. Note that this may subtly affect benchmarking results on this dataset.

References

3.9.30 SAMPL Datasets

load_sampl(featurizer: Featurizer | str = 'ECFP', splitter: Splitter | str | None = 'scaffold', transformers:
List[TransformerGenerator | str] = ['normalization'], reload: bool = True, data_dir: str | None =
None, save_dir: str | None = None, **kwargs)→ Tuple[List[str], Tuple[Dataset, ...],
List[Transformer]]

Load SAMPL(FreeSolv) dataset

The Free Solvation Database, FreeSolv(SAMPL), provides experimental and calculated hydration free energy
of small molecules in water. The calculated values are derived from alchemical free energy calculations using
molecular dynamics simulations. The experimental values are included in the benchmark collection.

Random splitting is recommended for this dataset.

The raw data csv file contains columns below:

• “iupac” - IUPAC name of the compound

• “smiles” - SMILES representation of the molecular structure

• “expt” - Measured solvation energy (unit: kcal/mol) of the compound,
used as label
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• “calc” - Calculated solvation energy (unit: kcal/mol) of the compound

Parameters
• featurizer (Featurizer or str) – the featurizer to use for processing the data. Alter-

natively you can pass one of the names from dc.molnet.featurizers as a shortcut.

• splitter (Splitter or str) – the splitter to use for splitting the data into training, val-
idation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters
as a shortcut. If this is None, all the data will be included in a single dataset.

• transformers (list of TransformerGenerators or strings) – the Transformers
to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one
of the names from dc.molnet.transformers.

• reload (bool) – if True, the first call for a particular featurizer and splitter will cache the
datasets to disk, and subsequent calls will reload the cached datasets.

• data_dir (str) – a directory to save the raw data in

• save_dir (str) – a directory to save the dataset in

References

3.9.31 SIDER Datasets

load_sider(featurizer: Featurizer | str = 'ECFP', splitter: Splitter | str | None = 'scaffold', transformers:
List[TransformerGenerator | str] = ['balancing'], reload: bool = True, data_dir: str | None = None,
save_dir: str | None = None, **kwargs)→ Tuple[List[str], Tuple[Dataset, ...], List[Transformer]]

Load SIDER dataset

The Side Effect Resource (SIDER) is a database of marketed drugs and adverse drug reactions (ADR). The
version of the SIDER dataset in DeepChem has grouped drug side effects into 27 system organ classes following
MedDRA classifications measured for 1427 approved drugs.

Random splitting is recommended for this dataset.

The raw data csv file contains columns below:

• “smiles”: SMILES representation of the molecular structure

• “Hepatobiliary disorders” ~ “Injury, poisoning and procedural
complications”: Recorded side effects for the drug. Please refer to http://sideeffects.embl.de/se/?page=
98 for details on ADRs.

Parameters
• featurizer (Featurizer or str) – the featurizer to use for processing the data. Alter-

natively you can pass one of the names from dc.molnet.featurizers as a shortcut.

• splitter (Splitter or str) – the splitter to use for splitting the data into training, val-
idation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters
as a shortcut. If this is None, all the data will be included in a single dataset.

• transformers (list of TransformerGenerators or strings) – the Transformers
to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one
of the names from dc.molnet.transformers.

• reload (bool) – if True, the first call for a particular featurizer and splitter will cache the
datasets to disk, and subsequent calls will reload the cached datasets.
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• data_dir (str) – a directory to save the raw data in

• save_dir (str) – a directory to save the dataset in

References

3.9.32 Thermosol Datasets

load_thermosol(featurizer: Featurizer | str = 'ECFP', splitter: Splitter | str | None = 'scaffold', transformers:
List[TransformerGenerator | str] = [], reload: bool = True, data_dir: str | None = None,
save_dir: str | None = None, **kwargs)→ Tuple[List[str], Tuple[Dataset, ...], List[Transformer]]

Loads the thermodynamic solubility datasets.

Parameters
• featurizer (Featurizer or str) – the featurizer to use for processing the data. Alter-

natively you can pass one of the names from dc.molnet.featurizers as a shortcut.

• splitter (Splitter or str) – the splitter to use for splitting the data into training, val-
idation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters
as a shortcut. If this is None, all the data will be included in a single dataset.

• transformers (list of TransformerGenerators or strings) – the Transformers
to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one
of the names from dc.molnet.transformers.

• reload (bool) – if True, the first call for a particular featurizer and splitter will cache the
datasets to disk, and subsequent calls will reload the cached datasets.

• data_dir (str) – a directory to save the raw data in

• save_dir (str) – a directory to save the dataset in

3.9.33 Tox21 Datasets

load_tox21(featurizer: Featurizer | str = 'ECFP', splitter: Splitter | str | None = 'scaffold', transformers:
List[TransformerGenerator | str] = ['balancing'], reload: bool = True, data_dir: str | None = None,
save_dir: str | None = None, tasks: List[str] = ['NR-AR', 'NR-AR-LBD', 'NR-AhR', 'NR-Aromatase',
'NR-ER', 'NR-ER-LBD', 'NR-PPAR-gamma', 'SR-ARE', 'SR-ATAD5', 'SR-HSE', 'SR-MMP', 'SR-p53'],
**kwargs)→ Tuple[List[str], Tuple[Dataset, ...], List[Transformer]]

Load Tox21 dataset

The “Toxicology in the 21st Century” (Tox21) initiative created a public database measuring toxicity of com-
pounds, which has been used in the 2014 Tox21 Data Challenge. This dataset contains qualitative toxicity mea-
surements for 8k compounds on 12 different targets, including nuclear receptors and stress response pathways.

Random splitting is recommended for this dataset.

The raw data csv file contains columns below:

• “smiles” - SMILES representation of the molecular structure

• “NR-XXX” - Nuclear receptor signaling bioassays results

• “SR-XXX” - Stress response bioassays results

please refer to https://tripod.nih.gov/tox21/challenge/data.jsp for details.

Parameters
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• featurizer (Featurizer or str) – the featurizer to use for processing the data. Alter-
natively you can pass one of the names from dc.molnet.featurizers as a shortcut.

• splitter (Splitter or str) – the splitter to use for splitting the data into training, val-
idation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters
as a shortcut. If this is None, all the data will be included in a single dataset.

• transformers (list of TransformerGenerators or strings) – the Transformers
to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one
of the names from dc.molnet.transformers.

• reload (bool) – if True, the first call for a particular featurizer and splitter will cache the
datasets to disk, and subsequent calls will reload the cached datasets.

• data_dir (str) – a directory to save the raw data in

• save_dir (str) – a directory to save the dataset in

• tasks (List[str], (optional)) – Specify the set of tasks to load. If no task is specified,
then it loads

• NR-AR (the default set of tasks which are) –

• NR-AR-LBD –

• NR-AhR –

• NR-Aromatase –

• NR-ER –

:param : :param NR-ER-LBD: :param NR-PPAR-gamma: :param SR-ARE: :param SR-ATAD5: :param SR-
HSE: :param SR-MMP: :param SR-p53.:

References

3.9.34 Toxcast Datasets

load_toxcast(featurizer: Featurizer | str = 'ECFP', splitter: Splitter | str | None = 'scaffold', transformers:
List[TransformerGenerator | str] = ['balancing'], reload: bool = True, data_dir: str | None = None,
save_dir: str | None = None, **kwargs)→ Tuple[List[str], Tuple[Dataset, ...], List[Transformer]]

Load Toxcast dataset

ToxCast is an extended data collection from the same initiative as Tox21, providing toxicology data for a large
library of compounds based on in vitro high-throughput screening. The processed collection includes qualitative
results of over 600 experiments on 8k compounds.

Random splitting is recommended for this dataset.

The raw data csv file contains columns below:

• “smiles”: SMILES representation of the molecular structure

• “ACEA_T47D_80hr_Negative” ~ “Tanguay_ZF_120hpf_YSE_up”: Bioassays results.
Please refer to the section “high-throughput assay information” at https://www.epa.gov/
chemical-research/toxicity-forecaster-toxcasttm-data for details.

Parameters
• featurizer (Featurizer or str) – the featurizer to use for processing the data. Alter-

natively you can pass one of the names from dc.molnet.featurizers as a shortcut.
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• splitter (Splitter or str) – the splitter to use for splitting the data into training, val-
idation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters
as a shortcut. If this is None, all the data will be included in a single dataset.

• transformers (list of TransformerGenerators or strings) – the Transformers
to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one
of the names from dc.molnet.transformers.

• reload (bool) – if True, the first call for a particular featurizer and splitter will cache the
datasets to disk, and subsequent calls will reload the cached datasets.

• data_dir (str) – a directory to save the raw data in

• save_dir (str) – a directory to save the dataset in

References

3.9.35 USPTO Datasets

load_uspto(featurizer: Featurizer | str = 'RxnFeaturizer', splitter: Splitter | str | None = None, transformers:
List[TransformerGenerator | str] = [], reload: bool = True, data_dir: str | None = None, save_dir: str
| None = None, subset: str = 'MIT', sep_reagent: bool = True, **kwargs)→ Tuple[List[str],
Tuple[Dataset, ...], List[Transformer]]

Load USPTO Datasets.

The USPTO dataset consists of over 1.8 Million organic chemical reactions extracted from US patents and patent
applications. The dataset contains the reactions in the form of reaction SMILES, which have the general format:
reactant>reagent>product.

Molnet provides ability to load subsets of the USPTO dataset namely MIT, STEREO and 50K. The MIT dataset
contains around 479K reactions, curated by jin et al. The STEREO dataset contains around 1 Million Reactions,
it does not have duplicates and the reactions include stereochemical information. The 50K dataset contatins
50,000 reactions and is the benchmark for retrosynthesis predictions. The reactions are additionally classified
into 10 reaction classes. The canonicalized version of the dataset used by the loader is the same as that used by
Somnath et. al.

The loader uses the SpecifiedSplitter to use the same splits as specified by Schwaller et. al and Dai et. al. Custom
splitters could also be used. There is a toggle in the loader to skip the source/target transformation needed for
seq2seq tasks. There is an additional toggle to load the dataset with the reagents and reactants separated or mixed.
This alters the entries in source by replacing the ‘>’ with ‘.’ , effectively loading them as an unified SMILES
string.

Parameters
• featurizer (Featurizer or str) – the featurizer to use for processing the data. Alter-

natively you can pass one of the names from dc.molnet.featurizers as a shortcut.

• splitter (Splitter or str) – the splitter to use for splitting the data into training, val-
idation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters
as a shortcut. If this is None, all the data will be included in a single dataset.

• transformers (list of TransformerGenerators or strings) – the Transformers
to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one
of the names from dc.molnet.transformers.

• reload (bool) – if True, the first call for a particular featurizer and splitter will cache the
datasets to disk, and subsequent calls will reload the cached datasets.

• data_dir (str) – a directory to save the raw data in
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• save_dir (str) – a directory to save the dataset in

• subset (str (default 'MIT')) – Subset of dataset to download. ‘FULL’, ‘MIT’,
‘STEREO’, and ‘50K’ are supported.

• sep_reagent (bool (default True)) – Toggle to load dataset with reactants and
reagents either separated or mixed.

• skip_transform (bool (default True)) – Toggle to skip the source/target transforma-
tion.

Returns
tasks, datasets, transformers –

tasks
[list] Column names corresponding to machine learning target variables.

datasets
[tuple] train, validation, test splits of data as deepchem.data.datasets.Dataset in-
stances.

transformers
[list] deepchem.trans.transformers.Transformer instances applied to dataset.

Return type
tuple

References

3.9.36 UV Datasets

load_uv(shard_size=2000, featurizer=None, split=None, reload=True)
Load UV dataset; does not do train/test split

The UV dataset is an in-house dataset from Merck that was first introduced in the following paper: Ramsundar,
Bharath, et al. “Is multitask deep learning practical for pharma?.” Journal of chemical information and modeling
57.8 (2017): 2068-2076.

The UV dataset tests 10,000 of Merck’s internal compounds on 190 absorption wavelengths between 210 and
400 nm. Unlike most of the other datasets featured in MoleculeNet, the UV collection does not have structures
for the compounds tested since they were proprietary Merck compounds. However, the collection does feature
pre-computed descriptors for these compounds.

Note that the original train/valid/test split from the source data was preserved here, so this function doesn’t allow
for alternate modes of splitting. Similarly, since the source data came pre-featurized, it is not possible to apply
alternative featurizations.

Parameters
• shard_size (int, optional) – Size of the DiskDataset shards to write on disk

• featurizer (optional) – Ignored since featurization pre-computed

• split (optional) – Ignored since split pre-computed

• reload (bool, optional) – Whether to automatically re-load from disk
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3.9.37 ZINC15 Datasets

load_zinc15(featurizer: Featurizer | str = 'OneHot', splitter: Splitter | str | None = 'random', transformers:
List[TransformerGenerator | str] = ['normalization'], reload: bool = True, data_dir: str | None =
None, save_dir: str | None = None, dataset_size: str = '250K', dataset_dimension: str = '2D', tasks:
List[str] = ['mwt', 'logp', 'reactive'], **kwargs)→ Tuple[List[str], Tuple[Dataset, ...],
List[Transformer]]

Load zinc15.

ZINC15 is a dataset of over 230 million purchasable compounds for virtual screening of small molecules to
identify structures that are likely to bind to drug targets. ZINC15 data is currently available in 2D (SMILES
string) format.

MolNet provides subsets of 250K, 1M, and 10M “lead-like” compounds from ZINC15. The full dataset of
270M “goldilocks” compounds is also available. Compounds in ZINC15 are labeled by their molecular weight
and LogP (solubility) values. Each compound also has information about how readily available (purchasable) it is
and its reactivity. Lead-like compounds have molecular weight between 300 and 350 Daltons and LogP between
-1 and 3.5. Goldilocks compounds are lead-like compounds with LogP values further restricted to between 2
and 3.

If reload = True and data_dir (save_dir) is specified, the loader will attempt to load the raw dataset (featurized
dataset) from disk. Otherwise, the dataset will be downloaded from the DeepChem AWS bucket.

For more information on ZINC15, please see [1]_ and https://zinc15.docking.org/.

Parameters
• featurizer (Featurizer or str) – the featurizer to use for processing the data. Alter-

natively you can pass one of the names from dc.molnet.featurizers as a shortcut.

• splitter (Splitter or str) – the splitter to use for splitting the data into training, val-
idation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters
as a shortcut. If this is None, all the data will be included in a single dataset.

• transformers (list of TransformerGenerators or strings) – the Transformers
to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one
of the names from dc.molnet.transformers.

• reload (bool) – if True, the first call for a particular featurizer and splitter will cache the
datasets to disk, and subsequent calls will reload the cached datasets.

• data_dir (str) – a directory to save the raw data in

• save_dir (str) – a directory to save the dataset in

• size (str (default '250K')) – Size of dataset to download. ‘250K’, ‘1M’, ‘10M’, and
‘270M’ are supported.

• format (str (default '2D')) – Format of data to download. 2D SMILES strings or 3D
SDF files.

• tasks (List[str], (optional) default: [‘molwt’, ‘logp’, ‘reactive’]) – Specify the set of tasks
to load. If no task is specified, then it loads

• molwt (the default set of tasks which are) –

• logp –

• reactive. –

Returns
tasks, datasets, transformers –
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tasks
[list] Column names corresponding to machine learning target variables.

datasets
[tuple] train, validation, test splits of data as deepchem.data.datasets.Dataset in-
stances.

transformers
[list] deepchem.trans.transformers.Transformer instances applied to dataset.

Return type
tuple

Notes

The total ZINC dataset with SMILES strings contains hundreds of millions of compounds and is over 100GB!
ZINC250K is recommended for experimentation. The full set of 270M goldilocks compounds is 23GB.

References

3.9.38 Platinum Adsorption Dataset

load_Platinum_Adsorption(featurizer: ~deepchem.feat.base_classes.Featurizer | str =
SineCoulombMatrix[max_atoms=100, flatten=True], splitter:
~deepchem.splits.splitters.Splitter | str | None = 'random', transformers:
~typing.List[~deepchem.molnet.load_function.molnet_loader.TransformerGenerator
| str] = [], reload: bool = True, data_dir: str | None = None, save_dir: str | None =
None, **kwargs)→ Tuple[List[str], Tuple[Dataset, ...], List[Transformer]]

Load Platinum Adsorption Dataset

The dataset consist of diffrent configurations of Adsorbates (i.e N and NO) on Platinum surface represented as
Lattice and their formation energy. There are 648 diffrent adsorbate configuration in this datasets represented as
Pymatgen Structure objects.

1. Pymatgen structure object with site_properties with following key value.
• “SiteTypes”, mentioning if it is a active site “A1” or spectator

site “S1”.

• “oss”, diffrent occupational sites. For spectator sites make it -1.

Parameters
• featurizer (Featurizer (default LCNNFeaturizer)) – the featurizer to use for pro-

cessing the data. Reccomended to use the LCNNFeaturiser.

• splitter (Splitter (default RandomSplitter)) – the splitter to use for splitting the
data into training, validation, and test sets. Alternatively you can pass one of the names from
dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single
dataset.

• transformers (list of TransformerGenerators or strings. the
Transformers to) – apply to the data and appropritate featuriser. Does’nt require
any transformation for LCNN_featuriser

• reload (bool) – if True, the first call for a particular featurizer and splitter will cache the
datasets to disk, and subsequent calls will reload the cached datasets.
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• data_dir (str) – a directory to save the raw data in

• save_dir (str, optional (default None)) – a directory to save the dataset in

References

Examples

>>>
>> import deepchem as dc
>> tasks, datasets, transformers = load_Platinum_Adsorption(
>> reload=True,
>> data_dir=data_path,
>> save_dir=data_path,
>> featurizer_kwargs=feat_args)
>> train_dataset, val_dataset, test_dataset = datasets

3.10 Featurizers

DeepChem contains an extensive collection of featurizers. If you haven’t run into this terminology before, a “featurizer”
is chunk of code which transforms raw input data into a processed form suitable for machine learning. Machine learning
methods often need data to be pre-chewed for them to process. Think of this like a mama penguin chewing up food so
the baby penguin can digest it easily.

Now if you’ve watched a few introductory deep learning lectures, you might ask, why do we need something like a
featurizer? Isn’t part of the promise of deep learning that we can learn patterns directly from raw data?

Unfortunately it turns out that deep learning techniques need featurizers just like normal machine learning methods
do. Arguably, they are less dependent on sophisticated featurizers and more capable of learning sophisticated patterns
from simpler data. But nevertheless, deep learning systems can’t simply chew up raw files. For this reason, deepchem
provides an extensive collection of featurization methods which we will review on this page.

Contents

• Molecule Featurizers

– Graph Convolution Featurizers

∗ ConvMolFeaturizer

∗ WeaveFeaturizer

∗ MolGanFeaturizer

∗ MolGraphConvFeaturizer

∗ PagtnMolGraphFeaturizer

∗ DMPNNFeaturizer

∗ GroverFeaturizer

∗ RDKitConformerFeaturizer

∗ MXMNetFeaturizer
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∗ Utilities

– MACCSKeysFingerprint

– MATFeaturizer

– CircularFingerprint

– PubChemFingerprint

– Mol2VecFingerprint

– RDKitDescriptors

– MordredDescriptors

– CoulombMatrix

– CoulombMatrixEig

– AtomCoordinates

– BPSymmetryFunctionInput

– SmilesToSeq

– SmilesToImage

– OneHotFeaturizer

– SparseMatrixOneHotFeaturizer

– RawFeaturizer

– SNAPFeaturizer

• Molecular Complex Featurizers

– RdkitGridFeaturizer

– AtomicConvFeaturizer

• Inorganic Crystal Featurizers

– MaterialCompositionFeaturizer

∗ ElementPropertyFingerprint

∗ ElemNetFeaturizer

– MaterialStructureFeaturizer

∗ SineCoulombMatrix

∗ CGCNNFeaturizer

– LCNNFeaturizer

• Biological Sequence Featurizers

– SAMFeaturizer

– BAMFeaturizer

– CRAMFeaturizer

• Molecule Tokenizers

– SmilesTokenizer
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– BasicSmilesTokenizer

– HuggingFaceFeaturizer

– GroverAtomVocabTokenizer

– GroverBondVocabTokenizer

• Vocabulary Builders

• Sequence Featurizers

– PFMFeaturizer

• Other Featurizers

– BertFeaturizer

– RobertaFeaturizer

– RxnFeaturizer

– BindingPocketFeaturizer

– UserDefinedFeaturizer

– DummyFeaturizer

• Base Featurizers (for develop)

– Featurizer

– MolecularFeaturizer

– MaterialCompositionFeaturizer

– MaterialStructureFeaturizer

– ComplexFeaturizer

– VocabularyBuilder

– HuggingFaceVocabularyBuilder

3.10.1 Molecule Featurizers

These featurizers work with datasets of molecules.

Graph Convolution Featurizers

We are simplifying our graph convolution models by a joint data representation (GraphData) in a future version of
DeepChem, so we provide several featurizers.

ConvMolFeaturizer and WeaveFeaturizer are used with graph convolution models which inherited KerasModel.
ConvMolFeaturizer is used with graph convolution models except WeaveModel. WeaveFeaturizer are only used
with WeaveModel. On the other hand, MolGraphConvFeaturizer is used with graph convolution models which
inherited TorchModel. MolGanFeaturizer will be used with MolGAN model, a GAN model for generation of small
molecules.
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ConvMolFeaturizer

class ConvMolFeaturizer(master_atom: bool = False, use_chirality: bool = False, atom_properties:
Iterable[str] = [], per_atom_fragmentation: bool = False)

This class implements the featurization to implement Duvenaud graph convolutions.

Duvenaud graph convolutions [1]_ construct a vector of descriptors for each atom in a molecule. The featurizer
computes that vector of local descriptors.

Examples

>>> import deepchem as dc
>>> smiles = ["C", "CCC"]
>>> featurizer=dc.feat.ConvMolFeaturizer(per_atom_fragmentation=False)
>>> f = featurizer.featurize(smiles)
>>> # Using ConvMolFeaturizer to create featurized fragments derived from molecules␣
→˓of interest.
... # This is used only in the context of performing interpretation of models using␣
→˓atomic
... # contributions (atom-based model interpretation)
... smiles = ["C", "CCC"]
>>> featurizer=dc.feat.ConvMolFeaturizer(per_atom_fragmentation=True)
>>> f = featurizer.featurize(smiles)
>>> len(f) # contains 2 lists with featurized fragments from 2 mols
2

See also:
Detailed

References

Note: This class requires RDKit to be installed.

__init__(master_atom: bool = False, use_chirality: bool = False, atom_properties: Iterable[str] = [],
per_atom_fragmentation: bool = False)

Parameters
• master_atom (Boolean) – if true create a fake atom with bonds to every other atom. the

initialization is the mean of the other atom features in the molecule. This technique is
briefly discussed in Neural Message Passing for Quantum Chemistry https://arxiv.org/pdf/
1704.01212.pdf

• use_chirality (Boolean) – if true then make the resulting atom features aware of the
chirality of the molecules in question

• atom_properties (list of string or None) – properties in the RDKit Mol object
to use as additional atom-level features in the larger molecular feature. If None, then no
atom-level properties are used. Properties should be in the RDKit mol object should be in
the form atom XXXXXXXX NAME where XXXXXXXX is a zero-padded 8 digit number
coresponding to the zero-indexed atom index of each atom and NAME is the name of the
property provided in atom_properties. So “atom 00000000 sasa” would be the name of the
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molecule level property in mol where the solvent accessible surface area of atom 0 would
be stored.

• per_atom_fragmentation (Boolean) – If True, then multiple “atom-depleted” versions
of each molecule will be created (using featurize() method). For each molecule, atoms
are removed one at a time and the resulting molecule is featurized. The result is a list of
ConvMol objects, one with each heavy atom removed. This is useful for subsequent model
interpretation: finding atoms favorable/unfavorable for (modelled) activity. This option is
typically used in combination with a FlatteningTransformer to split the lists into separate
samples.

Since ConvMol is an object and not a numpy array, need to set dtype to object.

featurize(datapoints: Any | str | Iterable[Any] | Iterable[str], log_every_n: int = 1000, **kwargs)→
ndarray

Override parent: aim is to add handling atom-depleted molecules featurization

Parameters
• datapoints (rdkit.Chem.rdchem.Mol / SMILES string / iterable) – RDKit

Mol, or SMILES string or iterable sequence of RDKit mols/SMILES strings.

• log_every_n (int, default 1000) – Logging messages reported every log_every_n
samples.

Returns
features – A numpy array containing a featurized representation of datapoints.

Return type
np.ndarray

WeaveFeaturizer

class WeaveFeaturizer(graph_distance: bool = True, explicit_H: bool = False, use_chirality: bool = False,
max_pair_distance: int | None = None)

This class implements the featurization to implement Weave convolutions.

Weave convolutions were introduced in [1]_. Unlike Duvenaud graph convolutions, weave convolutions require
a quadratic matrix of interaction descriptors for each pair of atoms. These extra descriptors may provide for
additional descriptive power but at the cost of a larger featurized dataset.

Examples

>>> import deepchem as dc
>>> mols = ["CCC"]
>>> featurizer = dc.feat.WeaveFeaturizer()
>>> features = featurizer.featurize(mols)
>>> type(features[0])
<class 'deepchem.feat.mol_graphs.WeaveMol'>
>>> features[0].get_num_atoms() # 3 atoms in compound
3
>>> features[0].get_num_features() # feature size
75
>>> type(features[0].get_atom_features())
<class 'numpy.ndarray'>

(continues on next page)
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(continued from previous page)

>>> features[0].get_atom_features().shape
(3, 75)
>>> type(features[0].get_pair_features())
<class 'numpy.ndarray'>
>>> features[0].get_pair_features().shape
(9, 14)

References

Note: This class requires RDKit to be installed.

featurize(datapoints, log_every_n=1000, **kwargs)→ ndarray
Calculate features for molecules.

Parameters
• datapoints (rdkit.Chem.rdchem.Mol / SMILES string / iterable) – RDKit

Mol, or SMILES string or iterable sequence of RDKit mols/SMILES strings.

• log_every_n (int, default 1000) – Logging messages reported every log_every_n
samples.

Returns
features – A numpy array containing a featurized representation of datapoints.

Return type
np.ndarray

__init__(graph_distance: bool = True, explicit_H: bool = False, use_chirality: bool = False,
max_pair_distance: int | None = None)

Initialize this featurizer with set parameters.

Parameters
• graph_distance (bool, (default True)) – If True, use graph distance for distance

features. Otherwise, use Euclidean distance. Note that this means that molecules that this
featurizer is invoked on must have valid conformer information if this option is set.

• explicit_H (bool, (default False)) – If true, model hydrogens in the molecule.

• use_chirality (bool, (default False)) – If true, use chiral information in the fea-
turization

• max_pair_distance (Optional[int], (default None)) – This value can be a pos-
itive integer or None. This parameter determines the maximum graph distance at which
pair features are computed. For example, if max_pair_distance==2, then pair features are
computed only for atoms at most graph distance 2 apart. If max_pair_distance is None, all
pairs are considered (effectively infinite max_pair_distance)
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MolGanFeaturizer

class MolGanFeaturizer(max_atom_count: int = 9, kekulize: bool = True, bond_labels: List[Any] | None =
None, atom_labels: List[int] | None = None)

Featurizer for MolGAN de-novo molecular generation [1]_. The default representation is in form of GraphMatrix
object. It is wrapper for two matrices containing atom and bond type information. The class also provides reverse
capabilities.

Examples

>>> import deepchem as dc
>>> from rdkit import Chem
>>> rdkit_mol, smiles_mol = Chem.MolFromSmiles('CCC'), 'C1=CC=CC=C1'
>>> molecules = [rdkit_mol, smiles_mol]
>>> featurizer = dc.feat.MolGanFeaturizer()
>>> features = featurizer.featurize(molecules)
>>> len(features) # 2 molecules
2
>>> type(features[0])
<class 'deepchem.feat.molecule_featurizers.molgan_featurizer.GraphMatrix'>
>>> molecules = featurizer.defeaturize(features) # defeaturization
>>> type(molecules[0])
<class 'rdkit.Chem.rdchem.Mol'>

__init__(max_atom_count: int = 9, kekulize: bool = True, bond_labels: List[Any] | None = None,
atom_labels: List[int] | None = None)

Parameters
• max_atom_count (int, default 9) – Maximum number of atoms used for creation of

adjacency matrix. Molecules cannot have more atoms than this number Implicit hydrogens
do not count.

• kekulize (bool, default True) – Should molecules be kekulized. Solves number of
issues with defeaturization when used.

• bond_labels (List[RDKitBond]) – List of types of bond used for generation of adja-
cency matrix

• atom_labels (List[int]) – List of atomic numbers used for generation of node features

References

featurize(datapoints, log_every_n=1000, **kwargs)→ ndarray
Calculate features for molecules.

Parameters
• datapoints (rdkit.Chem.rdchem.Mol / SMILES string / iterable) – RDKit

Mol, or SMILES string or iterable sequence of RDKit mols/SMILES strings.

• log_every_n (int, default 1000) – Logging messages reported every log_every_n
samples.

Returns
features – A numpy array containing a featurized representation of datapoints.
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Return type
np.ndarray

defeaturize(graphs: GraphMatrix | Sequence[GraphMatrix], log_every_n: int = 1000)→ ndarray
Calculates molecules from corresponding GraphMatrix objects.

Parameters
• graphs (GraphMatrix / iterable) – GraphMatrix object or corresponding iterable

• log_every_n (int, default 1000) – Logging messages reported every log_every_n
samples.

Returns
features – A numpy array containing RDKitMol objext.

Return type
np.ndarray

MolGraphConvFeaturizer

class MolGraphConvFeaturizer(use_edges: bool = False, use_chirality: bool = False, use_partial_charge:
bool = False)

This class is a featurizer of general graph convolution networks for molecules.

The default node(atom) and edge(bond) representations are based on WeaveNet paper. If you want to use your
own representations, you could use this class as a guide to define your original Featurizer. In many cases, it’s
enough to modify return values of construct_atom_feature or construct_bond_feature.

The default node representation are constructed by concatenating the following values, and the feature length is
30.

• Atom type: A one-hot vector of this atom, “C”, “N”, “O”, “F”, “P”, “S”, “Cl”, “Br”, “I”, “other atoms”.

• Formal charge: Integer electronic charge.

• Hybridization: A one-hot vector of “sp”, “sp2”, “sp3”.

• Hydrogen bonding: A one-hot vector of whether this atom is a hydrogen bond donor or acceptor.

• Aromatic: A one-hot vector of whether the atom belongs to an aromatic ring.

• Degree: A one-hot vector of the degree (0-5) of this atom.

• Number of Hydrogens: A one-hot vector of the number of hydrogens (0-4) that this atom connected.

• Chirality: A one-hot vector of the chirality, “R” or “S”. (Optional)

• Partial charge: Calculated partial charge. (Optional)

The default edge representation are constructed by concatenating the following values, and the feature length is
11.

• Bond type: A one-hot vector of the bond type, “single”, “double”, “triple”, or “aromatic”.

• Same ring: A one-hot vector of whether the atoms in the pair are in the same ring.

• Conjugated: A one-hot vector of whether this bond is conjugated or not.

• Stereo: A one-hot vector of the stereo configuration of a bond.

If you want to know more details about features, please check the paper [1]_ and utilities in
deepchem.utils.molecule_feature_utils.py.
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Examples

>>> smiles = ["C1CCC1", "C1=CC=CN=C1"]
>>> featurizer = MolGraphConvFeaturizer(use_edges=True)
>>> out = featurizer.featurize(smiles)
>>> type(out[0])
<class 'deepchem.feat.graph_data.GraphData'>
>>> out[0].num_node_features
30
>>> out[0].num_edge_features
11

References

Note: This class requires RDKit to be installed.

__init__(use_edges: bool = False, use_chirality: bool = False, use_partial_charge: bool = False)

Parameters
• use_edges (bool, default False) – Whether to use edge features or not.

• use_chirality (bool, default False) – Whether to use chirality information or not.
If True, featurization becomes slow.

• use_partial_charge (bool, default False) – Whether to use partial charge data or
not. If True, this featurizer computes gasteiger charges. Therefore, there is a possibility to
fail to featurize for some molecules and featurization becomes slow.

featurize(datapoints, log_every_n=1000, **kwargs)→ ndarray
Calculate features for molecules.

Parameters
• datapoints (rdkit.Chem.rdchem.Mol / SMILES string / iterable) – RDKit

Mol, or SMILES string or iterable sequence of RDKit mols/SMILES strings.

• log_every_n (int, default 1000) – Logging messages reported every log_every_n
samples.

Returns
features – A numpy array containing a featurized representation of datapoints.

Return type
np.ndarray
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PagtnMolGraphFeaturizer

class PagtnMolGraphFeaturizer(max_length=5)
This class is a featuriser of PAGTN graph networks for molecules.

The featurization is based on PAGTN model. It is slightly more computationally intensive than default Graph
Convolution Featuriser, but it builds a Molecular Graph connecting all atom pairs accounting for interactions of
an atom with every other atom in the Molecule. According to the paper, interactions between two pairs of atom
are dependent on the relative distance between them and and hence, the function needs to calculate the shortest
path between them.

The default node representation is constructed by concatenating the following values, and the feature length is
94.

• Atom type: One hot encoding of the atom type. It consists of the most possible elements in a chemical
compound.

• Formal charge: One hot encoding of formal charge of the atom.

• Degree: One hot encoding of the atom degree

• Explicit Valence: One hot encoding of explicit valence of an atom. The supported possibilities
include 0 - 6.

• Implicit Valence: One hot encoding of implicit valence of an atom. The supported possibilities
include 0 - 5.

• Aromaticity: Boolean representing if an atom is aromatic.

The default edge representation is constructed by concatenating the following values, and the feature length is
42. It builds a complete graph where each node is connected to every other node. The edge representations
are calculated based on the shortest path between two nodes (choose any one if multiple exist). Each bond
encountered in the shortest path is used to calculate edge features.

• Bond type: A one-hot vector of the bond type, “single”, “double”, “triple”, or “aromatic”.

• Conjugated: A one-hot vector of whether this bond is conjugated or not.

• Same ring: A one-hot vector of whether the atoms in the pair are in the same ring.

• Ring Size and Aromaticity: One hot encoding of atoms in pair based on ring size and aromaticity.

• Distance: One hot encoding of the distance between pair of atoms.

Examples

>>> from deepchem.feat import PagtnMolGraphFeaturizer
>>> smiles = ["C1CCC1", "C1=CC=CN=C1"]
>>> featurizer = PagtnMolGraphFeaturizer(max_length=5)
>>> out = featurizer.featurize(smiles)
>>> type(out[0])
<class 'deepchem.feat.graph_data.GraphData'>
>>> out[0].num_node_features
94
>>> out[0].num_edge_features
42
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References

Note: This class requires RDKit to be installed.

__init__(max_length=5)

Parameters
max_length (int) – Maximum distance up to which shortest paths must be considered. Paths
shorter than max_length will be padded and longer will be truncated, default to 5.

featurize(datapoints, log_every_n=1000, **kwargs)→ ndarray
Calculate features for molecules.

Parameters
• datapoints (rdkit.Chem.rdchem.Mol / SMILES string / iterable) – RDKit

Mol, or SMILES string or iterable sequence of RDKit mols/SMILES strings.

• log_every_n (int, default 1000) – Logging messages reported every log_every_n
samples.

Returns
features – A numpy array containing a featurized representation of datapoints.

Return type
np.ndarray

DMPNNFeaturizer

class DMPNNFeaturizer(features_generators: List[str] | None = None, is_adding_hs: bool = False,
use_original_atom_ranks: bool = False)

This class is a featurizer for Directed Message Passing Neural Network (D-MPNN) implementation

The default node(atom) and edge(bond) representations are based on Analyzing Learned Molecular Representa-
tions for Property Prediction paper.

The default node representation are constructed by concatenating the following values, and the feature length is
133.

• Atomic num: A one-hot vector of this atom, in a range of first 100 atoms.

• Degree: A one-hot vector of the degree (0-5) of this atom.

• Formal charge: Integer electronic charge, -1, -2, 1, 2, 0.

• Chirality: A one-hot vector of the chirality tag (0-3) of this atom.

• Number of Hydrogens: A one-hot vector of the number of hydrogens (0-4) that this atom connected.

• Hybridization: A one-hot vector of “SP”, “SP2”, “SP3”, “SP3D”, “SP3D2”.

• Aromatic: A one-hot vector of whether the atom belongs to an aromatic ring.

• Mass: Atomic mass * 0.01

The default edge representation are constructed by concatenating the following values, and the feature length is
14.

• Bond type: A one-hot vector of the bond type, “single”, “double”, “triple”, or “aromatic”.

• Same ring: A one-hot vector of whether the atoms in the pair are in the same ring.
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• Conjugated: A one-hot vector of whether this bond is conjugated or not.

• Stereo: A one-hot vector of the stereo configuration (0-5) of a bond.

If you want to know more details about features, please check the paper [1]_ and utilities in
deepchem.utils.molecule_feature_utils.py.

Examples

>>> smiles = ["C1=CC=CN=C1", "C1CCC1"]
>>> featurizer = DMPNNFeaturizer()
>>> out = featurizer.featurize(smiles)
>>> type(out[0])
<class 'deepchem.feat.graph_data.GraphData'>
>>> out[0].num_nodes
6
>>> out[0].num_node_features
133
>>> out[0].node_features.shape
(6, 133)
>>> out[0].num_edge_features
14
>>> out[0].num_edges
12
>>> out[0].edge_features.shape
(12, 14)

References

Note: This class requires RDKit to be installed.

__init__(features_generators: List[str] | None = None, is_adding_hs: bool = False,
use_original_atom_ranks: bool = False)

Parameters
• features_generator (List[str], default None) – List of global feature generators

to be used.

• is_adding_hs (bool, default False) – Whether to add Hs or not.

• use_original_atom_ranks (bool, default False) – Whether to use original atom
mapping or canonical atom mapping

featurize(datapoints, log_every_n=1000, **kwargs)→ ndarray
Calculate features for molecules.

Parameters
• datapoints (rdkit.Chem.rdchem.Mol / SMILES string / iterable) – RDKit

Mol, or SMILES string or iterable sequence of RDKit mols/SMILES strings.

• log_every_n (int, default 1000) – Logging messages reported every log_every_n
samples.
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Returns
features – A numpy array containing a featurized representation of datapoints.

Return type
np.ndarray

GroverFeaturizer

class GroverFeaturizer(features_generator: MolecularFeaturizer | None = None, bond_drop_rate: float = 0.0)
Featurizer for GROVER Model

The Grover Featurizer is used to compute features suitable for grover model. It accepts an rdkit molecule of type
rdkit.Chem.rdchem.Mol or a SMILES string as input and computes the following sets of features:

1. a molecular graph from the input molecule

2. functional groups which are used only during pretraining

3. additional features which can only be used during finetuning

Parameters
• additional_featurizer (dc.feat.Featurizer) – Given a molecular dataset, it is pos-

sible to extract additional molecular features in order

• can (to train and finetune from the existing pretrained model. The
additional_featurizer) –

• molecule. (be used to generate additional features for the) –

References

Examples

>>> import deepchem as dc
>>> from deepchem.feat import GroverFeaturizer
>>> feat = GroverFeaturizer(features_generator = dc.feat.CircularFingerprint())
>>> out = feat.featurize('CCC')

Note: This class requires RDKit to be installed.

__init__(features_generator: MolecularFeaturizer | None = None, bond_drop_rate: float = 0.0)

Parameters
use_original_atoms_order (bool, default False) – Whether to use original atom
ordering or canonical ordering (default)
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RDKitConformerFeaturizer

class RDKitConformerFeaturizer(use_original_atoms_order=False)
A featurizer that featurizes an RDKit mol object as a GraphData object with 3D coordinates. The 3D co-
ordinates are represented in the node_pos_features attribute of the GraphData object of shape [num_atoms *
num_conformers, 3].

The ETKDGv2 algorithm is used to generate 3D coordinates for the molecule. The RDKit source for this algo-
rithm can be found in RDkit/Code/GraphMol/DistGeomHelpers/Embedder.cpp The documentation can be found
here: https://rdkit.org/docs/source/rdkit.Chem.rdDistGeom.html#rdkit.Chem.rdDistGeom.ETKDGv2

This featurization requires RDKit.

Examples

>>> from deepchem.feat.molecule_featurizers.conformer_featurizer import␣
→˓RDKitConformerFeaturizer
>>> featurizer = RDKitConformerFeaturizer()
>>> molecule = "CCO"
>>> conformer = featurizer.featurize(molecule)
>>> print (type(conformer[0]))
<class 'deepchem.feat.graph_data.GraphData'>

atom_to_feature_vector(atom)

Converts an RDKit atom object to a feature list of indices.

Parameters
atom (Chem.rdchem.Atom) – RDKit atom object.

Returns
List of feature indices for the given atom.

Return type
List[int]

bond_to_feature_vector(bond)
Converts an RDKit bond object to a feature list of indices.

Parameters
bond (Chem.rdchem.Bond) – RDKit bond object.

Returns
List of feature indices for the given bond.

Return type
List[int]
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MXMNetFeaturizer

class MXMNetFeaturizer(is_adding_hs: bool = False)
This class is a featurizer for Multiplex Molecular Graph Neural Network (MXMNet) implementation.

The atomic numbers(indices) of atoms will be used later to generate randomly initialized trainable embeddings
to be the input node embeddings.

This featurizer is based on Molecular Mechanics-Driven Graph Neural Network with Multiplex Graph for Molec-
ular Structures.

Examples

>>> smiles = ["C1=CC=CN=C1", "C1CCC1"]
>>> featurizer = MXMNetFeaturizer()
>>> out = featurizer.featurize(smiles)
>>> type(out[0])
<class 'deepchem.feat.graph_data.GraphData'>
>>> out[0].num_nodes
6
>>> out[0].num_node_features
1
>>> out[0].node_features.shape
(6, 1)
>>> out[0].num_edges
12

Note: We are not explitly handling hydrogen atoms for now. We only support ‘H’, ‘C’, ‘N’, ‘O’ and ‘F’ atoms
to be present in the smiles at this point for MXMNet Model.

__init__(is_adding_hs: bool = False)

Parameters
is_adding_hs (bool, default False) – Whether to add Hs or not.

featurize(datapoints, log_every_n=1000, **kwargs)→ ndarray
Calculate features for molecules.

Parameters
• datapoints (rdkit.Chem.rdchem.Mol / SMILES string / iterable) – RDKit

Mol, or SMILES string or iterable sequence of RDKit mols/SMILES strings.

• log_every_n (int, default 1000) – Logging messages reported every log_every_n
samples.

Returns
features – A numpy array containing a featurized representation of datapoints.

Return type
np.ndarray
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Utilities

Here are some constants that are used by the graph convolutional featurizers for molecules.

class GraphConvConstants

This class defines a collection of constants which are useful for graph convolutions on molecules.

possible_atom_list = ['C', 'N', 'O', 'S', 'F', 'P', 'Cl', 'Mg', 'Na', 'Br', 'Fe',
'Ca', 'Cu', 'Mc', 'Pd', 'Pb', 'K', 'I', 'Al', 'Ni', 'Mn']

Allowed Numbers of Hydrogens

possible_numH_list = [0, 1, 2, 3, 4]

Allowed Valences for Atoms

possible_valence_list = [0, 1, 2, 3, 4, 5, 6]

Allowed Formal Charges for Atoms

possible_formal_charge_list = [-3, -2, -1, 0, 1, 2, 3]

This is a placeholder for documentation. These will be replaced with corresponding values of the rdkit
HybridizationType

possible_hybridization_list = ['SP', 'SP2', 'SP3', 'SP3D', 'SP3D2']

Allowed number of radical electrons.

possible_number_radical_e_list = [0, 1, 2]

Allowed types of Chirality

possible_chirality_list = ['R', 'S']

The set of all values allowed.

reference_lists = [['C', 'N', 'O', 'S', 'F', 'P', 'Cl', 'Mg', 'Na', 'Br', 'Fe',
'Ca', 'Cu', 'Mc', 'Pd', 'Pb', 'K', 'I', 'Al', 'Ni', 'Mn'], [0, 1, 2, 3, 4], [0, 1,
2, 3, 4, 5, 6], [-3, -2, -1, 0, 1, 2, 3], [0, 1, 2], ['SP', 'SP2', 'SP3', 'SP3D',
'SP3D2'], ['R', 'S']]

The number of different values that can be taken. See get_intervals()

intervals = [1, 6, 48, 384, 1536, 9216, 27648]

Possible stereochemistry. We use E-Z notation for stereochemistry https://en.wikipedia.org/wiki/E%E2%
80%93Z_notation

possible_bond_stereo = ['STEREONONE', 'STEREOANY', 'STEREOZ', 'STEREOE']

Number of different bond types not counting stereochemistry.

bond_fdim_base = 6

__module__ = 'deepchem.feat.graph_features'

There are a number of helper methods used by the graph convolutional classes which we document here.

one_of_k_encoding(x, allowable_set)
Encodes elements of a provided set as integers.

Parameters
• x (object) – Must be present in allowable_set.

• allowable_set (list) – List of allowable quantities.
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Example

>>> import deepchem as dc
>>> dc.feat.graph_features.one_of_k_encoding("a", ["a", "b", "c"])
[True, False, False]

Raises
ValueError –

one_of_k_encoding_unk(x, allowable_set)
Maps inputs not in the allowable set to the last element.

Unlike one_of_k_encoding, if x is not in allowable_set, this method pretends that x is the last element of allow-
able_set.

Parameters
• x (object) – Must be present in allowable_set.

• allowable_set (list) – List of allowable quantities.

Examples

>>> dc.feat.graph_features.one_of_k_encoding_unk("s", ["a", "b", "c"])
[False, False, True]

get_intervals(l)
For list of lists, gets the cumulative products of the lengths

Note that we add 1 to the lengths of all lists (to avoid an empty list propagating a 0).

Parameters
l (list of lists) – Returns the cumulative product of these lengths.

Examples

>>> dc.feat.graph_features.get_intervals([[1], [1, 2], [1, 2, 3]])
[1, 3, 12]

>>> dc.feat.graph_features.get_intervals([[1], [], [1, 2], [1, 2, 3]])
[1, 1, 3, 12]

safe_index(l, e)
Gets the index of e in l, providing an index of len(l) if not found

Parameters
• l (list) – List of values

• e (object) – Object to check whether e is in l
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Examples

>>> dc.feat.graph_features.safe_index([1, 2, 3], 1)
0
>>> dc.feat.graph_features.safe_index([1, 2, 3], 7)
3

get_feature_list(atom)

Returns a list of possible features for this atom.

Parameters
atom (RDKit.Chem.rdchem.Atom) – Atom to get features for

Examples

>>> from rdkit import Chem
>>> mol = Chem.MolFromSmiles("C")
>>> atom = mol.GetAtoms()[0]
>>> features = dc.feat.graph_features.get_feature_list(atom)
>>> type(features)
<class 'list'>
>>> len(features)
6

Note: This method requires RDKit to be installed.

Returns
features – List of length 6. The i-th value in this list provides the index of the atom
in the corresponding feature value list. The 6 feature values lists for this function are
[GraphConvConstants.possible_atom_list, GraphConvConstants.possible_numH_list, Graph-
ConvConstants.possible_valence_list, GraphConvConstants.possible_formal_charge_list,
GraphConvConstants.possible_num_radical_e_list].

Return type
list

features_to_id(features, intervals)
Convert list of features into index using spacings provided in intervals

Parameters
• features (list) – List of features as returned by get_feature_list()

• intervals (list) – List of intervals as returned by get_intervals()

Returns
id – The index in a feature vector given by the given set of features.

Return type
int

id_to_features(id, intervals)
Given an index in a feature vector, return the original set of features.
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Parameters
• id (int) – The index in a feature vector given by the given set of features.

• intervals (list) – List of intervals as returned by get_intervals()

Returns
features – List of features as returned by get_feature_list()

Return type
list

atom_to_id(atom)

Return a unique id corresponding to the atom type

Parameters
atom (RDKit.Chem.rdchem.Atom) – Atom to convert to ids.

Returns
id – The index in a feature vector given by the given set of features.

Return type
int

This function helps compute distances between atoms from a given base atom.

find_distance(a1: Any, num_atoms: int, bond_adj_list, max_distance=7)→ ndarray
Computes distances from provided atom.

Parameters
• a1 (RDKit atom) – The source atom to compute distances from.

• num_atoms (int) – The total number of atoms.

• bond_adj_list (list of lists) – bond_adj_list[i] is a list of the atom indices that
atom i shares a bond with. This list is symmetrical so if j in bond_adj_list[i] then i in
bond_adj_list[j].

• max_distance (int, optional (default 7)) – The max distance to search.

Returns
distances – Of shape (num_atoms, max_distance). Provides a one-hot encoding of the distances.
That is, distances[i] is a one-hot encoding of the distance from a1 to atom i.

Return type
np.ndarray

This function is important and computes per-atom feature vectors used by graph convolutional featurizers.

atom_features(atom, bool_id_feat=False, explicit_H=False, use_chirality=False)
Helper method used to compute per-atom feature vectors.

Many different featurization methods compute per-atom features such as ConvMolFeaturizer, WeaveFeaturizer.
This method computes such features.

Parameters
• atom (RDKit.Chem.rdchem.Atom) – Atom to compute features on.

• bool_id_feat (bool, optional) – Return an array of unique identifiers corresponding
to atom type.

• explicit_H (bool, optional) – If true, model hydrogens explicitly

• use_chirality (bool, optional) – If true, use chirality information.
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Returns
features – An array of per-atom features.

Return type
np.ndarray

Examples

>>> from rdkit import Chem
>>> mol = Chem.MolFromSmiles('CCC')
>>> atom = mol.GetAtoms()[0]
>>> features = dc.feat.graph_features.atom_features(atom)
>>> type(features)
<class 'numpy.ndarray'>
>>> features.shape
(75,)

This function computes the bond features used by graph convolutional featurizers.

bond_features(bond, use_chirality=False, use_extended_chirality=False)
Helper method used to compute bond feature vectors.

Many different featurization methods compute bond features such as WeaveFeaturizer. This method computes
such features.

Parameters
• bond (rdkit.Chem.rdchem.Bond) – Bond to compute features on.

• use_chirality (bool, optional) – If true, use chirality information.

• use_extended_chirality (bool, optional) – If true, use chirality information with
upto 6 different types.

Note: This method requires RDKit to be installed.

Returns
• bond_feats (np.ndarray) – Array of bond features. This is a 1-D array of length 6 if

use_chirality is False else of length 10 with chirality encoded.

• bond_feats (Sequence[Union[bool, int, float]]) – List of bond features returned if
use_extended_chirality is True.

Examples

>>> from rdkit import Chem
>>> mol = Chem.MolFromSmiles('CCC')
>>> bond = mol.GetBonds()[0]
>>> bond_features = dc.feat.graph_features.bond_features(bond)
>>> type(bond_features)
<class 'numpy.ndarray'>
>>> bond_features.shape
(6,)
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Note: This method requires RDKit to be installed.

This function computes atom-atom features (for atom pairs which may not have bonds between them.)

pair_features(mol: Any, bond_features_map: dict, bond_adj_list: List, bt_len: int = 6, graph_distance: bool =
True, max_pair_distance: int | None = None)→ Tuple[ndarray, ndarray]

Helper method used to compute atom pair feature vectors.

Many different featurization methods compute atom pair features such as WeaveFeaturizer. Note that atom pair
features could be for pairs of atoms which aren’t necessarily bonded to one another.

Parameters
• mol (RDKit Mol) – Molecule to compute features on.

• bond_features_map (dict) – Dictionary that maps pairs of atom ids (say (2, 3) for a bond
between atoms 2 and 3) to the features for the bond between them.

• bond_adj_list (list of lists) – bond_adj_list[i] is a list of the atom indices that
atom i shares a bond with . This list is symmetrical so if j in bond_adj_list[i] then i in
bond_adj_list[j].

• bt_len (int, optional (default 6)) – The number of different bond types to con-
sider.

• graph_distance (bool, optional (default True)) – If true, use graph distance be-
tween molecules. Else use euclidean distance. The specified mol must have a conformer.
Atomic positions will be retrieved by calling mol.getConformer(0).

• max_pair_distance (Optional[int], (default None)) – This value can be a posi-
tive integer or None. This parameter determines the maximum graph distance at which pair
features are computed. For example, if max_pair_distance==2, then pair features are com-
puted only for atoms at most graph distance 2 apart. If max_pair_distance is None, all pairs
are considered (effectively infinite max_pair_distance)

Note: This method requires RDKit to be installed.

Returns
• features (np.ndarray) – Of shape (N_edges, bt_len + max_distance + 1). This is the ar-

ray of pairwise features for all atom pairs, where N_edges is the number of edges within
max_pair_distance of one another in this molecules.

• pair_edges (np.ndarray) – Of shape (2, num_pairs) where num_pairs is the total number of
pairs within max_pair_distance of one another.
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MACCSKeysFingerprint

class MACCSKeysFingerprint

MACCS Keys Fingerprint.

The MACCS (Molecular ACCess System) keys are one of the most commonly used structural keys. Please
confirm the details in [1]_, [2]_.

Examples

>>> import deepchem as dc
>>> smiles = 'CC(=O)OC1=CC=CC=C1C(=O)O'
>>> featurizer = dc.feat.MACCSKeysFingerprint()
>>> features = featurizer.featurize([smiles])
>>> type(features[0])
<class 'numpy.ndarray'>
>>> features[0].shape
(167,)

References

Note: This class requires RDKit to be installed.

__init__()

Initialize this featurizer.

MATFeaturizer

class MATFeaturizer

This class is a featurizer for the Molecule Attention Transformer [1]_. The returned value is a numpy array which
consists of molecular graph descriptions:

• Node Features

• Adjacency Matrix

• Distance Matrix

References

Examples

>>> import deepchem as dc
>>> feat = dc.feat.MATFeaturizer()
>>> out = feat.featurize("CCC")

Note: This class requires RDKit to be installed.
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__init__()

Parameters
use_original_atoms_order (bool, default False) – Whether to use original atom
ordering or canonical ordering (default)

construct_mol(mol: Any)→ Any
Processes an input RDKitMol further to be able to extract id-specific Conformers from it using
mol.GetConformer().

Parameters
mol (RDKitMol) – RDKit Mol object.

Returns
mol – A processed RDKitMol object which is embedded, UFF Optimized and has Hydrogen
atoms removed. If the former conditions are not met and there is a value error, then 2D
Coordinates are computed instead.

Return type
RDKitMol

atom_features(atom: Any)→ ndarray
Deepchem already contains an atom_features function, however we are defining a new one here due to the
need to handle features specific to MAT. Since we need new features like Atom GetNeighbors and IsInRing,
and the number of features required for MAT is a fraction of what the Deepchem atom_features function
computes, we can speed up computation by defining a custom function.

Parameters
atom (RDKitAtom) – RDKit Atom object.

Returns
Numpy array containing atom features.

Return type
ndarray

construct_node_features_matrix(mol: Any)→ ndarray
This function constructs a matrix of atom features for all atoms in a given molecule using the atom_features
function.

Parameters
mol (RDKitMol) – RDKit Mol object.

Returns
Atom_features – Numpy array containing atom features.

Return type
ndarray

featurize(datapoints, log_every_n=1000, **kwargs)→ ndarray
Calculate features for molecules.

Parameters
• datapoints (rdkit.Chem.rdchem.Mol / SMILES string / iterable) – RDKit

Mol, or SMILES string or iterable sequence of RDKit mols/SMILES strings.

• log_every_n (int, default 1000) – Logging messages reported every log_every_n
samples.

Returns
features – A numpy array containing a featurized representation of datapoints.
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Return type
np.ndarray

CircularFingerprint

class CircularFingerprint(radius: int = 2, size: int = 2048, chiral: bool = False, bonds: bool = True,
features: bool = False, sparse: bool = False, smiles: bool = False,
is_counts_based: bool = False)

Circular (Morgan) fingerprints.

Extended Connectivity Circular Fingerprints compute a bag-of-words style representation of a molecule by break-
ing it into local neighborhoods and hashing into a bit vector of the specified size. It is used specifically for
structure-activity modelling. See [1]_ for more details.

References

Note: This class requires RDKit to be installed.

Examples

>>> import deepchem as dc
>>> from rdkit import Chem
>>> smiles = ['C1=CC=CC=C1']
>>> # Example 1: (size = 2048, radius = 4)
>>> featurizer = dc.feat.CircularFingerprint(size=2048, radius=4)
>>> features = featurizer.featurize(smiles)
>>> type(features[0])
<class 'numpy.ndarray'>
>>> features[0].shape
(2048,)

>>> # Example 2: (size = 2048, radius = 4, sparse = True, smiles = True)
>>> featurizer = dc.feat.CircularFingerprint(size=2048, radius=8,
... sparse=True, smiles=True)
>>> features = featurizer.featurize(smiles)
>>> type(features[0]) # dict containing fingerprints
<class 'dict'>

__init__(radius: int = 2, size: int = 2048, chiral: bool = False, bonds: bool = True, features: bool = False,
sparse: bool = False, smiles: bool = False, is_counts_based: bool = False)

Parameters
• radius (int, optional (default 2)) – Fingerprint radius.

• size (int, optional (default 2048)) – Length of generated bit vector.

• chiral (bool, optional (default False)) – Whether to consider chirality in fin-
gerprint generation.

• bonds (bool, optional (default True)) – Whether to consider bond order in fin-
gerprint generation.
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• features (bool, optional (default False)) – Whether to use feature information
instead of atom information; see RDKit docs for more info.

• sparse (bool, optional (default False)) – Whether to return a dict for each
molecule containing the sparse fingerprint.

• smiles (bool, optional (default False)) – Whether to calculate SMILES strings
for fragment IDs (only applicable when calculating sparse fingerprints).

• is_counts_based (bool, optional (default False)) – Whether to generates a
counts-based fingerprint.

featurize(datapoints, log_every_n=1000, **kwargs)→ ndarray
Calculate features for molecules.

Parameters
• datapoints (rdkit.Chem.rdchem.Mol / SMILES string / iterable) – RDKit

Mol, or SMILES string or iterable sequence of RDKit mols/SMILES strings.

• log_every_n (int, default 1000) – Logging messages reported every log_every_n
samples.

Returns
features – A numpy array containing a featurized representation of datapoints.

Return type
np.ndarray

PubChemFingerprint

class PubChemFingerprint

PubChem Fingerprint.

The PubChem fingerprint is a 881 bit structural key, which is used by PubChem for similarity searching. Please
confirm the details in [1]_.

References

Note: This class requires RDKit and PubChemPy to be installed. PubChemPy use REST API to get the finger-
print, so you need the internet access.

Examples

>>> import deepchem as dc
>>> smiles = ['CCC']
>>> featurizer = dc.feat.PubChemFingerprint()
>>> features = featurizer.featurize(smiles)
>>> type(features[0])
<class 'numpy.ndarray'>
>>> features[0].shape
(881,)
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__init__()

Initialize this featurizer.

Mol2VecFingerprint

class Mol2VecFingerprint(pretrain_model_path: str | None = None, radius: int = 1, unseen: str = 'UNK')
Mol2Vec fingerprints.

This class convert molecules to vector representations by using Mol2Vec. Mol2Vec is an unsupervised ma-
chine learning approach to learn vector representations of molecular substructures and the algorithm is based on
Word2Vec, which is one of the most popular technique to learn word embeddings using neural network in NLP.
Please see the details from [1]_.

The Mol2Vec requires the pretrained model, so we use the model which is put on the mol2vec github repository
[2]_. The default model was trained on 20 million compounds downloaded from ZINC using the following
paramters.

• radius 1

• UNK to replace all identifiers that appear less than 4 times

• skip-gram and window size of 10

• embeddings size 300

References

Note: This class requires mol2vec to be installed.

Examples

>>> import deepchem as dc
>>> from rdkit import Chem
>>> smiles = ['CCC']
>>> featurizer = dc.feat.Mol2VecFingerprint()
>>> features = featurizer.featurize(smiles)
>>> type(features)
<class 'numpy.ndarray'>
>>> features[0].shape
(300,)

__init__(pretrain_model_path: str | None = None, radius: int = 1, unseen: str = 'UNK')

Parameters
• pretrain_file (str, optional) – The path for pretrained model. If this value is None,

we use the model which is put on github repository (https://github.com/samoturk/mol2vec/
tree/master/examples/models). The model is trained on 20 million compounds downloaded
from ZINC.

• radius (int, optional (default 1)) – The fingerprint radius. The default value was
used to train the model which is put on github repository.
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• unseen (str, optional (default 'UNK')) – The string to used to replace uncommon
words/identifiers while training.

sentences2vec(sentences: list, model, unseen=None)→ ndarray
Generate vectors for each sentence (list) in a list of sentences. Vector is simply a sum of vectors for indi-
vidual words.

Parameters
• sentences (list, array) – List with sentences

• model (word2vec.Word2Vec) – Gensim word2vec model

• unseen (None, str) – Keyword for unseen words. If None, those
words are skipped. https://stats.stackexchange.com/questions/163005/
how-to-set-the-dictionary-for-text-analysis-using-neural-networks/163032#163032

Return type
np.array

featurize(datapoints, log_every_n=1000, **kwargs)→ ndarray
Calculate features for molecules.

Parameters
• datapoints (rdkit.Chem.rdchem.Mol / SMILES string / iterable) – RDKit

Mol, or SMILES string or iterable sequence of RDKit mols/SMILES strings.

• log_every_n (int, default 1000) – Logging messages reported every log_every_n
samples.

Returns
features – A numpy array containing a featurized representation of datapoints.

Return type
np.ndarray

RDKitDescriptors

class RDKitDescriptors(descriptors: List[str] = [], is_normalized: bool = False, use_fragment: bool = True,
ipc_avg: bool = True, use_bcut2d: bool = True, labels_only: bool = False)

RDKit descriptors.

This class computes a list of chemical descriptors like molecular weight, number of valence electrons, maximum
and minimum partial charge, etc using RDKit.

This class can also compute normalized descriptors, if required. (The implementation for normalization is based
on RDKit2DNormalized() method in ‘descriptastorus’ library.)

When the is_normalized option is set as True, descriptor values are normalized across the sample by fitting a
cumulative density function. CDFs were used as opposed to simpler scaling algorithms mainly because CDFs
have the useful property that ‘each value has the same meaning: the percentage of the population observed below
the raw feature value.’

Warning: Currently, the normalizing cdf parameters are not available for BCUT2D descriptors.
(BCUT2D_MWHI, BCUT2D_MWLOW, BCUT2D_CHGHI, BCUT2D_CHGLO, BCUT2D_LOGPHI,
BCUT2D_LOGPLOW, BCUT2D_MRHI, BCUT2D_MRLOW)

Note: This class requires RDKit to be installed.

136 Chapter 3. About Us

https://stats.stackexchange.com/questions/163005/how-to-set-the-dictionary-for-text-analysis-using-neural-networks/163032#163032
https://stats.stackexchange.com/questions/163005/how-to-set-the-dictionary-for-text-analysis-using-neural-networks/163032#163032


deepchem, Release 2.8.0

Examples

>>> import deepchem as dc
>>> smiles = ['CC(=O)OC1=CC=CC=C1C(=O)O']
>>> featurizer = dc.feat.RDKitDescriptors()
>>> features = featurizer.featurize(smiles)
>>> type(features[0])
<class 'numpy.ndarray'>
>>> features[0].shape
(210,)

__init__(descriptors: List[str] = [], is_normalized: bool = False, use_fragment: bool = True, ipc_avg: bool
= True, use_bcut2d: bool = True, labels_only: bool = False)

Initialize this featurizer.

Parameters
• descriptors (List[str] (default None)) – List of RDKit descriptors to compute

properties. When None, computes values

• arguments. (for descriptors which are chosen based on options set in
other) –

• use_fragment (bool, optional (default True)) – If True, the return value in-
cludes the fragment binary descriptors like ‘fr_XXX’.

• ipc_avg (bool, optional (default True)) – If True, the IPC descriptor calculates
with avg=True option. Please see this issue: https://github.com/rdkit/rdkit/issues/1527.

• is_normalized (bool, optional (default False)) – If True, the return value con-
tains normalized features.

• use_bcut2d (bool, optional (default True)) – If True, the return value includes
the descriptors like ‘BCUT2D_XXX’.

• labels_only (bool, optional (default False)) – Returns only the presence or
absence of a group.

Notes

• If both labels_only and is_normalized are True, then is_normalized takes
precendence and labels_only will not be applied.

featurize(datapoints, log_every_n=1000, **kwargs)→ ndarray
Calculate features for molecules.

Parameters
• datapoints (rdkit.Chem.rdchem.Mol / SMILES string / iterable) – RDKit

Mol, or SMILES string or iterable sequence of RDKit mols/SMILES strings.

• log_every_n (int, default 1000) – Logging messages reported every log_every_n
samples.

Returns
features – A numpy array containing a featurized representation of datapoints.

Return type
np.ndarray
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MordredDescriptors

class MordredDescriptors(ignore_3D: bool = True)
Mordred descriptors.

This class computes a list of chemical descriptors using Mordred. Please see the details about all descriptors
from [1]_, [2]_.

descriptors

List of Mordred descriptor names used in this class.

Type
List[str]

References

Note: This class requires Mordred to be installed.

Examples

>>> import deepchem as dc
>>> smiles = ['CC(=O)OC1=CC=CC=C1C(=O)O']
>>> featurizer = dc.feat.MordredDescriptors(ignore_3D=True)
>>> features = featurizer.featurize(smiles)
>>> type(features[0])
<class 'numpy.ndarray'>
>>> features[0].shape
(1613,)

__init__(ignore_3D: bool = True)

Parameters
ignore_3D (bool, optional (default True)) – Whether to use 3D information or not.

featurize(datapoints, log_every_n=1000, **kwargs)→ ndarray
Calculate features for molecules.

Parameters
• datapoints (rdkit.Chem.rdchem.Mol / SMILES string / iterable) – RDKit

Mol, or SMILES string or iterable sequence of RDKit mols/SMILES strings.

• log_every_n (int, default 1000) – Logging messages reported every log_every_n
samples.

Returns
features – A numpy array containing a featurized representation of datapoints.

Return type
np.ndarray
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CoulombMatrix

class CoulombMatrix(max_atoms: int, remove_hydrogens: bool = False, randomize: bool = False, upper_tri:
bool = False, n_samples: int = 1, seed: int | None = None)

Calculate Coulomb matrices for molecules.

Coulomb matrices provide a representation of the electronic structure of a molecule. For a molecule with N
atoms, the Coulomb matrix is a N X N matrix where each element gives the strength of the electrostatic interaction
between two atoms. The method is described in more detail in [1]_.

Examples

>>> import deepchem as dc
>>> featurizers = dc.feat.CoulombMatrix(max_atoms=23)
>>> input_file = 'deepchem/feat/tests/data/water.sdf' # really backed by water.sdf.
→˓csv
>>> tasks = ["atomization_energy"]
>>> loader = dc.data.SDFLoader(tasks, featurizer=featurizers)
>>> dataset = loader.create_dataset(input_file)

References

Note: This class requires RDKit to be installed.

__init__(max_atoms: int, remove_hydrogens: bool = False, randomize: bool = False, upper_tri: bool =
False, n_samples: int = 1, seed: int | None = None)

Initialize this featurizer.

Parameters
• max_atoms (int) – The maximum number of atoms expected for molecules this featurizer

will process.

• remove_hydrogens (bool, optional (default False)) – If True, remove hydro-
gens before processing them.

• randomize (bool, optional (default False)) – If True, use method random-
ize_coulomb_matrices to randomize Coulomb matrices.

• upper_tri (bool, optional (default False)) – Generate only upper triangle part
of Coulomb matrices.

• n_samples (int, optional (default 1)) – If randomize is set to True, the number
of random samples to draw.

• seed (int, optional (default None)) – Random seed to use.

coulomb_matrix(mol: Any)→ ndarray
Generate Coulomb matrices for each conformer of the given molecule.

Parameters
mol (rdkit.Chem.rdchem.Mol) – RDKit Mol object

Returns
The coulomb matrices of the given molecule
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Return type
np.ndarray

randomize_coulomb_matrix(m: ndarray)→ List[ndarray]
Randomize a Coulomb matrix as decribed in [1]_:

1. Compute row norms for M in a vector row_norms.

2. Sample a zero-mean unit-variance noise vector e with dimension
equal to row_norms.

3. Permute the rows and columns of M with the permutation that
sorts row_norms + e.

Parameters
m (np.ndarray) – Coulomb matrix.

Returns
List of the random coulomb matrix

Return type
List[np.ndarray]

References

static get_interatomic_distances(conf: Any)→ ndarray
Get interatomic distances for atoms in a molecular conformer.

Parameters
conf (rdkit.Chem.rdchem.Conformer) – Molecule conformer.

Returns
The distances matrix for all atoms in a molecule

Return type
np.ndarray

featurize(datapoints, log_every_n=1000, **kwargs)→ ndarray
Calculate features for molecules.

Parameters
• datapoints (rdkit.Chem.rdchem.Mol / SMILES string / iterable) – RDKit

Mol, or SMILES string or iterable sequence of RDKit mols/SMILES strings.

• log_every_n (int, default 1000) – Logging messages reported every log_every_n
samples.

Returns
features – A numpy array containing a featurized representation of datapoints.

Return type
np.ndarray
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CoulombMatrixEig

class CoulombMatrixEig(max_atoms: int, remove_hydrogens: bool = False, randomize: bool = False,
n_samples: int = 1, seed: int | None = None)

Calculate the eigenvalues of Coulomb matrices for molecules.

This featurizer computes the eigenvalues of the Coulomb matrices for provided molecules. Coulomb matrices
are described in [1]_.

Examples

>>> import deepchem as dc
>>> featurizers = dc.feat.CoulombMatrixEig(max_atoms=23)
>>> input_file = 'deepchem/feat/tests/data/water.sdf' # really backed by water.sdf.
→˓csv
>>> tasks = ["atomization_energy"]
>>> loader = dc.data.SDFLoader(tasks, featurizer=featurizers)
>>> dataset = loader.create_dataset(input_file)

References

__init__(max_atoms: int, remove_hydrogens: bool = False, randomize: bool = False, n_samples: int = 1,
seed: int | None = None)

Initialize this featurizer.

Parameters
• max_atoms (int) – The maximum number of atoms expected for molecules this featurizer

will process.

• remove_hydrogens (bool, optional (default False)) – If True, remove hydro-
gens before processing them.

• randomize (bool, optional (default False)) – If True, use method random-
ize_coulomb_matrices to randomize Coulomb matrices.

• n_samples (int, optional (default 1)) – If randomize is set to True, the number
of random samples to draw.

• seed (int, optional (default None)) – Random seed to use.

coulomb_matrix(mol: Any)→ ndarray
Generate Coulomb matrices for each conformer of the given molecule.

Parameters
mol (rdkit.Chem.rdchem.Mol) – RDKit Mol object

Returns
The coulomb matrices of the given molecule

Return type
np.ndarray

featurize(datapoints, log_every_n=1000, **kwargs)→ ndarray
Calculate features for molecules.

Parameters
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• datapoints (rdkit.Chem.rdchem.Mol / SMILES string / iterable) – RDKit
Mol, or SMILES string or iterable sequence of RDKit mols/SMILES strings.

• log_every_n (int, default 1000) – Logging messages reported every log_every_n
samples.

Returns
features – A numpy array containing a featurized representation of datapoints.

Return type
np.ndarray

static get_interatomic_distances(conf: Any)→ ndarray
Get interatomic distances for atoms in a molecular conformer.

Parameters
conf (rdkit.Chem.rdchem.Conformer) – Molecule conformer.

Returns
The distances matrix for all atoms in a molecule

Return type
np.ndarray

randomize_coulomb_matrix(m: ndarray)→ List[ndarray]
Randomize a Coulomb matrix as decribed in [1]_:

1. Compute row norms for M in a vector row_norms.

2. Sample a zero-mean unit-variance noise vector e with dimension
equal to row_norms.

3. Permute the rows and columns of M with the permutation that
sorts row_norms + e.

Parameters
m (np.ndarray) – Coulomb matrix.

Returns
List of the random coulomb matrix

Return type
List[np.ndarray]

References

AtomCoordinates

class AtomicCoordinates(use_bohr: bool = False)
Calculate atomic coordinates.

142 Chapter 3. About Us



deepchem, Release 2.8.0

Examples

>>> import deepchem as dc
>>> from rdkit import Chem
>>> mol = Chem.MolFromSmiles('C1C=CC=CC=1')
>>> n_atoms = len(mol.GetAtoms())
>>> n_atoms
6
>>> featurizer = dc.feat.AtomicCoordinates(use_bohr=False)
>>> features = featurizer.featurize([mol])
>>> type(features[0])
<class 'numpy.ndarray'>
>>> features[0].shape # (n_atoms, 3)
(6, 3)

Note: This class requires RDKit to be installed.

__init__(use_bohr: bool = False)

Parameters
use_bohr (bool, optional (default False)) – Whether to use bohr or angstrom as a
coordinate unit.

featurize(datapoints, log_every_n=1000, **kwargs)→ ndarray
Calculate features for molecules.

Parameters
• datapoints (rdkit.Chem.rdchem.Mol / SMILES string / iterable) – RDKit

Mol, or SMILES string or iterable sequence of RDKit mols/SMILES strings.

• log_every_n (int, default 1000) – Logging messages reported every log_every_n
samples.

Returns
features – A numpy array containing a featurized representation of datapoints.

Return type
np.ndarray

BPSymmetryFunctionInput

class BPSymmetryFunctionInput(max_atoms: int)
Calculate symmetry function for each atom in the molecules

This method is described in [1]_.
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Examples

>>> import deepchem as dc
>>> smiles = ['C1C=CC=CC=1']
>>> featurizer = dc.feat.BPSymmetryFunctionInput(max_atoms=10)
>>> features = featurizer.featurize(smiles)
>>> type(features[0])
<class 'numpy.ndarray'>
>>> features[0].shape # (max_atoms, 4)
(10, 4)

References

Note: This class requires RDKit to be installed.

__init__(max_atoms: int)
Initialize this featurizer.

Parameters
max_atoms (int) – The maximum number of atoms expected for molecules this featurizer
will process.

featurize(datapoints, log_every_n=1000, **kwargs)→ ndarray
Calculate features for molecules.

Parameters
• datapoints (rdkit.Chem.rdchem.Mol / SMILES string / iterable) – RDKit

Mol, or SMILES string or iterable sequence of RDKit mols/SMILES strings.

• log_every_n (int, default 1000) – Logging messages reported every log_every_n
samples.

Returns
features – A numpy array containing a featurized representation of datapoints.

Return type
np.ndarray

SmilesToSeq

class SmilesToSeq(char_to_idx: Dict[str, int], max_len: int = 250, pad_len: int = 10)
SmilesToSeq Featurizer takes a SMILES string, and turns it into a sequence. Details taken from [1]_.

SMILES strings smaller than a specified max length (max_len) are padded using the PAD token while those
larger than the max length are not considered. Based on the paper, there is also the option to add extra padding
(pad_len) on both sides of the string after length normalization. Using a character to index (char_to_idx) map-
ping, the SMILES characters are turned into indices and the resulting sequence of indices serves as the input for
an embedding layer.
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References

Note: This class requires RDKit to be installed.

__init__(char_to_idx: Dict[str, int], max_len: int = 250, pad_len: int = 10)
Initialize this class.

Parameters
• char_to_idx (Dict) – Dictionary containing character to index mappings for unique char-

acters

• max_len (int, default 250) – Maximum allowed length of the SMILES string.

• pad_len (int, default 10) – Amount of padding to add on either side of the SMILES
seq

to_seq(smile: List[str])→ ndarray
Turns list of smiles characters into array of indices

remove_pad(characters: List[str])→ List[str]
Removes PAD_TOKEN from the character list.

smiles_from_seq(seq: List[int])→ str
Reconstructs SMILES string from sequence.

featurize(datapoints, log_every_n=1000, **kwargs)→ ndarray
Calculate features for molecules.

Parameters
• datapoints (rdkit.Chem.rdchem.Mol / SMILES string / iterable) – RDKit

Mol, or SMILES string or iterable sequence of RDKit mols/SMILES strings.

• log_every_n (int, default 1000) – Logging messages reported every log_every_n
samples.

Returns
features – A numpy array containing a featurized representation of datapoints.

Return type
np.ndarray

SmilesToImage

class SmilesToImage(img_size: int = 80, res: float = 0.5, max_len: int = 250, img_spec: str = 'std')
Convert SMILES string to an image.

SmilesToImage Featurizer takes a SMILES string, and turns it into an image. Details taken from [1]_.

The default size of for the image is 80 x 80. Two image modes are currently supported - std & engd. std is
the gray scale specification, with atomic numbers as pixel values for atom positions and a constant value of 2
for bond positions. engd is a 4-channel specification, which uses atom properties like hybridization, valency,
charges in addition to atomic number. Bond type is also used for the bonds.

The coordinates of all atoms are computed, and lines are drawn between atoms to indicate bonds. For the re-
spective channels, the atom and bond positions are set to the property values as mentioned in the paper.

3.10. Featurizers 145



deepchem, Release 2.8.0

Examples

>>> import deepchem as dc
>>> smiles = ['CC(=O)OC1=CC=CC=C1C(=O)O']
>>> featurizer = dc.feat.SmilesToImage(img_size=80, img_spec='std')
>>> images = featurizer.featurize(smiles)
>>> type (images[0])
<class 'numpy.ndarray'>
>>> images[0].shape # (img_size, img_size, 1)
(80, 80, 1)

References

Note: This class requires RDKit to be installed.

__init__(img_size: int = 80, res: float = 0.5, max_len: int = 250, img_spec: str = 'std')

Parameters
• img_size (int, default 80) – Size of the image tensor

• res (float, default 0.5) – Displays the resolution of each pixel in Angstrom

• max_len (int, default 250) – Maximum allowed length of SMILES string

• img_spec (str, default std) – Indicates the channel organization of the image tensor

featurize(datapoints, log_every_n=1000, **kwargs)→ ndarray
Calculate features for molecules.

Parameters
• datapoints (rdkit.Chem.rdchem.Mol / SMILES string / iterable) – RDKit

Mol, or SMILES string or iterable sequence of RDKit mols/SMILES strings.

• log_every_n (int, default 1000) – Logging messages reported every log_every_n
samples.

Returns
features – A numpy array containing a featurized representation of datapoints.

Return type
np.ndarray

OneHotFeaturizer

class OneHotFeaturizer(charset: List[str] = ['#', ')', '(', '+', '-', '/', '1', '3', '2', '5', '4', '7', '6', '8', '=', '@', 'C', 'B',
'F', 'I', 'H', 'O', 'N', 'S', '[', ']', '\\', 'c', 'l', 'o', 'n', 'p', 's', 'r'], max_length: int | None =
100)

Encodes any arbitrary string or molecule as a one-hot array.

This featurizer encodes the characters within any given string as a one-hot array. It also works with RDKit
molecules: it can convert RDKit molecules to SMILES strings and then one-hot encode the characters in said
strings.

Standalone Usage:
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>>> import deepchem as dc
>>> featurizer = dc.feat.OneHotFeaturizer()
>>> smiles = ['CCC']
>>> encodings = featurizer.featurize(smiles)
>>> type(encodings[0])
<class 'numpy.ndarray'>
>>> encodings[0].shape
(100, 35)
>>> featurizer.untransform(encodings[0])
'CCC'

Note: This class needs RDKit to be installed in order to accept RDKit molecules as inputs.

It does not need RDKit to be installed to work with arbitrary strings.

__init__(charset: List[str] = ['#', ')', '(', '+', '-', '/', '1', '3', '2', '5', '4', '7', '6', '8', '=', '@', 'C', 'B', 'F', 'I', 'H',
'O', 'N', 'S', '[', ']', '\\', 'c', 'l', 'o', 'n', 'p', 's', 'r'], max_length: int | None = 100)

Initialize featurizer.

Parameters
• charset (List[str] (default ZINC_CHARSET)) – A list of strings, where each string

is length 1 and unique.

• max_length (Optional[int], optional (default 100)) – The max length for
string. If the length of string is shorter than max_length, the string is padded using space.

• None (If max_length is) –

• length (no padding is performed and arbitrary) –

• allowed. (strings are) –

featurize(datapoints: Iterable[Any], log_every_n: int = 1000, **kwargs)→ ndarray
Featurize strings or mols.

Parameters
• datapoints (list) – A list of either strings (str or numpy.str_) or RDKit molecules.

• log_every_n (int, optional (default 1000)) – How many elements are featur-
ized every time a featurization is logged.

pad_smile(smiles: str)→ str
Pad SMILES string to self.pad_length

Parameters
smiles (str) – The SMILES string to be padded.

Returns
SMILES string space padded to self.pad_length

Return type
str

pad_string(string: str)→ str
Pad string to self.pad_length
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Parameters
string (str) – The string to be padded.

Returns
String space padded to self.pad_length

Return type
str

untransform(one_hot_vectors: ndarray)→ str
Convert from one hot representation back to original string

Parameters
one_hot_vectors (np.ndarray) – An array of one hot encoded features.

Returns
Original string for an one hot encoded array.

Return type
str

SparseMatrixOneHotFeaturizer

class SparseMatrixOneHotFeaturizer(charset: List[str] = ['A', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'K', 'L', 'M', 'N', 'P',
'Q', 'R', 'S', 'T', 'V', 'W', 'Y', 'X', 'Z', 'B', 'U', 'O'])

Encodes any arbitrary string as a one-hot array.

This featurizer uses the sklearn OneHotEncoder to create sparse matrix representation of a one-hot array of any
string. It is expected to be used in large datasets that produces memory overload using standard featurizer such
as OneHotFeaturizer. For example: SwissprotDataset

Examples

>>> import deepchem as dc
>>> featurizer = dc.feat.SparseMatrixOneHotFeaturizer()
>>> sequence = "MMMQLA"
>>> encodings = featurizer.featurize([sequence])
>>> encodings[0].shape
(6, 25)

__init__(charset: List[str] = ['A', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'K', 'L', 'M', 'N', 'P', 'Q', 'R', 'S', 'T', 'V', 'W', 'Y',
'X', 'Z', 'B', 'U', 'O'])

Initialize featurizer.

Parameters
charset (List[str] (default code)) – A list of strings, where each string is length 1
and unique.

featurize(datapoints: Iterable[Any], log_every_n: int = 1000, **kwargs)→ ndarray
Featurize strings.

Parameters
• datapoints (list) – A list of either strings (str or numpy.str_)

• log_every_n (int, optional (default 1000)) – How many elements are featur-
ized every time a featurization is logged.
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untransform(one_hot_vectors: spmatrix)→ str
Convert from one hot representation back to original string

Parameters
one_hot_vectors (np.ndarray) – An array of one hot encoded features.

Returns
Original string for an one hot encoded array.

Return type
str

RawFeaturizer

class RawFeaturizer(smiles: bool = False)
Encodes a molecule as a SMILES string or RDKit mol.

This featurizer can be useful when you’re trying to transform a large collection of RDKit mol objects as Smiles
strings, or alternatively as a “no-op” featurizer in your molecular pipeline.

Note: This class requires RDKit to be installed.

__init__(smiles: bool = False)
Initialize this featurizer.

Parameters
smiles (bool, optional (default False)) – If True, encode this molecule as a
SMILES string. Else as a RDKit mol.

featurize(datapoints, log_every_n=1000, **kwargs)→ ndarray
Calculate features for molecules.

Parameters
• datapoints (rdkit.Chem.rdchem.Mol / SMILES string / iterable) – RDKit

Mol, or SMILES string or iterable sequence of RDKit mols/SMILES strings.

• log_every_n (int, default 1000) – Logging messages reported every log_every_n
samples.

Returns
features – A numpy array containing a featurized representation of datapoints.

Return type
np.ndarray

SNAPFeaturizer

class SNAPFeaturizer(use_original_atoms_order=False)
This featurizer is based on the SNAP featurizer used in the paper [1].
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Example

>>> smiles = ["CC(=O)C"]
>>> featurizer = SNAPFeaturizer()
>>> print(featurizer.featurize(smiles))
[GraphData(node_features=[4, 2], edge_index=[2, 6], edge_features=[6, 2])]

References

__init__(use_original_atoms_order=False)

Parameters
use_original_atoms_order (bool, default False) – Whether to use original atom
ordering or canonical ordering (default)

featurize(datapoints, log_every_n=1000, **kwargs)→ ndarray
Calculate features for molecules.

Parameters
• datapoints (rdkit.Chem.rdchem.Mol / SMILES string / iterable) – RDKit

Mol, or SMILES string or iterable sequence of RDKit mols/SMILES strings.

• log_every_n (int, default 1000) – Logging messages reported every log_every_n
samples.

Returns
features – A numpy array containing a featurized representation of datapoints.

Return type
np.ndarray

3.10.2 Molecular Complex Featurizers

These featurizers work with three dimensional molecular complexes.

RdkitGridFeaturizer

class RdkitGridFeaturizer(nb_rotations=0, feature_types=None, ecfp_degree=2, ecfp_power=3,
splif_power=3, box_width=16.0, voxel_width=1.0, flatten=False, verbose=True,
sanitize=False, **kwargs)

Featurizes protein-ligand complex using flat features or a 3D grid (in which each voxel is described with a vector
of features).

__init__(nb_rotations=0, feature_types=None, ecfp_degree=2, ecfp_power=3, splif_power=3,
box_width=16.0, voxel_width=1.0, flatten=False, verbose=True, sanitize=False, **kwargs)

Parameters
• nb_rotations (int, optional (default 0)) – Number of additional random rota-

tions of a complex to generate.

• feature_types (list, optional (default ['ecfp'])) –
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Types of features to calculate. Available types are
flat features -> ‘ecfp_ligand’, ‘ecfp_hashed’, ‘splif_hashed’, ‘hbond_count’ voxel fea-
tures -> ‘ecfp’, ‘splif’, ‘sybyl’, ‘salt_bridge’, ‘charge’, ‘hbond’, ‘pi_stack, ‘cation_pi’

There are also 3 predefined sets of features
’flat_combined’, ‘voxel_combined’, and ‘all_combined’.

Calculated features are concatenated and their order is preserved (features in predefined
sets are in alphabetical order).

• ecfp_degree (int, optional (default 2)) – ECFP radius.

• ecfp_power (int, optional (default 3)) – Number of bits to store ECFP features
(resulting vector will be 2^ecfp_power long)

• splif_power (int, optional (default 3)) – Number of bits to store SPLIF features
(resulting vector will be 2^splif_power long)

• box_width (float, optional (default 16.0)) – Size of a box in which voxel fea-
tures are calculated. Box is centered on a ligand centroid.

• voxel_width (float, optional (default 1.0)) – Size of a 3D voxel in a grid.

• flatten (bool, optional (defaul False)) – Indicate whether calculated features
should be flattened. Output is always flattened if flat features are specified in feature_types.

• verbose (bool, optional (defaul True)) – Verbolity for logging

• sanitize (bool, optional (defaul False)) – If set to True molecules will be san-
itized. Note that calculating some features (e.g. aromatic interactions) require sanitized
molecules.

• **kwargs (dict, optional) – Keyword arguments can be usaed to specify custom cut-
offs and bins (see default values below).

• bins (Default cutoffs and) –

• ------------------------ –

• hbond_dist_bins ([(2.2, 2.5), (2.5, 3.2), (3.2, 4.0)]) –

• hbond_angle_cutoffs ([5, 50, 90]) –

• splif_contact_bins ([(0, 2.0), (2.0, 3.0), (3.0, 4.5)]) –

• ecfp_cutoff (4.5) –

• sybyl_cutoff (7.0) –

• salt_bridges_cutoff (5.0) –

• pi_stack_dist_cutoff (4.4) –

• pi_stack_angle_cutoff (30.0) –

• cation_pi_dist_cutoff (6.5) –

• cation_pi_angle_cutoff (30.0) –

featurize(datapoints: Iterable[Tuple[str, str]] | None = None, log_every_n: int = 100, **kwargs)→
ndarray

Calculate features for mol/protein complexes. :param datapoints: List of filenames (PDB, SDF, etc.) for
ligand molecules and proteins.

Each element should be a tuple of the form (ligand_filename, protein_filename).
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Returns
features – Array of features

Return type
np.ndarray

AtomicConvFeaturizer

class AtomicConvFeaturizer(frag1_num_atoms, frag2_num_atoms, complex_num_atoms,
max_num_neighbors, neighbor_cutoff , strip_hydrogens=True)

This class computes the featurization that corresponds to AtomicConvModel.

This class computes featurizations needed for AtomicConvModel. Given two molecular structures, it computes
a number of useful geometric features. In particular, for each molecule and the global complex, it computes a
coordinates matrix of size (N_atoms, 3) where N_atoms is the number of atoms. It also computes a neighbor-list,
a dictionary with N_atoms elements where neighbor-list[i] is a list of the atoms the i-th atom has as neighbors. In
addition, it computes a z-matrix for the molecule which is an array of shape (N_atoms,) that contains the atomic
number of that atom.

Since the featurization computes these three quantities for each of the two molecules and the complex, a total of
9 quantities are returned for each complex. Note that for efficiency, fragments of the molecules can be provided
rather than the full molecules themselves.

__init__(frag1_num_atoms, frag2_num_atoms, complex_num_atoms, max_num_neighbors,
neighbor_cutoff , strip_hydrogens=True)

Parameters
• frag1_num_atoms (int) – Maximum number of atoms in fragment 1.

• frag2_num_atoms (int) – Maximum number of atoms in fragment 2.

• complex_num_atoms (int) – Maximum number of atoms in complex of frag1/frag2 to-
gether.

• max_num_neighbors (int) – Maximum number of atoms considered as neighbors.

• neighbor_cutoff (float) – Maximum distance (angstroms) for two atoms to be con-
sidered as neighbors. If more than max_num_neighbors atoms fall within this cutoff, the
closest max_num_neighbors will be used.

• strip_hydrogens (bool (default True)) – Remove hydrogens before computing
featurization.

featurize(datapoints: Iterable[Tuple[str, str]] | None = None, log_every_n: int = 100, **kwargs)→
ndarray

Calculate features for mol/protein complexes. :param datapoints: List of filenames (PDB, SDF, etc.) for
ligand molecules and proteins.

Each element should be a tuple of the form (ligand_filename, protein_filename).

Returns
features – Array of features

Return type
np.ndarray

152 Chapter 3. About Us



deepchem, Release 2.8.0

3.10.3 Inorganic Crystal Featurizers

These featurizers work with datasets of inorganic crystals.

MaterialCompositionFeaturizer

Material Composition Featurizers are those that work with datasets of crystal compositions with periodic boundary
conditions. For inorganic crystal structures, these featurizers operate on chemical compositions (e.g. “MoS2”). They
should be applied on systems that have periodic boundary conditions. Composition featurizers are not designed to work
with molecules.

ElementPropertyFingerprint

class ElementPropertyFingerprint(data_source: str = 'matminer')
Fingerprint of elemental properties from composition.

Based on the data source chosen, returns properties and statistics (min, max, range, mean, standard deviation,
mode) for a compound based on elemental stoichiometry. E.g., the average electronegativity of atoms in a crystal
structure. The chemical fingerprint is a vector of these statistics. For a full list of properties and statistics, see
matminer.featurizers.composition.ElementProperty(data_source).feature_labels().

This featurizer requires the optional dependencies pymatgen and matminer. It may be useful when only crystal
compositions are available (and not 3D coordinates).

See references [1]_, [2]_,3,4 for more details.

References

Examples

>>> import deepchem as dc
>>> import pymatgen as mg
>>> comp = mg.core.Composition("Fe2O3")
>>> featurizer = dc.feat.ElementPropertyFingerprint()
>>> features = featurizer.featurize([comp])
>>> type(features[0])
<class 'numpy.ndarray'>
>>> features[0].shape
(65,)

Note: This class requires matminer and Pymatgen to be installed. NaN feature values are automatically con-
verted to 0 by this featurizer.

__init__(data_source: str = 'matminer')

Parameters
data_source (str of "matminer", "magpie" or "deml" (default
"matminer")) – Source for element property data.

3 Matminer: Ward, L. et al. Comput. Mater. Sci. 152, 60-69 (2018).
4 Pymatgen: Ong, S.P. et al. Comput. Mater. Sci. 68, 314-319 (2013).
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featurize(datapoints: Iterable[str] | None = None, log_every_n: int = 1000, **kwargs)→ ndarray
Calculate features for crystal compositions.

Parameters
• datapoints (Iterable[str]) – Iterable sequence of composition strings, e.g. “MoS2”.

• log_every_n (int, default 1000) – Logging messages reported every log_every_n
samples.

Returns
features – A numpy array containing a featurized representation of compositions.

Return type
np.ndarray

ElemNetFeaturizer

class ElemNetFeaturizer

Fixed size vector of length 86 containing raw fractional elemental compositions in the compound. The 86 chosen
elements are based on the original implementation at https://github.com/NU-CUCIS/ElemNet.

Returns a vector containing fractional compositions of each element in the compound.

References

Examples

>>> import deepchem as dc
>>> comp = "Fe2O3"
>>> featurizer = dc.feat.ElemNetFeaturizer()
>>> features = featurizer.featurize([comp])
>>> type(features[0])
<class 'numpy.ndarray'>
>>> features[0].shape
(86,)
>>> round(sum(features[0]))
1

Note: This class requires Pymatgen to be installed.

get_vector(comp: DefaultDict)→ ndarray | None
Converts a dictionary containing element names and corresponding compositional fractions into a vector
of fractions.

Parameters
comp (collections.defaultdict object) – Dictionary mapping element names to frac-
tional compositions.

Returns
fractions – Vector of fractional compositions of each element.

Return type
np.ndarray
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MaterialStructureFeaturizer

Material Structure Featurizers are those that work with datasets of crystals with periodic boundary conditions. For
inorganic crystal structures, these featurizers operate on pymatgen.Structure objects, which include a lattice and 3D
coordinates that specify a periodic crystal structure. They should be applied on systems that have periodic boundary
conditions. Structure featurizers are not designed to work with molecules.

SineCoulombMatrix

class SineCoulombMatrix(max_atoms: int = 100, flatten: bool = True)
Calculate sine Coulomb matrix for crystals.

A variant of Coulomb matrix for periodic crystals.

The sine Coulomb matrix is identical to the Coulomb matrix, except that the inverse distance function is replaced
by the inverse of sin**2 of the vector between sites which are periodic in the dimensions of the crystal lattice.

Features are flattened into a vector of matrix eigenvalues by default for ML-readiness. To ensure that all feature
vectors are equal length, the maximum number of atoms (eigenvalues) in the input dataset must be specified.

This featurizer requires the optional dependencies pymatgen and matminer. It may be useful when crystal struc-
tures with 3D coordinates are available.

See [1]_ for more details.

References

Examples

>>> import deepchem as dc
>>> import pymatgen as mg
>>> lattice = mg.core.Lattice.cubic(4.2)
>>> structure = mg.core.Structure(lattice, ["Cs", "Cl"], [[0, 0, 0], [0.5, 0.5, 0.
→˓5]])
>>> featurizer = dc.feat.SineCoulombMatrix(max_atoms=2)
>>> features = featurizer.featurize([structure])
>>> type(features[0])
<class 'numpy.ndarray'>
>>> features[0].shape # (max_atoms,)
(2,)

Note: This class requires matminer and Pymatgen to be installed.

__init__(max_atoms: int = 100, flatten: bool = True)

Parameters
• max_atoms (int (default 100)) – Maximum number of atoms for any crystal in the

dataset. Used to pad the Coulomb matrix.

• flatten (bool (default True)) – Return flattened vector of matrix eigenvalues.
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featurize(datapoints: Iterable[Dict[str, Any] | Any] | None = None, log_every_n: int = 1000, **kwargs)→
ndarray

Calculate features for crystal structures.

Parameters
• datapoints (Iterable[Union[Dict, pymatgen.core.Structure]]) – Iterable se-

quence of pymatgen structure dictionaries or pymatgen.core.Structure. Please con-
firm the dictionary representations of pymatgen.core.Structure from https://pymatgen.org/
pymatgen.core.structure.html.

• log_every_n (int, default 1000) – Logging messages reported every log_every_n
samples.

Returns
features – A numpy array containing a featurized representation of datapoints.

Return type
np.ndarray

CGCNNFeaturizer

class CGCNNFeaturizer(radius: float = 8.0, max_neighbors: float = 12, step: float = 0.2)
Calculate structure graph features for crystals.

Based on the implementation in Crystal Graph Convolutional Neural Networks (CGCNN). The method con-
structs a crystal graph representation including atom features and bond features (neighbor distances). Neighbors
are determined by searching in a sphere around atoms in the unit cell. A Gaussian filter is applied to neighbor
distances. All units are in angstrom.

This featurizer requires the optional dependency pymatgen. It may be useful when 3D coordinates are available
and when using graph network models and crystal graph convolutional networks.

See [1]_ for more details.

References

Examples

>>> import deepchem as dc
>>> import pymatgen as mg
>>> featurizer = dc.feat.CGCNNFeaturizer()
>>> lattice = mg.core.Lattice.cubic(4.2)
>>> structure = mg.core.Structure(lattice, ["Cs", "Cl"], [[0, 0, 0], [0.5, 0.5, 0.
→˓5]])
>>> features = featurizer.featurize([structure])
>>> feature = features[0]
>>> print(type(feature))
<class 'deepchem.feat.graph_data.GraphData'>

Note: This class requires Pymatgen to be installed.
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__init__(radius: float = 8.0, max_neighbors: float = 12, step: float = 0.2)

Parameters
• radius (float (default 8.0)) – Radius of sphere for finding neighbors of atoms in

unit cell.

• max_neighbors (int (default 12)) – Maximum number of neighbors to consider
when constructing graph.

• step (float (default 0.2)) – Step size for Gaussian filter. This value is used when
building edge features.

featurize(datapoints: Iterable[Dict[str, Any] | Any] | None = None, log_every_n: int = 1000, **kwargs)→
ndarray

Calculate features for crystal structures.

Parameters
• datapoints (Iterable[Union[Dict, pymatgen.core.Structure]]) – Iterable se-

quence of pymatgen structure dictionaries or pymatgen.core.Structure. Please con-
firm the dictionary representations of pymatgen.core.Structure from https://pymatgen.org/
pymatgen.core.structure.html.

• log_every_n (int, default 1000) – Logging messages reported every log_every_n
samples.

Returns
features – A numpy array containing a featurized representation of datapoints.

Return type
np.ndarray

LCNNFeaturizer

class LCNNFeaturizer(structure: Any, aos: List[str], pbc: List[bool], ns: int = 1, na: int = 1, cutoff: float = 6.0)
Calculates the 2-D Surface graph features in 6 different permutations-

Based on the implementation of Lattice Graph Convolution Neural Network (LCNN). This method produces
the Atom wise features ( One Hot Encoding) and Adjacent neighbour in the specified order of permutations.
Neighbors are determined by first extracting a site local environment from the primitive cell, and perform graph
matching and distance matching to find neighbors. First, the template of the Primitive cell needs to be defined
along with periodic boundary conditions and active and spectator site details. structure(Data Point i.e different
configuration of adsorbate atoms) is passed for featurization.

This particular featurization produces a regular-graph (equal number of Neighbors) along with its permutation in
6 symmetric axis. This transformation can be applied when orderering of neighboring of nodes around a site play
an important role in the propert predictions. Due to consideration of local neighbor environment, this current
implementation would be fruitful in finding neighbors for calculating formation energy of adbsorption tasks
where the local. Adsorption turns out to be important in many applications such as catalyst and semiconductor
design.

The permuted neighbors are calculated using the Primitive cells i.e periodic cells in all the data points are built
via lattice transformation of the primitive cell.

Primitive cell Format:

1. Pymatgen structure object with site_properties key value
• “SiteTypes” mentioning if it is a active site “A1” or spectator

site “S1”.
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2. ns , the number of spectator types elements. For “S1” its 1.

3. na , the number of active types elements. For “A1” its 1.

4. aos, the different species of active elements “A1”.

5. pbc, the periodic boundary conditions.

Data point Structure Format(Configuration of Atoms):

1. Pymatgen structure object with site_properties with following key value.
• “SiteTypes”, mentioning if it is a active site “A1” or spectator

site “S1”.

• “oss”, different occupational sites. For spectator sites make it -1.

It is highly recommended that cells of data are directly redefined from the primitive cell, specifically, the relative
coordinates between sites are consistent so that the lattice is non-deviated.

References

Examples

>>> import deepchem as dc
>>> from pymatgen.core import Structure
>>> import numpy as np
>>> PRIMITIVE_CELL = {
... "lattice": [[2.818528, 0.0, 0.0],
... [-1.409264, 2.440917, 0.0],
... [0.0, 0.0, 25.508255]],
... "coords": [[0.66667, 0.33333, 0.090221],
... [0.33333, 0.66667, 0.18043936],
... [0.0, 0.0, 0.27065772],
... [0.66667, 0.33333, 0.36087608],
... [0.33333, 0.66667, 0.45109444],
... [0.0, 0.0, 0.49656991]],
... "species": ['H', 'H', 'H', 'H', 'H', 'He'],
... "site_properties": {'SiteTypes': ['S1', 'S1', 'S1', 'S1', 'S1', 'A1']}
... }
>>> PRIMITIVE_CELL_INF0 = {
... "cutoff": np.around(6.00),
... "structure": Structure(**PRIMITIVE_CELL),
... "aos": ['1', '0', '2'],
... "pbc": [True, True, False],
... "ns": 1,
... "na": 1
... }
>>> DATA_POINT = {
... "lattice": [[1.409264, -2.440917, 0.0],
... [4.227792, 2.440917, 0.0],
... [0.0, 0.0, 23.17559]],
... "coords": [[0.0, 0.0, 0.099299],
... [0.0, 0.33333, 0.198598],
... [0.5, 0.16667, 0.297897],
... [0.0, 0.0, 0.397196],

(continues on next page)
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(continued from previous page)

... [0.0, 0.33333, 0.496495],

... [0.5, 0.5, 0.099299],

... [0.5, 0.83333, 0.198598],

... [0.0, 0.66667, 0.297897],

... [0.5, 0.5, 0.397196],

... [0.5, 0.83333, 0.496495],

... [0.0, 0.66667, 0.54654766],

... [0.5, 0.16667, 0.54654766]],

... "species": ['H', 'H', 'H', 'H', 'H', 'H',

... 'H', 'H', 'H', 'H', 'He', 'He'],

... "site_properties": {

... "SiteTypes": ['S1', 'S1', 'S1', 'S1', 'S1',

... 'S1', 'S1', 'S1', 'S1', 'S1',

... 'A1', 'A1'],

... "oss": ['-1', '-1', '-1', '-1', '-1', '-1',

... '-1', '-1', '-1', '-1', '0', '2']

... }

... }
>>> featuriser = dc.feat.LCNNFeaturizer(**PRIMITIVE_CELL_INF0)
>>> print(type(featuriser._featurize(Structure(**DATA_POINT))))
<class 'deepchem.feat.graph_data.GraphData'>

Notes

This Class requires pymatgen , networkx , scipy installed.

__init__(structure: Any, aos: List[str], pbc: List[bool], ns: int = 1, na: int = 1, cutoff: float = 6.0)

Parameters
• structure (: PymatgenStructure) – Pymatgen Structure object of the primitive cell

used for calculating neighbors from lattice transformations.It also requires site_properties
attribute with “Sitetypes”(Active or spectator site).

• aos (List[str]) – A list of all the active site species. For the Pt, N, NO configuration set
it as [‘0’, ‘1’, ‘2’]

• pbc (List[bool]) – Periodic Boundary Condition

• ns (int (default 1)) – The number of spectator types elements. For “S1” its 1.

• na (int (default 1)) – the number of active types elements. For “A1” its 1.

• cutoff (float (default 6.00)) – Cutoff of radius for getting local environment.Only
used down to 2 digits.

featurize(datapoints: Iterable[Dict[str, Any] | Any] | None = None, log_every_n: int = 1000, **kwargs)→
ndarray

Calculate features for crystal structures.

Parameters
• datapoints (Iterable[Union[Dict, pymatgen.core.Structure]]) – Iterable se-

quence of pymatgen structure dictionaries or pymatgen.core.Structure. Please con-
firm the dictionary representations of pymatgen.core.Structure from https://pymatgen.org/
pymatgen.core.structure.html.
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• log_every_n (int, default 1000) – Logging messages reported every log_every_n
samples.

Returns
features – A numpy array containing a featurized representation of datapoints.

Return type
np.ndarray

3.10.4 Biological Sequence Featurizers

These featurizers work with biological sequences.

SAMFeaturizer

class SAMFeaturizer(max_records=None)
Featurizes SAM files, that store biological sequences aligned to a reference sequence. This class extracts Query
Name, Query Sequence, Query Length, Reference Name,Reference Start, CIGAR and Mapping Quality of each
read in a SAM file.

This is the default featurizer used by SAMLoader, and it extracts the following fields from each read in each SAM
file in the given order:- - Column 0: Query Name - Column 1: Query Sequence - Column 2: Query Length -
Column 3: Reference Name - Column 4: Reference Start - Column 5: CIGAR - Column 6: Mapping Quality

Examples

>>> from deepchem.data.data_loader import SAMLoader
>>> import deepchem as dc
>>> inputs = 'deepchem/data/tests/example.sam'
>>> featurizer = dc.feat.SAMFeaturizer()
>>> features = featurizer.featurize(inputs)
>>> type(features[0])
<class 'numpy.ndarray'>

Note: This class requires pysam to be installed. Pysam can be used with Linux or MacOS X. To use Pysam on
Windows, use Windows Subsystem for Linux(WSL).

__init__(max_records=None)
Initialize SAMFeaturizer.

Parameters
max_records (int or None, optional) – The maximum number of records to extract
from the SAM file. If None, all records will be extracted.

featurize(datapoints: Iterable[Any], log_every_n: int = 1000, **kwargs)→ ndarray
Calculate features for datapoints.

Parameters
• datapoints (Iterable[Any]) – A sequence of objects that you’d like to featurize. Sub-

classses of Featurizer should instantiate the _featurize method that featurizes objects in the
sequence.

160 Chapter 3. About Us



deepchem, Release 2.8.0

• log_every_n (int, default 1000) – Logs featurization progress every log_every_n
steps.

Returns
A numpy array containing a featurized representation of datapoints.

Return type
np.ndarray

BAMFeaturizer

class BAMFeaturizer(max_records=None)
Featurizes BAM files, that are compressed binary representations of SAM (Sequence Alignment Map) files.
This class extracts Query Name, Query Sequence, Query Length, Reference Name, Reference Start, CIGAR and
Mapping Quality of the alignment in the BAM file.

This is the default featurizer used by BAMLoader, and it extracts the following fields from each read in each
BAM file in the given order:- - Column 0: Query Name - Column 1: Query Sequence - Column 2: Query Length
- Column 3: Reference Name - Column 4: Reference Start - Column 5: CIGAR - Column 6: Mapping Quality

Examples

>>> from deepchem.data.data_loader import BAMLoader
>>> import deepchem as dc
>>> inputs = 'deepchem/data/tests/example.bam'
>>> featurizer = dc.feat.BAMFeaturizer()
>>> features = featurizer.featurize(inputs)
>>> type(features[0])
<class 'numpy.ndarray'>

Note: This class requires pysam to be installed. Pysam can be used with Linux or MacOS X. To use Pysam on
Windows, use Windows Subsystem for Linux(WSL).

__init__(max_records=None)
Initialize BAMFeaturizer.

Parameters
max_records (int or None, optional) – The maximum number of records to extract
from the BAM file. If None, all records will be extracted.

featurize(datapoints: Iterable[Any], log_every_n: int = 1000, **kwargs)→ ndarray
Calculate features for datapoints.

Parameters
• datapoints (Iterable[Any]) – A sequence of objects that you’d like to featurize. Sub-

classses of Featurizer should instantiate the _featurize method that featurizes objects in the
sequence.

• log_every_n (int, default 1000) – Logs featurization progress every log_every_n
steps.

Returns
A numpy array containing a featurized representation of datapoints.
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Return type
np.ndarray

CRAMFeaturizer

class CRAMFeaturizer(max_records=None)
Featurizes CRAM files, that are compressed columnar file format for storing biological sequences aligned to a
reference sequence. This class extracts Query Name, Query Sequence, Query Length, Reference Name, Refer-
ence Start, CIGAR and Mapping Quality of the alignment in the CRAM file.

This is the default featurizer used by CRAMLoader, and it extracts the following fields from each read in each
CRAM file in the given order:- - Column 0: Query Name - Column 1: Query Sequence - Column 2: Query
Length - Column 3: Reference Name - Column 4: Reference Start - Column 5: CIGAR - Column 6: Mapping
Quality

Examples

>>> from deepchem.data.data_loader import CRAMLoader
>>> import deepchem as dc
>>> inputs = 'deepchem/data/tests/example.cram'
>>> featurizer = dc.feat.CRAMFeaturizer()
>>> features = featurizer.featurize(inputs)
>>> type(features[0])
<class 'numpy.ndarray'>

Note: This class requires pysam to be installed. Pysam can be used with Linux or MacOS X. To use Pysam on
Windows, use Windows Subsystem for Linux(WSL).

__init__(max_records=None)
Initialize CRAMFeaturizer.

Parameters
max_records (int or None, optional) – The maximum number of records to extract
from the CRAM file. If None, all records will be extracted.

featurize(datapoints: Iterable[Any], log_every_n: int = 1000, **kwargs)→ ndarray
Calculate features for datapoints.

Parameters
• datapoints (Iterable[Any]) – A sequence of objects that you’d like to featurize. Sub-

classses of Featurizer should instantiate the _featurize method that featurizes objects in the
sequence.

• log_every_n (int, default 1000) – Logs featurization progress every log_every_n
steps.

Returns
A numpy array containing a featurized representation of datapoints.

Return type
np.ndarray
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3.10.5 Molecule Tokenizers

A tokenizer is in charge of preparing the inputs for a natural language processing model. For many scientific applica-
tions, it is possible to treat inputs as “words”/”sentences” and use NLP methods to make meaningful predictions. For
example, SMILES strings or DNA sequences have grammatical structure and can be usefully modeled with NLP tech-
niques. DeepChem provides some scientifically relevant tokenizers for use in different applications. These tokenizers
are based on those from the Huggingface transformers library (which DeepChem tokenizers inherit from).

The base classes PreTrainedTokenizer and PreTrainedTokenizerFast implements the common methods for encoding
string inputs in model inputs and instantiating/saving python tokenizers either from a local file or directory or from a
pretrained tokenizer provided by the library (downloaded from HuggingFace’s AWS S3 repository).

PreTrainedTokenizer (transformers.PreTrainedTokenizer) thus implements the main methods for using all the tokeniz-
ers:

• Tokenizing (spliting strings in sub-word token strings), converting tokens strings to ids and back, and encod-
ing/decoding (i.e. tokenizing + convert to integers)

• Adding new tokens to the vocabulary in a way that is independent of the underlying structure (BPE, Sentence-
Piece. . . )

• Managing special tokens like mask, beginning-of-sentence, etc tokens (adding them, assigning them to attributes
in the tokenizer for easy access and making sure they are not split during tokenization)

BatchEncoding holds the output of the tokenizer’s encoding methods (__call__, encode_plus and batch_encode_plus)
and is derived from a Python dictionary. When the tokenizer is a pure python tokenizer, this class behave just like a stan-
dard python dictionary and hold the various model inputs computed by these methodes (input_ids, attention_mask. . . ).
For more details on the base tokenizers which the DeepChem tokenizers inherit from, please refer to the following:
HuggingFace tokenizers docs

Tokenization methods on string-based corpuses in the life sciences are becoming increasingly popular for NLP-based
applications to chemistry and biology. One such example is ChemBERTa, a transformer for molecular property predic-
tion. DeepChem offers a tutorial for utilizing ChemBERTa using an alternate tokenizer, a Byte-Piece Encoder, which
can be found here.

SmilesTokenizer

The dc.feat.SmilesTokenizer module inherits from the BertTokenizer class in transformers. It runs a WordPiece
tokenization algorithm over SMILES strings using the tokenisation SMILES regex developed by Schwaller et. al.

The SmilesTokenizer employs an atom-wise tokenization strategy using the following Regex expression:

SMI_REGEX_PATTERN = "(\[[^\]]+]|Br?|Cl?|N|O|S|P|F|I|b|c|n|o|s|p|\(|\)|\.|=|#||\+|\\\\\/
→˓|:||@|\?|>|\*|\$|\%[0–9]{2}|[0–9])"

To use, please install the transformers package using the following pip command:

pip install transformers

References:

• RXN Mapper: Unsupervised Attention-Guided Atom-Mapping

• Molecular Transformer: Unsupervised Attention-Guided Atom-Mapping

class SmilesTokenizer(vocab_file: str = '', **kwargs)
Creates the SmilesTokenizer class. The tokenizer heavily inherits from the BertTokenizer implementation found
in Huggingface’s transformers library. It runs a WordPiece tokenization algorithm over SMILES strings using
the tokenisation SMILES regex developed by Schwaller et. al.
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Please see https://github.com/huggingface/transformers and https://github.com/rxn4chemistry/rxnfp for more
details.

Examples

>>> from deepchem.feat.smiles_tokenizer import SmilesTokenizer
>>> current_dir = os.path.dirname(os.path.realpath(__file__))
>>> vocab_path = os.path.join(current_dir, 'tests/data', 'vocab.txt')
>>> tokenizer = SmilesTokenizer(vocab_path)
>>> print(tokenizer.encode("CC(=O)OC1=CC=CC=C1C(=O)O"))
[12, 16, 16, 17, 22, 19, 18, 19, 16, 20, 22, 16, 16, 22, 16, 16, 22, 16, 20, 16, 17,
→˓ 22, 19, 18, 19, 13]

References

Note: This class requires huggingface’s transformers and tokenizers libraries to be installed.

__init__(vocab_file: str = '', **kwargs)
Constructs a SmilesTokenizer.

Parameters
vocab_file (str) – Path to a SMILES character per line vocabulary file. Default vocab file
is found in deepchem/feat/tests/data/vocab.txt

property vocab_size

Size of the base vocabulary (without the added tokens).

Type
int

convert_tokens_to_string(tokens: List[str])
Converts a sequence of tokens (string) in a single string.

Parameters
tokens (List[str]) – List of tokens for a given string sequence.

Returns
out_string – Single string from combined tokens.

Return type
str

add_special_tokens_ids_single_sequence(token_ids: List[int | None])
Adds special tokens to the a sequence for sequence classification tasks.

A BERT sequence has the following format: [CLS] X [SEP]

Parameters
token_ids (list[int]) – list of tokenized input ids. Can be obtained using the encode or
encode_plus methods.

add_special_tokens_single_sequence(tokens: List[str])
Adds special tokens to the a sequence for sequence classification tasks. A BERT sequence has the following
format: [CLS] X [SEP]
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Parameters
tokens (List[str]) – List of tokens for a given string sequence.

add_special_tokens_ids_sequence_pair(token_ids_0: List[int | None], token_ids_1: List[int | None])
→ List[int | None]

Adds special tokens to a sequence pair for sequence classification tasks. A BERT sequence pair has the
following format: [CLS] A [SEP] B [SEP]

Parameters
• token_ids_0 (List[int]) – List of ids for the first string sequence in the sequence pair

(A).

• token_ids_1 (List[int]) – List of tokens for the second string sequence in the sequence
pair (B).

add_padding_tokens(token_ids: List[int | None], length: int, right: bool = True)→ List[int | None]
Adds padding tokens to return a sequence of length max_length. By default padding tokens are added to
the right of the sequence.

Parameters
• token_ids (list[optional[int]]) – list of tokenized input ids. Can be obtained using

the encode or encode_plus methods.

• length (int) – TODO

• right (bool, default True) – TODO

Returns
TODO

Return type
List[int]

save_vocabulary(save_directory: str, filename_prefix: str | None = None)
Save the tokenizer vocabulary to a file.

Parameters
vocab_path (obj: str) – The directory in which to save the SMILES character per line
vocabulary file. Default vocab file is found in deepchem/feat/tests/data/vocab.txt

Returns
vocab_file – Paths to the files saved. typle with string to a SMILES character per line vocab-
ulary file. Default vocab file is found in deepchem/feat/tests/data/vocab.txt

Return type
Tuple

BasicSmilesTokenizer

The dc.feat.BasicSmilesTokenizer module uses a regex tokenization pattern to tokenise SMILES strings. The
regex is developed by Schwaller et. al. The tokenizer is to be used on SMILES in cases where the user wishes to not
rely on the transformers API.

References:

• Molecular Transformer: Unsupervised Attention-Guided Atom-Mapping
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class BasicSmilesTokenizer(regex_pattern: str = '(\\[[^\\]]+]|Br?|Cl?|N|O|S|P|F|I|b|c|n|o|s|p|\\(|\\)|\\.|=|#|-
|\\+|\\\\|\\/|:|~|@|\\?|>>?|\\*|\\$|\\%[0-9]{2}|[0-9])')

Run basic SMILES tokenization using a regex pattern developed by Schwaller et. al. This tokenizer is to be used
when a tokenizer that does not require the transformers library by HuggingFace is required.

Examples

>>> from deepchem.feat.smiles_tokenizer import BasicSmilesTokenizer
>>> tokenizer = BasicSmilesTokenizer()
>>> print(tokenizer.tokenize("CC(=O)OC1=CC=CC=C1C(=O)O"))
['C', 'C', '(', '=', 'O', ')', 'O', 'C', '1', '=', 'C', 'C', '=', 'C', 'C', '=', 'C
→˓', '1', 'C', '(', '=', 'O', ')', 'O']

References

__init__(regex_pattern: str = '(\\[[^\\]]+]|Br?|Cl?|N|O|S|P|F|I|b|c|n|o|s|p|\\(|\\)|\\.|=|#|-
|\\+|\\\\|\\/|:|~|@|\\?|>>?|\\*|\\$|\\%[0-9]{2}|[0-9])')

Constructs a BasicSMILESTokenizer.

Parameters
regex (string) – SMILES token regex

tokenize(text)
Basic Tokenization of a SMILES.

HuggingFaceFeaturizer

class HuggingFaceFeaturizer(tokenizer: transformers.tokenization_utils_fast.PreTrainedTokenizerFast)
Wrapper class that wraps HuggingFace tokenizers as DeepChem featurizers

The HuggingFaceFeaturizer wrapper provides a wrapper around Hugging Face tokenizers allowing them to be
used as DeepChem featurizers. This might be useful in scenarios where user needs to use a hugging face tokenizer
when loading a dataset.

Example

>>> from deepchem.feat import HuggingFaceFeaturizer
>>> from transformers import RobertaTokenizerFast
>>> hf_tokenizer = RobertaTokenizerFast.from_pretrained("seyonec/PubChem10M_SMILES_
→˓BPE_60k")
>>> featurizer = HuggingFaceFeaturizer(tokenizer=hf_tokenizer)
>>> result = featurizer.featurize(['CC(=O)C'])

__init__(tokenizer: transformers.tokenization_utils_fast.PreTrainedTokenizerFast)
Initializes a tokenizer wrapper

Parameters
tokenizer (transformers.tokenization_utils_fast.
PreTrainedTokenizerFast) – The tokenizer to use for featurization
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featurize(datapoints: Iterable[Any], log_every_n: int = 1000, **kwargs)→ ndarray
Calculate features for datapoints.

Parameters
• datapoints (Iterable[Any]) – A sequence of objects that you’d like to featurize. Sub-

classses of Featurizer should instantiate the _featurize method that featurizes objects in the
sequence.

• log_every_n (int, default 1000) – Logs featurization progress every log_every_n
steps.

Returns
A numpy array containing a featurized representation of datapoints.

Return type
np.ndarray

GroverAtomVocabTokenizer

class GroverAtomVocabTokenizer(fname: str)
Grover Atom Vocabulary Tokenizer

The Grover Atom vocab tokenizer is used for tokenizing an atom using a vocabulary generated by GroverAtomVo-
cabularyBuilder.

Example

>>> import tempfile
>>> import deepchem as dc
>>> from deepchem.feat.vocabulary_builders.grover_vocab import␣
→˓GroverAtomVocabularyBuilder
>>> file = tempfile.NamedTemporaryFile()
>>> dataset = dc.data.NumpyDataset(X=[['CC(=O)C'], ['CCC']])
>>> vocab = GroverAtomVocabularyBuilder()
>>> vocab.build(dataset)
>>> vocab.save(file.name) # build and save the vocabulary
>>> atom_tokenizer = GroverAtomVocabTokenizer(file.name)
>>> mol = Chem.MolFromSmiles('CC(=O)C')
>>> atom_tokenizer.featurize([(mol, mol.GetAtomWithIdx(0))])[0]
2

Parameters
fname (str) – Filename of vocabulary generated by GroverAtomVocabularyBuilder

__init__(fname: str)
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GroverBondVocabTokenizer

class GroverBondVocabTokenizer(fname: str)
Grover Bond Vocabulary Tokenizer

The Grover Bond vocab tokenizer is used for tokenizing a bond using a vocabulary generated by GroverBond-
VocabularyBuilder.

Example

>>> import tempfile
>>> import deepchem as dc
>>> from deepchem.feat.vocabulary_builders.grover_vocab import␣
→˓GroverBondVocabularyBuilder
>>> file = tempfile.NamedTemporaryFile()
>>> dataset = dc.data.NumpyDataset(X=[['CC(=O)C'], ['CCC']])
>>> vocab = GroverBondVocabularyBuilder()
>>> vocab.build(dataset)
>>> vocab.save(file.name) # build and save the vocabulary
>>> bond_tokenizer = GroverBondVocabTokenizer(file.name)
>>> mol = Chem.MolFromSmiles('CC(=O)C')
>>> bond_tokenizer.featurize([(mol, mol.GetBondWithIdx(0))])[0]
2

Parameters
fname (str) – Filename of vocabulary generated by GroverAtomVocabularyBuilder

__init__(fname: str)

3.10.6 Vocabulary Builders

Tokenizers uses a vocabulary to tokenize the datapoint. To build a vocabulary, an algorithm which generates vocabulary
from a corpus is required. A corpus is usually a collection of molecules, DNA sequences etc. DeepChem provides the
following algorithms to build vocabulary from a corpus. A vocabulary builder is not a featurizer. It is an utility which
helps the tokenizers to featurize datapoints.

class GroverAtomVocabularyBuilder(max_size: int | None = None)
Atom Vocabulary Builder for Grover

This module can be used to generate atom vocabulary from SMILES strings for the GROVER pretraining task.
For each atom in a molecule, the vocabulary context is the node-edge-count of the atom where node is the
neighboring atom, edge is the type of bond (single bond or double bound) and count is the number of such
node-edge pairs for the atom in its neighborhood. For example, for the molecule ‘CC(=O)C’, the context of the
first carbon atom is C-SINGLE1 because it’s neighbor is C atom, the type of bond is SINGLE bond and the
count of such bonds is 1. The context of the second carbon atom is C-SINGLE2 and O-DOUBLE1 because it
is connected to two carbon atoms by a single bond and 1 O atom by a double bond. The vocabulary of an atom
is then computed as the atom-symbol_contexts where the contexts are sorted in alphabetical order when there
are multiple contexts. For example, the vocabulary of second C is C_C-SINGLE2_O-DOUBLE1. The algorithm
enumerates vocabulary of all atoms in the dataset and makes a vocabulary to index mapping by sorting the
vocabulary by frequency and then alphabetically.

The algorithm enumerates vocabulary of all atoms in the dataset and makes a vocabulary to index mapping by
sorting the vocabulary by frequency and then alphabetically. The max_size parameter can be used for setting the
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size of the vocabulary. When this parameter is set, the algorithm stops adding new words to the index when the
vocabulary size reaches max_size.

Parameters
max_size (int (optional)) – Maximum size of vocabulary

Example

>>> import tempfile
>>> import deepchem as dc
>>> from rdkit import Chem
>>> file = tempfile.NamedTemporaryFile()
>>> dataset = dc.data.NumpyDataset(X=[['CCC'], ['CC(=O)C']])
>>> vocab = GroverAtomVocabularyBuilder()
>>> vocab.build(dataset)
>>> vocab.stoi
{'<pad>': 0, '<other>': 1, 'C_C-SINGLE1': 2, 'C_C-SINGLE2': 3, 'C_C-SINGLE2_O-
→˓DOUBLE1': 4, 'O_C-DOUBLE1': 5}
>>> vocab.save(file.name)
>>> loaded_vocab = GroverAtomVocabularyBuilder.load(file.name)
>>> mol = Chem.MolFromSmiles('CC(=O)C')
>>> loaded_vocab.encode(mol, mol.GetAtomWithIdx(1))
4

Reference

__init__(max_size: int | None = None)

build(dataset: Dataset, log_every_n: int = 1000)→ None
Builds vocabulary

Parameters
• dataset (dc.data.Dataset) – A dataset object with SMILEs strings in X attribute.

• log_every_n (int, default 1000) – Logs vocabulary building progress every
log_every_n steps.

build_from_csv(csv_path: str, smiles_field: str, log_every_n: int = 1000)→ None
Builds vocabulary from csv file

Parameters
• csv_path (str) – Path to csv file containing smiles string

• smiles_field (str) – Name of column containing smiles string

• log_every_n (int, default 1000) – Logs vocabulary building progress every
log_every_n steps.

save(fname: str)→ None
Saves a vocabulary in json format
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Parameter

fname: str
Filename to save vocabulary

classmethod load(fname: str)→ GroverAtomVocabularyBuilder
Loads vocabulary from the specified json file

Parameters
fname (str) – JSON file containing vocabulary

Returns
vocab – A grover atom vocabulary builder which can be used for encoding

Return type
GroverAtomVocabularyBuilder

static atom_to_vocab(mol: Any, atom: Any)→ str
Convert atom to vocabulary.

Parameters
• mol (RDKitMol) – an molecule object

• atom (RDKitAtom) – the target atom.

Returns
vocab – The generated atom vocabulary with its contexts.

Return type
str

Example

>>> from rdkit import Chem
>>> mol = Chem.MolFromSmiles('[C@@H](C)C(=O)O')
>>> GroverAtomVocabularyBuilder.atom_to_vocab(mol, mol.GetAtomWithIdx(0))
'C_C-SINGLE2'
>>> GroverAtomVocabularyBuilder.atom_to_vocab(mol, mol.GetAtomWithIdx(3))
'O_C-DOUBLE1'

encode(mol: Any, atom: Any)→ str
Encodes an atom in a molecule

Parameter

mol: RDKitMol
An RDKitMol object

atom: RDKitAtom
An atom in the molecule

returns
vocab – The vocabulary of the atom in the molecule.

rtype
str
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class GroverAtomVocabularyBuilder(max_size: int | None = None)
Atom Vocabulary Builder for Grover

This module can be used to generate atom vocabulary from SMILES strings for the GROVER pretraining task.
For each atom in a molecule, the vocabulary context is the node-edge-count of the atom where node is the
neighboring atom, edge is the type of bond (single bond or double bound) and count is the number of such
node-edge pairs for the atom in its neighborhood. For example, for the molecule ‘CC(=O)C’, the context of the
first carbon atom is C-SINGLE1 because it’s neighbor is C atom, the type of bond is SINGLE bond and the
count of such bonds is 1. The context of the second carbon atom is C-SINGLE2 and O-DOUBLE1 because it
is connected to two carbon atoms by a single bond and 1 O atom by a double bond. The vocabulary of an atom
is then computed as the atom-symbol_contexts where the contexts are sorted in alphabetical order when there
are multiple contexts. For example, the vocabulary of second C is C_C-SINGLE2_O-DOUBLE1. The algorithm
enumerates vocabulary of all atoms in the dataset and makes a vocabulary to index mapping by sorting the
vocabulary by frequency and then alphabetically.

The algorithm enumerates vocabulary of all atoms in the dataset and makes a vocabulary to index mapping by
sorting the vocabulary by frequency and then alphabetically. The max_size parameter can be used for setting the
size of the vocabulary. When this parameter is set, the algorithm stops adding new words to the index when the
vocabulary size reaches max_size.

Parameters
max_size (int (optional)) – Maximum size of vocabulary

Example

>>> import tempfile
>>> import deepchem as dc
>>> from rdkit import Chem
>>> file = tempfile.NamedTemporaryFile()
>>> dataset = dc.data.NumpyDataset(X=[['CCC'], ['CC(=O)C']])
>>> vocab = GroverAtomVocabularyBuilder()
>>> vocab.build(dataset)
>>> vocab.stoi
{'<pad>': 0, '<other>': 1, 'C_C-SINGLE1': 2, 'C_C-SINGLE2': 3, 'C_C-SINGLE2_O-
→˓DOUBLE1': 4, 'O_C-DOUBLE1': 5}
>>> vocab.save(file.name)
>>> loaded_vocab = GroverAtomVocabularyBuilder.load(file.name)
>>> mol = Chem.MolFromSmiles('CC(=O)C')
>>> loaded_vocab.encode(mol, mol.GetAtomWithIdx(1))
4

Reference

__init__(max_size: int | None = None)

build(dataset: Dataset, log_every_n: int = 1000)→ None
Builds vocabulary

Parameters
• dataset (dc.data.Dataset) – A dataset object with SMILEs strings in X attribute.

• log_every_n (int, default 1000) – Logs vocabulary building progress every
log_every_n steps.
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build_from_csv(csv_path: str, smiles_field: str, log_every_n: int = 1000)→ None
Builds vocabulary from csv file

Parameters
• csv_path (str) – Path to csv file containing smiles string

• smiles_field (str) – Name of column containing smiles string

• log_every_n (int, default 1000) – Logs vocabulary building progress every
log_every_n steps.

save(fname: str)→ None
Saves a vocabulary in json format

Parameter

fname: str
Filename to save vocabulary

classmethod load(fname: str)→ GroverAtomVocabularyBuilder
Loads vocabulary from the specified json file

Parameters
fname (str) – JSON file containing vocabulary

Returns
vocab – A grover atom vocabulary builder which can be used for encoding

Return type
GroverAtomVocabularyBuilder

static atom_to_vocab(mol: Any, atom: Any)→ str
Convert atom to vocabulary.

Parameters
• mol (RDKitMol) – an molecule object

• atom (RDKitAtom) – the target atom.

Returns
vocab – The generated atom vocabulary with its contexts.

Return type
str

Example

>>> from rdkit import Chem
>>> mol = Chem.MolFromSmiles('[C@@H](C)C(=O)O')
>>> GroverAtomVocabularyBuilder.atom_to_vocab(mol, mol.GetAtomWithIdx(0))
'C_C-SINGLE2'
>>> GroverAtomVocabularyBuilder.atom_to_vocab(mol, mol.GetAtomWithIdx(3))
'O_C-DOUBLE1'

encode(mol: Any, atom: Any)→ str
Encodes an atom in a molecule
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Parameter

mol: RDKitMol
An RDKitMol object

atom: RDKitAtom
An atom in the molecule

returns
vocab – The vocabulary of the atom in the molecule.

rtype
str

3.10.7 Sequence Featurizers

PFMFeaturizer

The dc.feat.PFMFeaturizer module implements a featurizer for position frequency matrices. This takes in a list
of multisequence alignments and returns a list of position frequency matrices.

class PFMFeaturizer(charset: List[str] = ['A', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'K', 'L', 'M', 'N', 'P', 'Q', 'R', 'S', 'T', 'V',
'W', 'Y', 'X', 'Z', 'B', 'U', 'O'], max_length: int | None = 100)

Encodes a list position frequency matrices for a given list of multiple sequence alignments

The default character set is 25 amino acids. If you want to use a different character set, such as nucleotides,
simply pass in a list of character strings in the featurizer constructor.

The max_length parameter is the maximum length of the sequences to be featurized. If you want to featurize
longer sequences, modify the max_length parameter in the featurizer constructor.

The final row in the position frequency matrix is the unknown set, if there are any characters which are not
included in the charset.

Examples

>>> from deepchem.feat.sequence_featurizers import PFMFeaturizer
>>> from deepchem.data import NumpyDataset
>>> msa = NumpyDataset(X=[['ABC','BCD'],['AAA','AAB']], ids=[['seq01','seq02'],[
→˓'seq11','seq12']])
>>> seqs = msa.X
>>> featurizer = PFMFeaturizer()
>>> pfm = featurizer.featurize(seqs)
>>> pfm.shape
(2, 26, 100)

__init__(charset: List[str] = ['A', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'K', 'L', 'M', 'N', 'P', 'Q', 'R', 'S', 'T', 'V', 'W', 'Y',
'X', 'Z', 'B', 'U', 'O'], max_length: int | None = 100)

Initialize featurizer.

Parameters
• charset (List[str] (default CHARSET)) – A list of strings, where each string is

length 1 and unique.
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• max_length (int, optional (default 25)) – Maximum length of sequences to be
featurized.

3.10.8 Other Featurizers

BertFeaturizer

class BertFeaturizer(tokenizer: BertTokenizerFast)
Bert Featurizer.

Bert Featurizer. The Bert Featurizer is a wrapper class for HuggingFace’s BertTokenizerFast. This class intends
to allow users to use the BertTokenizer API while remaining inside the DeepChem ecosystem.

Examples

>>> from deepchem.feat import BertFeaturizer
>>> from transformers import BertTokenizerFast
>>> tokenizer = BertTokenizerFast.from_pretrained("Rostlab/prot_bert", do_lower_
→˓case=False)
>>> featurizer = BertFeaturizer(tokenizer)
>>> feats = featurizer.featurize(['D L I P [MASK] L V T'])

Notes

Examples are based on RostLab’s ProtBert documentation.

__init__(tokenizer: BertTokenizerFast)

featurize(datapoints: Iterable[Any], log_every_n: int = 1000, **kwargs)→ ndarray
Calculate features for datapoints.

Parameters
• datapoints (Iterable[Any]) – A sequence of objects that you’d like to featurize. Sub-

classses of Featurizer should instantiate the _featurize method that featurizes objects in the
sequence.

• log_every_n (int, default 1000) – Logs featurization progress every log_every_n
steps.

Returns
A numpy array containing a featurized representation of datapoints.

Return type
np.ndarray
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RobertaFeaturizer

class RobertaFeaturizer(**kwargs)
Roberta Featurizer.

The Roberta Featurizer is a wrapper class of the Roberta Tokenizer, which is used by Huggingface’s transformers
library for tokenizing large corpuses for Roberta Models. Please confirm the details in [1]_.

Please see https://github.com/huggingface/transformers and https://github.com/seyonechithrananda/
bert-loves-chemistry for more details.

Examples

>>> from deepchem.feat import RobertaFeaturizer
>>> smiles = ["Cn1c(=O)c2c(ncn2C)n(C)c1=O", "CC(=O)N1CN(C(C)=O)C(O)C1O"]
>>> featurizer = RobertaFeaturizer.from_pretrained("seyonec/SMILES_tokenized_
→˓PubChem_shard00_160k")
>>> out = featurizer(smiles, add_special_tokens=True, truncation=True)

References

Note: This class requires transformers to be installed. RobertaFeaturizer uses dual inheritance with RobertaTo-
kenizerFast in Huggingface for rapid tokenization, as well as DeepChem’s MolecularFeaturizer class.

__init__(**kwargs)

__len__()→ int
Size of the full vocabulary with the added tokens.

add_special_tokens(special_tokens_dict: Dict[str, str | AddedToken],
replace_additional_special_tokens=True)→ int

Add a dictionary of special tokens (eos, pad, cls, etc.) to the encoder and link them to class attributes. If
special tokens are NOT in the vocabulary, they are added to it (indexed starting from the last index of the
current vocabulary).

When adding new tokens to the vocabulary, you should make sure to also resize the token embedding matrix
of the model so that its embedding matrix matches the tokenizer.

In order to do that, please use the [~PreTrainedModel.resize_token_embeddings] method.

Using add_special_tokens will ensure your special tokens can be used in several ways:

• Special tokens can be skipped when decoding using skip_special_tokens = True.

• Special tokens are carefully handled by the tokenizer (they are never split), similar to AddedTokens.

• You can easily refer to special tokens using tokenizer class attributes like tokenizer.cls_token. This
makes it easy to develop model-agnostic training and fine-tuning scripts.

When possible, special tokens are already registered for provided pretrained models (for instance [BertTok-
enizer] cls_token is already registered to be :obj*’[CLS]’* and XLM’s one is also registered to be ‘</s>’).

Parameters
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• special_tokens_dict (dictionary str to str or tokenizers.AddedToken) – Keys should be
in the list of predefined special attributes: [bos_token, eos_token, unk_token, sep_token,
pad_token, cls_token, mask_token, additional_special_tokens].

Tokens are only added if they are not already in the vocabulary (tested by checking if the
tokenizer assign the index of the unk_token to them).

• replace_additional_special_tokens (bool, optional„ defaults to True) – If True,
the existing list of additional special tokens will be replaced by the list provided in spe-
cial_tokens_dict. Otherwise, self._additional_special_tokens is just extended. In the for-
mer case, the tokens will NOT be removed from the tokenizer’s full vocabulary - they
are only being flagged as non-special tokens. Remember, this only affects which tokens
are skipped during decoding, not the added_tokens_encoder and added_tokens_decoder.
This means that the previous additional_special_tokens are still added tokens, and will not
be split by the model.

Returns
Number of tokens added to the vocabulary.

Return type
int

Examples:

```python # Let’s see how to add a new classification token to GPT-2 to-
kenizer = GPT2Tokenizer.from_pretrained(“openai-community/gpt2”) model =
GPT2Model.from_pretrained(“openai-community/gpt2”)

special_tokens_dict = {“cls_token”: “<CLS>”}

num_added_toks = tokenizer.add_special_tokens(special_tokens_dict) print(“We have added”,
num_added_toks, “tokens”) # Notice: resize_token_embeddings expect to receive the full size of
the new vocabulary, i.e., the length of the tokenizer. model.resize_token_embeddings(len(tokenizer))

assert tokenizer.cls_token == “<CLS>” ```
add_tokens(new_tokens: str | AddedToken | List[str | AddedToken], special_tokens: bool = False)→ int

Add a list of new tokens to the tokenizer class. If the new tokens are not in the vocabulary, they are
added to it with indices starting from length of the current vocabulary and and will be isolated before
the tokenization algorithm is applied. Added tokens and tokens from the vocabulary of the tokenization
algorithm are therefore not treated in the same way.

Note, when adding new tokens to the vocabulary, you should make sure to also resize the token embedding
matrix of the model so that its embedding matrix matches the tokenizer.

In order to do that, please use the [~PreTrainedModel.resize_token_embeddings] method.

Parameters
• new_tokens (str, tokenizers.AddedToken or a list of str or tokenizers.AddedToken) – To-

kens are only added if they are not already in the vocabulary. tokenizers.AddedToken wraps
a string token to let you personalize its behavior: whether this token should only match
against a single word, whether this token should strip all potential whitespaces on the left
side, whether this token should strip all potential whitespaces on the right side, etc.

• special_tokens (bool, optional, defaults to False) – Can be used to specify if the token
is a special token. This mostly change the normalization behavior (special tokens like CLS
or [MASK] are usually not lower-cased for instance).

See details for tokenizers.AddedToken in HuggingFace tokenizers library.
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Returns
Number of tokens added to the vocabulary.

Return type
int

Examples:

```python # Let’s see how to increase the vocabulary of Bert model and tokenizer to-
kenizer = BertTokenizerFast.from_pretrained(“google-bert/bert-base-uncased”) model =
BertModel.from_pretrained(“google-bert/bert-base-uncased”)

num_added_toks = tokenizer.add_tokens([“new_tok1”, “my_new-tok2”]) print(“We have added”,
num_added_toks, “tokens”) # Notice: resize_token_embeddings expect to receive the full size of the new
vocabulary, i.e., the length of the tokenizer. model.resize_token_embeddings(len(tokenizer)) ```

property added_tokens_decoder: Dict[int, AddedToken]

Returns the added tokens in the vocabulary as a dictionary of index to AddedToken.

Returns
The added tokens.

Return type
Dict[str, int]

property added_tokens_encoder: Dict[str, int]

Returns the sorted mapping from string to index. The added tokens encoder is cached for performance
optimisation in self._added_tokens_encoder for the slow tokenizers.

property additional_special_tokens: List[str]

All the additional special tokens you may want to use. Log an error if used while not having been set.

Type
List[str]

property additional_special_tokens_ids: List[int]

Ids of all the additional special tokens in the vocabulary. Log an error if used while not having been set.

Type
List[int]

property all_special_ids: List[int]

List the ids of the special tokens(‘<unk>’, ‘<cls>’, etc.) mapped to class attributes.

Type
List[int]

property all_special_tokens: List[str]

A list of the unique special tokens (‘<unk>’, ‘<cls>’, . . . , etc.).

Convert tokens of tokenizers.AddedToken type to string.

Type
List[str]

property all_special_tokens_extended: List[str | AddedToken]

All the special tokens (‘<unk>’, ‘<cls>’, etc.), the order has nothing to do with the index of each tokens. If
you want to know the correct indices, check self.added_tokens_encoder. We can’t create an order anymore
as the keys are AddedTokens and not Strings.

Don’t convert tokens of tokenizers.AddedToken type to string so they can be used to control more finely
how special tokens are tokenized.
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Type
List[Union[str, tokenizers.AddedToken]]

apply_chat_template(conversation: List[Dict[str, str]] | Conversation, chat_template: str | None = None,
add_generation_prompt: bool = False, tokenize: bool = True, padding: bool =
False, truncation: bool = False, max_length: int | None = None, return_tensors: str
| TensorType | None = None, return_dict: bool = False, tokenizer_kwargs: Dict[str,
Any] | None = None, **kwargs)→ str | List[int]

Converts a Conversation object or a list of dictionaries with “role” and “content” keys to a list of token
ids. This method is intended for use with chat models, and will read the tokenizer’s chat_template attribute
to determine the format and control tokens to use when converting. When chat_template is None, it will
fall back to the default_chat_template specified at the class level.

Parameters
• conversation (Union[List[Dict[str, str]], "Conversation"]) – A Conversa-

tion object or list of dicts with “role” and “content” keys, representing the chat history so
far.

• chat_template (str, optional) – A Jinja template to use for this conversion. If this is not
passed, the model’s default chat template will be used instead.

• add_generation_prompt (bool, optional) – Whether to end the prompt with the token(s)
that indicate the start of an assistant message. This is useful when you want to generate a
response from the model. Note that this argument will be passed to the chat template, and
so it must be supported in the template for this argument to have any effect.

• tokenize (bool, defaults to True) – Whether to tokenize the output. If False, the output
will be a string.

• padding (bool, defaults to False) – Whether to pad sequences to the maximum length.
Has no effect if tokenize is False.

• truncation (bool, defaults to False) – Whether to truncate sequences at the maximum
length. Has no effect if tokenize is False.

• max_length (int, optional) – Maximum length (in tokens) to use for padding or truncation.
Has no effect if tokenize is False. If not specified, the tokenizer’s max_length attribute will
be used as a default.

• return_tensors (str or [~utils.TensorType], optional) – If set, will return tensors of a
particular framework. Has no effect if tokenize is False. Acceptable values are: - ‘tf’:
Return TensorFlow tf.Tensor objects. - ‘pt’: Return PyTorch torch.Tensor objects. - ‘np’:
Return NumPy np.ndarray objects. - ‘jax’: Return JAX jnp.ndarray objects.

• return_dict (bool, optional, defaults to False) – Whether to return a dictionary with
named outputs. Has no effect if tokenize is False.

• (`Dict[str (tokenizer_kwargs) – Any]`, optional): Additional kwargs to pass to the
tokenizer.

• **kwargs – Additional kwargs to pass to the template renderer. Will be accessible by the
chat template.

Returns
A list of token ids representing the tokenized chat so far, including control tokens. This output
is ready to pass to the model, either directly or via methods like generate().

Return type
List[int]
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as_target_tokenizer()

Temporarily sets the tokenizer for encoding the targets. Useful for tokenizer associated to sequence-to-
sequence models that need a slightly different processing for the labels.

property backend_tokenizer: Tokenizer

The Rust tokenizer used as a backend.

Type
tokenizers.implementations.BaseTokenizer

batch_decode(sequences: List[int] | List[List[int]] | np.ndarray | torch.Tensor | tf.Tensor,
skip_special_tokens: bool = False, clean_up_tokenization_spaces: bool = None, **kwargs)
→ List[str]

Convert a list of lists of token ids into a list of strings by calling decode.

Parameters
• sequences (Union[List[int], List[List[int]], np.ndarray, torch.Tensor, tf.Tensor]) – List

of tokenized input ids. Can be obtained using the __call__ method.

• skip_special_tokens (bool, optional, defaults to False) – Whether or not to remove
special tokens in the decoding.

• clean_up_tokenization_spaces (bool, optional) – Whether or not to clean up the to-
kenization spaces. If None, will default to self.clean_up_tokenization_spaces.

• kwargs (additional keyword arguments, optional) – Will be passed to the underlying model
specific decode method.

Returns
The list of decoded sentences.

Return type
List[str]

batch_encode_plus(batch_text_or_text_pairs: List[str] | List[Tuple[str, str]] | List[List[str]] |
List[Tuple[List[str], List[str]]] | List[List[int]] | List[Tuple[List[int], List[int]]],
add_special_tokens: bool = True, padding: bool | str | PaddingStrategy = False,
truncation: bool | str | TruncationStrategy | None = None, max_length: int | None =
None, stride: int = 0, is_split_into_words: bool = False, pad_to_multiple_of: int |
None = None, return_tensors: str | TensorType | None = None, return_token_type_ids:
bool | None = None, return_attention_mask: bool | None = None,
return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool =
True, **kwargs)→ BatchEncoding

Tokenize and prepare for the model a list of sequences or a list of pairs of sequences.

<Tip warning={true}>

This method is deprecated, __call__ should be used instead.

</Tip>

Parameters
• batch_text_or_text_pairs (List[str], List[Tuple[str, str]], List[List[str]],

List[Tuple[List[str], List[str]]], and for not-fast tokenizers, also List[List[int]],
List[Tuple[List[int], List[int]]]) – Batch of sequences or pair of sequences to be en-
coded. This can be a list of string/string-sequences/int-sequences or a list of pair of
string/string-sequences/int-sequence (see details in encode_plus).
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• add_special_tokens (bool, optional, defaults to True) – Whether or not to add special
tokens when encoding the sequences. This will use the underlying PretrainedTokenizer-
Base.build_inputs_with_special_tokens function, which defines which tokens are automat-
ically added to the input ids. This is usefull if you want to add bos or eos tokens automati-
cally.

• padding (bool, str or [~utils.PaddingStrategy], optional, defaults to False) – Activates and
controls padding. Accepts the following values:

– True or ‘longest’: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).

– ’max_length’: Pad to a maximum length specified with the argument max_length or to
the maximum acceptable input length for the model if that argument is not provided.

– False or ‘do_not_pad’ (default): No padding (i.e., can output a batch with sequences of
different lengths).

• truncation (bool, str or [~tokenization_utils_base.TruncationStrategy], optional, de-
faults to False) – Activates and controls truncation. Accepts the following values:

– True or ‘longest_first’: Truncate to a maximum length specified with the argument
max_length or to the maximum acceptable input length for the model if that argument
is not provided. This will truncate token by token, removing a token from the longest
sequence in the pair if a pair of sequences (or a batch of pairs) is provided.

– ’only_first’: Truncate to a maximum length specified with the argument max_length or
to the maximum acceptable input length for the model if that argument is not provided.
This will only truncate the first sequence of a pair if a pair of sequences (or a batch of
pairs) is provided.

– ’only_second’: Truncate to a maximum length specified with the argument max_length
or to the maximum acceptable input length for the model if that argument is not provided.
This will only truncate the second sequence of a pair if a pair of sequences (or a batch
of pairs) is provided.

– False or ‘do_not_truncate’ (default): No truncation (i.e., can output batch with sequence
lengths greater than the model maximum admissible input size).

• max_length (int, optional) – Controls the maximum length to use by one of the trunca-
tion/padding parameters.

If left unset or set to None, this will use the predefined model maximum length if a maxi-
mum length is required by one of the truncation/padding parameters. If the model has no
specific maximum input length (like XLNet) truncation/padding to a maximum length will
be deactivated.

• stride (int, optional, defaults to 0) – If set to a number along with max_length, the over-
flowing tokens returned when return_overflowing_tokens=True will contain some tokens
from the end of the truncated sequence returned to provide some overlap between truncated
and overflowing sequences. The value of this argument defines the number of overlapping
tokens.

• is_split_into_words (bool, optional, defaults to False) – Whether or not the input is
already pre-tokenized (e.g., split into words). If set to True, the tokenizer assumes the input
is already split into words (for instance, by splitting it on whitespace) which it will tokenize.
This is useful for NER or token classification.

• pad_to_multiple_of (int, optional) – If set will pad the sequence to a multiple of the
provided value. Requires padding to be activated. This is especially useful to enable the
use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta).

180 Chapter 3. About Us



deepchem, Release 2.8.0

• return_tensors (str or [~utils.TensorType], optional) – If set, will return tensors instead
of list of python integers. Acceptable values are:

– ’tf’: Return TensorFlow tf.constant objects.

– ’pt’: Return PyTorch torch.Tensor objects.

– ’np’: Return Numpy np.ndarray objects.

• return_token_type_ids (bool, optional) – Whether to return token type IDs. If left
to the default, will return the token type IDs according to the specific tokenizer’s default,
defined by the return_outputs attribute.

[What are token type IDs?](../glossary#token-type-ids)

• return_attention_mask (bool, optional) – Whether to return the attention mask. If left
to the default, will return the attention mask according to the specific tokenizer’s default,
defined by the return_outputs attribute.

[What are attention masks?](../glossary#attention-mask)

• return_overflowing_tokens (bool, optional, defaults to False) – Whether or not to
return overflowing token sequences. If a pair of sequences of input ids (or a batch of pairs)
is provided with truncation_strategy = longest_first or True, an error is raised instead of
returning overflowing tokens.

• return_special_tokens_mask (bool, optional, defaults to False) – Whether or not to
return special tokens mask information.

• return_offsets_mapping (bool, optional, defaults to False) – Whether or not to return
(char_start, char_end) for each token.

This is only available on fast tokenizers inheriting from [PreTrainedTokenizerFast], if using
Python’s tokenizer, this method will raise NotImplementedError.

• return_length (bool, optional, defaults to False) – Whether or not to return the lengths
of the encoded inputs.

• verbose (bool, optional, defaults to True) – Whether or not to print more information and
warnings.

• **kwargs – passed to the self.tokenize() method

Returns
A [BatchEncoding] with the following fields:

• input_ids – List of token ids to be fed to a model.

[What are input IDs?](../glossary#input-ids)

• token_type_ids – List of token type ids to be fed to a model (when re-
turn_token_type_ids=True or if “token_type_ids” is in self.model_input_names).

[What are token type IDs?](../glossary#token-type-ids)

• attention_mask – List of indices specifying which tokens should be attended
to by the model (when return_attention_mask=True or if “attention_mask” is in
self.model_input_names).

[What are attention masks?](../glossary#attention-mask)

• overflowing_tokens – List of overflowing tokens sequences (when a max_length is speci-
fied and return_overflowing_tokens=True).
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• num_truncated_tokens – Number of tokens truncated (when a max_length is specified
and return_overflowing_tokens=True).

• special_tokens_mask – List of 0s and 1s, with 1 specifying added special tokens
and 0 specifying regular sequence tokens (when add_special_tokens=True and re-
turn_special_tokens_mask=True).

• length – The length of the inputs (when return_length=True)

Return type
[BatchEncoding]

property bos_token: str

Beginning of sentence token. Log an error if used while not having been set.

Type
str

property bos_token_id: int | None

Id of the beginning of sentence token in the vocabulary. Returns None if the token has not been set.

Type
Optional[int]

build_inputs_with_special_tokens(token_ids_0, token_ids_1=None)
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating
and adding special tokens.

This implementation does not add special tokens and this method should be overridden in a subclass.

Parameters
• token_ids_0 (List[int]) – The first tokenized sequence.

• token_ids_1 (List[int], optional) – The second tokenized sequence.

Returns
The model input with special tokens.

Return type
List[int]

property can_save_slow_tokenizer: bool

Whether or not the slow tokenizer can be saved. Usually for sentencepiece based slow tokenizer, this can
only be True if the original “sentencepiece.model” was not deleted.

Type
bool

static clean_up_tokenization(out_string: str)→ str
Clean up a list of simple English tokenization artifacts like spaces before punctuations and abbreviated
forms.

Parameters
out_string (str) – The text to clean up.

Returns
The cleaned-up string.

Return type
str
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property cls_token: str

Classification token, to extract a summary of an input sequence leveraging self-attention along the full depth
of the model. Log an error if used while not having been set.

Type
str

property cls_token_id: int | None

Id of the classification token in the vocabulary, to extract a summary of an input sequence leveraging self-
attention along the full depth of the model.

Returns None if the token has not been set.

Type
Optional[int]

convert_ids_to_tokens(ids: int | List[int], skip_special_tokens: bool = False)→ str | List[str]
Converts a single index or a sequence of indices in a token or a sequence of tokens, using the vocabulary
and added tokens.

Parameters
• ids (int or List[int]) – The token id (or token ids) to convert to tokens.

• skip_special_tokens (bool, optional, defaults to False) – Whether or not to remove
special tokens in the decoding.

Returns
The decoded token(s).

Return type
str or List[str]

convert_tokens_to_ids(tokens: str | List[str])→ int | List[int]
Converts a token string (or a sequence of tokens) in a single integer id (or a sequence of ids), using the
vocabulary.

Parameters
tokens (str or List[str]) – One or several token(s) to convert to token id(s).

Returns
The token id or list of token ids.

Return type
int or List[int]

convert_tokens_to_string(tokens: List[str])→ str
Converts a sequence of tokens in a single string. The most simple way to do it is “ “.join(tokens) but we
often want to remove sub-word tokenization artifacts at the same time.

Parameters
tokens (List[str]) – The token to join in a string.

Returns
The joined tokens.

Return type
str

create_token_type_ids_from_sequences(token_ids_0: List[int], token_ids_1: List[int] | None = None)
→ List[int]
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Create a mask from the two sequences passed to be used in a sequence-pair classification task. RoBERTa
does not make use of token type ids, therefore a list of zeros is returned.

Parameters
• token_ids_0 (List[int]) – List of IDs.

• token_ids_1 (List[int], optional) – Optional second list of IDs for sequence pairs.

Returns
List of zeros.

Return type
List[int]

decode(token_ids: int | List[int] | np.ndarray | torch.Tensor | tf.Tensor, skip_special_tokens: bool = False,
clean_up_tokenization_spaces: bool = None, **kwargs)→ str

Converts a sequence of ids in a string, using the tokenizer and vocabulary with options to remove special
tokens and clean up tokenization spaces.

Similar to doing self.convert_tokens_to_string(self.convert_ids_to_tokens(token_ids)).

Parameters
• token_ids (Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]) – List of tokenized

input ids. Can be obtained using the __call__ method.

• skip_special_tokens (bool, optional, defaults to False) – Whether or not to remove
special tokens in the decoding.

• clean_up_tokenization_spaces (bool, optional) – Whether or not to clean up the to-
kenization spaces. If None, will default to self.clean_up_tokenization_spaces.

• kwargs (additional keyword arguments, optional) – Will be passed to the underlying model
specific decode method.

Returns
The decoded sentence.

Return type
str

property decoder: Decoder

The Rust decoder for this tokenizer.

Type
tokenizers.decoders.Decoder

property default_chat_template

This template formats inputs in the standard ChatML format. See https://github.com/openai/
openai-python/blob/main/chatml.md

encode(text: str | List[str] | List[int], text_pair: str | List[str] | List[int] | None = None, add_special_tokens:
bool = True, padding: bool | str | PaddingStrategy = False, truncation: bool | str | TruncationStrategy
| None = None, max_length: int | None = None, stride: int = 0, return_tensors: str | TensorType |
None = None, **kwargs)→ List[int]

Converts a string to a sequence of ids (integer), using the tokenizer and vocabulary.

Same as doing self.convert_tokens_to_ids(self.tokenize(text)).

Parameters
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• text (str, List[str] or List[int]) – The first sequence to be encoded. This can be a string,
a list of strings (tokenized string using the tokenize method) or a list of integers (tokenized
string ids using the convert_tokens_to_ids method).

• text_pair (str, List[str] or List[int], optional) – Optional second sequence to be encoded.
This can be a string, a list of strings (tokenized string using the tokenize method) or a list
of integers (tokenized string ids using the convert_tokens_to_ids method).

• add_special_tokens (bool, optional, defaults to True) – Whether or not to add special
tokens when encoding the sequences. This will use the underlying PretrainedTokenizer-
Base.build_inputs_with_special_tokens function, which defines which tokens are automat-
ically added to the input ids. This is usefull if you want to add bos or eos tokens automati-
cally.

• padding (bool, str or [~utils.PaddingStrategy], optional, defaults to False) – Activates and
controls padding. Accepts the following values:

– True or ‘longest’: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).

– ’max_length’: Pad to a maximum length specified with the argument max_length or to
the maximum acceptable input length for the model if that argument is not provided.

– False or ‘do_not_pad’ (default): No padding (i.e., can output a batch with sequences of
different lengths).

• truncation (bool, str or [~tokenization_utils_base.TruncationStrategy], optional, de-
faults to False) – Activates and controls truncation. Accepts the following values:

– True or ‘longest_first’: Truncate to a maximum length specified with the argument
max_length or to the maximum acceptable input length for the model if that argument
is not provided. This will truncate token by token, removing a token from the longest
sequence in the pair if a pair of sequences (or a batch of pairs) is provided.

– ’only_first’: Truncate to a maximum length specified with the argument max_length or
to the maximum acceptable input length for the model if that argument is not provided.
This will only truncate the first sequence of a pair if a pair of sequences (or a batch of
pairs) is provided.

– ’only_second’: Truncate to a maximum length specified with the argument max_length
or to the maximum acceptable input length for the model if that argument is not provided.
This will only truncate the second sequence of a pair if a pair of sequences (or a batch
of pairs) is provided.

– False or ‘do_not_truncate’ (default): No truncation (i.e., can output batch with sequence
lengths greater than the model maximum admissible input size).

• max_length (int, optional) – Controls the maximum length to use by one of the trunca-
tion/padding parameters.

If left unset or set to None, this will use the predefined model maximum length if a maxi-
mum length is required by one of the truncation/padding parameters. If the model has no
specific maximum input length (like XLNet) truncation/padding to a maximum length will
be deactivated.

• stride (int, optional, defaults to 0) – If set to a number along with max_length, the over-
flowing tokens returned when return_overflowing_tokens=True will contain some tokens
from the end of the truncated sequence returned to provide some overlap between truncated
and overflowing sequences. The value of this argument defines the number of overlapping
tokens.
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• is_split_into_words (bool, optional, defaults to False) – Whether or not the input is
already pre-tokenized (e.g., split into words). If set to True, the tokenizer assumes the input
is already split into words (for instance, by splitting it on whitespace) which it will tokenize.
This is useful for NER or token classification.

• pad_to_multiple_of (int, optional) – If set will pad the sequence to a multiple of the
provided value. Requires padding to be activated. This is especially useful to enable the
use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta).

• return_tensors (str or [~utils.TensorType], optional) – If set, will return tensors instead
of list of python integers. Acceptable values are:

– ’tf’: Return TensorFlow tf.constant objects.

– ’pt’: Return PyTorch torch.Tensor objects.

– ’np’: Return Numpy np.ndarray objects.

• **kwargs – Passed along to the .tokenize() method.

Returns
The tokenized ids of the text.

Return type
List[int], torch.Tensor, tf.Tensor or np.ndarray

encode_plus(text: str | List[str] | List[int], text_pair: str | List[str] | List[int] | None = None,
add_special_tokens: bool = True, padding: bool | str | PaddingStrategy = False, truncation:
bool | str | TruncationStrategy | None = None, max_length: int | None = None, stride: int = 0,
is_split_into_words: bool = False, pad_to_multiple_of: int | None = None, return_tensors: str
| TensorType | None = None, return_token_type_ids: bool | None = None,
return_attention_mask: bool | None = None, return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False,
return_length: bool = False, verbose: bool = True, **kwargs)→ BatchEncoding

Tokenize and prepare for the model a sequence or a pair of sequences.

<Tip warning={true}>

This method is deprecated, __call__ should be used instead.

</Tip>

Parameters
• text (str, List[str] or List[int] (the latter only for not-fast tokenizers)) – The first sequence

to be encoded. This can be a string, a list of strings (tokenized string using the tokenize
method) or a list of integers (tokenized string ids using the convert_tokens_to_ids method).

• text_pair (str, List[str] or List[int], optional) – Optional second sequence to be encoded.
This can be a string, a list of strings (tokenized string using the tokenize method) or a list
of integers (tokenized string ids using the convert_tokens_to_ids method).

• add_special_tokens (bool, optional, defaults to True) – Whether or not to add special
tokens when encoding the sequences. This will use the underlying PretrainedTokenizer-
Base.build_inputs_with_special_tokens function, which defines which tokens are automat-
ically added to the input ids. This is usefull if you want to add bos or eos tokens automati-
cally.

• padding (bool, str or [~utils.PaddingStrategy], optional, defaults to False) – Activates and
controls padding. Accepts the following values:

– True or ‘longest’: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).
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– ’max_length’: Pad to a maximum length specified with the argument max_length or to
the maximum acceptable input length for the model if that argument is not provided.

– False or ‘do_not_pad’ (default): No padding (i.e., can output a batch with sequences of
different lengths).

• truncation (bool, str or [~tokenization_utils_base.TruncationStrategy], optional, de-
faults to False) – Activates and controls truncation. Accepts the following values:

– True or ‘longest_first’: Truncate to a maximum length specified with the argument
max_length or to the maximum acceptable input length for the model if that argument
is not provided. This will truncate token by token, removing a token from the longest
sequence in the pair if a pair of sequences (or a batch of pairs) is provided.

– ’only_first’: Truncate to a maximum length specified with the argument max_length or
to the maximum acceptable input length for the model if that argument is not provided.
This will only truncate the first sequence of a pair if a pair of sequences (or a batch of
pairs) is provided.

– ’only_second’: Truncate to a maximum length specified with the argument max_length
or to the maximum acceptable input length for the model if that argument is not provided.
This will only truncate the second sequence of a pair if a pair of sequences (or a batch
of pairs) is provided.

– False or ‘do_not_truncate’ (default): No truncation (i.e., can output batch with sequence
lengths greater than the model maximum admissible input size).

• max_length (int, optional) – Controls the maximum length to use by one of the trunca-
tion/padding parameters.

If left unset or set to None, this will use the predefined model maximum length if a maxi-
mum length is required by one of the truncation/padding parameters. If the model has no
specific maximum input length (like XLNet) truncation/padding to a maximum length will
be deactivated.

• stride (int, optional, defaults to 0) – If set to a number along with max_length, the over-
flowing tokens returned when return_overflowing_tokens=True will contain some tokens
from the end of the truncated sequence returned to provide some overlap between truncated
and overflowing sequences. The value of this argument defines the number of overlapping
tokens.

• is_split_into_words (bool, optional, defaults to False) – Whether or not the input is
already pre-tokenized (e.g., split into words). If set to True, the tokenizer assumes the input
is already split into words (for instance, by splitting it on whitespace) which it will tokenize.
This is useful for NER or token classification.

• pad_to_multiple_of (int, optional) – If set will pad the sequence to a multiple of the
provided value. Requires padding to be activated. This is especially useful to enable the
use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta).

• return_tensors (str or [~utils.TensorType], optional) – If set, will return tensors instead
of list of python integers. Acceptable values are:

– ’tf’: Return TensorFlow tf.constant objects.

– ’pt’: Return PyTorch torch.Tensor objects.

– ’np’: Return Numpy np.ndarray objects.

• return_token_type_ids (bool, optional) – Whether to return token type IDs. If left
to the default, will return the token type IDs according to the specific tokenizer’s default,
defined by the return_outputs attribute.
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[What are token type IDs?](../glossary#token-type-ids)

• return_attention_mask (bool, optional) – Whether to return the attention mask. If left
to the default, will return the attention mask according to the specific tokenizer’s default,
defined by the return_outputs attribute.

[What are attention masks?](../glossary#attention-mask)

• return_overflowing_tokens (bool, optional, defaults to False) – Whether or not to
return overflowing token sequences. If a pair of sequences of input ids (or a batch of pairs)
is provided with truncation_strategy = longest_first or True, an error is raised instead of
returning overflowing tokens.

• return_special_tokens_mask (bool, optional, defaults to False) – Whether or not to
return special tokens mask information.

• return_offsets_mapping (bool, optional, defaults to False) – Whether or not to return
(char_start, char_end) for each token.

This is only available on fast tokenizers inheriting from [PreTrainedTokenizerFast], if using
Python’s tokenizer, this method will raise NotImplementedError.

• return_length (bool, optional, defaults to False) – Whether or not to return the lengths
of the encoded inputs.

• verbose (bool, optional, defaults to True) – Whether or not to print more information and
warnings.

• **kwargs – passed to the self.tokenize() method

Returns
A [BatchEncoding] with the following fields:

• input_ids – List of token ids to be fed to a model.

[What are input IDs?](../glossary#input-ids)

• token_type_ids – List of token type ids to be fed to a model (when re-
turn_token_type_ids=True or if “token_type_ids” is in self.model_input_names).

[What are token type IDs?](../glossary#token-type-ids)

• attention_mask – List of indices specifying which tokens should be attended
to by the model (when return_attention_mask=True or if “attention_mask” is in
self.model_input_names).

[What are attention masks?](../glossary#attention-mask)

• overflowing_tokens – List of overflowing tokens sequences (when a max_length is speci-
fied and return_overflowing_tokens=True).

• num_truncated_tokens – Number of tokens truncated (when a max_length is specified
and return_overflowing_tokens=True).

• special_tokens_mask – List of 0s and 1s, with 1 specifying added special tokens
and 0 specifying regular sequence tokens (when add_special_tokens=True and re-
turn_special_tokens_mask=True).

• length – The length of the inputs (when return_length=True)

Return type
[BatchEncoding]
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property eos_token: str

End of sentence token. Log an error if used while not having been set.

Type
str

property eos_token_id: int | None

Id of the end of sentence token in the vocabulary. Returns None if the token has not been set.

Type
Optional[int]

featurize(datapoints: Iterable[Any], log_every_n: int = 1000, **kwargs)→ ndarray
Calculate features for datapoints.

Parameters
• datapoints (Iterable[Any]) – A sequence of objects that you’d like to featurize. Sub-

classses of Featurizer should instantiate the _featurize method that featurizes objects in the
sequence.

• log_every_n (int, default 1000) – Logs featurization progress every log_every_n
steps.

Returns
A numpy array containing a featurized representation of datapoints.

Return type
np.ndarray

classmethod from_pretrained(pretrained_model_name_or_path: str | PathLike, *init_inputs, cache_dir:
str | PathLike | None = None, force_download: bool = False,
local_files_only: bool = False, token: bool | str | None = None, revision:
str = 'main', trust_remote_code=False, **kwargs)

Instantiate a [~tokenization_utils_base.PreTrainedTokenizerBase] (or a derived class) from a predefined
tokenizer.

Parameters
• pretrained_model_name_or_path (str or os.PathLike) – Can be either:

– A string, the model id of a predefined tokenizer hosted inside a model repo on hugging-
face.co.

– A path to a directory containing vocabulary files required by the tokenizer, for instance
saved using the [~tokenization_utils_base.PreTrainedTokenizerBase.save_pretrained]
method, e.g., ./my_model_directory/.

– (Deprecated, not applicable to all derived classes) A path or url to a single saved vocab-
ulary file (if and only if the tokenizer only requires a single vocabulary file like Bert or
XLNet), e.g., ./my_model_directory/vocab.txt.

• cache_dir (str or os.PathLike, optional) – Path to a directory in which a downloaded
predefined tokenizer vocabulary files should be cached if the standard cache should not be
used.

• force_download (bool, optional, defaults to False) – Whether or not to force the (re-
)download the vocabulary files and override the cached versions if they exist.

• resume_download (bool, optional, defaults to False) – Whether or not to delete incom-
pletely received files. Attempt to resume the download if such a file exists.
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• proxies (Dict[str, str], optional) – A dictionary of proxy servers to use by protocol or
endpoint, e.g., {‘http’: ‘foo.bar:3128’, ‘http://hostname’: ‘foo.bar:4012’}. The proxies
are used on each request.

• token (str or bool, optional) – The token to use as HTTP bearer authorization for remote
files. If True, will use the token generated when running huggingface-cli login (stored in
~/.huggingface).

• local_files_only (bool, optional, defaults to False) – Whether or not to only rely on
local files and not to attempt to download any files.

• revision (str, optional, defaults to “main”) – The specific model version to use. It can
be a branch name, a tag name, or a commit id, since we use a git-based system for storing
models and other artifacts on huggingface.co, so revision can be any identifier allowed by
git.

• subfolder (str, optional) – In case the relevant files are located inside a subfolder of the
model repo on huggingface.co (e.g. for facebook/rag-token-base), specify it here.

• inputs (additional positional arguments, optional) – Will be passed along to the Tokenizer
__init__ method.

• trust_remote_code (bool, optional, defaults to False) – Whether or not to allow for
custom models defined on the Hub in their own modeling files. This option should only be
set to True for repositories you trust and in which you have read the code, as it will execute
code present on the Hub on your local machine.

• kwargs (additional keyword arguments, optional) – Will be passed to the Tokenizer
__init__ method. Can be used to set special tokens like bos_token, eos_token, unk_token,
sep_token, pad_token, cls_token, mask_token, additional_special_tokens. See parameters
in the __init__ for more details.

<Tip>

Passing token=True is required when you want to use a private model.

</Tip>

Examples:

```python # We can’t instantiate directly the base class PreTrainedTokenizerBase so let’s show our examples
on a derived class: BertTokenizer # Download vocabulary from huggingface.co and cache. tokenizer =
BertTokenizer.from_pretrained(“google-bert/bert-base-uncased”)

# Download vocabulary from huggingface.co (user-uploaded) and cache. tokenizer =
BertTokenizer.from_pretrained(“dbmdz/bert-base-german-cased”)

# If vocabulary files are in a directory (e.g. tokenizer was saved using
save_pretrained(‘./test/saved_model/’)) tokenizer = BertTokenizer.from_pretrained(“./test/saved_model/”)

# If the tokenizer uses a single vocabulary file, you can point directly to this file tokenizer = BertTok-
enizer.from_pretrained(“./test/saved_model/my_vocab.txt”)

# You can link tokens to special vocabulary when instantiating tokenizer =
BertTokenizer.from_pretrained(“google-bert/bert-base-uncased”, unk_token=”<unk>”) # You
should be sure ‘<unk>’ is in the vocabulary when doing that. # Otherwise use tok-
enizer.add_special_tokens({‘unk_token’: ‘<unk>’}) instead) assert tokenizer.unk_token == “<unk>”
```

get_added_vocab()→ Dict[str, int]
Returns the added tokens in the vocabulary as a dictionary of token to index.
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Returns
The added tokens.

Return type
Dict[str, int]

get_special_tokens_mask(token_ids_0: List[int], token_ids_1: List[int] | None = None,
already_has_special_tokens: bool = False)→ List[int]

Retrieves sequence ids from a token list that has no special tokens added. This method is called when
adding special tokens using the tokenizer prepare_for_model or encode_plus methods.

Parameters
• token_ids_0 (List[int]) – List of ids of the first sequence.

• token_ids_1 (List[int], optional) – List of ids of the second sequence.

• already_has_special_tokens (bool, optional, defaults to False) – Whether or not the
token list is already formatted with special tokens for the model.

Returns
1 for a special token, 0 for a sequence token.

Return type
A list of integers in the range [0, 1]

get_vocab()→ Dict[str, int]
Returns the vocabulary as a dictionary of token to index.

tokenizer.get_vocab()[token] is equivalent to tokenizer.convert_tokens_to_ids(token) when token is in the
vocab.

Returns
The vocabulary.

Return type
Dict[str, int]

property mask_token: str

Mask token, to use when training a model with masked-language modeling. Log an error if used while not
having been set.

Roberta tokenizer has a special mask token to be usable in the fill-mask pipeline. The mask token will
greedily comprise the space before the <mask>.

Type
str

property mask_token_id: int | None

Id of the mask token in the vocabulary, used when training a model with masked-language modeling.
Returns None if the token has not been set.

Type
Optional[int]

property max_len_sentences_pair: int

The maximum combined length of a pair of sentences that can be fed to the model.

Type
int
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property max_len_single_sentence: int

The maximum length of a sentence that can be fed to the model.

Type
int

num_special_tokens_to_add(pair: bool = False)→ int
Returns the number of added tokens when encoding a sequence with special tokens.

<Tip>

This encodes a dummy input and checks the number of added tokens, and is therefore not efficient. Do not
put this inside your training loop.

</Tip>

Parameters
pair (bool, optional, defaults to False) – Whether the number of added tokens should be
computed in the case of a sequence pair or a single sequence.

Returns
Number of special tokens added to sequences.

Return type
int

pad(encoded_inputs: BatchEncoding | List[BatchEncoding] | Dict[str, List[int]] | Dict[str, List[List[int]]] |
List[Dict[str, List[int]]], padding: bool | str | PaddingStrategy = True, max_length: int | None = None,
pad_to_multiple_of: int | None = None, return_attention_mask: bool | None = None, return_tensors: str |
TensorType | None = None, verbose: bool = True)→ BatchEncoding
Pad a single encoded input or a batch of encoded inputs up to predefined length or to the max sequence
length in the batch.

Padding side (left/right) padding token ids are defined at the tokenizer level (with self.padding_side,
self.pad_token_id and self.pad_token_type_id).

Please note that with a fast tokenizer, using the __call__ method is faster than using a method to encode
the text followed by a call to the pad method to get a padded encoding.

<Tip>

If the encoded_inputs passed are dictionary of numpy arrays, PyTorch tensors or TensorFlow tensors, the
result will use the same type unless you provide a different tensor type with return_tensors. In the case of
PyTorch tensors, you will lose the specific device of your tensors however.

</Tip>

Parameters
• encoded_inputs ([BatchEncoding], list of [BatchEncoding], Dict[str, List[int]], Dict[str,

List[List[int]] or List[Dict[str, List[int]]]) – Tokenized inputs. Can represent one input
([BatchEncoding] or Dict[str, List[int]]) or a batch of tokenized inputs (list of [BatchEn-
coding], Dict[str, List[List[int]]] or List[Dict[str, List[int]]]) so you can use this method
during preprocessing as well as in a PyTorch Dataloader collate function.

Instead of List[int] you can have tensors (numpy arrays, PyTorch tensors or TensorFlow
tensors), see the note above for the return type.

• padding (bool, str or [~utils.PaddingStrategy], optional, defaults to True) –

Select a strategy to pad the returned sequences (according to the model’s padding
side and padding

index) among:
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– True or ‘longest’: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).

– ’max_length’: Pad to a maximum length specified with the argument max_length or to
the maximum acceptable input length for the model if that argument is not provided.

– False or ‘do_not_pad’ (default): No padding (i.e., can output a batch with sequences of
different lengths).

• max_length (int, optional) – Maximum length of the returned list and optionally padding
length (see above).

• pad_to_multiple_of (int, optional) – If set will pad the sequence to a multiple of the
provided value.

This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with
compute capability >= 7.5 (Volta).

• return_attention_mask (bool, optional) – Whether to return the attention mask. If left
to the default, will return the attention mask according to the specific tokenizer’s default,
defined by the return_outputs attribute.

[What are attention masks?](../glossary#attention-mask)

• return_tensors (str or [~utils.TensorType], optional) – If set, will return tensors instead
of list of python integers. Acceptable values are:

– ’tf’: Return TensorFlow tf.constant objects.

– ’pt’: Return PyTorch torch.Tensor objects.

– ’np’: Return Numpy np.ndarray objects.

• verbose (bool, optional, defaults to True) – Whether or not to print more information and
warnings.

property pad_token: str

Padding token. Log an error if used while not having been set.

Type
str

property pad_token_id: int | None

Id of the padding token in the vocabulary. Returns None if the token has not been set.

Type
Optional[int]

property pad_token_type_id: int

Id of the padding token type in the vocabulary.

Type
int

prepare_for_model(ids: List[int], pair_ids: List[int] | None = None, add_special_tokens: bool = True,
padding: bool | str | PaddingStrategy = False, truncation: bool | str |
TruncationStrategy | None = None, max_length: int | None = None, stride: int = 0,
pad_to_multiple_of: int | None = None, return_tensors: str | TensorType | None =
None, return_token_type_ids: bool | None = None, return_attention_mask: bool | None
= None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool
= False, return_offsets_mapping: bool = False, return_length: bool = False, verbose:
bool = True, prepend_batch_axis: bool = False, **kwargs)→ BatchEncoding
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Prepares a sequence of input id, or a pair of sequences of inputs ids so that it can be used by the model.
It adds special tokens, truncates sequences if overflowing while taking into account the special tokens and
manages a moving window (with user defined stride) for overflowing tokens. Please Note, for pair_ids
different than None and truncation_strategy = longest_first or True, it is not possible to return overflowing
tokens. Such a combination of arguments will raise an error.

Parameters
• ids (List[int]) – Tokenized input ids of the first sequence. Can be obtained from a string

by chaining the tokenize and convert_tokens_to_ids methods.

• pair_ids (List[int], optional) – Tokenized input ids of the second sequence. Can be ob-
tained from a string by chaining the tokenize and convert_tokens_to_ids methods.

• add_special_tokens (bool, optional, defaults to True) – Whether or not to add special
tokens when encoding the sequences. This will use the underlying PretrainedTokenizer-
Base.build_inputs_with_special_tokens function, which defines which tokens are automat-
ically added to the input ids. This is usefull if you want to add bos or eos tokens automati-
cally.

• padding (bool, str or [~utils.PaddingStrategy], optional, defaults to False) – Activates and
controls padding. Accepts the following values:

– True or ‘longest’: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).

– ’max_length’: Pad to a maximum length specified with the argument max_length or to
the maximum acceptable input length for the model if that argument is not provided.

– False or ‘do_not_pad’ (default): No padding (i.e., can output a batch with sequences of
different lengths).

• truncation (bool, str or [~tokenization_utils_base.TruncationStrategy], optional, de-
faults to False) – Activates and controls truncation. Accepts the following values:

– True or ‘longest_first’: Truncate to a maximum length specified with the argument
max_length or to the maximum acceptable input length for the model if that argument
is not provided. This will truncate token by token, removing a token from the longest
sequence in the pair if a pair of sequences (or a batch of pairs) is provided.

– ’only_first’: Truncate to a maximum length specified with the argument max_length or
to the maximum acceptable input length for the model if that argument is not provided.
This will only truncate the first sequence of a pair if a pair of sequences (or a batch of
pairs) is provided.

– ’only_second’: Truncate to a maximum length specified with the argument max_length
or to the maximum acceptable input length for the model if that argument is not provided.
This will only truncate the second sequence of a pair if a pair of sequences (or a batch
of pairs) is provided.

– False or ‘do_not_truncate’ (default): No truncation (i.e., can output batch with sequence
lengths greater than the model maximum admissible input size).

• max_length (int, optional) – Controls the maximum length to use by one of the trunca-
tion/padding parameters.

If left unset or set to None, this will use the predefined model maximum length if a maxi-
mum length is required by one of the truncation/padding parameters. If the model has no
specific maximum input length (like XLNet) truncation/padding to a maximum length will
be deactivated.
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• stride (int, optional, defaults to 0) – If set to a number along with max_length, the over-
flowing tokens returned when return_overflowing_tokens=True will contain some tokens
from the end of the truncated sequence returned to provide some overlap between truncated
and overflowing sequences. The value of this argument defines the number of overlapping
tokens.

• is_split_into_words (bool, optional, defaults to False) – Whether or not the input is
already pre-tokenized (e.g., split into words). If set to True, the tokenizer assumes the input
is already split into words (for instance, by splitting it on whitespace) which it will tokenize.
This is useful for NER or token classification.

• pad_to_multiple_of (int, optional) – If set will pad the sequence to a multiple of the
provided value. Requires padding to be activated. This is especially useful to enable the
use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta).

• return_tensors (str or [~utils.TensorType], optional) – If set, will return tensors instead
of list of python integers. Acceptable values are:

– ’tf’: Return TensorFlow tf.constant objects.

– ’pt’: Return PyTorch torch.Tensor objects.

– ’np’: Return Numpy np.ndarray objects.

• return_token_type_ids (bool, optional) – Whether to return token type IDs. If left
to the default, will return the token type IDs according to the specific tokenizer’s default,
defined by the return_outputs attribute.

[What are token type IDs?](../glossary#token-type-ids)

• return_attention_mask (bool, optional) – Whether to return the attention mask. If left
to the default, will return the attention mask according to the specific tokenizer’s default,
defined by the return_outputs attribute.

[What are attention masks?](../glossary#attention-mask)

• return_overflowing_tokens (bool, optional, defaults to False) – Whether or not to
return overflowing token sequences. If a pair of sequences of input ids (or a batch of pairs)
is provided with truncation_strategy = longest_first or True, an error is raised instead of
returning overflowing tokens.

• return_special_tokens_mask (bool, optional, defaults to False) – Whether or not to
return special tokens mask information.

• return_offsets_mapping (bool, optional, defaults to False) – Whether or not to return
(char_start, char_end) for each token.

This is only available on fast tokenizers inheriting from [PreTrainedTokenizerFast], if using
Python’s tokenizer, this method will raise NotImplementedError.

• return_length (bool, optional, defaults to False) – Whether or not to return the lengths
of the encoded inputs.

• verbose (bool, optional, defaults to True) – Whether or not to print more information and
warnings.

• **kwargs – passed to the self.tokenize() method

Returns
A [BatchEncoding] with the following fields:

• input_ids – List of token ids to be fed to a model.
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[What are input IDs?](../glossary#input-ids)

• token_type_ids – List of token type ids to be fed to a model (when re-
turn_token_type_ids=True or if “token_type_ids” is in self.model_input_names).

[What are token type IDs?](../glossary#token-type-ids)

• attention_mask – List of indices specifying which tokens should be attended
to by the model (when return_attention_mask=True or if “attention_mask” is in
self.model_input_names).

[What are attention masks?](../glossary#attention-mask)

• overflowing_tokens – List of overflowing tokens sequences (when a max_length is speci-
fied and return_overflowing_tokens=True).

• num_truncated_tokens – Number of tokens truncated (when a max_length is specified
and return_overflowing_tokens=True).

• special_tokens_mask – List of 0s and 1s, with 1 specifying added special tokens
and 0 specifying regular sequence tokens (when add_special_tokens=True and re-
turn_special_tokens_mask=True).

• length – The length of the inputs (when return_length=True)

Return type
[BatchEncoding]

prepare_seq2seq_batch(src_texts: List[str], tgt_texts: List[str] | None = None, max_length: int | None =
None, max_target_length: int | None = None, padding: str = 'longest',
return_tensors: str | None = None, truncation: bool = True, **kwargs)→
BatchEncoding

Prepare model inputs for translation. For best performance, translate one sentence at a time.

Parameters
• src_texts (List[str]) – List of documents to summarize or source language texts.

• tgt_texts (list, optional) – List of summaries or target language texts.

• max_length (int, optional) – Controls the maximum length for encoder inputs (documents
to summarize or source language texts) If left unset or set to None, this will use the pre-
defined model maximum length if a maximum length is required by one of the trunca-
tion/padding parameters. If the model has no specific maximum input length (like XLNet)
truncation/padding to a maximum length will be deactivated.

• max_target_length (int, optional) – Controls the maximum length of decoder inputs
(target language texts or summaries) If left unset or set to None, this will use the max_length
value.

• padding (bool, str or [~utils.PaddingStrategy], optional, defaults to False) – Activates and
controls padding. Accepts the following values:

– True or ‘longest’: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).

– ’max_length’: Pad to a maximum length specified with the argument max_length or to
the maximum acceptable input length for the model if that argument is not provided.

– False or ‘do_not_pad’ (default): No padding (i.e., can output a batch with sequences of
different lengths).

• return_tensors (str or [~utils.TensorType], optional) – If set, will return tensors instead
of list of python integers. Acceptable values are:
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– ’tf’: Return TensorFlow tf.constant objects.

– ’pt’: Return PyTorch torch.Tensor objects.

– ’np’: Return Numpy np.ndarray objects.

• truncation (bool, str or [~tokenization_utils_base.TruncationStrategy], optional, de-
faults to True) – Activates and controls truncation. Accepts the following values:

– True or ‘longest_first’: Truncate to a maximum length specified with the argument
max_length or to the maximum acceptable input length for the model if that argument
is not provided. This will truncate token by token, removing a token from the longest
sequence in the pair if a pair of sequences (or a batch of pairs) is provided.

– ’only_first’: Truncate to a maximum length specified with the argument max_length or
to the maximum acceptable input length for the model if that argument is not provided.
This will only truncate the first sequence of a pair if a pair of sequences (or a batch of
pairs) is provided.

– ’only_second’: Truncate to a maximum length specified with the argument max_length
or to the maximum acceptable input length for the model if that argument is not provided.
This will only truncate the second sequence of a pair if a pair of sequences (or a batch
of pairs) is provided.

– False or ‘do_not_truncate’ (default): No truncation (i.e., can output batch with sequence
lengths greater than the model maximum admissible input size).

• **kwargs – Additional keyword arguments passed along to self.__call__.

Returns
A [BatchEncoding] with the following fields:

• input_ids – List of token ids to be fed to the encoder.

• attention_mask – List of indices specifying which tokens should be attended to by the
model.

• labels – List of token ids for tgt_texts.

The full set of keys [input_ids, attention_mask, labels], will only be returned if tgt_texts is
passed. Otherwise, input_ids, attention_mask will be the only keys.

Return type
[BatchEncoding]

push_to_hub(repo_id: str, use_temp_dir: bool | None = None, commit_message: str | None = None, private:
bool | None = None, token: bool | str | None = None, max_shard_size: int | str | None = '5GB',
create_pr: bool = False, safe_serialization: bool = True, revision: str | None = None,
commit_description: str | None = None, tags: List[str] | None = None, **deprecated_kwargs)
→ str

Upload the tokenizer files to the Model Hub.

Parameters
• repo_id (str) – The name of the repository you want to push your tokenizer to. It should

contain your organization name when pushing to a given organization.

• use_temp_dir (bool, optional) – Whether or not to use a temporary directory to store the
files saved before they are pushed to the Hub. Will default to True if there is no directory
named like repo_id, False otherwise.

• commit_message (str, optional) – Message to commit while pushing. Will default to
“Upload tokenizer”.
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• private (bool, optional) – Whether or not the repository created should be private.

• token (bool or str, optional) – The token to use as HTTP bearer authorization for remote
files. If True, will use the token generated when running huggingface-cli login (stored in
~/.huggingface). Will default to True if repo_url is not specified.

• max_shard_size (int or str, optional, defaults to “5GB”) – Only applicable for models.
The maximum size for a checkpoint before being sharded. Checkpoints shard will then be
each of size lower than this size. If expressed as a string, needs to be digits followed by a
unit (like “5MB”). We default it to “5GB” so that users can easily load models on free-tier
Google Colab instances without any CPU OOM issues.

• create_pr (bool, optional, defaults to False) – Whether or not to create a PR with the
uploaded files or directly commit.

• safe_serialization (bool, optional, defaults to True) – Whether or not to convert the
model weights in safetensors format for safer serialization.

• revision (str, optional) – Branch to push the uploaded files to.

• commit_description (str, optional) – The description of the commit that will be created

• tags (List[str], optional) – List of tags to push on the Hub.

Examples:

```python from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained(“google-bert/bert-base-cased”)

# Push the tokenizer to your namespace with the name “my-finetuned-bert”. tokenizer.push_to_hub(“my-
finetuned-bert”)

# Push the tokenizer to an organization with the name “my-finetuned-bert”.
tokenizer.push_to_hub(“huggingface/my-finetuned-bert”) ```

classmethod register_for_auto_class(auto_class='AutoTokenizer')
Register this class with a given auto class. This should only be used for custom tokenizers as the ones in
the library are already mapped with AutoTokenizer.

<Tip warning={true}>

This API is experimental and may have some slight breaking changes in the next releases.

</Tip>

Parameters
auto_class (str or type, optional, defaults to “AutoTokenizer”) – The auto class to register
this new tokenizer with.

sanitize_special_tokens()→ int
The sanitize_special_tokens is now deprecated kept for backward compatibility and will be removed in
transformers v5.

save_pretrained(save_directory: str | PathLike, legacy_format: bool | None = None, filename_prefix: str |
None = None, push_to_hub: bool = False, **kwargs)→ Tuple[str]

Save the full tokenizer state.

This method make sure the full tokenizer can then be re-loaded using the [~tokeniza-
tion_utils_base.PreTrainedTokenizer.from_pretrained] class method..

Warning,None This won’t save modifications you may have applied to the tokenizer after the instantiation
(for instance, modifying tokenizer.do_lower_case after creation).
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Parameters
• save_directory (str or os.PathLike) – The path to a directory where the tokenizer will

be saved.

• legacy_format (bool, optional) – Only applicable for a fast tokenizer. If unset (default),
will save the tokenizer in the unified JSON format as well as in legacy format if it exists,
i.e. with tokenizer specific vocabulary and a separate added_tokens files.

If False, will only save the tokenizer in the unified JSON format. This format is incompat-
ible with “slow” tokenizers (not powered by the tokenizers library), so the tokenizer will
not be able to be loaded in the corresponding “slow” tokenizer.

If True, will save the tokenizer in legacy format. If the “slow” tokenizer doesn’t exits, a
value error is raised.

• filename_prefix (str, optional) – A prefix to add to the names of the files saved by the
tokenizer.

• push_to_hub (bool, optional, defaults to False) – Whether or not to push your model to
the Hugging Face model hub after saving it. You can specify the repository you want to
push to with repo_id (will default to the name of save_directory in your namespace).

• kwargs (Dict[str, Any], optional) – Additional key word arguments passed along to the
[~utils.PushToHubMixin.push_to_hub] method.

Returns
The files saved.

Return type
A tuple of str

save_vocabulary(save_directory: str, filename_prefix: str | None = None)→ Tuple[str]
Save only the vocabulary of the tokenizer (vocabulary + added tokens).

This method won’t save the configuration and special token mappings of the tokenizer. Use [~PreTrained-
TokenizerFast._save_pretrained] to save the whole state of the tokenizer.

Parameters
• save_directory (str) – The directory in which to save the vocabulary.

• filename_prefix (str, optional) – An optional prefix to add to the named of the saved
files.

Returns
Paths to the files saved.

Return type
Tuple(str)

property sep_token: str

Separation token, to separate context and query in an input sequence. Log an error if used while not having
been set.

Type
str

property sep_token_id: int | None

Id of the separation token in the vocabulary, to separate context and query in an input sequence. Returns
None if the token has not been set.
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Type
Optional[int]

set_truncation_and_padding(padding_strategy: PaddingStrategy, truncation_strategy:
TruncationStrategy, max_length: int, stride: int, pad_to_multiple_of: int |
None)

Define the truncation and the padding strategies for fast tokenizers (provided by HuggingFace tokenizers
library) and restore the tokenizer settings afterwards.

The provided tokenizer has no padding / truncation strategy before the managed section. If your tokenizer
set a padding / truncation strategy before, then it will be reset to no padding / truncation when exiting the
managed section.

Parameters
• padding_strategy ([~utils.PaddingStrategy]) – The kind of padding that will be applied

to the input

• truncation_strategy ([~tokenization_utils_base.TruncationStrategy]) – The kind of
truncation that will be applied to the input

• max_length (int) – The maximum size of a sequence.

• stride (int) – The stride to use when handling overflow.

• pad_to_multiple_of (int, optional) – If set will pad the sequence to a multiple of the
provided value. This is especially useful to enable the use of Tensor Cores on NVIDIA
hardware with compute capability >= 7.5 (Volta).

slow_tokenizer_class

alias of RobertaTokenizer

property special_tokens_map: Dict[str, str | List[str]]

A dictionary mapping special token class attributes (cls_token, unk_token, etc.) to their values (‘<unk>’,
‘<cls>’, etc.).

Convert potential tokens of tokenizers.AddedToken type to string.

Type
Dict[str, Union[str, List[str]]]

property special_tokens_map_extended: Dict[str, str | AddedToken | List[str |
AddedToken]]

A dictionary mapping special token class attributes (cls_token, unk_token, etc.) to their values (‘<unk>’,
‘<cls>’, etc.).

Don’t convert tokens of tokenizers.AddedToken type to string so they can be used to control more finely
how special tokens are tokenized.

Type
Dict[str, Union[str, tokenizers.AddedToken, List[Union[str, tokenizers.AddedToken]]]]

tokenize(text: str, pair: str | None = None, add_special_tokens: bool = False, **kwargs)→ List[str]
Converts a string into a sequence of tokens, replacing unknown tokens with the unk_token.

Parameters
• text (str) – The sequence to be encoded.

• pair (str, optional) – A second sequence to be encoded with the first.

• add_special_tokens (bool, optional, defaults to False) – Whether or not to add the
special tokens associated with the corresponding model.
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• kwargs (additional keyword arguments, optional) – Will be passed to the underlying model
specific encode method. See details in [~PreTrainedTokenizerBase.__call__]

Returns
The list of tokens.

Return type
List[str]

train_new_from_iterator(text_iterator, vocab_size, length=None, new_special_tokens=None,
special_tokens_map=None, **kwargs)

Trains a tokenizer on a new corpus with the same defaults (in terms of special tokens or tokenization
pipeline) as the current one.

Parameters
• text_iterator (generator of List[str]) – The training corpus. Should be a generator of

batches of texts, for instance a list of lists of texts if you have everything in memory.

• vocab_size (int) – The size of the vocabulary you want for your tokenizer.

• length (int, optional) – The total number of sequences in the iterator. This is used to
provide meaningful progress tracking

• new_special_tokens (list of str or AddedToken, optional) – A list of new special tokens
to add to the tokenizer you are training.

• special_tokens_map (Dict[str, str], optional) – If you want to rename some of the spe-
cial tokens this tokenizer uses, pass along a mapping old special token name to new special
token name in this argument.

• kwargs (Dict[str, Any], optional) – Additional keyword arguments passed along to the
trainer from the Tokenizers library.

Returns
A new tokenizer of the same type as the original one, trained on text_iterator.

Return type
[PreTrainedTokenizerFast]

truncate_sequences(ids: List[int], pair_ids: List[int] | None = None, num_tokens_to_remove: int = 0,
truncation_strategy: str | TruncationStrategy = 'longest_first', stride: int = 0)→
Tuple[List[int], List[int], List[int]]

Truncates a sequence pair in-place following the strategy.

Parameters
• ids (List[int]) – Tokenized input ids of the first sequence. Can be obtained from a string

by chaining the tokenize and convert_tokens_to_ids methods.

• pair_ids (List[int], optional) – Tokenized input ids of the second sequence. Can be ob-
tained from a string by chaining the tokenize and convert_tokens_to_ids methods.

• num_tokens_to_remove (int, optional, defaults to 0) – Number of tokens to remove using
the truncation strategy.

• truncation_strategy (str or [~tokenization_utils_base.TruncationStrategy], optional,
defaults to False) – The strategy to follow for truncation. Can be:

– ’longest_first’: Truncate to a maximum length specified with the argument max_length
or to the maximum acceptable input length for the model if that argument is not provided.
This will truncate token by token, removing a token from the longest sequence in the pair
if a pair of sequences (or a batch of pairs) is provided.
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– ’only_first’: Truncate to a maximum length specified with the argument max_length or
to the maximum acceptable input length for the model if that argument is not provided.
This will only truncate the first sequence of a pair if a pair of sequences (or a batch of
pairs) is provided.

– ’only_second’: Truncate to a maximum length specified with the argument max_length
or to the maximum acceptable input length for the model if that argument is not provided.
This will only truncate the second sequence of a pair if a pair of sequences (or a batch
of pairs) is provided.

– ’do_not_truncate’ (default): No truncation (i.e., can output batch with sequence lengths
greater than the model maximum admissible input size).

• stride (int, optional, defaults to 0) – If set to a positive number, the overflowing tokens
returned will contain some tokens from the main sequence returned. The value of this
argument defines the number of additional tokens.

Returns
The truncated ids, the truncated pair_ids and the list of overflowing tokens. Note: The
longest_first strategy returns empty list of overflowing tokens if a pair of sequences (or a
batch of pairs) is provided.

Return type
Tuple[List[int], List[int], List[int]]

property unk_token: str

Unknown token. Log an error if used while not having been set.

Type
str

property unk_token_id: int | None

Id of the unknown token in the vocabulary. Returns None if the token has not been set.

Type
Optional[int]

property vocab_size: int

Size of the base vocabulary (without the added tokens).

Type
int

RxnFeaturizer

class RxnFeaturizer(tokenizer: RobertaTokenizerFast, sep_reagent: bool, max_length: int = 100)
Reaction Featurizer.

RxnFeaturizer is a wrapper class for HuggingFace’s RobertaTokenizerFast, that is intended for featurizing chem-
ical reaction datasets. The featurizer computes the source and target required for a seq2seq task and applies the
RobertaTokenizer on them separately. Additionally, it can also separate or mix the reactants and reagents before
tokenizing.
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Examples

>>> from deepchem.feat import RxnFeaturizer
>>> from transformers import RobertaTokenizerFast
>>> tokenizer = RobertaTokenizerFast.from_pretrained("seyonec/PubChem10M_SMILES_BPE_
→˓450k")
>>> featurizer = RxnFeaturizer(tokenizer, sep_reagent=True)
>>> feats = featurizer.featurize(['CCS(=O)(=O)Cl.OCCBr>CCN(CC)CC.CCOCC>
→˓CCS(=O)(=O)OCCBr'])

Notes

• The featurize method expects a List of reactions.

• Use the sep_reagent toggle to enable/disable reagent separation.
– True - Separate the reactants and reagents

– False - Mix the reactants and reagents

__init__(tokenizer: RobertaTokenizerFast, sep_reagent: bool, max_length: int = 100)
Initialize a ReactionFeaturizer object.

Parameters
• tokenizer (RobertaTokenizerFast) – HuggingFace Tokenizer to be used for featur-

ization.

• sep_reagent (bool) – Toggle to separate or mix the reactants and reagents.

• max_length (int, default 100) – Maximum length of padding

featurize(datapoints: Iterable[Any], log_every_n: int = 1000, **kwargs)→ ndarray
Calculate features for datapoints.

Parameters
• datapoints (Iterable[Any]) – A sequence of objects that you’d like to featurize. Sub-

classses of Featurizer should instantiate the _featurize method that featurizes objects in the
sequence.

• log_every_n (int, default 1000) – Logs featurization progress every log_every_n
steps.

Returns
A numpy array containing a featurized representation of datapoints.

Return type
np.ndarray
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BindingPocketFeaturizer

class BindingPocketFeaturizer

Featurizes binding pockets with information about chemical environments.

In many applications, it’s desirable to look at binding pockets on macromolecules which may be good targets for
potential ligands or other molecules to interact with. A BindingPocketFeaturizer expects to be given a macro-
molecule, and a list of pockets to featurize on that macromolecule. These pockets should be of the form produced
by a dc.dock.BindingPocketFinder, that is as a list of dc.utils.CoordinateBox objects.

The base featurization in this class’s featurization is currently very simple and counts the number of residues of
each type present in the pocket. It’s likely that you’ll want to overwrite this implementation for more sophisti-
cated downstream usecases. Note that this class’s implementation will only work for proteins and not for other
macromolecules

Note: This class requires mdtraj to be installed.

featurize(protein_file: str, pockets: List[CoordinateBox])→ ndarray
Calculate atomic coodinates.

Parameters
• protein_file (str) – Location of PDB file. Will be loaded by MDTraj

• pockets (List[CoordinateBox]) – List of dc.utils.CoordinateBox objects.

Returns
A numpy array of shale (len(pockets), n_residues)

Return type
np.ndarray

UserDefinedFeaturizer

class UserDefinedFeaturizer(feature_fields)
Directs usage of user-computed featurizations.

__init__(feature_fields)
Creates user-defined-featurizer.

featurize(datapoints: Iterable[Any], log_every_n: int = 1000, **kwargs)→ ndarray
Calculate features for datapoints.

Parameters
• datapoints (Iterable[Any]) – A sequence of objects that you’d like to featurize. Sub-

classses of Featurizer should instantiate the _featurize method that featurizes objects in the
sequence.

• log_every_n (int, default 1000) – Logs featurization progress every log_every_n
steps.

Returns
A numpy array containing a featurized representation of datapoints.

Return type
np.ndarray
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DummyFeaturizer

class DummyFeaturizer

Class that implements a no-op featurization. This is useful when the raw dataset has to be used without featurizing
the examples. The Molnet loader requires a featurizer input and such datasets can be used in their original form
by passing the raw featurizer.

Examples

>>> import deepchem as dc
>>> smi_map = [["N#C[S-].O=C(CBr)c1ccc(C(F)(F)F)cc1>CCO.[K+]", "N
→˓#CSCC(=O)c1ccc(C(F)(F)F)cc1"], ["C1COCCN1.FCC(Br)c1cccc(Br)n1>CCN(C(C)C)C(C)C.
→˓CN(C)C=O.O", "FCC(c1cccc(Br)n1)N1CCOCC1"]]
>>> Featurizer = dc.feat.DummyFeaturizer()
>>> smi_feat = Featurizer.featurize(smi_map)
>>> smi_feat
array([['N#C[S-].O=C(CBr)c1ccc(C(F)(F)F)cc1>CCO.[K+]',

'N#CSCC(=O)c1ccc(C(F)(F)F)cc1'],
['C1COCCN1.FCC(Br)c1cccc(Br)n1>CCN(C(C)C)C(C)C.CN(C)C=O.O',
'FCC(c1cccc(Br)n1)N1CCOCC1']], dtype='<U55')

featurize(datapoints: Iterable[Any], log_every_n: int = 1000, **kwargs)→ ndarray
Passes through dataset, and returns the datapoint.

Parameters
datapoints (Iterable[Any]) – A sequence of objects that you’d like to featurize.

Returns
datapoints – A numpy array containing a featurized representation of the datapoints.

Return type
np.ndarray

3.10.9 Base Featurizers (for develop)

Featurizer

The dc.feat.Featurizer class is the abstract parent class for all featurizers.

class Featurizer

Abstract class for calculating a set of features for a datapoint.

This class is abstract and cannot be invoked directly. You’ll likely only interact with this class if you’re a developer.
In that case, you might want to make a child class which implements the _featurize method for calculating features
for a single datapoints if you’d like to make a featurizer for a new datatype.

featurize(datapoints: Iterable[Any], log_every_n: int = 1000, **kwargs)→ ndarray
Calculate features for datapoints.

Parameters
• datapoints (Iterable[Any]) – A sequence of objects that you’d like to featurize. Sub-

classses of Featurizer should instantiate the _featurize method that featurizes objects in the
sequence.
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• log_every_n (int, default 1000) – Logs featurization progress every log_every_n
steps.

Returns
A numpy array containing a featurized representation of datapoints.

Return type
np.ndarray

MolecularFeaturizer

If you’re creating a new featurizer that featurizes molecules, you will want to inherit from the abstract
MolecularFeaturizer base class. This featurizer can take RDKit mol objects or SMILES as inputs.

class MolecularFeaturizer(use_original_atoms_order=False)
Abstract class for calculating a set of features for a molecule.

The defining feature of a MolecularFeaturizer is that it uses SMILES strings and RDKit molecule
objects to represent small molecules. All other featurizers which are subclasses of this class should
plan to process input which comes as smiles strings or RDKit molecules.

Child classes need to implement the _featurize method for calculating features for a single molecule.

The subclasses of this class require RDKit to be installed.

__init__(use_original_atoms_order=False)

Parameters
use_original_atoms_order (bool, default False) – Whether to use original atom
ordering or canonical ordering (default)

featurize(datapoints, log_every_n=1000, **kwargs)→ ndarray
Calculate features for molecules.

Parameters
• datapoints (rdkit.Chem.rdchem.Mol / SMILES string / iterable) – RDKit

Mol, or SMILES string or iterable sequence of RDKit mols/SMILES strings.

• log_every_n (int, default 1000) – Logging messages reported every log_every_n
samples.

Returns
features – A numpy array containing a featurized representation of datapoints.

Return type
np.ndarray

MaterialCompositionFeaturizer

If you’re creating a new featurizer that featurizes compositional formulas, you will want to inherit from the abstract
MaterialCompositionFeaturizer base class.

class MaterialCompositionFeaturizer

Abstract class for calculating a set of features for an inorganic crystal composition.

The defining feature of a MaterialCompositionFeaturizer is that it operates on 3D crystal chemical compositions.
Inorganic crystal compositions are represented by Pymatgen composition objects. Featurizers for inorganic crys-
tal compositions that are subclasses of this class should plan to process input which comes as Pymatgen compo-
sition objects.
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This class is abstract and cannot be invoked directly. You’ll likely only interact with this class if you’re a developer.
Child classes need to implement the _featurize method for calculating features for a single crystal composition.

Note: Some subclasses of this class will require pymatgen and matminer to be installed.

featurize(datapoints: Iterable[str] | None = None, log_every_n: int = 1000, **kwargs)→ ndarray
Calculate features for crystal compositions.

Parameters
• datapoints (Iterable[str]) – Iterable sequence of composition strings, e.g. “MoS2”.

• log_every_n (int, default 1000) – Logging messages reported every log_every_n
samples.

Returns
features – A numpy array containing a featurized representation of compositions.

Return type
np.ndarray

MaterialStructureFeaturizer

If you’re creating a new featurizer that featurizes inorganic crystal structure, you will want to inherit from the abstract
MaterialCompositionFeaturizer base class. This featurizer can take pymatgen structure objects or dictionaries
as inputs.

class MaterialStructureFeaturizer

Abstract class for calculating a set of features for an inorganic crystal structure.

The defining feature of a MaterialStructureFeaturizer is that it operates on 3D crystal structures with periodic
boundary conditions. Inorganic crystal structures are represented by Pymatgen structure objects. Featurizers for
inorganic crystal structures that are subclasses of this class should plan to process input which comes as pymatgen
structure objects.

This class is abstract and cannot be invoked directly. You’ll likely only interact with this class if you’re a developer.
Child classes need to implement the _featurize method for calculating features for a single crystal structure.

Note: Some subclasses of this class will require pymatgen and matminer to be installed.

featurize(datapoints: Iterable[Dict[str, Any] | Any] | None = None, log_every_n: int = 1000, **kwargs)→
ndarray

Calculate features for crystal structures.

Parameters
• datapoints (Iterable[Union[Dict, pymatgen.core.Structure]]) – Iterable se-

quence of pymatgen structure dictionaries or pymatgen.core.Structure. Please con-
firm the dictionary representations of pymatgen.core.Structure from https://pymatgen.org/
pymatgen.core.structure.html.

• log_every_n (int, default 1000) – Logging messages reported every log_every_n
samples.

Returns
features – A numpy array containing a featurized representation of datapoints.
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Return type
np.ndarray

ComplexFeaturizer

If you’re creating a new featurizer that featurizes a pair of ligand molecules and proteins, you will want to inherit from
the abstract ComplexFeaturizer base class. This featurizer can take a pair of PDB or SDF files which contain ligand
molecules and proteins.

class ComplexFeaturizer

” Abstract class for calculating features for mol/protein complexes.

featurize(datapoints: Iterable[Tuple[str, str]] | None = None, log_every_n: int = 100, **kwargs)→
ndarray

Calculate features for mol/protein complexes. :param datapoints: List of filenames (PDB, SDF, etc.) for
ligand molecules and proteins.

Each element should be a tuple of the form (ligand_filename, protein_filename).

Returns
features – Array of features

Return type
np.ndarray

VocabularyBuilder

If you’re creating a vocabulary builder for generating vocabulary from a corpus or input data, the vocabulary builder
must inhere from VocabularyBuilder base class.

class VocabularyBuilder

Abstract class for building a vocabulary from a dataset.

build(dataset: Dataset)
Builds vocabulary from a dataset

Parameters
dataset (Dataset) – dataset to build vocabulary from.

classmethod load(fname: str)
Loads vocabulary from the specified file

Parameters
fname (str) – Path containing pre-build vocabulary.

save(fname: str)
Dump vocabulary to the specified file.

Parameters
fname (str) – A json file fname to save vocabulary.

extend(dataset: Dataset)
Extends vocabulary from a dataset

Parameters
dataset (Dataset) – dataset used for extending vocabulary
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HuggingFaceVocabularyBuilder

A wrapper class for building vocabulary from algorithms implemented in tokenizers library.

hf_vocab

alias of <module ‘deepchem.feat.vocabulary_builders.hf_vocab’ from ‘/home/docs/checkouts/readthedocs.org/user_builds/deepchem/checkouts/stable/deepchem/feat/vocabulary_builders/hf_vocab.py’>

3.11 Splitters

DeepChem dc.splits.Splitter objects are a tool to meaningfully split DeepChem datasets for machine learning
testing. The core idea is that when evaluating a machine learning model, it’s useful to creating training, validation and
test splits of your source data. The training split is used to train models, the validation is used to benchmark different
model architectures. The test is ideally held out till the very end when it’s used to gauge a final estimate of the model’s
performance.

The dc.splits module contains a collection of scientifically aware splitters. In many cases, we want to evaluate sci-
entific deep learning models more rigorously than standard deep models since we’re looking for the ability to generalize
to new domains. Some of the implemented splitters here may help.

Contents

• General Splitters

– RandomSplitter

– RandomGroupSplitter

– RandomStratifiedSplitter

– SingletaskStratifiedSplitter

– IndexSplitter

– SpecifiedSplitter

– TaskSplitter

• Molecule Splitters

– ScaffoldSplitter

– MolecularWeightSplitter

– MaxMinSplitter

– ButinaSplitter

– FingerprintSplitter

• Base Splitter (for develop)
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3.11.1 General Splitters

RandomSplitter

class RandomSplitter

Class for doing random data splits.

Examples

>>> import numpy as np
>>> import deepchem as dc
>>> # Creating a dummy NumPy dataset
>>> X, y = np.random.randn(5), np.random.randn(5)
>>> dataset = dc.data.NumpyDataset(X, y)
>>> # Creating a RandomSplitter object
>>> splitter = dc.splits.RandomSplitter()
>>> # Splitting dataset into train and test datasets
>>> train_dataset, test_dataset = splitter.train_test_split(dataset)

split(dataset: Dataset, frac_train: float = 0.8, frac_valid: float = 0.1, frac_test: float = 0.1, seed: int | None
= None, log_every_n: int | None = None)→ Tuple[ndarray, ndarray, ndarray]

Splits internal compounds randomly into train/validation/test.

Parameters
• dataset (Dataset) – Dataset to be split.

• seed (int, optional (default None)) – Random seed to use.

• frac_train (float, optional (default 0.8)) – The fraction of data to be used for
the training split.

• frac_valid (float, optional (default 0.1)) – The fraction of data to be used for
the validation split.

• frac_test (float, optional (default 0.1)) – The fraction of data to be used for
the test split.

• seed – Random seed to use.

• log_every_n (int, optional (default None)) – Log every n examples (not cur-
rently used).

Returns
A tuple of train indices, valid indices, and test indices. Each indices is a numpy array.

Return type
Tuple[np.ndarray, np.ndarray, np.ndarray]

__repr__()→ str
Convert self to repr representation.

Returns
The string represents the class.

Return type
str
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Examples

>>> import deepchem as dc
>>> dc.splits.RandomSplitter()
RandomSplitter[]

__str__()→ str
Convert self to str representation.

Returns
The string represents the class.

Return type
str

Examples

>>> import deepchem as dc
>>> str(dc.splits.RandomSplitter())
'RandomSplitter'

__weakref__

list of weak references to the object (if defined)

k_fold_split(dataset: Dataset, k: int, directories: List[str] | None = None, **kwargs)→
List[Tuple[Dataset, Dataset]]

Parameters
• dataset (Dataset) – Dataset to do a k-fold split

• k (int) – Number of folds to split dataset into.

• directories (List[str], optional (default None)) – List of length 2*k
filepaths to save the result disk-datasets.

Returns
List of length k tuples of (train, cv) where train and cv are both Dataset.

Return type
List[Tuple[Dataset, Dataset]]

train_test_split(dataset: Dataset, train_dir: str | None = None, test_dir: str | None = None, frac_train:
float = 0.8, seed: int | None = None, **kwargs)→ Tuple[Dataset, Dataset]

Splits self into train/test sets.

Returns Dataset objects for train/test.

Parameters
• dataset (data like object) – Dataset to be split.

• train_dir (str, optional (default None)) – If specified, the directory in which
the generated training dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset) is True.

• test_dir (str, optional (default None)) – If specified, the directory in which
the generated test dataset should be stored. This is only considered if isinstance(dataset,
dc.data.DiskDataset) is True.
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• frac_train (float, optional (default 0.8)) – The fraction of data to be used for
the training split.

• seed (int, optional (default None)) – Random seed to use.

Returns
A tuple of train and test datasets as dc.data.Dataset objects.

Return type
Tuple[Dataset, Dataset]

train_valid_test_split(dataset: Dataset, train_dir: str | None = None, valid_dir: str | None = None,
test_dir: str | None = None, frac_train: float = 0.8, frac_valid: float = 0.1,
frac_test: float = 0.1, seed: int | None = None, log_every_n: int = 1000,
**kwargs)→ Tuple[Dataset, Dataset, Dataset]

Splits self into train/validation/test sets.

Returns Dataset objects for train, valid, test.

Parameters
• dataset (Dataset) – Dataset to be split.

• train_dir (str, optional (default None)) – If specified, the directory in which
the generated training dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset)

• valid_dir (str, optional (default None)) – If specified, the directory in which
the generated valid dataset should be stored. This is only considered if isinstance(dataset,
dc.data.DiskDataset) is True.

• test_dir (str, optional (default None)) – If specified, the directory in which
the generated test dataset should be stored. This is only considered if isinstance(dataset,
dc.data.DiskDataset) is True.

• frac_train (float, optional (default 0.8)) – The fraction of data to be used for
the training split.

• frac_valid (float, optional (default 0.1)) – The fraction of data to be used for
the validation split.

• frac_test (float, optional (default 0.1)) – The fraction of data to be used for
the test split.

• seed (int, optional (default None)) – Random seed to use.

• log_every_n (int, optional (default 1000)) – Controls the logger by dictating
how often logger outputs will be produced.

Returns
A tuple of train, valid and test datasets as dc.data.Dataset objects.

Return type
Tuple[Dataset, Optional[Dataset], Dataset]
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RandomGroupSplitter

class RandomGroupSplitter(groups: Sequence)
Random split based on groupings.

A splitter class that splits on groupings. An example use case is when there are multiple conformations of the
same molecule that share the same topology. This splitter subsequently guarantees that resulting splits preserve
groupings.

Note that it doesn’t do any dynamic programming or something fancy to try to maximize the choice such that
frac_train, frac_valid, or frac_test is maximized. It simply permutes the groups themselves. As such, use with
caution if the number of elements per group varies significantly.

Examples

>>> import deepchem as dc
>>> import numpy as np
>>> X=np.arange(12)
>>> groups = [0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3]
>>> splitter = dc.splits.RandomGroupSplitter(groups=groups)
>>> dataset = dc.data.NumpyDataset(X) # 12 elements
>>> train, test = splitter.train_test_split(dataset, frac_train=0.75, seed=0)
>>> print (train.ids) #array([6, 7, 8, 9, 10, 11, 3, 4, 5], dtype=object)
[6 7 8 9 10 11 3 4 5]

__init__(groups: Sequence)
Initialize this object.

Parameters
groups (Sequence) – An array indicating the group of each item. The length is equals to
len(dataset.X)

Note: The examples of groups is the following.

groups : 3 2 2 0 1 1 2 4 3
dataset.X : 0 1 2 3 4 5 6 7 8

groups : a b b e q x a a r
dataset.X : 0 1 2 3 4 5 6 7 8

split(dataset: Dataset, frac_train: float = 0.8, frac_valid: float = 0.1, frac_test: float = 0.1, seed: int | None
= None, log_every_n: int | None = None)→ Tuple[List[int], List[int], List[int]]

Return indices for specified split

Parameters
• dataset (Dataset) – Dataset to be split.

• frac_train (float, optional (default 0.8)) – The fraction of data to be used for
the training split.
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• frac_valid (float, optional (default 0.1)) – The fraction of data to be used for
the validation split.

• frac_test (float, optional (default 0.1)) – The fraction of data to be used for
the test split.

• seed (int, optional (default None)) – Random seed to use.

• log_every_n (int, optional (default None)) – Log every n examples (not cur-
rently used).

Returns
A tuple (train_inds, valid_inds, test_inds of the indices (integers) for the various splits.

Return type
Tuple[List[int], List[int], List[int]]

k_fold_split(dataset: Dataset, k: int, directories: List[str] | None = None, **kwargs)→
List[Tuple[Dataset, Dataset]]

Parameters
• dataset (Dataset) – Dataset to do a k-fold split

• k (int) – Number of folds to split dataset into.

• directories (List[str], optional (default None)) – List of length 2*k
filepaths to save the result disk-datasets.

Returns
List of length k tuples of (train, cv) where train and cv are both Dataset.

Return type
List[Tuple[Dataset, Dataset]]

train_test_split(dataset: Dataset, train_dir: str | None = None, test_dir: str | None = None, frac_train:
float = 0.8, seed: int | None = None, **kwargs)→ Tuple[Dataset, Dataset]

Splits self into train/test sets.

Returns Dataset objects for train/test.

Parameters
• dataset (data like object) – Dataset to be split.

• train_dir (str, optional (default None)) – If specified, the directory in which
the generated training dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset) is True.

• test_dir (str, optional (default None)) – If specified, the directory in which
the generated test dataset should be stored. This is only considered if isinstance(dataset,
dc.data.DiskDataset) is True.

• frac_train (float, optional (default 0.8)) – The fraction of data to be used for
the training split.

• seed (int, optional (default None)) – Random seed to use.

Returns
A tuple of train and test datasets as dc.data.Dataset objects.

Return type
Tuple[Dataset, Dataset]
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train_valid_test_split(dataset: Dataset, train_dir: str | None = None, valid_dir: str | None = None,
test_dir: str | None = None, frac_train: float = 0.8, frac_valid: float = 0.1,
frac_test: float = 0.1, seed: int | None = None, log_every_n: int = 1000,
**kwargs)→ Tuple[Dataset, Dataset, Dataset]

Splits self into train/validation/test sets.

Returns Dataset objects for train, valid, test.

Parameters
• dataset (Dataset) – Dataset to be split.

• train_dir (str, optional (default None)) – If specified, the directory in which
the generated training dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset)

• valid_dir (str, optional (default None)) – If specified, the directory in which
the generated valid dataset should be stored. This is only considered if isinstance(dataset,
dc.data.DiskDataset) is True.

• test_dir (str, optional (default None)) – If specified, the directory in which
the generated test dataset should be stored. This is only considered if isinstance(dataset,
dc.data.DiskDataset) is True.

• frac_train (float, optional (default 0.8)) – The fraction of data to be used for
the training split.

• frac_valid (float, optional (default 0.1)) – The fraction of data to be used for
the validation split.

• frac_test (float, optional (default 0.1)) – The fraction of data to be used for
the test split.

• seed (int, optional (default None)) – Random seed to use.

• log_every_n (int, optional (default 1000)) – Controls the logger by dictating
how often logger outputs will be produced.

Returns
A tuple of train, valid and test datasets as dc.data.Dataset objects.

Return type
Tuple[Dataset, Optional[Dataset], Dataset]

RandomStratifiedSplitter

class RandomStratifiedSplitter

RandomStratified Splitter class.

For sparse multitask datasets, a standard split offers no guarantees that the splits will have any active compounds.
This class tries to arrange that each split has a proportional number of the actives for each task. This is strictly
guaranteed only for single-task datasets, but for sparse multitask datasets it usually manages to produces a fairly
accurate division of the actives for each task.

Note: This splitter is primarily designed for boolean labeled data. It considers only whether a label is zero or
non-zero. When labels can take on multiple non-zero values, it does not try to give each split a proportional
fraction of the samples with each value.
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Examples

>>> import deepchem as dc
>>> import numpy as np
>>> from typing import Sequence
>>> # creation of demo data set with some smiles strings
>>> smiles= ['C', 'CC', 'CCC', 'CCCC', 'CCCCC']
>>> Xs = np.zeros(len(smiles))
>>> # creation of a deepchem dataset with the smile codes in the ids field
>>> dataset = dc.data.DiskDataset.from_numpy(X=Xs,ids=smiles)
>>> randomstratifiedsplitter = dc.splits.RandomStratifiedSplitter()
>>> train_dataset, test_dataset = randomstratifiedsplitter.train_test_split(dataset)

split(dataset: Dataset, frac_train: float = 0.8, frac_valid: float = 0.1, frac_test: float = 0.1, seed: int | None
= None, log_every_n: int | None = None)→ Tuple

Return indices for specified split

Parameters
• dataset (dc.data.Dataset) – Dataset to be split.

• seed (int, optional (default None)) – Random seed to use.

• frac_train (float, optional (default 0.8)) – The fraction of data to be used for
the training split.

• frac_valid (float, optional (default 0.1)) – The fraction of data to be used for
the validation split.

• frac_test (float, optional (default 0.1)) – The fraction of data to be used for
the test split.

• log_every_n (int, optional (default None)) – Controls the logger by dictating
how often logger outputs will be produced.

Returns
A tuple (train_inds, valid_inds, test_inds) of the indices (integers) for the various splits.

Return type
Tuple

__repr__()→ str
Convert self to repr representation.

Returns
The string represents the class.

Return type
str
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Examples

>>> import deepchem as dc
>>> dc.splits.RandomSplitter()
RandomSplitter[]

__str__()→ str
Convert self to str representation.

Returns
The string represents the class.

Return type
str

Examples

>>> import deepchem as dc
>>> str(dc.splits.RandomSplitter())
'RandomSplitter'

__weakref__

list of weak references to the object (if defined)

k_fold_split(dataset: Dataset, k: int, directories: List[str] | None = None, **kwargs)→
List[Tuple[Dataset, Dataset]]

Parameters
• dataset (Dataset) – Dataset to do a k-fold split

• k (int) – Number of folds to split dataset into.

• directories (List[str], optional (default None)) – List of length 2*k
filepaths to save the result disk-datasets.

Returns
List of length k tuples of (train, cv) where train and cv are both Dataset.

Return type
List[Tuple[Dataset, Dataset]]

train_test_split(dataset: Dataset, train_dir: str | None = None, test_dir: str | None = None, frac_train:
float = 0.8, seed: int | None = None, **kwargs)→ Tuple[Dataset, Dataset]

Splits self into train/test sets.

Returns Dataset objects for train/test.

Parameters
• dataset (data like object) – Dataset to be split.

• train_dir (str, optional (default None)) – If specified, the directory in which
the generated training dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset) is True.

• test_dir (str, optional (default None)) – If specified, the directory in which
the generated test dataset should be stored. This is only considered if isinstance(dataset,
dc.data.DiskDataset) is True.
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• frac_train (float, optional (default 0.8)) – The fraction of data to be used for
the training split.

• seed (int, optional (default None)) – Random seed to use.

Returns
A tuple of train and test datasets as dc.data.Dataset objects.

Return type
Tuple[Dataset, Dataset]

train_valid_test_split(dataset: Dataset, train_dir: str | None = None, valid_dir: str | None = None,
test_dir: str | None = None, frac_train: float = 0.8, frac_valid: float = 0.1,
frac_test: float = 0.1, seed: int | None = None, log_every_n: int = 1000,
**kwargs)→ Tuple[Dataset, Dataset, Dataset]

Splits self into train/validation/test sets.

Returns Dataset objects for train, valid, test.

Parameters
• dataset (Dataset) – Dataset to be split.

• train_dir (str, optional (default None)) – If specified, the directory in which
the generated training dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset)

• valid_dir (str, optional (default None)) – If specified, the directory in which
the generated valid dataset should be stored. This is only considered if isinstance(dataset,
dc.data.DiskDataset) is True.

• test_dir (str, optional (default None)) – If specified, the directory in which
the generated test dataset should be stored. This is only considered if isinstance(dataset,
dc.data.DiskDataset) is True.

• frac_train (float, optional (default 0.8)) – The fraction of data to be used for
the training split.

• frac_valid (float, optional (default 0.1)) – The fraction of data to be used for
the validation split.

• frac_test (float, optional (default 0.1)) – The fraction of data to be used for
the test split.

• seed (int, optional (default None)) – Random seed to use.

• log_every_n (int, optional (default 1000)) – Controls the logger by dictating
how often logger outputs will be produced.

Returns
A tuple of train, valid and test datasets as dc.data.Dataset objects.

Return type
Tuple[Dataset, Optional[Dataset], Dataset]
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SingletaskStratifiedSplitter

class SingletaskStratifiedSplitter(task_number: int = 0)
Class for doing data splits by stratification on a single task.

Examples

>>> n_samples = 100
>>> n_features = 10
>>> n_tasks = 10
>>> X = np.random.rand(n_samples, n_features)
>>> y = np.random.rand(n_samples, n_tasks)
>>> w = np.ones_like(y)
>>> dataset = DiskDataset.from_numpy(np.ones((100,n_tasks)), np.ones((100,n_tasks)))
>>> splitter = SingletaskStratifiedSplitter(task_number=5)
>>> train_dataset, test_dataset = splitter.train_test_split(dataset)

__init__(task_number: int = 0)
Creates splitter object.

Parameters
task_number (int, optional (default 0)) – Task number for stratification.

k_fold_split(dataset: Dataset, k: int, directories: List[str] | None = None, seed: int | None = None,
log_every_n: int | None = None, **kwargs)→ List[Dataset]

Splits compounds into k-folds using stratified sampling. Overriding base class k_fold_split.

Parameters
• dataset (Dataset) – Dataset to be split.

• k (int) – Number of folds to split dataset into.

• directories (List[str], optional (default None)) – List of length k filepaths
to save the result disk-datasets.

• seed (int, optional (default None)) – Random seed to use.

• log_every_n (int, optional (default None)) – Log every n examples (not cur-
rently used).

Returns
fold_datasets – List of dc.data.Dataset objects

Return type
List[Dataset]

split(dataset: Dataset, frac_train: float = 0.8, frac_valid: float = 0.1, frac_test: float = 0.1, seed: int | None
= None, log_every_n: int | None = None)→ Tuple[ndarray, ndarray, ndarray]

Splits compounds into train/validation/test using stratified sampling.

Parameters
• dataset (Dataset) – Dataset to be split.

• frac_train (float, optional (default 0.8)) – Fraction of dataset put into train-
ing data.
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• frac_valid (float, optional (default 0.1)) – Fraction of dataset put into vali-
dation data.

• frac_test (float, optional (default 0.1)) – Fraction of dataset put into test
data.

• seed (int, optional (default None)) – Random seed to use.

• log_every_n (int, optional (default None)) – Log every n examples (not cur-
rently used).

Returns
A tuple of train indices, valid indices, and test indices. Each indices is a numpy array.

Return type
Tuple[np.ndarray, np.ndarray, np.ndarray]

train_test_split(dataset: Dataset, train_dir: str | None = None, test_dir: str | None = None, frac_train:
float = 0.8, seed: int | None = None, **kwargs)→ Tuple[Dataset, Dataset]

Splits self into train/test sets.

Returns Dataset objects for train/test.

Parameters
• dataset (data like object) – Dataset to be split.

• train_dir (str, optional (default None)) – If specified, the directory in which
the generated training dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset) is True.

• test_dir (str, optional (default None)) – If specified, the directory in which
the generated test dataset should be stored. This is only considered if isinstance(dataset,
dc.data.DiskDataset) is True.

• frac_train (float, optional (default 0.8)) – The fraction of data to be used for
the training split.

• seed (int, optional (default None)) – Random seed to use.

Returns
A tuple of train and test datasets as dc.data.Dataset objects.

Return type
Tuple[Dataset, Dataset]

train_valid_test_split(dataset: Dataset, train_dir: str | None = None, valid_dir: str | None = None,
test_dir: str | None = None, frac_train: float = 0.8, frac_valid: float = 0.1,
frac_test: float = 0.1, seed: int | None = None, log_every_n: int = 1000,
**kwargs)→ Tuple[Dataset, Dataset, Dataset]

Splits self into train/validation/test sets.

Returns Dataset objects for train, valid, test.

Parameters
• dataset (Dataset) – Dataset to be split.

• train_dir (str, optional (default None)) – If specified, the directory in which
the generated training dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset)
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• valid_dir (str, optional (default None)) – If specified, the directory in which
the generated valid dataset should be stored. This is only considered if isinstance(dataset,
dc.data.DiskDataset) is True.

• test_dir (str, optional (default None)) – If specified, the directory in which
the generated test dataset should be stored. This is only considered if isinstance(dataset,
dc.data.DiskDataset) is True.

• frac_train (float, optional (default 0.8)) – The fraction of data to be used for
the training split.

• frac_valid (float, optional (default 0.1)) – The fraction of data to be used for
the validation split.

• frac_test (float, optional (default 0.1)) – The fraction of data to be used for
the test split.

• seed (int, optional (default None)) – Random seed to use.

• log_every_n (int, optional (default 1000)) – Controls the logger by dictating
how often logger outputs will be produced.

Returns
A tuple of train, valid and test datasets as dc.data.Dataset objects.

Return type
Tuple[Dataset, Optional[Dataset], Dataset]

IndexSplitter

class IndexSplitter

Class for simple order based splits.

Use this class when the Dataset you have is already ordered sa you would like it to be processed. Then the first
frac_train proportion is used for training, the next frac_valid for validation, and the final frac_test for testing.
This class may make sense to use your Dataset is already time ordered (for example).

Examples

>>> import deepchem as dc
>>> import numpy as np
>>> n_samples = 5
>>> n_features = 2
>>> X = np.random.rand(n_samples, n_features)
>>> y = np.random.rand(n_samples)
>>> indexsplitter = dc.splits.IndexSplitter()
>>> dataset = dc.data.NumpyDataset(X, y)
>>> train_dataset, test_dataset = indexsplitter.train_test_split(dataset)
>>> print(train_dataset.ids)
[0 1 2 3]
>>> print (test_dataset.ids)
[4]

split(dataset: Dataset, frac_train: float = 0.8, frac_valid: float = 0.1, frac_test: float = 0.1, seed: int | None
= None, log_every_n: int | None = None)→ Tuple[ndarray, ndarray, ndarray]

Splits internal compounds into train/validation/test in provided order.
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Parameters
• dataset (Dataset) – Dataset to be split.

• frac_train (float, optional (default 0.8)) – The fraction of data to be used for
the training split.

• frac_valid (float, optional (default 0.1)) – The fraction of data to be used for
the validation split.

• frac_test (float, optional (default 0.1)) – The fraction of data to be used for
the test split.

• seed (int, optional (default None)) – Random seed to use.

• log_every_n (int, optional) – Log every n examples (not currently used).

Returns
A tuple of train indices, valid indices, and test indices. Each indices is a numpy array.

Return type
Tuple[np.ndarray, np.ndarray, np.ndarray]

__repr__()→ str
Convert self to repr representation.

Returns
The string represents the class.

Return type
str

Examples

>>> import deepchem as dc
>>> dc.splits.RandomSplitter()
RandomSplitter[]

__str__()→ str
Convert self to str representation.

Returns
The string represents the class.

Return type
str

Examples

>>> import deepchem as dc
>>> str(dc.splits.RandomSplitter())
'RandomSplitter'

__weakref__

list of weak references to the object (if defined)
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k_fold_split(dataset: Dataset, k: int, directories: List[str] | None = None, **kwargs)→
List[Tuple[Dataset, Dataset]]

Parameters
• dataset (Dataset) – Dataset to do a k-fold split

• k (int) – Number of folds to split dataset into.

• directories (List[str], optional (default None)) – List of length 2*k
filepaths to save the result disk-datasets.

Returns
List of length k tuples of (train, cv) where train and cv are both Dataset.

Return type
List[Tuple[Dataset, Dataset]]

train_test_split(dataset: Dataset, train_dir: str | None = None, test_dir: str | None = None, frac_train:
float = 0.8, seed: int | None = None, **kwargs)→ Tuple[Dataset, Dataset]

Splits self into train/test sets.

Returns Dataset objects for train/test.

Parameters
• dataset (data like object) – Dataset to be split.

• train_dir (str, optional (default None)) – If specified, the directory in which
the generated training dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset) is True.

• test_dir (str, optional (default None)) – If specified, the directory in which
the generated test dataset should be stored. This is only considered if isinstance(dataset,
dc.data.DiskDataset) is True.

• frac_train (float, optional (default 0.8)) – The fraction of data to be used for
the training split.

• seed (int, optional (default None)) – Random seed to use.

Returns
A tuple of train and test datasets as dc.data.Dataset objects.

Return type
Tuple[Dataset, Dataset]

train_valid_test_split(dataset: Dataset, train_dir: str | None = None, valid_dir: str | None = None,
test_dir: str | None = None, frac_train: float = 0.8, frac_valid: float = 0.1,
frac_test: float = 0.1, seed: int | None = None, log_every_n: int = 1000,
**kwargs)→ Tuple[Dataset, Dataset, Dataset]

Splits self into train/validation/test sets.

Returns Dataset objects for train, valid, test.

Parameters
• dataset (Dataset) – Dataset to be split.

• train_dir (str, optional (default None)) – If specified, the directory in which
the generated training dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset)
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• valid_dir (str, optional (default None)) – If specified, the directory in which
the generated valid dataset should be stored. This is only considered if isinstance(dataset,
dc.data.DiskDataset) is True.

• test_dir (str, optional (default None)) – If specified, the directory in which
the generated test dataset should be stored. This is only considered if isinstance(dataset,
dc.data.DiskDataset) is True.

• frac_train (float, optional (default 0.8)) – The fraction of data to be used for
the training split.

• frac_valid (float, optional (default 0.1)) – The fraction of data to be used for
the validation split.

• frac_test (float, optional (default 0.1)) – The fraction of data to be used for
the test split.

• seed (int, optional (default None)) – Random seed to use.

• log_every_n (int, optional (default 1000)) – Controls the logger by dictating
how often logger outputs will be produced.

Returns
A tuple of train, valid and test datasets as dc.data.Dataset objects.

Return type
Tuple[Dataset, Optional[Dataset], Dataset]

SpecifiedSplitter

class SpecifiedSplitter(valid_indices: List[int] | None = None, test_indices: List[int] | None = None)
Split data in the fashion specified by user.

For some applications, you will already know how you’d like to split the dataset. In this splitter, you simplify
specify valid_indices and test_indices and the datapoints at those indices are pulled out of the dataset. Note that
this is different from IndexSplitter which only splits based on the existing dataset ordering, while this Specified-
Splitter can split on any specified ordering.

Examples

>>> import deepchem as dc
>>> import numpy as np
>>> n_samples = 10
>>> n_features = 3
>>> n_tasks = 1
>>> X = np.random.rand(n_samples, n_features)
>>> y = np.random.rand(n_samples, n_tasks)
>>> splitter = dc.splits.SpecifiedSplitter(valid_indices=[1,3,5], test_indices=[0,2,
→˓7,9])
>>> dataset = dc.data.NumpyDataset(X, y)
>>> train_dataset, valid_dataset, test_dataset = splitter.train_valid_test_
→˓split(dataset)
>>> print(train_dataset.ids)
[4 6 8]
>>> print(valid_dataset.ids)
[1 3 5]

(continues on next page)
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(continued from previous page)

>>> print(test_dataset.ids)
[0 2 7 9]

__init__(valid_indices: List[int] | None = None, test_indices: List[int] | None = None)

Parameters
• valid_indices (List[int]) – List of indices of samples in the valid set

• test_indices (List[int]) – List of indices of samples in the test set

split(dataset: Dataset, frac_train: float = 0.8, frac_valid: float = 0.1, frac_test: float = 0.1, seed: int | None
= None, log_every_n: int | None = None)→ Tuple[ndarray, ndarray, ndarray]

Splits internal compounds into train/validation/test in designated order.

Parameters
• dataset (Dataset) – Dataset to be split.

• frac_train (float, optional (default 0.8)) – Fraction of dataset put into train-
ing data.

• frac_valid (float, optional (default 0.1)) – Fraction of dataset put into vali-
dation data.

• frac_test (float, optional (default 0.1)) – Fraction of dataset put into test
data.

• seed (int, optional (default None)) – Random seed to use.

• log_every_n (int, optional (default None)) – Log every n examples (not cur-
rently used).

Returns
A tuple of train indices, valid indices, and test indices. Each indices is a numpy array.

Return type
Tuple[np.ndarray, np.ndarray, np.ndarray]

k_fold_split(dataset: Dataset, k: int, directories: List[str] | None = None, **kwargs)→
List[Tuple[Dataset, Dataset]]

Parameters
• dataset (Dataset) – Dataset to do a k-fold split

• k (int) – Number of folds to split dataset into.

• directories (List[str], optional (default None)) – List of length 2*k
filepaths to save the result disk-datasets.

Returns
List of length k tuples of (train, cv) where train and cv are both Dataset.

Return type
List[Tuple[Dataset, Dataset]]

train_test_split(dataset: Dataset, train_dir: str | None = None, test_dir: str | None = None, frac_train:
float = 0.8, seed: int | None = None, **kwargs)→ Tuple[Dataset, Dataset]

Splits self into train/test sets.

Returns Dataset objects for train/test.
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Parameters
• dataset (data like object) – Dataset to be split.

• train_dir (str, optional (default None)) – If specified, the directory in which
the generated training dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset) is True.

• test_dir (str, optional (default None)) – If specified, the directory in which
the generated test dataset should be stored. This is only considered if isinstance(dataset,
dc.data.DiskDataset) is True.

• frac_train (float, optional (default 0.8)) – The fraction of data to be used for
the training split.

• seed (int, optional (default None)) – Random seed to use.

Returns
A tuple of train and test datasets as dc.data.Dataset objects.

Return type
Tuple[Dataset, Dataset]

train_valid_test_split(dataset: Dataset, train_dir: str | None = None, valid_dir: str | None = None,
test_dir: str | None = None, frac_train: float = 0.8, frac_valid: float = 0.1,
frac_test: float = 0.1, seed: int | None = None, log_every_n: int = 1000,
**kwargs)→ Tuple[Dataset, Dataset, Dataset]

Splits self into train/validation/test sets.

Returns Dataset objects for train, valid, test.

Parameters
• dataset (Dataset) – Dataset to be split.

• train_dir (str, optional (default None)) – If specified, the directory in which
the generated training dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset)

• valid_dir (str, optional (default None)) – If specified, the directory in which
the generated valid dataset should be stored. This is only considered if isinstance(dataset,
dc.data.DiskDataset) is True.

• test_dir (str, optional (default None)) – If specified, the directory in which
the generated test dataset should be stored. This is only considered if isinstance(dataset,
dc.data.DiskDataset) is True.

• frac_train (float, optional (default 0.8)) – The fraction of data to be used for
the training split.

• frac_valid (float, optional (default 0.1)) – The fraction of data to be used for
the validation split.

• frac_test (float, optional (default 0.1)) – The fraction of data to be used for
the test split.

• seed (int, optional (default None)) – Random seed to use.

• log_every_n (int, optional (default 1000)) – Controls the logger by dictating
how often logger outputs will be produced.

Returns
A tuple of train, valid and test datasets as dc.data.Dataset objects.
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Return type
Tuple[Dataset, Optional[Dataset], Dataset]

TaskSplitter

class TaskSplitter

Provides a simple interface for splitting datasets task-wise.

For some learning problems, the training and test datasets should have different tasks entirely. This is a different
paradigm from the usual Splitter, which ensures that split datasets have different datapoints, not different tasks.

__init__()

Creates Task Splitter object.

train_valid_test_split(dataset, frac_train=0.8, frac_valid=0.1, frac_test=0.1)
Performs a train/valid/test split of the tasks for dataset.

If split is uneven, spillover goes to test.

Parameters
• dataset (dc.data.Dataset) – Dataset to be split

• frac_train (float, optional) – Proportion of tasks to be put into train. Rounded to
nearest int.

• frac_valid (float, optional) – Proportion of tasks to be put into valid. Rounded to
nearest int.

• frac_test (float, optional) – Proportion of tasks to be put into test. Rounded to
nearest int.

k_fold_split(dataset, K)

Performs a K-fold split of the tasks for dataset.

If split is uneven, spillover goes to last fold.

Parameters
• dataset (dc.data.Dataset) – Dataset to be split

• K (int) – Number of splits to be made

split(dataset: Dataset, frac_train: float = 0.8, frac_valid: float = 0.1, frac_test: float = 0.1, seed: int | None
= None, log_every_n: int | None = None)→ Tuple

Return indices for specified split

Parameters
• dataset (dc.data.Dataset) – Dataset to be split.

• seed (int, optional (default None)) – Random seed to use.

• frac_train (float, optional (default 0.8)) – The fraction of data to be used for
the training split.

• frac_valid (float, optional (default 0.1)) – The fraction of data to be used for
the validation split.

• frac_test (float, optional (default 0.1)) – The fraction of data to be used for
the test split.
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• log_every_n (int, optional (default None)) – Controls the logger by dictating
how often logger outputs will be produced.

Returns
A tuple (train_inds, valid_inds, test_inds) of the indices (integers) for the various splits.

Return type
Tuple

train_test_split(dataset: Dataset, train_dir: str | None = None, test_dir: str | None = None, frac_train:
float = 0.8, seed: int | None = None, **kwargs)→ Tuple[Dataset, Dataset]

Splits self into train/test sets.

Returns Dataset objects for train/test.

Parameters
• dataset (data like object) – Dataset to be split.

• train_dir (str, optional (default None)) – If specified, the directory in which
the generated training dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset) is True.

• test_dir (str, optional (default None)) – If specified, the directory in which
the generated test dataset should be stored. This is only considered if isinstance(dataset,
dc.data.DiskDataset) is True.

• frac_train (float, optional (default 0.8)) – The fraction of data to be used for
the training split.

• seed (int, optional (default None)) – Random seed to use.

Returns
A tuple of train and test datasets as dc.data.Dataset objects.

Return type
Tuple[Dataset, Dataset]

3.11.2 Molecule Splitters

ScaffoldSplitter

class ScaffoldSplitter

Class for doing data splits based on the scaffold of small molecules.

Group molecules based on the Bemis-Murcko scaffold representation, which identifies rings, linkers, frameworks
(combinations between linkers and rings) and atomic properties such as atom type, hibridization and bond order
in a dataset of molecules. Then split the groups by the number of molecules in each group in decreasing order.

It is necessary to add the smiles representation in the ids field during the DiskDataset creation.
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Examples

>>> import deepchem as dc
>>> # creation of demo data set with some smiles strings
... data_test= ["CC(C)Cl" , "CCC(C)CO" , "CCCCCCCO" , "CCCCCCCC(=O)OC" ,
→˓"c3ccc2nc1ccccc1cc2c3" , "Nc2cccc3nc1ccccc1cc23" , "C1CCCCCC1" ]
>>> Xs = np.zeros(len(data_test))
>>> Ys = np.ones(len(data_test))
>>> # creation of a deepchem dataset with the smile codes in the ids field
... dataset = dc.data.DiskDataset.from_numpy(X=Xs,y=Ys,w=np.zeros(len(data_test)),
→˓ids=data_test)
>>> scaffoldsplitter = dc.splits.ScaffoldSplitter()
>>> train,test = scaffoldsplitter.train_test_split(dataset)
>>> train
<DiskDataset X.shape: (5,), y.shape: (5,), w.shape: (5,), ids: ['CC(C)Cl' 'CCC(C)CO
→˓' 'CCCCCCCO' 'CCCCCCCC(=O)OC' 'C1CCCCCC1'], task_names: [0]>

References

Notes

• This class requires RDKit to be installed.

• When a SMILES representation of a molecule is invalid, the splitter skips processing

the datapoint i.e it will not include the molecule in any splits.

split(dataset: Dataset, frac_train: float = 0.8, frac_valid: float = 0.1, frac_test: float = 0.1, seed: int | None
= None, log_every_n: int | None = 1000)→ Tuple[List[int], List[int], List[int]]

Splits internal compounds into train/validation/test by scaffold.

Parameters
• dataset (Dataset) – Dataset to be split.

• frac_train (float, optional (default 0.8)) – The fraction of data to be used for
the training split.

• frac_valid (float, optional (default 0.1)) – The fraction of data to be used for
the validation split.

• frac_test (float, optional (default 0.1)) – The fraction of data to be used for
the test split.

• seed (int, optional (default None)) – Random seed to use.

• log_every_n (int, optional (default 1000)) – Controls the logger by dictating
how often logger outputs will be produced.

Returns
A tuple of train indices, valid indices, and test indices. Each indices is a list of integers.

Return type
Tuple[List[int], List[int], List[int]]

generate_scaffolds(dataset: Dataset, log_every_n: int = 1000)→ List[List[int]]
Returns all scaffolds from the dataset.
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Parameters
• dataset (Dataset) – Dataset to be split.

• log_every_n (int, optional (default 1000)) – Controls the logger by dictating
how often logger outputs will be produced.

Returns
scaffold_sets – List of indices of each scaffold in the dataset.

Return type
List[List[int]]

__repr__()→ str
Convert self to repr representation.

Returns
The string represents the class.

Return type
str

Examples

>>> import deepchem as dc
>>> dc.splits.RandomSplitter()
RandomSplitter[]

__str__()→ str
Convert self to str representation.

Returns
The string represents the class.

Return type
str

Examples

>>> import deepchem as dc
>>> str(dc.splits.RandomSplitter())
'RandomSplitter'

__weakref__

list of weak references to the object (if defined)

k_fold_split(dataset: Dataset, k: int, directories: List[str] | None = None, **kwargs)→
List[Tuple[Dataset, Dataset]]

Parameters
• dataset (Dataset) – Dataset to do a k-fold split

• k (int) – Number of folds to split dataset into.

• directories (List[str], optional (default None)) – List of length 2*k
filepaths to save the result disk-datasets.
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Returns
List of length k tuples of (train, cv) where train and cv are both Dataset.

Return type
List[Tuple[Dataset, Dataset]]

train_test_split(dataset: Dataset, train_dir: str | None = None, test_dir: str | None = None, frac_train:
float = 0.8, seed: int | None = None, **kwargs)→ Tuple[Dataset, Dataset]

Splits self into train/test sets.

Returns Dataset objects for train/test.

Parameters
• dataset (data like object) – Dataset to be split.

• train_dir (str, optional (default None)) – If specified, the directory in which
the generated training dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset) is True.

• test_dir (str, optional (default None)) – If specified, the directory in which
the generated test dataset should be stored. This is only considered if isinstance(dataset,
dc.data.DiskDataset) is True.

• frac_train (float, optional (default 0.8)) – The fraction of data to be used for
the training split.

• seed (int, optional (default None)) – Random seed to use.

Returns
A tuple of train and test datasets as dc.data.Dataset objects.

Return type
Tuple[Dataset, Dataset]

train_valid_test_split(dataset: Dataset, train_dir: str | None = None, valid_dir: str | None = None,
test_dir: str | None = None, frac_train: float = 0.8, frac_valid: float = 0.1,
frac_test: float = 0.1, seed: int | None = None, log_every_n: int = 1000,
**kwargs)→ Tuple[Dataset, Dataset, Dataset]

Splits self into train/validation/test sets.

Returns Dataset objects for train, valid, test.

Parameters
• dataset (Dataset) – Dataset to be split.

• train_dir (str, optional (default None)) – If specified, the directory in which
the generated training dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset)

• valid_dir (str, optional (default None)) – If specified, the directory in which
the generated valid dataset should be stored. This is only considered if isinstance(dataset,
dc.data.DiskDataset) is True.

• test_dir (str, optional (default None)) – If specified, the directory in which
the generated test dataset should be stored. This is only considered if isinstance(dataset,
dc.data.DiskDataset) is True.

• frac_train (float, optional (default 0.8)) – The fraction of data to be used for
the training split.
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• frac_valid (float, optional (default 0.1)) – The fraction of data to be used for
the validation split.

• frac_test (float, optional (default 0.1)) – The fraction of data to be used for
the test split.

• seed (int, optional (default None)) – Random seed to use.

• log_every_n (int, optional (default 1000)) – Controls the logger by dictating
how often logger outputs will be produced.

Returns
A tuple of train, valid and test datasets as dc.data.Dataset objects.

Return type
Tuple[Dataset, Optional[Dataset], Dataset]

MolecularWeightSplitter

class MolecularWeightSplitter

Class for doing data splits by molecular weight.

Note: This class requires RDKit to be installed.

Examples

>>> import deepchem as dc
>>> import numpy as np
>>> # creation of demo data set with some smiles strings
>>> smiles= ['C', 'CC', 'CCC', 'CCCC', 'CCCCC']
>>> Xs = np.zeros(len(smiles))
>>> # creation of a deepchem dataset with the smile codes in the ids field
>>> dataset = dc.data.DiskDataset.from_numpy(X=Xs,ids=smiles)
>>> molecularweightsplitter = dc.splits.MolecularWeightSplitter()
>>> train_dataset, test_dataset = molecularweightsplitter.train_test_split(dataset)
>>> print(train_dataset.ids)
['C' 'CC' 'CCC' 'CCCC']
>>> print(test_dataset.ids)
['CCCCC']

split(dataset: Dataset, frac_train: float = 0.8, frac_valid: float = 0.1, frac_test: float = 0.1, seed: int | None
= None, log_every_n: int | None = None)→ Tuple[ndarray, ndarray, ndarray]

Splits on molecular weight.

Splits internal compounds into train/validation/test using the MW calculated by SMILES string.

Parameters
• dataset (Dataset) – Dataset to be split.

• frac_train (float, optional (default 0.8)) – The fraction of data to be used for
the training split.

• frac_valid (float, optional (default 0.1)) – The fraction of data to be used for
the validation split.
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• frac_test (float, optional (default 0.1)) – The fraction of data to be used for
the test split.

• seed (int, optional (default None)) – Random seed to use.

• log_every_n (int, optional (default None)) – Log every n examples (not cur-
rently used).

Returns
A tuple of train indices, valid indices, and test indices. Each indices is a numpy array.

Return type
Tuple[np.ndarray, np.ndarray, np.ndarray]

__repr__()→ str
Convert self to repr representation.

Returns
The string represents the class.

Return type
str

Examples

>>> import deepchem as dc
>>> dc.splits.RandomSplitter()
RandomSplitter[]

__str__()→ str
Convert self to str representation.

Returns
The string represents the class.

Return type
str

Examples

>>> import deepchem as dc
>>> str(dc.splits.RandomSplitter())
'RandomSplitter'

__weakref__

list of weak references to the object (if defined)

k_fold_split(dataset: Dataset, k: int, directories: List[str] | None = None, **kwargs)→
List[Tuple[Dataset, Dataset]]

Parameters
• dataset (Dataset) – Dataset to do a k-fold split

• k (int) – Number of folds to split dataset into.

• directories (List[str], optional (default None)) – List of length 2*k
filepaths to save the result disk-datasets.
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Returns
List of length k tuples of (train, cv) where train and cv are both Dataset.

Return type
List[Tuple[Dataset, Dataset]]

train_test_split(dataset: Dataset, train_dir: str | None = None, test_dir: str | None = None, frac_train:
float = 0.8, seed: int | None = None, **kwargs)→ Tuple[Dataset, Dataset]

Splits self into train/test sets.

Returns Dataset objects for train/test.

Parameters
• dataset (data like object) – Dataset to be split.

• train_dir (str, optional (default None)) – If specified, the directory in which
the generated training dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset) is True.

• test_dir (str, optional (default None)) – If specified, the directory in which
the generated test dataset should be stored. This is only considered if isinstance(dataset,
dc.data.DiskDataset) is True.

• frac_train (float, optional (default 0.8)) – The fraction of data to be used for
the training split.

• seed (int, optional (default None)) – Random seed to use.

Returns
A tuple of train and test datasets as dc.data.Dataset objects.

Return type
Tuple[Dataset, Dataset]

train_valid_test_split(dataset: Dataset, train_dir: str | None = None, valid_dir: str | None = None,
test_dir: str | None = None, frac_train: float = 0.8, frac_valid: float = 0.1,
frac_test: float = 0.1, seed: int | None = None, log_every_n: int = 1000,
**kwargs)→ Tuple[Dataset, Dataset, Dataset]

Splits self into train/validation/test sets.

Returns Dataset objects for train, valid, test.

Parameters
• dataset (Dataset) – Dataset to be split.

• train_dir (str, optional (default None)) – If specified, the directory in which
the generated training dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset)

• valid_dir (str, optional (default None)) – If specified, the directory in which
the generated valid dataset should be stored. This is only considered if isinstance(dataset,
dc.data.DiskDataset) is True.

• test_dir (str, optional (default None)) – If specified, the directory in which
the generated test dataset should be stored. This is only considered if isinstance(dataset,
dc.data.DiskDataset) is True.

• frac_train (float, optional (default 0.8)) – The fraction of data to be used for
the training split.
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• frac_valid (float, optional (default 0.1)) – The fraction of data to be used for
the validation split.

• frac_test (float, optional (default 0.1)) – The fraction of data to be used for
the test split.

• seed (int, optional (default None)) – Random seed to use.

• log_every_n (int, optional (default 1000)) – Controls the logger by dictating
how often logger outputs will be produced.

Returns
A tuple of train, valid and test datasets as dc.data.Dataset objects.

Return type
Tuple[Dataset, Optional[Dataset], Dataset]

MaxMinSplitter

class MaxMinSplitter

Chemical diversity splitter.

Class for doing splits based on the MaxMin diversity algorithm. Intuitively, the test set is comprised of the most
diverse compounds of the entire dataset. Furthermore, the validation set is comprised of diverse compounds
under the test set.

Note: This class requires RDKit to be installed.

Examples

>>> import deepchem as dc
>>> import numpy as np
>>> # creation of demo data set with some smiles strings
>>> smiles= ['C', 'CC', 'CCC', 'CCCC', 'CCCCC']
>>> Xs = np.zeros(len(smiles))
>>> # creation of a deepchem dataset with the smile codes in the ids field
>>> dataset = dc.data.DiskDataset.from_numpy(X=Xs,ids=smiles)
>>> maxminsplitter = dc.splits.MaxMinSplitter()
>>> train_dataset, test_dataset = maxminsplitter.train_test_split(dataset)

split(dataset: Dataset, frac_train: float = 0.8, frac_valid: float = 0.1, frac_test: float = 0.1, seed: int | None
= None, log_every_n: int | None = None)→ Tuple[List[int], List[int], List[int]]

Splits internal compounds into train/validation/test using the MaxMin diversity algorithm.

Parameters
• dataset (Dataset) – Dataset to be split.

• frac_train (float, optional (default 0.8)) – The fraction of data to be used for
the training split.

• frac_valid (float, optional (default 0.1)) – The fraction of data to be used for
the validation split.

• frac_test (float, optional (default 0.1)) – The fraction of data to be used for
the test split.
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• seed (int, optional (default None)) – Random seed to use.

• log_every_n (int, optional (default None)) – Log every n examples (not cur-
rently used).

Returns
A tuple of train indices, valid indices, and test indices. Each indices is a list of integers.

Return type
Tuple[List[int], List[int], List[int]]

__repr__()→ str
Convert self to repr representation.

Returns
The string represents the class.

Return type
str

Examples

>>> import deepchem as dc
>>> dc.splits.RandomSplitter()
RandomSplitter[]

__str__()→ str
Convert self to str representation.

Returns
The string represents the class.

Return type
str

Examples

>>> import deepchem as dc
>>> str(dc.splits.RandomSplitter())
'RandomSplitter'

__weakref__

list of weak references to the object (if defined)

k_fold_split(dataset: Dataset, k: int, directories: List[str] | None = None, **kwargs)→
List[Tuple[Dataset, Dataset]]

Parameters
• dataset (Dataset) – Dataset to do a k-fold split

• k (int) – Number of folds to split dataset into.

• directories (List[str], optional (default None)) – List of length 2*k
filepaths to save the result disk-datasets.

Returns
List of length k tuples of (train, cv) where train and cv are both Dataset.
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Return type
List[Tuple[Dataset, Dataset]]

train_test_split(dataset: Dataset, train_dir: str | None = None, test_dir: str | None = None, frac_train:
float = 0.8, seed: int | None = None, **kwargs)→ Tuple[Dataset, Dataset]

Splits self into train/test sets.

Returns Dataset objects for train/test.

Parameters
• dataset (data like object) – Dataset to be split.

• train_dir (str, optional (default None)) – If specified, the directory in which
the generated training dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset) is True.

• test_dir (str, optional (default None)) – If specified, the directory in which
the generated test dataset should be stored. This is only considered if isinstance(dataset,
dc.data.DiskDataset) is True.

• frac_train (float, optional (default 0.8)) – The fraction of data to be used for
the training split.

• seed (int, optional (default None)) – Random seed to use.

Returns
A tuple of train and test datasets as dc.data.Dataset objects.

Return type
Tuple[Dataset, Dataset]

train_valid_test_split(dataset: Dataset, train_dir: str | None = None, valid_dir: str | None = None,
test_dir: str | None = None, frac_train: float = 0.8, frac_valid: float = 0.1,
frac_test: float = 0.1, seed: int | None = None, log_every_n: int = 1000,
**kwargs)→ Tuple[Dataset, Dataset, Dataset]

Splits self into train/validation/test sets.

Returns Dataset objects for train, valid, test.

Parameters
• dataset (Dataset) – Dataset to be split.

• train_dir (str, optional (default None)) – If specified, the directory in which
the generated training dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset)

• valid_dir (str, optional (default None)) – If specified, the directory in which
the generated valid dataset should be stored. This is only considered if isinstance(dataset,
dc.data.DiskDataset) is True.

• test_dir (str, optional (default None)) – If specified, the directory in which
the generated test dataset should be stored. This is only considered if isinstance(dataset,
dc.data.DiskDataset) is True.

• frac_train (float, optional (default 0.8)) – The fraction of data to be used for
the training split.

• frac_valid (float, optional (default 0.1)) – The fraction of data to be used for
the validation split.
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• frac_test (float, optional (default 0.1)) – The fraction of data to be used for
the test split.

• seed (int, optional (default None)) – Random seed to use.

• log_every_n (int, optional (default 1000)) – Controls the logger by dictating
how often logger outputs will be produced.

Returns
A tuple of train, valid and test datasets as dc.data.Dataset objects.

Return type
Tuple[Dataset, Optional[Dataset], Dataset]

ButinaSplitter

class ButinaSplitter(cutoff: float = 0.6)
Class for doing data splits based on the butina clustering of a bulk tanimoto fingerprint matrix.

Note: This class requires RDKit to be installed.

Examples

>>> import deepchem as dc
>>> import numpy as np
>>> # creation of demo data set with some smiles strings
>>> smiles= ['C', 'CC', 'CCC', 'CCCC', 'CCCCC']
>>> Xs = np.zeros(len(smiles))
>>> # creation of a deepchem dataset with the smile codes in the ids field
>>> dataset = dc.data.DiskDataset.from_numpy(X=Xs,ids=smiles)
>>> butinasplitter = dc.splits.ButinaSplitter()
>>> train_dataset, test_dataset = butinasplitter.train_test_split(dataset)
>>> print(train_dataset.ids)
['CCCC' 'CCC' 'CCCCC' 'CC']
>>> print(test_dataset.ids)
['C']

__init__(cutoff: float = 0.6)
Create a ButinaSplitter.

Parameters
cutoff (float (default 0.6)) – The cutoff value for tanimoto similarity. Molecules that
are more similar than this will tend to be put in the same dataset.

split(dataset: Dataset, frac_train: float = 0.8, frac_valid: float = 0.1, frac_test: float = 0.1, seed: int | None
= None, log_every_n: int | None = None)→ Tuple[List[int], List[int], List[int]]

Splits internal compounds into train and validation based on the butina clustering algorithm. This splitting
algorithm has an O(N^2) run time, where N is the number of elements in the dataset. The dataset is expected
to be a classification dataset.

This algorithm is designed to generate validation data that are novel chemotypes. Setting a small cutoff
value will generate smaller, finer clusters of high similarity, whereas setting a large cutoff value will generate
larger, coarser clusters of low similarity.
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Parameters
• dataset (Dataset) – Dataset to be split.

• frac_train (float, optional (default 0.8)) – The fraction of data to be used for
the training split.

• frac_valid (float, optional (default 0.1)) – The fraction of data to be used for
the validation split.

• frac_test (float, optional (default 0.1)) – The fraction of data to be used for
the test split.

• seed (int, optional (default None)) – Random seed to use.

• log_every_n (int, optional (default None)) – Log every n examples (not cur-
rently used).

Returns
A tuple of train indices, valid indices, and test indices.

Return type
Tuple[List[int], List[int], List[int]]

k_fold_split(dataset: Dataset, k: int, directories: List[str] | None = None, **kwargs)→
List[Tuple[Dataset, Dataset]]

Parameters
• dataset (Dataset) – Dataset to do a k-fold split

• k (int) – Number of folds to split dataset into.

• directories (List[str], optional (default None)) – List of length 2*k
filepaths to save the result disk-datasets.

Returns
List of length k tuples of (train, cv) where train and cv are both Dataset.

Return type
List[Tuple[Dataset, Dataset]]

train_test_split(dataset: Dataset, train_dir: str | None = None, test_dir: str | None = None, frac_train:
float = 0.8, seed: int | None = None, **kwargs)→ Tuple[Dataset, Dataset]

Splits self into train/test sets.

Returns Dataset objects for train/test.

Parameters
• dataset (data like object) – Dataset to be split.

• train_dir (str, optional (default None)) – If specified, the directory in which
the generated training dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset) is True.

• test_dir (str, optional (default None)) – If specified, the directory in which
the generated test dataset should be stored. This is only considered if isinstance(dataset,
dc.data.DiskDataset) is True.

• frac_train (float, optional (default 0.8)) – The fraction of data to be used for
the training split.

• seed (int, optional (default None)) – Random seed to use.
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Returns
A tuple of train and test datasets as dc.data.Dataset objects.

Return type
Tuple[Dataset, Dataset]

train_valid_test_split(dataset: Dataset, train_dir: str | None = None, valid_dir: str | None = None,
test_dir: str | None = None, frac_train: float = 0.8, frac_valid: float = 0.1,
frac_test: float = 0.1, seed: int | None = None, log_every_n: int = 1000,
**kwargs)→ Tuple[Dataset, Dataset, Dataset]

Splits self into train/validation/test sets.

Returns Dataset objects for train, valid, test.

Parameters
• dataset (Dataset) – Dataset to be split.

• train_dir (str, optional (default None)) – If specified, the directory in which
the generated training dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset)

• valid_dir (str, optional (default None)) – If specified, the directory in which
the generated valid dataset should be stored. This is only considered if isinstance(dataset,
dc.data.DiskDataset) is True.

• test_dir (str, optional (default None)) – If specified, the directory in which
the generated test dataset should be stored. This is only considered if isinstance(dataset,
dc.data.DiskDataset) is True.

• frac_train (float, optional (default 0.8)) – The fraction of data to be used for
the training split.

• frac_valid (float, optional (default 0.1)) – The fraction of data to be used for
the validation split.

• frac_test (float, optional (default 0.1)) – The fraction of data to be used for
the test split.

• seed (int, optional (default None)) – Random seed to use.

• log_every_n (int, optional (default 1000)) – Controls the logger by dictating
how often logger outputs will be produced.

Returns
A tuple of train, valid and test datasets as dc.data.Dataset objects.

Return type
Tuple[Dataset, Optional[Dataset], Dataset]

FingerprintSplitter

class FingerprintSplitter

Class for doing data splits based on the Tanimoto similarity between ECFP4 fingerprints.

This class tries to split the data such that the molecules in each dataset are as different as possible from the ones
in the other datasets. This makes it a very stringent test of models. Predicting the test and validation sets may
require extrapolating far outside the training data.

The running time for this splitter scales as O(n^2) in the number of samples. Splitting large datasets can take a
long time.
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Note: This class requires RDKit to be installed.

Examples

>>> import deepchem as dc
>>> import numpy as np
>>> # creation of demo data set with some smiles strings
>>> smiles= ['C', 'CC', 'CCC', 'CCCC', 'CCCCC']
>>> Xs = np.zeros(len(smiles))
>>> # creation of a deepchem dataset with the smile codes in the ids field
>>> dataset = dc.data.DiskDataset.from_numpy(X=Xs,ids=smiles)
>>> fingerprintsplitter = dc.splits.FingerprintSplitter()
>>> train_dataset, test_dataset = fingerprintsplitter.train_test_split(dataset)
>>> print(train_dataset.ids)
['C' 'CCCCC' 'CCCC' 'CCC']
>>> print(test_dataset.ids)
['CC']

split(dataset: Dataset, frac_train: float = 0.8, frac_valid: float = 0.1, frac_test: float = 0.1, seed: int | None
= None, log_every_n: int | None = None)→ Tuple[List[int], List[int], List[int]]

Splits compounds into training, validation, and test sets based on the Tanimoto similarity of their ECFP4
fingerprints. This splitting algorithm has an O(N^2) run time, where N is the number of elements in the
dataset.

Parameters
• dataset (Dataset) – Dataset to be split.

• frac_train (float, optional (default 0.8)) – The fraction of data to be used for
the training split.

• frac_valid (float, optional (default 0.1)) – The fraction of data to be used for
the validation split.

• frac_test (float, optional (default 0.1)) – The fraction of data to be used for
the test split.

• seed (int, optional (default None)) – Random seed to use (ignored since this al-
gorithm is deterministic).

• log_every_n (int, optional (default None)) – Log every n examples (not cur-
rently used).

Returns
A tuple of train indices, valid indices, and test indices.

Return type
Tuple[List[int], List[int], List[int]]

__repr__()→ str
Convert self to repr representation.

Returns
The string represents the class.

Return type
str
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Examples

>>> import deepchem as dc
>>> dc.splits.RandomSplitter()
RandomSplitter[]

__str__()→ str
Convert self to str representation.

Returns
The string represents the class.

Return type
str

Examples

>>> import deepchem as dc
>>> str(dc.splits.RandomSplitter())
'RandomSplitter'

__weakref__

list of weak references to the object (if defined)

k_fold_split(dataset: Dataset, k: int, directories: List[str] | None = None, **kwargs)→
List[Tuple[Dataset, Dataset]]

Parameters
• dataset (Dataset) – Dataset to do a k-fold split

• k (int) – Number of folds to split dataset into.

• directories (List[str], optional (default None)) – List of length 2*k
filepaths to save the result disk-datasets.

Returns
List of length k tuples of (train, cv) where train and cv are both Dataset.

Return type
List[Tuple[Dataset, Dataset]]

train_test_split(dataset: Dataset, train_dir: str | None = None, test_dir: str | None = None, frac_train:
float = 0.8, seed: int | None = None, **kwargs)→ Tuple[Dataset, Dataset]

Splits self into train/test sets.

Returns Dataset objects for train/test.

Parameters
• dataset (data like object) – Dataset to be split.

• train_dir (str, optional (default None)) – If specified, the directory in which
the generated training dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset) is True.

• test_dir (str, optional (default None)) – If specified, the directory in which
the generated test dataset should be stored. This is only considered if isinstance(dataset,
dc.data.DiskDataset) is True.
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• frac_train (float, optional (default 0.8)) – The fraction of data to be used for
the training split.

• seed (int, optional (default None)) – Random seed to use.

Returns
A tuple of train and test datasets as dc.data.Dataset objects.

Return type
Tuple[Dataset, Dataset]

train_valid_test_split(dataset: Dataset, train_dir: str | None = None, valid_dir: str | None = None,
test_dir: str | None = None, frac_train: float = 0.8, frac_valid: float = 0.1,
frac_test: float = 0.1, seed: int | None = None, log_every_n: int = 1000,
**kwargs)→ Tuple[Dataset, Dataset, Dataset]

Splits self into train/validation/test sets.

Returns Dataset objects for train, valid, test.

Parameters
• dataset (Dataset) – Dataset to be split.

• train_dir (str, optional (default None)) – If specified, the directory in which
the generated training dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset)

• valid_dir (str, optional (default None)) – If specified, the directory in which
the generated valid dataset should be stored. This is only considered if isinstance(dataset,
dc.data.DiskDataset) is True.

• test_dir (str, optional (default None)) – If specified, the directory in which
the generated test dataset should be stored. This is only considered if isinstance(dataset,
dc.data.DiskDataset) is True.

• frac_train (float, optional (default 0.8)) – The fraction of data to be used for
the training split.

• frac_valid (float, optional (default 0.1)) – The fraction of data to be used for
the validation split.

• frac_test (float, optional (default 0.1)) – The fraction of data to be used for
the test split.

• seed (int, optional (default None)) – Random seed to use.

• log_every_n (int, optional (default 1000)) – Controls the logger by dictating
how often logger outputs will be produced.

Returns
A tuple of train, valid and test datasets as dc.data.Dataset objects.

Return type
Tuple[Dataset, Optional[Dataset], Dataset]
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3.11.3 Base Splitter (for develop)

The dc.splits.Splitter class is the abstract parent class for all splitters. This class should never be directly instan-
tiated.

class Splitter

Splitters split up Datasets into pieces for training/validation/testing.

In machine learning applications, it’s often necessary to split up a dataset into training/validation/test sets. Or
to k-fold split a dataset (that is, divide into k equal subsets) for cross-validation. The Splitter class is an abstract
superclass for all splitters that captures the common API across splitter classes.

Note that Splitter is an abstract superclass. You won’t want to instantiate this class directly. Rather you will want
to use a concrete subclass for your application.

k_fold_split(dataset: Dataset, k: int, directories: List[str] | None = None, **kwargs)→
List[Tuple[Dataset, Dataset]]

Parameters
• dataset (Dataset) – Dataset to do a k-fold split

• k (int) – Number of folds to split dataset into.

• directories (List[str], optional (default None)) – List of length 2*k
filepaths to save the result disk-datasets.

Returns
List of length k tuples of (train, cv) where train and cv are both Dataset.

Return type
List[Tuple[Dataset, Dataset]]

train_valid_test_split(dataset: Dataset, train_dir: str | None = None, valid_dir: str | None = None,
test_dir: str | None = None, frac_train: float = 0.8, frac_valid: float = 0.1,
frac_test: float = 0.1, seed: int | None = None, log_every_n: int = 1000,
**kwargs)→ Tuple[Dataset, Dataset, Dataset]

Splits self into train/validation/test sets.

Returns Dataset objects for train, valid, test.

Parameters
• dataset (Dataset) – Dataset to be split.

• train_dir (str, optional (default None)) – If specified, the directory in which
the generated training dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset)

• valid_dir (str, optional (default None)) – If specified, the directory in which
the generated valid dataset should be stored. This is only considered if isinstance(dataset,
dc.data.DiskDataset) is True.

• test_dir (str, optional (default None)) – If specified, the directory in which
the generated test dataset should be stored. This is only considered if isinstance(dataset,
dc.data.DiskDataset) is True.

• frac_train (float, optional (default 0.8)) – The fraction of data to be used for
the training split.

• frac_valid (float, optional (default 0.1)) – The fraction of data to be used for
the validation split.

244 Chapter 3. About Us



deepchem, Release 2.8.0

• frac_test (float, optional (default 0.1)) – The fraction of data to be used for
the test split.

• seed (int, optional (default None)) – Random seed to use.

• log_every_n (int, optional (default 1000)) – Controls the logger by dictating
how often logger outputs will be produced.

Returns
A tuple of train, valid and test datasets as dc.data.Dataset objects.

Return type
Tuple[Dataset, Optional[Dataset], Dataset]

train_test_split(dataset: Dataset, train_dir: str | None = None, test_dir: str | None = None, frac_train:
float = 0.8, seed: int | None = None, **kwargs)→ Tuple[Dataset, Dataset]

Splits self into train/test sets.

Returns Dataset objects for train/test.

Parameters
• dataset (data like object) – Dataset to be split.

• train_dir (str, optional (default None)) – If specified, the directory in which
the generated training dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset) is True.

• test_dir (str, optional (default None)) – If specified, the directory in which
the generated test dataset should be stored. This is only considered if isinstance(dataset,
dc.data.DiskDataset) is True.

• frac_train (float, optional (default 0.8)) – The fraction of data to be used for
the training split.

• seed (int, optional (default None)) – Random seed to use.

Returns
A tuple of train and test datasets as dc.data.Dataset objects.

Return type
Tuple[Dataset, Dataset]

split(dataset: Dataset, frac_train: float = 0.8, frac_valid: float = 0.1, frac_test: float = 0.1, seed: int | None
= None, log_every_n: int | None = None)→ Tuple

Return indices for specified split

Parameters
• dataset (dc.data.Dataset) – Dataset to be split.

• seed (int, optional (default None)) – Random seed to use.

• frac_train (float, optional (default 0.8)) – The fraction of data to be used for
the training split.

• frac_valid (float, optional (default 0.1)) – The fraction of data to be used for
the validation split.

• frac_test (float, optional (default 0.1)) – The fraction of data to be used for
the test split.

• log_every_n (int, optional (default None)) – Controls the logger by dictating
how often logger outputs will be produced.
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Returns
A tuple (train_inds, valid_inds, test_inds) of the indices (integers) for the various splits.

Return type
Tuple

3.12 Transformers

DeepChem dc.trans.Transformer objects are another core building block of DeepChem programs. Often times,
machine learning systems are very delicate. They need their inputs and outputs to fit within a pre-specified range or
follow a clean mathematical distribution. Real data of course is wild and hard to control. What do you do if you have
a crazy dataset and need to bring its statistics to heel? Fear not for you have Transformer objects.

Contents

• General Transformers

– NormalizationTransformer

– MinMaxTransformer

– ClippingTransformer

– LogTransformer

– CDFTransformer

– PowerTransformer

– BalancingTransformer

– DuplicateBalancingTransformer

– ImageTransformer

– FeaturizationTransformer

• Specified Usecase Transformers

– CoulombFitTransformer

– IRVTransformer

– DAGTransformer

– RxnSplitTransformer

• Base Transformer (for develop)
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3.12.1 General Transformers

NormalizationTransformer

class NormalizationTransformer(transform_X: bool = False, transform_y: bool = False, transform_w: bool =
False, dataset: Dataset | None = None, transform_gradients: bool = False,
move_mean: bool = True)

Normalizes dataset to have zero mean and unit standard deviation

This transformer transforms datasets to have zero mean and unit standard deviation.

Examples

>>> n_samples = 10
>>> n_features = 3
>>> n_tasks = 1
>>> ids = np.arange(n_samples)
>>> X = np.random.rand(n_samples, n_features)
>>> y = np.random.rand(n_samples, n_tasks)
>>> w = np.ones((n_samples, n_tasks))
>>> dataset = dc.data.NumpyDataset(X, y, w, ids)
>>> transformer = dc.trans.NormalizationTransformer(transform_y=True,␣
→˓dataset=dataset)
>>> dataset = transformer.transform(dataset)

Note: This class can only transform X or y and not w. So only one of transform_X or transform_y can be set.

Raises
ValueError – if transform_X and transform_y are both set.

__init__(transform_X: bool = False, transform_y: bool = False, transform_w: bool = False, dataset:
Dataset | None = None, transform_gradients: bool = False, move_mean: bool = True)

Initialize normalization transformation.

Parameters
• transform_X (bool, optional (default False)) – Whether to transform X

• transform_y (bool, optional (default False)) – Whether to transform y

• transform_w (bool, optional (default False)) – Whether to transform w

• dataset (dc.data.Dataset object, optional (default None)) – Dataset to be
transformed

transform_array(X: ndarray, y: ndarray, w: ndarray, ids: ndarray)→ Tuple[ndarray, ndarray, ndarray,
ndarray]

Transform the data in a set of (X, y, w) arrays.

Parameters
• X (np.ndarray) – Array of features

• y (np.ndarray) – Array of labels
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• w (np.ndarray) – Array of weights.

• ids (np.ndarray) – Array of ids.

Returns
• Xtrans (np.ndarray) – Transformed array of features

• ytrans (np.ndarray) – Transformed array of labels

• wtrans (np.ndarray) – Transformed array of weights

• idstrans (np.ndarray) – Transformed array of ids

untransform(z: ndarray)→ ndarray
Undo transformation on provided data.

Parameters
z (np.ndarray) – Array to transform back

Returns
z_out – Array with normalization undone.

Return type
np.ndarray

untransform_grad(grad, tasks)
DEPRECATED. DO NOT USE.

transform(dataset: Dataset, parallel: bool = False, out_dir: str | None = None, **kwargs)→ Dataset
Transforms all internally stored data in dataset.

This method transforms all internal data in the provided dataset by using the Dataset.transform method.
Note that this method adds X-transform, y-transform columns to metadata. Specified keyword arguments
are passed on to Dataset.transform.

Parameters
• dataset (dc.data.Dataset) – Dataset object to be transformed.

• parallel (bool, optional (default False)) – if True, use multiple processes to
transform the dataset in parallel. For large datasets, this might be faster.

• out_dir (str, optional) – If out_dir is specified in kwargs and dataset is a Disk-
Dataset, the output dataset will be written to the specified directory.

Returns
A newly transformed Dataset object

Return type
Dataset

transform_on_array(X: ndarray, y: ndarray, w: ndarray, ids: ndarray)→ Tuple[ndarray, ndarray, ndarray,
ndarray]

Transforms numpy arrays X, y, and w

DEPRECATED. Use transform_array instead.

Parameters
• X (np.ndarray) – Array of features

• y (np.ndarray) – Array of labels

• w (np.ndarray) – Array of weights.
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• ids (np.ndarray) – Array of identifiers.

Returns
• Xtrans (np.ndarray) – Transformed array of features

• ytrans (np.ndarray) – Transformed array of labels

• wtrans (np.ndarray) – Transformed array of weights

• idstrans (np.ndarray) – Transformed array of ids

MinMaxTransformer

class MinMaxTransformer(transform_X: bool = False, transform_y: bool = False, dataset: Dataset | None =
None)

Ensure each value rests between 0 and 1 by using the min and max.

MinMaxTransformer transforms the dataset by shifting each axis of X or y (depending on whether transform_X
or transform_y is True), except the first one by the minimum value along the axis and dividing the result by the
range (maximum value - minimum value) along the axis. This ensures each axis is between 0 and 1. In case of
multi-task learning, it ensures each task is given equal importance.

Given original array A, the transformed array can be written as:

>>> import numpy as np
>>> A = np.random.rand(10, 10)
>>> A_min = np.min(A, axis=0)
>>> A_max = np.max(A, axis=0)
>>> A_t = np.nan_to_num((A - A_min)/(A_max - A_min))

Examples

>>> n_samples = 10
>>> n_features = 3
>>> n_tasks = 1
>>> ids = np.arange(n_samples)
>>> X = np.random.rand(n_samples, n_features)
>>> y = np.random.rand(n_samples, n_tasks)
>>> w = np.ones((n_samples, n_tasks))
>>> dataset = dc.data.NumpyDataset(X, y, w, ids)
>>> transformer = dc.trans.MinMaxTransformer(transform_y=True, dataset=dataset)
>>> dataset = transformer.transform(dataset)

Note: This class can only transform X or y and not w. So only one of transform_X or transform_y can be set.

Raises
ValueError – if transform_X and transform_y are both set.

__init__(transform_X: bool = False, transform_y: bool = False, dataset: Dataset | None = None)
Initialization of MinMax transformer.

Parameters
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• transform_X (bool, optional (default False)) – Whether to transform X

• transform_y (bool, optional (default False)) – Whether to transform y

• dataset (dc.data.Dataset object, optional (default None)) – Dataset to be
transformed

transform_array(X: ndarray, y: ndarray, w: ndarray, ids: ndarray)→ Tuple[ndarray, ndarray, ndarray,
ndarray]

Transform the data in a set of (X, y, w, ids) arrays.

Parameters
• X (np.ndarray) – Array of features

• y (np.ndarray) – Array of labels

• w (np.ndarray) – Array of weights.

• ids (np.ndarray) – Array of ids.

Returns
• Xtrans (np.ndarray) – Transformed array of features

• ytrans (np.ndarray) – Transformed array of labels

• wtrans (np.ndarray) – Transformed array of weights

• idstrans (np.ndarray) – Transformed array of ids

untransform(z: ndarray)→ ndarray
Undo transformation on provided data.

Parameters
z (np.ndarray) – Transformed X or y array

Returns
Array with min-max scaling undone.

Return type
np.ndarray

transform(dataset: Dataset, parallel: bool = False, out_dir: str | None = None, **kwargs)→ Dataset
Transforms all internally stored data in dataset.

This method transforms all internal data in the provided dataset by using the Dataset.transform method.
Note that this method adds X-transform, y-transform columns to metadata. Specified keyword arguments
are passed on to Dataset.transform.

Parameters
• dataset (dc.data.Dataset) – Dataset object to be transformed.

• parallel (bool, optional (default False)) – if True, use multiple processes to
transform the dataset in parallel. For large datasets, this might be faster.

• out_dir (str, optional) – If out_dir is specified in kwargs and dataset is a Disk-
Dataset, the output dataset will be written to the specified directory.

Returns
A newly transformed Dataset object

Return type
Dataset
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transform_on_array(X: ndarray, y: ndarray, w: ndarray, ids: ndarray)→ Tuple[ndarray, ndarray, ndarray,
ndarray]

Transforms numpy arrays X, y, and w

DEPRECATED. Use transform_array instead.

Parameters
• X (np.ndarray) – Array of features

• y (np.ndarray) – Array of labels

• w (np.ndarray) – Array of weights.

• ids (np.ndarray) – Array of identifiers.

Returns
• Xtrans (np.ndarray) – Transformed array of features

• ytrans (np.ndarray) – Transformed array of labels

• wtrans (np.ndarray) – Transformed array of weights

• idstrans (np.ndarray) – Transformed array of ids

ClippingTransformer

class ClippingTransformer(transform_X: bool = False, transform_y: bool = False, dataset: Dataset | None =
None, x_max: float = 5.0, y_max: float = 500.0)

Clip large values in datasets.

Examples

Let’s clip values from a synthetic dataset

>>> n_samples = 10
>>> n_features = 3
>>> n_tasks = 1
>>> ids = np.arange(n_samples)
>>> X = np.random.rand(n_samples, n_features)
>>> y = np.zeros((n_samples, n_tasks))
>>> w = np.ones((n_samples, n_tasks))
>>> dataset = dc.data.NumpyDataset(X, y, w, ids)
>>> transformer = dc.trans.ClippingTransformer(transform_X=True)
>>> dataset = transformer.transform(dataset)

__init__(transform_X: bool = False, transform_y: bool = False, dataset: Dataset | None = None, x_max:
float = 5.0, y_max: float = 500.0)

Initialize clipping transformation.

Parameters
• transform_X (bool, optional (default False)) – Whether to transform X

• transform_y (bool, optional (default False)) – Whether to transform y

• dataset (dc.data.Dataset object, optional) – Dataset to be transformed

• x_max (float, optional) – Maximum absolute value for X
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• y_max (float, optional) – Maximum absolute value for y

Note: This transformer can transform X and y jointly, but does not transform w.

Raises
ValueError – if transform_w is set.

transform_array(X: ndarray, y: ndarray, w: ndarray, ids: ndarray)→ Tuple[ndarray, ndarray, ndarray,
ndarray]

Transform the data in a set of (X, y, w) arrays.

Parameters
• X (np.ndarray) – Array of Features

• y (np.ndarray) – Array of labels

• w (np.ndarray) – Array of weights

• ids (np.ndarray) – Array of ids.

Returns
• X (np.ndarray) – Transformed features

• y (np.ndarray) – Transformed tasks

• w (np.ndarray) – Transformed weights

• idstrans (np.ndarray) – Transformed array of ids

untransform(z: ndarray)→ ndarray
Not implemented.

transform(dataset: Dataset, parallel: bool = False, out_dir: str | None = None, **kwargs)→ Dataset
Transforms all internally stored data in dataset.

This method transforms all internal data in the provided dataset by using the Dataset.transform method.
Note that this method adds X-transform, y-transform columns to metadata. Specified keyword arguments
are passed on to Dataset.transform.

Parameters
• dataset (dc.data.Dataset) – Dataset object to be transformed.

• parallel (bool, optional (default False)) – if True, use multiple processes to
transform the dataset in parallel. For large datasets, this might be faster.

• out_dir (str, optional) – If out_dir is specified in kwargs and dataset is a Disk-
Dataset, the output dataset will be written to the specified directory.

Returns
A newly transformed Dataset object

Return type
Dataset

transform_on_array(X: ndarray, y: ndarray, w: ndarray, ids: ndarray)→ Tuple[ndarray, ndarray, ndarray,
ndarray]

Transforms numpy arrays X, y, and w

DEPRECATED. Use transform_array instead.
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Parameters
• X (np.ndarray) – Array of features

• y (np.ndarray) – Array of labels

• w (np.ndarray) – Array of weights.

• ids (np.ndarray) – Array of identifiers.

Returns
• Xtrans (np.ndarray) – Transformed array of features

• ytrans (np.ndarray) – Transformed array of labels

• wtrans (np.ndarray) – Transformed array of weights

• idstrans (np.ndarray) – Transformed array of ids

LogTransformer

class LogTransformer(transform_X: bool = False, transform_y: bool = False, features: List[int] | None = None,
tasks: List[str] | None = None, dataset: Dataset | None = None)

Computes a logarithmic transformation

This transformer computes the transformation given by

>>> import numpy as np
>>> A = np.random.rand(10, 10)
>>> A = np.log(A + 1)

Assuming that tasks/features are not specified. If specified, then transformations are only performed on specified
tasks/features.

Examples

>>> n_samples = 10
>>> n_features = 3
>>> n_tasks = 1
>>> ids = np.arange(n_samples)
>>> X = np.random.rand(n_samples, n_features)
>>> y = np.zeros((n_samples, n_tasks))
>>> w = np.ones((n_samples, n_tasks))
>>> dataset = dc.data.NumpyDataset(X, y, w, ids)
>>> transformer = dc.trans.LogTransformer(transform_X=True)
>>> dataset = transformer.transform(dataset)

Note: This class can only transform X or y and not w. So only one of transform_X or transform_y can be set.

Raises
ValueError – if transform_w is set or transform_X and transform_y are both set.
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__init__(transform_X: bool = False, transform_y: bool = False, features: List[int] | None = None, tasks:
List[str] | None = None, dataset: Dataset | None = None)

Initialize log transformer.

Parameters
• transform_X (bool, optional (default False)) – Whether to transform X

• transform_y (bool, optional (default False)) – Whether to transform y

• features (list[Int]) – List of features indices to transform

• tasks (list[str]) – List of task names to transform.

• dataset (dc.data.Dataset object, optional (default None)) – Dataset to be
transformed

transform_array(X: ndarray, y: ndarray, w: ndarray, ids: ndarray)→ Tuple[ndarray, ndarray, ndarray,
ndarray]

Transform the data in a set of (X, y, w) arrays.

Parameters
• X (np.ndarray) – Array of features

• y (np.ndarray) – Array of labels

• w (np.ndarray) – Array of weights.

• ids (np.ndarray) – Array of weights.

Returns
• Xtrans (np.ndarray) – Transformed array of features

• ytrans (np.ndarray) – Transformed array of labels

• wtrans (np.ndarray) – Transformed array of weights

• idstrans (np.ndarray) – Transformed array of ids

untransform(z: ndarray)→ ndarray
Undo transformation on provided data.

Parameters
z (np.ndarray,) – Transformed X or y array

Returns
Array with a logarithmic transformation undone.

Return type
np.ndarray

transform(dataset: Dataset, parallel: bool = False, out_dir: str | None = None, **kwargs)→ Dataset
Transforms all internally stored data in dataset.

This method transforms all internal data in the provided dataset by using the Dataset.transform method.
Note that this method adds X-transform, y-transform columns to metadata. Specified keyword arguments
are passed on to Dataset.transform.

Parameters
• dataset (dc.data.Dataset) – Dataset object to be transformed.

• parallel (bool, optional (default False)) – if True, use multiple processes to
transform the dataset in parallel. For large datasets, this might be faster.
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• out_dir (str, optional) – If out_dir is specified in kwargs and dataset is a Disk-
Dataset, the output dataset will be written to the specified directory.

Returns
A newly transformed Dataset object

Return type
Dataset

transform_on_array(X: ndarray, y: ndarray, w: ndarray, ids: ndarray)→ Tuple[ndarray, ndarray, ndarray,
ndarray]

Transforms numpy arrays X, y, and w

DEPRECATED. Use transform_array instead.

Parameters
• X (np.ndarray) – Array of features

• y (np.ndarray) – Array of labels

• w (np.ndarray) – Array of weights.

• ids (np.ndarray) – Array of identifiers.

Returns
• Xtrans (np.ndarray) – Transformed array of features

• ytrans (np.ndarray) – Transformed array of labels

• wtrans (np.ndarray) – Transformed array of weights

• idstrans (np.ndarray) – Transformed array of ids

CDFTransformer

class CDFTransformer(transform_X: bool = False, transform_y: bool = False, dataset: Dataset | None = None,
bins: int = 2)

Histograms the data and assigns values based on sorted list.

Acts like a Cumulative Distribution Function (CDF). If given a dataset of samples from a continuous distribution
computes the CDF of this dataset and replaces values with their corresponding CDF values.

Examples

Let’s look at an example where we transform only features.

>>> N = 10
>>> n_feat = 5
>>> n_bins = 100

Note that we’re using 100 bins for our CDF histogram

>>> import numpy as np
>>> X = np.random.normal(size=(N, n_feat))
>>> y = np.random.randint(2, size=(N,))
>>> dataset = dc.data.NumpyDataset(X, y)
>>> cdftrans = dc.trans.CDFTransformer(transform_X=True, dataset=dataset, bins=n_

(continues on next page)
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(continued from previous page)

→˓bins)
>>> dataset = cdftrans.transform(dataset)

Note that you can apply this transformation to y as well

>>> X = np.random.normal(size=(N, n_feat))
>>> y = np.random.normal(size=(N,))
>>> dataset = dc.data.NumpyDataset(X, y)
>>> cdftrans = dc.trans.CDFTransformer(transform_y=True, dataset=dataset, bins=n_
→˓bins)
>>> dataset = cdftrans.transform(dataset)

__init__(transform_X: bool = False, transform_y: bool = False, dataset: Dataset | None = None, bins: int =
2)

Initialize this transformer.

Parameters
• transform_X (bool, optional (default False)) – Whether to transform X

• transform_y (bool, optional (default False)) – Whether to transform y

• dataset (dc.data.Dataset object, optional (default None)) – Dataset to be
transformed

• bins (int, optional (default 2)) – Number of bins to use when computing his-
togram.

transform_array(X: ndarray, y: ndarray, w: ndarray, ids: ndarray)→ Tuple[ndarray, ndarray, ndarray,
ndarray]

Performs CDF transform on data.

Parameters
• X (np.ndarray) – Array of features

• y (np.ndarray) – Array of labels

• w (np.ndarray) – Array of weights.

• ids (np.ndarray) – Array of identifiers

Returns
• Xtrans (np.ndarray) – Transformed array of features

• ytrans (np.ndarray) – Transformed array of labels

• wtrans (np.ndarray) – Transformed array of weights

• idstrans (np.ndarray) – Transformed array of ids

untransform(z: ndarray)→ ndarray
Undo transformation on provided data.

Note that this transformation is only undone for y.

Parameters
z (np.ndarray,) – Transformed y array

Returns
Array with the transformation undone.
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Return type
np.ndarray

transform(dataset: Dataset, parallel: bool = False, out_dir: str | None = None, **kwargs)→ Dataset
Transforms all internally stored data in dataset.

This method transforms all internal data in the provided dataset by using the Dataset.transform method.
Note that this method adds X-transform, y-transform columns to metadata. Specified keyword arguments
are passed on to Dataset.transform.

Parameters
• dataset (dc.data.Dataset) – Dataset object to be transformed.

• parallel (bool, optional (default False)) – if True, use multiple processes to
transform the dataset in parallel. For large datasets, this might be faster.

• out_dir (str, optional) – If out_dir is specified in kwargs and dataset is a Disk-
Dataset, the output dataset will be written to the specified directory.

Returns
A newly transformed Dataset object

Return type
Dataset

transform_on_array(X: ndarray, y: ndarray, w: ndarray, ids: ndarray)→ Tuple[ndarray, ndarray, ndarray,
ndarray]

Transforms numpy arrays X, y, and w

DEPRECATED. Use transform_array instead.

Parameters
• X (np.ndarray) – Array of features

• y (np.ndarray) – Array of labels

• w (np.ndarray) – Array of weights.

• ids (np.ndarray) – Array of identifiers.

Returns
• Xtrans (np.ndarray) – Transformed array of features

• ytrans (np.ndarray) – Transformed array of labels

• wtrans (np.ndarray) – Transformed array of weights

• idstrans (np.ndarray) – Transformed array of ids

PowerTransformer

class PowerTransformer(transform_X: bool = False, transform_y: bool = False, dataset: Dataset | None =
None, powers: List[int] = [1])

Takes power n transforms of the data based on an input vector.

Computes the specified powers of the dataset. This can be useful if you’re looking to add higher order features
of the form x_i^2, x_i^3 etc. to your dataset.
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Examples

Let’s look at an example where we transform only X.

>>> N = 10
>>> n_feat = 5
>>> powers = [1, 2, 0.5]

So in this example, we’re taking the identity, squares, and square roots. Now let’s construct our matrices

>>> import numpy as np
>>> X = np.random.rand(N, n_feat)
>>> y = np.random.normal(size=(N,))
>>> dataset = dc.data.NumpyDataset(X, y)
>>> trans = dc.trans.PowerTransformer(transform_X=True, dataset=dataset,␣
→˓powers=powers)
>>> dataset = trans.transform(dataset)

Let’s now look at an example where we transform y. Note that the y transform expands out the feature dimensions
of y the same way it does for X so this transform is only well defined for singletask datasets.

>>> import numpy as np
>>> X = np.random.rand(N, n_feat)
>>> y = np.random.rand(N)
>>> dataset = dc.data.NumpyDataset(X, y)
>>> trans = dc.trans.PowerTransformer(transform_y=True, dataset=dataset,␣
→˓powers=powers)
>>> dataset = trans.transform(dataset)

__init__(transform_X: bool = False, transform_y: bool = False, dataset: Dataset | None = None, powers:
List[int] = [1])

Initialize this transformer

Parameters
• transform_X (bool, optional (default False)) – Whether to transform X

• transform_y (bool, optional (default False)) – Whether to transform y

• dataset (dc.data.Dataset object, optional (default None)) – Dataset to be
transformed. Note that this argument is ignored since

• specified. (PowerTransformer doesn't require it to be) – powers: list[int],
optional (default [1]) The list of powers of features/labels to compute.

transform_array(X: ndarray, y: ndarray, w: ndarray, ids: ndarray)→ Tuple[ndarray, ndarray, ndarray,
ndarray]

Performs power transform on data.

Parameters
• X (np.ndarray) – Array of features

• y (np.ndarray) – Array of labels

• w (np.ndarray) – Array of weights.

• ids (np.ndarray) – Array of identifiers.

Returns
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• Xtrans (np.ndarray) – Transformed array of features

• ytrans (np.ndarray) – Transformed array of labels

• wtrans (np.ndarray) – Transformed array of weights

• idstrans (np.ndarray) – Transformed array of ids

untransform(z: ndarray)→ ndarray
Undo transformation on provided data.

Parameters
z (np.ndarray,) – Transformed y array

Returns
Array with the power transformation undone.

Return type
np.ndarray

transform(dataset: Dataset, parallel: bool = False, out_dir: str | None = None, **kwargs)→ Dataset
Transforms all internally stored data in dataset.

This method transforms all internal data in the provided dataset by using the Dataset.transform method.
Note that this method adds X-transform, y-transform columns to metadata. Specified keyword arguments
are passed on to Dataset.transform.

Parameters
• dataset (dc.data.Dataset) – Dataset object to be transformed.

• parallel (bool, optional (default False)) – if True, use multiple processes to
transform the dataset in parallel. For large datasets, this might be faster.

• out_dir (str, optional) – If out_dir is specified in kwargs and dataset is a Disk-
Dataset, the output dataset will be written to the specified directory.

Returns
A newly transformed Dataset object

Return type
Dataset

transform_on_array(X: ndarray, y: ndarray, w: ndarray, ids: ndarray)→ Tuple[ndarray, ndarray, ndarray,
ndarray]

Transforms numpy arrays X, y, and w

DEPRECATED. Use transform_array instead.

Parameters
• X (np.ndarray) – Array of features

• y (np.ndarray) – Array of labels

• w (np.ndarray) – Array of weights.

• ids (np.ndarray) – Array of identifiers.

Returns
• Xtrans (np.ndarray) – Transformed array of features

• ytrans (np.ndarray) – Transformed array of labels

• wtrans (np.ndarray) – Transformed array of weights
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• idstrans (np.ndarray) – Transformed array of ids

BalancingTransformer

class BalancingTransformer(dataset: Dataset)
Balance positive and negative (or multiclass) example weights.

This class balances the sample weights so that the sum of all example weights from all classes is the same. This
can be useful when you’re working on an imbalanced dataset where there are far fewer examples of some classes
than others.

Examples

Here’s an example for a binary dataset.

>>> n_samples = 10
>>> n_features = 3
>>> n_tasks = 1
>>> n_classes = 2
>>> ids = np.arange(n_samples)
>>> X = np.random.rand(n_samples, n_features)
>>> y = np.random.randint(n_classes, size=(n_samples, n_tasks))
>>> w = np.ones((n_samples, n_tasks))
>>> dataset = dc.data.NumpyDataset(X, y, w, ids)
>>> transformer = dc.trans.BalancingTransformer(dataset=dataset)
>>> dataset = transformer.transform(dataset)

And here’s a multiclass dataset example.

>>> n_samples = 50
>>> n_features = 3
>>> n_tasks = 1
>>> n_classes = 5
>>> ids = np.arange(n_samples)
>>> X = np.random.rand(n_samples, n_features)
>>> y = np.random.randint(n_classes, size=(n_samples, n_tasks))
>>> w = np.ones((n_samples, n_tasks))
>>> dataset = dc.data.NumpyDataset(X, y, w, ids)
>>> transformer = dc.trans.BalancingTransformer(dataset=dataset)
>>> dataset = transformer.transform(dataset)

See also:

deepchem.trans.DuplicateBalancingTransformer
Balance by duplicating samples.

Note: This transformer is only meaningful for classification datasets where y takes on a limited set of values.
This class can only transform w and does not transform X or y.
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Raises
ValueError – if transform_X or transform_y are set. Also raises or if y or w aren’t of shape (N,)
or (N, n_tasks).

__init__(dataset: Dataset)
Initializes transformation based on dataset statistics.

Parameters
• transform_X (bool, optional (default False)) – Whether to transform X

• transform_y (bool, optional (default False)) – Whether to transform y

• transform_w (bool, optional (default False)) – Whether to transform w

• transform_ids (bool, optional (default False)) – Whether to transform ids

• dataset (dc.data.Dataset object, optional (default None)) – Dataset to be
transformed

transform_array(X: ndarray, y: ndarray, w: ndarray, ids: ndarray)→ Tuple[ndarray, ndarray, ndarray,
ndarray]

Transform the data in a set of (X, y, w) arrays.

Parameters
• X (np.ndarray) – Array of features

• y (np.ndarray) – Array of labels

• w (np.ndarray) – Array of weights.

• ids (np.ndarray) – Array of weights.

Returns
• Xtrans (np.ndarray) – Transformed array of features

• ytrans (np.ndarray) – Transformed array of labels

• wtrans (np.ndarray) – Transformed array of weights

• idstrans (np.ndarray) – Transformed array of ids

transform(dataset: Dataset, parallel: bool = False, out_dir: str | None = None, **kwargs)→ Dataset
Transforms all internally stored data in dataset.

This method transforms all internal data in the provided dataset by using the Dataset.transform method.
Note that this method adds X-transform, y-transform columns to metadata. Specified keyword arguments
are passed on to Dataset.transform.

Parameters
• dataset (dc.data.Dataset) – Dataset object to be transformed.

• parallel (bool, optional (default False)) – if True, use multiple processes to
transform the dataset in parallel. For large datasets, this might be faster.

• out_dir (str, optional) – If out_dir is specified in kwargs and dataset is a Disk-
Dataset, the output dataset will be written to the specified directory.

Returns
A newly transformed Dataset object

Return type
Dataset
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transform_on_array(X: ndarray, y: ndarray, w: ndarray, ids: ndarray)→ Tuple[ndarray, ndarray, ndarray,
ndarray]

Transforms numpy arrays X, y, and w

DEPRECATED. Use transform_array instead.

Parameters
• X (np.ndarray) – Array of features

• y (np.ndarray) – Array of labels

• w (np.ndarray) – Array of weights.

• ids (np.ndarray) – Array of identifiers.

Returns
• Xtrans (np.ndarray) – Transformed array of features

• ytrans (np.ndarray) – Transformed array of labels

• wtrans (np.ndarray) – Transformed array of weights

• idstrans (np.ndarray) – Transformed array of ids

untransform(transformed: ndarray)→ ndarray
Reverses stored transformation on provided data.

Depending on whether transform_X or transform_y or transform_w was set, this will perform different
un-transformations. Note that this method may not always be defined since some transformations aren’t
1-1.

Parameters
transformed (np.ndarray) – Array which was previously transformed by this class.

DuplicateBalancingTransformer

class DuplicateBalancingTransformer(dataset: Dataset)
Balance binary or multiclass datasets by duplicating rarer class samples.

This class balances a dataset by duplicating samples of the rarer class so that the sum of all example weights
from all classes is the same. (Up to integer rounding of course). This can be useful when you’re working on an
imabalanced dataset where there are far fewer examples of some classes than others.

This class differs from BalancingTransformer in that it actually duplicates rarer class samples rather than just
increasing their sample weights. This may be more friendly for models that are numerically fragile and can’t
handle imbalanced example weights.

Examples

Here’s an example for a binary dataset.

>>> n_samples = 10
>>> n_features = 3
>>> n_tasks = 1
>>> n_classes = 2
>>> import deepchem as dc
>>> import numpy as np

(continues on next page)
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>>> ids = np.arange(n_samples)
>>> X = np.random.rand(n_samples, n_features)
>>> y = np.random.randint(n_classes, size=(n_samples, n_tasks))
>>> w = np.ones((n_samples, n_tasks))
>>> dataset = dc.data.NumpyDataset(X, y, w, ids)
>>> transformer = dc.trans.DuplicateBalancingTransformer(dataset=dataset)
>>> dataset = transformer.transform(dataset)

And here’s a multiclass dataset example.

>>> n_samples = 50
>>> n_features = 3
>>> n_tasks = 1
>>> n_classes = 5
>>> ids = np.arange(n_samples)
>>> X = np.random.rand(n_samples, n_features)
>>> y = np.random.randint(n_classes, size=(n_samples, n_tasks))
>>> w = np.ones((n_samples, n_tasks))
>>> dataset = dc.data.NumpyDataset(X, y, w, ids)
>>> transformer = dc.trans.DuplicateBalancingTransformer(dataset=dataset)
>>> dataset = transformer.transform(dataset)

See also:

deepchem.trans.BalancingTransformer
Balance by changing sample weights.

Note: This transformer is only well-defined for singletask datasets. (Since examples are actually duplicated,
there’s no meaningful way to duplicate across multiple tasks in a way that preserves the balance.)

This transformer is only meaningful for classification datasets where y takes on a limited set of values. This class
transforms all of X, y, w, ids.

Raises
ValueError –

__init__(dataset: Dataset)
Initializes transformation based on dataset statistics.

Parameters
• transform_X (bool, optional (default False)) – Whether to transform X

• transform_y (bool, optional (default False)) – Whether to transform y

• transform_w (bool, optional (default False)) – Whether to transform w

• transform_ids (bool, optional (default False)) – Whether to transform ids

• dataset (dc.data.Dataset object, optional (default None)) – Dataset to be
transformed

transform_array(X: ndarray, y: ndarray, w: ndarray, ids: ndarray)→ Tuple[ndarray, ndarray, ndarray,
ndarray]
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Transform the data in a set of (X, y, w, id) arrays.

Parameters
• X (np.ndarray) – Array of features

• y (np.ndarray) – Array of labels

• w (np.ndarray) – Array of weights.

• ids (np.ndarray) – Array of identifiers

Returns
• Xtrans (np.ndarray) – Transformed array of features

• ytrans (np.ndarray) – Transformed array of labels

• wtrans (np.ndarray) – Transformed array of weights

• idtrans (np.ndarray) – Transformed array of identifiers

transform(dataset: Dataset, parallel: bool = False, out_dir: str | None = None, **kwargs)→ Dataset
Transforms all internally stored data in dataset.

This method transforms all internal data in the provided dataset by using the Dataset.transform method.
Note that this method adds X-transform, y-transform columns to metadata. Specified keyword arguments
are passed on to Dataset.transform.

Parameters
• dataset (dc.data.Dataset) – Dataset object to be transformed.

• parallel (bool, optional (default False)) – if True, use multiple processes to
transform the dataset in parallel. For large datasets, this might be faster.

• out_dir (str, optional) – If out_dir is specified in kwargs and dataset is a Disk-
Dataset, the output dataset will be written to the specified directory.

Returns
A newly transformed Dataset object

Return type
Dataset

transform_on_array(X: ndarray, y: ndarray, w: ndarray, ids: ndarray)→ Tuple[ndarray, ndarray, ndarray,
ndarray]

Transforms numpy arrays X, y, and w

DEPRECATED. Use transform_array instead.

Parameters
• X (np.ndarray) – Array of features

• y (np.ndarray) – Array of labels

• w (np.ndarray) – Array of weights.

• ids (np.ndarray) – Array of identifiers.

Returns
• Xtrans (np.ndarray) – Transformed array of features

• ytrans (np.ndarray) – Transformed array of labels
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• wtrans (np.ndarray) – Transformed array of weights

• idstrans (np.ndarray) – Transformed array of ids

untransform(transformed: ndarray)→ ndarray
Reverses stored transformation on provided data.

Depending on whether transform_X or transform_y or transform_w was set, this will perform different
un-transformations. Note that this method may not always be defined since some transformations aren’t
1-1.

Parameters
transformed (np.ndarray) – Array which was previously transformed by this class.

ImageTransformer

class ImageTransformer(size: Tuple[int, int])
Convert an image into width, height, channel

Note: This class require Pillow to be installed.

__init__(size: Tuple[int, int])
Initializes ImageTransformer.

Parameters
size (Tuple[int, int]) – The image size, a tuple of (width, height).

transform_array(X, y, w)
Transform the data in a set of (X, y, w, ids) arrays.

Parameters
• X (np.ndarray) – Array of features

• y (np.ndarray) – Array of labels

• w (np.ndarray) – Array of weights.

• ids (np.ndarray) – Array of identifiers.

Returns
• Xtrans (np.ndarray) – Transformed array of features

• ytrans (np.ndarray) – Transformed array of labels

• wtrans (np.ndarray) – Transformed array of weights

• idstrans (np.ndarray) – Transformed array of ids

transform(dataset: Dataset, parallel: bool = False, out_dir: str | None = None, **kwargs)→ Dataset
Transforms all internally stored data in dataset.

This method transforms all internal data in the provided dataset by using the Dataset.transform method.
Note that this method adds X-transform, y-transform columns to metadata. Specified keyword arguments
are passed on to Dataset.transform.

Parameters
• dataset (dc.data.Dataset) – Dataset object to be transformed.
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• parallel (bool, optional (default False)) – if True, use multiple processes to
transform the dataset in parallel. For large datasets, this might be faster.

• out_dir (str, optional) – If out_dir is specified in kwargs and dataset is a Disk-
Dataset, the output dataset will be written to the specified directory.

Returns
A newly transformed Dataset object

Return type
Dataset

transform_on_array(X: ndarray, y: ndarray, w: ndarray, ids: ndarray)→ Tuple[ndarray, ndarray, ndarray,
ndarray]

Transforms numpy arrays X, y, and w

DEPRECATED. Use transform_array instead.

Parameters
• X (np.ndarray) – Array of features

• y (np.ndarray) – Array of labels

• w (np.ndarray) – Array of weights.

• ids (np.ndarray) – Array of identifiers.

Returns
• Xtrans (np.ndarray) – Transformed array of features

• ytrans (np.ndarray) – Transformed array of labels

• wtrans (np.ndarray) – Transformed array of weights

• idstrans (np.ndarray) – Transformed array of ids

untransform(transformed: ndarray)→ ndarray
Reverses stored transformation on provided data.

Depending on whether transform_X or transform_y or transform_w was set, this will perform different
un-transformations. Note that this method may not always be defined since some transformations aren’t
1-1.

Parameters
transformed (np.ndarray) – Array which was previously transformed by this class.

FeaturizationTransformer

class FeaturizationTransformer(dataset: Dataset | None = None, featurizer: Featurizer | None = None)
A transformer which runs a featurizer over the X values of a dataset.

Datasets used by this transformer must be compatible with the internal featurizer. The idea of this transformer
is that it allows for the application of a featurizer to an existing dataset.
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Examples

>>> smiles = ["C", "CC"]
>>> X = np.array(smiles)
>>> y = np.array([1, 0])
>>> dataset = dc.data.NumpyDataset(X, y)
>>> trans = dc.trans.FeaturizationTransformer(dataset, dc.feat.
→˓CircularFingerprint())
>>> dataset = trans.transform(dataset)

__init__(dataset: Dataset | None = None, featurizer: Featurizer | None = None)
Initialization of FeaturizationTransformer

Parameters
• dataset (dc.data.Dataset object, optional (default None)) – Dataset to be

transformed

• featurizer (dc.feat.Featurizer object, optional (default None)) – Fea-
turizer applied to perform transformations.

transform_array(X: ndarray, y: ndarray, w: ndarray, ids: ndarray)→ Tuple[ndarray, ndarray, ndarray,
ndarray]

Transforms arrays of rdkit mols using internal featurizer.

Parameters
• X (np.ndarray) – Array of features

• y (np.ndarray) – Array of labels

• w (np.ndarray) – Array of weights.

• ids (np.ndarray) – Array of identifiers.

Returns
• Xtrans (np.ndarray) – Transformed array of features

• ytrans (np.ndarray) – Transformed array of labels

• wtrans (np.ndarray) – Transformed array of weights

• idstrans (np.ndarray) – Transformed array of ids

transform(dataset: Dataset, parallel: bool = False, out_dir: str | None = None, **kwargs)→ Dataset
Transforms all internally stored data in dataset.

This method transforms all internal data in the provided dataset by using the Dataset.transform method.
Note that this method adds X-transform, y-transform columns to metadata. Specified keyword arguments
are passed on to Dataset.transform.

Parameters
• dataset (dc.data.Dataset) – Dataset object to be transformed.

• parallel (bool, optional (default False)) – if True, use multiple processes to
transform the dataset in parallel. For large datasets, this might be faster.

• out_dir (str, optional) – If out_dir is specified in kwargs and dataset is a Disk-
Dataset, the output dataset will be written to the specified directory.

3.12. Transformers 267



deepchem, Release 2.8.0

Returns
A newly transformed Dataset object

Return type
Dataset

transform_on_array(X: ndarray, y: ndarray, w: ndarray, ids: ndarray)→ Tuple[ndarray, ndarray, ndarray,
ndarray]

Transforms numpy arrays X, y, and w

DEPRECATED. Use transform_array instead.

Parameters
• X (np.ndarray) – Array of features

• y (np.ndarray) – Array of labels

• w (np.ndarray) – Array of weights.

• ids (np.ndarray) – Array of identifiers.

Returns
• Xtrans (np.ndarray) – Transformed array of features

• ytrans (np.ndarray) – Transformed array of labels

• wtrans (np.ndarray) – Transformed array of weights

• idstrans (np.ndarray) – Transformed array of ids

untransform(transformed: ndarray)→ ndarray
Reverses stored transformation on provided data.

Depending on whether transform_X or transform_y or transform_w was set, this will perform different
un-transformations. Note that this method may not always be defined since some transformations aren’t
1-1.

Parameters
transformed (np.ndarray) – Array which was previously transformed by this class.

3.12.2 Specified Usecase Transformers

CoulombFitTransformer

class CoulombFitTransformer(dataset: Dataset)
Performs randomization and binarization operations on batches of Coulomb Matrix features during fit.

Examples

>>> n_samples = 10
>>> n_features = 3
>>> n_tasks = 1
>>> ids = np.arange(n_samples)
>>> X = np.random.rand(n_samples, n_features, n_features)
>>> y = np.zeros((n_samples, n_tasks))
>>> w = np.ones((n_samples, n_tasks))

(continues on next page)
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>>> dataset = dc.data.NumpyDataset(X, y, w, ids)
>>> fit_transformers = [dc.trans.CoulombFitTransformer(dataset)]
>>> model = dc.models.MultitaskFitTransformRegressor(n_tasks,
... [n_features, n_features], batch_size=n_samples, fit_transformers=fit_
→˓transformers, n_evals=1)
>>> print(model.n_features)
12

__init__(dataset: Dataset)
Initializes CoulombFitTransformer.

Parameters
dataset (dc.data.Dataset) – Dataset object to be transformed.

realize(X: ndarray)→ ndarray
Randomize features.

Parameters
X (np.ndarray) – Features

Returns
X – Randomized features

Return type
np.ndarray

normalize(X: ndarray)→ ndarray
Normalize features.

Parameters
X (np.ndarray) – Features

Returns
X – Normalized features

Return type
np.ndarray

expand(X: ndarray)→ ndarray
Binarize features.

Parameters
X (np.ndarray) – Features

Returns
X – Binarized features

Return type
np.ndarray

X_transform(X: ndarray)→ ndarray
Perform Coulomb Fit transform on features.

Parameters
X (np.ndarray) – Features

Returns
X – Transformed features
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Return type
np.ndarray

transform_array(X: ndarray, y: ndarray, w: ndarray, ids: ndarray)→ Tuple[ndarray, ndarray, ndarray,
ndarray]

Performs randomization and binarization operations on data.

Parameters
• X (np.ndarray) – Array of features

• y (np.ndarray) – Array of labels

• w (np.ndarray) – Array of weights.

• ids (np.ndarray) – Array of identifiers.

Returns
• Xtrans (np.ndarray) – Transformed array of features

• ytrans (np.ndarray) – Transformed array of labels

• wtrans (np.ndarray) – Transformed array of weights

• idstrans (np.ndarray) – Transformed array of ids

untransform(z: ndarray)→ ndarray
Not implemented.

transform(dataset: Dataset, parallel: bool = False, out_dir: str | None = None, **kwargs)→ Dataset
Transforms all internally stored data in dataset.

This method transforms all internal data in the provided dataset by using the Dataset.transform method.
Note that this method adds X-transform, y-transform columns to metadata. Specified keyword arguments
are passed on to Dataset.transform.

Parameters
• dataset (dc.data.Dataset) – Dataset object to be transformed.

• parallel (bool, optional (default False)) – if True, use multiple processes to
transform the dataset in parallel. For large datasets, this might be faster.

• out_dir (str, optional) – If out_dir is specified in kwargs and dataset is a Disk-
Dataset, the output dataset will be written to the specified directory.

Returns
A newly transformed Dataset object

Return type
Dataset

transform_on_array(X: ndarray, y: ndarray, w: ndarray, ids: ndarray)→ Tuple[ndarray, ndarray, ndarray,
ndarray]

Transforms numpy arrays X, y, and w

DEPRECATED. Use transform_array instead.

Parameters
• X (np.ndarray) – Array of features

• y (np.ndarray) – Array of labels

• w (np.ndarray) – Array of weights.
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• ids (np.ndarray) – Array of identifiers.

Returns
• Xtrans (np.ndarray) – Transformed array of features

• ytrans (np.ndarray) – Transformed array of labels

• wtrans (np.ndarray) – Transformed array of weights

• idstrans (np.ndarray) – Transformed array of ids

IRVTransformer

class IRVTransformer(K: int, n_tasks: int, dataset: Dataset)
Performs transform from ECFP to IRV features(K nearest neighbors).

This transformer is required by MultitaskIRVClassifier as a preprocessing step before training.

Examples

Let’s start by defining the parameters of the dataset we’re about to transform.

>>> n_feat = 128
>>> N = 20
>>> n_tasks = 2

Let’s now make our dataset object

>>> import numpy as np
>>> import deepchem as dc
>>> X = np.random.randint(2, size=(N, n_feat))
>>> y = np.zeros((N, n_tasks))
>>> w = np.ones((N, n_tasks))
>>> dataset = dc.data.NumpyDataset(X, y, w)

And let’s apply our transformer with 10 nearest neighbors.

>>> K = 10
>>> trans = dc.trans.IRVTransformer(K, n_tasks, dataset)
>>> dataset = trans.transform(dataset)

Note: This class requires TensorFlow to be installed.

__init__(K: int, n_tasks: int, dataset: Dataset)
Initializes IRVTransformer.

Parameters
• K (int) – number of nearest neighbours being count

• n_tasks (int) – number of tasks

• dataset (dc.data.Dataset object) – train_dataset

3.12. Transformers 271



deepchem, Release 2.8.0

realize(similarity: ndarray, y: ndarray, w: ndarray)→ List
find samples with top ten similarity values in the reference dataset

Parameters
• similarity (np.ndarray) – similarity value between target dataset and reference dataset

should have size of (n_samples_in_target, n_samples_in_reference)

• y (np.array) – labels for a single task

• w (np.array) – weights for a single task

Returns
features – n_samples * np.array of size (2*K,) each array includes K similarity values and
corresponding labels

Return type
list

X_transform(X_target: ndarray)→ ndarray

Calculate similarity between target dataset(X_target) and
reference dataset(X): #(1 in intersection)/#(1 in union)

similarity = (X_target intersect X)/(X_target union X)

Parameters
X_target (np.ndarray) – fingerprints of target dataset should have same length with X in
the second axis

Returns
X_target – features of size(batch_size, 2*K*n_tasks)

Return type
np.ndarray

static matrix_mul(X1, X2, shard_size=5000)
Calculate matrix multiplication for big matrix, X1 and X2 are sliced into pieces with shard_size
rows(columns) then multiplied together and concatenated to the proper size

transform(dataset: Dataset, parallel: bool = False, out_dir: str | None = None, **kwargs)→ DiskDataset |
NumpyDataset

Transforms a given dataset

Parameters
• dataset (Dataset) – Dataset to transform

• parallel (bool, optional, (default False)) – Whether to parallelize this trans-
formation. Currently ignored.

• out_dir (str, optional (default None)) – Directory to write resulting dataset.

Returns
• DiskDataset or NumpyDataset

• Dataset object that is transformed.

untransform(z: ndarray)→ ndarray
Not implemented.
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transform_array(X: ndarray, y: ndarray, w: ndarray, ids: ndarray)→ Tuple[ndarray, ndarray, ndarray,
ndarray]

Transform the data in a set of (X, y, w, ids) arrays.

Parameters
• X (np.ndarray) – Array of features

• y (np.ndarray) – Array of labels

• w (np.ndarray) – Array of weights.

• ids (np.ndarray) – Array of identifiers.

Returns
• Xtrans (np.ndarray) – Transformed array of features

• ytrans (np.ndarray) – Transformed array of labels

• wtrans (np.ndarray) – Transformed array of weights

• idstrans (np.ndarray) – Transformed array of ids

transform_on_array(X: ndarray, y: ndarray, w: ndarray, ids: ndarray)→ Tuple[ndarray, ndarray, ndarray,
ndarray]

Transforms numpy arrays X, y, and w

DEPRECATED. Use transform_array instead.

Parameters
• X (np.ndarray) – Array of features

• y (np.ndarray) – Array of labels

• w (np.ndarray) – Array of weights.

• ids (np.ndarray) – Array of identifiers.

Returns
• Xtrans (np.ndarray) – Transformed array of features

• ytrans (np.ndarray) – Transformed array of labels

• wtrans (np.ndarray) – Transformed array of weights

• idstrans (np.ndarray) – Transformed array of ids

DAGTransformer

class DAGTransformer(max_atoms: int = 50)
Performs transform from ConvMol adjacency lists to DAG calculation orders

This transformer is used by DAGModel before training to transform its inputs to the correct shape. This expansion
turns a molecule with n atoms into n DAGs, each with root at a different atom in the molecule.
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Examples

Let’s transform a small dataset of molecules.

>>> N = 10
>>> n_feat = 5
>>> import numpy as np
>>> feat = dc.feat.ConvMolFeaturizer()
>>> X = feat(["C", "CC"])
>>> y = np.random.rand(N)
>>> dataset = dc.data.NumpyDataset(X, y)
>>> trans = dc.trans.DAGTransformer(max_atoms=5)
>>> dataset = trans.transform(dataset)

__init__(max_atoms: int = 50)
Initializes DAGTransformer.

Parameters
max_atoms (int, optional (Default 50)) – Maximum number of atoms to allow

transform_array(X: ndarray, y: ndarray, w: ndarray, ids: ndarray)→ Tuple[ndarray, ndarray, ndarray,
ndarray]

Transform the data in a set of (X, y, w, ids) arrays.

Parameters
• X (np.ndarray) – Array of features

• y (np.ndarray) – Array of labels

• w (np.ndarray) – Array of weights.

• ids (np.ndarray) – Array of identifiers.

Returns
• Xtrans (np.ndarray) – Transformed array of features

• ytrans (np.ndarray) – Transformed array of labels

• wtrans (np.ndarray) – Transformed array of weights

• idstrans (np.ndarray) – Transformed array of ids

untransform(z: ndarray)→ ndarray
Not implemented.

UG_to_DAG(sample: ConvMol)→ List
This function generates the DAGs for a molecule

Parameters
sample (ConvMol) – Molecule to transform

Returns
List of parent adjacency matrices

Return type
List
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transform(dataset: Dataset, parallel: bool = False, out_dir: str | None = None, **kwargs)→ Dataset
Transforms all internally stored data in dataset.

This method transforms all internal data in the provided dataset by using the Dataset.transform method.
Note that this method adds X-transform, y-transform columns to metadata. Specified keyword arguments
are passed on to Dataset.transform.

Parameters
• dataset (dc.data.Dataset) – Dataset object to be transformed.

• parallel (bool, optional (default False)) – if True, use multiple processes to
transform the dataset in parallel. For large datasets, this might be faster.

• out_dir (str, optional) – If out_dir is specified in kwargs and dataset is a Disk-
Dataset, the output dataset will be written to the specified directory.

Returns
A newly transformed Dataset object

Return type
Dataset

transform_on_array(X: ndarray, y: ndarray, w: ndarray, ids: ndarray)→ Tuple[ndarray, ndarray, ndarray,
ndarray]

Transforms numpy arrays X, y, and w

DEPRECATED. Use transform_array instead.

Parameters
• X (np.ndarray) – Array of features

• y (np.ndarray) – Array of labels

• w (np.ndarray) – Array of weights.

• ids (np.ndarray) – Array of identifiers.

Returns
• Xtrans (np.ndarray) – Transformed array of features

• ytrans (np.ndarray) – Transformed array of labels

• wtrans (np.ndarray) – Transformed array of weights

• idstrans (np.ndarray) – Transformed array of ids

RxnSplitTransformer

class RxnSplitTransformer(sep_reagent: bool = True, dataset: Dataset | None = None)
Splits the reaction SMILES input into the source and target strings required for machine translation tasks.

The input is expected to be in the form reactant>reagent>product. The source string would be reactants>reagents
and the target string would be the products.

The transformer can also separate the reagents from the reactants for a mixed training mode. During mixed
training, the source string is transformed from reactants>reagent to reactants.reagent> . This can be toggled
(default True) by setting the value of sep_reagent while calling the transformer.
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Examples

>>> # When mixed training is toggled.
>>> import numpy as np
>>> from deepchem.trans.transformers import RxnSplitTransformer
>>> reactions = np.array(["CC(C)C[Mg+].CON(C)C(=O)c1ccc(O)nc1>C1CCOC1.[Cl-]>
→˓CC(C)CC(=O)c1ccc(O)nc1","CCn1cc(C(=O)O)c(=O)c2cc(F)c(-c3ccc(N)cc3)cc21.O=CO>>
→˓CCn1cc(C(=O)O)c(=O)c2cc(F)c(-c3ccc(NC=O)cc3)cc21"], dtype=object)
>>> trans = RxnSplitTransformer(sep_reagent=True)
>>> split_reactions = trans.transform_array(X=reactions, y=np.array([]), w=np.
→˓array([]), ids=np.array([]))
>>> split_reactions
(array([['CC(C)C[Mg+].CON(C)C(=O)c1ccc(O)nc1>C1CCOC1.[Cl-]',

'CC(C)CC(=O)c1ccc(O)nc1'],
['CCn1cc(C(=O)O)c(=O)c2cc(F)c(-c3ccc(N)cc3)cc21.O=CO>',
'CCn1cc(C(=O)O)c(=O)c2cc(F)c(-c3ccc(NC=O)cc3)cc21']], dtype='<U51'),␣

→˓array([], dtype=float64), array([], dtype=float64), array([], dtype=float64))

When mixed training is disabled, you get the following outputs:

>>> trans_disable = RxnSplitTransformer(sep_reagent=False)
>>> split_reactions = trans_disable.transform_array(X=reactions, y=np.array([]),␣
→˓w=np.array([]), ids=np.array([]))
>>> split_reactions
(array([['CC(C)C[Mg+].CON(C)C(=O)c1ccc(O)nc1.C1CCOC1.[Cl-]>',

'CC(C)CC(=O)c1ccc(O)nc1'],
['CCn1cc(C(=O)O)c(=O)c2cc(F)c(-c3ccc(N)cc3)cc21.O=CO>',
'CCn1cc(C(=O)O)c(=O)c2cc(F)c(-c3ccc(NC=O)cc3)cc21']], dtype='<U51'),␣

→˓array([], dtype=float64), array([], dtype=float64), array([], dtype=float64))

Note: This class only transforms the feature field of a reaction dataset like USPTO.

__init__(sep_reagent: bool = True, dataset: Dataset | None = None)
Initializes the Reaction split Transformer.

Parameters
• sep_reagent (bool, optional (default True)) – To separate the reagent and reac-

tants for training.

• dataset (dc.data.Dataset object, optional (default None)) – Dataset to be
transformed.

transform_array(X: ndarray, y: ndarray, w: ndarray, ids: ndarray)→ Tuple[ndarray, ndarray, ndarray,
ndarray]

Transform the data in a set of (X, y, w, ids) arrays.

Parameters
• X (np.ndarray) – Array of features(the reactions)

• y (np.ndarray) – Array of labels

• w (np.ndarray) – Array of weights.

• ids (np.ndarray) – Array of weights.
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Returns
• Xtrans (np.ndarray) – Transformed array of features

• ytrans (np.ndarray) – Transformed array of labels

• wtrans (np.ndarray) – Transformed array of weights

• idstrans (np.ndarray) – Transformed array of ids

transform(dataset: Dataset, parallel: bool = False, out_dir: str | None = None, **kwargs)→ Dataset
Transforms all internally stored data in dataset.

This method transforms all internal data in the provided dataset by using the Dataset.transform method.
Note that this method adds X-transform, y-transform columns to metadata. Specified keyword arguments
are passed on to Dataset.transform.

Parameters
• dataset (dc.data.Dataset) – Dataset object to be transformed.

• parallel (bool, optional (default False)) – if True, use multiple processes to
transform the dataset in parallel. For large datasets, this might be faster.

• out_dir (str, optional) – If out_dir is specified in kwargs and dataset is a Disk-
Dataset, the output dataset will be written to the specified directory.

Returns
A newly transformed Dataset object

Return type
Dataset

transform_on_array(X: ndarray, y: ndarray, w: ndarray, ids: ndarray)→ Tuple[ndarray, ndarray, ndarray,
ndarray]

Transforms numpy arrays X, y, and w

DEPRECATED. Use transform_array instead.

Parameters
• X (np.ndarray) – Array of features

• y (np.ndarray) – Array of labels

• w (np.ndarray) – Array of weights.

• ids (np.ndarray) – Array of identifiers.

Returns
• Xtrans (np.ndarray) – Transformed array of features

• ytrans (np.ndarray) – Transformed array of labels

• wtrans (np.ndarray) – Transformed array of weights

• idstrans (np.ndarray) – Transformed array of ids

untransform(z)
Not Implemented.
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3.12.3 Base Transformer (for develop)

The dc.trans.Transformer class is the abstract parent class for all transformers. This class should never be directly
initialized, but contains a number of useful method implementations.

class Transformer(transform_X: bool = False, transform_y: bool = False, transform_w: bool = False,
transform_ids: bool = False, dataset: Dataset | None = None)

Abstract base class for different data transformation techniques.

A transformer is an object that applies a transformation to a given dataset. Think of a transformation as a math-
ematical operation which makes the source dataset more amenable to learning. For example, one transformer
could normalize the features for a dataset (ensuring they have zero mean and unit standard deviation). Another
transformer could for example threshold values in a dataset so that values outside a given range are truncated.
Yet another transformer could act as a data augmentation routine, generating multiple different images from each
source datapoint (a transformation need not necessarily be one to one).

Transformers are designed to be chained, since data pipelines often chain multiple different transformations to a
dataset. Transformers are also designed to be scalable and can be applied to large dc.data.Dataset objects. Not
that Transformers are not usually thread-safe so you will have to be careful in processing very large datasets.

This class is an abstract superclass that isn’t meant to be directly instantiated. Instead, you will want to instantiate
one of the subclasses of this class inorder to perform concrete transformations.

__init__(transform_X: bool = False, transform_y: bool = False, transform_w: bool = False, transform_ids:
bool = False, dataset: Dataset | None = None)

Initializes transformation based on dataset statistics.

Parameters
• transform_X (bool, optional (default False)) – Whether to transform X

• transform_y (bool, optional (default False)) – Whether to transform y

• transform_w (bool, optional (default False)) – Whether to transform w

• transform_ids (bool, optional (default False)) – Whether to transform ids

• dataset (dc.data.Dataset object, optional (default None)) – Dataset to be
transformed

transform(dataset: Dataset, parallel: bool = False, out_dir: str | None = None, **kwargs)→ Dataset
Transforms all internally stored data in dataset.

This method transforms all internal data in the provided dataset by using the Dataset.transform method.
Note that this method adds X-transform, y-transform columns to metadata. Specified keyword arguments
are passed on to Dataset.transform.

Parameters
• dataset (dc.data.Dataset) – Dataset object to be transformed.

• parallel (bool, optional (default False)) – if True, use multiple processes to
transform the dataset in parallel. For large datasets, this might be faster.

• out_dir (str, optional) – If out_dir is specified in kwargs and dataset is a Disk-
Dataset, the output dataset will be written to the specified directory.

Returns
A newly transformed Dataset object

Return type
Dataset
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transform_array(X: ndarray, y: ndarray, w: ndarray, ids: ndarray)→ Tuple[ndarray, ndarray, ndarray,
ndarray]

Transform the data in a set of (X, y, w, ids) arrays.

Parameters
• X (np.ndarray) – Array of features

• y (np.ndarray) – Array of labels

• w (np.ndarray) – Array of weights.

• ids (np.ndarray) – Array of identifiers.

Returns
• Xtrans (np.ndarray) – Transformed array of features

• ytrans (np.ndarray) – Transformed array of labels

• wtrans (np.ndarray) – Transformed array of weights

• idstrans (np.ndarray) – Transformed array of ids

transform_on_array(X: ndarray, y: ndarray, w: ndarray, ids: ndarray)→ Tuple[ndarray, ndarray, ndarray,
ndarray]

Transforms numpy arrays X, y, and w

DEPRECATED. Use transform_array instead.

Parameters
• X (np.ndarray) – Array of features

• y (np.ndarray) – Array of labels

• w (np.ndarray) – Array of weights.

• ids (np.ndarray) – Array of identifiers.

Returns
• Xtrans (np.ndarray) – Transformed array of features

• ytrans (np.ndarray) – Transformed array of labels

• wtrans (np.ndarray) – Transformed array of weights

• idstrans (np.ndarray) – Transformed array of ids

untransform(transformed: ndarray)→ ndarray
Reverses stored transformation on provided data.

Depending on whether transform_X or transform_y or transform_w was set, this will perform different
un-transformations. Note that this method may not always be defined since some transformations aren’t
1-1.

Parameters
transformed (np.ndarray) – Array which was previously transformed by this class.
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3.13 Model Classes

DeepChem maintains an extensive collection of models for scientific applications. DeepChem’s focus is on facilitating
scientific applications, so we support a broad range of different machine learning frameworks (currently scikit-learn,
xgboost, TensorFlow, and PyTorch) since different frameworks are more and less suited for different scientific applica-
tions.

3.13.1 Model Cheatsheet

If you’re just getting started with DeepChem, you’re probably interested in the basics. The place to get started is this
“model cheatsheet” that lists various types of custom DeepChem models. Note that some wrappers like SklearnModel
and GBDTModel which wrap external machine learning libraries are excluded, but this table should otherwise be com-
plete.

As a note about how to read these tables: Each row describes what’s needed to invoke a given model. Some models
must be applied with given Transformer or Featurizer objects. Most models can be trained calling model.fit,
otherwise the name of the fit_method is given in the Comment column. In order to run the models, make sure that the
backend (Keras and tensorflow or Pytorch or Jax) is installed. You can thus read off what’s needed to train the model
from the table below.

General purpose
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Table 2: General purpose models

Model Ref-
er-
ence

Classi-
fier/Regressor

Acceptable Featurizers Back-
end

Comment

CNN Clas-
sifier/
Regres-
sor

Keras

Multi-
taskClassifier

Classi-
fier

CircularFingerprint RDKitDescriptors CoulombMa-
trixEig RdkitGridFeaturizer BindingPocketFeaturizer
ElementPropertyFingerprint

Py-
Torch

MultitaskFit-
Transform-
Regressor

Regres-
sor

CircularFingerprint RDKitDescriptors CoulombMa-
trixEig RdkitGridFeaturizer BindingPocketFeaturizer
ElementPropertyFingerprint

Py-
Torch

any
Transformer
can be used

Multi-
taskIRVClas-
sifier

Classi-
fier

CircularFingerprint RDKitDescriptors CoulombMa-
trixEig RdkitGridFeaturizer BindingPocketFeaturizer
ElementPropertyFingerprint

Keras use
IRVTransformer

MultitaskRe-
gressor

Regres-
sor

CircularFingerprint RDKitDescriptors CoulombMa-
trixEig RdkitGridFeaturizer BindingPocketFeaturizer
ElementPropertyFingerprint

Torch

Progres-
siveMulti-
taskClassifier

ref Classi-
fier

CircularFingerprint RDKitDescriptors CoulombMa-
trixEig RdkitGridFeaturizer BindingPocketFeaturizer
ElementPropertyFingerprint

Keras

Progressive-
MultitaskRe-
gressor

ref Regres-
sor

CircularFingerprint RDKitDescriptors CoulombMa-
trixEig RdkitGridFeaturizer BindingPocketFeaturizer
ElementPropertyFingerprint

Keras

RobustMulti-
taskClassifier

ref Classi-
fier

CircularFingerprint RDKitDescriptors CoulombMa-
trixEig RdkitGridFeaturizer BindingPocketFeaturizer
ElementPropertyFingerprint

Keras

RobustMulti-
taskRegres-
sor

ref Regres-
sor

CircularFingerprint RDKitDescriptors CoulombMa-
trixEig RdkitGridFeaturizer BindingPocketFeaturizer
ElementPropertyFingerprint

Keras

SeqToSeq ref Py-
Torch

fit method:
fit_sequences

WGAN ref Adver-
sarial

Keras fit method:
fit_gan

Molecules
Many models implemented in DeepChem were designed for small to medium-sized organic molecules, most often
drug-like compounds. If your data is very different (e.g. molecules contain ‘exotic’ elements not present in the orig-
inal dataset) or cannot be represented well using SMILES (e.g. metal complexes, crystals), some adaptations to the
featurization and/or model might be needed to get reasonable results.
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Table 3: Molecular models

Model Ref-
er-
ence

Type Acceptable Featurizers Backend Com-
ment

ScScore-
Model

ref Classi-
fier

CircularFingerprint Keras

Atomic-
ConvModel

ref Clas-
sifier/
Regres-
sor

ComplexNeighborListFragmentAtomicCoordinates Keras

Atten-
tiveFP-
Model

ref Clas-
sifier/
Regres-
sor

MolGraphConvFeaturizer PyTorch

ChemCep-
tion

ref Clas-
sifier/
Regres-
sor

SmilesToImage Keras

DAG-
Model

ref Clas-
sifier/
Regres-
sor

ConvMolFeaturizer Keras use
DAG-
Trans-
former

GAT-
Model

ref Clas-
sifier/
Regres-
sor

MolGraphConvFeaturizer DGL/PyTorch

GCN-
Model

ref Clas-
sifier/
Regres-
sor

MolGraphConvFeaturizer DGL/PyTorch

Graph-
Con-
vModel

ref Clas-
sifier/
Regres-
sor

ConvMolFeaturizer Keras

MEGNet-
Model

ref Clas-
sifier/
Regres-
sor

Py-
Torch/PyTorch
Geometric

MPNN-
Model

ref Clas-
sifier/
Regres-
sor

MolGraphConvFeaturizer DGL/PyTorch

Pagtn-
Model

ref Clas-
sifier/
Regres-
sor

PagtnMolGraphFeaturizer MolGraphConvFeaturizer DGL/PyTorch

Smiles2Vec ref Clas-
sifier/
Regres-
sor

SmilesToSeq Keras

TextCNN-
Model

ref Clas-
sifier/
Regres-
sor

Keras/PyTorch

DTNN-
Model

ref Regres-
sor

CoulombMatrix PyTorch

MAT-
Model

ref Regres-
sor

MATFeaturizer PyTorch

Weave-
Model

ref Regres-
sor

WeaveFeaturizer Keras

Basic-
MolGAN-
Model

ref Genera-
tor

MolGanFeaturizer Keras fit
method:
fit_gan

DMPNN-
Model

ref Clas-
sifier/
Regres-
sor

DMPNNFeaturizer PyTorch

InfoGraph ref Clas-
sifier/
Regres-
sor

MolGraphConvFeaturizer PyTorch

Info-
GraphStar

ref Clas-
sifier/
Regres-
sor

MolGraphConvFeaturizer PyTorch

GNN-
Modular

ref Clas-
sifier/
Regres-
sor

SNAPFeaturizer PyTorch

Info-
Max3DModular

ref Unsu-
per-
vised

RDKitConformerFeaturizer PyTorch

Chem-
berta

ref Clas-
sifier/
Regres-
sor

RobertaTokenizer PyTorch

Progres-
siveMulti-
taskModel

ref Clas-
sifier/
Regres-
sor

CircularFingerprint RDKitDescriptors CoulombMa-
trixEig RdkitGridFeaturizer BindingPocketFeatur-
izer ElementPropertyFingerprint

PyTorch
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Materials
The following models were designed specifically for (inorganic) materials.

Table 4: Material models

Model Refer-
ence

Type Acceptable Featur-
izers

Backend Comment

CGCNN-
Model

ref Classi-
fier/Regressor

CGCNNFEaturizer DGL/PTorch crystal graph
CNN

MEGNet-
Model

ref Classi-
fier/Regressor

PyTorch/PyTorch Geo-
metric

LCNN-
Model

ref Regressor LCNNFeaturizer PyTorch lattice CNN

3.13.2 Model

class Model(model=None, model_dir: str | None = None, **kwargs)
Abstract base class for DeepChem models.

__init__(model=None, model_dir: str | None = None, **kwargs)→ None
Abstract class for all models.

This is intended only for convenience of subclass implementations and should not be invoked directly.

Parameters
• model (object) – Wrapper around ScikitLearn/Keras/Tensorflow model object.

• model_dir (str, optional (default None)) – Path to directory where model will
be stored. If not specified, model will be stored in a temporary directory.

fit_on_batch(X: Sequence, y: Sequence, w: Sequence)
Perform a single step of training.

Parameters
• X (np.ndarray) – the inputs for the batch

• y (np.ndarray) – the labels for the batch

• w (np.ndarray) – the weights for the batch

predict_on_batch(X: _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool
| int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str |
bytes])

Makes predictions on given batch of new data.

Parameters
X (np.ndarray) – Features

reload()→ None
Reload trained model from disk.

static get_model_filename(model_dir: str)→ str
Given model directory, obtain filename for the model itself.
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static get_params_filename(model_dir: str)→ str
Given model directory, obtain filename for the model itself.

save()→ None
Dispatcher function for saving.

Each subclass is responsible for overriding this method.

fit(dataset: Dataset)
Fits a model on data in a Dataset object.

Parameters
dataset (Dataset) – the Dataset to train on

predict(dataset: Dataset, transformers: List[Transformer] = [])→ ndarray | Sequence[ndarray]
Uses self to make predictions on provided Dataset object.

Parameters
• dataset (Dataset) – Dataset to make prediction on

• transformers (List[Transformer]) – Transformers that the input data has been trans-
formed by. The output is passed through these transformers to undo the transformations.

Returns
A numpy array of predictions the model produces.

Return type
np.ndarray

evaluate(dataset: Dataset, metrics: List[Metric], transformers: List[Transformer] = [], per_task_metrics:
bool = False, use_sample_weights: bool = False, n_classes: int = 2)

Evaluates the performance of this model on specified dataset.

This function uses Evaluator under the hood to perform model evaluation. As a result, it inherits the same
limitations of Evaluator. Namely, that only regression and classification models can be evaluated in this
fashion. For generator models, you will need to overwrite this method to perform a custom evaluation.

Keyword arguments specified here will be passed to Evaluator.compute_model_performance.

Parameters
• dataset (Dataset) – Dataset object.

• metrics (Metric / List[Metric] / function) – The set of metrics provided. This
class attempts to do some intelligent handling of input. If a single dc.metrics.Metric object
is provided or a list is provided, it will evaluate self.model on these metrics. If a function
is provided, it is assumed to be a metric function that this method will attempt to wrap in
a dc.metrics.Metric object. A metric function must accept two arguments, y_true, y_pred
both of which are np.ndarray objects and return a floating point score. The metric function
may also accept a keyword argument sample_weight to account for per-sample weights.

• transformers (List[Transformer]) – List of dc.trans.Transformer objects. These
transformations must have been applied to dataset previously. The dataset will be untrans-
formed for metric evaluation.

• per_task_metrics (bool, optional (default False)) – If true, return computed
metric for each task on multitask dataset.

• use_sample_weights (bool, optional (default False)) – If set, use per-sample
weights w.
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• n_classes (int, optional (default None)) – If specified, will use n_classes as the
number of unique classes in self.dataset. Note that this argument will be ignored for re-
gression metrics.

Returns
• multitask_scores (dict) – Dictionary mapping names of metrics to metric scores.

• all_task_scores (dict, optional) – If per_task_metrics == True is passed as a keyword
argument, then returns a second dictionary of scores for each task separately.

get_task_type()→ str
Currently models can only be classifiers or regressors.

get_num_tasks()→ int
Get number of tasks.

3.14 Scikit-Learn Models

Scikit-learn’s models can be wrapped so that they can interact conveniently with DeepChem. Oftentimes scikit-learn
models are more robust and easier to train and are a nice first model to train.

3.14.1 SklearnModel

class SklearnModel(model: BaseEstimator, model_dir: str | None = None, **kwargs)
Wrapper class that wraps scikit-learn models as DeepChem models.

When you’re working with scikit-learn and DeepChem, at times it can be useful to wrap a scikit-learn model as a
DeepChem model. The reason for this might be that you want to do an apples-to-apples comparison of a scikit-
learn model to another DeepChem model, or perhaps you want to use the hyperparameter tuning capabilities in
dc.hyper. The SklearnModel class provides a wrapper around scikit-learn models that allows scikit-learn models
to be trained on Dataset objects and evaluated with the same metrics as other DeepChem models.

Example

>>> import deepchem as dc
>>> import numpy as np
>>> from sklearn.linear_model import LinearRegression
>>> # Generating a random data and creating a dataset
>>> X, y = np.random.randn(5, 1), np.random.randn(5)
>>> dataset = dc.data.NumpyDataset(X, y)
>>> # Wrapping a Sklearn Linear Regression model using DeepChem models API
>>> sklearn_model = LinearRegression()
>>> dc_model = dc.models.SklearnModel(sklearn_model)
>>> dc_model.fit(dataset) # fitting dataset
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Notes

All SklearnModels perform learning solely in memory. This means that it may not be possible to train Sklearn-
Model on large `Dataset`s.

__init__(model: BaseEstimator, model_dir: str | None = None, **kwargs)

Parameters
• model (BaseEstimator) – The model instance which inherits a scikit-learn BaseEstima-

tor Class.

• model_dir (str, optional (default None)) – If specified the model will be stored
in this directory. Else, a temporary directory will be used.

• model_instance (BaseEstimator (DEPRECATED)) – The model instance which inher-
its a scikit-learn BaseEstimator Class.

• kwargs (dict) – kwargs[‘use_weights’] is a bool which determines if we pass weights into
self.model.fit().

fit(dataset: Dataset)→ None
Fits scikit-learn model to data.

Parameters
dataset (Dataset) – The Dataset to train this model on.

predict_on_batch(X: _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool
| int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str |
bytes])→ ndarray

Makes predictions on batch of data.

Parameters
X (np.ndarray) – A numpy array of features.

Returns
The value is a return value of predict_proba or predict method of the scikit-learn model. If
the scikit-learn model has both methods, the value is always a return value of predict_proba.

Return type
np.ndarray

predict(X: Dataset, transformers: List[Transformer] = [])→ ndarray | Sequence[ndarray]
Makes predictions on dataset.

Parameters
• dataset (Dataset) – Dataset to make prediction on.

• transformers (List[Transformer]) – Transformers that the input data has been trans-
formed by. The output is passed through these transformers to undo the transformations.

save()

Saves scikit-learn model to disk using joblib.

reload()

Loads scikit-learn model from joblib file on disk.
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3.15 Gradient Boosting Models

Gradient Boosting Models (LightGBM and XGBoost) can be wrapped so they can interact with DeepChem.

3.15.1 GBDTModel

class GBDTModel(model: BaseEstimator, model_dir: str | None = None, early_stopping_rounds: int = 50,
eval_metric: Callable | str | None = None, **kwargs)

Wrapper class that wraps GBDT models as DeepChem models.

This class supports LightGBM/XGBoost models.

__init__(model: BaseEstimator, model_dir: str | None = None, early_stopping_rounds: int = 50,
eval_metric: Callable | str | None = None, **kwargs)

Parameters
• model (BaseEstimator) – The model instance of scikit-learn wrapper Light-

GBM/XGBoost models.

• model_dir (str, optional (default None)) – Path to directory where model will
be stored.

• early_stopping_rounds (int, optional (default 50)) – Activates early stop-
ping. Validation metric needs to improve at least once in every early_stopping_rounds
round(s) to continue training.

• eval_metric (Union[str, Callable]) – If string, it should be a built-in evaluation
metric to use. If callable, it should be a custom evaluation metric, see official note for more
details.

fit(dataset: Dataset)
Fits GDBT model with all data.

First, this function splits all data into train and valid data (8:2), and finds the best n_estimators. And then,
we retrain all data using best n_estimators * 1.25.

Parameters
dataset (Dataset) – The Dataset to train this model on.

fit_with_eval(train_dataset: Dataset, valid_dataset: Dataset)
Fits GDBT model with valid data.

Parameters
• train_dataset (Dataset) – The Dataset to train this model on.

• valid_dataset (Dataset) – The Dataset to validate this model on.
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3.16 Deep Learning Infrastructure

DeepChem maintains a lightweight layer of common deep learning model infrastructure that can be used for models
built with different underlying frameworks. The losses and optimizers can be used for both TensorFlow and PyTorch
models.

3.16.1 Losses

class Loss

A loss function for use in training models.

class L1Loss

The absolute difference between the true and predicted values.

class HuberLoss

Modified version of L1 Loss, also known as Smooth L1 loss. Less sensitive to small errors, linear for larger
errors. Huber loss is generally better for cases where are are both large outliers as well as small, as compared to
the L1 loss. By default, Delta = 1.0 and reduction = ‘none’.

class L2Loss

The squared difference between the true and predicted values.

class HingeLoss

The hinge loss function.

The ‘output’ argument should contain logits, and all elements of ‘labels’ should equal 0 or 1.

class SquaredHingeLoss

The Squared Hinge loss function.

Defined as the square of the hinge loss between y_true and y_pred. The Squared Hinge Loss is differentiable.

class PoissonLoss

The Poisson loss function is defined as the mean of the elements of y_pred - (y_true * log(y_pred) for an input
of (y_true, y_pred). Poisson loss is generally used for regression tasks where the data follows the poisson

class BinaryCrossEntropy

The cross entropy between pairs of probabilities.

The arguments should each have shape (batch_size) or (batch_size, tasks) and contain probabilities.

class CategoricalCrossEntropy

The cross entropy between two probability distributions.

The arguments should each have shape (batch_size, classes) or (batch_size, tasks, classes), and represent a prob-
ability distribution over classes.

class SigmoidCrossEntropy

The cross entropy between pairs of probabilities.

The arguments should each have shape (batch_size) or (batch_size, tasks). The labels should be probabilities,
while the outputs should be logits that are converted to probabilities using a sigmoid function.

class SoftmaxCrossEntropy

The cross entropy between two probability distributions.

The arguments should each have shape (batch_size, classes) or (batch_size, tasks, classes). The labels should be
probabilities, while the outputs should be logits that are converted to probabilities using a softmax function.
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class SparseSoftmaxCrossEntropy

The cross entropy between two probability distributions.

The labels should have shape (batch_size) or (batch_size, tasks), and be integer class labels. The outputs have
shape (batch_size, classes) or (batch_size, tasks, classes) and be logits that are converted to probabilities using a
softmax function.

class VAE_ELBO

The Variational AutoEncoder loss, KL Divergence Regularize + marginal log-likelihood.

This losses based on _[1]. ELBO(Evidence lower bound) lexically replaced Variational lower bound. BCE
means marginal log-likelihood, and KLD means KL divergence with normal distribution. Added hyper parameter
‘kl_scale’ for KLD.

The logvar and mu should have shape (batch_size, hidden_space). The x and reconstruction_x should have
(batch_size, attribute). The kl_scale should be float.

Examples

Examples for calculating loss using constant tensor.

batch_size = 2, hidden_space = 2, num of original attribute = 3 >>> import numpy as np >>> import torch >>>
import tensorflow as tf >>> logvar = np.array([[1.0,1.3],[0.6,1.2]]) >>> mu = np.array([[0.2,0.7],[1.2,0.4]]) >>>
x = np.array([[0.9,0.4,0.8],[0.3,0,1]]) >>> reconstruction_x = np.array([[0.8,0.3,0.7],[0.2,0,0.9]])

Case tensorflow >>> VAE_ELBO()._compute_tf_loss(tf.constant(logvar), tf.constant(mu), tf.constant(x),
tf.constant(reconstruction_x)) <tf.Tensor: shape=(2,), dtype=float64, numpy=array([0.70165154,
0.76238271])>

Case pytorch >>> (VAE_ELBO()._create_pytorch_loss())(torch.tensor(logvar), torch.tensor(mu),
torch.tensor(x), torch.tensor(reconstruction_x)) tensor([0.7017, 0.7624], dtype=torch.float64)

References

class VAE_KLDivergence

The KL_divergence between hidden distribution and normal distribution.

This loss represents KL divergence losses between normal distribution(using parameter of distribution) based on
_[1].

The logvar should have shape (batch_size, hidden_space) and each term represents standard deviation of hid-
den distribution. The mean shuold have (batch_size, hidden_space) and each term represents mean of hidden
distribtuon.

Examples

Examples for calculating loss using constant tensor.

batch_size = 2, hidden_space = 2, >>> import numpy as np >>> import torch >>> import tensorflow as tf >>>
logvar = np.array([[1.0,1.3],[0.6,1.2]]) >>> mu = np.array([[0.2,0.7],[1.2,0.4]])

Case tensorflow >>> VAE_KLDivergence()._compute_tf_loss(tf.constant(logvar), tf.constant(mu)) <tf.Tensor:
shape=(2,), dtype=float64, numpy=array([0.17381787, 0.51425203])>

Case pytorch >>> (VAE_KLDivergence()._create_pytorch_loss())(torch.tensor(logvar), torch.tensor(mu)) ten-
sor([0.1738, 0.5143], dtype=torch.float64)
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References

class ShannonEntropy

The ShannonEntropy of discrete-distribution.

This loss represents shannon entropy based on _[1].

The inputs should have shape (batch size, num of variable) and represents probabilites distribution.

Examples

Examples for calculating loss using constant tensor.

batch_size = 2, num_of variable = variable, >>> import numpy as np >>> import torch >>> import tensorflow
as tf >>> inputs = np.array([[0.7,0.3],[0.9,0.1]])

Case tensorflow >>> ShannonEntropy()._compute_tf_loss(tf.constant(inputs)) <tf.Tensor: shape=(2,),
dtype=float64, numpy=array([0.30543215, 0.16254149])>

Case pytorch >>> (ShannonEntropy()._create_pytorch_loss())(torch.tensor(inputs)) tensor([0.3054, 0.1625],
dtype=torch.float64)

References

class GlobalMutualInformationLoss

Global-global encoding loss (comparing two full graphs).

Compares the encodings of two molecular graphs and returns the loss between them based on the measure speci-
fied. The encodings are generated by two separate encoders in order to maximize the mutual information between
the two encodings.

Parameters
• global_enc (torch.Tensor) – Features from a graph convolutional encoder.

• global_enc2 (torch.Tensor) – Another set of features from a graph convolutional en-
coder.

• measure (str) – The divergence measure to use for the unsupervised loss. Options are
‘GAN’, ‘JSD’, ‘KL’, ‘RKL’, ‘X2’, ‘DV’, ‘H2’, or ‘W1’.

• average_loss (bool) – Whether to average the loss over the batch

Returns
loss – Measure of mutual information between the encodings of the two graphs.

Return type
torch.Tensor
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References

Examples

>>> import numpy as np
>>> import deepchem.models.losses as losses
>>> from deepchem.feat.graph_data import BatchGraphData, GraphData
>>> from deepchem.models.torch_models.infograph import InfoGraphEncoder
>>> from deepchem.models.torch_models.layers import MultilayerPerceptron
>>> graph_list = []
>>> for i in range(3):
... node_features = np.random.rand(5, 10)
... edge_index = np.array([[0, 1, 2, 3, 4], [1, 2, 3, 4, 0]], dtype=np.int64)
... edge_features = np.random.rand(5, 5)
... graph_list.append(GraphData(node_features, edge_index, edge_features))
>>> batch = BatchGraphData(graph_list).numpy_to_torch()
>>> num_feat = 10
>>> edge_dim = 5
>>> dim = 4
>>> encoder = InfoGraphEncoder(num_feat, edge_dim, dim)
>>> encoding, feature_map = encoder(batch)
>>> g_enc = MultilayerPerceptron(2 * dim, dim)(encoding)
>>> g_enc2 = MultilayerPerceptron(2 * dim, dim)(encoding)
>>> globalloss = losses.GlobalMutualInformationLoss()
>>> loss = globalloss._create_pytorch_loss()(g_enc, g_enc2).detach().numpy()

class LocalMutualInformationLoss

Local-global encoding loss (comparing a subgraph to the full graph).

Compares the encodings of two molecular graphs and returns the loss between them based on the measure speci-
fied. The encodings are generated by two separate encoders in order to maximize the mutual information between
the two encodings.

Parameters
• local_enc (torch.Tensor) – Features from a graph convolutional encoder.

• global_enc (torch.Tensor) – Another set of features from a graph convolutional encoder.

• batch_graph_index (graph_index: np.ndarray or torch.tensor, dtype
int) – This vector indicates which graph the node belongs with shape [num_nodes,]. Only
present in BatchGraphData, not in GraphData objects.

• measure (str) – The divergence measure to use for the unsupervised loss. Options are
‘GAN’, ‘JSD’, ‘KL’, ‘RKL’, ‘X2’, ‘DV’, ‘H2’, or ‘W1’.

• average_loss (bool) – Whether to average the loss over the batch

Returns
loss – Measure of mutual information between the encodings of the two graphs.

Return type
torch.Tensor
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References

Example

>>> import numpy as np
>>> import deepchem.models.losses as losses
>>> from deepchem.feat.graph_data import BatchGraphData, GraphData
>>> from deepchem.models.torch_models.infograph import InfoGraphEncoder
>>> from deepchem.models.torch_models.layers import MultilayerPerceptron
>>> graph_list = []
>>> for i in range(3):
... node_features = np.random.rand(5, 10)
... edge_index = np.array([[0, 1, 2, 3, 4], [1, 2, 3, 4, 0]], dtype=np.int64)
... edge_features = np.random.rand(5, 5)
... graph_list.append(GraphData(node_features, edge_index, edge_features))

>>> batch = BatchGraphData(graph_list).numpy_to_torch()
>>> num_feat = 10
>>> edge_dim = 5
>>> dim = 4
>>> encoder = InfoGraphEncoder(num_feat, edge_dim, dim)
>>> encoding, feature_map = encoder(batch)
>>> g_enc = MultilayerPerceptron(2 * dim, dim)(encoding)
>>> l_enc = MultilayerPerceptron(dim, dim)(feature_map)
>>> localloss = losses.LocalMutualInformationLoss()
>>> loss = localloss._create_pytorch_loss()(l_enc, g_enc, batch.graph_index).
→˓detach().numpy()

class GroverPretrainLoss

The Grover Pretraining consists learning of atom embeddings and bond embeddings for a molecule. To this end,
the learning consists of three tasks:

1. Learning of atom vocabulary from atom embeddings and bond embeddings

2. Learning of bond vocabulary from atom embeddings and bond embeddings

3. Learning to predict functional groups from atom embedings readout and bond embeddings readout

The loss function accepts atom vocabulary labels, bond vocabulary labels and functional group predictions pro-
duced by Grover model during pretraining as a dictionary and applies negative log-likelihood loss for atom
vocabulary and bond vocabulary predictions and Binary Cross Entropy loss for functional group prediction and
sums these to get overall loss.

Example

>>> import torch
>>> from deepchem.models.losses import GroverPretrainLoss
>>> loss = GroverPretrainLoss()
>>> loss_fn = loss._create_pytorch_loss()
>>> batch_size = 3
>>> output_dim = 10
>>> fg_size = 8
>>> atom_vocab_task_target = torch.ones(batch_size).type(torch.int64)

(continues on next page)
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(continued from previous page)

>>> bond_vocab_task_target = torch.ones(batch_size).type(torch.int64)
>>> fg_task_target = torch.ones(batch_size, fg_size)
>>> atom_vocab_task_atom_pred = torch.zeros(batch_size, output_dim)
>>> bond_vocab_task_atom_pred = torch.zeros(batch_size, output_dim)
>>> atom_vocab_task_bond_pred = torch.zeros(batch_size, output_dim)
>>> bond_vocab_task_bond_pred = torch.zeros(batch_size, output_dim)
>>> fg_task_atom_from_atom = torch.zeros(batch_size, fg_size)
>>> fg_task_atom_from_bond = torch.zeros(batch_size, fg_size)
>>> fg_task_bond_from_atom = torch.zeros(batch_size, fg_size)
>>> fg_task_bond_from_bond = torch.zeros(batch_size, fg_size)
>>> result = loss_fn(atom_vocab_task_atom_pred, atom_vocab_task_bond_pred,
... bond_vocab_task_atom_pred, bond_vocab_task_bond_pred, fg_task_atom_from_
→˓atom,
... fg_task_atom_from_bond, fg_task_bond_from_atom, fg_task_bond_from_bond,
... atom_vocab_task_target, bond_vocab_task_target, fg_task_target)

Reference

class EdgePredictionLoss

EdgePredictionLoss is an unsupervised graph edge prediction loss function that calculates the loss based on the
similarity between node embeddings for positive and negative edge pairs. This loss function is designed for graph
neural networks and is particularly useful for pre-training tasks.

This loss function encourages the model to learn node embeddings that can effectively distinguish between true
edges (positive samples) and false edges (negative samples) in the graph.

The loss is computed by comparing the similarity scores (dot product) of node embeddings for positive and
negative edge pairs. The goal is to maximize the similarity for positive pairs and minimize it for negative pairs.

To use this loss function, the input must be a BatchGraphData object transformed by the negative_edge_sampler.
The loss function takes the node embeddings and the input graph data (with positive and negative edge pairs) as
inputs and returns the edge prediction loss.

Examples

>>> from deepchem.models.losses import EdgePredictionLoss
>>> from deepchem.feat.graph_data import BatchGraphData, GraphData
>>> from deepchem.models.torch_models.gnn import negative_edge_sampler
>>> import torch
>>> import numpy as np
>>> emb_dim = 8
>>> num_nodes_list, num_edge_list = [3, 4, 5], [2, 4, 5]
>>> num_node_features, num_edge_features = 32, 32
>>> edge_index_list = [
... np.array([[0, 1], [1, 2]]),
... np.array([[0, 1, 2, 3], [1, 2, 0, 2]]),
... np.array([[0, 1, 2, 3, 4], [1, 2, 3, 4, 0]]),
... ]
>>> graph_list = [
... GraphData(node_features=np.random.random_sample(
... (num_nodes_list[i], num_node_features)),

(continues on next page)
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... edge_index=edge_index_list[i],

... edge_features=np.random.random_sample(

... (num_edge_list[i], num_edge_features)),

... node_pos_features=None) for i in range(len(num_edge_list))

... ]
>>> batched_graph = BatchGraphData(graph_list)
>>> batched_graph = batched_graph.numpy_to_torch()
>>> neg_sampled = negative_edge_sampler(batched_graph)
>>> embedding = np.random.random((sum(num_nodes_list), emb_dim))
>>> embedding = torch.from_numpy(embedding)
>>> loss_func = EdgePredictionLoss()._create_pytorch_loss()
>>> loss = loss_func(embedding, neg_sampled)

References

class GraphNodeMaskingLoss

GraphNodeMaskingLoss is an unsupervised graph node masking loss function that calculates the loss based on
the predicted node labels and true node labels. This loss function is designed for graph neural networks and is
particularly useful for pre-training tasks.

This loss function encourages the model to learn node embeddings that can effectively predict the masked node
labels in the graph.

The loss is computed using the CrossEntropyLoss between the predicted node labels and the true node labels.

To use this loss function, the input must be a BatchGraphData object transformed by the mask_nodes function.
The loss function takes the predicted node labels, predicted edge labels, and the input graph data (with masked
node labels) as inputs and returns the node masking loss.

Parameters
• pred_node (torch.Tensor) – Predicted node labels

• pred_edge (Optional(torch.Tensor)) – Predicted edge labels

• inputs (BatchGraphData) – Input graph data with masked node and edge labels

Examples

>>> from deepchem.models.losses import GraphNodeMaskingLoss
>>> from deepchem.feat.graph_data import BatchGraphData, GraphData
>>> from deepchem.models.torch_models.gnn import mask_nodes
>>> import torch
>>> import numpy as np
>>> num_nodes_list, num_edge_list = [3, 4, 5], [2, 4, 5]
>>> num_node_features, num_edge_features = 32, 32
>>> edge_index_list = [
... np.array([[0, 1], [1, 2]]),
... np.array([[0, 1, 2, 3], [1, 2, 0, 2]]),
... np.array([[0, 1, 2, 3, 4], [1, 2, 3, 4, 0]]),
... ]
>>> graph_list = [
... GraphData(node_features=np.random.random_sample(

(continues on next page)
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... (num_nodes_list[i], num_node_features)),

... edge_index=edge_index_list[i],

... edge_features=np.random.random_sample(

... (num_edge_list[i], num_edge_features)),

... node_pos_features=None) for i in range(len(num_edge_list))

... ]
>>> batched_graph = BatchGraphData(graph_list)
>>> batched_graph = batched_graph.numpy_to_torch()
>>> masked_graph = mask_nodes(batched_graph, 0.1)
>>> pred_node = torch.randn((sum(num_nodes_list), num_node_features))
>>> pred_edge = torch.randn((sum(num_edge_list), num_edge_features))
>>> loss_func = GraphNodeMaskingLoss()._create_pytorch_loss()
>>> loss = loss_func(pred_node[masked_graph.masked_node_indices],
... pred_edge[masked_graph.connected_edge_indices], masked_graph)

References

class GraphEdgeMaskingLoss

GraphEdgeMaskingLoss is an unsupervised graph edge masking loss function that calculates the loss based on
the predicted edge labels and true edge labels. This loss function is designed for graph neural networks and is
particularly useful for pre-training tasks.

This loss function encourages the model to learn node embeddings that can effectively predict the masked edge
labels in the graph.

The loss is computed using the CrossEntropyLoss between the predicted edge labels and the true edge labels.

To use this loss function, the input must be a BatchGraphData object transformed by the mask_edges function.
The loss function takes the predicted edge labels and the true edge labels as inputs and returns the edge masking
loss.

Parameters
• pred_edge (torch.Tensor) – Predicted edge labels.

• inputs (BatchGraphData) – Input graph data (with masked edge labels).

Examples

>>> from deepchem.models.losses import GraphEdgeMaskingLoss
>>> from deepchem.feat.graph_data import BatchGraphData, GraphData
>>> from deepchem.models.torch_models.gnn import mask_edges
>>> import torch
>>> import numpy as np
>>> num_nodes_list, num_edge_list = [3, 4, 5], [2, 4, 5]
>>> num_node_features, num_edge_features = 32, 32
>>> edge_index_list = [
... np.array([[0, 1], [1, 2]]),
... np.array([[0, 1, 2, 3], [1, 2, 0, 2]]),
... np.array([[0, 1, 2, 3, 4], [1, 2, 3, 4, 0]]),
... ]
>>> graph_list = [
... GraphData(node_features=np.random.random_sample(

(continues on next page)
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... (num_nodes_list[i], num_node_features)),

... edge_index=edge_index_list[i],

... edge_features=np.random.random_sample(

... (num_edge_list[i], num_edge_features)),

... node_pos_features=None) for i in range(len(num_edge_list))

... ]
>>> batched_graph = BatchGraphData(graph_list)
>>> batched_graph = batched_graph.numpy_to_torch()
>>> masked_graph = mask_edges(batched_graph, .1)
>>> pred_edge = torch.randn((sum(num_edge_list), num_edge_features))
>>> loss_func = GraphEdgeMaskingLoss()._create_pytorch_loss()
>>> loss = loss_func(pred_edge[masked_graph.masked_edge_idx], masked_graph)

References

class DeepGraphInfomaxLoss

Loss that maximizes mutual information between local node representations and a pooled global graph repre-
sentation. This is to encourage nearby nodes to have similar embeddings.

Parameters
• positive_score (torch.Tensor) – Positive score. This score measures the similarity

between the local node embeddings (node_emb) and the global graph representation (posi-
tive_expanded_summary_emb) derived from the same graph. The goal is to maximize this
score, as it indicates that the local node embeddings and the global graph representation are
highly correlated, capturing the mutual information between them.

• negative_score (torch.Tensor) – Negative score. This score measures the similarity
between the local node embeddings (node_emb) and the global graph representation (neg-
ative_expanded_summary_emb) derived from a different graph (shifted by one position in
this case). The goal is to minimize this score, as it indicates that the local node embeddings
and the global graph representation from different graphs are not correlated, ensuring that
the model learns meaningful representations that are specific to each graph.

Examples

>>> import torch
>>> import numpy as np
>>> from deepchem.feat.graph_data import GraphData
>>> from torch_geometric.nn import global_mean_pool
>>> from deepchem.models.losses import DeepGraphInfomaxLoss
>>> x = np.array([[1, 0], [0, 1], [1, 1], [0, 0]])
>>> edge_index = np.array([[0, 1, 2, 0, 3], [1, 0, 1, 3, 2]])
>>> graph_index = np.array([0, 0, 1, 1])
>>> data = GraphData(node_features=x, edge_index=edge_index, graph_index=graph_
→˓index).numpy_to_torch()
>>> graph_infomax_loss = DeepGraphInfomaxLoss()._create_pytorch_loss()
>>> # Initialize node_emb randomly
>>> num_nodes = data.num_nodes
>>> embedding_dim = 8
>>> node_emb = torch.randn(num_nodes, embedding_dim)

(continues on next page)
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>>> # Compute the global graph representation
>>> summary_emb = global_mean_pool(node_emb, data.graph_index)
>>> # Compute positive and negative scores
>>> positive_score = torch.matmul(node_emb, summary_emb.t())
>>> negative_score = torch.matmul(node_emb, summary_emb.roll(1, dims=0).t())
>>> loss = graph_infomax_loss(positive_score, negative_score)

References

class GraphContextPredLoss

GraphContextPredLoss is a loss function designed for graph neural networks that aims to predict the context of
a node given its substructure. The context of a node is essentially the ring of nodes around it outside of an inner
k1-hop diameter and inside an outer k2-hop diameter.

This loss compares the representation of a node’s neighborhood with the representation of the node’s context. It
then uses negative sampling to compare the representation of the node’s neighborhood with the representation
of a random node’s context.

Parameters
• mode (str) – The mode of the model. It can be either “cbow” (continuous bag of words) or

“skipgram”.

• neg_samples (int) – The number of negative samples to use for negative sampling.

Examples

>>> import torch
>>> from deepchem.models.losses import GraphContextPredLoss
>>> substruct_rep = torch.randn(4, 8)
>>> overlapped_node_rep = torch.randn(8, 8)
>>> context_rep = torch.randn(4, 8)
>>> neg_context_rep = torch.randn(2 * 4, 8)
>>> overlapped_context_size = torch.tensor([2, 2, 2, 2])
>>> mode = "cbow"
>>> neg_samples = 2
>>> graph_context_pred_loss = GraphContextPredLoss()._create_pytorch_loss(mode, neg_
→˓samples)
>>> loss = graph_context_pred_loss(substruct_rep, overlapped_node_rep, context_rep,␣
→˓neg_context_rep, overlapped_context_size)

class DensityProfileLoss

Loss for the density profile entry type for Quantum Chemistry calculations. It is an integration of the squared
difference between ground truth and calculated values, at all spaces in the integration grid.
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Examples

>>> from deepchem.models.losses import DensityProfileLoss
>>> import torch
>>> volume = torch.Tensor([2.0])
>>> output = torch.Tensor([3.0])
>>> labels = torch.Tensor([4.0])
>>> loss = (DensityProfileLoss()._create_pytorch_loss(volume))(output, labels)
>>> # Generating volume tensor for an entry object:
>>> from deepchem.feat.dft_data import DFTEntry
>>> e_type = 'dens'
>>> true_val = 0
>>> systems =[{'moldesc': 'H 0.86625 0 0; F -0.86625 0 0','basis' : '6-311++G(3df,
→˓3pd)'}]
>>> dens_entry_for_HF = DFTEntry.create(e_type, true_val, systems)
>>> grid = (dens_entry_for_HF).get_integration_grid()

The 6-311++G(3df,3pd) basis for atomz 1 does not exist, but we will download it Down-
loaded to /usr/share/miniconda3/envs/deepchem/lib/python3.8/site-packages/dqc/api/.database/6-
311ppg_3df_3pd_/01.gaussian94 The 6-311++G(3df,3pd) basis for atomz 9 does not exist, but we will download
it Downloaded to /usr/share/miniconda3/envs/deepchem/lib/python3.8/site-packages/dqc/api/.database/6-
311ppg_3df_3pd_/09.gaussian94

>>> volume = grid.get_dvolume()

References

Kasim, Muhammad F., and Sam M. Vinko. “Learning the exchange-correlation functional from nature with fully
differentiable density functional theory.” Physical Review Letters 127.12 (2021): 126403. https://github.com/
deepchem/deepchem/blob/0bc3139bb99ae7700ba2325a6756e33b6c327842/deepchem/models/dft/dftxc.py

class NTXentMultiplePositives(norm: bool = True, tau: float = 0.5, uniformity_reg=0, variance_reg=0,
covariance_reg=0, conformer_variance_reg=0)

This is a modification of the NTXent loss function from Chen [1]_. This loss is designed for contrastive learn-
ing of molecular representations, comparing the similarity of a molecule’s latent representation to positive and
negative samples.

The modifications proposed in [2]_ enable multiple conformers to be used as positive samples.

This loss function is designed for graph neural networks and is particularly useful for unsupervised pre-training
tasks.

Parameters
• norm (bool, optional (default=True)) – Whether to normalize the similarity matrix.

• tau (float, optional (default=0.5)) – Temperature parameter for the similarity ma-
trix.

• uniformity_reg (float, optional (default=0)) – Regularization weight for the
uniformity loss.

• variance_reg (float, optional (default=0)) – Regularization weight for the vari-
ance loss.

• covariance_reg (float, optional (default=0)) – Regularization weight for the co-
variance loss.
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• conformer_variance_reg (float, optional (default=0)) – Regularization weight
for the conformer variance loss.

Examples

>>> import torch
>>> from deepchem.models.losses import NTXentMultiplePositives
>>> z1 = torch.randn(4, 8)
>>> z2 = torch.randn(4 * 3, 8)
>>> ntxent_loss = NTXentMultiplePositives(norm=True, tau=0.5)
>>> loss_fn = ntxent_loss._create_pytorch_loss()
>>> loss = loss_fn(z1, z2)

References

__init__(norm: bool = True, tau: float = 0.5, uniformity_reg=0, variance_reg=0, covariance_reg=0,
conformer_variance_reg=0)→ None

3.16.2 Optimizers

class Optimizer(learning_rate: float | LearningRateSchedule)
An algorithm for optimizing a model.

This is an abstract class. Subclasses represent specific optimization algorithms.

__init__(learning_rate: float | LearningRateSchedule)
This constructor should only be called by subclasses.

Parameters
learning_rate (float or LearningRateSchedule) – the learning rate to use for opti-
mization

class LearningRateSchedule

A schedule for changing the learning rate over the course of optimization.

This is an abstract class. Subclasses represent specific schedules.

class AdaGrad(learning_rate: float | LearningRateSchedule = 0.001, initial_accumulator_value: float = 0.1,
epsilon: float = 1e-07)

The AdaGrad optimization algorithm.

Adagrad is an optimizer with parameter-specific learning rates, which are adapted relative to how frequently a
parameter gets updated during training. The more updates a parameter receives, the smaller the updates. See
[1]_ for a full reference for the algorithm.
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References

__init__(learning_rate: float | LearningRateSchedule = 0.001, initial_accumulator_value: float = 0.1,
epsilon: float = 1e-07)

Construct an AdaGrad optimizer. :param learning_rate: the learning rate to use for optimization :type learn-
ing_rate: float or LearningRateSchedule :param initial_accumulator_value: a parameter of the AdaGrad
algorithm :type initial_accumulator_value: float :param epsilon: a parameter of the AdaGrad algorithm
:type epsilon: float

class Adam(learning_rate: float | LearningRateSchedule = 0.001, beta1: float = 0.9, beta2: float = 0.999, epsilon:
float = 1e-08, weight_decay: float = 0)

The Adam optimization algorithm.

__init__(learning_rate: float | LearningRateSchedule = 0.001, beta1: float = 0.9, beta2: float = 0.999,
epsilon: float = 1e-08, weight_decay: float = 0)

Construct an Adam optimizer.

Parameters
• learning_rate (float or LearningRateSchedule) – the learning rate to use for op-

timization

• beta1 (float) – a parameter of the Adam algorithm

• beta2 (float) – a parameter of the Adam algorithm

• epsilon (float) – a parameter of the Adam algorithm

• weight_decay (float) – L2 penalty - a parameter of the Adam algorithm

class AdamW(learning_rate: float | LearningRateSchedule = 0.001, weight_decay: float | LearningRateSchedule =
0.01, beta1: float = 0.9, beta2: float = 0.999, epsilon: float = 1e-08, amsgrad: bool = False)

The AdamW optimization algorithm. AdamW is a variant of Adam, with improved weight decay. In Adam,
weight decay is implemented as: weight_decay (float, optional) – weight decay (L2 penalty) (default: 0) In
AdamW, weight decay is implemented as: weight_decay (float, optional) – weight decay coefficient (default:
1e-2)

__init__(learning_rate: float | LearningRateSchedule = 0.001, weight_decay: float | LearningRateSchedule
= 0.01, beta1: float = 0.9, beta2: float = 0.999, epsilon: float = 1e-08, amsgrad: bool = False)

Construct an AdamW optimizer. :param learning_rate: the learning rate to use for optimization :type
learning_rate: float or LearningRateSchedule :param weight_decay: weight decay coefficient for AdamW
:type weight_decay: float or LearningRateSchedule :param beta1: a parameter of the Adam algorithm
:type beta1: float :param beta2: a parameter of the Adam algorithm :type beta2: float :param epsilon:
a parameter of the Adam algorithm :type epsilon: float :param amsgrad: If True, will use the AMSGrad
variant of AdamW (from “On the Convergence of Adam and Beyond”), else will use the original algorithm.
:type amsgrad: bool

class SparseAdam(learning_rate: float | LearningRateSchedule = 0.001, beta1: float = 0.9, beta2: float = 0.999,
epsilon: float = 1e-08)

The Sparse Adam optimization algorithm, also known as Lazy Adam. Sparse Adam is suitable for sparse tensors.
It handles sparse updates more efficiently. It only updates moving-average accumulators for sparse variable
indices that appear in the current batch, rather than updating the accumulators for all indices.

__init__(learning_rate: float | LearningRateSchedule = 0.001, beta1: float = 0.9, beta2: float = 0.999,
epsilon: float = 1e-08)

Construct an Adam optimizer.

Parameters
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• learning_rate (float or LearningRateSchedule) – the learning rate to use for op-
timization

• beta1 (float) – a parameter of the SparseAdam algorithm

• beta2 (float) – a parameter of the SparseAdam algorithm

• epsilon (float) – a parameter of the SparseAdam algorithm

class RMSProp(learning_rate: float | LearningRateSchedule = 0.001, momentum: float = 0.0, decay: float = 0.9,
epsilon: float = 1e-10)

RMSProp Optimization algorithm.

__init__(learning_rate: float | LearningRateSchedule = 0.001, momentum: float = 0.0, decay: float = 0.9,
epsilon: float = 1e-10)

Construct an RMSProp Optimizer.

Parameters
• learning_rate (float or LearningRateSchedule) – the learning_rate used for op-

timization

• momentum (float, default 0.0) – a parameter of the RMSProp algorithm

• decay (float, default 0.9) – a parameter of the RMSProp algorithm

• epsilon (float, default 1e-10) – a parameter of the RMSProp algorithm

class GradientDescent(learning_rate: float | LearningRateSchedule = 0.001)
The gradient descent optimization algorithm.

__init__(learning_rate: float | LearningRateSchedule = 0.001)
Construct a gradient descent optimizer.

Parameters
learning_rate (float or LearningRateSchedule) – the learning rate to use for opti-
mization

class ExponentialDecay(initial_rate: float, decay_rate: float, decay_steps: int, staircase: bool = True)
A learning rate that decreases exponentially with the number of training steps.

__init__(initial_rate: float, decay_rate: float, decay_steps: int, staircase: bool = True)
Create an exponentially decaying learning rate.

The learning rate starts as initial_rate. Every decay_steps training steps, it is multiplied by decay_rate.

Parameters
• initial_rate (float) – the initial learning rate

• decay_rate (float) – the base of the exponential

• decay_steps (int) – the number of training steps over which the rate decreases by de-
cay_rate

• staircase (bool) – if True, the learning rate decreases by discrete jumps every de-
cay_steps. if False, the learning rate decreases smoothly every step

class PolynomialDecay(initial_rate: float, final_rate: float, decay_steps: int, power: float = 1.0)
A learning rate that decreases from an initial value to a final value over a fixed number of training steps.
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__init__(initial_rate: float, final_rate: float, decay_steps: int, power: float = 1.0)
Create a smoothly decaying learning rate.

The learning rate starts as initial_rate. It smoothly decreases to final_rate over decay_steps training steps.
It decays as a function of (1-step/decay_steps)**power. Once the final rate is reached, it remains there for
the rest of optimization.

Parameters
• initial_rate (float) – the initial learning rate

• final_rate (float) – the final learning rate

• decay_steps (int) – the number of training steps over which the rate decreases from
initial_rate to final_rate

• power (float) – the exponent controlling the shape of the decay

class LinearCosineDecay(initial_rate: float, decay_steps: int, alpha: float = 0.0, beta: float = 0.001,
num_periods: float = 0.5)

Applies linear cosine decay to the learning rate

__init__(initial_rate: float, decay_steps: int, alpha: float = 0.0, beta: float = 0.001, num_periods: float =
0.5)

Parameters
• learning_rate (float) –

• rate (initial learning) –

• decay_steps (int) –

• over (number of steps to decay) –

• num_periods (number of periods in the cosine part of the decay) –

3.17 Keras Models

DeepChem extensively uses Keras to build deep learning models.

3.17.1 KerasModel

Training loss and validation metrics can be automatically logged to Weights & Biases with the following commands:

# Install wandb in shell
pip install wandb

# Login in shell (required only once)
wandb login
# Login in notebook (required only once)
import wandb
wandb.login()

# Initialize a WandbLogger
logger = WandbLogger(...)

(continues on next page)
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(continued from previous page)

# Set `wandb_logger` when creating `KerasModel`
import deepchem as dc
# Log training loss to wandb
model = dc.models.KerasModel(..., wandb_logger=logger)
model.fit(...)

# Log validation metrics to wandb using ValidationCallback
import deepchem as dc
vc = dc.models.ValidationCallback(...)
model = KerasModel(..., wandb_logger=logger)
model.fit(..., callbacks=[vc])
logger.finish()

class KerasModel(model: Model, loss: Loss | Callable[[List, List, List], Any], output_types: List[str] | None =
None, batch_size: int = 100, model_dir: str | None = None, learning_rate: float |
LearningRateSchedule = 0.001, optimizer: Optimizer | None = None, tensorboard: bool =
False, wandb: bool = False, log_frequency: int = 100, wandb_logger: WandbLogger | None =
None, **kwargs)

This is a DeepChem model implemented by a Keras model.

This class provides several advantages over using the Keras model’s fitting and prediction methods directly.

1. It provides better integration with the rest of DeepChem,
such as direct support for Datasets and Transformers.

2. It defines the loss in a more flexible way. In particular,
Keras does not support multidimensional weight matrices, which makes it impossible to implement
most multitask models with Keras.

3. It provides various additional features not found in the
Keras model class, such as uncertainty prediction and saliency mapping.

Here is a simple example of code that uses KerasModel to train a Keras model on a DeepChem dataset.

>> keras_model = tf.keras.Sequential([ >> tf.keras.layers.Dense(1000, activation=’tanh’), >>
tf.keras.layers.Dense(1) >> ]) >> model = KerasModel(keras_model, loss=dc.models.losses.L2Loss()) >>
model.fit(dataset)

The loss function for a model can be defined in two different ways. For models that have only a single output
and use a standard loss function, you can simply provide a dc.models.losses.Loss object. This defines the loss
for each sample or sample/task pair. The result is automatically multiplied by the weights and averaged over the
batch. Any additional losses computed by model layers, such as weight decay penalties, are also added.

For more complicated cases, you can instead provide a function that directly computes the total loss. It must be
of the form f(outputs, labels, weights), taking the list of outputs from the model, the expected values, and any
weight matrices. It should return a scalar equal to the value of the loss function for the batch. No additional
processing is done to the result; it is up to you to do any weighting, averaging, adding of penalty terms, etc.

You can optionally provide an output_types argument, which describes how to interpret the model’s outputs.
This should be a list of strings, one for each output. You can use an arbitrary output_type for a output, but some
output_types are special and will undergo extra processing:

• ‘prediction’: This is a normal output, and will be returned by predict().
If output types are not specified, all outputs are assumed to be of this type.

• ‘loss’: This output will be used in place of the normal
outputs for computing the loss function. For example, models that output probability distributions
usually do it by computing unbounded numbers (the logits), then passing them through a softmax
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function to turn them into probabilities. When computing the cross entropy, it is more numerically
stable to use the logits directly rather than the probabilities. You can do this by having the model
produce both probabilities and logits as outputs, then specifying output_types=[‘prediction’, ‘loss’].
When predict() is called, only the first output (the probabilities) will be returned. But during training,
it is the second output (the logits) that will be passed to the loss function.

• ‘variance’: This output is used for estimating the
uncertainty in another output. To create a model that can estimate uncertainty, there must be the same
number of ‘prediction’ and ‘variance’ outputs. Each variance output must have the same shape as the
corresponding prediction output, and each element is an estimate of the variance in the corresponding
prediction. Also be aware that if a model supports uncertainty, it MUST use dropout on every layer,
and dropout most be enabled during uncertainty prediction. Otherwise, the uncertainties it computes
will be inaccurate.

• other: Arbitrary output_types can be used to extract outputs
produced by the model, but will have no additional processing performed.

__init__(model: Model, loss: Loss | Callable[[List, List, List], Any], output_types: List[str] | None = None,
batch_size: int = 100, model_dir: str | None = None, learning_rate: float | LearningRateSchedule
= 0.001, optimizer: Optimizer | None = None, tensorboard: bool = False, wandb: bool = False,
log_frequency: int = 100, wandb_logger: WandbLogger | None = None, **kwargs)→ None

Create a new KerasModel.

Parameters
• model (tf.keras.Model) – the Keras model implementing the calculation

• loss (dc.models.losses.Loss or function) – a Loss or function defining how to
compute the training loss for each batch, as described above

• output_types (list of strings) – the type of each output from the model, as de-
scribed above

• batch_size (int) – default batch size for training and evaluating

• model_dir (str) – the directory on disk where the model will be stored. If this is None,
a temporary directory is created.

• learning_rate (float or LearningRateSchedule) – the learning rate to use for fit-
ting. If optimizer is specified, this is ignored.

• optimizer (Optimizer) – the optimizer to use for fitting. If this is specified, learning_rate
is ignored.

• tensorboard (bool) – whether to log progress to TensorBoard during training

• wandb (bool) – whether to log progress to Weights & Biases during training (deprecated)

• log_frequency (int) – The frequency at which to log data. Data is logged using logging
by default. If tensorboard is set, data is also logged to TensorBoard. If wandb is set, data is
also logged to Weights & Biases. Logging happens at global steps. Roughly, a global step
corresponds to one batch of training. If you’d like a printout every 10 batch steps, you’d
set log_frequency=10 for example.

• wandb_logger (WandbLogger) – the Weights & Biases logger object used to log data and
metrics

fit(dataset: Dataset, nb_epoch: int = 10, max_checkpoints_to_keep: int = 5, checkpoint_interval: int =
1000, deterministic: bool = False, restore: bool = False, variables: List[Variable] | None = None, loss:
Callable[[List, List, List], Any] | None = None, callbacks: Callable | List[Callable] = [], all_losses:
List[float] | None = None)→ float
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Train this model on a dataset.

Parameters
• dataset (Dataset) – the Dataset to train on

• nb_epoch (int) – the number of epochs to train for

• max_checkpoints_to_keep (int) – the maximum number of checkpoints to keep. Older
checkpoints are discarded.

• checkpoint_interval (int) – the frequency at which to write checkpoints, measured
in training steps. Set this to 0 to disable automatic checkpointing.

• deterministic (bool) – if True, the samples are processed in order. If False, a different
random order is used for each epoch.

• restore (bool) – if True, restore the model from the most recent checkpoint and continue
training from there. If False, retrain the model from scratch.

• variables (list of tf.Variable) – the variables to train. If None (the default), all
trainable variables in the model are used.

• loss (function) – a function of the form f(outputs, labels, weights) that computes the
loss for each batch. If None (the default), the model’s standard loss function is used.

• callbacks (function or list of functions) – one or more functions of the form
f(model, step) that will be invoked after every step. This can be used to perform validation,
logging, etc.

• all_losses (Optional[List[float]], optional (default None)) – If speci-
fied, all logged losses are appended into this list. Note that you can call fit() repeatedly
with the same list and losses will continue to be appended.

Returns
The average loss over the most recent checkpoint interval

Return type
float

fit_generator(generator: Iterable[Tuple[Any, Any, Any]], max_checkpoints_to_keep: int = 5,
checkpoint_interval: int = 1000, restore: bool = False, variables: List[Variable] | None =
None, loss: Callable[[List, List, List], Any] | None = None, callbacks: Callable |
List[Callable] = [], all_losses: List[float] | None = None)→ float

Train this model on data from a generator.

Parameters
• generator (generator) – this should generate batches, each represented as a tuple of the

form (inputs, labels, weights).

• max_checkpoints_to_keep (int) – the maximum number of checkpoints to keep. Older
checkpoints are discarded.

• checkpoint_interval (int) – the frequency at which to write checkpoints, measured
in training steps. Set this to 0 to disable automatic checkpointing.

• restore (bool) – if True, restore the model from the most recent checkpoint and continue
training from there. If False, retrain the model from scratch.

• variables (list of tf.Variable) – the variables to train. If None (the default), all
trainable variables in the model are used.
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• loss (function) – a function of the form f(outputs, labels, weights) that computes the
loss for each batch. If None (the default), the model’s standard loss function is used.

• callbacks (function or list of functions) – one or more functions of the form
f(model, step) that will be invoked after every step. This can be used to perform validation,
logging, etc.

• all_losses (Optional[List[float]], optional (default None)) – If speci-
fied, all logged losses are appended into this list. Note that you can call fit() repeatedly
with the same list and losses will continue to be appended.

Returns
The average loss over the most recent checkpoint interval

Return type
float

fit_on_batch(X: Sequence, y: Sequence, w: Sequence, variables: List[Variable] | None = None, loss:
Callable[[List, List, List], Any] | None = None, callbacks: Callable | List[Callable] = [],
checkpoint: bool = True, max_checkpoints_to_keep: int = 5)→ float

Perform a single step of training.

Parameters
• X (ndarray) – the inputs for the batch

• y (ndarray) – the labels for the batch

• w (ndarray) – the weights for the batch

• variables (list of tf.Variable) – the variables to train. If None (the default), all
trainable variables in the model are used.

• loss (function) – a function of the form f(outputs, labels, weights) that computes the
loss for each batch. If None (the default), the model’s standard loss function is used.

• callbacks (function or list of functions) – one or more functions of the form
f(model, step) that will be invoked after every step. This can be used to perform validation,
logging, etc.

• checkpoint (bool) – if true, save a checkpoint after performing the training step

• max_checkpoints_to_keep (int) – the maximum number of checkpoints to keep. Older
checkpoints are discarded.

Returns
the loss on the batch

Return type
float

predict_on_generator(generator: Iterable[Tuple[Any, Any, Any]], transformers: List[Transformer] = [],
outputs: Tensor | Sequence[Tensor] | None = None, output_types: str |
Sequence[str] | None = None)→ ndarray | Sequence[ndarray]

Parameters
• generator (generator) – this should generate batches, each represented as a tuple of the

form (inputs, labels, weights).

• transformers (list of dc.trans.Transformers) – Transformers that the input data
has been transformed by. The output is passed through these transformers to undo the
transformations.
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• outputs (Tensor or list of Tensors) – The outputs to return. If this is None, the
model’s standard prediction outputs will be returned. Alternatively one or more Tensors
within the model may be specified, in which case the output of those Tensors will be re-
turned. If outputs is specified, output_types must be None.

• output_types (String or list of Strings) – If specified, all outputs of this type
will be retrieved from the model. If output_types is specified, outputs must be None.

Returns
a NumPy array of the model produces a single output, or a list of arrays if it produces multiple
outputs

Return type
OneOrMany[np.ndarray]

predict_on_batch(X: _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool
| int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str |
bytes], transformers: List[Transformer] = [], outputs: Tensor | Sequence[Tensor] | None
= None)→ ndarray | Sequence[ndarray]

Generates predictions for input samples, processing samples in a batch.

Parameters
• X (ndarray) – the input data, as a Numpy array.

• transformers (list of dc.trans.Transformers) – Transformers that the input data
has been transformed by. The output is passed through these transformers to undo the
transformations.

• outputs (Tensor or list of Tensors) – The outputs to return. If this is None, the
model’s standard prediction outputs will be returned. Alternatively one or more Tensors
within the model may be specified, in which case the output of those Tensors will be re-
turned.

Returns
a NumPy array of the model produces a single output, or a list of arrays if it produces multiple
outputs

Return type
OneOrMany[np.ndarray]

predict_uncertainty_on_batch(X: Sequence, masks: int = 50)→ Tuple[ndarray, ndarray] |
Sequence[Tuple[ndarray, ndarray]]

Predict the model’s outputs, along with the uncertainty in each one.

The uncertainty is computed as described in https://arxiv.org/abs/1703.04977. It involves repeating the
prediction many times with different dropout masks. The prediction is computed as the average over all the
predictions. The uncertainty includes both the variation among the predicted values (epistemic uncertainty)
and the model’s own estimates for how well it fits the data (aleatoric uncertainty). Not all models support
uncertainty prediction.

Parameters
• X (ndarray) – the input data, as a Numpy array.

• masks (int) – the number of dropout masks to average over

Returns
• OneOrMany[Tuple[y_pred, y_std]]

• y_pred (np.ndarray) – predicted value of the output
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• y_std (np.ndarray) – standard deviation of the corresponding element of y_pred

predict(dataset: Dataset, transformers: List[Transformer] = [], outputs: Tensor | Sequence[Tensor] | None
= None, output_types: List[str] | None = None)→ ndarray | Sequence[ndarray]

Uses self to make predictions on provided Dataset object.

Parameters
• dataset (dc.data.Dataset) – Dataset to make prediction on

• transformers (list of dc.trans.Transformers) – Transformers that the input data
has been transformed by. The output is passed through these transformers to undo the
transformations.

• outputs (Tensor or list of Tensors) – The outputs to return. If this is None, the
model’s standard prediction outputs will be returned. Alternatively one or more Tensors
within the model may be specified, in which case the output of those Tensors will be re-
turned.

• output_types (String or list of Strings) – If specified, all outputs of this type
will be retrieved from the model. If output_types is specified, outputs must be None.

Returns
• a NumPy array of the model produces a single output, or a list of arrays

• if it produces multiple outputs

predict_embedding(dataset: Dataset)→ ndarray | Sequence[ndarray]
Predicts embeddings created by underlying model if any exist. An embedding must be specified to have
output_type of ‘embedding’ in the model definition.

Parameters
dataset (dc.data.Dataset) – Dataset to make prediction on

Returns
• a NumPy array of the embeddings model produces, or a list

• of arrays if it produces multiple embeddings

predict_uncertainty(dataset: Dataset, masks: int = 50)→ Tuple[ndarray, ndarray] |
Sequence[Tuple[ndarray, ndarray]]

Predict the model’s outputs, along with the uncertainty in each one.

The uncertainty is computed as described in https://arxiv.org/abs/1703.04977. It involves repeating the
prediction many times with different dropout masks. The prediction is computed as the average over all the
predictions. The uncertainty includes both the variation among the predicted values (epistemic uncertainty)
and the model’s own estimates for how well it fits the data (aleatoric uncertainty). Not all models support
uncertainty prediction.

Parameters
• dataset (dc.data.Dataset) – Dataset to make prediction on

• masks (int) – the number of dropout masks to average over

Returns
• for each output, a tuple (y_pred, y_std) where y_pred is the predicted

• value of the output, and each element of y_std estimates the standard

• deviation of the corresponding element of y_pred

308 Chapter 3. About Us

https://arxiv.org/abs/1703.04977


deepchem, Release 2.8.0

evaluate_generator(generator: Iterable[Tuple[Any, Any, Any]], metrics: List[Metric], transformers:
List[Transformer] = [], per_task_metrics: bool = False)

Evaluate the performance of this model on the data produced by a generator.

Parameters
• generator (generator) – this should generate batches, each represented as a tuple of the

form (inputs, labels, weights).

• metric (list of deepchem.metrics.Metric) – Evaluation metric

• transformers (list of dc.trans.Transformers) – Transformers that the input data
has been transformed by. The output is passed through these transformers to undo the
transformations.

• per_task_metrics (bool) – If True, return per-task scores.

Returns
Maps tasks to scores under metric.

Return type
dict

compute_saliency(X: ndarray)→ ndarray | Sequence[ndarray]
Compute the saliency map for an input sample.

This computes the Jacobian matrix with the derivative of each output element with respect to each input
element. More precisely,

• If this model has a single output, it returns a matrix of shape
(output_shape, input_shape) with the derivatives.

• If this model has multiple outputs, it returns a list of matrices, one
for each output.

This method cannot be used on models that take multiple inputs.

Parameters
X (ndarray) – the input data for a single sample

Return type
the Jacobian matrix, or a list of matrices

default_generator(dataset: Dataset, epochs: int = 1, mode: str = 'fit', deterministic: bool = True,
pad_batches: bool = True)→ Iterable[Tuple[List, List, List]]

Create a generator that iterates batches for a dataset.

Subclasses may override this method to customize how model inputs are generated from the data.

Parameters
• dataset (Dataset) – the data to iterate

• epochs (int) – the number of times to iterate over the full dataset

• mode (str) – allowed values are ‘fit’ (called during training), ‘predict’ (called during pre-
diction), and ‘uncertainty’ (called during uncertainty prediction)

• deterministic (bool) – whether to iterate over the dataset in order, or randomly shuffle
the data for each epoch

• pad_batches (bool) – whether to pad each batch up to this model’s preferred batch size

Returns
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• a generator that iterates batches, each represented as a tuple of lists

• ([inputs], [outputs], [weights])

save_checkpoint(max_checkpoints_to_keep: int = 5, model_dir: str | None = None)→ None
Save a checkpoint to disk.

Usually you do not need to call this method, since fit() saves checkpoints automatically. If you have disabled
automatic checkpointing during fitting, this can be called to manually write checkpoints.

Parameters
• max_checkpoints_to_keep (int) – the maximum number of checkpoints to keep. Older

checkpoints are discarded.

• model_dir (str, default None) – Model directory to save checkpoint to. If None,
revert to self.model_dir

get_checkpoints(model_dir: str | None = None)
Get a list of all available checkpoint files.

Parameters
model_dir (str, default None) – Directory to get list of checkpoints from. Reverts to
self.model_dir if None

restore(checkpoint: str | None = None, model_dir: str | None = None)→ None
Reload the values of all variables from a checkpoint file.

Parameters
• checkpoint (str) – the path to the checkpoint file to load. If this is None, the most recent

checkpoint will be chosen automatically. Call get_checkpoints() to get a list of all available
checkpoints.

• model_dir (str, default None) – Directory to restore checkpoint from. If None, use
self.model_dir.

get_global_step()→ int
Get the number of steps of fitting that have been performed.

load_from_pretrained(source_model: KerasModel, assignment_map: Dict[Any, Any] | None = None,
value_map: Dict[Any, Any] | None = None, checkpoint: str | None = None,
model_dir: str | None = None, include_top: bool = True, inputs: Sequence[Any] |
None = None, **kwargs)→ None

Copies variable values from a pretrained model. source_model can either be a pretrained model or a model
with the same architecture. value_map is a variable-value dictionary. If no value_map is provided, the
variable values are restored to the source_model from a checkpoint and a default value_map is created.
assignment_map is a dictionary mapping variables from the source_model to the current model. If no
assignment_map is provided, one is made from scratch and assumes the model is composed of several
different layers, with the final one being a dense layer. include_top is used to control whether or not the
final dense layer is used. The default assignment map is useful in cases where the type of task is different
(classification vs regression) and/or number of tasks in the setting.

Parameters
• source_model (dc.KerasModel, required) – source_model can either be the pre-

trained model or a dc.KerasModel with the same architecture as the pretrained model. It is
used to restore from a checkpoint, if value_map is None and to create a default assignment
map if assignment_map is None
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• assignment_map (Dict, default None) – Dictionary mapping the source_model vari-
ables and current model variables

• value_map (Dict, default None) – Dictionary containing source_model trainable
variables mapped to numpy arrays. If value_map is None, the values are restored and a
default variable map is created using the restored values

• checkpoint (str, default None) – the path to the checkpoint file to load. If this is
None, the most recent checkpoint will be chosen automatically. Call get_checkpoints() to
get a list of all available checkpoints

• model_dir (str, default None) – Restore model from custom model directory if
needed

• include_top (bool, default True) – if True, copies the weights and bias associated
with the final dense layer. Used only when assignment map is None

• inputs (List, input tensors for model) – if not None, then the weights are built
for both the source and self. This option is useful only for models that are built by sub-
classing tf.keras.Model, and not using the functional API by tf.keras

3.17.2 TensorflowMultitaskIRVClassifier

class TensorflowMultitaskIRVClassifier(*args, **kwargs)

__init__(*args, **kwargs)
Initialize MultitaskIRVClassifier

Parameters
• n_tasks (int) – Number of tasks

• K (int) – Number of nearest neighbours used in classification

• penalty (float) – Amount of penalty (l2 or l1 applied)

3.17.3 RobustMultitaskClassifier

class RobustMultitaskClassifier(n_tasks, n_features, layer_sizes=[1000], weight_init_stddevs=0.02,
bias_init_consts=1.0, weight_decay_penalty=0.0,
weight_decay_penalty_type='l2', dropouts=0.5, activation_fns=<function
relu>, n_classes=2, bypass_layer_sizes=[100],
bypass_weight_init_stddevs=[0.02], bypass_bias_init_consts=[1.0],
bypass_dropouts=[0.5], **kwargs)

Implements a neural network for robust multitasking.

The key idea of this model is to have bypass layers that feed directly from features to task output. This might
provide some flexibility toroute around challenges in multitasking with destructive interference.
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References

This technique was introduced in [1]_
__init__(n_tasks, n_features, layer_sizes=[1000], weight_init_stddevs=0.02, bias_init_consts=1.0,

weight_decay_penalty=0.0, weight_decay_penalty_type='l2', dropouts=0.5,
activation_fns=<function relu>, n_classes=2, bypass_layer_sizes=[100],
bypass_weight_init_stddevs=[0.02], bypass_bias_init_consts=[1.0], bypass_dropouts=[0.5],
**kwargs)

Create a RobustMultitaskClassifier.

Parameters
• n_tasks (int) – number of tasks

• n_features (int) – number of features

• layer_sizes (list) – the size of each dense layer in the network. The length of this list
determines the number of layers.

• weight_init_stddevs (list or float) – the standard deviation of the distribu-
tion to use for weight initialization of each layer. The length of this list should equal
len(layer_sizes). Alternatively this may be a single value instead of a list, in which case the
same value is used for every layer.

• bias_init_consts (list or loat) – the value to initialize the biases in each layer to.
The length of this list should equal len(layer_sizes). Alternatively this may be a single
value instead of a list, in which case the same value is used for every layer.

• weight_decay_penalty (float) – the magnitude of the weight decay penalty to use

• weight_decay_penalty_type (str) – the type of penalty to use for weight decay, either
‘l1’ or ‘l2’

• dropouts (list or float) – the dropout probablity to use for each layer. The length of
this list should equal len(layer_sizes). Alternatively this may be a single value instead of a
list, in which case the same value is used for every layer.

• activation_fns (list or object) – the Tensorflow activation function to apply to
each layer. The length of this list should equal len(layer_sizes). Alternatively this may be
a single value instead of a list, in which case the same value is used for every layer.

• n_classes (int) – the number of classes

• bypass_layer_sizes (list) – the size of each dense layer in the bypass network. The
length of this list determines the number of bypass layers.

• bypass_weight_init_stddevs (list or float) – the standard deviation of the
distribution to use for weight initialization of bypass layers. same requirements as
weight_init_stddevs

• bypass_bias_init_consts (list or float) – the value to initialize the biases in by-
pass layers same requirements as bias_init_consts

• bypass_dropouts (list or float) – the dropout probablity to use for bypass layers.
same requirements as dropouts

default_generator(dataset, epochs=1, mode='fit', deterministic=True, pad_batches=True)
Create a generator that iterates batches for a dataset.

Subclasses may override this method to customize how model inputs are generated from the data.

Parameters
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• dataset (Dataset) – the data to iterate

• epochs (int) – the number of times to iterate over the full dataset

• mode (str) – allowed values are ‘fit’ (called during training), ‘predict’ (called during pre-
diction), and ‘uncertainty’ (called during uncertainty prediction)

• deterministic (bool) – whether to iterate over the dataset in order, or randomly shuffle
the data for each epoch

• pad_batches (bool) – whether to pad each batch up to this model’s preferred batch size

Returns
• a generator that iterates batches, each represented as a tuple of lists

• ([inputs], [outputs], [weights])

3.17.4 RobustMultitaskRegressor

class RobustMultitaskRegressor(n_tasks, n_features, layer_sizes=[1000], weight_init_stddevs=0.02,
bias_init_consts=1.0, weight_decay_penalty=0.0,
weight_decay_penalty_type='l2', dropouts=0.5, activation_fns=<function
relu>, bypass_layer_sizes=[100], bypass_weight_init_stddevs=[0.02],
bypass_bias_init_consts=[1.0], bypass_dropouts=[0.5], **kwargs)

Implements a neural network for robust multitasking.

The key idea of this model is to have bypass layers that feed directly from features to task output. This might
provide some flexibility to route around challenges in multitasking with destructive interference.

References

__init__(n_tasks, n_features, layer_sizes=[1000], weight_init_stddevs=0.02, bias_init_consts=1.0,
weight_decay_penalty=0.0, weight_decay_penalty_type='l2', dropouts=0.5,
activation_fns=<function relu>, bypass_layer_sizes=[100], bypass_weight_init_stddevs=[0.02],
bypass_bias_init_consts=[1.0], bypass_dropouts=[0.5], **kwargs)

Create a RobustMultitaskRegressor.

Parameters
• n_tasks (int) – number of tasks

• n_features (int) – number of features

• layer_sizes (list) – the size of each dense layer in the network. The length of this list
determines the number of layers.

• weight_init_stddevs (list or float) – the standard deviation of the distribu-
tion to use for weight initialization of each layer. The length of this list should equal
len(layer_sizes). Alternatively this may be a single value instead of a list, in which case the
same value is used for every layer.

• bias_init_consts (list or loat) – the value to initialize the biases in each layer to.
The length of this list should equal len(layer_sizes). Alternatively this may be a single
value instead of a list, in which case the same value is used for every layer.

• weight_decay_penalty (float) – the magnitude of the weight decay penalty to use

• weight_decay_penalty_type (str) – the type of penalty to use for weight decay, either
‘l1’ or ‘l2’
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• dropouts (list or float) – the dropout probablity to use for each layer. The length of
this list should equal len(layer_sizes). Alternatively this may be a single value instead of a
list, in which case the same value is used for every layer.

• activation_fns (list or object) – the Tensorflow activation function to apply to
each layer. The length of this list should equal len(layer_sizes). Alternatively this may be
a single value instead of a list, in which case the same value is used for every layer.

• bypass_layer_sizes (list) – the size of each dense layer in the bypass network. The
length of this list determines the number of bypass layers.

• bypass_weight_init_stddevs (list or float) – the standard deviation of the
distribution to use for weight initialization of bypass layers. same requirements as
weight_init_stddevs

• bypass_bias_init_consts (list or float) – the value to initialize the biases in by-
pass layers same requirements as bias_init_consts

• bypass_dropouts (list or float) – the dropout probablity to use for bypass layers.
same requirements as dropouts

default_generator(dataset: Dataset, epochs: int = 1, mode: str = 'fit', deterministic: bool = True,
pad_batches: bool = True)→ Iterable[Tuple[List, List, List]]

Create a generator that iterates batches for a dataset.

Subclasses may override this method to customize how model inputs are generated from the data.

Parameters
• dataset (Dataset) – the data to iterate

• epochs (int) – the number of times to iterate over the full dataset

• mode (str) – allowed values are ‘fit’ (called during training), ‘predict’ (called during pre-
diction), and ‘uncertainty’ (called during uncertainty prediction)

• deterministic (bool) – whether to iterate over the dataset in order, or randomly shuffle
the data for each epoch

• pad_batches (bool) – whether to pad each batch up to this model’s preferred batch size

Returns
• a generator that iterates batches, each represented as a tuple of lists

• ([inputs], [outputs], [weights])

3.17.5 ProgressiveMultitaskClassifier

class ProgressiveMultitaskClassifier(n_tasks, n_features, alpha_init_stddevs=0.02, layer_sizes=[1000],
weight_init_stddevs=0.02, bias_init_consts=1.0,
weight_decay_penalty=0.0, weight_decay_penalty_type='l2',
dropouts=0.5, activation_fns=<function relu>, **kwargs)

Implements a progressive multitask neural network for classification.

Progressive Networks: https://arxiv.org/pdf/1606.04671v3.pdf

Progressive networks allow for multitask learning where each task gets a new column of weights. As a result,
there is no exponential forgetting where previous tasks are ignored.
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__init__(n_tasks, n_features, alpha_init_stddevs=0.02, layer_sizes=[1000], weight_init_stddevs=0.02,
bias_init_consts=1.0, weight_decay_penalty=0.0, weight_decay_penalty_type='l2', dropouts=0.5,
activation_fns=<function relu>, **kwargs)

Creates a progressive network.

Only listing parameters specific to progressive networks here.

Parameters
• n_tasks (int) – Number of tasks

• n_features (int) – Number of input features

• alpha_init_stddevs (list) – List of standard-deviations for alpha in adapter layers.

• layer_sizes (list) – the size of each dense layer in the network. The length of this list
determines the number of layers.

• weight_init_stddevs (list or float) – the standard deviation of the distribu-
tion to use for weight initialization of each layer. The length of this list should equal
len(layer_sizes)+1. The final element corresponds to the output layer. Alternatively this
may be a single value instead of a list, in which case the same value is used for every layer.

• bias_init_consts (list or float) – the value to initialize the biases in each layer
to. The length of this list should equal len(layer_sizes)+1. The final element corresponds
to the output layer. Alternatively this may be a single value instead of a list, in which case
the same value is used for every layer.

• weight_decay_penalty (float) – the magnitude of the weight decay penalty to use

• weight_decay_penalty_type (str) – the type of penalty to use for weight decay, either
‘l1’ or ‘l2’

• dropouts (list or float) – the dropout probablity to use for each layer. The length of
this list should equal len(layer_sizes). Alternatively this may be a single value instead of a
list, in which case the same value is used for every layer.

• activation_fns (list or object) – the Tensorflow activation function to apply to
each layer. The length of this list should equal len(layer_sizes). Alternatively this may be
a single value instead of a list, in which case the same value is used for every layer.

3.17.6 ProgressiveMultitaskRegressor

class ProgressiveMultitaskRegressor(n_tasks, n_features, alpha_init_stddevs=0.02, layer_sizes=[1000],
weight_init_stddevs=0.02, bias_init_consts=1.0,
weight_decay_penalty=0.0, weight_decay_penalty_type='l2',
dropouts=0.5, activation_fns=<function relu>, n_outputs=1,
**kwargs)

Implements a progressive multitask neural network for regression.

Progressive networks allow for multitask learning where each task gets a new column of weights. As a result,
there is no exponential forgetting where previous tasks are ignored.
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References

See [1]_ for a full description of the progressive architecture

__init__(n_tasks, n_features, alpha_init_stddevs=0.02, layer_sizes=[1000], weight_init_stddevs=0.02,
bias_init_consts=1.0, weight_decay_penalty=0.0, weight_decay_penalty_type='l2', dropouts=0.5,
activation_fns=<function relu>, n_outputs=1, **kwargs)

Creates a progressive network.

Only listing parameters specific to progressive networks here.

Parameters
• n_tasks (int) – Number of tasks

• n_features (int) – Number of input features

• alpha_init_stddevs (list) – List of standard-deviations for alpha in adapter layers.

• layer_sizes (list) – the size of each dense layer in the network. The length of this list
determines the number of layers.

• weight_init_stddevs (list or float) – the standard deviation of the distribu-
tion to use for weight initialization of each layer. The length of this list should equal
len(layer_sizes)+1. The final element corresponds to the output layer. Alternatively this
may be a single value instead of a list, in which case the same value is used for every layer.

• bias_init_consts (list or float) – the value to initialize the biases in each layer
to. The length of this list should equal len(layer_sizes)+1. The final element corresponds
to the output layer. Alternatively this may be a single value instead of a list, in which case
the same value is used for every layer.

• weight_decay_penalty (float) – the magnitude of the weight decay penalty to use

• weight_decay_penalty_type (str) – the type of penalty to use for weight decay, either
‘l1’ or ‘l2’

• dropouts (list or float) – the dropout probablity to use for each layer. The length of
this list should equal len(layer_sizes). Alternatively this may be a single value instead of a
list, in which case the same value is used for every layer.

• activation_fns (list or object) – the Tensorflow activation function to apply to
each layer. The length of this list should equal len(layer_sizes). Alternatively this may be
a single value instead of a list, in which case the same value is used for every layer.

add_adapter(all_layers, task, layer_num)

Add an adapter connection for given task/layer combo

fit(dataset, nb_epoch=10, max_checkpoints_to_keep=5, checkpoint_interval=1000, deterministic=False,
restore=False, **kwargs)
Train this model on a dataset.

Parameters
• dataset (Dataset) – the Dataset to train on

• nb_epoch (int) – the number of epochs to train for

• max_checkpoints_to_keep (int) – the maximum number of checkpoints to keep. Older
checkpoints are discarded.

• checkpoint_interval (int) – the frequency at which to write checkpoints, measured
in training steps. Set this to 0 to disable automatic checkpointing.
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• deterministic (bool) – if True, the samples are processed in order. If False, a different
random order is used for each epoch.

• restore (bool) – if True, restore the model from the most recent checkpoint and continue
training from there. If False, retrain the model from scratch.

• variables (list of tf.Variable) – the variables to train. If None (the default), all
trainable variables in the model are used.

• loss (function) – a function of the form f(outputs, labels, weights) that computes the
loss for each batch. If None (the default), the model’s standard loss function is used.

• callbacks (function or list of functions) – one or more functions of the form
f(model, step) that will be invoked after every step. This can be used to perform validation,
logging, etc.

• all_losses (Optional[List[float]], optional (default None)) – If speci-
fied, all logged losses are appended into this list. Note that you can call fit() repeatedly
with the same list and losses will continue to be appended.

Returns
The average loss over the most recent checkpoint interval

Return type
float

fit_task(dataset, task, nb_epoch=10, max_checkpoints_to_keep=5, checkpoint_interval=1000,
deterministic=False, restore=False, **kwargs)

Fit one task.

3.17.7 WeaveModel

class WeaveModel(n_tasks: int, n_atom_feat: int | ~typing.Sequence[int] = 75, n_pair_feat: int |
~typing.Sequence[int] = 14, n_hidden: int = 50, n_graph_feat: int = 128, n_weave: int = 2,
fully_connected_layer_sizes: ~typing.List[int] = [2000, 100], conv_weight_init_stddevs: float
| ~typing.Sequence[float] = 0.03, weight_init_stddevs: float | ~typing.Sequence[float] = 0.01,
bias_init_consts: float | ~typing.Sequence[float] = 0.0, weight_decay_penalty: float = 0.0,
weight_decay_penalty_type: str = 'l2', dropouts: float | ~typing.Sequence[float] = 0.25,
final_conv_activation_fn: ~typing.Callable | str | None = <function tanh>, activation_fns:
~typing.Callable | str | ~typing.Sequence[~typing.Callable | str] = <function relu>,
batch_normalize: bool = True, batch_normalize_kwargs: ~typing.Dict = {'fused': False,
'renorm': True}, gaussian_expand: bool = True, compress_post_gaussian_expansion: bool =
False, mode: str = 'classification', n_classes: int = 2, batch_size: int = 100, **kwargs)

Implements Google-style Weave Graph Convolutions

This model implements the Weave style graph convolutions from [1]_.

The biggest difference between WeaveModel style convolutions and GraphConvModel style convolutions is that
Weave convolutions model bond features explicitly. This has the side effect that it needs to construct a NxN
matrix explicitly to model bond interactions. This may cause scaling issues, but may possibly allow for better
modeling of subtle bond effects.

Note that [1]_ introduces a whole variety of different architectures for Weave models. The default settings in this
class correspond to the W2N2 variant from [1]_ which is the most commonly used variant..
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Examples

Here’s an example of how to fit a WeaveModel on a tiny sample dataset.

>>> import numpy as np
>>> import deepchem as dc
>>> featurizer = dc.feat.WeaveFeaturizer()
>>> X = featurizer(["C", "CC"])
>>> y = np.array([1, 0])
>>> dataset = dc.data.NumpyDataset(X, y)
>>> model = dc.models.WeaveModel(n_tasks=1, n_weave=2, fully_connected_layer_
→˓sizes=[2000, 1000], mode="classification")
>>> loss = model.fit(dataset)

Note: In general, the use of batch normalization can cause issues with NaNs. If you’re having trouble with
NaNs while using this model, consider setting batch_normalize_kwargs={“trainable”: False} or turning off
batch normalization entirely with batch_normalize=False.

References

__init__(n_tasks: int, n_atom_feat: int | ~typing.Sequence[int] = 75, n_pair_feat: int |
~typing.Sequence[int] = 14, n_hidden: int = 50, n_graph_feat: int = 128, n_weave: int = 2,
fully_connected_layer_sizes: ~typing.List[int] = [2000, 100], conv_weight_init_stddevs: float |
~typing.Sequence[float] = 0.03, weight_init_stddevs: float | ~typing.Sequence[float] = 0.01,
bias_init_consts: float | ~typing.Sequence[float] = 0.0, weight_decay_penalty: float = 0.0,
weight_decay_penalty_type: str = 'l2', dropouts: float | ~typing.Sequence[float] = 0.25,
final_conv_activation_fn: ~typing.Callable | str | None = <function tanh>, activation_fns:
~typing.Callable | str | ~typing.Sequence[~typing.Callable | str] = <function relu>,
batch_normalize: bool = True, batch_normalize_kwargs: ~typing.Dict = {'fused': False, 'renorm':
True}, gaussian_expand: bool = True, compress_post_gaussian_expansion: bool = False, mode:
str = 'classification', n_classes: int = 2, batch_size: int = 100, **kwargs)

Parameters
• n_tasks (int) – Number of tasks

• n_atom_feat (int, optional (default 75)) – Number of features per atom. Note
this is 75 by default and should be 78 if chirality is used by WeaveFeaturizer.

• n_pair_feat (int, optional (default 14)) – Number of features per pair of atoms.

• n_hidden (int, optional (default 50)) – Number of units(convolution depths) in
corresponding hidden layer

• n_graph_feat (int, optional (default 128)) – Number of output features for
each molecule(graph)

• n_weave (int, optional (default 2)) – The number of weave layers in this model.

• fully_connected_layer_sizes (list (default [2000, 100])) – The size of each dense
layer in the network. The length of this list determines the number of layers.

• conv_weight_init_stddevs (list or float (default 0.03)) – The standard de-
viation of the distribution to use for weight initialization of each convolutional layer. The
length of this lisst should equal n_weave. Alternatively, this may be a single value instead
of a list, in which case the same value is used for each layer.
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• weight_init_stddevs (list or float (default 0.01)) – The standard deviation
of the distribution to use for weight initialization of each fully connected layer. The length
of this list should equal len(layer_sizes). Alternatively this may be a single value instead
of a list, in which case the same value is used for every layer.

• bias_init_consts (list or float (default 0.0)) – The value to initialize the bi-
ases in each fully connected layer. The length of this list should equal len(layer_sizes).
Alternatively this may be a single value instead of a list, in which case the same value is
used for every layer.

• weight_decay_penalty (float (default 0.0)) – The magnitude of the weight de-
cay penalty to use

• weight_decay_penalty_type (str (default "l2")) – The type of penalty to use for
weight decay, either ‘l1’ or ‘l2’

• dropouts (list or float (default 0.25)) – The dropout probablity to use for each
fully connected layer. The length of this list should equal len(layer_sizes). Alternatively
this may be a single value instead of a list, in which case the same value is used for every
layer.

• final_conv_activation_fn (Optional[ActivationFn] (default tf.nn.tanh)) – The Ten-
sorflow activation funcntion to apply to the final convolution at the end of the weave con-
volutions. If None, then no activate is applied (hence linear).

• activation_fns (list or object (default tf.nn.relu)) – The Tensorflow activation function
to apply to each fully connected layer. The length of this list should equal len(layer_sizes).
Alternatively this may be a single value instead of a list, in which case the same value is
used for every layer.

• batch_normalize (bool, optional (default True)) – If this is turned on, apply
batch normalization before applying activation functions on convolutional and fully con-
nected layers.

• batch_normalize_kwargs (Dict, optional (default {“renorm”=True, “fused”: False}))
– Batch normalization is a complex layer which has many potential argumentswhich change
behavior. This layer accepts user-defined parameters which are passed to all BatchNormal-
ization layers in WeaveModel, WeaveLayer, and WeaveGather.

• gaussian_expand (boolean, optional (default True)) – Whether to expand
each dimension of atomic features by gaussian histogram

• compress_post_gaussian_expansion (bool, optional (default False)) – If
True, compress the results of the Gaussian expansion back to the original dimensions of
the input.

• mode (str (default "classification")) – Either “classification” or “regression” for
type of model.

• n_classes (int (default 2)) – Number of classes to predict (only used in classifica-
tion mode)

• batch_size (int (default 100)) – Batch size used by this model for training.

compute_features_on_batch(X_b)
Compute tensors that will be input into the model from featurized representation.

The featurized input to WeaveModel is instances of WeaveMol created by WeaveFeaturizer. This method
converts input WeaveMol objects into tensors used by the Keras implementation to compute WeaveModel
outputs.
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Parameters
X_b (np.ndarray) – A numpy array with dtype=object where elements are WeaveMol ob-
jects.

Returns
• atom_feat (np.ndarray) – Of shape (N_atoms, N_atom_feat).

• pair_feat (np.ndarray) – Of shape (N_pairs, N_pair_feat). Note that N_pairs will depend
on the number of pairs being considered. If max_pair_distance is None, then this will be
N_atoms**2. Else it will be the number of pairs within the specifed graph distance.

• pair_split (np.ndarray) – Of shape (N_pairs,). The i-th entry in this array will tell you the
originating atom for this pair (the “source”). Note that pairs are symmetric so for a pair (a,
b), both a and b will separately be sources at different points in this array.

• atom_split (np.ndarray) – Of shape (N_atoms,). The i-th entry in this array will be the
molecule with the i-th atom belongs to.

• atom_to_pair (np.ndarray) – Of shape (N_pairs, 2). The i-th row in this array will be the
array [a, b] if (a, b) is a pair to be considered. (Note by symmetry, this implies some other
row will contain [b, a].

default_generator(dataset: Dataset, epochs: int = 1, mode: str = 'fit', deterministic: bool = True,
pad_batches: bool = True)→ Iterable[Tuple[List, List, List]]

Convert a dataset into the tensors needed for learning.

Parameters
• dataset (dc.data.Dataset) – Dataset to convert

• epochs (int, optional (Default 1)) – Number of times to walk over dataset

• mode (str, optional (Default 'fit')) – Ignored in this implementation.

• deterministic (bool, optional (Default True)) – Whether the dataset should be
walked in a deterministic fashion

• pad_batches (bool, optional (Default True)) – If true, each returned batch will
have size self.batch_size.

Return type
Iterator which walks over the batches

3.17.8 DTNNModel

class DTNNModel(n_tasks, n_embedding=30, n_hidden=100, n_distance=100, distance_min=-1,
distance_max=18, output_activation=True, mode='regression', dropout=0.0, **kwargs)

Deep Tensor Neural Networks

This class implements deep tensor neural networks as first defined in [1]_
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__init__(n_tasks, n_embedding=30, n_hidden=100, n_distance=100, distance_min=-1, distance_max=18,
output_activation=True, mode='regression', dropout=0.0, **kwargs)

Parameters
• n_tasks (int) – Number of tasks

• n_embedding (int, optional) – Number of features per atom.

• n_hidden (int, optional) – Number of features for each molecule after DTNNStep

• n_distance (int, optional) – granularity of distance matrix step size will be
(distance_max-distance_min)/n_distance

• distance_min (float, optional) – minimum distance of atom pairs, default = -1
Angstorm

• distance_max (float, optional) – maximum distance of atom pairs, default = 18
Angstorm

• mode (str) – Only “regression” is currently supported.

• dropout (float) – the dropout probablity to use.

compute_features_on_batch(X_b)
Computes the values for different Feature Layers on given batch

A tf.py_func wrapper is written around this when creating the input_fn for tf.Estimator

default_generator(dataset, epochs=1, mode='fit', deterministic=True, pad_batches=True)
Create a generator that iterates batches for a dataset.

Subclasses may override this method to customize how model inputs are generated from the data.

Parameters
• dataset (Dataset) – the data to iterate

• epochs (int) – the number of times to iterate over the full dataset

• mode (str) – allowed values are ‘fit’ (called during training), ‘predict’ (called during pre-
diction), and ‘uncertainty’ (called during uncertainty prediction)

• deterministic (bool) – whether to iterate over the dataset in order, or randomly shuffle
the data for each epoch

• pad_batches (bool) – whether to pad each batch up to this model’s preferred batch size

Returns
• a generator that iterates batches, each represented as a tuple of lists

• ([inputs], [outputs], [weights])
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3.17.9 DAGModel

class DAGModel(n_tasks, max_atoms=50, n_atom_feat=75, n_graph_feat=30, n_outputs=30, layer_sizes=[100],
layer_sizes_gather=[100], dropout=None, mode='classification', n_classes=2,
uncertainty=False, batch_size=100, **kwargs)

Directed Acyclic Graph models for molecular property prediction.

This model is based on the following paper:

Lusci, Alessandro, Gianluca Pollastri, and Pierre Baldi. “Deep architectures and deep learning in chemoin-
formatics: the prediction of aqueous solubility for drug-like molecules.” Journal of chemical information and
modeling 53.7 (2013): 1563-1575.

The basic idea for this paper is that a molecule is usually viewed as an undirected graph. However, you
can convert it to a series of directed graphs. The idea is that for each atom, you make a DAG using that
atom as the vertex of the DAG and edges pointing “inwards” to it. This transformation is implemented in
dc.trans.transformers.DAGTransformer.UG_to_DAG.

This model accepts ConvMols as input, just as GraphConvModel does, but these ConvMol objects must be
transformed by dc.trans.DAGTransformer.

As a note, performance of this model can be a little sensitive to initialization. It might be worth training a few
different instantiations to get a stable set of parameters.

__init__(n_tasks, max_atoms=50, n_atom_feat=75, n_graph_feat=30, n_outputs=30, layer_sizes=[100],
layer_sizes_gather=[100], dropout=None, mode='classification', n_classes=2, uncertainty=False,
batch_size=100, **kwargs)

Parameters
• n_tasks (int) – Number of tasks.

• max_atoms (int, optional) – Maximum number of atoms in a molecule, should be
defined based on dataset.

• n_atom_feat (int, optional) – Number of features per atom.

• n_graph_feat (int, optional) – Number of features for atom in the graph.

• n_outputs (int, optional) – Number of features for each molecule.

• layer_sizes (list of int, optional) – List of hidden layer size(s) in the propaga-
tion step: length of this list represents the number of hidden layers, and each element is the
width of corresponding hidden layer.

• layer_sizes_gather (list of int, optional) – List of hidden layer size(s) in the
gather step.

• dropout (None or float, optional) – Dropout probability, applied after each prop-
agation step and gather step.

• mode (str, optional) – Either “classification” or “regression” for type of model.

• n_classes (int) – the number of classes to predict (only used in classification mode)

• uncertainty (bool) – if True, include extra outputs and loss terms to enable the uncer-
tainty in outputs to be predicted

default_generator(dataset, epochs=1, mode='fit', deterministic=True, pad_batches=True)
Convert a dataset into the tensors needed for learning
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3.17.10 GraphConvModel

class GraphConvModel(n_tasks: int, graph_conv_layers: List[int] = [64, 64], dense_layer_size: int = 128,
dropout: float = 0.0, mode: str = 'classification', number_atom_features: int = 75,
n_classes: int = 2, batch_size: int = 100, batch_normalize: bool = True, uncertainty:
bool = False, **kwargs)

Graph Convolutional Models.

This class implements the graph convolutional model from the following paper [1]_. These graph convolutions
start with a per-atom set of descriptors for each atom in a molecule, then combine and recombine these descriptors
over convolutional layers. following [1]_.

References

__init__(n_tasks: int, graph_conv_layers: List[int] = [64, 64], dense_layer_size: int = 128, dropout: float
= 0.0, mode: str = 'classification', number_atom_features: int = 75, n_classes: int = 2, batch_size:
int = 100, batch_normalize: bool = True, uncertainty: bool = False, **kwargs)

The wrapper class for graph convolutions.

Note that since the underlying _GraphConvKerasModel class is specified using imperative subclassing
style, this model cannout make predictions for arbitrary outputs.

Parameters
• n_tasks (int) – Number of tasks

• graph_conv_layers (list of int) – Width of channels for the Graph Convolution
Layers

• dense_layer_size (int) – Width of channels for Atom Level Dense Layer after Graph-
Pool

• dropout (list or float) – the dropout probablity to use for each layer. The length of
this list should equal len(graph_conv_layers)+1 (one value for each convolution layer, and
one for the dense layer). Alternatively this may be a single value instead of a list, in which
case the same value is used for every layer.

• mode (str) – Either “classification” or “regression”

• number_atom_features (int) – 75 is the default number of atom features created, but
this can vary if various options are passed to the function atom_features in graph_features

• n_classes (int) – the number of classes to predict (only used in classification mode)

• batch_normalize (True) – if True, apply batch normalization to model

• uncertainty (bool) – if True, include extra outputs and loss terms to enable the uncer-
tainty in outputs to be predicted

default_generator(dataset, epochs=1, mode='fit', deterministic=True, pad_batches=True)
Create a generator that iterates batches for a dataset.

Subclasses may override this method to customize how model inputs are generated from the data.

Parameters
• dataset (Dataset) – the data to iterate

• epochs (int) – the number of times to iterate over the full dataset
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• mode (str) – allowed values are ‘fit’ (called during training), ‘predict’ (called during pre-
diction), and ‘uncertainty’ (called during uncertainty prediction)

• deterministic (bool) – whether to iterate over the dataset in order, or randomly shuffle
the data for each epoch

• pad_batches (bool) – whether to pad each batch up to this model’s preferred batch size

Returns
• a generator that iterates batches, each represented as a tuple of lists

• ([inputs], [outputs], [weights])

3.17.11 MPNNModel

class MPNNModel(n_tasks, n_atom_feat=70, n_pair_feat=8, n_hidden=100, T=5, M=10, mode='regression',
dropout=0.0, n_classes=2, uncertainty=False, batch_size=100, **kwargs)

Message Passing Neural Network,

Message Passing Neural Networks [1]_ treat graph convolutional operations as an instantiation of a more general
message passing schem. Recall that message passing in a graph is when nodes in a graph send each other
“messages” and update their internal state as a consequence of these messages.

Ordering structures in this model are built according to [2]_

References

__init__(n_tasks, n_atom_feat=70, n_pair_feat=8, n_hidden=100, T=5, M=10, mode='regression',
dropout=0.0, n_classes=2, uncertainty=False, batch_size=100, **kwargs)

Parameters
• n_tasks (int) – Number of tasks

• n_atom_feat (int, optional) – Number of features per atom.

• n_pair_feat (int, optional) – Number of features per pair of atoms.

• n_hidden (int, optional) – Number of units(convolution depths) in corresponding
hidden layer

• n_graph_feat (int, optional) – Number of output features for each molecule(graph)

• dropout (float) – the dropout probablity to use.

• n_classes (int) – the number of classes to predict (only used in classification mode)

• uncertainty (bool) – if True, include extra outputs and loss terms to enable the uncer-
tainty in outputs to be predicted

default_generator(dataset, epochs=1, mode='fit', deterministic=True, pad_batches=True)
Create a generator that iterates batches for a dataset.

Subclasses may override this method to customize how model inputs are generated from the data.

Parameters
• dataset (Dataset) – the data to iterate

• epochs (int) – the number of times to iterate over the full dataset
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• mode (str) – allowed values are ‘fit’ (called during training), ‘predict’ (called during pre-
diction), and ‘uncertainty’ (called during uncertainty prediction)

• deterministic (bool) – whether to iterate over the dataset in order, or randomly shuffle
the data for each epoch

• pad_batches (bool) – whether to pad each batch up to this model’s preferred batch size

Returns
• a generator that iterates batches, each represented as a tuple of lists

• ([inputs], [outputs], [weights])

3.17.12 BasicMolGANModel

class BasicMolGANModel(edges: int = 5, vertices: int = 9, nodes: int = 5, embedding_dim: int = 10,
dropout_rate: float = 0.0, **kwargs)

Model for de-novo generation of small molecules based on work of Nicola De Cao et al. [1]_. It uses a GAN
directly on graph data and a reinforcement learning objective to induce the network to generate molecules with
certain chemical properties. Utilizes WGAN infrastructure; uses adjacency matrix and node features as inputs.
Inputs need to be one-hot representation.

Examples

>>>
>> import deepchem as dc
>> from deepchem.models import BasicMolGANModel as MolGAN
>> from deepchem.models.optimizers import ExponentialDecay
>> from tensorflow import one_hot
>> smiles = ['CCC', 'C1=CC=CC=C1', 'CNC' ]
>> # create featurizer
>> feat = dc.feat.MolGanFeaturizer()
>> # featurize molecules
>> features = feat.featurize(smiles)
>> # Remove empty objects
>> features = list(filter(lambda x: x is not None, features))
>> # create model
>> gan = MolGAN(learning_rate=ExponentialDecay(0.001, 0.9, 5000))
>> dataset = dc.data.NumpyDataset([x.adjacency_matrix for x in features],[x.node_
→˓features for x in features])
>> def iterbatches(epochs):
>> for i in range(epochs):
>> for batch in dataset.iterbatches(batch_size=gan.batch_size, pad_
→˓batches=True):
>> adjacency_tensor = one_hot(batch[0], gan.edges)
>> node_tensor = one_hot(batch[1], gan.nodes)
>> yield {gan.data_inputs[0]: adjacency_tensor, gan.data_inputs[1]:node_
→˓tensor}
>> gan.fit_gan(iterbatches(8), generator_steps=0.2, checkpoint_interval=5000)
>> generated_data = gan.predict_gan_generator(1000)
>> # convert graphs to RDKitmolecules
>> nmols = feat.defeaturize(generated_data)

(continues on next page)
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(continued from previous page)

>> print("{} molecules generated".format(len(nmols)))
>> # remove invalid moles
>> nmols = list(filter(lambda x: x is not None, nmols))
>> # currently training is unstable so 0 is a common outcome
>> print ("{} valid molecules".format(len(nmols)))

References

__init__(edges: int = 5, vertices: int = 9, nodes: int = 5, embedding_dim: int = 10, dropout_rate: float =
0.0, **kwargs)

Initialize the model

Parameters
• edges (int, default 5) – Number of bond types includes BondType.Zero

• vertices (int, default 9) – Max number of atoms in adjacency and node features
matrices

• nodes (int, default 5) – Number of atom types in node features matrix

• embedding_dim (int, default 10) – Size of noise input array

• dropout_rate (float, default = 0.) – Rate of dropout used across whole model

• name (str, default '') – Name of the model

get_noise_input_shape()→ Tuple[int]
Return shape of the noise input used in generator

Returns
Shape of the noise input

Return type
Tuple

get_data_input_shapes()→ List
Return input shape of the discriminator

Returns
List of shapes used as an input for distriminator.

Return type
List

create_generator()→ Model
Create generator model. Take noise data as an input and processes it through number of dense and dropout
layers. Then data is converted into two forms one used for training and other for generation of compounds.
The model has two outputs:

1. edges

2. nodes

The format differs depending on intended use (training or sample generation). For sample generation use
flag, sample_generation=True while calling generator i.e. gan.generators[0](noise_input, training=False,
sample_generation=True). For training the model, set sample_generation=False
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create_discriminator()→ Model
Create discriminator model based on MolGAN layers. Takes two inputs:

1. adjacency tensor, containing bond information

2. nodes tensor, containing atom information

The input vectors need to be in one-hot encoding format. Use MolGAN featurizer for that purpose. It will
be simplified in the future release.

predict_gan_generator(batch_size: int = 1, noise_input: List | None = None, conditional_inputs: List =
[], generator_index: int = 0)→ List[GraphMatrix]

Use the GAN to generate a batch of samples.

Parameters
• batch_size (int) – the number of samples to generate. If either noise_input or condi-

tional_inputs is specified, this argument is ignored since the batch size is then determined
by the size of that argument.

• noise_input (array) – the value to use for the generator’s noise input. If None (the
default), get_noise_batch() is called to generate a random input, so each call will produce
a new set of samples.

• conditional_inputs (list of arrays) – NOT USED. the values to use for all con-
ditional inputs. This must be specified if the GAN has any conditional inputs.

• generator_index (int) – NOT USED. the index of the generator (between 0 and
n_generators-1) to use for generating the samples.

Returns
Returns a list of GraphMatrix object that can be converted into RDKit molecules using Mol-
GANFeaturizer defeaturize function.

Return type
List[GraphMatrix]

3.17.13 ScScoreModel

class ScScoreModel(n_features, layer_sizes=[300, 300, 300], dropouts=0.0, **kwargs)
The SCScore model is a neural network model based on the work of Coley et al. [1]_ that predicts the synthetic
complexity score (SCScore) of molecules and correlates it with the expected number of reaction steps required to
produce the given target molecule. It is trained on a dataset of over 12 million reactions from the Reaxys database
to impose a pairwise inequality constraint enforcing that on average the products of published chemical reactions
should be more synthetically complex than their corresponding reactants. The learned metric (SCScore) exhibits
highly desirable nonlinear behavior, particularly in recognizing increases in synthetic complexity throughout a
number of linear synthetic routes. The SCScore model can accurately predict the synthetic complexity of a
variety of molecules, including both drug-like and natural product molecules. SCScore has the potential to be a
valuable tool for chemists who are working on drug discovery and other areas of chemistry.

The learned metric (SCScore) exhibits highly desirable nonlinear behavior, particularly in recognizing increases
in synthetic complexity throughout a number of linear synthetic routes.

Our model uses hingeloss instead of the shifted relu loss as in the supplementary material [2]_ provided by the
author. This could cause differentiation issues with compounds that are “close” to each other in “complexity”.
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__init__(n_features, layer_sizes=[300, 300, 300], dropouts=0.0, **kwargs)

Parameters
• n_features (int) – number of features per molecule

• layer_sizes (list of int) – size of each hidden layer

• dropouts (int) – droupout to apply to each hidden layer

• kwargs – This takes all kwards as TensorGraph

default_generator(dataset, epochs=1, mode='fit', deterministic=True, pad_batches=True)
Create a generator that iterates batches for a dataset.

Subclasses may override this method to customize how model inputs are generated from the data.

Parameters
• dataset (Dataset) – the data to iterate

• epochs (int) – the number of times to iterate over the full dataset

• mode (str) – allowed values are ‘fit’ (called during training), ‘predict’ (called during pre-
diction), and ‘uncertainty’ (called during uncertainty prediction)

• deterministic (bool) – whether to iterate over the dataset in order, or randomly shuffle
the data for each epoch

• pad_batches (bool) – whether to pad each batch up to this model’s preferred batch size

Returns
• a generator that iterates batches, each represented as a tuple of lists

• ([inputs], [outputs], [weights])

3.17.14 SeqToSeq

class SeqToSeq(input_tokens, output_tokens, max_output_length, encoder_layers=4, decoder_layers=4,
embedding_dimension=512, dropout=0.0, reverse_input=True, variational=False,
annealing_start_step=5000, annealing_final_step=10000, **kwargs)

Implements sequence to sequence translation models.

The model is based on the description in Sutskever et al., “Sequence to Sequence Learning with Neural Networks”
(https://arxiv.org/abs/1409.3215), although this implementation uses GRUs instead of LSTMs. The goal is to
take sequences of tokens as input, and translate each one into a different output sequence. The input and output
sequences can both be of variable length, and an output sequence need not have the same length as the input
sequence it was generated from. For example, these models were originally developed for use in natural language
processing. In that context, the input might be a sequence of English words, and the output might be a sequence
of French words. The goal would be to train the model to translate sentences from English to French.

The model consists of two parts called the “encoder” and “decoder”. Each one consists of a stack of recurrent
layers. The job of the encoder is to transform the input sequence into a single, fixed length vector called the “em-
bedding”. That vector contains all relevant information from the input sequence. The decoder then transforms
the embedding vector into the output sequence.

These models can be used for various purposes. First and most obviously, they can be used for sequence to
sequence translation. In any case where you have sequences of tokens, and you want to translate each one into a
different sequence, a SeqToSeq model can be trained to perform the translation.
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Another possible use case is transforming variable length sequences into fixed length vectors. Many types of
models require their inputs to have a fixed shape, which makes it difficult to use them with variable sized inputs
(for example, when the input is a molecule, and different molecules have different numbers of atoms). In that
case, you can train a SeqToSeq model as an autoencoder, so that it tries to make the output sequence identical to
the input one. That forces the embedding vector to contain all information from the original sequence. You can
then use the encoder for transforming sequences into fixed length embedding vectors, suitable to use as inputs to
other types of models.

Another use case is to train the decoder for use as a generative model. Here again you begin by training the
SeqToSeq model as an autoencoder. Once training is complete, you can supply arbitrary embedding vectors,
and transform each one into an output sequence. When used in this way, you typically train it as a variational
autoencoder. This adds random noise to the encoder, and also adds a constraint term to the loss that forces
the embedding vector to have a unit Gaussian distribution. You can then pick random vectors from a Gaussian
distribution, and the output sequences should follow the same distribution as the training data.

When training as a variational autoencoder, it is best to use KL cost annealing, as described in https://arxiv.
org/abs/1511.06349. The constraint term in the loss is initially set to 0, so the optimizer just tries to minimize
the reconstruction loss. Once it has made reasonable progress toward that, the constraint term can be gradually
turned back on. The range of steps over which this happens is configurable.

__init__(input_tokens, output_tokens, max_output_length, encoder_layers=4, decoder_layers=4,
embedding_dimension=512, dropout=0.0, reverse_input=True, variational=False,
annealing_start_step=5000, annealing_final_step=10000, **kwargs)

Construct a SeqToSeq model.

In addition to the following arguments, this class also accepts all the keyword arguments from TensorGraph.

Parameters
• input_tokens (list) – a list of all tokens that may appear in input sequences

• output_tokens (list) – a list of all tokens that may appear in output sequences

• max_output_length (int) – the maximum length of output sequence that may be gen-
erated

• encoder_layers (int) – the number of recurrent layers in the encoder

• decoder_layers (int) – the number of recurrent layers in the decoder

• embedding_dimension (int) – the width of the embedding vector. This also is the width
of all recurrent layers.

• dropout (float) – the dropout probability to use during training

• reverse_input (bool) – if True, reverse the order of input sequences before sending
them into the encoder. This can improve performance when working with long sequences.

• variational (bool) – if True, train the model as a variational autoencoder. This adds
random noise to the encoder, and also constrains the embedding to follow a unit Gaussian
distribution.

• annealing_start_step (int) – the step (that is, batch) at which to begin turning on the
constraint term for KL cost annealing

• annealing_final_step (int) – the step (that is, batch) at which to finish turning on the
constraint term for KL cost annealing

fit_sequences(sequences, max_checkpoints_to_keep=5, checkpoint_interval=1000, restore=False)
Train this model on a set of sequences

Parameters
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• sequences (iterable) – the training samples to fit to. Each sample should be represented
as a tuple of the form (input_sequence, output_sequence).

• max_checkpoints_to_keep (int) – the maximum number of checkpoints to keep. Older
checkpoints are discarded.

• checkpoint_interval (int) – the frequency at which to write checkpoints, measured
in training steps.

• restore (bool) – if True, restore the model from the most recent checkpoint and continue
training from there. If False, retrain the model from scratch.

predict_from_sequences(sequences, beam_width=5)
Given a set of input sequences, predict the output sequences.

The prediction is done using a beam search with length normalization.

Parameters
• sequences (iterable) – the input sequences to generate a prediction for

• beam_width (int) – the beam width to use for searching. Set to 1 to use a simple greedy
search.

predict_from_embeddings(embeddings, beam_width=5)
Given a set of embedding vectors, predict the output sequences.

The prediction is done using a beam search with length normalization.

Parameters
• embeddings (iterable) – the embedding vectors to generate predictions for

• beam_width (int) – the beam width to use for searching. Set to 1 to use a simple greedy
search.

predict_embeddings(sequences)
Given a set of input sequences, compute the embedding vectors.

Parameters
sequences (iterable) – the input sequences to generate an embedding vector for

3.17.15 GAN

class GAN(n_generators=1, n_discriminators=1, **kwargs)
Implements Generative Adversarial Networks.

A Generative Adversarial Network (GAN) is a type of generative model. It consists of two parts called the “gen-
erator” and the “discriminator”. The generator takes random noise as input and transforms it into an output that
(hopefully) resembles the training data. The discriminator takes a set of samples as input and tries to distinguish
the real training samples from the ones created by the generator. Both of them are trained together. The discrim-
inator tries to get better and better at telling real from false data, while the generator tries to get better and better
at fooling the discriminator.

In many cases there also are additional inputs to the generator and discriminator. In that case it is known as a
Conditional GAN (CGAN), since it learns a distribution that is conditional on the values of those inputs. They
are referred to as “conditional inputs”.

Many variations on this idea have been proposed, and new varieties of GANs are constantly being proposed.
This class tries to make it very easy to implement straightforward GANs of the most conventional types. At the
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same time, it tries to be flexible enough that it can be used to implement many (but certainly not all) variations
on the concept.

To define a GAN, you must create a subclass that provides implementations of the following methods:

get_noise_input_shape() get_data_input_shapes() create_generator() create_discriminator()

If you want your GAN to have any conditional inputs you must also implement:

get_conditional_input_shapes()

The following methods have default implementations that are suitable for most conventional GANs. You can
override them if you want to customize their behavior:

create_generator_loss() create_discriminator_loss() get_noise_batch()

This class allows a GAN to have multiple generators and discriminators, a model known as MIX+GAN. It is
described in Arora et al., “Generalization and Equilibrium in Generative Adversarial Nets (GANs)” (https://
arxiv.org/abs/1703.00573). This can lead to better models, and is especially useful for reducing mode collapse,
since different generators can learn different parts of the distribution. To use this technique, simply specify the
number of generators and discriminators when calling the constructor. You can then tell predict_gan_generator()
which generator to use for predicting samples.

__init__(n_generators=1, n_discriminators=1, **kwargs)
Construct a GAN.

In addition to the parameters listed below, this class accepts all the keyword arguments from KerasModel.

Parameters
• n_generators (int) – the number of generators to include

• n_discriminators (int) – the number of discriminators to include

get_noise_input_shape()

Get the shape of the generator’s noise input layer.

Subclasses must override this to return a tuple giving the shape of the noise input. The actual Input layer
will be created automatically. The dimension corresponding to the batch size should be omitted.

get_data_input_shapes()

Get the shapes of the inputs for training data.

Subclasses must override this to return a list of tuples, each giving the shape of one of the inputs. The actual
Input layers will be created automatically. This list of shapes must also match the shapes of the generator’s
outputs. The dimension corresponding to the batch size should be omitted.

get_conditional_input_shapes()

Get the shapes of any conditional inputs.

Subclasses may override this to return a list of tuples, each giving the shape of one of the conditional inputs.
The actual Input layers will be created automatically. The dimension corresponding to the batch size should
be omitted.

The default implementation returns an empty list, meaning there are no conditional inputs.

get_noise_batch(batch_size)
Get a batch of random noise to pass to the generator.

This should return a NumPy array whose shape matches the one returned by get_noise_input_shape(). The
default implementation returns normally distributed values. Subclasses can override this to implement a
different distribution.
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create_generator()

Create and return a generator.

Subclasses must override this to construct the generator. The returned value should be a tf.keras.Model
whose inputs are a batch of noise, followed by any conditional inputs. The number and shapes of its outputs
must match the return value from get_data_input_shapes(), since generated data must have the same form
as training data.

create_discriminator()

Create and return a discriminator.

Subclasses must override this to construct the discriminator. The returned value should be a tf.keras.Model
whose inputs are all data inputs, followed by any conditional inputs. Its output should be a one dimensional
tensor containing the probability of each sample being a training sample.

create_generator_loss(discrim_output)
Create the loss function for the generator.

The default implementation is appropriate for most cases. Subclasses can override this if the need to cus-
tomize it.

Parameters
discrim_output (Tensor) – the output from the discriminator on a batch of generated data.
This is its estimate of the probability that each sample is training data.

Return type
A Tensor equal to the loss function to use for optimizing the generator.

create_discriminator_loss(discrim_output_train, discrim_output_gen)
Create the loss function for the discriminator.

The default implementation is appropriate for most cases. Subclasses can override this if the need to cus-
tomize it.

Parameters
• discrim_output_train (Tensor) – the output from the discriminator on a batch of train-

ing data. This is its estimate of the probability that each sample is training data.

• discrim_output_gen (Tensor) – the output from the discriminator on a batch of gener-
ated data. This is its estimate of the probability that each sample is training data.

Return type
A Tensor equal to the loss function to use for optimizing the discriminator.

fit_gan(batches, generator_steps=1.0, max_checkpoints_to_keep=5, checkpoint_interval=1000,
restore=False)

Train this model on data.

Parameters
• batches (iterable) – batches of data to train the discriminator on, each represented as

a dict that maps Inputs to values. It should specify values for all members of data_inputs
and conditional_inputs.

• generator_steps (float) – the number of training steps to perform for the generator
for each batch. This can be used to adjust the ratio of training steps for the generator and
discriminator. For example, 2.0 will perform two training steps for every batch, while 0.5
will only perform one training step for every two batches.

• max_checkpoints_to_keep (int) – the maximum number of checkpoints to keep. Older
checkpoints are discarded.
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• checkpoint_interval (int) – the frequency at which to write checkpoints, measured
in batches. Set this to 0 to disable automatic checkpointing.

• restore (bool) – if True, restore the model from the most recent checkpoint before train-
ing it.

predict_gan_generator(batch_size=1, noise_input=None, conditional_inputs=[], generator_index=0)
Use the GAN to generate a batch of samples.

Parameters
• batch_size (int) – the number of samples to generate. If either noise_input or condi-

tional_inputs is specified, this argument is ignored since the batch size is then determined
by the size of that argument.

• noise_input (array) – the value to use for the generator’s noise input. If None (the
default), get_noise_batch() is called to generate a random input, so each call will produce
a new set of samples.

• conditional_inputs (list of arrays) – the values to use for all conditional inputs.
This must be specified if the GAN has any conditional inputs.

• generator_index (int) – the index of the generator (between 0 and n_generators-1) to
use for generating the samples.

Returns
• An array (if the generator has only one output) or list of arrays (if it has

• multiple outputs) containing the generated samples.

WGAN

class WGAN(gradient_penalty=10.0, **kwargs)
Implements Wasserstein Generative Adversarial Networks.

This class implements Wasserstein Generative Adversarial Networks (WGANs) as described in Arjovsky et al.,
“Wasserstein GAN” (https://arxiv.org/abs/1701.07875). A WGAN is conceptually rather different from a con-
ventional GAN, but in practical terms very similar. It reinterprets the discriminator (often called the “critic”
in this context) as learning an approximation to the Earth Mover distance between the training and generated
distributions. The generator is then trained to minimize that distance. In practice, this just means using slightly
different loss functions for training the generator and discriminator.

WGANs have theoretical advantages over conventional GANs, and they often work better in practice. In addition,
the discriminator’s loss function can be directly interpreted as a measure of the quality of the model. That is an
advantage over conventional GANs, where the loss does not directly convey information about the quality of the
model.

The theory WGANs are based on requires the discriminator’s gradient to be bounded. The original paper achieved
this by clipping its weights. This class instead does it by adding a penalty term to the discriminator’s loss, as
described in https://arxiv.org/abs/1704.00028. This is sometimes found to produce better results.

There are a few other practical differences between GANs and WGANs. In a conventional GAN, the discrimi-
nator’s output must be between 0 and 1 so it can be interpreted as a probability. In a WGAN, it should produce
an unbounded output that can be interpreted as a distance.

When training a WGAN, you also should usually use a smaller value for generator_steps. Conventional GANs
rely on keeping the generator and discriminator “in balance” with each other. If the discriminator ever gets too
good, it becomes impossible for the generator to fool it and training stalls. WGANs do not have this problem,
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and in fact the better the discriminator is, the easier it is for the generator to improve. It therefore usually works
best to perform several training steps on the discriminator for each training step on the generator.

__init__(gradient_penalty=10.0, **kwargs)
Construct a WGAN.

In addition to the following, this class accepts all the keyword arguments from GAN and KerasModel.

Parameters
gradient_penalty (float) – the magnitude of the gradient penalty loss

create_generator_loss(discrim_output)
Create the loss function for the generator.

The default implementation is appropriate for most cases. Subclasses can override this if the need to cus-
tomize it.

Parameters
discrim_output (Tensor) – the output from the discriminator on a batch of generated data.
This is its estimate of the probability that each sample is training data.

Return type
A Tensor equal to the loss function to use for optimizing the generator.

create_discriminator_loss(discrim_output_train, discrim_output_gen)
Create the loss function for the discriminator.

The default implementation is appropriate for most cases. Subclasses can override this if the need to cus-
tomize it.

Parameters
• discrim_output_train (Tensor) – the output from the discriminator on a batch of train-

ing data. This is its estimate of the probability that each sample is training data.

• discrim_output_gen (Tensor) – the output from the discriminator on a batch of gener-
ated data. This is its estimate of the probability that each sample is training data.

Return type
A Tensor equal to the loss function to use for optimizing the discriminator.

3.17.16 TextCNNModel

class TextCNNModel(n_tasks, char_dict, seq_length, n_embedding=75, kernel_sizes=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
15, 20], num_filters=[100, 200, 200, 200, 200, 100, 100, 100, 100, 100, 160, 160],
dropout=0.25, mode='classification', **kwargs)

A Convolutional neural network on smiles strings

Reimplementation of the discriminator module in ORGAN [1]_ . Originated from [2]_.

This model applies multiple 1D convolutional filters to the padded strings, then max-over-time pooling is applied
on all filters, extracting one feature per filter. All features are concatenated and transformed through several
hidden layers to form predictions.

This model is initially developed for sentence-level classification tasks, with words represented as vectors. In this
implementation, SMILES strings are dissected into characters and transformed to one-hot vectors in a similar
way. The model can be used for general molecular-level classification or regression tasks. It is also used in the
ORGAN model as discriminator.

Training of the model only requires SMILES strings input, all featurized datasets that include SMILES in the
ids attribute are accepted. PDBbind, QM7 and QM7b are not supported. To use the model, build_char_dict
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should be called first before defining the model to build character dict of input dataset, example can be found in
examples/delaney/delaney_textcnn.py

References

__init__(n_tasks, char_dict, seq_length, n_embedding=75, kernel_sizes=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20],
num_filters=[100, 200, 200, 200, 200, 100, 100, 100, 100, 100, 160, 160], dropout=0.25,
mode='classification', **kwargs)

Parameters
• n_tasks (int) – Number of tasks

• char_dict (dict) – Mapping from characters in smiles to integers

• seq_length (int) – Length of sequences(after padding)

• n_embedding (int, optional) – Length of embedding vector

• filter_sizes (list of int, optional) – Properties of filters used in the conv net

• num_filters (list of int, optional) – Properties of filters used in the conv net

• dropout (float, optional) – Dropout rate

• mode (str) – Either “classification” or “regression” for type of model.

static build_char_dict(dataset, default_dict={'#': 1, '(': 2, ')': 3, '+': 4, '-': 5, '/': 6, '1': 7, '2': 8, '3': 9,
'4': 10, '5': 11, '6': 12, '7': 13, '8': 14, '=': 15, 'Br': 30, 'C': 16, 'Cl': 29, 'F': 17,
'H': 18, 'I': 19, 'N': 20, 'O': 21, 'P': 22, 'S': 23, '[': 24, '\\': 25, ']': 26, '_': 27, 'c':
28, 'n': 31, 'o': 32, 's': 33})

Collect all unique characters(in smiles) from the dataset. This method should be called before defining the
model to build appropriate char_dict

smiles_to_seq_batch(ids_b)
Converts SMILES strings to np.array sequence.

A tf.py_func wrapper is written around this when creating the input_fn for make_estimator

default_generator(dataset, epochs=1, mode='fit', deterministic=True, pad_batches=True)
Transfer smiles strings to fixed length integer vectors

smiles_to_seq(smiles)
Tokenize characters in smiles to integers

3.17.17 AtomicConvModel

class AtomicConvModel(n_tasks: int, frag1_num_atoms: int = 70, frag2_num_atoms: int = 634,
complex_num_atoms: int = 701, max_num_neighbors: int = 12, batch_size: int = 24,
atom_types: ~typing.Sequence[float] = [6, 7.0, 8.0, 9.0, 11.0, 12.0, 15.0, 16.0, 17.0,
20.0, 25.0, 30.0, 35.0, 53.0, -1.0], radial: ~typing.Sequence[~typing.Sequence[float]] =
[[1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0, 10.5,
11.0, 11.5, 12.0], [0.0, 4.0, 8.0], [0.4]], layer_sizes=[100], weight_init_stddevs: float |
~typing.Sequence[float] = 0.02, bias_init_consts: float | ~typing.Sequence[float] = 1.0,
weight_decay_penalty: float = 0.0, weight_decay_penalty_type: str = 'l2', dropouts:
float | ~typing.Sequence[float] = 0.5, activation_fns: ~typing.Callable | str |
~typing.Sequence[~typing.Callable | str] = <function relu>, residual: bool = False,
learning_rate=0.001, **kwargs)
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Implements an Atomic Convolution Model.

Implements the atomic convolutional networks as introduced in

Gomes, Joseph, et al. “Atomic convolutional networks for predicting protein-ligand binding affinity.” arXiv
preprint arXiv:1703.10603 (2017).

The atomic convolutional networks function as a variant of graph convolutions. The difference is that the “graph”
here is the nearest neighbors graph in 3D space. The AtomicConvModel leverages these connections in 3D space
to train models that learn to predict energetic state starting from the spatial geometry of the model.

__init__(n_tasks: int, frag1_num_atoms: int = 70, frag2_num_atoms: int = 634, complex_num_atoms: int
= 701, max_num_neighbors: int = 12, batch_size: int = 24, atom_types: ~typing.Sequence[float]
= [6, 7.0, 8.0, 9.0, 11.0, 12.0, 15.0, 16.0, 17.0, 20.0, 25.0, 30.0, 35.0, 53.0, -1.0], radial:
~typing.Sequence[~typing.Sequence[float]] = [[1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5,
7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0, 10.5, 11.0, 11.5, 12.0], [0.0, 4.0, 8.0], [0.4]], layer_sizes=[100],
weight_init_stddevs: float | ~typing.Sequence[float] = 0.02, bias_init_consts: float |
~typing.Sequence[float] = 1.0, weight_decay_penalty: float = 0.0, weight_decay_penalty_type: str
= 'l2', dropouts: float | ~typing.Sequence[float] = 0.5, activation_fns: ~typing.Callable | str |
~typing.Sequence[~typing.Callable | str] = <function relu>, residual: bool = False,
learning_rate=0.001, **kwargs)→ None

Parameters
• n_tasks (int) – number of tasks

• frag1_num_atoms (int) – Number of atoms in first fragment

• frag2_num_atoms (int) – Number of atoms in sec

• max_num_neighbors (int) – Maximum number of neighbors possible for an atom. Recall
neighbors are spatial neighbors.

• atom_types (list) – List of atoms recognized by model. Atoms are indicated by their
nuclear numbers.

• radial (list) – Radial parameters used in the atomic convolution transformation.

• layer_sizes (list) – the size of each dense layer in the network. The length of this list
determines the number of layers.

• weight_init_stddevs (list or float) – the standard deviation of the distribu-
tion to use for weight initialization of each layer. The length of this list should equal
len(layer_sizes). Alternatively this may be a single value instead of a list, in which case the
same value is used for every layer.

• bias_init_consts (list or float) – the value to initialize the biases in each layer
to. The length of this list should equal len(layer_sizes). Alternatively this may be a single
value instead of a list, in which case the same value is used for every layer.

• weight_decay_penalty (float) – the magnitude of the weight decay penalty to use

• weight_decay_penalty_type (str) – the type of penalty to use for weight decay, either
‘l1’ or ‘l2’

• dropouts (list or float) – the dropout probablity to use for each layer. The length of
this list should equal len(layer_sizes). Alternatively this may be a single value instead of a
list, in which case the same value is used for every layer.

• activation_fns (list or object) – the Tensorflow activation function to apply to
each layer. The length of this list should equal len(layer_sizes). Alternatively this may be
a single value instead of a list, in which case the same value is used for every layer.
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• residual (bool) – if True, the model will be composed of pre-activation residual blocks
instead of a simple stack of dense layers.

• learning_rate (float) – Learning rate for the model.

default_generator(dataset, epochs=1, mode='fit', deterministic=True, pad_batches=True)
Create a generator that iterates batches for a dataset.

Subclasses may override this method to customize how model inputs are generated from the data.

Parameters
• dataset (Dataset) – the data to iterate

• epochs (int) – the number of times to iterate over the full dataset

• mode (str) – allowed values are ‘fit’ (called during training), ‘predict’ (called during pre-
diction), and ‘uncertainty’ (called during uncertainty prediction)

• deterministic (bool) – whether to iterate over the dataset in order, or randomly shuffle
the data for each epoch

• pad_batches (bool) – whether to pad each batch up to this model’s preferred batch size

Returns
• a generator that iterates batches, each represented as a tuple of lists

• ([inputs], [outputs], [weights])

save()

Saves model to disk using joblib.

reload()

Loads model from joblib file on disk.

3.17.18 Smiles2Vec

class Smiles2Vec(char_to_idx, n_tasks=10, max_seq_len=270, embedding_dim=50, n_classes=2,
use_bidir=True, use_conv=True, filters=192, kernel_size=3, strides=1, rnn_sizes=[224, 384],
rnn_types=['GRU', 'GRU'], mode='regression', **kwargs)

Implements the Smiles2Vec model, that learns neural representations of SMILES strings which can be used for
downstream tasks.

The model is based on the description in Goh et al., “SMILES2vec: An Interpretable General-Purpose Deep
Neural Network for Predicting Chemical Properties” (https://arxiv.org/pdf/1712.02034.pdf). The goal here is
to take SMILES strings as inputs, turn them into vector representations which can then be used in predicting
molecular properties.

The model consists of an Embedding layer that retrieves embeddings for each character in the SMILES string.
These embeddings are learnt jointly with the rest of the model. The output from the embedding layer is a tensor
of shape (batch_size, seq_len, embedding_dim). This tensor can optionally be fed through a 1D convolutional
layer, before being passed to a series of RNN cells (optionally bidirectional). The final output from the RNN
cells aims to have learnt the temporal dependencies in the SMILES string, and in turn information about the
structure of the molecule, which is then used for molecular property prediction.

In the paper, the authors also train an explanation mask to endow the model with interpretability and gain insights
into its decision making. This segment is currently not a part of this implementation as this was developed for
the purpose of investigating a transfer learning protocol, ChemNet (which can be found at https://arxiv.org/abs/
1712.02734).
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__init__(char_to_idx, n_tasks=10, max_seq_len=270, embedding_dim=50, n_classes=2, use_bidir=True,
use_conv=True, filters=192, kernel_size=3, strides=1, rnn_sizes=[224, 384], rnn_types=['GRU',
'GRU'], mode='regression', **kwargs)

Parameters
• char_to_idx (dict,) – char_to_idx contains character to index mapping for SMILES

characters

• embedding_dim (int, default 50) – Size of character embeddings used.

• use_bidir (bool, default True) – Whether to use BiDirectional RNN Cells

• use_conv (bool, default True) – Whether to use a conv-layer

• kernel_size (int, default 3) – Kernel size for convolutions

• filters (int, default 192) – Number of filters

• strides (int, default 1) – Strides used in convolution

• rnn_sizes (list[int], default [224, 384]) – Number of hidden units in the RNN
cells

• mode (str, default regression) – Whether to use model for regression or classifica-
tion

default_generator(dataset, epochs=1, mode='fit', deterministic=True, pad_batches=True)
Create a generator that iterates batches for a dataset.

Subclasses may override this method to customize how model inputs are generated from the data.

Parameters
• dataset (Dataset) – the data to iterate

• epochs (int) – the number of times to iterate over the full dataset

• mode (str) – allowed values are ‘fit’ (called during training), ‘predict’ (called during pre-
diction), and ‘uncertainty’ (called during uncertainty prediction)

• deterministic (bool) – whether to iterate over the dataset in order, or randomly shuffle
the data for each epoch

• pad_batches (bool) – whether to pad each batch up to this model’s preferred batch size

Returns
• a generator that iterates batches, each represented as a tuple of lists

• ([inputs], [outputs], [weights])

3.17.19 ChemCeption

class ChemCeption(img_spec: str = 'std', img_size: int = 80, base_filters: int = 16, inception_blocks: Dict =
{'A': 3, 'B': 3, 'C': 3}, n_tasks: int = 10, n_classes: int = 2, augment: bool = False, mode: str
= 'regression', **kwargs)

Implements the ChemCeption model that leverages the representational capacities of convolutional neural net-
works (CNNs) to predict molecular properties.

The model is based on the description in Goh et al., “Chemception: A Deep Neural Network with Minimal
Chemistry Knowledge Matches the Performance of Expert-developed QSAR/QSPR Models” (https://arxiv.org/
pdf/1706.06689.pdf). The authors use an image based representation of the molecule, where pixels encode
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different atomic and bond properties. More details on the image repres- entations can be found at https://arxiv.
org/abs/1710.02238

The model consists of a Stem Layer that reduces the image resolution for the layers to follow. The output of
the Stem Layer is followed by a series of Inception-Resnet blocks & a Reduction layer. Layers in the Inception-
Resnet blocks process image tensors at multiple resolutions and use a ResNet style skip-connection, combining
features from different resolutions. The Reduction layers reduce the spatial extent of the image by max-pooling
and 2-strided convolutions. More details on these layers can be found in the ChemCeption paper referenced
above. The output of the final Reduction layer is subject to a Global Average Pooling, and a fully-connected
layer maps the features to downstream outputs.

In the ChemCeption paper, the authors perform real-time image augmentation by rotating images between 0 to
180 degrees. This can be done during model training by setting the augment argument to True.

__init__(img_spec: str = 'std', img_size: int = 80, base_filters: int = 16, inception_blocks: Dict = {'A': 3,
'B': 3, 'C': 3}, n_tasks: int = 10, n_classes: int = 2, augment: bool = False, mode: str =
'regression', **kwargs)

Parameters
• img_spec (str, default std) – Image specification used

• img_size (int, default 80) – Image size used

• base_filters (int, default 16) – Base filters used for the different inception and
reduction layers

• inception_blocks (dict,) – Dictionary containing number of blocks for every incep-
tion layer

• n_tasks (int, default 10) – Number of classification or regression tasks

• n_classes (int, default 2) – Number of classes (used only for classification)

• augment (bool, default False) – Whether to augment images

• mode (str, default regression) – Whether the model is used for regression or clas-
sification

build_inception_module(inputs, type='A')
Inception module is a series of inception layers of similar type. This function builds that.

default_generator(dataset, epochs=1, mode='fit', deterministic=True, pad_batches=True)
Create a generator that iterates batches for a dataset.

Subclasses may override this method to customize how model inputs are generated from the data.

Parameters
• dataset (Dataset) – the data to iterate

• epochs (int) – the number of times to iterate over the full dataset

• mode (str) – allowed values are ‘fit’ (called during training), ‘predict’ (called during pre-
diction), and ‘uncertainty’ (called during uncertainty prediction)

• deterministic (bool) – whether to iterate over the dataset in order, or randomly shuffle
the data for each epoch

• pad_batches (bool) – whether to pad each batch up to this model’s preferred batch size

Returns
• a generator that iterates batches, each represented as a tuple of lists
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• ([inputs], [outputs], [weights])

3.17.20 NormalizingFlowModel

The purpose of a normalizing flow is to map a simple distribution (that is easy to sample from and evaluate probability
densities for) to a more complex distribution that is learned from data. Normalizing flows combine the advantages
of autoregressive models (which provide likelihood estimation but do not learn features) and variational autoencoders
(which learn feature representations but do not provide marginal likelihoods). They are effective for any application
requiring a probabilistic model with these capabilities, e.g. generative modeling, unsupervised learning, or probabilistic
inference.

class NormalizingFlowModel(model: NormalizingFlow, **kwargs)
A base distribution and normalizing flow for applying transformations.

Normalizing flows are effective for any application requiring a probabilistic model that can both sample from a
distribution and compute marginal likelihoods, e.g. generative modeling, unsupervised learning, or probabilistic
inference. For a thorough review of normalizing flows, see [1]_.

A distribution implements two main operations:
1. Sampling from the transformed distribution

2. Calculating log probabilities

A normalizing flow implements three main operations:
1. Forward transformation

2. Inverse transformation

3. Calculating the Jacobian

Deep Normalizing Flow models require normalizing flow layers where input and output dimensions are the same,
the transformation is invertible, and the determinant of the Jacobian is efficient to compute and differentiable.
The determinant of the Jacobian of the transformation gives a factor that preserves the probability volume to 1
when transforming between probability densities of different random variables.

References

__init__(model: NormalizingFlow, **kwargs)→ None
Creates a new NormalizingFlowModel.

In addition to the following arguments, this class also accepts all the keyword arguments from KerasModel.

Parameters
model (NormalizingFlow) – An instance of NormalizingFlow.

Examples

>> import tensorflow_probability as tfp >> tfd = tfp.distributions >> tfb = tfp.bijectors >> flow_layers =
[ .. tfb.RealNVP( .. num_masked=2, .. shift_and_log_scale_fn=tfb.real_nvp_default_template( .. hid-
den_layers=[8, 8])) ..] >> base_distribution = tfd.MultivariateNormalDiag(loc=[0., 0., 0.]) >> nf = Nor-
malizingFlow(base_distribution, flow_layers) >> nfm = NormalizingFlowModel(nf) >> dataset = Numpy-
Dataset( .. X=np.random.rand(5, 3).astype(np.float32), .. y=np.random.rand(5,), .. ids=np.arange(5)) >>
nfm.fit(dataset)
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create_nll(input: Tensor | Sequence[Tensor])→ Tensor
Create the negative log likelihood loss function.

The default implementation is appropriate for most cases. Subclasses can override this if there is a need to
customize it.

Parameters
input (OneOrMany[tf.Tensor]) – A batch of data.

Return type
A Tensor equal to the loss function to use for optimization.

save()

Saves model to disk using joblib.

reload()

Loads model from joblib file on disk.

3.18 PyTorch Models

DeepChem supports the use of PyTorch to build deep learning models.

3.18.1 TorchModel

You can wrap an arbitrary torch.nn.Module in a TorchModel object.

class TorchModel(model: Module, loss: Loss | Callable[[List, List, List], Any], output_types: List[str] | None =
None, batch_size: int = 100, model_dir: str | None = None, learning_rate: float |
LearningRateSchedule = 0.001, optimizer: Optimizer | None = None, tensorboard: bool =
False, wandb: bool = False, log_frequency: int = 100, device: device | None = None,
regularization_loss: Callable | None = None, wandb_logger: WandbLogger | None = None,
**kwargs)

This is a DeepChem model implemented by a PyTorch model.

Here is a simple example of code that uses TorchModel to train a PyTorch model on a DeepChem dataset.

>>> import torch
>>> import deepchem as dc
>>> import numpy as np
>>> X, y = np.random.random((10, 100)), np.random.random((10, 1))
>>> dataset = dc.data.NumpyDataset(X=X, y=y)
>>> pytorch_model = torch.nn.Sequential(
... torch.nn.Linear(100, 1000),
... torch.nn.Tanh(),
... torch.nn.Linear(1000, 1))
>>> model = dc.models.TorchModel(pytorch_model, loss=dc.models.losses.L2Loss())
>>> loss = model.fit(dataset, nb_epoch=5)

The loss function for a model can be defined in two different ways. For models that have only a single output
and use a standard loss function, you can simply provide a dc.models.losses.Loss object. This defines the loss
for each sample or sample/task pair. The result is automatically multiplied by the weights and averaged over the
batch.

For more complicated cases, you can instead provide a function that directly computes the total loss. It must be
of the form f(outputs, labels, weights), taking the list of outputs from the model, the expected values, and any
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weight matrices. It should return a scalar equal to the value of the loss function for the batch. No additional
processing is done to the result; it is up to you to do any weighting, averaging, adding of penalty terms, etc.

You can optionally provide an output_types argument, which describes how to interpret the model’s outputs.
This should be a list of strings, one for each output. You can use an arbitrary output_type for a output, but some
output_types are special and will undergo extra processing:

• ‘prediction’: This is a normal output, and will be returned by predict().
If output types are not specified, all outputs are assumed to be of this type.

• ‘loss’: This output will be used in place of the normal
outputs for computing the loss function. For example, models that output probability distributions
usually do it by computing unbounded numbers (the logits), then passing them through a softmax
function to turn them into probabilities. When computing the cross entropy, it is more numerically
stable to use the logits directly rather than the probabilities. You can do this by having the model
produce both probabilities and logits as outputs, then specifying output_types=[‘prediction’, ‘loss’].
When predict() is called, only the first output (the probabilities) will be returned. But during training,
it is the second output (the logits) that will be passed to the loss function.

• ‘variance’: This output is used for estimating the
uncertainty in another output. To create a model that can estimate uncertainty, there must be the same
number of ‘prediction’ and ‘variance’ outputs. Each variance output must have the same shape as the
corresponding prediction output, and each element is an estimate of the variance in the corresponding
prediction. Also be aware that if a model supports uncertainty, it MUST use dropout on every layer,
and dropout most be enabled during uncertainty prediction. Otherwise, the uncertainties it computes
will be inaccurate.

• other: Arbitrary output_types can be used to extract outputs
produced by the model, but will have no additional processing performed.

__init__(model: Module, loss: Loss | Callable[[List, List, List], Any], output_types: List[str] | None =
None, batch_size: int = 100, model_dir: str | None = None, learning_rate: float |
LearningRateSchedule = 0.001, optimizer: Optimizer | None = None, tensorboard: bool = False,
wandb: bool = False, log_frequency: int = 100, device: device | None = None, regularization_loss:
Callable | None = None, wandb_logger: WandbLogger | None = None, **kwargs)→ None

Create a new TorchModel.

Parameters
• model (torch.nn.Module) – the PyTorch model implementing the calculation

• loss (dc.models.losses.Loss or function) – a Loss or function defining how to
compute the training loss for each batch, as described above

• output_types (list of strings, optional (default None)) – the type of each
output from the model, as described above

• batch_size (int, optional (default 100)) – default batch size for training and
evaluating

• model_dir (str, optional (default None)) – the directory on disk where the
model will be stored. If this is None, a temporary directory is created.

• learning_rate (float or LearningRateSchedule, optional (default 0.
001)) – the learning rate to use for fitting. If optimizer is specified, this is ignored.

• optimizer (Optimizer, optional (default None)) – the optimizer to use for fit-
ting. If this is specified, learning_rate is ignored.

• tensorboard (bool, optional (default False)) – whether to log progress to Ten-
sorBoard during training
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• wandb (bool, optional (default False)) – whether to log progress to Weights &
Biases during training

• log_frequency (int, optional (default 100)) – The frequency at which to log
data. Data is logged using logging by default. If tensorboard is set, data is also logged to
TensorBoard. If wandb is set, data is also logged to Weights & Biases. Logging happens
at global steps. Roughly, a global step corresponds to one batch of training. If you’d like a
printout every 10 batch steps, you’d set log_frequency=10 for example.

• device (torch.device, optional (default None)) – the device on which to run
computations. If None, a device is chosen automatically.

• regularization_loss (Callable, optional) – a function that takes no arguments,
and returns an extra contribution to add to the loss function

• wandb_logger (WandbLogger) – the Weights & Biases logger object used to log data and
metrics

fit(dataset: Dataset, nb_epoch: int = 10, max_checkpoints_to_keep: int = 5, checkpoint_interval: int =
1000, deterministic: bool = False, restore: bool = False, variables: List[Parameter] | None = None, loss:
Callable[[List, List, List], Any] | None = None, callbacks: Callable | List[Callable] = [], all_losses:
List[float] | None = None)→ float
Train this model on a dataset.

Parameters
• dataset (Dataset) – the Dataset to train on

• nb_epoch (int) – the number of epochs to train for

• max_checkpoints_to_keep (int) – the maximum number of checkpoints to keep. Older
checkpoints are discarded.

• checkpoint_interval (int) – the frequency at which to write checkpoints, measured
in training steps. Set this to 0 to disable automatic checkpointing.

• deterministic (bool) – if True, the samples are processed in order. If False, a different
random order is used for each epoch.

• restore (bool) – if True, restore the model from the most recent checkpoint and continue
training from there. If False, retrain the model from scratch.

• variables (list of torch.nn.Parameter) – the variables to train. If None (the de-
fault), all trainable variables in the model are used.

• loss (function) – a function of the form f(outputs, labels, weights) that computes the
loss for each batch. If None (the default), the model’s standard loss function is used.

• callbacks (function or list of functions) – one or more functions of the form
f(model, step) that will be invoked after every step. This can be used to perform validation,
logging, etc.

• all_losses (Optional[List[float]], optional (default None)) – If speci-
fied, all logged losses are appended into this list. Note that you can call fit() repeatedly
with the same list and losses will continue to be appended.

Return type
The average loss over the most recent checkpoint interval

fit_generator(generator: Iterable[Tuple[Any, Any, Any]], max_checkpoints_to_keep: int = 5,
checkpoint_interval: int = 1000, restore: bool = False, variables: List[Parameter] |
ParameterList | None = None, loss: Callable[[List, List, List], Any] | None = None,
callbacks: Callable | List[Callable] = [], all_losses: List[float] | None = None)→ float
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Train this model on data from a generator.

Parameters
• generator (generator) – this should generate batches, each represented as a tuple of the

form (inputs, labels, weights).

• max_checkpoints_to_keep (int) – the maximum number of checkpoints to keep. Older
checkpoints are discarded.

• checkpoint_interval (int) – the frequency at which to write checkpoints, measured
in training steps. Set this to 0 to disable automatic checkpointing.

• restore (bool) – if True, restore the model from the most recent checkpoint and continue
training from there. If False, retrain the model from scratch.

• variables (list of torch.nn.Parameter or torch.nn.ParameterList) – the
variables to train. If None (the default), all trainable variables in the model are used.
ParameterList can be used like a regular Python list, but Tensors that are Parameter are
properly registered, and will be visible by all Module methods.

• loss (function) – a function of the form f(outputs, labels, weights) that computes the
loss for each batch. If None (the default), the model’s standard loss function is used.

• callbacks (function or list of functions) – one or more functions of the form
f(model, step) that will be invoked after every step. This can be used to perform validation,
logging, etc.

• all_losses (Optional[List[float]], optional (default None)) – If speci-
fied, all logged losses are appended into this list. Note that you can call fit() repeatedly
with the same list and losses will continue to be appended.

Return type
The average loss over the most recent checkpoint interval

fit_on_batch(X: Sequence, y: Sequence, w: Sequence, variables: List[Parameter] | None = None, loss:
Callable[[List, List, List], Any] | None = None, callbacks: Callable | List[Callable] = [],
checkpoint: bool = True, max_checkpoints_to_keep: int = 5)→ float

Perform a single step of training.

Parameters
• X (ndarray) – the inputs for the batch

• y (ndarray) – the labels for the batch

• w (ndarray) – the weights for the batch

• variables (list of torch.nn.Parameter) – the variables to train. If None (the de-
fault), all trainable variables in the model are used.

• loss (function) – a function of the form f(outputs, labels, weights) that computes the
loss for each batch. If None (the default), the model’s standard loss function is used.

• callbacks (function or list of functions) – one or more functions of the form
f(model, step) that will be invoked after every step. This can be used to perform validation,
logging, etc.

• checkpoint (bool) – if true, save a checkpoint after performing the training step

• max_checkpoints_to_keep (int) – the maximum number of checkpoints to keep. Older
checkpoints are discarded.
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Return type
the loss on the batch

predict_on_generator(generator: Iterable[Tuple[Any, Any, Any]], transformers: List[Transformer] = [],
output_types: str | Sequence[str] | None = None)→ ndarray | Sequence[ndarray]

Parameters
• generator (generator) – this should generate batches, each represented as a tuple of the

form (inputs, labels, weights).

• transformers (list of dc.trans.Transformers) – Transformers that the input data
has been transformed by. The output is passed through these transformers to undo the
transformations.

• output_types (String or list of Strings) – If specified, all outputs of this type
will be retrieved from the model. If output_types is specified, outputs must be None.

• Returns – a NumPy array of the model produces a single output, or a list of arrays if it
produces multiple outputs

predict_on_batch(X: _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool
| int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str |
bytes], transformers: List[Transformer] = [])→ ndarray | Sequence[ndarray]

Generates predictions for input samples, processing samples in a batch.

Parameters
• X (ndarray) – the input data, as a Numpy array.

• transformers (list of dc.trans.Transformers) – Transformers that the input data
has been transformed by. The output is passed through these transformers to undo the
transformations.

Returns
• a NumPy array of the model produces a single output, or a list of arrays

• if it produces multiple outputs

predict_uncertainty_on_batch(X: Sequence, masks: int = 50)→ Tuple[ndarray, ndarray] |
Sequence[Tuple[ndarray, ndarray]]

Predict the model’s outputs, along with the uncertainty in each one.

The uncertainty is computed as described in https://arxiv.org/abs/1703.04977. It involves repeating the
prediction many times with different dropout masks. The prediction is computed as the average over all the
predictions. The uncertainty includes both the variation among the predicted values (epistemic uncertainty)
and the model’s own estimates for how well it fits the data (aleatoric uncertainty). Not all models support
uncertainty prediction.

Parameters
• X (ndarray) – the input data, as a Numpy array.

• masks (int) – the number of dropout masks to average over

Returns
• for each output, a tuple (y_pred, y_std) where y_pred is the predicted

• value of the output, and each element of y_std estimates the standard

• deviation of the corresponding element of y_pred
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predict(dataset: Dataset, transformers: List[Transformer] = [], output_types: List[str] | None = None)→
ndarray | Sequence[ndarray]

Uses self to make predictions on provided Dataset object.

Parameters
• dataset (dc.data.Dataset) – Dataset to make prediction on

• transformers (list of dc.trans.Transformers) – Transformers that the input data
has been transformed by. The output is passed through these transformers to undo the
transformations.

• output_types (String or list of Strings) – If specified, all outputs of this type
will be retrieved from the model. If output_types is specified, outputs must be None.

Returns
• a NumPy array of the model produces a single output, or a list of arrays

• if it produces multiple outputs

predict_embedding(dataset: Dataset)→ ndarray | Sequence[ndarray]
Predicts embeddings created by underlying model if any exist. An embedding must be specified to have
output_type of ‘embedding’ in the model definition.

Parameters
dataset (dc.data.Dataset) – Dataset to make prediction on

Returns
• a NumPy array of the embeddings model produces, or a list

• of arrays if it produces multiple embeddings

predict_uncertainty(dataset: Dataset, masks: int = 50)→ Tuple[ndarray, ndarray] |
Sequence[Tuple[ndarray, ndarray]]

Predict the model’s outputs, along with the uncertainty in each one.

The uncertainty is computed as described in https://arxiv.org/abs/1703.04977. It involves repeating the
prediction many times with different dropout masks. The prediction is computed as the average over all the
predictions. The uncertainty includes both the variation among the predicted values (epistemic uncertainty)
and the model’s own estimates for how well it fits the data (aleatoric uncertainty). Not all models support
uncertainty prediction.

Parameters
• dataset (dc.data.Dataset) – Dataset to make prediction on

• masks (int) – the number of dropout masks to average over

Returns
• for each output, a tuple (y_pred, y_std) where y_pred is the predicted

• value of the output, and each element of y_std estimates the standard

• deviation of the corresponding element of y_pred

evaluate_generator(generator: Iterable[Tuple[Any, Any, Any]], metrics: List[Metric], transformers:
List[Transformer] = [], per_task_metrics: bool = False)

Evaluate the performance of this model on the data produced by a generator.

Parameters
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• generator (generator) – this should generate batches, each represented as a tuple of the
form (inputs, labels, weights).

• metric (list of deepchem.metrics.Metric) – Evaluation metric

• transformers (list of dc.trans.Transformers) – Transformers that the input data
has been transformed by. The output is passed through these transformers to undo the
transformations.

• per_task_metrics (bool) – If True, return per-task scores.

Returns
Maps tasks to scores under metric.

Return type
dict

compute_saliency(X: ndarray)→ ndarray | Sequence[ndarray]
Compute the saliency map for an input sample.

This computes the Jacobian matrix with the derivative of each output element with respect to each input
element. More precisely,

• If this model has a single output, it returns a matrix of shape
(output_shape, input_shape) with the derivatives.

• If this model has multiple outputs, it returns a list of matrices, one
for each output.

This method cannot be used on models that take multiple inputs.

Parameters
X (ndarray) – the input data for a single sample

Return type
the Jacobian matrix, or a list of matrices

default_generator(dataset: Dataset, epochs: int = 1, mode: str = 'fit', deterministic: bool = True,
pad_batches: bool = True)→ Iterable[Tuple[List, List, List]]

Create a generator that iterates batches for a dataset.

Subclasses may override this method to customize how model inputs are generated from the data.

Parameters
• dataset (Dataset) – the data to iterate

• epochs (int) – the number of times to iterate over the full dataset

• mode (str) – allowed values are ‘fit’ (called during training), ‘predict’ (called during pre-
diction), and ‘uncertainty’ (called during uncertainty prediction)

• deterministic (bool) – whether to iterate over the dataset in order, or randomly shuffle
the data for each epoch

• pad_batches (bool) – whether to pad each batch up to this model’s preferred batch size

Returns
• a generator that iterates batches, each represented as a tuple of lists

• ([inputs], [outputs], [weights])
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save_checkpoint(max_checkpoints_to_keep: int = 5, model_dir: str | None = None)→ None
Save a checkpoint to disk.

Usually you do not need to call this method, since fit() saves checkpoints automatically. If you have disabled
automatic checkpointing during fitting, this can be called to manually write checkpoints.

Parameters
• max_checkpoints_to_keep (int) – the maximum number of checkpoints to keep. Older

checkpoints are discarded. If set to zero, the function will simply return as no checkpoint
is saved.

• model_dir (str, default None) – Model directory to save checkpoint to. If None,
revert to self.model_dir

get_checkpoints(model_dir: str | None = None)
Get a list of all available checkpoint files.

Parameters
model_dir (str, default None) – Directory to get list of checkpoints from. Reverts to
self.model_dir if None

restore(checkpoint: str | None = None, model_dir: str | None = None, strict: bool | None = True)→ None
Reload the values of all variables from a checkpoint file.

Parameters
• checkpoint (str) – the path to the checkpoint file to load. If this is None, the most recent

checkpoint will be chosen automatically. Call get_checkpoints() to get a list of all available
checkpoints.

• model_dir (str, default None) – Directory to restore checkpoint from. If None, use
self.model_dir. If checkpoint is not None, this is ignored.

• strict (bool, default True) – Whether or not to strictly enforce that the keys in
checkpoint match the keys returned by this model’s get_variable_scope() method.

get_global_step()→ int
Get the number of steps of fitting that have been performed.

load_from_pretrained(source_model: TorchModel, assignment_map: Dict[Any, Any] | None = None,
value_map: Dict[Any, Any] | None = None, checkpoint: str | None = None,
model_dir: str | None = None, include_top: bool = True, inputs: Sequence[Any] |
None = None, **kwargs)→ None

Copies parameter values from a pretrained model. source_model can either be a pretrained model or a
model with the same architecture. value_map is a parameter-value dictionary. If no value_map is provided,
the parameter values are restored to the source_model from a checkpoint and a default value_map is created.
assignment_map is a dictionary mapping parameters from the source_model to the current model. If no
assignment_map is provided, one is made from scratch and assumes the model is composed of several
different layers, with the final one being a dense layer. include_top is used to control whether or not the
final dense layer is used. The default assignment map is useful in cases where the type of task is different
(classification vs regression) and/or number of tasks in the setting.

Parameters
• source_model (dc.TorchModel, required) – source_model can either be the pre-

trained model or a dc.TorchModel with the same architecture as the pretrained model. It is
used to restore from a checkpoint, if value_map is None and to create a default assignment
map if assignment_map is None
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• assignment_map (Dict, default None) – Dictionary mapping the source_model pa-
rameters and current model parameters

• value_map (Dict, default None) – Dictionary containing source_model trainable pa-
rameters mapped to numpy arrays. If value_map is None, the values are restored and a
default parameter map is created using the restored values

• checkpoint (str, default None) – the path to the checkpoint file to load. If this is
None, the most recent checkpoint will be chosen automatically. Call get_checkpoints() to
get a list of all available checkpoints

• model_dir (str, default None) – Restore source model from custom model directory
if needed

• include_top (bool, default True) – if True, copies the weights and bias associated
with the final dense layer. Used only when assignment map is None

• inputs (List, input tensors for model) – if not None, then the weights are built
for both the source and self.

3.18.2 ModularTorchModel

You can modify networks for different tasks by using a ModularTorchModel.

class ModularTorchModel(model: Module, components: dict, **kwargs)
ModularTorchModel is a subclass of TorchModel that allows for components to be pretrained and then combined
into a final model. It is designed to be subclassed for specific models and is not intended to be used directly.
There are 3 main differences between ModularTorchModel and TorchModel:

• The build_components() method is used to define the components of the model.

• The components are combined into a final model with the build_model() method.

• The loss function is defined with the loss_func method. This may access the components to compute the
loss using intermediate values from the network, rather than just the full forward pass output.

Here is an example of how to use ModularTorchModel to pretrain a linear layer, load it into another network and
then finetune that network:

>>> import numpy as np
>>> import deepchem as dc
>>> import torch
>>> n_samples = 6
>>> n_feat = 3
>>> n_hidden = 2
>>> n_tasks = 6
>>> pt_tasks = 3
>>> X = np.random.rand(n_samples, n_feat)
>>> y_pretrain = np.zeros((n_samples, pt_tasks)).astype(np.float32)
>>> dataset_pt = dc.data.NumpyDataset(X, y_pretrain)
>>> y_finetune = np.zeros((n_samples, n_tasks)).astype(np.float32)
>>> dataset_ft = dc.data.NumpyDataset(X, y_finetune)
>>> components = {'linear': torch.nn.Linear(n_feat, n_hidden),
... 'activation': torch.nn.ReLU(), 'head': torch.nn.Linear(n_hidden, n_tasks)}
>>> model = torch.nn.Sequential(components['linear'], components['activation'],
... components['head'])
>>> modular_model = dc.models.torch_models.modular.ModularTorchModel(model,␣

(continues on next page)
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→˓components)
>>> def example_loss_func(inputs, labels, weights):
... return (torch.nn.functional.mse_loss(model(inputs), labels[0]) * weights[0]).
→˓mean()
>>> modular_model.loss_func = example_loss_func
>>> def example_model_build():
... return torch.nn.Sequential(components['linear'], components['activation'],
... components['head'])
>>> modular_model.build_model = example_model_build
>>> pretrain_components = {'linear': torch.nn.Linear(n_feat, n_hidden),
... 'activation': torch.nn.ReLU(), 'head': torch.nn.Linear(n_hidden, pt_tasks)}
>>> pretrain_model = torch.nn.Sequential(pretrain_components['linear'],
... pretrain_components['activation'], pretrain_components['head'])
>>> pretrain_modular_model = dc.models.torch_models.modular.
→˓ModularTorchModel(pretrain_model,
... pretrain_components)
>>> def example_pt_loss_func(inputs, labels, weights):
... return (torch.nn.functional.mse_loss(pretrain_model(inputs), labels[0]) *␣
→˓weights[0]).mean()
>>> pretrain_modular_model.loss_func = example_pt_loss_func
>>> pt_loss = pretrain_modular_model.fit(dataset_pt, nb_epoch=1)
>>> modular_model.load_from_pretrained(pretrain_modular_model, components=['linear
→˓'])
>>> ft_loss = modular_model.fit(dataset_ft, nb_epoch=1)

__init__(model: Module, components: dict, **kwargs)
Create a ModularTorchModel.

Parameters
• model (nn.Module) – The model to be trained.

• components (dict) – A dictionary of the components of the model. The keys are the
names of the components and the values are the components themselves.

build_model()→ Module
Builds the final model from the components.

build_components()→ dict
Creates the components dictionary, with the keys being the names of the components and the values being
torch.nn.module objects.

loss_func(inputs: Tensor | Sequence[Tensor], labels: Sequence, weights: Sequence)→ Tensor
Defines the loss function for the model which can access the components using self.components. The loss
function should take the inputs, labels, and weights as arguments and return the loss.

freeze_components(components: List[str])
Freezes or unfreezes the parameters of the specified components.

Components string refers to keys in self.components.

Parameters
components (List[str]) – The components to freeze.

unfreeze_components(components: List[str])
Unfreezes the parameters of the specified components.
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Components string refers to keys in self.components.

Parameters
components (List[str]) – The components to unfreeze.

fit_generator(generator: Iterable[Tuple[Any, Any, Any]], max_checkpoints_to_keep: int = 5,
checkpoint_interval: int = 1000, restore: bool = False, variables: List[Parameter] |
ParameterList | None = None, loss: Callable[[List, List, List], Any] | None = None,
callbacks: Callable | List[Callable] = [], all_losses: List[float] | None = None)→ float

Train this model on data from a generator. This method is similar to the TorchModel implementation, but
it passes the inputs directly to the loss function, rather than passing them through the model first. This
enables the loss to be calculated from intermediate steps of the model and not just the final output.

Parameters
• generator (generator) – this should generate batches, each represented as a tuple of the

form (inputs, labels, weights).

• max_checkpoints_to_keep (int) – the maximum number of checkpoints to keep. Older
checkpoints are discarded.

• checkpoint_interval (int) – the frequency at which to write checkpoints, measured
in training steps. Set this to 0 to disable automatic checkpointing.

• restore (bool) – if True, restore the model from the most recent checkpoint and continue
training from there. If False, retrain the model from scratch.

• variables (list of torch.nn.Parameter) – the variables to train. If None (the de-
fault), all trainable variables in the model are used.

• loss (function) – a function of the form f(outputs, labels, weights) that computes the
loss for each batch. If None (the default), the model’s standard loss function is used.

• callbacks (function or list of functions) – one or more functions of the form
f(model, step) that will be invoked after every step. This can be used to perform validation,
logging, etc.

• all_losses (Optional[List[float]], optional (default None)) – If speci-
fied, all logged losses are appended into this list. Note that you can call fit() repeatedly
with the same list and losses will continue to be appended.

Return type
The average loss over the most recent checkpoint interval

load_from_pretrained(source_model: ModularTorchModel | None = None, components: List[str] | None
= None, checkpoint: str | None = None, model_dir: str | None = None, inputs:
Sequence[Any] | None = None, **kwargs)→ None

Copies parameter values from a pretrained model. The pretrained model can be loaded as a source_model
(ModularTorchModel object), checkpoint (pytorch .ckpt file) or a model_dir (directory with .ckpt files).
Specific components can be chosen by passing a list of strings with the desired component names. If both
a source_model and a checkpoint/model_dir are loaded, the source_model weights will be loaded.

Parameters
• source_model (dc.ModularTorchModel, required) – source_model can either be

the pretrained model or a dc.TorchModel with the same architecture as the pretrained
model. It is used to restore from a checkpoint, if value_map is None and to create a default
assignment map if assignment_map is None
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• checkpoint (str, default None) – the path to the checkpoint file to load. If this is
None, the most recent checkpoint will be chosen automatically. Call get_checkpoints() to
get a list of all available checkpoints

• model_dir (str, default None) – Restore source model from custom model directory
if needed

• inputs (List, input tensors for model) – if not None, then the weights are built
for both the source and self.

save_checkpoint(max_checkpoints_to_keep=5, model_dir=None)
Saves the current state of the model and its components as a checkpoint file in the specified model directory.
It maintains a maximum number of checkpoint files, deleting the oldest one when the limit is reached.

Parameters
• max_checkpoints_to_keep (int, default 5) – Maximum number of checkpoint

files to keep.

• model_dir (str, default None) – The directory to save the checkpoint file in. If None,
the model_dir specified in the constructor is used.

restore(components: List[str] | None = None, checkpoint: str | None = None, model_dir: str | None = None)
→ None

Restores the state of a ModularTorchModel from a checkpoint file.

If no checkpoint file is provided, it will use the latest checkpoint found in the model directory. If a list of
component names is provided, only the state of those components will be restored.

Parameters
• components (Optional[List[str]]) – A list of component names to restore. If None,

all components will be restored.

• checkpoint (Optional[str]) – The path to the checkpoint file. If None, the latest check-
point in the model directory will be used.

• model_dir (Optional[str]) – The path to the model directory. If None, the model
directory used to initialize the model will be used.

3.18.3 CNN

class CNN(n_tasks: int, n_features: int, dims: int, layer_filters: List[int] = [100], kernel_size: int | Sequence[int]
= 5, strides: int | Sequence[int] = 1, weight_init_stddevs: float | Sequence[float] = 0.02,
bias_init_consts: float | Sequence[float] = 1.0, weight_decay_penalty: float = 0.0,
weight_decay_penalty_type: str = 'l2', dropouts: float | Sequence[float] = 0.5, activation_fns: Callable
| str | Sequence[Callable | str] = 'relu', pool_type: str = 'max', mode: str = 'classification', n_classes:
int = 2, uncertainty: bool = False, residual: bool = False, padding: int | str = 'valid', **kwargs)

A 1, 2, or 3 dimensional convolutional network for either regression or classification.

The network consists of the following sequence of layers:

• A configurable number of convolutional layers

• A global pooling layer (either max pool or average pool)

• A final fully connected layer to compute the output

It optionally can compose the model from pre-activation residual blocks, as described in https://arxiv.org/abs/
1603.05027, rather than a simple stack of convolution layers. This often leads to easier training, especially when
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using a large number of layers. Note that residual blocks can only be used when successive layers have the same
output shape. Wherever the output shape changes, a simple convolution layer will be used even if residual=True.

Examples

>>> import deepchem as dc
>>> n_samples = 10
>>> n_features = 3
>>> n_tasks = 1
>>> np.random.seed(123)
>>> X = np.random.rand(n_samples, 10, n_features)
>>> y = np.random.randint(2, size=(n_samples, n_tasks)).astype(np.float32)
>>> dataset: dc.data.Dataset = dc.data.NumpyDataset(X, y)
>>> regression_metric = dc.metrics.Metric(dc.metrics.mean_squared_error)
>>> model = CNN(n_tasks, n_features, dims=1, kernel_size=3, mode='regression')
>>> avg_loss = model.fit(dataset, nb_epoch=10)

__init__(n_tasks: int, n_features: int, dims: int, layer_filters: List[int] = [100], kernel_size: int |
Sequence[int] = 5, strides: int | Sequence[int] = 1, weight_init_stddevs: float | Sequence[float] =
0.02, bias_init_consts: float | Sequence[float] = 1.0, weight_decay_penalty: float = 0.0,
weight_decay_penalty_type: str = 'l2', dropouts: float | Sequence[float] = 0.5, activation_fns:
Callable | str | Sequence[Callable | str] = 'relu', pool_type: str = 'max', mode: str =
'classification', n_classes: int = 2, uncertainty: bool = False, residual: bool = False, padding: int |
str = 'valid', **kwargs)→ None

TorchModel wrapper for CNN

Parameters
• n_tasks (int) – number of tasks

• n_features (int) – number of features

• dims (int) – the number of dimensions to apply convolutions over (1, 2, or 3)

• layer_filters (list) – the number of output filters for each convolutional layer in the
network. The length of this list determines the number of layers.

• kernel_size (int, tuple, or list) – a list giving the shape of the convolutional
kernel for each layer. Each element may be either an int (use the same kernel width for
every dimension) or a tuple (the kernel width along each dimension). Alternatively this
may be a single int or tuple instead of a list, in which case the same kernel shape is used
for every layer.

• strides (int, tuple, or list) – a list giving the stride between applications of the
kernel for each layer. Each element may be either an int (use the same stride for every
dimension) or a tuple (the stride along each dimension). Alternatively this may be a single
int or tuple instead of a list, in which case the same stride is used for every layer.

• weight_init_stddevs (list or float) – the standard deviation of the distribu-
tion to use for weight initialization of each layer. The length of this list should equal
len(layer_filters)+1, where the final element corresponds to the dense layer. Alternatively
this may be a single value instead of a list, in which case the same value is used for every
layer.

• bias_init_consts (list or float) – the value to initialize the biases in each layer to.
The length of this list should equal len(layer_filters)+1, where the final element corresponds
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to the dense layer. Alternatively this may be a single value instead of a list, in which case
the same value is used for every layer.

• weight_decay_penalty (float) – the magnitude of the weight decay penalty to use

• weight_decay_penalty_type (str) – the type of penalty to use for weight decay, either
‘l1’ or ‘l2’

• dropouts (list or float) – the dropout probability to use for each layer. The length
of this list should equal len(layer_filters). Alternatively this may be a single value instead
of a list, in which case the same value is used for every layer

• activation_fns (str or list) – the torch activation function to apply to each layer.
The length of this list should equal len(layer_filters). Alternatively this may be a single
value instead of a list, in which case the same value is used for every layer, ‘relu’ by default

• pool_type (str) – the type of pooling layer to use, either ‘max’ or ‘average’

• mode (str) – Either ‘classification’ or ‘regression’

• n_classes (int) – the number of classes to predict (only used in classification mode)

• uncertainty (bool) – if True, include extra outputs and loss terms to enable the uncer-
tainty in outputs to be predicted

• residual (bool) – if True, the model will be composed of pre-activation residual blocks
instead of a simple stack of convolutional layers.

• padding (str, int or tuple) – the padding to use for convolutional layers, either
‘valid’ or ‘same’

default_generator(dataset, epochs=1, mode='fit', deterministic=True, pad_batches=True)
Create a generator that iterates batches for a dataset.

Subclasses may override this method to customize how model inputs are generated from the data.

Parameters
• dataset (Dataset) – the data to iterate

• epochs (int) – the number of times to iterate over the full dataset

• mode (str) – allowed values are ‘fit’ (called during training), ‘predict’ (called during pre-
diction), and ‘uncertainty’ (called during uncertainty prediction)

• deterministic (bool) – whether to iterate over the dataset in order, or randomly shuffle
the data for each epoch

• pad_batches (bool) – whether to pad each batch up to this model’s preferred batch size

Returns
• a generator that iterates batches, each represented as a tuple of lists

• ([inputs], [outputs], [weights])
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3.18.4 MultitaskRegressor

class MultitaskRegressor(n_tasks: int, n_features: int, layer_sizes: Sequence[int] = [1000],
weight_init_stddevs: float | Sequence[float] = 0.02, bias_init_consts: float |
Sequence[float] = 1.0, weight_decay_penalty: float = 0.0,
weight_decay_penalty_type: str = 'l2', dropouts: float | Sequence[float] = 0.5,
activation_fns: Callable | str | Sequence[Callable | str] = 'relu', uncertainty: bool =
False, residual: bool = False, **kwargs)

A fully connected network for multitask regression.

This class provides lots of options for customizing aspects of the model: the number and widths of layers, the
activation functions, regularization methods, etc.

It optionally can compose the model from pre-activation residual blocks, as described in https://arxiv.org/abs/
1603.05027, rather than a simple stack of dense layers. This often leads to easier training, especially when using
a large number of layers. Note that residual blocks can only be used when successive layers have the same width.
Wherever the layer width changes, a simple dense layer will be used even if residual=True.

__init__(n_tasks: int, n_features: int, layer_sizes: Sequence[int] = [1000], weight_init_stddevs: float |
Sequence[float] = 0.02, bias_init_consts: float | Sequence[float] = 1.0, weight_decay_penalty:
float = 0.0, weight_decay_penalty_type: str = 'l2', dropouts: float | Sequence[float] = 0.5,
activation_fns: Callable | str | Sequence[Callable | str] = 'relu', uncertainty: bool = False,
residual: bool = False, **kwargs)→ None

Create a MultitaskRegressor.

In addition to the following arguments, this class also accepts all the keywork arguments from TensorGraph.

Parameters
• n_tasks (int) – number of tasks

• n_features (int) – number of features

• layer_sizes (list) – the size of each dense layer in the network. The length of this list
determines the number of layers.

• weight_init_stddevs (list or float) – the standard deviation of the distribu-
tion to use for weight initialization of each layer. The length of this list should equal
len(layer_sizes)+1. The final element corresponds to the output layer. Alternatively this
may be a single value instead of a list, in which case the same value is used for every layer.

• bias_init_consts (list or float) – the value to initialize the biases in each layer
to. The length of this list should equal len(layer_sizes)+1. The final element corresponds
to the output layer. Alternatively this may be a single value instead of a list, in which case
the same value is used for every layer.

• weight_decay_penalty (float) – the magnitude of the weight decay penalty to use

• weight_decay_penalty_type (str) – the type of penalty to use for weight decay, either
‘l1’ or ‘l2’

• dropouts (list or float) – the dropout probablity to use for each layer. The length of
this list should equal len(layer_sizes). Alternatively this may be a single value instead of a
list, in which case the same value is used for every layer.

• activation_fns (list or object) – the PyTorch activation function to apply to each
layer. The length of this list should equal len(layer_sizes). Alternatively this may be a
single value instead of a list, in which case the same value is used for every layer. Standard
activation functions from torch.nn.functional can be specified by name.
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• uncertainty (bool) – if True, include extra outputs and loss terms to enable the uncer-
tainty in outputs to be predicted

• residual (bool) – if True, the model will be composed of pre-activation residual blocks
instead of a simple stack of dense layers.

default_generator(dataset: Dataset, epochs: int = 1, mode: str = 'fit', deterministic: bool = True,
pad_batches: bool = True)→ Iterable[Tuple[List, List, List]]

Create a generator that iterates batches for a dataset.

Subclasses may override this method to customize how model inputs are generated from the data.

Parameters
• dataset (Dataset) – the data to iterate

• epochs (int) – the number of times to iterate over the full dataset

• mode (str) – allowed values are ‘fit’ (called during training), ‘predict’ (called during pre-
diction), and ‘uncertainty’ (called during uncertainty prediction)

• deterministic (bool) – whether to iterate over the dataset in order, or randomly shuffle
the data for each epoch

• pad_batches (bool) – whether to pad each batch up to this model’s preferred batch size

Returns
• a generator that iterates batches, each represented as a tuple of lists

• ([inputs], [outputs], [weights])

3.18.5 MultitaskFitTransformRegressor

class MultitaskFitTransformRegressor(n_tasks: int, n_features: int, fit_transformers:
Sequence[Transformer] = [], batch_size: int = 50, **kwargs)

Implements a MultitaskRegressor that performs on-the-fly transformation during fit/predict.

Examples

>>> n_samples = 10
>>> n_features = 3
>>> n_tasks = 1
>>> ids = np.arange(n_samples)
>>> X = np.random.rand(n_samples, n_features, n_features)
>>> y = np.zeros((n_samples, n_tasks))
>>> w = np.ones((n_samples, n_tasks))
>>> dataset = dc.data.NumpyDataset(X, y, w, ids)
>>> fit_transformers = [dc.trans.CoulombFitTransformer(dataset)]
>>> model = dc.models.MultitaskFitTransformRegressor(n_tasks, [n_features, n_
→˓features],
... dropouts=[0.], learning_rate=0.003, weight_init_stddevs=[np.sqrt(6)/np.
→˓sqrt(1000)],
... batch_size=n_samples, fit_transformers=fit_transformers)
>>> model.n_features
12
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__init__(n_tasks: int, n_features: int, fit_transformers: Sequence[Transformer] = [], batch_size: int = 50,
**kwargs)

Create a MultitaskFitTransformRegressor.

In addition to the following arguments, this class also accepts all the keywork arguments from MultitaskRe-
gressor.

Parameters
• n_tasks (int) – number of tasks

• n_features (list or int) – number of features

• fit_transformers (list) – List of dc.trans.FitTransformer objects

default_generator(dataset: Dataset, epochs: int = 1, mode: str = 'fit', deterministic: bool = True,
pad_batches: bool = True)→ Iterable[Tuple[List, List, List]]

Create a generator that iterates batches for a dataset.

Subclasses may override this method to customize how model inputs are generated from the data.

Parameters
• dataset (Dataset) – the data to iterate

• epochs (int) – the number of times to iterate over the full dataset

• mode (str) – allowed values are ‘fit’ (called during training), ‘predict’ (called during pre-
diction), and ‘uncertainty’ (called during uncertainty prediction)

• deterministic (bool) – whether to iterate over the dataset in order, or randomly shuffle
the data for each epoch

• pad_batches (bool) – whether to pad each batch up to this model’s preferred batch size

Returns
• a generator that iterates batches, each represented as a tuple of lists

• ([inputs], [outputs], [weights])

predict_on_generator(generator: Iterable[Tuple[Any, Any, Any]], transformers: List[Transformer] = [],
output_types: str | Sequence[str] | None = None)→ ndarray | Sequence[ndarray]

Parameters
• generator (generator) – this should generate batches, each represented as a tuple of the

form (inputs, labels, weights).

• transformers (list of dc.trans.Transformers) – Transformers that the input data
has been transformed by. The output is passed through these transformers to undo the
transformations.

• output_types (String or list of Strings) – If specified, all outputs of this type
will be retrieved from the model. If output_types is specified, outputs must be None.

• Returns – a NumPy array of the model produces a single output, or a list of arrays if it
produces multiple outputs
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3.18.6 MultitaskClassifier

class MultitaskClassifier(n_tasks: int, n_features: int, layer_sizes: Sequence[int] = [1000],
weight_init_stddevs: float | Sequence[float] = 0.02, bias_init_consts: float |
Sequence[float] = 1.0, weight_decay_penalty: float = 0.0,
weight_decay_penalty_type: str = 'l2', dropouts: float | Sequence[float] = 0.5,
activation_fns: Callable | str | Sequence[Callable | str] = 'relu', n_classes: int = 2,
residual: bool = False, **kwargs)

A fully connected network for multitask classification.

This class provides lots of options for customizing aspects of the model: the number and widths of layers, the
activation functions, regularization methods, etc.

It optionally can compose the model from pre-activation residual blocks, as described in https://arxiv.org/abs/
1603.05027, rather than a simple stack of dense layers. This often leads to easier training, especially when using
a large number of layers. Note that residual blocks can only be used when successive layers have the same width.
Wherever the layer width changes, a simple dense layer will be used even if residual=True.

__init__(n_tasks: int, n_features: int, layer_sizes: Sequence[int] = [1000], weight_init_stddevs: float |
Sequence[float] = 0.02, bias_init_consts: float | Sequence[float] = 1.0, weight_decay_penalty:
float = 0.0, weight_decay_penalty_type: str = 'l2', dropouts: float | Sequence[float] = 0.5,
activation_fns: Callable | str | Sequence[Callable | str] = 'relu', n_classes: int = 2, residual: bool
= False, **kwargs)→ None

Create a MultitaskClassifier.

In addition to the following arguments, this class also accepts all the keyword arguments from TensorGraph.

Parameters
• n_tasks (int) – number of tasks

• n_features (int) – number of features

• layer_sizes (list) – the size of each dense layer in the network. The length of this list
determines the number of layers.

• weight_init_stddevs (list or float) – the standard deviation of the distribu-
tion to use for weight initialization of each layer. The length of this list should equal
len(layer_sizes). Alternatively this may be a single value instead of a list, in which case the
same value is used for every layer.

• bias_init_consts (list or float) – the value to initialize the biases in each layer
to. The length of this list should equal len(layer_sizes). Alternatively this may be a single
value instead of a list, in which case the same value is used for every layer.

• weight_decay_penalty (float) – the magnitude of the weight decay penalty to use

• weight_decay_penalty_type (str) – the type of penalty to use for weight decay, either
‘l1’ or ‘l2’

• dropouts (list or float) – the dropout probablity to use for each layer. The length of
this list should equal len(layer_sizes). Alternatively this may be a single value instead of a
list, in which case the same value is used for every layer.

• activation_fns (list or object) – the PyTorch activation function to apply to each
layer. The length of this list should equal len(layer_sizes). Alternatively this may be a
single value instead of a list, in which case the same value is used for every layer. Standard
activation functions from torch.nn.functional can be specified by name.

• n_classes (int) – the number of classes
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• residual (bool) – if True, the model will be composed of pre-activation residual blocks
instead of a simple stack of dense layers.

default_generator(dataset: Dataset, epochs: int = 1, mode: str = 'fit', deterministic: bool = True,
pad_batches: bool = True)→ Iterable[Tuple[List, List, List]]

Create a generator that iterates batches for a dataset.

Subclasses may override this method to customize how model inputs are generated from the data.

Parameters
• dataset (Dataset) – the data to iterate

• epochs (int) – the number of times to iterate over the full dataset

• mode (str) – allowed values are ‘fit’ (called during training), ‘predict’ (called during pre-
diction), and ‘uncertainty’ (called during uncertainty prediction)

• deterministic (bool) – whether to iterate over the dataset in order, or randomly shuffle
the data for each epoch

• pad_batches (bool) – whether to pad each batch up to this model’s preferred batch size

Returns
• a generator that iterates batches, each represented as a tuple of lists

• ([inputs], [outputs], [weights])

3.18.7 CGCNNModel

class CGCNNModel(in_node_dim: int = 92, hidden_node_dim: int = 64, in_edge_dim: int = 41, num_conv: int =
3, predictor_hidden_feats: int = 128, n_tasks: int = 1, mode: str = 'regression', n_classes: int
= 2, **kwargs)

Crystal Graph Convolutional Neural Network (CGCNN).

Here is a simple example of code that uses the CGCNNModel with materials dataset.

Examples

>>> import deepchem as dc
>>> dataset_config = {"reload": False, "featurizer": dc.feat.CGCNNFeaturizer(),
→˓"transformers": []}
>>> tasks, datasets, transformers = dc.molnet.load_perovskite(**dataset_config)
>>> train, valid, test = datasets
>>> model = dc.models.CGCNNModel(mode='regression', batch_size=32, learning_rate=0.
→˓001)
>>> avg_loss = model.fit(train, nb_epoch=50)

This model takes arbitary crystal structures as an input, and predict material properties using the element infor-
mation and connection of atoms in the crystal. If you want to get some material properties which has a high
computational cost like band gap in the case of DFT, this model may be useful. This model is one of variants of
Graph Convolutional Networks. The main differences between other GCN models are how to construct graphs
and how to update node representations. This model defines the crystal graph from structures using distances
between atoms. The crystal graph is an undirected multigraph which is defined by nodes representing atom
properties and edges representing connections between atoms in a crystal. And, this model updates the node
representations using both neighbor node and edge representations. Please confirm the detail algorithms from
[1]_.
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References

Notes

This class requires DGL and PyTorch to be installed.

__init__(in_node_dim: int = 92, hidden_node_dim: int = 64, in_edge_dim: int = 41, num_conv: int = 3,
predictor_hidden_feats: int = 128, n_tasks: int = 1, mode: str = 'regression', n_classes: int = 2,
**kwargs)

This class accepts all the keyword arguments from TorchModel.

Parameters
• in_node_dim (int, default 92) – The length of the initial node feature vectors. The

92 is based on length of vectors in the atom_init.json.

• hidden_node_dim (int, default 64) – The length of the hidden node feature vectors.

• in_edge_dim (int, default 41) – The length of the initial edge feature vectors. The
41 is based on default setting of CGCNNFeaturizer.

• num_conv (int, default 3) – The number of convolutional layers.

• predictor_hidden_feats (int, default 128) – The size for hidden representations
in the output MLP predictor.

• n_tasks (int, default 1) – The number of the output size.

• mode (str, default 'regression') – The model type, ‘classification’ or ‘regression’.

• n_classes (int, default 2) – The number of classes to predict (only used in classifi-
cation mode).

• kwargs (Dict) – This class accepts all the keyword arguments from TorchModel.

3.18.8 GATModel

class GATModel(n_tasks: int, graph_attention_layers: list | None = None, n_attention_heads: int = 8,
agg_modes: list | None = None, activation=<function elu>, residual: bool = True, dropout: float
= 0.0, alpha: float = 0.2, predictor_hidden_feats: int = 128, predictor_dropout: float = 0.0,
mode: str = 'regression', number_atom_features: int = 30, n_classes: int = 2, self_loop: bool =
True, **kwargs)

Model for Graph Property Prediction Based on Graph Attention Networks (GAT).

This model proceeds as follows:

• Update node representations in graphs with a variant of GAT

• For each graph, compute its representation by 1) a weighted sum of the node
representations in the graph, where the weights are computed by applying a gating function to the node
representations 2) a max pooling of the node representations 3) concatenating the output of 1) and 2)

• Perform the final prediction using an MLP
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Examples

>>> import deepchem as dc
>>> from deepchem.models import GATModel
>>> # preparing dataset
>>> smiles = ["C1CCC1", "C1=CC=CN=C1"]
>>> labels = [0., 1.]
>>> featurizer = dc.feat.MolGraphConvFeaturizer()
>>> X = featurizer.featurize(smiles)
>>> dataset = dc.data.NumpyDataset(X=X, y=labels)
>>> # training model
>>> model = GATModel(mode='classification', n_tasks=1,
... batch_size=16, learning_rate=0.001)
>>> loss = model.fit(dataset, nb_epoch=5)

References

Notes

This class requires DGL (https://github.com/dmlc/dgl) and DGL-LifeSci (https://github.com/awslabs/
dgl-lifesci) to be installed.

__init__(n_tasks: int, graph_attention_layers: list | None = None, n_attention_heads: int = 8, agg_modes:
list | None = None, activation=<function elu>, residual: bool = True, dropout: float = 0.0, alpha:
float = 0.2, predictor_hidden_feats: int = 128, predictor_dropout: float = 0.0, mode: str =
'regression', number_atom_features: int = 30, n_classes: int = 2, self_loop: bool = True,
**kwargs)

Parameters
• n_tasks (int) – Number of tasks.

• graph_attention_layers (list of int) – Width of channels per attention head for
GAT layers. graph_attention_layers[i] gives the width of channel for each attention head
for the i-th GAT layer. If both graph_attention_layers and agg_modes are specified,
they should have equal length. If not specified, the default value will be [8, 8].

• n_attention_heads (int) – Number of attention heads in each GAT layer.

• agg_modes (list of str) – The way to aggregate multi-head attention results for each
GAT layer, which can be either ‘flatten’ for concatenating all-head results or ‘mean’ for
averaging all-head results. agg_modes[i] gives the way to aggregate multi-head attention
results for the i-th GAT layer. If both graph_attention_layers and agg_modes are
specified, they should have equal length. If not specified, the model will flatten multi-head
results for intermediate GAT layers and compute mean of multi-head results for the last
GAT layer.

• activation (activation function or None) – The activation function to apply to
the aggregated multi-head results for each GAT layer. If not specified, the default value
will be ELU.

• residual (bool) – Whether to add a residual connection within each GAT layer. Default
to True.

• dropout (float) – The dropout probability within each GAT layer. Default to 0.
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• alpha (float) – A hyperparameter in LeakyReLU, which is the slope for negative values.
Default to 0.2.

• predictor_hidden_feats (int) – The size for hidden representations in the output MLP
predictor. Default to 128.

• predictor_dropout (float) – The dropout probability in the output MLP predictor.
Default to 0.

• mode (str) – The model type, ‘classification’ or ‘regression’. Default to ‘regression’.

• number_atom_features (int) – The length of the initial atom feature vectors. Default
to 30.

• n_classes (int) – The number of classes to predict per task (only used when mode is
‘classification’). Default to 2.

• self_loop (bool) – Whether to add self loops for the nodes, i.e. edges from nodes to
themselves. When input graphs have isolated nodes, self loops allow preserving the original
feature of them in message passing. Default to True.

• kwargs – This can include any keyword argument of TorchModel.

3.18.9 GCNModel

class GCNModel(n_tasks: int, graph_conv_layers: list | None = None, activation=None, residual: bool = True,
batchnorm: bool = False, dropout: float = 0.0, predictor_hidden_feats: int = 128,
predictor_dropout: float = 0.0, mode: str = 'regression', number_atom_features=30, n_classes:
int = 2, self_loop: bool = True, **kwargs)

Model for Graph Property Prediction Based on Graph Convolution Networks (GCN).

This model proceeds as follows:

• Update node representations in graphs with a variant of GCN

• For each graph, compute its representation by 1) a weighted sum of the node
representations in the graph, where the weights are computed by applying a gating function to the node
representations 2) a max pooling of the node representations 3) concatenating the output of 1) and 2)

• Perform the final prediction using an MLP

Examples

>>> import deepchem as dc
>>> from deepchem.models import GCNModel
>>> # preparing dataset
>>> smiles = ["C1CCC1", "CCC"]
>>> labels = [0., 1.]
>>> featurizer = dc.feat.MolGraphConvFeaturizer()
>>> X = featurizer.featurize(smiles)
>>> dataset = dc.data.NumpyDataset(X=X, y=labels)
>>> # training model
>>> model = GCNModel(mode='classification', n_tasks=1,
... batch_size=16, learning_rate=0.001)
>>> loss = model.fit(dataset, nb_epoch=5)
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References

Notes

This class requires DGL (https://github.com/dmlc/dgl) and DGL-LifeSci (https://github.com/awslabs/
dgl-lifesci) to be installed.

This model is different from deepchem.models.GraphConvModel as follows:

• For each graph convolution, the learnable weight in this model is shared across all nodes.
GraphConvModel employs separate learnable weights for nodes of different degrees. A learnable
weight is shared across all nodes of a particular degree.

• For GraphConvModel, there is an additional GraphPool operation after each
graph convolution. The operation updates the representation of a node by applying an element-wise
maximum over the representations of its neighbors and itself.

• For computing graph-level representations, this model computes a weighted sum and an
element-wise maximum of the representations of all nodes in a graph and concatenates them.
The node weights are obtained by using a linear/dense layer followd by a sigmoid function. For
GraphConvModel, the sum over node representations is unweighted.

• There are various minor differences in using dropout, skip connection and batch
normalization.

__init__(n_tasks: int, graph_conv_layers: list | None = None, activation=None, residual: bool = True,
batchnorm: bool = False, dropout: float = 0.0, predictor_hidden_feats: int = 128,
predictor_dropout: float = 0.0, mode: str = 'regression', number_atom_features=30, n_classes: int
= 2, self_loop: bool = True, **kwargs)

Parameters
• n_tasks (int) – Number of tasks.

• graph_conv_layers (list of int) – Width of channels for GCN layers.
graph_conv_layers[i] gives the width of channel for the i-th GCN layer. If not spec-
ified, the default value will be [64, 64].

• activation (callable) – The activation function to apply to the output of each GCN
layer. By default, no activation function will be applied.

• residual (bool) – Whether to add a residual connection within each GCN layer. Default
to True.

• batchnorm (bool) – Whether to apply batch normalization to the output of each GCN
layer. Default to False.

• dropout (float) – The dropout probability for the output of each GCN layer. Default to
0.

• predictor_hidden_feats (int) – The size for hidden representations in the output MLP
predictor. Default to 128.

• predictor_dropout (float) – The dropout probability in the output MLP predictor.
Default to 0.

• mode (str) – The model type, ‘classification’ or ‘regression’. Default to ‘regression’.

• number_atom_features (int) – The length of the initial atom feature vectors. Default
to 30.

• n_classes (int) – The number of classes to predict per task (only used when mode is
‘classification’). Default to 2.

3.18. PyTorch Models 363

https://github.com/dmlc/dgl
https://github.com/awslabs/dgl-lifesci
https://github.com/awslabs/dgl-lifesci


deepchem, Release 2.8.0

• self_loop (bool) – Whether to add self loops for the nodes, i.e. edges from nodes to
themselves. When input graphs have isolated nodes, self loops allow preserving the original
feature of them in message passing. Default to True.

• kwargs – This can include any keyword argument of TorchModel.

3.18.10 AttentiveFPModel

class AttentiveFPModel(n_tasks: int, num_layers: int = 2, num_timesteps: int = 2, graph_feat_size: int = 200,
dropout: float = 0.0, mode: str = 'regression', number_atom_features: int = 30,
number_bond_features: int = 11, n_classes: int = 2, self_loop: bool = True,
**kwargs)

Model for Graph Property Prediction.

This model proceeds as follows:

• Combine node features and edge features for initializing node representations,
which involves a round of message passing

• Update node representations with multiple rounds of message passing

• For each graph, compute its representation by combining the representations
of all nodes in it, which involves a gated recurrent unit (GRU).

• Perform the final prediction using a linear layer

Examples

>>> import deepchem as dc
>>> from deepchem.models import AttentiveFPModel
>>> # preparing dataset
>>> smiles = ["C1CCC1", "C1=CC=CN=C1"]
>>> labels = [0., 1.]
>>> featurizer = dc.feat.MolGraphConvFeaturizer(use_edges=True)
>>> X = featurizer.featurize(smiles)
>>> dataset = dc.data.NumpyDataset(X=X, y=labels)
>>> # training model
>>> model = AttentiveFPModel(mode='classification', n_tasks=1,
... batch_size=16, learning_rate=0.001)
>>> loss = model.fit(dataset, nb_epoch=5)

References

Notes

This class requires DGL (https://github.com/dmlc/dgl) and DGL-LifeSci (https://github.com/awslabs/
dgl-lifesci) to be installed.

__init__(n_tasks: int, num_layers: int = 2, num_timesteps: int = 2, graph_feat_size: int = 200, dropout:
float = 0.0, mode: str = 'regression', number_atom_features: int = 30, number_bond_features: int
= 11, n_classes: int = 2, self_loop: bool = True, **kwargs)

Parameters
• n_tasks (int) – Number of tasks.
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• num_layers (int) – Number of graph neural network layers, i.e. number of rounds of
message passing. Default to 2.

• num_timesteps (int) – Number of time steps for updating graph representations with a
GRU. Default to 2.

• graph_feat_size (int) – Size for graph representations. Default to 200.

• dropout (float) – Dropout probability. Default to 0.

• mode (str) – The model type, ‘classification’ or ‘regression’. Default to ‘regression’.

• number_atom_features (int) – The length of the initial atom feature vectors. Default
to 30.

• number_bond_features (int) – The length of the initial bond feature vectors. Default
to 11.

• n_classes (int) – The number of classes to predict per task (only used when mode is
‘classification’). Default to 2.

• self_loop (bool) – Whether to add self loops for the nodes, i.e. edges from nodes to
themselves. When input graphs have isolated nodes, self loops allow preserving the original
feature of them in message passing. Default to True.

• kwargs – This can include any keyword argument of TorchModel.

3.18.11 PagtnModel

class PagtnModel(n_tasks: int, number_atom_features: int = 94, number_bond_features: int = 42, mode: str =
'regression', n_classes: int = 2, output_node_features: int = 256, hidden_features: int = 32,
num_layers: int = 5, num_heads: int = 1, dropout: float = 0.1, pool_mode: str = 'sum',
**kwargs)

Model for Graph Property Prediction.

This model proceeds as follows:

• Update node representations in graphs with a variant of GAT, where a
linear additive form of attention is applied. Attention Weights are derived by concatenating the node
and edge features for each bond.

• Update node representations with multiple rounds of message passing.

• For each layer has, residual connections with its previous layer.

• The final molecular representation is computed by combining the representations
of all nodes in the molecule.

• Perform the final prediction using a linear layer
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Examples

>>> import deepchem as dc
>>> from deepchem.models import PagtnModel
>>> # preparing dataset
>>> smiles = ["C1CCC1", "CCC"]
>>> labels = [0., 1.]
>>> featurizer = dc.feat.PagtnMolGraphFeaturizer(max_length=5)
>>> X = featurizer.featurize(smiles)
>>> dataset = dc.data.NumpyDataset(X=X, y=labels)
>>> # training model
>>> model = PagtnModel(mode='classification', n_tasks=1,
... batch_size=16, learning_rate=0.001)
>>> loss = model.fit(dataset, nb_epoch=5)

References

Notes

This class requires DGL (https://github.com/dmlc/dgl) and DGL-LifeSci (https://github.com/awslabs/
dgl-lifesci) to be installed.

__init__(n_tasks: int, number_atom_features: int = 94, number_bond_features: int = 42, mode: str =
'regression', n_classes: int = 2, output_node_features: int = 256, hidden_features: int = 32,
num_layers: int = 5, num_heads: int = 1, dropout: float = 0.1, pool_mode: str = 'sum', **kwargs)

Parameters
• n_tasks (int) – Number of tasks.

• number_atom_features (int) – Size for the input node features. Default to 94.

• number_bond_features (int) – Size for the input edge features. Default to 42.

• mode (str) – The model type, ‘classification’ or ‘regression’. Default to ‘regression’.

• n_classes (int) – The number of classes to predict per task (only used when mode is
‘classification’). Default to 2.

• output_node_features (int) – Size for the output node features in PAGTN layers. De-
fault to 256.

• hidden_features (int) – Size for the hidden node features in PAGTN layers. Default to
32.

• num_layers (int) – Number of graph neural network layers, i.e. number of rounds of
message passing. Default to 2.

• num_heads (int) – Number of attention heads. Default to 1.

• dropout (float) – Dropout probability. Default to 0.1

• pool_mode ('max' or 'mean' or 'sum') – Whether to compute elementwise maximum,
mean or sum of the node representations.

• kwargs – This can include any keyword argument of TorchModel.
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3.18.12 AtomConvModel

class AtomConvModel(n_tasks: int, frag1_num_atoms: int = 70, frag2_num_atoms: int = 634,
complex_num_atoms: int = 701, max_num_neighbors: int = 12, batch_size: int = 24,
atom_types: Sequence[float] = [6, 7.0, 8.0, 9.0, 11.0, 12.0, 15.0, 16.0, 17.0, 20.0, 25.0,
30.0, 35.0, 53.0, -1.0], radial: Sequence[Sequence[float]] = [[1.5, 2.0, 2.5, 3.0, 3.5, 4.0,
4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0, 10.5, 11.0, 11.5, 12.0], [0.0, 4.0, 8.0],
[0.4]], layer_sizes=[100], weight_init_stddevs: float | Sequence[float] = 0.02,
bias_init_consts: float | Sequence[float] = 1.0, weight_decay_penalty: float = 0.0,
weight_decay_penalty_type: str = 'l2', dropouts: float | Sequence[float] = 0.5,
activation_fns: Callable | str | Sequence[Callable | str] = ['relu'], residual: bool = False,
learning_rate=0.001, **kwargs)

An Atomic Convolutional Neural Network (ACNN) for energy score prediction.

The network follows the design of a graph convolutional network but in this case the graph is represented as a
3D structure of the molecule. The objective of this model is to train models and predict energetic state starting
from the spatial geometry of the model [1].

References

Examples

>>> from deepchem.models.torch_models import AtomConvModel
>>> from deepchem.data import NumpyDataset
>>> frag1_num_atoms = 100 # atoms for ligand
>>> frag2_num_atoms = 1200 # atoms for protein
>>> complex_num_atoms = frag1_num_atoms + frag2_num_atoms
>>> batch_size = 1
>>> # Initialize the model
>>> atomic_convnet = AtomConvModel(n_tasks=1,
... batch_size=batch_size,
... layer_sizes=[
... 10,
... ],
... frag1_num_atoms=frag1_num_atoms,
... frag2_num_atoms=frag2_num_atoms,
... complex_num_atoms=complex_num_atoms)
>>> # Creates a set of dummy features that contain the coordinate and
>>> # neighbor-list features required by the AtomicConvModel.
>>> # Preparing the dataset
>>> features = []
>>> frag1_coords = np.random.rand(frag1_num_atoms, 3)
>>> frag1_nbr_list = {i: [] for i in range(frag1_num_atoms)}
>>> frag1_z = np.random.randint(10, size=(frag1_num_atoms))
>>> frag2_coords = np.random.rand(frag2_num_atoms, 3)
>>> frag2_nbr_list = {i: [] for i in range(frag2_num_atoms)}
>>> frag2_z = np.random.randint(10, size=(frag2_num_atoms))
>>> system_coords = np.random.rand(complex_num_atoms, 3)
>>> system_nbr_list = {i: [] for i in range(complex_num_atoms)}
>>> system_z = np.random.randint(10, size=(complex_num_atoms))
>>> features.append((frag1_coords, frag1_nbr_list, frag1_z, frag2_coords, frag2_nbr_
→˓list, frag2_z, system_coords, system_nbr_list, system_z))

(continues on next page)
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(continued from previous page)

>>> features = np.asarray(features, dtype=object)
>>> labels = np.zeros(batch_size)
>>> train = NumpyDataset(features, labels)
>>> _ = atomic_convnet.fit(train, nb_epoch=1)
>>> preds = atomic_convnet.predict(train)

__init__(n_tasks: int, frag1_num_atoms: int = 70, frag2_num_atoms: int = 634, complex_num_atoms: int
= 701, max_num_neighbors: int = 12, batch_size: int = 24, atom_types: Sequence[float] = [6, 7.0,
8.0, 9.0, 11.0, 12.0, 15.0, 16.0, 17.0, 20.0, 25.0, 30.0, 35.0, 53.0, -1.0], radial:
Sequence[Sequence[float]] = [[1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5,
9.0, 9.5, 10.0, 10.5, 11.0, 11.5, 12.0], [0.0, 4.0, 8.0], [0.4]], layer_sizes=[100],
weight_init_stddevs: float | Sequence[float] = 0.02, bias_init_consts: float | Sequence[float] = 1.0,
weight_decay_penalty: float = 0.0, weight_decay_penalty_type: str = 'l2', dropouts: float |
Sequence[float] = 0.5, activation_fns: Callable | str | Sequence[Callable | str] = ['relu'], residual:
bool = False, learning_rate=0.001, **kwargs)→ None

TorchModel wrapper for ACNN

Parameters
• n_tasks (int) – number of tasks

• frag1_num_atoms (int) – Number of atoms in first fragment.

• frag2_num_atoms (int) – Number of atoms in second fragment.

• complex_num_atoms (int) – Number of atoms in complex.

• max_num_neighbors (int) – Maximum number of neighbors possible for an atom. Recall
neighbors are spatial neighbors.

• batch_size (int) – Size of the batch.

• atom_types (list) – List of atoms recognized by model. Atoms are indicated by their
nuclear numbers.

• radial (list) – Radial parameters used in the atomic convolution transformation.

• layer_sizes (list) – the size of each dense layer in the network. The length of this list
determines the number of layers.

• weight_init_stddevs (list or float) – the standard deviation of the distribu-
tion to use for weight initialization of each layer. The length of this list should equal
len(layer_sizes). Alternatively, this may be a single value instead of a list, where the same
value is used for every layer.

• bias_init_consts (list or float) – the value to initialize the biases in each layer.
The length of this list should equal len(layer_sizes). Alternatively, this may be a single
value instead of a list, where the same value is used for every layer.

• dropouts (list or float) – the dropout probability to use for each layer. The length
of this list should equal len(layer_sizes). Alternatively, this may be a single value instead
of a list, where the same value is used for every layer.

• activation_fns (list or object) – the Tensorflow activation function to apply to
each layer. The length of this list should equal len(layer_sizes). Alternatively, this may be
a single value instead of a list, where the same value is used for every layer.

• residual (bool) – Whether to use residual connections.

• learning_rate (float) – the learning rate to use for fitting.
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default_generator(dataset: Dataset, epochs: int = 1, mode: str = 'fit', deterministic: bool = True,
pad_batches: bool = True)→ Iterable[Tuple[List, List, List]]

Convert a dataset into the tensors needed for learning.

Parameters
• dataset (dc.data.Dataset) – Dataset to convert

• epochs (int, optional (Default 1)) – Number of times to walk over dataset

• mode (str, optional (Default 'fit')) – Ignored in this implementation.

• deterministic (bool, optional (Default True)) – Whether the dataset should be
walked in a deterministic fashion

• pad_batches (bool, optional (Default True)) – If true, each returned batch will
have size self.batch_size.

Return type
Iterator which walks over the batches

3.18.13 MPNNModel

Note that this is an alternative implementation for MPNN and currently you can only import it from deepchem.
models.torch_models.

class MPNNModel(n_tasks: int, node_out_feats: int = 64, edge_hidden_feats: int = 128,
num_step_message_passing: int = 3, num_step_set2set: int = 6, num_layer_set2set: int = 3,
mode: str = 'regression', number_atom_features: int = 30, number_bond_features: int = 11,
n_classes: int = 2, self_loop: bool = False, **kwargs)

Model for graph property prediction

This model proceeds as follows:

• Combine latest node representations and edge features in updating node representations,
which involves multiple rounds of message passing

• For each graph, compute its representation by combining the representations
of all nodes in it, which involves a Set2Set layer.

• Perform the final prediction using an MLP

Examples

>>> import deepchem as dc
>>> from deepchem.models.torch_models import MPNNModel
>>> # preparing dataset
>>> smiles = ["C1CCC1", "CCC"]
>>> labels = [0., 1.]
>>> featurizer = dc.feat.MolGraphConvFeaturizer(use_edges=True)
>>> X = featurizer.featurize(smiles)
>>> dataset = dc.data.NumpyDataset(X=X, y=labels)
>>> # training model
>>> model = MPNNModel(mode='classification', n_tasks=1,
... batch_size=16, learning_rate=0.001)
>>> loss = model.fit(dataset, nb_epoch=5)
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References

Notes

This class requires DGL (https://github.com/dmlc/dgl) and DGL-LifeSci (https://github.com/awslabs/
dgl-lifesci) to be installed.

The featurizer used with MPNNModel must produce a GraphData object which should have both ‘edge’ and
‘node’ features.

__init__(n_tasks: int, node_out_feats: int = 64, edge_hidden_feats: int = 128, num_step_message_passing:
int = 3, num_step_set2set: int = 6, num_layer_set2set: int = 3, mode: str = 'regression',
number_atom_features: int = 30, number_bond_features: int = 11, n_classes: int = 2, self_loop:
bool = False, **kwargs)

Parameters
• n_tasks (int) – Number of tasks.

• node_out_feats (int) – The length of the final node representation vectors. Default to
64.

• edge_hidden_feats (int) – The length of the hidden edge representation vectors. De-
fault to 128.

• num_step_message_passing (int) – The number of rounds of message passing. Default
to 3.

• num_step_set2set (int) – The number of set2set steps. Default to 6.

• num_layer_set2set (int) – The number of set2set layers. Default to 3.

• mode (str) – The model type, ‘classification’ or ‘regression’. Default to ‘regression’.

• number_atom_features (int) – The length of the initial atom feature vectors. Default
to 30.

• number_bond_features (int) – The length of the initial bond feature vectors. Default
to 11.

• n_classes (int) – The number of classes to predict per task (only used when mode is
‘classification’). Default to 2.

• self_loop (bool) – Whether to add self loops for the nodes, i.e. edges from nodes to
themselves. Generally, an MPNNModel does not require self loops. Default to False.

• kwargs – This can include any keyword argument of TorchModel.

3.18.14 InfoGraphModel

class InfoGraphModel(num_features, embedding_dim, num_gc_layers=5, prior=True, gamma=0.1,
measure='JSD', average_loss=True, task='pretraining', n_tasks: int | None = None,
n_classes: int | None = None, **kwargs)

InfoGraphMode

InfoGraphModel is a model which learn graph-level representation via unsupervised learning. To this end, the
model aims to maximize the mutual information between the representations of entire graphs and the represen-
tations of substructures of different granularity (eg. nodes, edges, triangles)

The unsupervised training of InfoGraph involves two encoders: one that encodes the entire graph and another that
encodes substructures of different sizes. The mutual information between the two encoder outputs is maximized
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using a contrastive loss function. The model randomly samples pairs of graphs and substructures, and then
maximizes their mutual information by minimizing their distance in a learned embedding space.

This can be used for downstream tasks such as graph classification and molecular property prediction.It is im-
plemented as a ModularTorchModel in order to facilitate transfer learning.

References

1. Sun, F.-Y., Hoffmann, J., Verma, V. & Tang, J. InfoGraph: Unsupervised and Semi-supervised Graph-
Level Representation Learning via Mutual Information Maximization. Preprint at http://arxiv.org/abs/
1908.01000 (2020).

Parameters
• num_features (int) – Number of node features for each input

• edge_features (int) – Number of edge features for each input

• embedding_dim (int) – Dimension of the embedding

• num_gc_layers (int) – Number of graph convolutional layers

• prior (bool) – Whether to use a prior expectation in the loss term

• gamma (float) – Weight of the prior expectation in the loss term

• measure (str) – The divergence measure to use for the unsupervised loss. Options are
‘GAN’, ‘JSD’, ‘KL’, ‘RKL’, ‘X2’, ‘DV’, ‘H2’, or ‘W1’.

• average_loss (bool) – Whether to average the loss over the batch

• n_classes (int) – Number of classses

Example

>>> from deepchem.models.torch_models.infograph import InfoGraphModel
>>> from deepchem.feat import MolGraphConvFeaturizer
>>> from deepchem.data import NumpyDataset
>>> import torch
>>> import numpy as np
>>> import tempfile
>>> tempdir = tempfile.TemporaryDirectory()
>>> smiles = ["C1CCC1", "C1=CC=CN=C1"]
>>> featurizer = MolGraphConvFeaturizer(use_edges=True)
>>> X = featurizer.featurize(smiles)
>>> y = torch.randint(0, 2, size=(2, 1)).float()
>>> w = torch.ones(size=(2, 1)).float()
>>> dataset = NumpyDataset(X, y, w)
>>> num_feat, edge_dim = 30, 11 # num feat and edge dim by molgraph conv featurizer
>>> pretrain_model = InfoGraphModel(num_feat, edge_dim, num_gc_layers=1, task=
→˓'pretraining', model_dir=tempdir.name)
>>> pretraining_loss = pretrain_model.fit(dataset, nb_epoch=1)
>>> pretrain_model.save_checkpoint()
>>> finetune_model = InfoGraphModel(num_feat, edge_dim, num_gc_layers=1, task=
→˓'regression', n_tasks=1, model_dir=tempdir.name)
>>> finetune_model.restore(components=['encoder'])

(continues on next page)
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>>> finetuning_loss = finetune_model.fit(dataset)
>>>
>>> # classification example
>>> n_classes, n_tasks = 2, 1
>>> classification_model = InfoGraphModel(num_feat, edge_dim, num_gc_layers=1, task=
→˓'classification', n_tasks=1, n_classes=2)
>>> y = np.random.randint(n_classes, size=(len(smiles), n_tasks)).astype(np.float64)
>>> dataset = NumpyDataset(X, y, w)
>>> loss = classification_model.fit(dataset, nb_epoch=1)

__init__(num_features, embedding_dim, num_gc_layers=5, prior=True, gamma=0.1, measure='JSD',
average_loss=True, task='pretraining', n_tasks: int | None = None, n_classes: int | None = None,
**kwargs)

Create a ModularTorchModel.

Parameters
• model (nn.Module) – The model to be trained.

• components (dict) – A dictionary of the components of the model. The keys are the
names of the components and the values are the components themselves.

build_components()→ dict
Build the components of the model. InfoGraph is an unsupervised molecular graph representation learning
model. It consists of an encoder, a local discriminator, a global discriminator, and a prior discriminator.

The unsupervised loss is calculated by the mutual information in embedding representations at all layers.

Components list, type and description:

encoder: GINEncoder, graph convolutional encoder

local_d: MultilayerPerceptron, local discriminator

global_d: MultilayerPerceptron, global discriminator

prior_d: MultilayerPerceptron, prior discriminator fc1: MultilayerPerceptron, dense layer used during fine-
tuning fc2: MultilayerPerceptron, dense layer used during finetuning

build_model()→ Module
Builds the final model from the components.

loss_func(inputs, labels, weights)
Defines the loss function for the model which can access the components using self.components. The loss
function should take the inputs, labels, and weights as arguments and return the loss.

restore(components: List[str] | None = None, checkpoint: str | None = None, model_dir: str | None = None,
map_location: device | None = None)→ None

Restores the state of a ModularTorchModel from a checkpoint file.

If no checkpoint file is provided, it will use the latest checkpoint found in the model directory. If a list of
component names is provided, only the state of those components will be restored.

Parameters
• components (Optional[List[str]]) – A list of component names to restore. If None,

all components will be restored.
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• checkpoint (Optional[str]) – The path to the checkpoint file. If None, the latest check-
point in the model directory will be used.

• model_dir (Optional[str]) – The path to the model directory. If None, the model
directory used to initialize the model will be used.

3.18.15 InfoGraphStarModel

class InfoGraphStarModel(num_features, edge_features, embedding_dim, task: Literal['supervised',
'semisupervised'] = 'supervised', mode: Literal['regression', 'classification'] =
'regression', num_classes=2, num_tasks=1, measure='JSD', average_loss=True,
num_gc_layers=5, **kwargs)

InfographStar is a semi-supervised graph convolutional network for predicting molecular properties. It aims to
maximize the mutual information between the graph-level representation and the representations of substructures
of different scales. It does this by producing graph-level encodings and substructure encodings, and then using
a discriminator to classify if they are from the same molecule or not.

Supervised training is done by using the graph-level encodings to predict the target property. Semi-supervised
training is done by adding a loss term that maximizes the mutual information between the graph-level encodings
and the substructure encodings to the supervised loss. These modes can be chosen by setting the training_mode
parameter.

To conduct training in unsupervised mode, use InfoGraphModel.

References

Parameters
• num_features (int) – Number of node features for each input

• edge_features (int) – Number of edge features for each input

• embedding_dim (int) – Dimension of the embedding

• training_mode (str) – The mode to use for training. Options are ‘supervised’, ‘semisu-
pervised’. For unsupervised training, use InfoGraphModel.

• measure (str) – The divergence measure to use for the unsupervised loss. Options are
‘GAN’, ‘JSD’, ‘KL’, ‘RKL’, ‘X2’, ‘DV’, ‘H2’, or ‘W1’.

• average_loss (bool) – Whether to average the loss over the batch

Examples

>>> from deepchem.models.torch_models import InfoGraphStarModel
>>> from deepchem.feat import MolGraphConvFeaturizer
>>> from deepchem.data import NumpyDataset
>>> import torch
>>> smiles = ["C1CCC1", "C1=CC=CN=C1"]
>>> featurizer = MolGraphConvFeaturizer(use_edges=True)
>>> X = featurizer.featurize(smiles)
>>> y = torch.randint(0, 2, size=(2, 1)).float()
>>> w = torch.ones(size=(2, 1)).float()
>>> ds = NumpyDataset(X, y, w)
>>> num_feat = max([ds.X[i].num_node_features for i in range(len(ds))])

(continues on next page)
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(continued from previous page)

>>> edge_dim = max([ds.X[i].num_edge_features for i in range(len(ds))])
>>> model = InfoGraphStarModel(num_feat, edge_dim, 15, training_mode='semisupervised
→˓')
>>> loss = model.fit(ds, nb_epoch=1)

__init__(num_features, edge_features, embedding_dim, task: Literal['supervised', 'semisupervised'] =
'supervised', mode: Literal['regression', 'classification'] = 'regression', num_classes=2,
num_tasks=1, measure='JSD', average_loss=True, num_gc_layers=5, **kwargs)

Create a ModularTorchModel.

Parameters
• model (nn.Module) – The model to be trained.

• components (dict) – A dictionary of the components of the model. The keys are the
names of the components and the values are the components themselves.

build_components()

Builds the components of the InfoGraphStar model. InfoGraphStar works by maximizing the mutual infor-
mation between the graph-level representation and the representations of substructures of different scales.

It does this by producing graph-level encodings and substructure encodings, and then using a discriminator
to classify if they are from the same molecule or not.

The encoder is a graph convolutional network that produces the graph-level encodings and substructure
encodings.

In a supervised training mode, only 1 encoder is used and the encodings are not compared, while in a
semi-supvervised training mode they are different in order to prevent negative transfer from the pretraining
stage.

The local discriminator is a multilayer perceptron that classifies if the substructure encodings are from the
same molecule or not while the global discriminator classifies if the graph-level encodings are from the
same molecule or not.

Components list, type and description:

encoder: InfoGraphEncoder

unsup_encoder: InfoGraphEncoder for supervised or GINEncoder for unsupervised training

ff1: MultilayerPerceptron, feedforward network

ff2: MultilayerPerceptron, feedforward network

fc1: torch.nn.Linear, fully connected layer

fc2: torch.nn.Linear, fully connected layer

local_d: MultilayerPerceptron, local discriminator

global_d: MultilayerPerceptron, global discriminator

build_model()

Builds the InfoGraph model by unpacking the components dictionary and passing them to the InfoGraph
nn.module.
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loss_func(inputs, labels, weights)
Defines the loss function for the model which can access the components using self.components. The loss
function should take the inputs, labels, and weights as arguments and return the loss.

default_generator(dataset: Dataset, epochs: int = 1, mode: str = 'fit', deterministic: bool = True,
pad_batches: bool = True)→ Iterable[Tuple[List, List, List]]

Create a generator that iterates batches for a dataset.

Subclasses may override this method to customize how model inputs are generated from the data.

Parameters
• dataset (Dataset) – the data to iterate

• epochs (int) – the number of times to iterate over the full dataset

• mode (str) – allowed values are ‘fit’ (called during training), ‘predict’ (called during pre-
diction), and ‘uncertainty’ (called during uncertainty prediction)

• deterministic (bool) – whether to iterate over the dataset in order, or randomly shuffle
the data for each epoch

• pad_batches (bool) – whether to pad each batch up to this model’s preferred batch size

Returns
• a generator that iterates batches, each represented as a tuple of lists

• ([inputs], [outputs], [weights])

3.18.16 GNNModular

class GNNModular(gnn_type: str = 'gin', num_layer: int = 3, emb_dim: int = 64, num_tasks: int = 1,
num_classes: int = 2, graph_pooling: str = 'mean', dropout: int = 0, jump_knowledge: str =
'last', task: str = 'edge_pred', mask_rate: float = 0.1, mask_edge: bool = True, context_size:
int = 1, neighborhood_size: int = 3, context_mode: str = 'cbow', neg_samples: int = 1,
**kwargs)

Modular GNN which allows for easy swapping of GNN layers.

Parameters
• gnn_type (str) – The type of GNN layer to use. Must be one of “gin”, “gcn”, “graphsage”,

or “gat”.

• num_layer (int) – The number of GNN layers to use.

• emb_dim (int) – The dimensionality of the node embeddings.

• num_tasks (int) – The number of tasks.

• graph_pooling (str) – The type of graph pooling to use. Must be one of “sum”, “mean”,
“max”, “attention” or “set2set”. “sum” may cause issues with positive prediction loss.

• dropout (float, optional (default 0)) – The dropout probability.

• jump_knowledge (str, optional (default "last")) – The type of jump knowledge
to use. [1] Must be one of “last”, “sum”, “max”, or “concat”. “last”: Use the node repre-
sentation from the last GNN layer. “concat”: Concatenate the node representations from all
GNN layers. This will increase the dimensionality of the node representations by a factor of
num_layer. “max”: Take the element-wise maximum of the node representations from all
GNN layers. “sum”: Take the element-wise sum of the node representations from all GNN
layers. This may cause issues with positive prediction loss.
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• task (str, optional (default "regression")) – The type of task. Unsupervised
tasks: edge_pred: Edge prediction. Predicts whether an edge exists between two nodes.
mask_nodes: Masking nodes. Predicts the masked node. mask_edges: Masking edges.
Predicts the masked edge. infomax: Infomax. Maximizes mutual information between lo-
cal node representations and a pooled global graph representation. context_pred: Context
prediction. Predicts the surrounding context of a node. Supervised tasks: “regression” or
“classification”.

• mask_rate (float, optional (default 0.1)) – The rate at which to mask nodes or
edges for mask_nodes and mask_edges tasks.

• mask_edge (bool, optional (default True)) – Whether to also mask connecting
edges for mask_nodes tasks.

• context_size (int, optional (default 1)) – The size of the context to use for con-
text prediction tasks.

• neighborhood_size (int, optional (default 3)) – The size of the neighborhood to
use for context prediction tasks.

• context_mode (str, optional (default "cbow")) – The context mode to use for
context prediction tasks. Must be one of “cbow” or “skipgram”.

• neg_samples (int, optional (default 1)) – The number of negative samples to use
for context prediction.

Examples

>>> import numpy as np
>>> import deepchem as dc
>>> from deepchem.feat.molecule_featurizers import SNAPFeaturizer
>>> from deepchem.models.torch_models.gnn import GNNModular
>>> featurizer = SNAPFeaturizer()
>>> smiles = ["C1=CC=CC=C1", "C1=CC=CC=C1C=O", "C1=CC=CC=C1C(=O)O"]
>>> features = featurizer.featurize(smiles)
>>> dataset = dc.data.NumpyDataset(features, np.zeros(len(features)))
>>> model = GNNModular(task="edge_pred")
>>> loss = model.fit(dataset, nb_epoch=1)

References

__init__(gnn_type: str = 'gin', num_layer: int = 3, emb_dim: int = 64, num_tasks: int = 1, num_classes: int
= 2, graph_pooling: str = 'mean', dropout: int = 0, jump_knowledge: str = 'last', task: str =
'edge_pred', mask_rate: float = 0.1, mask_edge: bool = True, context_size: int = 1,
neighborhood_size: int = 3, context_mode: str = 'cbow', neg_samples: int = 1, **kwargs)

Create a ModularTorchModel.

Parameters
• model (nn.Module) – The model to be trained.

• components (dict) – A dictionary of the components of the model. The keys are the
names of the components and the values are the components themselves.
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build_components()

Builds the components of the GNNModular model. It initializes the encoders, batch normalization layers,
pooling layers, and head layers based on the provided configuration. The method returns a dictionary
containing the following components:

Components list, type and description:

node_type_embedding: torch.nn.Embedding, an embedding layer for node types.

chirality_embedding: torch.nn.Embedding, an embedding layer for chirality tags.

gconvs: torch_geometric.nn.conv.MessagePassing, a list of graph convolutional layers (encoders) based on
the specified GNN type (GIN, GCN, or GAT).

batch_norms: torch.nn.BatchNorm1d, a list of batch normalization layers corresponding to the encoders.

pool: Union[function,torch_geometric.nn.aggr.Aggregation], a pooling layer based on the specified graph
pooling type (sum, mean, max, attention, or set2set).

head: nn.Linear, a linear layer for the head of the model.

These components are then used to construct the GNN and GNN_head modules for the GNNModular
model.

build_gnn(num_layer)
Build graph neural network encoding layers by specifying the number of GNN layers.

Parameters
num_layer (int) – The number of GNN layers to be created.

Returns
A tuple containing two ModuleLists: 1. encoders: A ModuleList of GNN layers (currently
only GIN is supported). 2. batch_norms: A ModuleList of batch normalization layers corre-
sponding to each GNN layer.

Return type
tuple of (torch.nn.ModuleList, torch.nn.ModuleList)

build_model()

Builds the appropriate model based on the specified task.

For the edge prediction task, the model is simply the GNN module because it is an unsupervised task and
does not require a prediction head.

Supervised tasks such as node classification and graph regression require a prediction head, so the model
is a sequential module consisting of the GNN module followed by the GNN_head module.

loss_func(inputs, labels, weights)
The loss function executed in the training loop, which is based on the specified task.

masked_node_loss_loader(inputs)
Produces the loss between the predicted node features and the true node features for masked nodes. Set
mask_edge to True to also predict the edge types for masked edges.

masked_edge_loss_loader(inputs)
Produces the loss between the predicted edge types and the true edge types for masked edges.
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infomax_loss_loader(inputs)
Loss that maximizes mutual information between local node representations and a pooled global graph
representation. The positive and negative scores represent the similarity between local node representations
and global graph representations of simlar and dissimilar graphs, respectively.

Parameters
inputs (BatchedGraphData) – BatchedGraphData object containing the node features,
edge indices, and graph indices for the batch of graphs.

context_pred_loss_loader(inputs)
Loads the context prediction loss for the given input by taking the batched subgraph and context graphs and
computing the context prediction loss for each subgraph and context graph pair.

Parameters
inputs (tuple) – A tuple containing the following elements: - substruct_batch (Batched-
GraphData): Batched subgraph, or neighborhood, graphs. - s_overlap (List[int]): List of over-
lapping subgraph node indices between the subgraph and context graphs. - context_graphs
(BatchedGraphData): Batched context graphs. - c_overlap (List[int]): List of overlapping
context node indices between the subgraph and context graphs. - overlap_size (List[int]):
List of the number of overlapping nodes between the subgraph and context graphs.

Returns
context_pred_loss – The context prediction loss

Return type
torch.Tensor

default_generator(dataset: Dataset, epochs: int = 1, mode: str = 'fit', deterministic: bool = True,
pad_batches: bool = True)→ Iterable[Tuple[List, List, List]]

This default generator is modified from the default generator in dc.models.tensorgraph.tensor_graph.py
to support multitask classification. If the task is classification, the labels y_b are converted to a one-hot
encoding and reshaped according to the number of tasks and classes.

3.18.17 InfoMax3DModular

class InfoMax3DModular(task: Literal['pretraining', 'regression', 'classification'], hidden_dim: int = 64,
target_dim: int = 10, aggregators: List[str] = ['mean'], readout_aggregators: List[str]
= ['mean'], scalers: List[str] = ['identity'], residual: bool = True,
node_wise_output_layers: int = 2, pairwise_distances: bool = False, activation:
Callable | str = 'relu', reduce_func: str = 'sum', batch_norm: bool = True,
batch_norm_momentum: float = 0.1, propagation_depth: int = 5, dropout: float = 0.0,
readout_layers: int = 2, readout_hidden_dim: int = 1, fourier_encodings: int = 4,
update_net_layers: int = 2, message_net_layers: int = 2, use_node_features: bool =
False, posttrans_layers: int = 1, pretrans_layers: int = 1, n_tasks: int = 1, n_classes:
bool | None = None, **kwargs)

InfoMax3DModular is a modular torch model that uses a 2D PNA model and a 3D Net3D model to maximize the
mutual information between their representations. The 2D model can then be used for downstream tasks without
the need for 3D coordinates. This is based off the work in [1].

This class expects data in featurized by the RDKitConformerFeaturizer. This featurizer produces features of the
type Array[Array[List[GraphData]]]. The outermost array is the dataset array, the second array is the molecule,
the list contains the conformers for that molecule and the GraphData object is the featurized graph for that con-
former with node_pos_features holding the 3D coordinates. If you are not using RDKitConformerFeaturizer,
your input data features should look like this: Dataset[Molecule[Conformers[GraphData]]].
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For pretraining, the original paper used a learning rate of 8e-5 with a batch size of 500. For finetuning on quantum
mechanical datasets, a learning rate of 7e-5 with a batch size of 128 was used. For finetuning on non-quantum
mechanical datasets, a learning rate of 1e-3 with a batch size of 32 was used in the original implementation.

Parameters
• task (Literal['pretrain', 'regression', 'classification']) – The task of the

model

• hidden_dim (int, optional, default = 64) – The dimension of the hidden layers.

• target_dim (int, optional, default = 10) – The dimension of the output layer.

• aggregators (List[str]) – A list of aggregator functions for the PNA model. Options
are ‘mean’, ‘sum’, ‘min’, ‘max’, ‘std’, ‘var’, ‘moment3’, ‘moment4’, ‘moment5’.

• readout_aggregators (List[str]) – A list of aggregator functions for the readout layer.
Options are ‘sum’, ‘max’, ‘min’, ‘mean’.

• scalers (List[str]) – A list of scaler functions for the PNA model. Options are ‘identity’,
‘amplification’, ‘attenuation’.

• residual (bool, optional (default=True)) – Whether to use residual connections
in the PNA model.

• node_wise_output_layers (int, optional (default=2)) – The number of output
layers for each node in the Net3D model.

• pairwise_distances (bool, optional (default=False)) – Whether to use pairwise
distances in the PNA model.

• activation (Union[Callable, str], optional (default="relu")) – The activa-
tion function to use in the PNA model.

• reduce_func (str, optional (default='sum')) – The reduce function to use for ag-
gregating messages in the Net3D model.

• batch_norm (bool, optional (default=True)) – Whether to use batch normalization
in the PNA model.

• batch_norm_momentum (float, optional (default=0.1)) – The momentum for the
batch normalization layers.

• propagation_depth (int, optional (default=5)) – The number of propagation lay-
ers in the PNA and Net3D models.

• dropout (float, optional (default=0.0)) – The dropout rate for the layers in the
PNA and Net3D models.

• readout_layers (int, optional (default=2)) – The number of readout layers in the
PNA and Net3D models.

• readout_hidden_dim (int, optional (default=None)) – The dimension of the hid-
den layers in the readout network.

• fourier_encodings (int, optional (default=4)) – The number of Fourier encod-
ings to use in the Net3D model.

• update_net_layers (int, optional (default=2)) – The number of update network
layers in the Net3D model.

• message_net_layers (int, optional (default=2)) – The number of message net-
work layers in the Net3D model.
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• use_node_features (bool, optional (default=False)) – Whether to use node fea-
tures as input in the Net3D model.

• posttrans_layers (int, optional (default=1)) – The number of post-
transformation layers in the PNA model.

• pretrans_layers (int, optional (default=1)) – The number of pre-transformation
layers in the PNA model.

• kwargs (dict) – Additional keyword arguments.

References

Examples

>>> from deepchem.feat.graph_data import BatchGraphData
>>> from deepchem.feat.molecule_featurizers.conformer_featurizer import␣
→˓RDKitConformerFeaturizer
>>> from deepchem.models.torch_models.gnn3d import InfoMax3DModular
>>> import numpy as np
>>> import deepchem as dc
>>> from deepchem.data.datasets import NumpyDataset
>>> smiles = ["C[C@H](F)Cl", "C[C@@H](F)Cl"]
>>> featurizer = RDKitConformerFeaturizer()
>>> data = featurizer.featurize(smiles)
>>> dataset = NumpyDataset(X=data)
>>> model = InfoMax3DModular(task='pretraining',
... hidden_dim=64,
... target_dim=10,
... aggregators=['max'],
... readout_aggregators=['mean'],
... scalers=['identity'])
>>> loss = model.fit(dataset, nb_epoch=1)

__init__(task: Literal['pretraining', 'regression', 'classification'], hidden_dim: int = 64, target_dim: int =
10, aggregators: List[str] = ['mean'], readout_aggregators: List[str] = ['mean'], scalers: List[str]
= ['identity'], residual: bool = True, node_wise_output_layers: int = 2, pairwise_distances: bool
= False, activation: Callable | str = 'relu', reduce_func: str = 'sum', batch_norm: bool = True,
batch_norm_momentum: float = 0.1, propagation_depth: int = 5, dropout: float = 0.0,
readout_layers: int = 2, readout_hidden_dim: int = 1, fourier_encodings: int = 4,
update_net_layers: int = 2, message_net_layers: int = 2, use_node_features: bool = False,
posttrans_layers: int = 1, pretrans_layers: int = 1, n_tasks: int = 1, n_classes: bool | None =
None, **kwargs)

Create a ModularTorchModel.

Parameters
• model (nn.Module) – The model to be trained.

• components (dict) – A dictionary of the components of the model. The keys are the
names of the components and the values are the components themselves.

build_components()

Build the components of the InfoMax3DModular model.

Returns
A dictionary containing the ‘2d’ PNA model and the ‘3d’ Net3D model.
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Return type
dict

build_model()

Build the InfoMax3DModular model. This is the 2D network which is meant to be used for inference.

Returns
The 2D PNA model component.

Return type
PNA

loss_func(inputs, labels, weights)
Compute the loss function for the InfoMax3DModular model.

Parameters
• inputs (dgl.DGLGraph ) – The input graph with node features stored under the key ‘x’

and edge distances stored under the key ‘d’.

• labels (torch.Tensor) – The ground truth labels.

• weights (torch.Tensor) – The weights for each sample.

Returns
The computed loss value.

Return type
torch.Tensor

3.18.18 LCNNModel

class LCNNModel(n_occupancy: int = 3, n_neighbor_sites_list: int = 19, n_permutation_list: int = 6, n_task: int
= 1, dropout_rate: float = 0.4, n_conv: int = 2, n_features: int = 44, sitewise_n_feature: int =
25, **kwargs)

Lattice Convolutional Neural Network (LCNN). Here is a simple example of code that uses the LCNNModel
with Platinum 2d Adsorption dataset.

This model takes arbitrary configurations of Molecules on an adsorbate and predicts their formation energy.
These formation energies are found using DFT calculations and LCNNModel is to automate that process. This
model defines a crystal graph using the distance between atoms. The crystal graph is an undirected regular graph
(equal neighbours) and different permutations of the neighbours are pre-computed using the LCNNFeaturizer.
On each node for each permutation, the neighbour nodes are concatenated which are further operated. This
model has only a node representation. Please confirm the detail algorithms from [1]_.

Examples

>>>
>> import deepchem as dc
>> from pymatgen.core import Structure
>> import numpy as np
>> from deepchem.feat import LCNNFeaturizer
>> from deepchem.molnet import load_Platinum_Adsorption
>> PRIMITIVE_CELL = {
.. "lattice": [[2.818528, 0.0, 0.0],
.. [-1.409264, 2.440917, 0.0],

(continues on next page)
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(continued from previous page)

.. [0.0, 0.0, 25.508255]],

.. "coords": [[0.66667, 0.33333, 0.090221],

.. [0.33333, 0.66667, 0.18043936],

.. [0.0, 0.0, 0.27065772],

.. [0.66667, 0.33333, 0.36087608],

.. [0.33333, 0.66667, 0.45109444],

.. [0.0, 0.0, 0.49656991]],

.. "species": ['H', 'H', 'H', 'H', 'H', 'He'],

.. "site_properties": {'SiteTypes': ['S1', 'S1', 'S1', 'S1', 'S1', 'A1']}

.. }
>> PRIMITIVE_CELL_INF0 = {
.. "cutoff": np.around(6.00),
.. "structure": Structure(**PRIMITIVE_CELL),
.. "aos": ['1', '0', '2'],
.. "pbc": [True, True, False],
.. "ns": 1,
.. "na": 1
.. }
>> tasks, datasets, transformers = load_Platinum_Adsorption(
.. featurizer= LCNNFeaturizer( **PRIMITIVE_CELL_INF0)
.. )
>> train, val, test = datasets
>> model = LCNNModel(mode='regression',
.. batch_size=8,
.. learning_rate=0.001)
>> model = LCNN()
>> out = model(lcnn_feat)
>> model.fit(train, nb_epoch=10)

References

Notes

This class requires DGL and PyTorch to be installed.

__init__(n_occupancy: int = 3, n_neighbor_sites_list: int = 19, n_permutation_list: int = 6, n_task: int = 1,
dropout_rate: float = 0.4, n_conv: int = 2, n_features: int = 44, sitewise_n_feature: int = 25,
**kwargs)

This class accepts all the keyword arguments from TorchModel.

Parameters
• n_occupancy (int, default 3) – number of possible occupancy.

• n_neighbor_sites_list (int, default 19) – Number of neighbors of each site.

• n_permutation (int, default 6) – Diffrent permutations taken along diffrent direc-
tions.

• n_task (int, default 1) – Number of tasks.

• dropout_rate (float, default 0.4) – p value for dropout between 0.0 to 1.0

• nconv (int, default 2) – number of convolutions performed.

• n_feature (int, default 44) – number of feature for each site.
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• sitewise_n_feature (int, default 25) – number of features for atoms for site-wise
activation.

• kwargs (Dict) – This class accepts all the keyword arguments from TorchModel.

3.18.19 MEGNetModel

class MEGNetModel(n_node_features: int = 32, n_edge_features: int = 32, n_global_features: int = 32, n_blocks:
int = 1, is_undirected: bool = True, residual_connection: bool = True, mode: str =
'regression', n_classes: int = 2, n_tasks: int = 1, **kwargs)

MatErials Graph Network for Molecules and Crystals

MatErials Graph Network [1]_ are Graph Networks [2]_ which are used for property prediction in molecules
and crystals. The model implements multiple layers of Graph Network as MEGNetBlocks and then combines
the node properties and edge properties of all nodes and edges via a Set2Set layer. The combines information is
used with the global features of the material/molecule for property prediction tasks.

Example

>>> import deepchem as dc
>>> from deepchem.models import MEGNetModel
>>> from deepchem.utils.fake_data_generator import FakeGraphGenerator as FGG
>>> graphs = FGG(global_features=4, num_classes=10).sample(n_graphs=20)
>>> model = dc.models.MEGNetModel(n_node_features=5, n_edge_features=3, n_global_
→˓features=4, n_blocks=3, is_undirected=True, residual_connection=True, mode=
→˓'classification', n_classes=10, batch_size=16)
>>> training_loss = model.fit(graphs)

References

Note: The model requires PyTorch-Geometric to be installed.

__init__(n_node_features: int = 32, n_edge_features: int = 32, n_global_features: int = 32, n_blocks: int =
1, is_undirected: bool = True, residual_connection: bool = True, mode: str = 'regression',
n_classes: int = 2, n_tasks: int = 1, **kwargs)

Parameters
• n_node_features (int) – Number of features in a node

• n_edge_features (int) – Number of features in a edge

• n_global_features (int) – Number of global features

• n_blocks (int) – Number of GraphNetworks block to use in update

• is_undirected (bool, optional (default True)) – True when the model is used
on undirected graphs otherwise false

• residual_connection (bool, optional (default True)) – If True, the layer uses
a residual connection during training

• n_tasks (int, default 1) – The number of tasks

3.18. PyTorch Models 383



deepchem, Release 2.8.0

• mode (str, default 'regression') – The model type - classification or regression

• n_classes (int, default 2) – The number of classes to predict (used only in classifi-
cation mode).

• kwargs (Dict) – kwargs supported by TorchModel

3.18.20 MATModel

class MATModel(dist_kernel: str = 'softmax', n_encoders=8, lambda_attention: float = 0.33, lambda_distance:
float = 0.33, h: int = 16, sa_hsize: int = 1024, sa_dropout_p: float = 0.0, output_bias: bool =
True, d_input: int = 1024, d_hidden: int = 1024, d_output: int = 1024, activation: str =
'leakyrelu', n_layers: int = 1, ff_dropout_p: float = 0.0, encoder_hsize: int = 1024,
encoder_dropout_p: float = 0.0, embed_input_hsize: int = 36, embed_dropout_p: float = 0.0,
gen_aggregation_type: str = 'mean', gen_dropout_p: float = 0.0, gen_n_layers: int = 1,
gen_attn_hidden: int = 128, gen_attn_out: int = 4, gen_d_output: int = 1, **kwargs)

Molecular Attention Transformer.

This class implements the Molecular Attention Transformer [1]_. The MATFeaturizer
(deepchem.feat.MATFeaturizer) is intended to work with this class. The model takes a batch of MATEn-
codings (from MATFeaturizer) as input, and returns an array of size Nx1, where N is the number of molecules in
the batch. Each molecule is broken down into its Node Features matrix, adjacency matrix and distance matrix.
A mask tensor is calculated for the batch. All of this goes as input to the MATEmbedding, MATEncoder and
MATGenerator layers, which are defined in deepchem.models.torch_models.layers.py

Currently, MATModel is intended to be a regression model for the freesolv dataset.

References

Examples

>>> import deepchem as dc
>>> import pandas as pd
>>> smiles = ['CC', 'CCC', 'CCCC', 'CCCCC', 'CCCCCCC']
>>> vals = [1.35, 6.72, 5.67, 1.23, 1.76]
>>> df = pd.DataFrame(list(zip(smiles, vals)), columns = ['smiles', 'y'])
>>> loader = dc.data.CSVLoader(tasks=['y'], feature_field='smiles', featurizer=dc.
→˓feat.MATFeaturizer())
>>> df.to_csv('test.csv')
>>> dataset = loader.create_dataset('test.csv')
>>> model = dc.models.torch_models.MATModel(batch_size = 2)
>>> out = model.fit(dataset, nb_epoch = 1)

__init__(dist_kernel: str = 'softmax', n_encoders=8, lambda_attention: float = 0.33, lambda_distance:
float = 0.33, h: int = 16, sa_hsize: int = 1024, sa_dropout_p: float = 0.0, output_bias: bool =
True, d_input: int = 1024, d_hidden: int = 1024, d_output: int = 1024, activation: str =
'leakyrelu', n_layers: int = 1, ff_dropout_p: float = 0.0, encoder_hsize: int = 1024,
encoder_dropout_p: float = 0.0, embed_input_hsize: int = 36, embed_dropout_p: float = 0.0,
gen_aggregation_type: str = 'mean', gen_dropout_p: float = 0.0, gen_n_layers: int = 1,
gen_attn_hidden: int = 128, gen_attn_out: int = 4, gen_d_output: int = 1, **kwargs)

The wrapper class for the Molecular Attention Transformer.

Since we are using a custom data class as input (MATEncoding), we have overriden the default_generator
function from DiskDataset and customized it to work with a batch of MATEncoding classes.
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Parameters
• dist_kernel (str) – Kernel activation to be used. Can be either ‘softmax’ for softmax

or ‘exp’ for exponential, for the self-attention layer.

• n_encoders (int) – Number of encoder layers in the encoder block.

• lambda_attention (float) – Constant to be multiplied with the attention matrix in the
self-attention layer.

• lambda_distance (float) – Constant to be multiplied with the distance matrix in the
self-attention layer.

• h (int) – Number of attention heads for the self-attention layer.

• sa_hsize (int) – Size of dense layer in the self-attention layer.

• sa_dropout_p (float) – Dropout probability for the self-attention layer.

• output_bias (bool) – If True, dense layers will use bias vectors in the self-attention layer.

• d_input (int) – Size of input layer in the feed-forward layer.

• d_hidden (int) – Size of hidden layer in the feed-forward layer. Will also be used as
d_output for the MATEmbedding layer.

• d_output (int) – Size of output layer in the feed-forward layer.

• activation (str) – Activation function to be used in the feed-forward layer. Can choose
between ‘relu’ for ReLU, ‘leakyrelu’ for LeakyReLU, ‘prelu’ for PReLU, ‘tanh’ for TanH,
‘selu’ for SELU, ‘elu’ for ELU and ‘linear’ for linear activation.

• n_layers (int) – Number of layers in the feed-forward layer.

• ff_dropout_p (float) – Dropout probability in the feeed-forward layer.

• encoder_hsize (int) – Size of Dense layer for the encoder itself.

• encoder_dropout_p (float) – Dropout probability for connections in the encoder layer.

• embed_input_hsize (int) – Size of input layer for the MATEmbedding layer.

• embed_dropout_p (float) – Dropout probability for the MATEmbedding layer.

• gen_aggregation_type (str) – Type of aggregation to be used. Can be ‘grover’, ‘mean’
or ‘contextual’.

• gen_dropout_p (float) – Dropout probability for the MATGenerator layer.

• gen_n_layers (int) – Number of layers in MATGenerator.

• gen_attn_hidden (int) – Size of hidden attention layer in the MATGenerator layer.

• gen_attn_out (int) – Size of output attention layer in the MATGenerator layer.

• gen_d_output (int) – Size of output layer in the MATGenerator layer.

pad_array(array: ndarray, shape: Any)→ ndarray
Pads an array to the desired shape.

Parameters
• array (np.ndarray) –

• padded. (Array to be) –

• shape (int or Tuple) –

• to. (Shape the array is padded) –
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Returns
• array (np.ndarray)

• Array padded to input shape.

pad_sequence(sequence: ndarray)→ ndarray
Pads a given sequence using the pad_array function.

Parameters
• sequence (np.ndarray) –

• sequence. (Arrays in this sequence are padded to the largest shape in
the) –

Returns
• array (np.ndarray)

• Sequence with padded arrays.

default_generator(dataset, epochs=1, mode='fit', deterministic=True, pad_batches=True, **kwargs)
Create a generator that iterates batches for a dataset.

Subclasses may override this method to customize how model inputs are generated from the data.

Parameters
• dataset (Dataset) – the data to iterate

• epochs (int) – the number of times to iterate over the full dataset

• mode (str) – allowed values are ‘fit’ (called during training), ‘predict’ (called during pre-
diction), and ‘uncertainty’ (called during uncertainty prediction)

• deterministic (bool) – whether to iterate over the dataset in order, or randomly shuffle
the data for each epoch

• pad_batches (bool) – whether to pad each batch up to this model’s preferred batch size

Returns
• a generator that iterates batches, each represented as a tuple of lists

• ([inputs], [outputs], [weights])

3.18.21 NormalizingFlowModel

class NormalizingFlow(transform: Sequence, base_distribution, dim: int)
Normalizing flows are widley used to perform generative models. This algorithm gives advantages over varia-
tional autoencoders (VAE) because of ease in sampling by applying invertible transformations (Frey, Gadepally,
& Ramsundar, 2022).
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Example

>>> import deepchem as dc
>>> from deepchem.models.torch_models.layers import Affine
>>> from deepchem.models.torch_models.normalizing_flows_pytorch import␣
→˓NormalizingFlow
>>> import torch
>>> from torch.distributions import MultivariateNormal
>>> # initialize the transformation layer's parameters
>>> dim = 2
>>> samples = 96
>>> transforms = [Affine(dim)]
>>> distribution = MultivariateNormal(torch.zeros(dim), torch.eye(dim))
>>> # initialize normalizing flow model
>>> model = NormalizingFlow(transforms, distribution, dim)
>>> # evaluate the log_prob when applying the transformation layers
>>> input = distribution.sample(torch.Size((samples, dim)))
>>> len(model.log_prob(input))
96
>>> # evaluates the the sampling method and its log_prob
>>> len(model.sample(samples))
2

3.18.22 DMPNNModel

class DMPNNModel(mode: str = 'regression', n_classes: int = 3, n_tasks: int = 1, batch_size: int = 1,
global_features_size: int = 0, use_default_fdim: bool = True, atom_fdim: int = 133,
bond_fdim: int = 14, enc_hidden: int = 300, depth: int = 3, bias: bool = False, enc_activation:
str = 'relu', enc_dropout_p: float = 0.0, aggregation: str = 'mean', aggregation_norm: int |
float = 100, ffn_hidden: int = 300, ffn_activation: str = 'relu', ffn_layers: int = 3,
ffn_dropout_p: float = 0.0, ffn_dropout_at_input_no_act: bool = True, **kwargs)

Directed Message Passing Neural Network

This class implements the Directed Message Passing Neural Network (D-MPNN) [1]_.

The DMPNN model has 2 phases, message-passing phase and read-out phase.

• The goal of the message-passing phase is to generate ‘hidden states of all the atoms in the molecule’ using
encoders.

• Next in read-out phase, the features are passed into feed-forward neural network to get the task-based pre-
diction.

For additional information:

• Mapper class

• Encoder layer class

• Feed-Forward class
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Example

>>> import deepchem as dc
>>> import os
>>> model_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
>>> input_file = os.path.join(model_dir, 'tests/assets/freesolv_sample_5.csv')
>>> loader = dc.data.CSVLoader(tasks=['y'], feature_field='smiles', featurizer=dc.
→˓feat.DMPNNFeaturizer())
>>> dataset = loader.create_dataset(input_file)
>>> model = DMPNNModel()
>>> out = model.fit(dataset, nb_epoch=1)

References

__init__(mode: str = 'regression', n_classes: int = 3, n_tasks: int = 1, batch_size: int = 1,
global_features_size: int = 0, use_default_fdim: bool = True, atom_fdim: int = 133, bond_fdim:
int = 14, enc_hidden: int = 300, depth: int = 3, bias: bool = False, enc_activation: str = 'relu',
enc_dropout_p: float = 0.0, aggregation: str = 'mean', aggregation_norm: int | float = 100,
ffn_hidden: int = 300, ffn_activation: str = 'relu', ffn_layers: int = 3, ffn_dropout_p: float = 0.0,
ffn_dropout_at_input_no_act: bool = True, **kwargs)

Initialize the DMPNNModel class.

Parameters
• mode (str, default 'regression') – The model type - classification or regression.

• n_classes (int, default 3) – The number of classes to predict (used only in classifi-
cation mode).

• n_tasks (int, default 1) – The number of tasks.

• batch_size (int, default 1) – The number of datapoints in a batch.

• global_features_size (int, default 0) – Size of the global features vector, based
on the global featurizers used during featurization.

• use_default_fdim (bool) – If True, self.atom_fdim and self.bond_fdim are initial-
ized using values from the GraphConvConstants class. If False, self.atom_fdim and
self.bond_fdim are initialized from the values provided.

• atom_fdim (int) – Dimension of atom feature vector.

• bond_fdim (int) – Dimension of bond feature vector.

• enc_hidden (int) – Size of hidden layer in the encoder layer.

• depth (int) – No of message passing steps.

• bias (bool) – If True, dense layers will use bias vectors.

• enc_activation (str) – Activation function to be used in the encoder layer. Can choose
between ‘relu’ for ReLU, ‘leakyrelu’ for LeakyReLU, ‘prelu’ for PReLU, ‘tanh’ for TanH,
‘selu’ for SELU, and ‘elu’ for ELU.

• enc_dropout_p (float) – Dropout probability for the encoder layer.

• aggregation (str) – Aggregation type to be used in the encoder layer. Can choose be-
tween ‘mean’, ‘sum’, and ‘norm’.
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• aggregation_norm (Union[int, float]) – Value required if aggregation type is
‘norm’.

• ffn_hidden (int) – Size of hidden layer in the feed-forward network layer.

• ffn_activation (str) – Activation function to be used in feed-forward network layer.
Can choose between ‘relu’ for ReLU, ‘leakyrelu’ for LeakyReLU, ‘prelu’ for PReLU, ‘tanh’
for TanH, ‘selu’ for SELU, and ‘elu’ for ELU.

• ffn_layers (int) – Number of layers in the feed-forward network layer.

• ffn_dropout_p (float) – Dropout probability for the feed-forward network layer.

• ffn_dropout_at_input_no_act (bool) – If true, dropout is applied on the input tensor.
For single layer, it is not passed to an activation function.

• kwargs (Dict) – kwargs supported by TorchModel

default_generator(dataset: Dataset, epochs: int = 1, mode: str = 'fit', deterministic: bool = True,
pad_batches: bool = False, **kwargs)→ Iterable[Tuple[List, List, List]]

Create a generator that iterates batches for a dataset.

Overrides the existing default_generator method to customize how model inputs are generated from
the data.

Here, the _MapperDMPNN helper class is used, for each molecule in a batch, to get required input parameters:

• atom_features

• f_ini_atoms_bonds

• atom_to_incoming_bonds

• mapping

• global_features

Then data from each molecule is converted to a _ModData object and stored as list of graphs. The graphs
are modified such that all tensors have same size in 0th dimension. (important requirement for batching)

Parameters
• dataset (Dataset) – the data to iterate

• epochs (int) – the number of times to iterate over the full dataset

• mode (str) – allowed values are ‘fit’ (called during training), ‘predict’ (called during pre-
diction), and ‘uncertainty’ (called during uncertainty prediction)

• deterministic (bool) – whether to iterate over the dataset in order, or randomly shuffle
the data for each epoch

• pad_batches (bool) – whether to pad each batch up to this model’s preferred batch size

Returns
• a generator that iterates batches, each represented as a tuple of lists

• ([inputs], [outputs], [weights])

• Here, [inputs] is list of graphs.
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3.18.23 GroverModel

class GroverModel(node_fdim: int, edge_fdim: int, hidden_size: int, self_attention=False, features_only=False,
atom_vocab: GroverAtomVocabularyBuilder | None = None, bond_vocab:
GroverBondVocabularyBuilder | None = None, functional_group_size: int | None = 85,
features_dim: int = 128, dropout: float = 0.2, activation: str = 'relu', task: str =
'pretraining', ffn_num_layers: int = 1, ffn_hidden_size: int = 64, attn_out_size: int = 16,
num_attn_heads: int = 4, depth: int = 1, mode: str | None = None, model_dir=None,
n_tasks: int = 1, n_classes: int | None = None, **kwargs)

GROVER model

The GROVER model employs a self-supervised message passing transformer architecutre for learning molecular
representation. The pretraining task can learn rich structural and semantic information of molecules from unla-
belled molecular data, which can be leveraged by finetuning for downstream applications. To this end, GROVER
integrates message passing networks into a transformer style architecture.

Parameters
• node_fdim (int) – the dimension of additional feature for node/atom.

• edge_fdim (int) – the dimension of additional feature for edge/bond.

• atom_vocab (GroverAtomVocabularyBuilder) – Grover atom vocabulary builder re-
quired during pretraining.

• bond_vocab (GroverBondVocabularyBuilder) – Grover bond vocabulary builder re-
quired during pretraining.

• hidden_size (int) – Size of hidden layers

• features_only (bool) – Uses only additional features in the feed-forward network, no
graph network

• self_attention (bool, default False) – When set to True, a self-attention layer is
used during graph readout operation.

• functional_group_size (int (default: 85)) – Size of functional group used in
grover.

• features_dim (int) – Size of additional molecular features, like fingerprints.

• ffn_num_layers (int (default: 1)) – Number of linear layers to use for feature ex-
traction from embeddings

• ffn_hidden_size (int (default: 64)) – Hidden size of feed forward network

• attn_out_size (int (default: 16)) – Size of attention heads

• num_attn_heads (int (default: 4)) – Number of attention heads

• task (str (pretraining or finetuning)) – Pretraining or finetuning tasks.

• mode (str (classification or regression)) – Training mode (used only for fine-
tuning)

• n_tasks (int, optional (default: 1)) – Number of tasks

• n_classes (int, optiona (default: 2)) – Number of target classes in classification
mode

• model_dir (str) – Directory to save model checkpoints

• dropout (float, optional (default: 0.2)) – dropout value
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• activation (str, optional (default: 'relu')) – supported activation function

• depth (int (default: 1)) – Dynamic message passing depth for use in MPNEncoder

Example

>>> import deepchem as dc
>>> from deepchem.models.torch_models.grover import GroverModel
>>> from deepchem.feat.vocabulary_builders import (GroverAtomVocabularyBuilder,␣
→˓GroverBondVocabularyBuilder)
>>> import pandas as pd
>>> import os
>>> import tempfile
>>> tmpdir = tempfile.mkdtemp()
>>> df = pd.DataFrame({'smiles': ['CC', 'CCC'], 'preds': [0, 0]})
>>> filepath = os.path.join(tmpdir, 'example.csv')
>>> df.to_csv(filepath, index=False)
>>> dataset_path = os.path.join(filepath)
>>> loader = dc.data.CSVLoader(tasks=['preds'], featurizer=dc.feat.
→˓DummyFeaturizer(), feature_field=['smiles'])
>>> dataset = loader.create_dataset(filepath)
>>> av = GroverAtomVocabularyBuilder()
>>> av.build(dataset)
>>> bv = GroverBondVocabularyBuilder()
>>> bv.build(dataset)
>>> fg = dc.feat.CircularFingerprint()
>>> loader2 = dc.data.CSVLoader(tasks=['preds'], featurizer=dc.feat.
→˓GroverFeaturizer(features_generator=fg), feature_field='smiles')
>>> graph_data = loader2.create_dataset(filepath)
>>> model = GroverModel(node_fdim=151, edge_fdim=165, atom_vocab=av, bond_vocab=bv,␣
→˓features_dim=2048, hidden_size=128, functional_group_size=85, mode='regression',␣
→˓task='finetuning', model_dir='gm')
>>> loss = model.fit(graph_data, nb_epoch=1)

Reference

__init__(node_fdim: int, edge_fdim: int, hidden_size: int, self_attention=False, features_only=False,
atom_vocab: GroverAtomVocabularyBuilder | None = None, bond_vocab:
GroverBondVocabularyBuilder | None = None, functional_group_size: int | None = 85,
features_dim: int = 128, dropout: float = 0.2, activation: str = 'relu', task: str = 'pretraining',
ffn_num_layers: int = 1, ffn_hidden_size: int = 64, attn_out_size: int = 16, num_attn_heads: int =
4, depth: int = 1, mode: str | None = None, model_dir=None, n_tasks: int = 1, n_classes: int |
None = None, **kwargs)

Create a ModularTorchModel.

Parameters
• model (nn.Module) – The model to be trained.

• components (dict) – A dictionary of the components of the model. The keys are the
names of the components and the values are the components themselves.

3.18. PyTorch Models 391



deepchem, Release 2.8.0

build_components()

Builds components for grover pretraining and finetuning model.

Table 5: Components of pretraining model

Component name Type Description
embedding Graph message passing

network
A layer which accepts a molecular graph and pro-
duces an embedding for grover pretraining task

atom_vocab_task_atom Feed forward layer A layer which accepts an embedding generated
from atom hidden states and predicts atom vocab-
ulary for grover pretraining task

atom_vocab_task_bond Feed forward layer A layer which accepts an embedding generated
from bond hidden states and predicts atom vocab-
ulary for grover pretraining task

bond_vocab_task_atom Feed forward layer A layer which accepts an embedding generated
from atom hidden states and predicts bond vocab-
ulary for grover pretraining task

bond_vocab_task_bond Feed forward layer A layer which accepts an embedding generated
from bond hidden states and predicts bond vocab-
ulary for grover pretraining task

func-
tional_group_predictor

Feed forward layer A layer which accepts an embedding generated
from a graph readout and predicts functional group
for grover pretraining task

Table 6: Components of finetuning model

Component
name

Type Description

embedding Graph message
passing network

An embedding layer to generate embedding from input molecular
graph

readout Feed forward
layer

A readout layer to perform readout atom and bond hidden states

mol_atom_from_atom_ffnFeed forward
layer

A feed forward network which learns representation from atom
messages generated via atom hidden states of a molecular graph

mol_atom_from_bond_ffnFeed forward
layer

A feed forward network which learns representation from atom
messages generated via bond hidden states of a molecular graph

build_model()

Builds grover pretrain or finetune model based on task

get_loss_func()

Returns loss function based on task

loss_func(inputs, labels, weights)
Returns loss function which performs forward iteration based on task type

static atom_vocab_random_mask(atom_vocab: GroverAtomVocabularyBuilder, smiles: List[str])→
List[int]

Random masking of atom labels from vocabulary

For every atom in the list of SMILES string, the algorithm fetches the atoms context (vocab label) from the
vocabulary provided and returns the vocabulary labels with a random masking (probability of masking =
0.15).
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Parameters
• atom_vocab (GroverAtomVocabularyBuilder) – atom vocabulary

• smiles (List[str]) – a list of smiles string

Returns
vocab_label – atom vocab label with random masking

Return type
List[int]

Example

>>> import deepchem as dc
>>> from deepchem.models.torch_models.grover import GroverModel
>>> from deepchem.feat.vocabulary_builders import GroverAtomVocabularyBuilder
>>> smiles = np.array(['CC', 'CCC'])
>>> dataset = dc.data.NumpyDataset(X=smiles)
>>> atom_vocab = GroverAtomVocabularyBuilder()
>>> atom_vocab.build(dataset)
>>> vocab_labels = GroverModel.atom_vocab_random_mask(atom_vocab, smiles)

static bond_vocab_random_mask(bond_vocab: GroverBondVocabularyBuilder, smiles: List[str])→
List[int]

Random masking of bond labels from bond vocabulary

For every bond in the list of SMILES string, the algorithm fetches the bond context (vocab label) from the
vocabulary provided and returns the vocabulary labels with a random masking (probability of masking =
0.15).

Parameters
• bond_vocab (GroverBondVocabularyBuilder) – bond vocabulary

• smiles (List[str]) – a list of smiles string

Returns
vocab_label – bond vocab label with random masking

Return type
List[int]

Example

>>> import deepchem as dc
>>> from deepchem.models.torch_models.grover import GroverModel
>>> from deepchem.feat.vocabulary_builders import GroverBondVocabularyBuilder
>>> smiles = np.array(['CC', 'CCC'])
>>> dataset = dc.data.NumpyDataset(X=smiles)
>>> bond_vocab = GroverBondVocabularyBuilder()
>>> bond_vocab.build(dataset)
>>> vocab_labels = GroverModel.bond_vocab_random_mask(bond_vocab, smiles)

restore(checkpoint: str | None = None, model_dir: str | None = None)→ None
Reload the values of all variables from a checkpoint file.
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Parameters
• checkpoint (str) – the path to the checkpoint file to load. If this is None, the most recent

checkpoint will be chosen automatically. Call get_checkpoints() to get a list of all available
checkpoints.

• model_dir (str, default None) – Directory to restore checkpoint from. If None, use
self.model_dir. If checkpoint is not None, this is ignored.

3.18.24 DTNNModel

class DTNNModel(n_tasks: int, n_embedding: int = 30, n_hidden: int = 100, n_distance: int = 100, distance_min:
float = -1, distance_max: float = 18, output_activation: bool = True, mode: str = 'regression',
dropout: float = 0.0, n_steps: int = 2, **kwargs)

Implements DTNN models for regression.

DTNN is based on the many-body Hamiltonian concept, which is a fundamental principle in quantum mechanics.
DTNN recieves a molecule’s distance matrix and membership of its atom from its Coulomb Matrix representa-
tion. Then, it iteratively refines the representation of each atom by considering its interactions with neighboring
atoms. Finally, it predicts the energy of the molecule by summing up the energies of the individual atoms.

This class implements the Deep Tensor Neural Network (DTNN) [1]_.

Examples

>>> import os
>>> from deepchem.data import SDFLoader
>>> from deepchem.feat import CoulombMatrix
>>> from deepchem.models.torch_models import DTNNModel
>>> model_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
>>> dataset_file = os.path.join(model_dir, 'tests/assets/qm9_mini.sdf')
>>> TASKS = ["alpha", "homo"]
>>> loader = SDFLoader(tasks=TASKS, featurizer=CoulombMatrix(29), sanitize=True)
>>> data = loader.create_dataset(dataset_file, shard_size=100)
>>> n_tasks = data.y.shape[1]
>>> model = DTNNModel(n_tasks,
... n_embedding=20,
... n_distance=100,
... learning_rate=1.0,
... mode="regression")
>>> loss = model.fit(data, nb_epoch=250)
>>> pred = model.predict(data)
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References

__init__(n_tasks: int, n_embedding: int = 30, n_hidden: int = 100, n_distance: int = 100, distance_min:
float = -1, distance_max: float = 18, output_activation: bool = True, mode: str = 'regression',
dropout: float = 0.0, n_steps: int = 2, **kwargs)

Parameters
• n_tasks (int) – Number of tasks

• n_embedding (int (default 30)) – Number of features per atom.

• n_hidden (int (default 100)) – Number of features for each molecule after
DTNNStep

• n_distance (int (default 100)) – granularity of distance matrix step size will be
(distance_max-distance_min)/n_distance

• distance_min (float (default -1)) – minimum distance of atom pairs (in
Angstrom)

• distance_max (float (default = 18)) – maximum distance of atom pairs (in
Angstrom)

• output_activation (bool (default True)) – determines whether an activation
function should be apply to its output.

• mode (str (default "regression")) – Only “regression” is currently supported.

• dropout (float (default 0.0)) – the dropout probablity to use.

• n_steps (int (default 2)) – Number of DTNNStep Layers to use.

default_generator(dataset: Dataset, epochs: int = 1, mode: str = 'fit', deterministic: bool = True,
pad_batches: bool = True)

Create a generator that iterates batches for a dataset. It processes inputs through the _com-
pute_features_on_batch function to calculate required features of input.

Parameters
• dataset (Dataset) – the data to iterate

• epochs (int) – the number of times to iterate over the full dataset

• mode (str) – allowed values are ‘fit’ (called during training), ‘predict’ (called during pre-
diction), and ‘uncertainty’ (called during uncertainty prediction)

• deterministic (bool) – whether to iterate over the dataset in order, or randomly shuffle
the data for each epoch

• pad_batches (bool) – whether to pad each batch up to this model’s preferred batch size

Returns
• a generator that iterates batches, each represented as a tuple of lists

• ([inputs], [outputs], [weights])
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3.18.25 SeqToSeqModel

class SeqToSeqModel(input_tokens: List, output_tokens: List, max_output_length: int, encoder_layers: int = 4,
decoder_layers: int = 4, batch_size: int = 100, embedding_dimension: int = 512, dropout:
float = 0.0, reverse_input: bool = True, variational: bool = False, annealing_start_step:
int = 5000, annealing_final_step: int = 10000, **kwargs)

Implements sequence to sequence translation models.

The model is based on the description in Sutskever et al., “Sequence to Sequence Learning with Neural Networks”
(https://arxiv.org/abs/1409.3215), although this implementation uses GRUs instead of LSTMs. The goal is to
take sequences of tokens as input, and translate each one into a different output sequence. The input and output
sequences can both be of variable length, and an output sequence need not have the same length as the input
sequence it was generated from. For example, these models were originally developed for use in natural language
processing. In that context, the input might be a sequence of English words, and the output might be a sequence
of French words. The goal would be to train the model to translate sentences from English to French.

The model consists of two parts called the “encoder” and “decoder”. Each one consists of a stack of recurrent
layers. The job of the encoder is to transform the input sequence into a single, fixed length vector called the “em-
bedding”. That vector contains all relevant information from the input sequence. The decoder then transforms
the embedding vector into the output sequence.

These models can be used for various purposes. First and most obviously, they can be used for sequence to
sequence translation. In any case where you have sequences of tokens, and you want to translate each one into a
different sequence, a SeqToSeq model can be trained to perform the translation.

Another possible use case is transforming variable length sequences into fixed length vectors. Many types of
models require their inputs to have a fixed shape, which makes it difficult to use them with variable sized inputs
(for example, when the input is a molecule, and different molecules have different numbers of atoms). In that
case, you can train a SeqToSeq model as an autoencoder, so that it tries to make the output sequence identical to
the input one. That forces the embedding vector to contain all information from the original sequence. You can
then use the encoder for transforming sequences into fixed length embedding vectors, suitable to use as inputs to
other types of models.

Another use case is to train the decoder for use as a generative model. Here again you begin by training the
SeqToSeq model as an autoencoder. Once training is complete, you can supply arbitrary embedding vectors,
and transform each one into an output sequence. When used in this way, you typically train it as a variational
autoencoder. This adds random noise to the encoder, and also adds a constraint term to the loss that forces
the embedding vector to have a unit Gaussian distribution. You can then pick random vectors from a Gaussian
distribution, and the output sequences should follow the same distribution as the training data.

When training as a variational autoencoder, it is best to use KL cost annealing, as described in https://arxiv.
org/abs/1511.06349. The constraint term in the loss is initially set to 0, so the optimizer just tries to minimize
the reconstruction loss. Once it has made reasonable progress toward that, the constraint term can be gradually
turned back on. The range of steps over which this happens is configurable.

In this class, we establish a sequential model for the Sequence to Sequence (DTNN) [1]_.
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Examples

>>> import torch
>>> from deepchem.models.torch_models.seqtoseq import SeqToSeqModel
>>> data = [
... ("Cc1cccc(N2CCN(C(=O)C34CC5CC(CC(C5)C3)C4)CC2)c1C",
... "Cc1cccc(N2CCN(C(=O)C34CC5CC(CC(C5)C3)C4)CC2)c1C"),
... ("Cn1ccnc1SCC(=O)Nc1ccc(Oc2ccccc2)cc1",
... "Cn1ccnc1SCC(=O)Nc1ccc(Oc2ccccc2)cc1"),
... ("COc1cc2c(cc1NC(=O)CN1C(=O)NC3(CCc4ccccc43)C1=O)oc1ccccc12",
... "COc1cc2c(cc1NC(=O)CN1C(=O)NC3(CCc4ccccc43)C1=O)oc1ccccc12"),
... ("O=C1/C(=C/NC2CCS(=O)(=O)C2)c2ccccc2C(=O)N1c1ccccc1",
... "O=C1/C(=C/NC2CCS(=O)(=O)C2)c2ccccc2C(=O)N1c1ccccc1"),
... ("NC(=O)NC(Cc1ccccc1)C(=O)O",
... "NC(=O)NC(Cc1ccccc1)C(=O)O")]
>>> train_smiles = [s[0] for s in data]
>>> tokens = set()
>>> for s in train_smiles:
... tokens = tokens.union(set(c for c in s))
>>> tokens = sorted(list(tokens))
>>> from deepchem.models.optimizers import Adam, ExponentialDecay
>>> max_length = max(len(s) for s in train_smiles)
>>> batch_size = 100
>>> batches_per_epoch = len(train_smiles) / batch_size
>>> model = SeqToSeqModel(
... tokens,
... tokens,
... max_length,
... encoder_layers=2,
... decoder_layers=2,
... embedding_dimension=256,
... model_dir="fingerprint",
... batch_size=batch_size,
... learning_rate=ExponentialDecay(0.001, 0.9, batches_per_epoch))
>>> for i in range(20):
... loss = model.fit_sequences(data)
>>> prediction = model.predict_from_sequences(train_smiles, 5)

References

__init__(input_tokens: List, output_tokens: List, max_output_length: int, encoder_layers: int = 4,
decoder_layers: int = 4, batch_size: int = 100, embedding_dimension: int = 512, dropout: float =
0.0, reverse_input: bool = True, variational: bool = False, annealing_start_step: int = 5000,
annealing_final_step: int = 10000, **kwargs)

Construct a SeqToSeq model.

Parameters
• input_tokens (list) – List of all tokens that may appear in input sequences.

• output_tokens (list) – List of all tokens that may appear in output sequences

• max_output_length (int) – Maximum length of output sequence that may be generated

• encoder_layers (int (default 4)) – Number of recurrent layers in the encoder
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• decoder_layers (int (default 4)) – Number of recurrent layers in the decoder

• embedding_dimension (int (default 512)) – Width of the embedding vector. This
also is the width of all recurrent layers.

• dropout (float (default 0.0)) – Dropout probability to use during training.

• reverse_input (bool (default True)) – If True, reverse the order of input sequences
before sending them into the encoder. This can improve performance when working with
long sequences.

• variational (bool (default False)) – If True, train the model as a variational au-
toencoder. This adds random noise to the encoder, and also constrains the embedding to
follow a unit Gaussian distribution.

• annealing_start_step (int (default 5000)) – Step (that is, batch) at which to be-
gin turning on the constraint term for KL cost annealing.

• annealing_final_step (int (default 10000)) – Step (that is, batch) at which to
finish turning on the constraint term for KL cost annealing.

fit_sequences(sequences: List[str], max_checkpoints_to_keep: int = 5, checkpoint_interval: int = 1000,
restore: bool = False)

Train this model on a set of sequences

Parameters
• sequences (List[str]) – Training samples to fit to. Each sample should be represented

as a tuple of the form (input_sequence, output_sequence).

• max_checkpoints_to_keep (int) – Maximum number of checkpoints to keep. Older
checkpoints are discarded.

• checkpoint_interval (int) – Frequency at which to write checkpoints, measured in
training steps.

• restore (bool) – if True, restore the model from the most recent checkpoint and continue
training from there. If False, retrain the model from scratch.

predict_from_sequences(sequences: List[str], beam_width=5)
Given a set of input sequences, predict the output sequences.

The prediction is done using a beam search with length normalization.

Parameters
• sequences (List[str]) – Input sequences to generate a prediction for

• beam_width (int (default 5)) – Beam width to use for searching. Set to 1 to use a
simple greedy search.

predict_embedding(sequences: List[str])
Given a set of input sequences, compute the embedding vectors.

Parameters
sequences (List[str]) – Input sequences to generate embeddings for.

predict_from_embedding(embeddings: List[ndarray], beam_width=5)
Given a set of embedding vectors, predict the output sequences.

The prediction is done using a beam search with length normalization.

Parameters
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• embeddings (List[np.ndarray]) – Embedding vectors to generate predictions for

• beam_width (int) – Beam width to use for searching. Set to 1 to use a simple greedy
search.

3.18.26 GAN

class GAN(noise_input_shape: tuple, data_input_shape: list, conditional_input_shape: list, generator_fn:
Callable, discriminator_fn: Callable, device: device, n_generators: int = 1, n_discriminators: int = 1,
create_discriminator_loss: Callable | None = None, create_generator_loss: Callable | None = None,
_call_discriminator: Callable | None = None, **kwargs)

Builder class for Generative Adversarial Networks.

A Generative Adversarial Network (GAN) is a type of generative model. It consists of two parts called the “gen-
erator” and the “discriminator”. The generator takes random noise as input and transforms it into an output that
(hopefully) resembles the training data. The discriminator takes a set of samples as input and tries to distinguish
the real training samples from the ones created by the generator. Both of them are trained together. The discrim-
inator tries to get better and better at telling real from false data, while the generator tries to get better and better
at fooling the discriminator.

Examples

Importing necessary modules

>>> import deepchem as dc
>>> from deepchem.models.torch_models.gan import GAN
>>> import torch
>>> import torch.nn as nn
>>> import torch.nn.functional as F

Creating a Generator

>>> class Generator(nn.Module):
... def __init__(self, noise_input_shape, conditional_input_shape):
... super(Generator, self).__init__()
... self.noise_input_shape = noise_input_shape
... self.conditional_input_shape = conditional_input_shape
... self.noise_dim = noise_input_shape[1:]
... self.conditional_dim = conditional_input_shape[1:]
... input_dim = sum(self.noise_dim) + sum(self.conditional_dim)
... self.output = nn.Linear(input_dim, 1)
... def forward(self, input):
... noise_input, conditional_input = input
... inputs = torch.cat((noise_input, conditional_input), dim=1)
... output = self.output(inputs)
... return output

Creating a Discriminator

>>> class Discriminator(nn.Module):
... def __init__(self, data_input_shape, conditional_input_shape):
... super(Discriminator, self).__init__()
... self.data_input_shape = data_input_shape

(continues on next page)
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... self.conditional_input_shape = conditional_input_shape

... # Extracting the actual data dimension

... data_dim = data_input_shape[1:]

... # Extracting the actual conditional dimension

... conditional_dim = conditional_input_shape[1:]

... input_dim = sum(data_dim) + sum(conditional_dim)

... # Define the dense layers

... self.dense1 = nn.Linear(input_dim, 10)

... self.dense2 = nn.Linear(10, 1)

... def forward(self, input):

... data_input, conditional_input = input

... # Concatenate data_input and conditional_input along the second␣
→˓dimension
... discrim_in = torch.cat((data_input, conditional_input), dim=1)
... # Pass the concatenated input through the dense layers
... x = F.relu(self.dense1(discrim_in))
... output = torch.sigmoid(self.dense2(x))
... return output

Defining an Example GAN class

>>> class ExampleGAN(dc.models.torch_models.GAN):
... def get_noise_input_shape(self):
... return (16,2,)
... def get_data_input_shapes(self):
... return [(16,1,)]
... def get_conditional_input_shapes(self):
... return [(16,1,)]
... def create_generator(self):
... noise_dim = self.get_noise_input_shape()
... conditional_dim = self.get_conditional_input_shapes()[0]
... return nn.Sequential(Generator(noise_dim, conditional_dim))
... def create_discriminator(self):
... data_input_shape = self.get_data_input_shapes()[0]
... conditional_input_shape = self.get_conditional_input_shapes()[0]
... return nn.Sequential(
... Discriminator(data_input_shape, conditional_input_shape))

Defining the GAN

>>> batch_size = 16
>>> noise_shape = (batch_size, 2,)
>>> data_shape = [(batch_size, 1,)]
>>> conditional_shape = [(batch_size, 1,)]
>>> def create_generator(noise_dim, conditional_dim):
... noise_dim = noise_dim
... conditional_dim = conditional_dim[0]
... return nn.Sequential(Generator(noise_dim, conditional_dim))
>>> def create_discriminator(data_input_shape, conditional_input_shape):
... data_input_shape = data_input_shape[0]
... conditional_input_shape = conditional_input_shape[0]
... return nn.Sequential(

(continues on next page)
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... Discriminator(data_input_shape, conditional_input_shape))
>>> gan = ExampleGAN(noise_shape,
... data_shape,
... conditional_shape,
... create_generator(noise_shape, conditional_shape),
... create_discriminator(data_shape, conditional_shape),
... device='cpu')
>>> noise = torch.rand(*gan.noise_input_shape)
>>> real_data = torch.rand(*gan.data_input_shape[0])
>>> conditional = torch.rand(*gan.conditional_input_shape[0])
>>> gen_loss, disc_loss = gan([noise, real_data, conditional])

References

__init__(noise_input_shape: tuple, data_input_shape: list, conditional_input_shape: list, generator_fn:
Callable, discriminator_fn: Callable, device: device, n_generators: int = 1, n_discriminators: int
= 1, create_discriminator_loss: Callable | None = None, create_generator_loss: Callable | None =
None, _call_discriminator: Callable | None = None, **kwargs)

Construct a GAN.

In addition to the parameters listed below, this class accepts all the keyword arguments from KerasModel.

Parameters
• noise_input_shape (tuple) – the shape of the noise input to the generator. The first

dimension (corresponding to the batch size) should be omitted.

• data_input_shape (list of tuple) – the shapes of the inputs to the discriminator.
The first dimension (corresponding to the batch size) should be omitted.

• conditional_input_shape (list of tuple) – the shapes of the conditional inputs
to the generator and discriminator. The first dimension (corresponding to the batch size)
should be omitted. If there are no conditional inputs, this should be an empty list.

• generator_fn (Callable) – a function that returns a generator. It will be called with no
arguments. The returned value should be a nn.Module whose input is a list containing a
batch of noise, followed by any conditional inputs. The number and shapes of its outputs
must match the return value from get_data_input_shapes(), since generated data must have
the same form as training data.

• discriminator_fn (Callable) – a function that returns a discriminator. It will be called
with no arguments. The returned value should be a nn.Module whose input is a list con-
taining a batch of data, followed by any conditional inputs. Its output should be a one
dimensional tensor containing the probability of each sample being a training sample.

• device (torch.device) – the device to use for training

• n_generators (int) – the number of generators to include

• n_discriminators (int) – the number of discriminators to include

• create_discriminator_loss (Callable) – a function that returns the loss function for
the discriminator. It will be called with two arguments: the output from the discriminator
on a batch of training data, and the output from the discriminator on a batch of generated
data. The default implementation is appropriate for most cases. Subclasses can override
this if the need to customize it.
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• create_generator_loss (Callable) – a function that returns the loss function for the
generator. It will be called with one argument: the output from the discriminator on a batch
of generated data. The default implementation is appropriate for most cases. Subclasses
can override this if the need to customize it.

• _call_discriminator (Callable) – a function that invokes the discriminator on a set
of inputs. It will be called with three arguments: the discriminator to invoke, the list of
data inputs, and the list of conditional inputs. The default implementation is appropriate
for most cases. Subclasses can override this if the need to customize it.

forward(inputs)→ Tuple[Tensor, Tensor]
Compute the output of the GAN.

Parameters
inputs (list of Tensor) – the inputs to the GAN. The first element must be a batch of
noise, followed by data inputs and any conditional inputs.

Returns
• total_gen_loss (Tensor) – the total loss for the generator

• total_discrim_loss (Tensor) – the total loss for the discriminator

get_noise_batch(batch_size: int)→ ndarray
Get a batch of random noise to pass to the generator.

This should return a NumPy array whose shape matches the one returned by get_noise_input_shape(). The
default implementation returns normally distributed values. Subclasses can override this to implement a
different distribution.

Parameters
batch_size (int) – the number of samples to generate

Returns
random_noise – a batch of random noise

Return type
ndarray

create_generator_loss(discrim_output: Tensor)→ Tensor
Create the loss function for the generator.

The default implementation is appropriate for most cases. Subclasses can override this if the need to cus-
tomize it.

Parameters
discrim_output (Tensor) – the output from the discriminator on a batch of generated data.
This is its estimate of the probability that each sample is training data.

Returns
output – A Tensor equal to the loss function to use for optimizing the generator.

Return type
Tensor

create_discriminator_loss(discrim_output_train: Tensor, discrim_output_gen: Tensor)→ Tensor
Create the loss function for the discriminator.

The default implementation is appropriate for most cases. Subclasses can override this if the need to cus-
tomize it.

Parameters
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• discrim_output_train (Tensor) – the output from the discriminator on a batch of train-
ing data. This is its estimate of the probability that each sample is training data.

• discrim_output_gen (Tensor) – the output from the discriminator on a batch of gener-
ated data. This is its estimate of the probability that each sample is training data.

Returns
output – A Tensor equal to the loss function to use for optimizing the discriminator.

Return type
Tensor

discrim_loss_fn(outputs: List, labels: List[Tensor], weights: List[Tensor])→ Any
Function to get the discriminator loss from the fit_generator output

Parameters
• outputs (list of Tensor) – the output from the discriminator on a batch of training

data. This is its estimate of the probability that each sample is training data.

• labels (Tensor) – the labels for the batch. These are ignored.

• weights (Tensor) – the weights for the batch. These are ignored.

Return type
the value of the discriminator loss from the fit_generator output.

gen_loss_fn(outputs: List, labels: List[Tensor], weights: List[Tensor])→ Tensor
Function to get the Generator loss from the fit_generator output

Parameters
• outputs (Tensor) – the output from the discriminator on a batch of generated data. This

is its estimate of the probability that each sample is training data.

• labels (Tensor) – the labels for the batch. These are ignored.

• weights (Tensor) – the weights for the batch. These are ignored.

Return type
the value of the generator loss function for this input.

3.18.27 GANModel

class GANModel(n_generators: int = 1, n_discriminators: int = 1, create_discriminator_loss: Callable | None =
None, create_generator_loss: Callable | None = None, _call_discriminator: Callable | None =
None, device: device | None = None, **kwargs)

Implements Generative Adversarial Networks.

A Generative Adversarial Network (GAN) is a type of generative model. It consists of two parts called the “gen-
erator” and the “discriminator”. The generator takes random noise as input and transforms it into an output that
(hopefully) resembles the training data. The discriminator takes a set of samples as input and tries to distinguish
the real training samples from the ones created by the generator. Both of them are trained together. The discrim-
inator tries to get better and better at telling real from false data, while the generator tries to get better and better
at fooling the discriminator.

In many cases there also are additional inputs to the generator and discriminator. In that case it is known as a
Conditional GAN (CGAN), since it learns a distribution that is conditional on the values of those inputs. They
are referred to as “conditional inputs”.
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Many variations on this idea have been proposed, and new varieties of GANs are constantly being proposed.
This class tries to make it very easy to implement straightforward GANs of the most conventional types. At the
same time, it tries to be flexible enough that it can be used to implement many (but certainly not all) variations
on the concept.

To define a GAN, you must create a subclass that provides implementations of the following methods:

get_noise_input_shape() get_data_input_shapes() create_generator() create_discriminator()

If you want your GAN to have any conditional inputs you must also implement:

get_conditional_input_shapes()

The following methods have default implementations that are suitable for most conventional GANs. You can
override them if you want to customize their behavior:

create_generator_loss() create_discriminator_loss() get_noise_batch()

This class allows a GAN to have multiple generators and discriminators, a model known as MIX+GAN. It is
described in [2] This can lead to better models, and is especially useful for reducing mode collapse, since different
generators can learn different parts of the distribution. To use this technique, simply specify the number of
generators and discriminators when calling the constructor. You can then tell predict_gan_generator() which
generator to use for predicting samples.

Examples

Importing necessary modules

>>> import deepchem as dc
>>> from deepchem.models.torch_models.gan import GAN
>>> import torch
>>> import torch.nn as nn
>>> import torch.nn.functional as F

Creating a Generator

>>> class Generator(nn.Module):
... def __init__(self, noise_input_shape, conditional_input_shape):
... super(Generator, self).__init__()
... self.noise_input_shape = noise_input_shape
... self.conditional_input_shape = conditional_input_shape
... self.noise_dim = noise_input_shape[1:]
... self.conditional_dim = conditional_input_shape[1:]
... input_dim = sum(self.noise_dim) + sum(self.conditional_dim)
... self.output = nn.Linear(input_dim, 1)
... def forward(self, input):
... noise_input, conditional_input = input
... inputs = torch.cat((noise_input, conditional_input), dim=1)
... output = self.output(inputs)
... return output

Creating a Discriminator

>>> class Discriminator(nn.Module):
... def __init__(self, data_input_shape, conditional_input_shape):
... super(Discriminator, self).__init__()
... self.data_input_shape = data_input_shape

(continues on next page)
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... self.conditional_input_shape = conditional_input_shape

... # Extracting the actual data dimension

... data_dim = data_input_shape[1:]

... # Extracting the actual conditional dimension

... conditional_dim = conditional_input_shape[1:]

... input_dim = sum(data_dim) + sum(conditional_dim)

... # Define the dense layers

... self.dense1 = nn.Linear(input_dim, 10)

... self.dense2 = nn.Linear(10, 1)

... def forward(self, input):

... data_input, conditional_input = input

... # Concatenate data_input and conditional_input along the second␣
→˓dimension
... discrim_in = torch.cat((data_input, conditional_input), dim=1)
... # Pass the concatenated input through the dense layers
... x = F.relu(self.dense1(discrim_in))
... output = torch.sigmoid(self.dense2(x))
... return output

Defining an Example GAN class

>>> class ExampleGANModel(dc.models.torch_models.GANModel):
... def get_noise_input_shape(self):
... return (100,2,)
... def get_data_input_shapes(self):
... return [(100,1,)]
... def get_conditional_input_shapes(self):
... return [(100,1,)]
... def create_generator(self):
... noise_dim = self.get_noise_input_shape()
... conditional_dim = self.get_conditional_input_shapes()[0]
... return nn.Sequential(Generator(noise_dim, conditional_dim))
... def create_discriminator(self):
... data_input_shape = self.get_data_input_shapes()[0]
... conditional_input_shape = self.get_conditional_input_shapes()[0]
... return nn.Sequential(
... Discriminator(data_input_shape, conditional_input_shape))

Defining a function to generate data

>>> def generate_batch(batch_size):
... means = 10 * np.random.random([batch_size, 1])
... values = np.random.normal(means, scale=2.0)
... return means, values

>>> def generate_data(gan, batches, batch_size):
... for _ in range(batches):
... means, values = generate_batch(batch_size)
... batch = {
... gan.data_inputs[0]: values,
... gan.conditional_inputs[0]: means
... }

(continues on next page)
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... yield batch

Defining the GANModel

>>> batch_size = 100
>>> noise_shape = (batch_size, 2,)
>>> data_shape = [(batch_size, 1,)]
>>> conditional_shape = [(batch_size, 1,)]
>>> gan = ExampleGANModel(learning_rate=0.01)
>>> data = generate_data(gan, 500, 100)
>>> gan.fit_gan(data, generator_steps=0.5, checkpoint_interval=0)
>>> means = 10 * np.random.random([1000, 1])
>>> values = gan.predict_gan_generator(conditional_inputs=[means])

References

Notes

This class is a subclass of TorchModel. It accepts all the keyword arguments from TorchModel.

__init__(n_generators: int = 1, n_discriminators: int = 1, create_discriminator_loss: Callable | None =
None, create_generator_loss: Callable | None = None, _call_discriminator: Callable | None =
None, device: device | None = None, **kwargs)

Parameters
• n_generators (int) – the number of generators to include

• n_discriminators (int) – the number of discriminators to include

• create_discriminator_loss (Callable) – a function that returns the loss function for
the discriminator. It will be called with two arguments: the output from the discriminator
on a batch of training data, and the output from the discriminator on a batch of generated
data. The default implementation is appropriate for most cases. Subclasses can override
this if the need to customize it.

• create_generator_loss (Callable) – a function that returns the loss function for the
generator. It will be called with one argument: the output from the discriminator on a batch
of generated data. The default implementation is appropriate for most cases. Subclasses
can override this if the need to customize it.

• _call_discriminator (Callable) – a function that invokes the discriminator on a set
of inputs. It will be called with three arguments: the discriminator to invoke, the list of
data inputs, and the list of conditional inputs. The default implementation is appropriate
for most cases. Subclasses can override this if the need to customize it.

get_noise_input_shape()

Get the shape of the generator’s noise input layer.

Subclasses must override this to return a tuple giving the shape of the noise input. The actual Input layer
will be created automatically. The dimension corresponding to the batch size should be omitted.

get_data_input_shapes()

Get the shapes of the inputs for training data.
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Subclasses must override this to return a list of tuples, each giving the shape of one of the inputs. The actual
Input layers will be created automatically. This list of shapes must also match the shapes of the generator’s
outputs. The dimension corresponding to the batch size should be omitted.

get_conditional_input_shapes()

Get the shapes of any conditional inputs.

Subclasses may override this to return a list of tuples, each giving the shape of one of the conditional inputs.
The actual Input layers will be created automatically. The dimension corresponding to the batch size should
be omitted.

The default implementation returns an empty list, meaning there are no conditional inputs.

create_generator()

Create and return a generator.

Subclasses must override this to construct the generator. The returned value should be a tf.keras.Model
whose inputs are a batch of noise, followed by any conditional inputs. The number and shapes of its outputs
must match the return value from get_data_input_shapes(), since generated data must have the same form
as training data.

create_discriminator()

Create and return a discriminator.

Subclasses must override this to construct the discriminator. The returned value should be a tf.keras.Model
whose inputs are all data inputs, followed by any conditional inputs. Its output should be a one dimensional
tensor containing the probability of each sample being a training sample.

fit_gan(batches, generator_steps=1, max_checkpoints_to_keep=5, checkpoint_interval=1000,
restore=False)→ None

Train this model on data.

Parameters
• batches (iterable) – batches of data to train the discriminator on, each represented as

a dict that maps Inputs to values. It should specify values for all members of data_inputs
and conditional_inputs.

• generator_steps (float) – the number of training steps to perform for the generator
for each batch. This can be used to adjust the ratio of training steps for the generator and
discriminator. For example, 2.0 will perform two training steps for every batch, while 0.5
will only perform one training step for every two batches.

• max_checkpoints_to_keep (int) – the maximum number of checkpoints to keep. Older
checkpoints are discarded.

• checkpoint_interval (int) – the frequency at which to write checkpoints, measured
in batches. Set this to 0 to disable automatic checkpointing.

• restore (bool) – if True, restore the model from the most recent checkpoint before train-
ing it.

predict_gan_generator(batch_size=1, noise_input=None, conditional_inputs=[], generator_index=0)
Use the GAN to generate a batch of samples.

Parameters
• batch_size (int) – the number of samples to generate. If either noise_input or condi-

tional_inputs is specified, this argument is ignored since the batch size is then determined
by the size of that argument.
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• noise_input (array) – the value to use for the generator’s noise input. If None (the
default), get_noise_batch() is called to generate a random input, so each call will produce
a new set of samples.

• conditional_inputs (list of arrays) – the values to use for all conditional inputs.
This must be specified if the GAN has any conditional inputs.

• generator_index (int) – the index of the generator (between 0 and n_generators-1) to
use for generating the samples.

Returns
• An array (if the generator has only one output) or list of arrays (if it has

• multiple outputs) containing the generated samples.

3.18.28 WGANModel

class WGANModel(gradient_penalty: float = 10.0, **kwargs)
Implements Wasserstein Generative Adversarial Networks.

This class implements Wasserstein Generative Adversarial Networks (WGANs) as described in Arjovsky et al.,
“Wasserstein GAN” [1]_. A WGAN is conceptually rather different from a conventional GAN, but in practical
terms very similar. It reinterprets the discriminator (often called the “critic” in this context) as learning an
approximation to the Earth Mover distance between the training and generated distributions. The generator is
then trained to minimize that distance. In practice, this just means using slightly different loss functions for
training the generator and discriminator.

WGANs have theoretical advantages over conventional GANs, and they often work better in practice. In addition,
the discriminator’s loss function can be directly interpreted as a measure of the quality of the model. That is an
advantage over conventional GANs, where the loss does not directly convey information about the quality of the
model.

The theory WGANs are based on requires the discriminator’s gradient to be bounded. The original paper achieved
this by clipping its weights. This class instead does it by adding a penalty term to the discriminator’s loss, as
described in [2]_. This is sometimes found to produce better results.

There are a few other practical differences between GANs and WGANs. In a conventional GAN, the discrimi-
nator’s output must be between 0 and 1 so it can be interpreted as a probability. In a WGAN, it should produce
an unbounded output that can be interpreted as a distance.

When training a WGAN, you also should usually use a smaller value for generator_steps. Conventional GANs
rely on keeping the generator and discriminator “in balance” with each other. If the discriminator ever gets too
good, it becomes impossible for the generator to fool it and training stalls. WGANs do not have this problem,
and in fact the better the discriminator is, the easier it is for the generator to improve. It therefore usually works
best to perform several training steps on the discriminator for each training step on the generator.

Examples

Importing necessary modules

>>> import deepchem as dc
>>> from deepchem.models.torch_models.gan import WGANModel
>>> import torch
>>> import torch.nn as nn
>>> import torch.nn.functional as F
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Creating a Generator

>>> class Generator(nn.Module):
... def __init__(self, noise_input_shape, conditional_input_shape):
... super(Generator, self).__init__()
... self.noise_input_shape = noise_input_shape
... self.conditional_input_shape = conditional_input_shape
... self.noise_dim = noise_input_shape[1:]
... self.conditional_dim = conditional_input_shape[1:]
... input_dim = sum(self.noise_dim) + sum(self.conditional_dim)
... self.output = nn.Linear(input_dim, 1)
... def forward(self, input):
... noise_input, conditional_input = input
... inputs = torch.cat((noise_input, conditional_input), dim=1)
... output = self.output(inputs)
... return output

Creating a Discriminator

>>> class Discriminator(nn.Module):
... def __init__(self, data_input_shape, conditional_input_shape):
... super(Discriminator, self).__init__()
... self.data_input_shape = data_input_shape
... self.conditional_input_shape = conditional_input_shape
... # Extracting the actual data dimension
... data_dim = data_input_shape[1:]
... # Extracting the actual conditional dimension
... conditional_dim = conditional_input_shape[1:]
... input_dim = sum(data_dim) + sum(conditional_dim)
... # Define the dense layers
... self.dense1 = nn.Linear(input_dim, 10)
... self.dense2 = nn.Linear(10, 1)
... def forward(self, input):
... data_input, conditional_input = input
... # Concatenate data_input and conditional_input along the second␣
→˓dimension
... discrim_in = torch.cat((data_input, conditional_input), dim=1)
... # Pass the concatenated input through the dense layers
... x = F.relu(self.dense1(discrim_in))
... output = self.dense2(x)
... return output

Creating an Example WGANModel class

>>> class ExampleWGAN(WGANModel):
... def get_noise_input_shape(self):
... return (100,2,)
... def get_data_input_shapes(self):
... return [(100,1,)]
... def get_conditional_input_shapes(self):
... return [(100,1,)]
... def create_generator(self):
... noise_dim = self.get_noise_input_shape()
... conditional_dim = self.get_conditional_input_shapes()[0]

(continues on next page)
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... return nn.Sequential(Generator(noise_dim, conditional_dim))

... def create_discriminator(self):

... data_input_shape = self.get_data_input_shapes()[0]

... conditional_input_shape = self.get_conditional_input_shapes()[0]

... return nn.Sequential(

... Discriminator(data_input_shape, conditional_input_shape))

Defining a function to generate data

>>> def generate_batch(batch_size):
... means = 10 * np.random.random([batch_size, 1])
... values = np.random.normal(means, scale=2.0)
... return means, values
>>> def generate_data(gan, batches, batch_size):
... for _ in range(batches):
... means, values = generate_batch(batch_size)
... batch = {
... gan.data_inputs[0]: values,
... gan.conditional_inputs[0]: means
... }
... yield batch

Defining the WGANModel

>>> wgan = ExampleWGAN(learning_rate=0.01,
... gradient_penalty=0.1)
>>> data = generate_data(wgan, 500, 100)
>>> wgan.fit_gan(data, generator_steps=0.1, checkpoint_interval=0)
>>> means = 10 * np.random.random([1000, 1])
>>> values = wgan.predict_gan_generator(conditional_inputs=[means])

References

__init__(gradient_penalty: float = 10.0, **kwargs)
Construct a WGAN.

In addition to the following, this class accepts all the keyword arguments from GAN and TorchModel.

Parameters
gradient_penalty (float default 10.0) – the magnitude of the gradient penalty loss

create_generator_loss(discrim_output: Tensor)→ Tensor
Create the loss function for the generator.

Parameters
discrim_output (torch.Tensor) – the output from the discriminator on a batch of gener-
ated data. This is its estimate of the probability that each sample is training data.

Returns
A Tensor equal to the mean of the inputs

Return type
torch.Tensor
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create_discriminator_loss(discrim_output_train: List[Tensor], discrim_output_gen: Tensor)→ Tensor
Create the loss function for the discriminator.

Parameters
• discrim_output_train (List[Tensor]) – the output from the discriminator on a batch

of training data. This is its estimate of the probability that each sample is training data.

• discrim_output_gen (Tensor) – the output from the discriminator on a batch of gener-
ated data.

Returns
A Tensor equal to the loss function to use for optimizing the discriminator.

Return type
torch.Tensor

3.18.29 BasicMolGANModel

class BasicMolGANModel(edges: int = 5, vertices: int = 9, nodes: int = 5, embedding_dim: int = 10,
dropout_rate: float = 0.0, device: device | None = None, **kwargs)

Model for de-novo generation of small molecules based on work of Nicola De Cao et al. [1]_. It uses a GAN
directly on graph data and a reinforcement learning objective to induce the network to generate molecules with
certain chemical properties. Utilizes WGAN infrastructure; uses adjacency matrix and node features as inputs.
Inputs need to be one-hot representation.

Examples

Import necessary libraries and modules

>>> import deepchem as dc
>>> from deepchem.models.torch_models import BasicMolGANModel as MolGAN
>>> from deepchem.models.optimizers import ExponentialDecay
>>> import torch
>>> import torch.nn.functional as F

Load dataset and featurize molecules We will use a small dataset for this example. We will be using MolGan-
Featurizer to featurize the molecules.

>>> smiles = ['CCC', 'C1=CC=CC=C1', 'CNC' ]
>>> # create featurizer
>>> feat = dc.feat.MolGanFeaturizer()
>>> # featurize molecules
>>> features = feat.featurize(smiles)
>>> # Remove empty objects
>>> features = list(filter(lambda x: x is not None, features))

Create and train the model

>>> # create model
>>> gan = MolGAN(learning_rate=ExponentialDecay(0.001, 0.9, 5000))
>>> dataset = dc.data.NumpyDataset([x.adjacency_matrix for x in features],[x.node_
→˓features for x in features])
>>> def iterbatches(epochs):

(continues on next page)
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... for i in range(epochs):

... for batch in dataset.iterbatches(batch_size=gan.batch_size, pad_
→˓batches=True):
... adjacency_tensor = F.one_hot(
... torch.Tensor(batch[0]).to(torch.int64),
... gan.edges).to(torch.float32)
... node_tensor = F.one_hot(
... torch.Tensor(batch[1]).to(torch.int64),
... gan.nodes).to(torch.float32)
... yield {gan.data_inputs[0]: adjacency_tensor, gan.data_
→˓inputs[1]:node_tensor}
>>> # train model
>>> gan.fit_gan(iterbatches(8), generator_steps=0.2, checkpoint_interval=0)

You can change the above parameters to get better results. The above example is just a simple example to show
how to use the model. You can try iterbatches(1000) for better results.

Now, let’s generate some molecules using the trained model We will generate 10 molecules and then convert
them to RDKit molecules.

>>> generated_data = gan.predict_gan_generator(10)
Generating 10 samples
>>> # convert graphs to RDKitmolecules
>>> nmols = feat.defeaturize(generated_data)
>>> print("{} molecules generated".format(len(nmols)))
10 molecules generated

You can increase the number of generated molecules by changing the parameter in predict_gan_generator func-
tion. Generated molecules are in the form of GraphMatrix. You can convert them to RDKit molecules using
defeaturize function of MolGanFeaturizer.

Now, let’s remove invalid molecules from the generated molecules.

>>> # remove invalid moles
>>> nmols = list(filter(lambda x: x is not None, nmols))
>>> print ("{} valid molecules".format(len(nmols)))
0 valid molecules

We can see that currently training is unstable and 0 is a common outcome. You can try training the model with
different parameters to get better results.

References

__init__(edges: int = 5, vertices: int = 9, nodes: int = 5, embedding_dim: int = 10, dropout_rate: float =
0.0, device: device | None = None, **kwargs)

Initialize the model

Parameters
• edges (int, default 5) – Number of bond types includes BondType.Zero

• vertices (int, default 9) – Max number of atoms in adjacency and node features
matrices

• nodes (int, default 5) – Number of atom types in node features matrix
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• embedding_dim (int, default 10) – Size of noise input array

• dropout_rate (float, default = 0.) – Rate of dropout used across whole model

• name (str, default '') – Name of the model

get_noise_input_shape()→ Tuple[int, int]
Return shape of the noise input used in generator

Returns
Shape of the noise input

Return type
Tuple

get_data_input_shapes()→ List
Return input shape of the discriminator

Returns
List of shapes used as an input for distriminator.

Return type
List

create_generator()

Create generator model. Take noise data as an input and processes it through number of dense and dropout
layers. Then data is converted into two forms one used for training and other for generation of compounds.
The model has two outputs:

1. edges

2. nodes

The format differs depending on intended use (training or sample generation). For sample generation use
flag, sample_generation=True while calling generator i.e. gan.generators[0](noise_input, training=False,
sample_generation=True). For training the model, set sample_generation=False

create_discriminator(units: List[Tuple[int, int] | int] = [(128, 64), 64])
Create discriminator model based on MolGAN layers. Takes two inputs:

1. adjacency tensor, containing bond information

2. nodes tensor, containing atom information

The input vectors need to be in one-hot encoding format. Use MolGAN featurizer for that purpose. It will
be simplified in the future release.

predict_gan_generator(batch_size: int = 1, noise_input: List | Tensor | None = None, conditional_inputs:
List = [], generator_index: int = 0)→ List[GraphMatrix]

Use the GAN to generate a batch of samples.

Parameters
• batch_size (int) – the number of samples to generate. If either noise_input or condi-

tional_inputs is specified, this argument is ignored since the batch size is then determined
by the size of that argument.

• noise_input (array) – the value to use for the generator’s noise input. If None (the
default), get_noise_batch() is called to generate a random input, so each call will produce
a new set of samples.

• conditional_inputs (list of arrays) – NOT USED. the values to use for all con-
ditional inputs. This must be specified if the GAN has any conditional inputs.
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• generator_index (int) – NOT USED. the index of the generator (between 0 and
n_generators-1) to use for generating the samples.

Returns
Returns a list of GraphMatrix object that can be converted into RDKit molecules using Mol-
GANFeaturizer defeaturize function.

Return type
List[GraphMatrix]

3.18.30 Weave

class Weave(n_tasks: int, n_atom_feat: int | ~typing.Sequence[int] = 75, n_pair_feat: int | ~typing.Sequence[int]
= 14, n_hidden: int = 50, n_graph_feat: int = 128, n_weave: int = 2, fully_connected_layer_sizes:
~typing.List[int] = [2000, 100], conv_weight_init_stddevs: float | ~typing.Sequence[float] = 0.03,
weight_init_stddevs: float | ~typing.Sequence[float] = 0.01, bias_init_consts: float |
~typing.Sequence[float] = 0.0, dropouts: float | ~typing.Sequence[float] = 0.25,
final_conv_activation_fn=<function tanh>, activation_fns: ~typing.Callable | str |
~typing.Sequence[~typing.Callable | str] = 'relu', batch_normalize: bool = True, gaussian_expand:
bool = True, compress_post_gaussian_expansion: bool = False, mode: str = 'classification',
n_classes: int = 2, batch_size: int = 100)

A graph convolutional network(GCN) for either classification or regression. The network consists of the follow-
ing sequence of layers:

• Weave feature modules

• Final convolution

• Weave Gather Layer

• A fully connected layer

• A Softmax layer

Example

>>> import numpy as np
>>> import deepchem as dc
>>> featurizer = dc.feat.WeaveFeaturizer()
>>> X = featurizer(["C", "CC"])
>>> y = np.array([1, 0])
>>> batch_size = 2
>>> weavemodel = dc.models.WeaveModel(n_tasks=1,n_weave=2, fully_connected_layer_
→˓sizes=[2000, 1000],mode="classification",batch_size=batch_size)
>>> atom_feat, pair_feat, pair_split, atom_split, atom_to_pair = weavemodel.compute_
→˓features_on_batch(X)
>>> model = Weave(n_tasks=1,n_weave=2,fully_connected_layer_sizes=[2000, 1000],mode=
→˓"classification")
>>> input_data = [atom_feat, pair_feat, pair_split, atom_split, atom_to_pair]
>>> output = model(input_data)
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References

__init__(n_tasks: int, n_atom_feat: int | ~typing.Sequence[int] = 75, n_pair_feat: int |
~typing.Sequence[int] = 14, n_hidden: int = 50, n_graph_feat: int = 128, n_weave: int = 2,
fully_connected_layer_sizes: ~typing.List[int] = [2000, 100], conv_weight_init_stddevs: float |
~typing.Sequence[float] = 0.03, weight_init_stddevs: float | ~typing.Sequence[float] = 0.01,
bias_init_consts: float | ~typing.Sequence[float] = 0.0, dropouts: float | ~typing.Sequence[float] =
0.25, final_conv_activation_fn=<function tanh>, activation_fns: ~typing.Callable | str |
~typing.Sequence[~typing.Callable | str] = 'relu', batch_normalize: bool = True,
gaussian_expand: bool = True, compress_post_gaussian_expansion: bool = False, mode: str =
'classification', n_classes: int = 2, batch_size: int = 100)

Parameters
• n_tasks (int) – Number of tasks

• n_atom_feat (int, optional (default 75)) – Number of features per atom. Note
this is 75 by default and should be 78 if chirality is used by WeaveFeaturizer.

• n_pair_feat (int, optional (default 14)) – Number of features per pair of atoms.

• n_hidden (int, optional (default 50)) – Number of units(convolution depths) in
corresponding hidden layer

• n_graph_feat (int, optional (default 128)) – Number of output features for
each molecule(graph)

• n_weave (int, optional (default 2)) – The number of weave layers in this model.

• fully_connected_layer_sizes (list (default [2000, 100])) – The size of each dense
layer in the network. The length of this list determines the number of layers.

• conv_weight_init_stddevs (list or float (default 0.03)) – The standard de-
viation of the distribution to use for weight initialization of each convolutional layer. The
length of this lisst should equal n_weave. Alternatively, this may be a single value instead
of a list, in which case the same value is used for each layer.

• weight_init_stddevs (list or float (default 0.01)) – The standard deviation
of the distribution to use for weight initialization of each fully connected layer. The length
of this list should equal len(layer_sizes). Alternatively this may be a single value instead
of a list, in which case the same value is used for every layer.

• bias_init_consts (list or float (default 0.0)) – The value to initialize the bi-
ases in each fully connected layer. The length of this list should equal len(layer_sizes).
Alternatively this may be a single value instead of a list, in which case the same value is
used for every layer.

• dropouts (list or float (default 0.25)) – The dropout probablity to use for each
fully connected layer. The length of this list should equal len(layer_sizes). Alternatively
this may be a single value instead of a list, in which case the same value is used for every
layer.

• final_conv_activation_fn (Optional[ActivationFn] (default F.tanh)) – The activation
funcntion to apply to the final convolution at the end of the weave convolutions. If None,
then no activate is applied (hence linear).

• activation_fns (str (default relu)) – The activation function to apply to each fully con-
nected layer. The length of this list should equal len(layer_sizes). Alternatively this may
be a single value instead of a list, in which case the same value is used for every layer.
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• batch_normalize (bool, optional (default True)) – If this is turned on, apply
batch normalization before applying activation functions on convolutional and fully con-
nected layers.

• gaussian_expand (boolean, optional (default True)) – Whether to expand
each dimension of atomic features by gaussian histogram

• compress_post_gaussian_expansion (bool, optional (default False)) – If
True, compress the results of the Gaussian expansion back to the original dimensions of
the input.

• mode (str (default "classification")) – Either “classification” or “regression” for
type of model.

• n_classes (int (default 2)) – Number of classes to predict (only used in classifica-
tion mode)

• batch_size (int (default 100)) – Batch size used by this model for training.

forward(inputs: Tensor | Sequence[Tensor])→ List[Tensor]

Parameters
inputs (OneOrMany[torch.Tensor]) – Should contain 5 tensors [atom_features,
pair_features, pair_split, atom_split, atom_to_pair]

Returns
Output as per use case : regression/classification

Return type
List[torch.Tensor]

3.18.31 WeaveModel

class WeaveModel(n_tasks: int, n_atom_feat: int | ~typing.Sequence[int] = 75, n_pair_feat: int |
~typing.Sequence[int] = 14, n_hidden: int = 50, n_graph_feat: int = 128, n_weave: int = 2,
fully_connected_layer_sizes: ~typing.List[int] = [2000, 100], conv_weight_init_stddevs: float
| ~typing.Sequence[float] = 0.03, weight_init_stddevs: float | ~typing.Sequence[float] = 0.01,
bias_init_consts: float | ~typing.Sequence[float] = 0.0, weight_decay_penalty: float = 0.0,
weight_decay_penalty_type: str = 'l2', dropouts: float | ~typing.Sequence[float] = 0.25,
final_conv_activation_fn: ~typing.Callable | str | None = <function tanh>, activation_fns:
~typing.Callable | str | ~typing.Sequence[~typing.Callable | str] = 'relu', batch_normalize:
bool = True, gaussian_expand: bool = True, compress_post_gaussian_expansion: bool =
False, mode: str = 'classification', n_classes: int = 2, batch_size: int = 100, **kwargs)

Implements Google-style Weave Graph Convolutions

This model implements the Weave style graph convolutions from [1]_.

The biggest difference between WeaveModel style convolutions and GraphConvModel style convolutions is that
Weave convolutions model bond features explicitly. This has the side effect that it needs to construct a NxN
matrix explicitly to model bond interactions. This may cause scaling issues, but may possibly allow for better
modeling of subtle bond effects.

Note that [1]_ introduces a whole variety of different architectures for Weave models. The default settings in this
class correspond to the W2N2 variant from [1]_ which is the most commonly used variant..

416 Chapter 3. About Us



deepchem, Release 2.8.0

Examples

Here’s an example of how to fit a WeaveModel on a tiny sample dataset.

>>> import numpy as np
>>> import deepchem as dc
>>> featurizer = dc.feat.WeaveFeaturizer()
>>> X = featurizer(["C", "CC"])
>>> y = np.array([1, 0])
>>> dataset = dc.data.NumpyDataset(X, y)
>>> model = dc.models.WeaveModel(n_tasks=1, n_weave=2, fully_connected_layer_
→˓sizes=[2000, 1000], mode="classification")
>>> loss = model.fit(dataset)

References

__init__(n_tasks: int, n_atom_feat: int | ~typing.Sequence[int] = 75, n_pair_feat: int |
~typing.Sequence[int] = 14, n_hidden: int = 50, n_graph_feat: int = 128, n_weave: int = 2,
fully_connected_layer_sizes: ~typing.List[int] = [2000, 100], conv_weight_init_stddevs: float |
~typing.Sequence[float] = 0.03, weight_init_stddevs: float | ~typing.Sequence[float] = 0.01,
bias_init_consts: float | ~typing.Sequence[float] = 0.0, weight_decay_penalty: float = 0.0,
weight_decay_penalty_type: str = 'l2', dropouts: float | ~typing.Sequence[float] = 0.25,
final_conv_activation_fn: ~typing.Callable | str | None = <function tanh>, activation_fns:
~typing.Callable | str | ~typing.Sequence[~typing.Callable | str] = 'relu', batch_normalize: bool =
True, gaussian_expand: bool = True, compress_post_gaussian_expansion: bool = False, mode: str
= 'classification', n_classes: int = 2, batch_size: int = 100, **kwargs)

Parameters
• n_tasks (int) – Number of tasks

• n_atom_feat (int, optional (default 75)) – Number of features per atom. Note
this is 75 by default and should be 78 if chirality is used by WeaveFeaturizer.

• n_pair_feat (int, optional (default 14)) – Number of features per pair of atoms.

• n_hidden (int, optional (default 50)) – Number of units(convolution depths) in
corresponding hidden layer

• n_graph_feat (int, optional (default 128)) – Number of output features for
each molecule(graph)

• n_weave (int, optional (default 2)) – The number of weave layers in this model.

• fully_connected_layer_sizes (list (default [2000, 100])) – The size of each dense
layer in the network. The length of this list determines the number of layers.

• conv_weight_init_stddevs (list or float (default 0.03)) – The standard de-
viation of the distribution to use for weight initialization of each convolutional layer. The
length of this lisst should equal n_weave. Alternatively, this may be a single value instead
of a list, in which case the same value is used for each layer.

• weight_init_stddevs (list or float (default 0.01)) – The standard deviation
of the distribution to use for weight initialization of each fully connected layer. The length
of this list should equal len(layer_sizes). Alternatively this may be a single value instead
of a list, in which case the same value is used for every layer.
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• bias_init_consts (list or float (default 0.0)) – The value to initialize the bi-
ases in each fully connected layer. The length of this list should equal len(layer_sizes).
Alternatively this may be a single value instead of a list, in which case the same value is
used for every layer.

• weight_decay_penalty (float (default 0.0)) – The magnitude of the weight de-
cay penalty to use

• weight_decay_penalty_type (str (default "l2")) – The type of penalty to use for
weight decay, either ‘l1’ or ‘l2’

• dropouts (list or float (default 0.25)) – The dropout probablity to use for each
fully connected layer. The length of this list should equal len(layer_sizes). Alternatively
this may be a single value instead of a list, in which case the same value is used for every
layer.

• final_conv_activation_fn (Optional[ActivationFn] (default F.tanh)) – The activation
funcntion to apply to the final convolution at the end of the weave convolutions. If None,
then no activate is applied (hence linear).

• activation_fns (str (default relu)) – The activation function to apply to each fully con-
nected layer. The length of this list should equal len(layer_sizes). Alternatively this may
be a single value instead of a list, in which case the same value is used for every layer.

• batch_normalize (bool, optional (default True)) – If this is turned on, apply
batch normalization before applying activation functions on convolutional and fully con-
nected layers.

• gaussian_expand (boolean, optional (default True)) – Whether to expand
each dimension of atomic features by gaussian histogram

• compress_post_gaussian_expansion (bool, optional (default False)) – If
True, compress the results of the Gaussian expansion back to the original dimensions of
the input.

• mode (str (default "classification")) – Either “classification” or “regression” for
type of model.

• n_classes (int (default 2)) – Number of classes to predict (only used in classifica-
tion mode)

• batch_size (int (default 100)) – Batch size used by this model for training.

compute_features_on_batch(X_b)
Compute tensors that will be input into the model from featurized representation.

The featurized input to WeaveModel is instances of WeaveMol created by WeaveFeaturizer. This method
converts input WeaveMol objects into tensors used by the Keras implementation to compute WeaveModel
outputs.

Parameters
X_b (np.ndarray) – A numpy array with dtype=object where elements are WeaveMol ob-
jects.

Returns
• atom_feat (np.ndarray) – Of shape (N_atoms, N_atom_feat).

• pair_feat (np.ndarray) – Of shape (N_pairs, N_pair_feat). Note that N_pairs will depend
on the number of pairs being considered. If max_pair_distance is None, then this will be
N_atoms**2. Else it will be the number of pairs within the specifed graph distance.
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• pair_split (np.ndarray) – Of shape (N_pairs,). The i-th entry in this array will tell you the
originating atom for this pair (the “source”). Note that pairs are symmetric so for a pair (a,
b), both a and b will separately be sources at different points in this array.

• atom_split (np.ndarray) – Of shape (N_atoms,). The i-th entry in this array will be the
molecule with the i-th atom belongs to.

• atom_to_pair (np.ndarray) – Of shape (N_pairs, 2). The i-th row in this array will be the
array [a, b] if (a, b) is a pair to be considered. (Note by symmetry, this implies some other
row will contain [b, a].

default_generator(dataset: Dataset, epochs: int = 1, mode: str = 'fit', deterministic: bool = True,
pad_batches: bool = True)→ Iterable[Tuple[List, List, List]]

Convert a dataset into the tensors needed for learning.

Parameters
• dataset (dc.data.Dataset) – Dataset to convert

• epochs (int, optional (Default 1)) – Number of times to walk over dataset

• mode (str, optional (Default 'fit')) – Ignored in this implementation.

• deterministic (bool, optional (Default True)) – Whether the dataset should be
walked in a deterministic fashion

• pad_batches (bool, optional (Default True)) – If true, each returned batch will
have size self.batch_size.

Return type
Iterator which walks over the batches

3.18.32 ProgressiveMultitaskModel

class ProgressiveMultitaskModel(n_tasks: int, n_features: int, layer_sizes: List[int] = [1000], mode:
Literal['regression', 'classification'] = 'regression', alpha_init_stddevs:
float | Sequence[float] = 0.02, weight_init_stddevs: float | Sequence[float]
= 0.02, bias_init_consts: float | Sequence[float] = 1.0,
weight_decay_penalty: float = 0.0, weight_decay_penalty_type: str = 'l2',
activation_fns: Callable | str | Sequence[Callable | str] = 'relu', dropouts:
float | Sequence[float] = 0.5, n_classes: int | None = None, n_outputs: int |
None = None, **kwargs)

Implements a progressive multitask neural network in PyTorch.

Progressive networks allow for multitask learning where each task gets a new column of weights and lateral
connections to previous tasks are added to the network. As a result, there is no exponential forgetting where
previous tasks are ignored.
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Examples

>>> import deepchem as dc
>>> from deepchem.models.torch_models import ProgressiveMultitaskModel
>>> featurizer = dc.feat.CircularFingerprint(size=1024, radius=4)
>>> tasks, datasets, transformers = dc.molnet.load_tox21(featurizer=featurizer)
>>> train_dataset, valid_dataset, test_dataset = datasets
>>> n_tasks = len(tasks)
>>> model = ProgressiveMultitaskModel(n_tasks, 1024, layer_sizes=[1024], mode=
→˓'classification')
>>> model.fit(train_dataset, nb_epoch=10)

References

See [1]_ for a full description of the progressive architecture

__init__(n_tasks: int, n_features: int, layer_sizes: List[int] = [1000], mode: Literal['regression',
'classification'] = 'regression', alpha_init_stddevs: float | Sequence[float] = 0.02,
weight_init_stddevs: float | Sequence[float] = 0.02, bias_init_consts: float | Sequence[float] = 1.0,
weight_decay_penalty: float = 0.0, weight_decay_penalty_type: str = 'l2', activation_fns: Callable
| str | Sequence[Callable | str] = 'relu', dropouts: float | Sequence[float] = 0.5, n_classes: int |
None = None, n_outputs: int | None = None, **kwargs)

Parameters
• n_tasks (int) – Number of tasks.

• n_features (int) – Size of input feature vector.

• layer_sizes (list of ints) – List of layer sizes.

• mode (str) – Type of model. Must be ‘regression’ or ‘classification’.

• alpha_init_stddevs (float or list of floats) – Standard deviation for trun-
cated normal distribution to initialize alpha parameters.

• weight_init_stddevs (float or list of floats) – Standard deviation for trun-
cated normal distribution to initialize weight parameters.

• bias_init_consts (float or list of floats) – Constant value to initialize bias
parameters.

• weight_decay_penalty (float) – Amount of weight decay penalty to use.

• weight_decay_penalty_type (str) – Type of weight decay penalty. Must be ‘l1’ or
‘l2’.

• activation_fns (str or list of str) – Name of activation function(s) to use.

• dropouts (float or list of floats) – Dropout probability.

• n_classes (int) – The number of classes to predict per task. Default to 2 for classification
and 1 for regression.

• n_outputs (int) – The number of outputs to predict per task. Deprecated, use n_classes
instead.

fit(dataset: Dataset, nb_epoch: int = 10, max_checkpoints_to_keep: int = 5, checkpoint_interval: int =
1000, deterministic: bool = False, restore: bool = False, variables: List[Parameter] | None = None, loss:
Callable[[List, List, List], Any] | None = None, callbacks: Callable | List[Callable] = [], all_losses:
List[float] | None = None)
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Train this model on a dataset.

Parameters
• dataset (Dataset) – the Dataset to train on

• nb_epoch (int) – the number of epochs to train for

• max_checkpoints_to_keep (int) – the maximum number of checkpoints to keep. Older
checkpoints are discarded.

• checkpoint_interval (int) – the frequency at which to write checkpoints, measured
in training steps. Set this to 0 to disable automatic checkpointing.

• deterministic (bool) – if True, the samples are processed in order. If False, a different
random order is used for each epoch.

• restore (bool) – if True, restore the model from the most recent checkpoint and continue
training from there. If False, retrain the model from scratch.

• variables (list of torch.nn.Parameter) – the variables to train. If None (the de-
fault), all trainable variables in the model are used.

• loss (function) – a function of the form f(outputs, labels, weights) that computes the
loss for each batch. If None (the default), the model’s standard loss function is used.

• callbacks (function or list of functions) – one or more functions of the form
f(model, step) that will be invoked after every step. This can be used to perform validation,
logging, etc.

• all_losses (Optional[List[float]], optional (default None)) – If speci-
fied, all logged losses are appended into this list. Note that you can call fit() repeatedly
with the same list and losses will continue to be appended.

Return type
The average loss over the most recent checkpoint interval

fit_task(dataset: Dataset, task: int, nb_epoch: int = 10, max_checkpoints_to_keep: int = 5,
checkpoint_interval: int = 1000, deterministic: bool = False, restore: bool = False, variables:
List[Parameter] | None = None, loss: Callable[[List, List, List], Any] | None = None, callbacks:
Callable | List[Callable] = [], all_losses: List[float] | None = None)

Train this model on one task. Called by fit() to train each task sequentially. Calls fit_generator() internally.

Parameters
• dataset (Dataset) – the Dataset to train on

• task (int) – the task to train on

• nb_epoch (int) – the number of epochs to train for

• max_checkpoints_to_keep (int) – the maximum number of checkpoints to keep. Older
checkpoints are discarded.

• checkpoint_interval (int) – the frequency at which to write checkpoints, measured
in training steps. Set this to 0 to disable automatic checkpointing.

• deterministic (bool) – if True, the samples are processed in order. If False, a different
random order is used for each epoch.

• restore (bool) – if True, restore the model from the most recent checkpoint and continue
training from there. If False, retrain the model from scratch.
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• variables (list of torch.nn.Parameter) – the variables to train. If None (the de-
fault), all trainable variables in the model are used.

• loss (function) – a function of the form f(outputs, labels, weights) that computes the
loss for each batch. If None (the default), the model’s standard loss function is used.

• callbacks (function or list of functions) – one or more functions of the form
f(model, step) that will be invoked after every step. This can be used to perform validation,
logging, etc.

• all_losses (Optional[List[float]], optional (default None)) – If speci-
fied, all logged losses are appended into this list. Note that you can call fit() repeatedly
with the same list and losses will continue to be appended.

Return type
The average loss over the most recent checkpoint interval

3.18.33 Density Functional Theory Model - XCModel

3.18.34 TextCNNModel

class TextCNNModel(n_tasks: int, char_dict: Dict[str, int], seq_length: int, n_embedding: int = 75, kernel_sizes:
List[int] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20], num_filters: List[int] = [100, 200, 200, 200,
200, 100, 100, 100, 100, 100, 160, 160], dropout: float = 0.25, mode: str = 'classification',
**kwargs)

A 1D convolutional neural network to work on smiles strings for both classification and regression tasks.

Reimplementation of the discriminator module in ORGAN [1] . Originated from [2].

The model converts the input smile strings to an embedding vector, the vector is convolved and pooled through a
series of convolutional filters which are concatnated and later passed through a simple dense layer. The resulting
vector goes through a Highway layer [3] which finally as per the nature of the task is passed through a dense
layer.

References

Examples

>>> import os
>>> from deepchem.models.torch_models import TextCNNModel
>>> from deepchem.models.torch_models.text_cnn import default_dict
>>> n_tasks = 1
>>> seq_len = 250
>>> model = TextCNNModel(n_tasks, default_dict, seq_len)

__init__(n_tasks: int, char_dict: Dict[str, int], seq_length: int, n_embedding: int = 75, kernel_sizes:
List[int] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20], num_filters: List[int] = [100, 200, 200, 200, 200,
100, 100, 100, 100, 100, 160, 160], dropout: float = 0.25, mode: str = 'classification', **kwargs)
→ None

Parameters
• n_tasks (int) – Number of tasks

• char_dict (dict) – Mapping from characters in smiles to integers

422 Chapter 3. About Us



deepchem, Release 2.8.0

• seq_length (int) – Length of sequences(after padding)

• n_embedding (int, optional) – Length of embedding vector

• filter_sizes (list of int, optional) – Properties of filters used in the conv net

• num_filters (list of int, optional) – Properties of filters used in the conv net

• dropout (float, optional) – Dropout rate

• mode (str) – Either “classification” or “regression” for type of model.

default_generator(dataset: Dataset, epochs: int = 1, mode: str = 'fit', deterministic: bool = True,
pad_batches: bool = True)→ Iterable[Tuple[List, List, List]]

Transfer smiles strings to fixed length integer vectors

Parameters
• dataset (dc.data.Dataset) – Dataset to convert

• epochs (int, optional (Default 1)) – Number of times to walk over dataset

• mode (str, optional (Default 'fit')) – Ignored in this implementation.

• deterministic (bool, optional (Default True)) – Whether the dataset should be
walked in a deterministic fashion

• pad_batches (bool, optional (Default True)) – If true, each returned batch will
have size self.batch_size.

Return type
Iterator which walks over the batches

static build_char_dict(dataset: Dataset, default_dict: Dict[str, int] = {'#': 1, '(': 2, ')': 3, '+': 4, '-': 5,
'/': 6, '1': 7, '2': 8, '3': 9, '4': 10, '5': 11, '6': 12, '7': 13, '8': 14, '=': 15, 'Br': 30,
'C': 16, 'Cl': 29, 'F': 17, 'H': 18, 'I': 19, 'N': 20, 'O': 21, 'P': 22, 'S': 23, '[': 24,
'\\': 25, ']': 26, '_': 27, 'c': 28, 'n': 31, 'o': 32, 's': 33})

Collect all unique characters(in smiles) from the dataset. This method should be called before defining the
model to build appropriate char_dict

Parameters
• dataset (Dataset) – Dataset for which char_dict is built for

• default_dict (dict, optional) – Mapping from characters in smiles to integers, op-
tional

Returns
• out_dict (dict) – A dictionary containing mapping between unique characters in the dataset

to integers

• seq_length (int) – The maximum sequence length of smile strings found in the dataset
multiplied by 1.2

smiles_to_seq(smiles: str)
Tokenize characters in smiles to integers

Parameters
smiles (str) – A smile string

Returns
array – An array of integers representing the tokenized sequence of characters.
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Return type
np.ndarray

static convert_bytes_to_char(s: bytes)→ str
Convert bytes to string.

Parameters
s (bytes) – Bytes to be converted to string.

Returns
String representation of the bytes.

Return type
str

smiles_to_seq_batch(ids_b: List[bytes | str] | ndarray)→ ndarray
Converts SMILES strings to np.array sequence.

Parameters
ids_b (Union[List[Union[bytes, str]], np.ndarray]) – A list of SMILES strings,
either as bytes or strings.

Returns
A numpy array containing the tokenized sequences of SMILES strings.

Return type
np.ndarray

3.19 PyTorch Lightning Models

DeepChem supports the use of PyTorch-Lightning to build PyTorch models.

3.19.1 DCLightningModule

You can wrap an arbitrary TorchModel in a DCLightningModule object.

class DCLightningModule(dc_model)
DeepChem Lightning Module to be used with Lightning trainer.

TODO: Add dataloader, example code and fit, once datasetmodule is ready The lightning module is a
wrapper over deepchem’s torch model. This module directly works with pytorch lightning trainer which
runs training for multiple epochs and also is responsible for setting up and training models on multiple
GPUs. https://pytorch-lightning.readthedocs.io/en/stable/api/pytorch_lightning.core.LightningModule.html?
highlight=LightningModule

Notes

This class requires PyTorch to be installed.

__init__(dc_model)
Create a new DCLightningModule.

Parameters
dc_model (deepchem.models.torch_models.torch_model.TorchModel) – Torch-
Model to be wrapped inside the lightning module.
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configure_optimizers()

Choose what optimizers and learning-rate schedulers to use in your optimization. Normally you’d need
one. But in the case of GANs or similar you might have multiple. Optimization with multiple optimizers
only works in the manual optimization mode.

Returns
Any of these 6 options.

• Single optimizer.

• List or Tuple of optimizers.

• Two lists - The first list has multiple optimizers, and the second has multiple LR schedulers
(or multiple lr_scheduler_config).

• Dictionary, with an "optimizer" key, and (optionally) a "lr_scheduler" key whose
value is a single LR scheduler or lr_scheduler_config.

• None - Fit will run without any optimizer.

The lr_scheduler_config is a dictionary which contains the scheduler and its associated configuration.
The default configuration is shown below.

lr_scheduler_config = {
# REQUIRED: The scheduler instance
"scheduler": lr_scheduler,
# The unit of the scheduler's step size, could also be 'step'.
# 'epoch' updates the scheduler on epoch end whereas 'step'
# updates it after a optimizer update.
"interval": "epoch",
# How many epochs/steps should pass between calls to
# `scheduler.step()`. 1 corresponds to updating the learning
# rate after every epoch/step.
"frequency": 1,
# Metric to to monitor for schedulers like `ReduceLROnPlateau`
"monitor": "val_loss",
# If set to `True`, will enforce that the value specified 'monitor'
# is available when the scheduler is updated, thus stopping
# training if not found. If set to `False`, it will only produce a warning
"strict": True,
# If using the `LearningRateMonitor` callback to monitor the
# learning rate progress, this keyword can be used to specify
# a custom logged name
"name": None,

}

When there are schedulers in which the .step() method is conditioned on a value, such
as the torch.optim.lr_scheduler.ReduceLROnPlateau scheduler, Lightning requires that the
lr_scheduler_config contains the keyword "monitor" set to the metric name that the scheduler should
be conditioned on.

# The ReduceLROnPlateau scheduler requires a monitor
def configure_optimizers(self):

optimizer = Adam(...)
return {

"optimizer": optimizer,
(continues on next page)
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(continued from previous page)

"lr_scheduler": {
"scheduler": ReduceLROnPlateau(optimizer, ...),
"monitor": "metric_to_track",
"frequency": "indicates how often the metric is updated",
# If "monitor" references validation metrics, then "frequency"␣

→˓should be set to a
# multiple of "trainer.check_val_every_n_epoch".

},
}

# In the case of two optimizers, only one using the ReduceLROnPlateau scheduler
def configure_optimizers(self):

optimizer1 = Adam(...)
optimizer2 = SGD(...)
scheduler1 = ReduceLROnPlateau(optimizer1, ...)
scheduler2 = LambdaLR(optimizer2, ...)
return (

{
"optimizer": optimizer1,
"lr_scheduler": {

"scheduler": scheduler1,
"monitor": "metric_to_track",

},
},
{"optimizer": optimizer2, "lr_scheduler": scheduler2},

)

Metrics can be made available to monitor by simply logging it using self.log('metric_to_track',
metric_val) in your LightningModule.

Note: Some things to know:

• Lightning calls .backward() and .step() automatically in case of automatic optimization.

• If a learning rate scheduler is specified in configure_optimizers() with key "interval" (default
“epoch”) in the scheduler configuration, Lightning will call the scheduler’s .step() method automat-
ically in case of automatic optimization.

• If you use 16-bit precision (precision=16), Lightning will automatically handle the optimizer.

• If you use torch.optim.LBFGS, Lightning handles the closure function automatically for you.

• If you use multiple optimizers, you will have to switch to ‘manual optimization’ mode and step them
yourself.

• If you need to control how often the optimizer steps, override the optimizer_step() hook.

training_step(batch, batch_idx)
Perform a training step.

Parameters
• batch (A tensor, tuple or list.) –

• batch_idx (Integer displaying index of this batch ) –
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• optimizer_idx (When using multiple optimizers, this argument will
also be present.) –

Returns
loss_outputs

Return type
outputs of losses.

3.20 Jax Models

DeepChem supports the use of Jax to build deep learning models.

3.20.1 JaxModel

class JaxModel(forward_fn: ~collections.abc.Mapping[str, ~collections.abc.Mapping[str, ~jax.Array]], params:
~collections.abc.Mapping[str, ~collections.abc.Mapping[str, ~jax.Array]], loss:
~deepchem.models.losses.Loss | ~typing.Callable[[~typing.List, ~typing.List, ~typing.List],
~typing.Any] | None, output_types: ~typing.List[str] | None = None, batch_size: int = 100,
learning_rate: float = 0.001, optimizer: ~optax._src.base.GradientTransformation |
~deepchem.models.optimizers.Optimizer | None = None, grad_fn: ~typing.Callable = <function
create_default_gradient_fn>, update_fn: ~typing.Callable = <function
create_default_update_fn>, eval_fn: ~typing.Callable = <function create_default_eval_fn>,
rng=Array([0, 1], dtype=uint32), log_frequency: int = 100, **kwargs)

This is a DeepChem model implemented by a Jax Model Here is a simple example of that uses JaxModel to train
a Haiku (JAX Neural Network Library) based model on deepchem dataset.

>>>
>> def forward_model(x):
>> net = hk.nets.MLP([512, 256, 128, 1])
>> return net(x)
>> def rms_loss(pred, tar, w):
>> return jnp.mean(optax.l2_loss(pred, tar))
>> params_init, forward_fn = hk.transform(forward_model)
>> rng = jax.random.PRNGKey(500)
>> inputs, _, _, _ = next(iter(dataset.iterbatches(batch_size=256)))
>> params = params_init(rng, inputs)
>> j_m = JaxModel(forward_fn, params, rms_loss, 256, 0.001, 100)
>> j_m.fit(train_dataset)

All optimizations will be done using the optax library.

__init__(forward_fn: ~collections.abc.Mapping[str, ~collections.abc.Mapping[str, ~jax.Array]], params:
~collections.abc.Mapping[str, ~collections.abc.Mapping[str, ~jax.Array]], loss:
~deepchem.models.losses.Loss | ~typing.Callable[[~typing.List, ~typing.List, ~typing.List],
~typing.Any] | None, output_types: ~typing.List[str] | None = None, batch_size: int = 100,
learning_rate: float = 0.001, optimizer: ~optax._src.base.GradientTransformation |
~deepchem.models.optimizers.Optimizer | None = None, grad_fn: ~typing.Callable = <function
create_default_gradient_fn>, update_fn: ~typing.Callable = <function
create_default_update_fn>, eval_fn: ~typing.Callable = <function create_default_eval_fn>,
rng=Array([0, 1], dtype=uint32), log_frequency: int = 100, **kwargs)

Create a new JaxModel
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Parameters
• model (hk.State or Function) – Any Jax based model that has a apply method for

computing the network. Currently only haiku models are supported.

• params (hk.Params) – The parameter of the Jax based networks

• loss (dc.models.losses.Loss or function) – a Loss or function defining how to
compute the training loss for each batch, as described above

• output_types (list of strings, optional (default None)) – the type of each
output from the model, as described above

• batch_size (int, optional (default 100)) – default batch size for training and
evaluating

• learning_rate (float or LearningRateSchedule, optional (default 0.
001)) – the learning rate to use for fitting. If optimizer is specified, this is ignored.

• optimizer (optax object) – For the time being, it is optax object

• rng (jax.random.PRNGKey, optional (default 1)) – A default global PRNG key
to use for drawing random numbers.

• log_frequency (int, optional (default 100)) – The frequency at which to log
data. Data is logged using logging by default.

Miscellanous Parameters Yet To Add

model_dir: str, optional (default None)
Will be added along with the save & load method

tensorboard: bool, optional (default False)
whether to log progress to TensorBoard during training

wandb: bool, optional (default False)
whether to log progress to Weights & Biases during training

Work in Progress

[1] Integrate the optax losses, optimizers, schedulers with Deepchem [2] Support for saving & loading the
model.

fit(dataset: Dataset, nb_epochs: int = 10, deterministic: bool = False, loss: Loss | Callable[[List, List, List],
Any] | None = None, callbacks: Callable | List[Callable] = [], all_losses: List[float] | None = None)→
float
Train this model on a dataset. :param dataset: the Dataset to train on :type dataset: Dataset :param
nb_epoch: the number of epochs to train for :type nb_epoch: int :param deterministic: if True, the samples
are processed in order. If False, a different random

order is used for each epoch.

Parameters
• loss (function) – a function of the form f(outputs, labels, weights) that computes the

loss for each batch. If None (the default), the model’s standard loss function is used.

• callbacks (function or list of functions) – one or more functions of the form
f(model, step) that will be invoked after every step. This can be used to perform validation,
logging, etc.
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• all_losses (Optional[List[float]], optional (default None)) – If speci-
fied, all logged losses are appended into this list. Note that you can call fit() repeatedly
with the same list and losses will continue to be appended.

Returns
• The average loss over the most recent checkpoint interval

• Miscellanous Parameters Yet To Add

• ———————————-

• max_checkpoints_to_keep (int) – the maximum number of checkpoints to keep. Older
checkpoints are discarded.

• checkpoint_interval (int) – the frequency at which to write checkpoints, measured in train-
ing steps. Set this to 0 to disable automatic checkpointing.

• restore (bool) – if True, restore the model from the most recent checkpoint and continue
training from there. If False, retrain the model from scratch.

• variables (list of hk.Variable) – the variables to train. If None (the default), all trainable
variables in the model are used.

• Work in Progress

• —————-

• [1] Integerate the optax losses, optimizers, schedulers with Deepchem

• [2] Support for saving & loading the model.

• [3] Adding support for output types (choosing only self._loss_outputs)

predict_on_generator(generator: Iterable[Tuple[Any, Any, Any]], transformers: List[Transformer] = [],
output_types: str | Sequence[str] | None = None)→ ndarray | Sequence[ndarray]

Parameters
• generator (generator) – this should generate batches, each represented as a tuple of the

form (inputs, labels, weights).

• transformers (List[dc.trans.Transformers]) – Transformers that the input data
has been transformed by. The output is passed through these transformers to undo the
transformations.

• output_types (String or list of Strings) – If specified, all outputs of this type
will be retrieved from the model. If output_types is specified, outputs must be None.

Returns
• a NumPy array of the model produces a single output, or a list of arrays

• if it produces multiple outputs

predict_on_batch(X: _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool
| int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str |
bytes], transformers: List[Transformer] = [])→ ndarray | Sequence[ndarray]

Generates predictions for input samples, processing samples in a batch. :param X: the input data, as a
Numpy array. :type X: ndarray :param transformers: Transformers that the input data has been transformed
by. The output

is passed through these transformers to undo the transformations.
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Returns
• a NumPy array of the model produces a single output, or a list of arrays

• if it produces multiple outputs

predict(dataset: Dataset, transformers: List[Transformer] = [], output_types: List[str] | None = None)→
ndarray | Sequence[ndarray]

Uses self to make predictions on provided Dataset object.

Parameters
• dataset (dc.data.Dataset) – Dataset to make prediction on

• transformers (List[dc.trans.Transformers]) – Transformers that the input data
has been transformed by. The output is passed through these transformers to undo the
transformations.

• output_types (String or list of Strings) – If specified, all outputs of this type
will be retrieved from the model. If output_types is specified, outputs must be None.

Returns
• a NumPy array of the model produces a single output, or a list of arrays

• if it produces multiple outputs

get_global_step()→ int
Get the number of steps of fitting that have been performed.

evaluate_generator(generator: Iterable[Tuple[Any, Any, Any]], metrics: List[Metric], transformers:
List[Transformer] = [], per_task_metrics: bool = False)

Evaluate the performance of this model on the data produced by a generator. :param generator: this should
generate batches, each represented as a tuple of the form

(inputs, labels, weights).

Parameters
• metric (list of deepchem.metrics.Metric) – Evaluation metric

• transformers (List[dc.trans.Transformers]) – Transformers that the input data
has been transformed by. The output is passed through these transformers to undo the
transformations.

• per_task_metrics (bool) – If True, return per-task scores.

Returns
Maps tasks to scores under metric.

Return type
dict

default_generator(dataset: Dataset, epochs: int = 1, mode: str = 'fit', deterministic: bool = True,
pad_batches: bool = True)→ Iterable[Tuple[List, List, List]]

Create a generator that iterates batches for a dataset. Subclasses may override this method to customize
how model inputs are generated from the data. :param dataset: the data to iterate :type dataset: Dataset
:param epochs: the number of times to iterate over the full dataset :type epochs: int :param mode: allowed
values are ‘fit’ (called during training), ‘predict’ (called

during prediction), and ‘uncertainty’ (called during uncertainty prediction)
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Parameters
• deterministic (bool) – whether to iterate over the dataset in order, or randomly shuffle

the data for each epoch

• pad_batches (bool) – whether to pad each batch up to this model’s preferred batch size

Returns
• a generator that iterates batches, each represented as a tuple of lists

• ([inputs], [outputs], [weights])

3.20.2 PinnModel

class PINNModel(forward_fn: ~collections.abc.Mapping[str, ~collections.abc.Mapping[str, ~jax.Array]], params:
~collections.abc.Mapping[str, ~collections.abc.Mapping[str, ~jax.Array]], initial_data: dict =
{}, output_types: ~typing.List[str] | None = None, batch_size: int = 100, learning_rate: float =
0.001, optimizer: ~optax._src.base.GradientTransformation |
~deepchem.models.optimizers.Optimizer | None = None, grad_fn: ~typing.Callable = <function
create_default_gradient_fn>, update_fn: ~typing.Callable = <function
create_default_update_fn>, eval_fn: ~typing.Callable = <function create_default_eval_fn>,
rng=Array([0, 1], dtype=uint32), log_frequency: int = 100, **kwargs)

This is class is derived from the JaxModel class and methods are also very similar to JaxModel, but it has the
option of passing multiple arguments(Done using *args) suitable for PINNs model. Ex - Approximating f(x, y,
z, t) satisfying a Linear differential equation.

This model is recommended for linear partial differential equations but if you can accurately write the gradient
function in Jax depending on your use case, then it will work as well.

This class requires two functions apart from the usual function definition and weights

[1] grad_fn : Each PINNs have a different strategy for calculating its final losses. This function tells the PINN-
Model how to go about computing the derivatives for backpropagation. It should follow this format:

>>>
>> def gradient_fn(forward_fn, loss_outputs, initial_data):
>>
>> def model_loss(params, target, weights, rng, ...):
>>
>> # write code using the arguments.
>> # ... indicates the variable number of positional arguments.
>> return
>>
>> return model_loss

“. . . ” can be replaced with various arguments like (x, y, z, y) but should match with eval_fn

[2] eval_fn: Function for defining how the model needs to compute during inference. It should follow this format

>>>
>> def create_eval_fn(forward_fn, params):
>> def eval_model(..., rng=None):
>> # write code here using arguments
>>
>> return
>> return eval_model
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“. . . ” can be replaced with various arguments like (x, y, z, y) but should match with grad_fn

[3] boundary_data: For a detailed example, check out - deepchem/models/jax_models/tests/test_pinn.py where
we have solved f’(x) = -sin(x)

References

Notes

This class requires Jax, Haiku and Optax to be installed.

__init__(forward_fn: ~collections.abc.Mapping[str, ~collections.abc.Mapping[str, ~jax.Array]], params:
~collections.abc.Mapping[str, ~collections.abc.Mapping[str, ~jax.Array]], initial_data: dict = {},
output_types: ~typing.List[str] | None = None, batch_size: int = 100, learning_rate: float = 0.001,
optimizer: ~optax._src.base.GradientTransformation | ~deepchem.models.optimizers.Optimizer |
None = None, grad_fn: ~typing.Callable = <function create_default_gradient_fn>, update_fn:
~typing.Callable = <function create_default_update_fn>, eval_fn: ~typing.Callable = <function
create_default_eval_fn>, rng=Array([0, 1], dtype=uint32), log_frequency: int = 100, **kwargs)

Parameters
• forward_fn (hk.State or Function) – Any Jax based model that has a apply method

for computing the network. Currently only haiku models are supported.

• params (hk.Params) – The parameter of the Jax based networks

• initial_data (dict) – This acts as a session variable which will be passed as a dictionary
in grad_fn

• output_types (list of strings, optional (default None)) – the type of each
output from the model, as described above

• batch_size (int, optional (default 100)) – default batch size for training and
evaluating

• learning_rate (float or LearningRateSchedule, optional (default 0.
001)) – the learning rate to use for fitting. If optimizer is specified, this is ignored.

• optimizer (optax object) – For the time being, it is optax object

• grad_fn (Callable (default create_default_gradient_fn)) – It defines how
the loss function and gradients need to be calculated for the PINNs model

• update_fn (Callable (default create_default_update_fn)) – It defines how
the weights need to be updated using backpropogation. We have used optax library for
optimisation operations. Its reccomended to leave this default.

• eval_fn (Callable (default create_default_eval_fn)) – Function for defining
on how the model needs to compute during inference.

• rng (jax.random.PRNGKey, optional (default 1)) – A default global PRNG key
to use for drawing random numbers.

• log_frequency (int, optional (default 100)) – The frequency at which to log
data. Data is logged using logging by default.

default_generator(dataset: Dataset, epochs: int = 1, mode: str = 'fit', deterministic: bool = True,
pad_batches: bool = True)→ Iterable[Tuple[List, List, List]]

Create a generator that iterates batches for a dataset. Subclasses may override this method to customize
how model inputs are generated from the data.
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Parameters
• dataset (Dataset) – the data to iterate

• epochs (int) – the number of times to iterate over the full dataset

• mode (str) – allowed values are ‘fit’ (called during training), ‘predict’ (called during pre-
diction), and ‘uncertainty’ (called during uncertainty prediction)

• deterministic (bool) – whether to iterate over the dataset in order, or randomly shuffle
the data for each epoch

• pad_batches (bool) – whether to pad each batch up to this model’s preferred batch size

Returns
• a generator that iterates batches, each represented as a tuple of lists

• ([inputs], [outputs], [weights])

3.21 Hugging Face Models

HuggingFace models from the transformers library can wrapped using the wrapper HuggingFaceModel

class HuggingFaceModel(model: PreTrainedModel, tokenizer:
transformers.tokenization_utils.PreTrainedTokenizer, task: str | None = None,
**kwargs)

Wrapper class that wraps HuggingFace models as DeepChem models

The class provides a wrapper for wrapping models from HuggingFace ecosystem in DeepChem and training it
via DeepChem’s api. The reason for this might be that you might want to do an apples-to-apples comparison
between HuggingFace from the transformers library and DeepChem library.

The HuggingFaceModel has a Has-A relationship by wrapping models from transformers library. Once a model
is wrapped, DeepChem’s API are used for training, prediction, evaluation and other downstream tasks.

A HuggingFaceModel wrapper also has a tokenizer which tokenizes raw SMILES strings into tokens to be used
by downstream models. The SMILES strings are generally stored in the X attribute of deepchem.data.Dataset
object’. This differs from the DeepChem standard workflow as tokenization is done on the fly here. The approach
allows us to leverage transformers library’s fast tokenization algorithms and other utilities like data collation,
random masking of tokens for masked language model training etc.

Parameters
• model (transformers.modeling_utils.PreTrainedModel) – The HuggingFace

model to wrap.

• task (str, (optional, default None)) –

The task defines the type of learning task in the model. The supported tasks are
– mlm - masked language modeling commonly used in pretraining

– mtr - multitask regression - a task used for both pretraining base models and finetuning

– regression - use it for regression tasks, like property prediction

– classification - use it for classification tasks

When the task is not specified or None, the wrapper returns raw output of the HuggingFace-
Model. In cases where the HuggingFaceModel is a model without a task specific head, this
output will be the last hidden states.
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• tokenizer (transformers.tokenization_utils.PreTrainedTokenizer) – Tok-
enizer

Example

>>> import os
>>> import tempfile
>>> tempdir = tempfile.mkdtemp()

>>> # preparing dataset
>>> smiles = ['CN(c1ccccc1)c1ccccc1C(=O)NCC1(O)CCOCC1',
→˓'CC[NH+](CC)C1CCC([NH2+]C2CC2)(C(=O)[O-])C1', \
... 'COCC(CNC(=O)c1ccc2c(c1)NC(=O)C2)OC', 'OCCn1cc(CNc2cccc3c2CCCC3)nn1', \
... 'CCCCCCc1ccc(C#Cc2ccc(C#CC3=CC=C(CCC)CC3)c(C3CCCCC3)c2)c(F)c1',
→˓'nO=C(NCc1ccc(F)cc1)N1CC=C(c2c[nH]c3ccccc23)CC1']
>>> filepath = os.path.join(tempdir, 'smiles.txt')
>>> f = open(filepath, 'w')
>>> f.write('\n'.join(smiles))
253
>>> f.close()

>>> # preparing tokenizer
>>> from tokenizers import ByteLevelBPETokenizer
>>> from transformers.models.roberta import RobertaTokenizerFast
>>> tokenizer = ByteLevelBPETokenizer()
>>> tokenizer.train(files=filepath, vocab_size=1_000, min_frequency=2, special_
→˓tokens=["<s>", "<pad>", "</s>", "<unk>", "<mask>"])
>>> tokenizer_path = os.path.join(tempdir, 'tokenizer')
>>> os.makedirs(tokenizer_path)
>>> result = tokenizer.save_model(tokenizer_path)
>>> tokenizer = RobertaTokenizerFast.from_pretrained(tokenizer_path)

>>> # preparing dataset
>>> import pandas as pd
>>> import deepchem as dc
>>> smiles = ["CCN(CCSC)C(=O)N[C@@](C)(CC)C(F)(F)F",
→˓"CC1(C)CN(C(=O)Nc2cc3ccccc3nn2)C[C@@]2(CCOC2)O1"]
>>> labels = [3.112,2.432]
>>> df = pd.DataFrame(list(zip(smiles, labels)), columns=["smiles", "task1"])
>>> with dc.utils.UniversalNamedTemporaryFile(mode='w') as tmpfile:
... df.to_csv(tmpfile.name)
... loader = dc.data.CSVLoader(["task1"], feature_field="smiles", featurizer=dc.
→˓feat.DummyFeaturizer())
... dataset = loader.create_dataset(tmpfile.name)

>>> # pretraining
>>> from deepchem.models.torch_models.hf_models import HuggingFaceModel
>>> from transformers.models.roberta import RobertaForMaskedLM, RobertaModel,␣
→˓RobertaConfig
>>> config = RobertaConfig(vocab_size=tokenizer.vocab_size)
>>> model = RobertaForMaskedLM(config)

(continues on next page)
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>>> hf_model = HuggingFaceModel(model=model, tokenizer=tokenizer, task='mlm', model_
→˓dir='model-dir')
>>> training_loss = hf_model.fit(dataset, nb_epoch=1)

>>> # finetuning a regression model
>>> from transformers.models.roberta import RobertaForSequenceClassification
>>> config = RobertaConfig(vocab_size=tokenizer.vocab_size, problem_type='regression
→˓', num_labels=1)
>>> model = RobertaForSequenceClassification(config)
>>> hf_model = HuggingFaceModel(model=model, tokenizer=tokenizer, task='regression',
→˓ model_dir='model-dir')
>>> hf_model.load_from_pretrained()
>>> training_loss = hf_model.fit(dataset, nb_epoch=1)
>>> prediction = hf_model.predict(dataset) # prediction
>>> eval_results = hf_model.evaluate(dataset, metrics=dc.metrics.Metric(dc.metrics.
→˓mae_score))

>>> # finetune a classification model
>>> # making dataset suitable for classification
>>> import numpy as np
>>> y = np.random.choice([0, 1], size=dataset.y.shape)
>>> dataset = dc.data.NumpyDataset(X=dataset.X, y=y, w=dataset.w, ids=dataset.ids)

>>> from transformers import RobertaForSequenceClassification
>>> config = RobertaConfig(vocab_size=tokenizer.vocab_size)
>>> model = RobertaForSequenceClassification(config)
>>> hf_model = HuggingFaceModel(model=model, task='classification',␣
→˓tokenizer=tokenizer)
>>> training_loss = hf_model.fit(dataset, nb_epoch=1)
>>> predictions = hf_model.predict(dataset)
>>> eval_result = hf_model.evaluate(dataset, metrics=dc.metrics.Metric(dc.metrics.
→˓f1_score))

__init__(model: PreTrainedModel, tokenizer: transformers.tokenization_utils.PreTrainedTokenizer, task:
str | None = None, **kwargs)

Create a new TorchModel.

Parameters
• model (torch.nn.Module) – the PyTorch model implementing the calculation

• loss (dc.models.losses.Loss or function) – a Loss or function defining how to
compute the training loss for each batch, as described above

• output_types (list of strings, optional (default None)) – the type of each
output from the model, as described above

• batch_size (int, optional (default 100)) – default batch size for training and
evaluating

• model_dir (str, optional (default None)) – the directory on disk where the
model will be stored. If this is None, a temporary directory is created.

• learning_rate (float or LearningRateSchedule, optional (default 0.
001)) – the learning rate to use for fitting. If optimizer is specified, this is ignored.
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• optimizer (Optimizer, optional (default None)) – the optimizer to use for fit-
ting. If this is specified, learning_rate is ignored.

• tensorboard (bool, optional (default False)) – whether to log progress to Ten-
sorBoard during training

• wandb (bool, optional (default False)) – whether to log progress to Weights &
Biases during training

• log_frequency (int, optional (default 100)) – The frequency at which to log
data. Data is logged using logging by default. If tensorboard is set, data is also logged to
TensorBoard. If wandb is set, data is also logged to Weights & Biases. Logging happens
at global steps. Roughly, a global step corresponds to one batch of training. If you’d like a
printout every 10 batch steps, you’d set log_frequency=10 for example.

• device (torch.device, optional (default None)) – the device on which to run
computations. If None, a device is chosen automatically.

• regularization_loss (Callable, optional) – a function that takes no arguments,
and returns an extra contribution to add to the loss function

• wandb_logger (WandbLogger) – the Weights & Biases logger object used to log data and
metrics

load_from_pretrained(model_dir: str | None = None, from_hf_checkpoint: bool = False)
Load HuggingFace model from a pretrained checkpoint.

The utility can be used for loading a model from a checkpoint. Given model_dir, it checks for existing
checkpoint in the directory. If a checkpoint exists, the models state is loaded from the checkpoint.

If the option from_hf_checkpoint is set as True, then it loads a pretrained model using HuggingFace models
from_pretrained method. This option interprets model_dir as a model id of a pretrained model hosted inside
a model repo on huggingface.co or path to directory containing model weights saved using save_pretrained
method of a HuggingFace model.

3.21.1 Parameter

model_dir: str
Directory containing model checkpoint

from_hf_checkpoint: bool, default False
Loads a pretrained model from HuggingFace checkpoint.

Example

>>> from transformers import RobertaTokenizerFast
>>> tokenizer = RobertaTokenizerFast.from_pretrained("seyonec/PubChem10M_SMILES_
→˓BPE_60k")

>>> from deepchem.models.torch_models.hf_models import HuggingFaceModel
>>> from transformers.models.roberta import RobertaForMaskedLM, RobertaModel,␣
→˓RobertaConfig
>>> config = RobertaConfig(vocab_size=tokenizer.vocab_size)
>>> model = RobertaForMaskedLM(config)
>>> pretrain_model = HuggingFaceModel(model=model, tokenizer=tokenizer, task=

(continues on next page)
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→˓'mlm', model_dir='model-dir')
>>> pretrain_model.save_checkpoint()

>>> from transformers import RobertaForSequenceClassification
>>> config = RobertaConfig(vocab_size=tokenizer.vocab_size)
>>> model = RobertaForSequenceClassification(config)
>>> finetune_model = HuggingFaceModel(model=model, task='classification',␣
→˓tokenizer=tokenizer, model_dir='model-dir')

>>> finetune_model.load_from_pretrained()

fit_generator(generator: Iterable[Tuple[Any, Any, Any]], max_checkpoints_to_keep: int = 5,
checkpoint_interval: int = 1000, restore: bool = False, variables: List[Parameter] |
ParameterList | None = None, loss: Callable[[List, List, List], Any] | None = None,
callbacks: Callable | List[Callable] = [], all_losses: List[float] | None = None)→ float

Train this model on data from a generator.

Parameters
• generator (generator) – this should generate batches, each represented as a tuple of the

form (inputs, labels, weights).

• max_checkpoints_to_keep (int) – the maximum number of checkpoints to keep. Older
checkpoints are discarded.

• checkpoint_interval (int) – the frequency at which to write checkpoints, measured
in training steps. Set this to 0 to disable automatic checkpointing.

• restore (bool) – if True, restore the model from the most recent checkpoint and continue
training from there. If False, retrain the model from scratch.

• variables (list of torch.nn.Parameter) – the variables to train. If None (the de-
fault), all trainable variables in the model are used.

• loss (function) – a function of the form f(outputs, labels, weights) that computes the
loss for each batch. If None (the default), the model’s standard loss function is used.

• callbacks (function or list of functions) – one or more functions of the form
f(model, step) that will be invoked after every step. This can be used to perform validation,
logging, etc.

• all_losses (Optional[List[float]], optional (default None)) – If speci-
fied, all logged losses are appended into this list. Note that you can call fit() repeatedly
with the same list and losses will continue to be appended.

Return type
The average loss over the most recent checkpoint interval

Note: A HuggingFace model can return embeddings (last hidden state), attentions. Support must be added
to return the embeddings to the user, so that it can be used for other downstream applications.
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3.21.2 Chemberta

class Chemberta(task: str, tokenizer_path: str = 'seyonec/PubChem10M_SMILES_BPE_60k', n_tasks: int = 1,
config: Dict[Any, Any] = {}, **kwargs)

Chemberta Model

Chemberta is a transformer style model for learning on SMILES strings. The model architecture is based on
the RoBERTa architecture. The model has can be used for both pretraining an embedding and finetuning for
downstream applications.

The model supports two types of pretraining tasks - pretraining via masked language modeling and pretraining
via multi-task regression. To pretrain via masked language modeling task, use task = mlm and for pretraining
via multitask regression task, use task = mtr. The model supports the regression, classification and multitask
regression finetuning tasks and they can be specified using regression, classification and mtr as arguments to the
task keyword during model initialisation.

The model uses a tokenizer To create input tokens for the models from the SMILES strings. The default tokenizer
model is a byte-pair encoding tokenizer trained on PubChem10M dataset and loaded from huggingFace model
hub (https://huggingface.co/seyonec/PubChem10M_SMILES_BPE_60k).

Parameters
• task (str) –

The task defines the type of learning task in the model. The supported tasks are
– mlm - masked language modeling commonly used in pretraining

– mtr - multitask regression - a task used for both pretraining base models and finetuning

– regression - use it for regression tasks, like property prediction

– classification - use it for classification tasks

• tokenizer_path (str) – Path containing pretrained tokenizer used to tokenize SMILES
string for model inputs. The tokenizer path can either be a huggingFace tokenizer model or
a path in the local machine containing the tokenizer.

• n_tasks (int, default 1) – Number of prediction targets for a multitask learning model

Example

>>> import os
>>> import tempfile
>>> tempdir = tempfile.mkdtemp()

>>> # preparing dataset
>>> import pandas as pd
>>> import deepchem as dc
>>> smiles = ["CCN(CCSC)C(=O)N[C@@](C)(CC)C(F)(F)F",
→˓"CC1(C)CN(C(=O)Nc2cc3ccccc3nn2)C[C@@]2(CCOC2)O1"]
>>> labels = [3.112,2.432]
>>> df = pd.DataFrame(list(zip(smiles, labels)), columns=["smiles", "task1"])
>>> with dc.utils.UniversalNamedTemporaryFile(mode='w') as tmpfile:
... df.to_csv(tmpfile.name)
... loader = dc.data.CSVLoader(["task1"], feature_field="smiles", featurizer=dc.
→˓feat.DummyFeaturizer())
... dataset = loader.create_dataset(tmpfile.name)
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>>> # pretraining
>>> from deepchem.models.torch_models.chemberta import Chemberta
>>> pretrain_model_dir = os.path.join(tempdir, 'pretrain-model')
>>> tokenizer_path = "seyonec/PubChem10M_SMILES_BPE_60k"
>>> pretrain_model = Chemberta(task='mlm', model_dir=pretrain_model_dir, tokenizer_
→˓path=tokenizer_path) # mlm pretraining
>>> pretraining_loss = pretrain_model.fit(dataset, nb_epoch=1)

>>> # finetuning in regression mode
>>> finetune_model_dir = os.path.join(tempdir, 'finetune-model')
>>> finetune_model = Chemberta(task='regression', model_dir=finetune_model_dir,␣
→˓tokenizer_path=tokenizer_path)
>>> finetune_model.load_from_pretrained(pretrain_model_dir)
>>> finetuning_loss = finetune_model.fit(dataset, nb_epoch=1)

>>> # prediction and evaluation
>>> result = finetune_model.predict(dataset)
>>> eval_results = finetune_model.evaluate(dataset, metrics=dc.metrics.Metric(dc.
→˓metrics.mae_score))

Reference

__init__(task: str, tokenizer_path: str = 'seyonec/PubChem10M_SMILES_BPE_60k', n_tasks: int = 1,
config: Dict[Any, Any] = {}, **kwargs)

Create a new TorchModel.

Parameters
• model (torch.nn.Module) – the PyTorch model implementing the calculation

• loss (dc.models.losses.Loss or function) – a Loss or function defining how to
compute the training loss for each batch, as described above

• output_types (list of strings, optional (default None)) – the type of each
output from the model, as described above

• batch_size (int, optional (default 100)) – default batch size for training and
evaluating

• model_dir (str, optional (default None)) – the directory on disk where the
model will be stored. If this is None, a temporary directory is created.

• learning_rate (float or LearningRateSchedule, optional (default 0.
001)) – the learning rate to use for fitting. If optimizer is specified, this is ignored.

• optimizer (Optimizer, optional (default None)) – the optimizer to use for fit-
ting. If this is specified, learning_rate is ignored.

• tensorboard (bool, optional (default False)) – whether to log progress to Ten-
sorBoard during training

• wandb (bool, optional (default False)) – whether to log progress to Weights &
Biases during training

• log_frequency (int, optional (default 100)) – The frequency at which to log
data. Data is logged using logging by default. If tensorboard is set, data is also logged to
TensorBoard. If wandb is set, data is also logged to Weights & Biases. Logging happens
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at global steps. Roughly, a global step corresponds to one batch of training. If you’d like a
printout every 10 batch steps, you’d set log_frequency=10 for example.

• device (torch.device, optional (default None)) – the device on which to run
computations. If None, a device is chosen automatically.

• regularization_loss (Callable, optional) – a function that takes no arguments,
and returns an extra contribution to add to the loss function

• wandb_logger (WandbLogger) – the Weights & Biases logger object used to log data and
metrics

3.22 Trainer

A Trainer object automates the scaling of DeepChem model’s training into multi-gpu and multi-node infrastructures.

3.22.1 DistributedTrainer

3.23 Layers

Deep learning models are often said to be made up of “layers”. Intuitively, a “layer” is a function which transforms
some tensor into another tensor. DeepChem maintains an extensive collection of layers which perform various useful
scientific transformations. For now, most layers are Keras only but over time we expect this support to expand to other
types of models and layers.

3.23.1 Layers Cheatsheet

The “layers cheatsheet” lists various scientifically relevant differentiable layers implemented in DeepChem.

Note that some layers implemented for specific model architectures such as GROVER and Attention layers, this is
indicated in the Model column of the table.

In order to use the layers, make sure that the backend (Keras and tensorflow, Pytorch or Jax) is installed.

Tensorflow Keras Layers
These layers are subclasses of the tensorflow.keras.layers.Layer class.

Table 7: Custom Keras Layers

Layer Reference Model
InteratomicL2Distances
GraphConv ref
GraphPool ref
GraphGather ref
MolGANConvolutionLayer ref MolGan
MolGANAggregationLayer ref MolGan
MolGANMultiConvolutionLayer ref MolGan
MolGANEncoderLayer ref MolGan
LSTMStep
AttnLSTMEmbedding ref
IterRefLSTMEmbedding

continues on next page
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Table 7 – continued from previous page
Layer Reference Model
SwitchedDropout
WeightedLinearCombo
CombineMeanSt
Stack
VinaFreeEnergy
NeighborList
AtomicConvolution ref
AlphaShareLayer Sluice Network
SluiceLoss Sluice Network
BetaShare Sluice Network
ANIFeat
GraphEmbedPoolLayer ref
Highway ref
WeaveLayer ref
WeaveGather ref
DTNNEmbedding
DTNNStep
DTNNGather
DAGLayer ref
DAGGather
MessagePassing ref
EdgeNetwork ref MessagePassing
GatedRecurrentUnit ref MessagePassing
SetGather

PyTorch
These layers are subclasses of the torch.nn.Module class.

Table 8: Custom PyTorch Layers

Layer Reference Model
MultilayerPerceptron
ScaleNorm ref Molecular Attention Transformer
MATEncoderLayer ref Molecular Attention Transformer
MultiHeadedMATAttention ref Molecular Attention Transformer
SublayerConnection ref Transformer
MATEmbedding ref Molecular Attention Transformer
MATGenerator ref Molecular Attention Transformer
Affine ref Normalizing Flow
RealNVPLayer ref Normalizing Flow
DMPNNEncoderLayer ref Normalizing Flow
PositionwiseFeedForward ref Molecular Attention Transformer
GraphPool ref
GroverMPNEncoder ref Grover
GroverAttentionHead ref Grover
GroverMTBlock ref Grover
GroverTransEncoder ref Grover
GroverEmbedding ref Grover
GroverAtomVocabPredictor ref Grover

continues on next page
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Table 8 – continued from previous page
Layer Reference Model
GroverBondVocabPredictor ref Grover
GroverFunctionalGroupPredictor ref Grover
ScaledDotProductAttention ref Transformer
SelfAttention ref Transformer
GroverReadout ref Grover
DFTXC ref XCModel-DFT
NNLDA ref XCModel-DFT
HybridXC ref XCModel-DFT
XCNNSCF ref XCModel-DFT
AtomEncoder `https://arxiv.org/abs/2110.04126`_ 3D InfoMax
BondEncoder `https://arxiv.org/abs/2110.04126`_ 3D InfoMax
Net3DLayer `https://arxiv.org/abs/2110.04126`_ 3D InfoMax
Net3D `https://arxiv.org/abs/2110.04126`_ 3D InfoMax
PNALayer `https://arxiv.org/abs/2004.05718`_ Principal Neighbourhood Aggregation
PNAGNN `https://arxiv.org/abs/2004.05718`_ Principal Neighbourhood Aggregation
EdgeNetwork ref Message Passing Neural Network
WeaveLayer ref WeaveModel
WeaveGather ref WeaveModel
GradientPenalty ref WGANModel
MolGANConvolutionLayer ref MolGan
MolGANAggregationLayer ref MolGan
MolGANMultiConvolutionLayer ref MolGan
MolGANEncoderLayer ref MolGan
DTNNEmbedding ref`<https://arxiv.org/abs/1609.08259>`_ DTNNModel
DTNNStep ref`<https://arxiv.org/abs/1609.08259>`_ DTNNModel
DTNNGather ref`<https://arxiv.org/abs/1609.08259>`_ DTNNModel
MXMNetGlobalMessagePassing ref MXMNetModel
MXMNetBesselBasisLayer ref MXMNetModel
VariationalRandomizer ref SeqToSeqModel
EncoderRNN ref SeqToSeqModel
DecoderRNN ref SeqToSeqModel
FerminetElectronFeature ref FerminetModel
FerminetEnvelope ref FerminetModel
MXMNetLocalMessagePassing ref MXMNetModel
MXMNetModelMXMNetSphericalBasisLayer ref`<https://arxiv.org/pdf/2011.07457>`_ MXMNetModel
HighwayLayer ref

3.23.2 Keras Layers

class InteratomicL2Distances(*args, **kwargs)
Compute (squared) L2 Distances between atoms given neighbors.

This class computes pairwise distances between its inputs.
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Examples

>>> import numpy as np
>>> import deepchem as dc
>>> atoms = 5
>>> neighbors = 2
>>> coords = np.random.rand(atoms, 3)
>>> neighbor_list = np.random.randint(0, atoms, size=(atoms, neighbors))
>>> layer = InteratomicL2Distances(atoms, neighbors, 3)
>>> result = np.array(layer([coords, neighbor_list]))
>>> result.shape
(5, 2)

__init__(N_atoms: int, M_nbrs: int, ndim: int, **kwargs)
Constructor for this layer.

Parameters
• N_atoms (int) – Number of atoms in the system total.

• M_nbrs (int) – Number of neighbors to consider when computing distances.

• n_dim (int) – Number of descriptors for each atom.

get_config()→ Dict
Returns config dictionary for this layer.

call(inputs: List)
Invokes this layer.

Parameters
inputs (list) – Should be of form inputs=[coords, nbr_list] where coords is a tensor of
shape (None, N, 3) and nbr_list is a list.

Return type
Tensor of shape (N_atoms, M_nbrs) with interatomic distances.

class GraphConv(*args, **kwargs)
Graph Convolutional Layers

This layer implements the graph convolution introduced in [1]_. The graph convolution combines per-node
feature vectures in a nonlinear fashion with the feature vectors for neighboring nodes. This “blends” information
in local neighborhoods of a graph.

References

__init__(out_channel: int, min_deg: int = 0, max_deg: int = 10, activation_fn: Callable | None = None,
**kwargs)

Initialize a graph convolutional layer.

Parameters
• out_channel (int) – The number of output channels per graph node.

• min_deg (int, optional (default 0)) – The minimum allowed degree for each
graph node.
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• max_deg (int, optional (default 10)) – The maximum allowed degree for each
graph node. Note that this is set to 10 to handle complex molecules (some organometallic
compounds have strange structures). If you’re using this for non-molecular applications,
you may need to set this much higher depending on your dataset.

• activation_fn (function) – A nonlinear activation function to apply. If you’re not sure,
tf.nn.relu is probably a good default for your application.

build(input_shape)
Creates the variables of the layer (for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-creation
step in-between layer instantiation and layer call. It is invoked automatically before the first execution of
call().

This is typically used to create the weights of Layer subclasses (at the discretion of the subclass imple-
menter).

Parameters
input_shape – Instance of TensorShape, or list of instances of TensorShape if the layer
expects a list of inputs (one instance per input).

get_config()

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled
by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers
should make a copy of the returned dict if they want to modify it.

Returns
Python dictionary.

call(inputs)
This is where the layer’s logic lives.

The call() method may not create state (except in its first invocation, wrapping the creation of variables or
other resources in tf.init_scope()). It is recommended to create state, including tf.Variable instances and
nested Layer instances,

in __init__(), or in the build() method that is

called automatically before call() executes for the first time.

Parameters
• inputs – Input tensor, or dict/list/tuple of input tensors. The first positional inputs argu-

ment is subject to special rules: - inputs must be explicitly passed. A layer cannot have
zero

arguments, and inputs cannot be provided via the default value of a keyword argument.

– NumPy array or Python scalar values in inputs get cast as tensors.

– Keras mask metadata is only collected from inputs.

– Layers are built (build(input_shape) method) using shape info from inputs only.

– input_spec compatibility is only checked against inputs.
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– Mixed precision input casting is only applied to inputs. If a layer has tensor arguments
in *args or **kwargs, their casting behavior in mixed precision should be handled man-
ually.

– The SavedModel input specification is generated using inputs only.

– Integration with various ecosystem packages like TFMOT, TFLite, TF.js, etc is only
supported for inputs and not for tensors in positional and keyword arguments.

• *args – Additional positional arguments. May contain tensors, although this is not rec-
ommended, for the reasons above.

• **kwargs – Additional keyword arguments. May contain tensors, although this is not rec-
ommended, for the reasons above. The following optional keyword arguments are reserved:
- training: Boolean scalar tensor of Python boolean indicating

whether the call is meant for training or inference.

– mask: Boolean input mask. If the layer’s call() method takes a mask argument, its default
value will be set to the mask generated for inputs by the previous layer (if input did come
from a layer that generated a corresponding mask, i.e. if it came from a Keras layer with
masking support).

Returns
A tensor or list/tuple of tensors.

sum_neigh(atoms, deg_adj_lists)
Store the summed atoms by degree

class GraphPool(*args, **kwargs)
A GraphPool gathers data from local neighborhoods of a graph.

This layer does a max-pooling over the feature vectors of atoms in a neighborhood. You can think of this layer
as analogous to a max-pooling layer for 2D convolutions but which operates on graphs instead. This technique
is described in [1]_.

References

__init__(min_degree=0, max_degree=10, **kwargs)
Initialize this layer

Parameters
• min_deg (int, optional (default 0)) – The minimum allowed degree for each

graph node.

• max_deg (int, optional (default 10)) – The maximum allowed degree for each
graph node. Note that this is set to 10 to handle complex molecules (some organometallic
compounds have strange structures). If you’re using this for non-molecular applications,
you may need to set this much higher depending on your dataset.

get_config()

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled
by Network (one layer of abstraction above).
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Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers
should make a copy of the returned dict if they want to modify it.

Returns
Python dictionary.

call(inputs)
This is where the layer’s logic lives.

The call() method may not create state (except in its first invocation, wrapping the creation of variables or
other resources in tf.init_scope()). It is recommended to create state, including tf.Variable instances and
nested Layer instances,

in __init__(), or in the build() method that is

called automatically before call() executes for the first time.

Parameters
• inputs – Input tensor, or dict/list/tuple of input tensors. The first positional inputs argu-

ment is subject to special rules: - inputs must be explicitly passed. A layer cannot have
zero

arguments, and inputs cannot be provided via the default value of a keyword argument.

– NumPy array or Python scalar values in inputs get cast as tensors.

– Keras mask metadata is only collected from inputs.

– Layers are built (build(input_shape) method) using shape info from inputs only.

– input_spec compatibility is only checked against inputs.

– Mixed precision input casting is only applied to inputs. If a layer has tensor arguments
in *args or **kwargs, their casting behavior in mixed precision should be handled man-
ually.

– The SavedModel input specification is generated using inputs only.

– Integration with various ecosystem packages like TFMOT, TFLite, TF.js, etc is only
supported for inputs and not for tensors in positional and keyword arguments.

• *args – Additional positional arguments. May contain tensors, although this is not rec-
ommended, for the reasons above.

• **kwargs – Additional keyword arguments. May contain tensors, although this is not rec-
ommended, for the reasons above. The following optional keyword arguments are reserved:
- training: Boolean scalar tensor of Python boolean indicating

whether the call is meant for training or inference.

– mask: Boolean input mask. If the layer’s call() method takes a mask argument, its default
value will be set to the mask generated for inputs by the previous layer (if input did come
from a layer that generated a corresponding mask, i.e. if it came from a Keras layer with
masking support).

Returns
A tensor or list/tuple of tensors.
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class GraphGather(*args, **kwargs)
A GraphGather layer pools node-level feature vectors to create a graph feature vector.

Many graph convolutional networks manipulate feature vectors per graph-node. For a molecule for example,
each node might represent an atom, and the network would manipulate atomic feature vectors that summarize
the local chemistry of the atom. However, at the end of the application, we will likely want to work with a
molecule level feature representation. The GraphGather layer creates a graph level feature vector by combining
all the node-level feature vectors.

One subtlety about this layer is that it depends on the batch_size. This is done for internal implementation
reasons. The GraphConv, and GraphPool layers pool all nodes from all graphs in a batch that’s being processed.
The GraphGather reassembles these jumbled node feature vectors into per-graph feature vectors.

References

__init__(batch_size, activation_fn=None, **kwargs)
Initialize this layer.

Parameters
• batch_size (int) – The batch size for this layer. Note that the layer’s behavior changes

depending on the batch size.

• activation_fn (function) – A nonlinear activation function to apply. If you’re not sure,
tf.nn.relu is probably a good default for your application.

get_config()

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled
by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers
should make a copy of the returned dict if they want to modify it.

Returns
Python dictionary.

call(inputs)
Invoking this layer.

Parameters
inputs (list) – This list should consist of inputs = [atom_features, deg_slice, membership,
deg_adj_list placeholders. . . ]. These are all tensors that are created/process by GraphConv
and GraphPool

class MolGANConvolutionLayer(*args, **kwargs)
Graph convolution layer used in MolGAN model. MolGAN is a WGAN type model for generation of small
molecules. Not used directly, higher level layers like MolGANMultiConvolutionLayer use it. This layer performs
basic convolution on one-hot encoded matrices containing atom and bond information. This layer also accepts
three inputs for the case when convolution is performed more than once and results of previous convolution need
to used. It was done in such a way to avoid creating another layer that accepts three inputs rather than two. The
last input layer is so-called hidden_layer and it hold results of the convolution while first two are unchanged input
tensors.
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Example

See: MolGANMultiConvolutionLayer for using in layers.

>>> from tensorflow.keras import Model
>>> from tensorflow.keras.layers import Input
>>> vertices = 9
>>> nodes = 5
>>> edges = 5
>>> units = 128

>>> layer1 = MolGANConvolutionLayer(units=units,edges=edges, name='layer1')
>>> layer2 = MolGANConvolutionLayer(units=units,edges=edges, name='layer2')
>>> adjacency_tensor= Input(shape=(vertices, vertices, edges))
>>> node_tensor = Input(shape=(vertices,nodes))
>>> hidden1 = layer1([adjacency_tensor,node_tensor])
>>> output = layer2(hidden1)
>>> model = Model(inputs=[adjacency_tensor,node_tensor], outputs=[output])

References

__init__(units: int, activation: ~typing.Callable = <function tanh>, dropout_rate: float = 0.0, edges: int =
5, name: str = '', **kwargs)

Initialize this layer.

Parameters
• units (int) – Dimesion of dense layers used for convolution

• activation (function, optional (default=Tanh)) – activation function used
across model, default is Tanh

• dropout_rate (float, optional (default=0.0)) – Dropout rate used by dropout
layer

• edges (int, optional (default=5)) – How many dense layers to use in convolution.
Typically equal to number of bond types used in the model.

• name (string, optional (default="")) – Name of the layer

call(inputs, training=False)
Invoke this layer

Parameters
• inputs (list) – List of two input matrices, adjacency tensor and node features tensors in

one-hot encoding format.

• training (bool) – Should this layer be run in training mode. Typically decided by main
model, influences things like dropout.

Returns
First and second are original input tensors Third is the result of convolution

Return type
tuple(tf.Tensor,tf.Tensor,tf.Tensor)
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get_config()→ Dict
Returns config dictionary for this layer.

class MolGANAggregationLayer(*args, **kwargs)
Graph Aggregation layer used in MolGAN model. MolGAN is a WGAN type model for generation of small
molecules. Performs aggregation on tensor resulting from convolution layers. Given its simple nature it might
be removed in future and moved to MolGANEncoderLayer.

Example

>>> from tensorflow.keras import Model
>>> from tensorflow.keras.layers import Input
>>> vertices = 9
>>> nodes = 5
>>> edges = 5
>>> units = 128

>>> layer_1 = MolGANConvolutionLayer(units=units,edges=edges, name='layer1')
>>> layer_2 = MolGANConvolutionLayer(units=units,edges=edges, name='layer2')
>>> layer_3 = MolGANAggregationLayer(units=128, name='layer3')
>>> adjacency_tensor= Input(shape=(vertices, vertices, edges))
>>> node_tensor = Input(shape=(vertices,nodes))
>>> hidden_1 = layer_1([adjacency_tensor,node_tensor])
>>> hidden_2 = layer_2(hidden_1)
>>> output = layer_3(hidden_2[2])
>>> model = Model(inputs=[adjacency_tensor,node_tensor], outputs=[output])

References

__init__(units: int = 128, activation: ~typing.Callable = <function tanh>, dropout_rate: float = 0.0, name:
str = '', **kwargs)

Initialize the layer

Parameters
• units (int, optional (default=128)) – Dimesion of dense layers used for aggrega-

tion

• activation (function, optional (default=Tanh)) – activation function used
across model, default is Tanh

• dropout_rate (float, optional (default=0.0)) – Used by dropout layer

• name (string, optional (default="")) – Name of the layer

call(inputs, training=False)
Invoke this layer

Parameters
• inputs (List) – Single tensor resulting from graph convolution layer

• training (bool) – Should this layer be run in training mode. Typically decided by main
model, influences things like dropout.
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Returns
aggregation tensor – Result of aggregation function on input convolution tensor.

Return type
tf.Tensor

get_config()→ Dict
Returns config dictionary for this layer.

class MolGANMultiConvolutionLayer(*args, **kwargs)
Multiple pass convolution layer used in MolGAN model. MolGAN is a WGAN type model for generation of
small molecules. It takes outputs of previous convolution layer and uses them as inputs for the next one. It
simplifies the overall framework, but might be moved to MolGANEncoderLayer in the future in order to reduce
number of layers.

Example

>>> from tensorflow.keras import Model
>>> from tensorflow.keras.layers import Input
>>> vertices = 9
>>> nodes = 5
>>> edges = 5
>>> units = 128

>>> layer_1 = MolGANMultiConvolutionLayer(units=(128,64), name='layer1')
>>> layer_2 = MolGANAggregationLayer(units=128, name='layer2')
>>> adjacency_tensor= Input(shape=(vertices, vertices, edges))
>>> node_tensor = Input(shape=(vertices,nodes))
>>> hidden = layer_1([adjacency_tensor,node_tensor])
>>> output = layer_2(hidden)
>>> model = Model(inputs=[adjacency_tensor,node_tensor], outputs=[output])

References

__init__(units: ~typing.Tuple = (128, 64), activation: ~typing.Callable = <function tanh>, dropout_rate:
float = 0.0, edges: int = 5, name: str = '', **kwargs)

Initialize the layer

Parameters
• units (Tuple, optional (default=(128,64)), min_length=2) – List of dimen-

sions used by consecutive convolution layers. The more values the more convolution layers
invoked.

• activation (function, optional (default=tanh)) – activation function used
across model, default is Tanh

• dropout_rate (float, optional (default=0.0)) – Used by dropout layer

• edges (int, optional (default=0)) – Controls how many dense layers use for single
convolution unit. Typically matches number of bond types used in the molecule.

• name (string, optional (default="")) – Name of the layer
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call(inputs, training=False)
Invoke this layer

Parameters
• inputs (list) – List of two input matrices, adjacency tensor and node features tensors in

one-hot encoding format.

• training (bool) – Should this layer be run in training mode. Typically decided by main
model, influences things like dropout.

Returns
convolution tensor – Result of input tensors going through convolution a number of times.

Return type
tf.Tensor

get_config()→ Dict
Returns config dictionary for this layer.

class MolGANEncoderLayer(*args, **kwargs)
Main learning layer used by MolGAN model. MolGAN is a WGAN type model for generation of small
molecules. It role is to further simplify model. This layer can be manually built by stacking graph convolu-
tion layers followed by graph aggregation.

Example

>>> from tensorflow.keras import Model
>>> from tensorflow.keras.layers import Input, Dropout,Dense
>>> vertices = 9
>>> edges = 5
>>> nodes = 5
>>> dropout_rate = .0
>>> adjacency_tensor= Input(shape=(vertices, vertices, edges))
>>> node_tensor = Input(shape=(vertices, nodes))

>>> graph = MolGANEncoderLayer(units = [(128,64),128], dropout_rate= dropout_rate,␣
→˓edges=edges)([adjacency_tensor,node_tensor])
>>> dense = Dense(units=128, activation='tanh')(graph)
>>> dense = Dropout(dropout_rate)(dense)
>>> dense = Dense(units=64, activation='tanh')(dense)
>>> dense = Dropout(dropout_rate)(dense)
>>> output = Dense(units=1)(dense)
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>>> model = Model(inputs=[adjacency_tensor,node_tensor], outputs=[output])

References

__init__(units: ~typing.List = [(128, 64), 128], activation: ~typing.Callable = <function tanh>,
dropout_rate: float = 0.0, edges: int = 5, name: str = '', **kwargs)

Initialize the layer.

Parameters
• units (List, optional (default=[(128, 64), 128])) – List of units for Mol-

GANMultiConvolutionLayer and GraphAggregationLayer i.e. [(128,64),128] means two
convolution layers dims = [128,64] followed by aggregation layer dims=128

• activation (function, optional (default=Tanh)) – activation function used
across model, default is Tanh

• dropout_rate (float, optional (default=0.0)) – Used by dropout layer

• edges (int, optional (default=0)) – Controls how many dense layers use for single
convolution unit. Typically matches number of bond types used in the molecule.

• name (string, optional (default="")) – Name of the layer

call(inputs, training=False)
Invoke this layer

Parameters
• inputs (list) – List of two input matrices, adjacency tensor and node features tensors in

one-hot encoding format.

• training (bool) – Should this layer be run in training mode. Typically decided by main
model, influences things like dropout.

Returns
encoder tensor – Tensor that been through number of convolutions followed by aggregation.

Return type
tf.Tensor

get_config()→ Dict
Returns config dictionary for this layer.

class LSTMStep(*args, **kwargs)
Layer that performs a single step LSTM update.

This layer performs a single step LSTM update. Note that it is not a full LSTM recurrent network. The LSTMStep
layer is useful as a primitive for designing layers such as the AttnLSTMEmbedding or the IterRefLSTMEmbed-
ding below.

__init__(output_dim, input_dim, init_fn='glorot_uniform', inner_init_fn='orthogonal', activation_fn='tanh',
inner_activation_fn='hard_sigmoid', **kwargs)

Parameters
• output_dim (int) – Dimensionality of output vectors.

• input_dim (int) – Dimensionality of input vectors.

• init_fn (str) – TensorFlow nitialization to use for W.
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• inner_init_fn (str) – TensorFlow initialization to use for U.

• activation_fn (str) – TensorFlow activation to use for output.

• inner_activation_fn (str) – TensorFlow activation to use for inner steps.

get_config()

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled
by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers
should make a copy of the returned dict if they want to modify it.

Returns
Python dictionary.

build(input_shape)
Constructs learnable weights for this layer.

call(inputs)
Execute this layer on input tensors.

Parameters
inputs (list) – List of three tensors (x, h_tm1, c_tm1). h_tm1 means “h, t-1”.

Returns
Returns h, [h, c]

Return type
list

class AttnLSTMEmbedding(*args, **kwargs)
Implements AttnLSTM as in matching networks paper.

The AttnLSTM embedding adjusts two sets of vectors, the “test” and “support” sets. The “support” consists of a
set of evidence vectors. Think of these as the small training set for low-data machine learning. The “test” consists
of the queries we wish to answer with the small amounts of available data. The AttnLSTMEmbdding allows us to
modify the embedding of the “test” set depending on the contents of the “support”. The AttnLSTMEmbedding
is thus a type of learnable metric that allows a network to modify its internal notion of distance.

See references [1]_ [2]_ for more details.

References

__init__(n_test, n_support, n_feat, max_depth, **kwargs)

Parameters
• n_support (int) – Size of support set.

• n_test (int) – Size of test set.

• n_feat (int) – Number of features per atom

• max_depth (int) – Number of “processing steps” used by sequence-to-sequence for sets
model.
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get_config()

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled
by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers
should make a copy of the returned dict if they want to modify it.

Returns
Python dictionary.

build(input_shape)
Creates the variables of the layer (for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-creation
step in-between layer instantiation and layer call. It is invoked automatically before the first execution of
call().

This is typically used to create the weights of Layer subclasses (at the discretion of the subclass imple-
menter).

Parameters
input_shape – Instance of TensorShape, or list of instances of TensorShape if the layer
expects a list of inputs (one instance per input).

call(inputs)
Execute this layer on input tensors.

Parameters
inputs (list) – List of two tensors (X, Xp). X should be of shape (n_test, n_feat) and Xp
should be of shape (n_support, n_feat) where n_test is the size of the test set, n_support that
of the support set, and n_feat is the number of per-atom features.

Returns
Returns two tensors of same shape as input. Namely the output shape will be [(n_test, n_feat),
(n_support, n_feat)]

Return type
list

class IterRefLSTMEmbedding(*args, **kwargs)
Implements the Iterative Refinement LSTM.

Much like AttnLSTMEmbedding, the IterRefLSTMEmbedding is another type of learnable metric which adjusts
“test” and “support.” Recall that “support” is the small amount of data available in a low data machine learning
problem, and that “test” is the query. The AttnLSTMEmbedding only modifies the “test” based on the contents
of the support. However, the IterRefLSTM modifies both the “support” and “test” based on each other. This
allows the learnable metric to be more malleable than that from AttnLSTMEmbeding.

__init__(n_test, n_support, n_feat, max_depth, **kwargs)
Unlike the AttnLSTM model which only modifies the test vectors additively, this model allows for an ad-
ditive update to be performed to both test and support using information from each other.

Parameters
• n_support (int) – Size of support set.

• n_test (int) – Size of test set.
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• n_feat (int) – Number of input atom features

• max_depth (int) – Number of LSTM Embedding layers.

get_config()

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled
by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers
should make a copy of the returned dict if they want to modify it.

Returns
Python dictionary.

build(input_shape)
Creates the variables of the layer (for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-creation
step in-between layer instantiation and layer call. It is invoked automatically before the first execution of
call().

This is typically used to create the weights of Layer subclasses (at the discretion of the subclass imple-
menter).

Parameters
input_shape – Instance of TensorShape, or list of instances of TensorShape if the layer
expects a list of inputs (one instance per input).

call(inputs)
Execute this layer on input tensors.

Parameters
inputs (list) – List of two tensors (X, Xp). X should be of shape (n_test, n_feat) and Xp
should be of shape (n_support, n_feat) where n_test is the size of the test set, n_support that
of the support set, and n_feat is the number of per-atom features.

Returns
• Returns two tensors of same shape as input. Namely the output

• shape will be [(n_test, n_feat), (n_support, n_feat)]

class SwitchedDropout(*args, **kwargs)
Apply dropout based on an input.

This is required for uncertainty prediction. The standard Keras Dropout layer only performs dropout during
training, but we sometimes need to do it during prediction. The second input to this layer should be a scalar
equal to 0 or 1, indicating whether to perform dropout.

get_config()

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled
by Network (one layer of abstraction above).
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Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers
should make a copy of the returned dict if they want to modify it.

Returns
Python dictionary.

call(inputs)
This is where the layer’s logic lives.

The call() method may not create state (except in its first invocation, wrapping the creation of variables or
other resources in tf.init_scope()). It is recommended to create state, including tf.Variable instances and
nested Layer instances,

in __init__(), or in the build() method that is

called automatically before call() executes for the first time.

Parameters
• inputs – Input tensor, or dict/list/tuple of input tensors. The first positional inputs argu-

ment is subject to special rules: - inputs must be explicitly passed. A layer cannot have
zero

arguments, and inputs cannot be provided via the default value of a keyword argument.

– NumPy array or Python scalar values in inputs get cast as tensors.

– Keras mask metadata is only collected from inputs.

– Layers are built (build(input_shape) method) using shape info from inputs only.

– input_spec compatibility is only checked against inputs.

– Mixed precision input casting is only applied to inputs. If a layer has tensor arguments
in *args or **kwargs, their casting behavior in mixed precision should be handled man-
ually.

– The SavedModel input specification is generated using inputs only.

– Integration with various ecosystem packages like TFMOT, TFLite, TF.js, etc is only
supported for inputs and not for tensors in positional and keyword arguments.

• *args – Additional positional arguments. May contain tensors, although this is not rec-
ommended, for the reasons above.

• **kwargs – Additional keyword arguments. May contain tensors, although this is not rec-
ommended, for the reasons above. The following optional keyword arguments are reserved:
- training: Boolean scalar tensor of Python boolean indicating

whether the call is meant for training or inference.

– mask: Boolean input mask. If the layer’s call() method takes a mask argument, its default
value will be set to the mask generated for inputs by the previous layer (if input did come
from a layer that generated a corresponding mask, i.e. if it came from a Keras layer with
masking support).

Returns
A tensor or list/tuple of tensors.

class WeightedLinearCombo(*args, **kwargs)
Computes a weighted linear combination of input layers, with the weights defined by trainable variables.
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__init__(std=0.3, **kwargs)
Initialize this layer.

Parameters
std (float, optional (default 0.3)) – The standard deviation to use when randomly
initializing weights.

get_config()

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled
by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers
should make a copy of the returned dict if they want to modify it.

Returns
Python dictionary.

build(input_shape)
Creates the variables of the layer (for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-creation
step in-between layer instantiation and layer call. It is invoked automatically before the first execution of
call().

This is typically used to create the weights of Layer subclasses (at the discretion of the subclass imple-
menter).

Parameters
input_shape – Instance of TensorShape, or list of instances of TensorShape if the layer
expects a list of inputs (one instance per input).

call(inputs)
This is where the layer’s logic lives.

The call() method may not create state (except in its first invocation, wrapping the creation of variables or
other resources in tf.init_scope()). It is recommended to create state, including tf.Variable instances and
nested Layer instances,

in __init__(), or in the build() method that is

called automatically before call() executes for the first time.

Parameters
• inputs – Input tensor, or dict/list/tuple of input tensors. The first positional inputs argu-

ment is subject to special rules: - inputs must be explicitly passed. A layer cannot have
zero

arguments, and inputs cannot be provided via the default value of a keyword argument.

– NumPy array or Python scalar values in inputs get cast as tensors.

– Keras mask metadata is only collected from inputs.

– Layers are built (build(input_shape) method) using shape info from inputs only.

– input_spec compatibility is only checked against inputs.
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– Mixed precision input casting is only applied to inputs. If a layer has tensor arguments
in *args or **kwargs, their casting behavior in mixed precision should be handled man-
ually.

– The SavedModel input specification is generated using inputs only.

– Integration with various ecosystem packages like TFMOT, TFLite, TF.js, etc is only
supported for inputs and not for tensors in positional and keyword arguments.

• *args – Additional positional arguments. May contain tensors, although this is not rec-
ommended, for the reasons above.

• **kwargs – Additional keyword arguments. May contain tensors, although this is not rec-
ommended, for the reasons above. The following optional keyword arguments are reserved:
- training: Boolean scalar tensor of Python boolean indicating

whether the call is meant for training or inference.

– mask: Boolean input mask. If the layer’s call() method takes a mask argument, its default
value will be set to the mask generated for inputs by the previous layer (if input did come
from a layer that generated a corresponding mask, i.e. if it came from a Keras layer with
masking support).

Returns
A tensor or list/tuple of tensors.

class CombineMeanStd(*args, **kwargs)
Generate Gaussian nose.

__init__(training_only=False, noise_epsilon=1.0, **kwargs)
Create a CombineMeanStd layer.

This layer should have two inputs with the same shape, and its output also has the same shape. Each element
of the output is a Gaussian distributed random number whose mean is the corresponding element of the
first input, and whose standard deviation is the corresponding element of the second input.

Parameters
• training_only (bool) – if True, noise is only generated during training. During predic-

tion, the output is simply equal to the first input (that is, the mean of the distribution used
during training).

• noise_epsilon (float) – The noise is scaled by this factor

get_config()

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled
by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers
should make a copy of the returned dict if they want to modify it.

Returns
Python dictionary.
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call(inputs, training=True)
This is where the layer’s logic lives.

The call() method may not create state (except in its first invocation, wrapping the creation of variables or
other resources in tf.init_scope()). It is recommended to create state, including tf.Variable instances and
nested Layer instances,

in __init__(), or in the build() method that is

called automatically before call() executes for the first time.

Parameters
• inputs – Input tensor, or dict/list/tuple of input tensors. The first positional inputs argu-

ment is subject to special rules: - inputs must be explicitly passed. A layer cannot have
zero

arguments, and inputs cannot be provided via the default value of a keyword argument.

– NumPy array or Python scalar values in inputs get cast as tensors.

– Keras mask metadata is only collected from inputs.

– Layers are built (build(input_shape) method) using shape info from inputs only.

– input_spec compatibility is only checked against inputs.

– Mixed precision input casting is only applied to inputs. If a layer has tensor arguments
in *args or **kwargs, their casting behavior in mixed precision should be handled man-
ually.

– The SavedModel input specification is generated using inputs only.

– Integration with various ecosystem packages like TFMOT, TFLite, TF.js, etc is only
supported for inputs and not for tensors in positional and keyword arguments.

• *args – Additional positional arguments. May contain tensors, although this is not rec-
ommended, for the reasons above.

• **kwargs – Additional keyword arguments. May contain tensors, although this is not rec-
ommended, for the reasons above. The following optional keyword arguments are reserved:
- training: Boolean scalar tensor of Python boolean indicating

whether the call is meant for training or inference.

– mask: Boolean input mask. If the layer’s call() method takes a mask argument, its default
value will be set to the mask generated for inputs by the previous layer (if input did come
from a layer that generated a corresponding mask, i.e. if it came from a Keras layer with
masking support).

Returns
A tensor or list/tuple of tensors.

class Stack(*args, **kwargs)
Stack the inputs along a new axis.

get_config()

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.
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The config of a layer does not include connectivity information, nor the layer class name. These are handled
by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers
should make a copy of the returned dict if they want to modify it.

Returns
Python dictionary.

call(inputs)
This is where the layer’s logic lives.

The call() method may not create state (except in its first invocation, wrapping the creation of variables or
other resources in tf.init_scope()). It is recommended to create state, including tf.Variable instances and
nested Layer instances,

in __init__(), or in the build() method that is

called automatically before call() executes for the first time.

Parameters
• inputs – Input tensor, or dict/list/tuple of input tensors. The first positional inputs argu-

ment is subject to special rules: - inputs must be explicitly passed. A layer cannot have
zero

arguments, and inputs cannot be provided via the default value of a keyword argument.

– NumPy array or Python scalar values in inputs get cast as tensors.

– Keras mask metadata is only collected from inputs.

– Layers are built (build(input_shape) method) using shape info from inputs only.

– input_spec compatibility is only checked against inputs.

– Mixed precision input casting is only applied to inputs. If a layer has tensor arguments
in *args or **kwargs, their casting behavior in mixed precision should be handled man-
ually.

– The SavedModel input specification is generated using inputs only.

– Integration with various ecosystem packages like TFMOT, TFLite, TF.js, etc is only
supported for inputs and not for tensors in positional and keyword arguments.

• *args – Additional positional arguments. May contain tensors, although this is not rec-
ommended, for the reasons above.

• **kwargs – Additional keyword arguments. May contain tensors, although this is not rec-
ommended, for the reasons above. The following optional keyword arguments are reserved:
- training: Boolean scalar tensor of Python boolean indicating

whether the call is meant for training or inference.

– mask: Boolean input mask. If the layer’s call() method takes a mask argument, its default
value will be set to the mask generated for inputs by the previous layer (if input did come
from a layer that generated a corresponding mask, i.e. if it came from a Keras layer with
masking support).

Returns
A tensor or list/tuple of tensors.
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class VinaFreeEnergy(*args, **kwargs)
Computes free-energy as defined by Autodock Vina.

TODO(rbharath): Make this layer support batching.

get_config()

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled
by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers
should make a copy of the returned dict if they want to modify it.

Returns
Python dictionary.

build(input_shape)
Creates the variables of the layer (for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-creation
step in-between layer instantiation and layer call. It is invoked automatically before the first execution of
call().

This is typically used to create the weights of Layer subclasses (at the discretion of the subclass imple-
menter).

Parameters
input_shape – Instance of TensorShape, or list of instances of TensorShape if the layer
expects a list of inputs (one instance per input).

nonlinearity(c, w)
Computes non-linearity used in Vina.

repulsion(d)
Computes Autodock Vina’s repulsion interaction term.

hydrophobic(d)
Computes Autodock Vina’s hydrophobic interaction term.

hydrogen_bond(d)
Computes Autodock Vina’s hydrogen bond interaction term.

gaussian_first(d)
Computes Autodock Vina’s first Gaussian interaction term.

gaussian_second(d)
Computes Autodock Vina’s second Gaussian interaction term.

call(inputs)

Parameters
• X (tf.Tensor of shape (N, d)) – Coordinates/features.

• Z (tf.Tensor of shape (N)) – Atomic numbers of neighbor atoms.

Returns
layer – The free energy of each complex in batch
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Return type
tf.Tensor of shape (B)

class NeighborList(*args, **kwargs)
Computes a neighbor-list in Tensorflow.

Neighbor-lists (also called Verlet Lists) are a tool for grouping atoms which are close to each other spatially. This
layer computes a Neighbor List from a provided tensor of atomic coordinates. You can think of this as a general
“k-means” layer, but optimized for the case k==3.

TODO(rbharath): Make this layer support batching.

__init__(N_atoms, M_nbrs, ndim, nbr_cutoff , start, stop, **kwargs)

Parameters
• N_atoms (int) – Maximum number of atoms this layer will neighbor-list.

• M_nbrs (int) – Maximum number of spatial neighbors possible for atom.

• ndim (int) – Dimensionality of space atoms live in. (Typically 3D, but sometimes will
want to use higher dimensional descriptors for atoms).

• nbr_cutoff (float) – Length in Angstroms (?) at which atom boxes are gridded.

get_config()

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled
by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers
should make a copy of the returned dict if they want to modify it.

Returns
Python dictionary.

call(inputs)
This is where the layer’s logic lives.

The call() method may not create state (except in its first invocation, wrapping the creation of variables or
other resources in tf.init_scope()). It is recommended to create state, including tf.Variable instances and
nested Layer instances,

in __init__(), or in the build() method that is

called automatically before call() executes for the first time.

Parameters
• inputs – Input tensor, or dict/list/tuple of input tensors. The first positional inputs argu-

ment is subject to special rules: - inputs must be explicitly passed. A layer cannot have
zero

arguments, and inputs cannot be provided via the default value of a keyword argument.

– NumPy array or Python scalar values in inputs get cast as tensors.

– Keras mask metadata is only collected from inputs.

– Layers are built (build(input_shape) method) using shape info from inputs only.
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– input_spec compatibility is only checked against inputs.

– Mixed precision input casting is only applied to inputs. If a layer has tensor arguments
in *args or **kwargs, their casting behavior in mixed precision should be handled man-
ually.

– The SavedModel input specification is generated using inputs only.

– Integration with various ecosystem packages like TFMOT, TFLite, TF.js, etc is only
supported for inputs and not for tensors in positional and keyword arguments.

• *args – Additional positional arguments. May contain tensors, although this is not rec-
ommended, for the reasons above.

• **kwargs – Additional keyword arguments. May contain tensors, although this is not rec-
ommended, for the reasons above. The following optional keyword arguments are reserved:
- training: Boolean scalar tensor of Python boolean indicating

whether the call is meant for training or inference.

– mask: Boolean input mask. If the layer’s call() method takes a mask argument, its default
value will be set to the mask generated for inputs by the previous layer (if input did come
from a layer that generated a corresponding mask, i.e. if it came from a Keras layer with
masking support).

Returns
A tensor or list/tuple of tensors.

compute_nbr_list(coords)
Get closest neighbors for atoms.

Needs to handle padding for atoms with no neighbors.

Parameters
coords (tf.Tensor) – Shape (N_atoms, ndim)

Returns
nbr_list – Shape (N_atoms, M_nbrs) of atom indices

Return type
tf.Tensor

get_atoms_in_nbrs(coords, cells)
Get the atoms in neighboring cells for each cells.

Return type
atoms_in_nbrs = (N_atoms, n_nbr_cells, M_nbrs)

get_closest_atoms(coords, cells)
For each cell, find M_nbrs closest atoms.

Let N_atoms be the number of atoms.

Parameters
• coords (tf.Tensor) – (N_atoms, ndim) shape.

• cells (tf.Tensor) – (n_cells, ndim) shape.

Returns
closest_inds – Of shape (n_cells, M_nbrs)
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Return type
tf.Tensor

get_cells_for_atoms(coords, cells)
Compute the cells each atom belongs to.

Parameters
• coords (tf.Tensor) – Shape (N_atoms, ndim)

• cells (tf.Tensor) – (n_cells, ndim) shape.

Returns
cells_for_atoms – Shape (N_atoms, 1)

Return type
tf.Tensor

get_neighbor_cells(cells)
Compute neighbors of cells in grid.

# TODO(rbharath): Do we need to handle periodic boundary conditions properly here? # TODO(rbharath):
This doesn’t handle boundaries well. We hard-code # looking for n_nbr_cells neighbors, which isn’t right
for boundary cells in # the cube.

Parameters
cells (tf.Tensor) – (n_cells, ndim) shape.

Returns
nbr_cells – (n_cells, n_nbr_cells)

Return type
tf.Tensor

get_cells()

Returns the locations of all grid points in box.

Suppose start is -10 Angstrom, stop is 10 Angstrom, nbr_cutoff is 1. Then would return a list of length
20^3 whose entries would be [(-10, -10, -10), (-10, -10, -9), . . . , (9, 9, 9)]

Returns
cells – (n_cells, ndim) shape.

Return type
tf.Tensor

class AtomicConvolution(*args, **kwargs)
Implements the atomic convolutional transform introduced in

Gomes, Joseph, et al. “Atomic convolutional networks for predicting protein-ligand binding affinity.” arXiv
preprint arXiv:1703.10603 (2017).

At a high level, this transform performs a graph convolution on the nearest neighbors graph in 3D space.

__init__(atom_types=None, radial_params=[], boxsize=None, **kwargs)
Atomic convolution layer

N = max_num_atoms, M = max_num_neighbors, B = batch_size, d = num_features l = num_radial_filters
* num_atom_types

Parameters
• atom_types (list or None) – Of length a, where a is number of atom types for filtering.
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• radial_params (list) – Of length l, where l is number of radial filters learned.

• boxsize (float or None) – Simulation box length [Angstrom].

get_config()

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled
by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers
should make a copy of the returned dict if they want to modify it.

Returns
Python dictionary.

build(input_shape)
Creates the variables of the layer (for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-creation
step in-between layer instantiation and layer call. It is invoked automatically before the first execution of
call().

This is typically used to create the weights of Layer subclasses (at the discretion of the subclass imple-
menter).

Parameters
input_shape – Instance of TensorShape, or list of instances of TensorShape if the layer
expects a list of inputs (one instance per input).

call(inputs)

Parameters
• X (tf.Tensor of shape (B, N, d)) – Coordinates/features.

• Nbrs (tf.Tensor of shape (B, N, M)) – Neighbor list.

• Nbrs_Z (tf.Tensor of shape (B, N, M)) – Atomic numbers of neighbor atoms.

Returns
layer – A new tensor representing the output of the atomic conv layer

Return type
tf.Tensor of shape (B, N, l)

radial_symmetry_function(R, rc, rs, e)
Calculates radial symmetry function.

B = batch_size, N = max_num_atoms, M = max_num_neighbors, d = num_filters

Parameters
• R (tf.Tensor of shape (B, N, M)) – Distance matrix.

• rc (float) – Interaction cutoff [Angstrom].

• rs (float) – Gaussian distance matrix mean.

• e (float) – Gaussian distance matrix width.

Returns
retval – Radial symmetry function (before summation)
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Return type
tf.Tensor of shape (B, N, M)

radial_cutoff(R, rc)
Calculates radial cutoff matrix.

B = batch_size, N = max_num_atoms, M = max_num_neighbors

Parameters
• [B (R) – Distance matrix.

• N (tf.Tensor) – Distance matrix.

• M] (tf.Tensor) – Distance matrix.

• rc (tf.Variable) – Interaction cutoff [Angstrom].

Returns
FC [B, N, M] – Radial cutoff matrix.

Return type
tf.Tensor

gaussian_distance_matrix(R, rs, e)
Calculates gaussian distance matrix.

B = batch_size, N = max_num_atoms, M = max_num_neighbors

Parameters
• [B (R) – Distance matrix.

• N (tf.Tensor) – Distance matrix.

• M] (tf.Tensor) – Distance matrix.

• rs (tf.Variable) – Gaussian distance matrix mean.

• e (tf.Variable) – Gaussian distance matrix width (e = .5/std**2).

Returns
retval [B, N, M] – Gaussian distance matrix.

Return type
tf.Tensor

distance_tensor(X, Nbrs, boxsize, B, N , M, d)
Calculates distance tensor for batch of molecules.

B = batch_size, N = max_num_atoms, M = max_num_neighbors, d = num_features

Parameters
• X (tf.Tensor of shape (B, N, d)) – Coordinates/features tensor.

• Nbrs (tf.Tensor of shape (B, N, M)) – Neighbor list tensor.

• boxsize (float or None) – Simulation box length [Angstrom].

Returns
D – Coordinates/features distance tensor.

Return type
tf.Tensor of shape (B, N, M, d)
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distance_matrix(D)

Calcuates the distance matrix from the distance tensor

B = batch_size, N = max_num_atoms, M = max_num_neighbors, d = num_features

Parameters
D (tf.Tensor of shape (B, N, M, d)) – Distance tensor.

Returns
R – Distance matrix.

Return type
tf.Tensor of shape (B, N, M)

class AlphaShareLayer(*args, **kwargs)
Part of a sluice network. Adds alpha parameters to control sharing between the main and auxillary tasks

Factory method AlphaShare should be used for construction

Parameters
in_layers (list of Layers or tensors) – tensors in list must be the same size and list
must include two or more tensors

Returns
• out_tensor (a tensor with shape [len(in_layers), x, y] where x, y were the original layer

dimensions)

• Distance matrix.

get_config()

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled
by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers
should make a copy of the returned dict if they want to modify it.

Returns
Python dictionary.

build(input_shape)
Creates the variables of the layer (for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-creation
step in-between layer instantiation and layer call. It is invoked automatically before the first execution of
call().

This is typically used to create the weights of Layer subclasses (at the discretion of the subclass imple-
menter).

Parameters
input_shape – Instance of TensorShape, or list of instances of TensorShape if the layer
expects a list of inputs (one instance per input).

call(inputs)
This is where the layer’s logic lives.
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The call() method may not create state (except in its first invocation, wrapping the creation of variables or
other resources in tf.init_scope()). It is recommended to create state, including tf.Variable instances and
nested Layer instances,

in __init__(), or in the build() method that is

called automatically before call() executes for the first time.

Parameters
• inputs – Input tensor, or dict/list/tuple of input tensors. The first positional inputs argu-

ment is subject to special rules: - inputs must be explicitly passed. A layer cannot have
zero

arguments, and inputs cannot be provided via the default value of a keyword argument.

– NumPy array or Python scalar values in inputs get cast as tensors.

– Keras mask metadata is only collected from inputs.

– Layers are built (build(input_shape) method) using shape info from inputs only.

– input_spec compatibility is only checked against inputs.

– Mixed precision input casting is only applied to inputs. If a layer has tensor arguments
in *args or **kwargs, their casting behavior in mixed precision should be handled man-
ually.

– The SavedModel input specification is generated using inputs only.

– Integration with various ecosystem packages like TFMOT, TFLite, TF.js, etc is only
supported for inputs and not for tensors in positional and keyword arguments.

• *args – Additional positional arguments. May contain tensors, although this is not rec-
ommended, for the reasons above.

• **kwargs – Additional keyword arguments. May contain tensors, although this is not rec-
ommended, for the reasons above. The following optional keyword arguments are reserved:
- training: Boolean scalar tensor of Python boolean indicating

whether the call is meant for training or inference.

– mask: Boolean input mask. If the layer’s call() method takes a mask argument, its default
value will be set to the mask generated for inputs by the previous layer (if input did come
from a layer that generated a corresponding mask, i.e. if it came from a Keras layer with
masking support).

Returns
A tensor or list/tuple of tensors.

class SluiceLoss(*args, **kwargs)
Calculates the loss in a Sluice Network Every input into an AlphaShare should be used in SluiceLoss

get_config()

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled
by Network (one layer of abstraction above).
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Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers
should make a copy of the returned dict if they want to modify it.

Returns
Python dictionary.

call(inputs)
This is where the layer’s logic lives.

The call() method may not create state (except in its first invocation, wrapping the creation of variables or
other resources in tf.init_scope()). It is recommended to create state, including tf.Variable instances and
nested Layer instances,

in __init__(), or in the build() method that is

called automatically before call() executes for the first time.

Parameters
• inputs – Input tensor, or dict/list/tuple of input tensors. The first positional inputs argu-

ment is subject to special rules: - inputs must be explicitly passed. A layer cannot have
zero

arguments, and inputs cannot be provided via the default value of a keyword argument.

– NumPy array or Python scalar values in inputs get cast as tensors.

– Keras mask metadata is only collected from inputs.

– Layers are built (build(input_shape) method) using shape info from inputs only.

– input_spec compatibility is only checked against inputs.

– Mixed precision input casting is only applied to inputs. If a layer has tensor arguments
in *args or **kwargs, their casting behavior in mixed precision should be handled man-
ually.

– The SavedModel input specification is generated using inputs only.

– Integration with various ecosystem packages like TFMOT, TFLite, TF.js, etc is only
supported for inputs and not for tensors in positional and keyword arguments.

• *args – Additional positional arguments. May contain tensors, although this is not rec-
ommended, for the reasons above.

• **kwargs – Additional keyword arguments. May contain tensors, although this is not rec-
ommended, for the reasons above. The following optional keyword arguments are reserved:
- training: Boolean scalar tensor of Python boolean indicating

whether the call is meant for training or inference.

– mask: Boolean input mask. If the layer’s call() method takes a mask argument, its default
value will be set to the mask generated for inputs by the previous layer (if input did come
from a layer that generated a corresponding mask, i.e. if it came from a Keras layer with
masking support).

Returns
A tensor or list/tuple of tensors.

class BetaShare(*args, **kwargs)
Part of a sluice network. Adds beta params to control which layer outputs are used for prediction
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Parameters
in_layers (list of Layers or tensors) – tensors in list must be the same size and list
must include two or more tensors

Returns
output_layers – Distance matrix.

Return type
list of Layers or tensors with same size as in_layers

get_config()

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled
by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers
should make a copy of the returned dict if they want to modify it.

Returns
Python dictionary.

build(input_shape)
Creates the variables of the layer (for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-creation
step in-between layer instantiation and layer call. It is invoked automatically before the first execution of
call().

This is typically used to create the weights of Layer subclasses (at the discretion of the subclass imple-
menter).

Parameters
input_shape – Instance of TensorShape, or list of instances of TensorShape if the layer
expects a list of inputs (one instance per input).

call(inputs)
Size of input layers must all be the same

class ANIFeat(*args, **kwargs)
Performs transform from 3D coordinates to ANI symmetry functions

__init__(max_atoms=23, radial_cutoff=4.6, angular_cutoff=3.1, radial_length=32, angular_length=8,
atom_cases=[1, 6, 7, 8, 16], atomic_number_differentiated=True, coordinates_in_bohr=True,
**kwargs)

Only X can be transformed

get_config()

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled
by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers
should make a copy of the returned dict if they want to modify it.
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Returns
Python dictionary.

call(inputs)
In layers should be of shape dtype tf.float32, (None, self.max_atoms, 4)

distance_matrix(coordinates, flags)
Generate distance matrix

distance_cutoff(d, cutoff , flags)
Generate distance matrix with trainable cutoff

radial_symmetry(d_cutoff , d, atom_numbers)
Radial Symmetry Function

angular_symmetry(d_cutoff , d, atom_numbers, coordinates)
Angular Symmetry Function

class GraphEmbedPoolLayer(*args, **kwargs)
GraphCNNPool Layer from Robust Spatial Filtering with Graph Convolutional Neural Networks https://arxiv.
org/abs/1703.00792

This is a learnable pool operation It constructs a new adjacency matrix for a graph of specified number of nodes.

This differs from our other pool operations which set vertices to a function value without altering the adjacency
matrix.

..math:: V_{emb} = SpatialGraphCNN({V_{in}}) ..math:: V_{out} = sigma(V_{emb})^{T} * V_{in} ..math::
A_{out} = V_{emb}^{T} * A_{in} * V_{emb}

get_config()

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled
by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers
should make a copy of the returned dict if they want to modify it.

Returns
Python dictionary.

build(input_shape)
Creates the variables of the layer (for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-creation
step in-between layer instantiation and layer call. It is invoked automatically before the first execution of
call().

This is typically used to create the weights of Layer subclasses (at the discretion of the subclass imple-
menter).

Parameters
input_shape – Instance of TensorShape, or list of instances of TensorShape if the layer
expects a list of inputs (one instance per input).

3.23. Layers 471

https://arxiv.org/abs/1703.00792
https://arxiv.org/abs/1703.00792


deepchem, Release 2.8.0

call(inputs)

Parameters
• num_filters (int) – Number of filters to have in the output

• in_layers (list of Layers or tensors) – [V, A, mask] V are the vertex features
must be of shape (batch, vertex, channel)

• graph (A are the adjacency matrixes for each ) – Shape (batch, from_vertex,
adj_matrix, to_vertex)

• optional (mask is) –

• the (to be used when not every graph has) –

• vertices (same number of ) –

Returns
• Returns a tf.tensor with a graph convolution applied

• The shape will be (batch, vertex, self.num_filters).

class GraphCNN(*args, **kwargs)
GraphCNN Layer from Robust Spatial Filtering with Graph Convolutional Neural Networks https://arxiv.org/
abs/1703.00792

Spatial-domain convolutions can be defined as H = h_0I + h_1A + h_2A^2 + . . . + hkAk, H R**(N×N)

We approximate it by H h_0I + h_1A

We can define a convolution as applying multiple these linear filters over edges of different types (think up, down,
left, right, diagonal in images) Where each edge type has its own adjacency matrix H h_0I + h_1A_1 + h_2A_2
+ . . . h_(L1)A_(L1)

V_out = sum_{c=1}^{C} H^{c} V^{c} + b

__init__(num_filters, **kwargs)

Parameters
• num_filters (int) – Number of filters to have in the output

• in_layers (list of Layers or tensors) – [V, A, mask] V are the vertex features
must be of shape (batch, vertex, channel)

• graph (A are the adjacency matrixes for each ) – Shape (batch, from_vertex,
adj_matrix, to_vertex)

• optional (mask is) –

• the (to be used when not every graph has) –

• vertices (same number of ) –

• Returns (tf.tensor) –

• applied (Returns a tf.tensor with a graph convolution) –

• (batch (The shape will be) –

• vertex –

• self.num_filters) –
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get_config()

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled
by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers
should make a copy of the returned dict if they want to modify it.

Returns
Python dictionary.

build(input_shape)
Creates the variables of the layer (for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-creation
step in-between layer instantiation and layer call. It is invoked automatically before the first execution of
call().

This is typically used to create the weights of Layer subclasses (at the discretion of the subclass imple-
menter).

Parameters
input_shape – Instance of TensorShape, or list of instances of TensorShape if the layer
expects a list of inputs (one instance per input).

call(inputs)
This is where the layer’s logic lives.

The call() method may not create state (except in its first invocation, wrapping the creation of variables or
other resources in tf.init_scope()). It is recommended to create state, including tf.Variable instances and
nested Layer instances,

in __init__(), or in the build() method that is

called automatically before call() executes for the first time.

Parameters
• inputs – Input tensor, or dict/list/tuple of input tensors. The first positional inputs argu-

ment is subject to special rules: - inputs must be explicitly passed. A layer cannot have
zero

arguments, and inputs cannot be provided via the default value of a keyword argument.

– NumPy array or Python scalar values in inputs get cast as tensors.

– Keras mask metadata is only collected from inputs.

– Layers are built (build(input_shape) method) using shape info from inputs only.

– input_spec compatibility is only checked against inputs.

– Mixed precision input casting is only applied to inputs. If a layer has tensor arguments
in *args or **kwargs, their casting behavior in mixed precision should be handled man-
ually.

– The SavedModel input specification is generated using inputs only.

– Integration with various ecosystem packages like TFMOT, TFLite, TF.js, etc is only
supported for inputs and not for tensors in positional and keyword arguments.
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• *args – Additional positional arguments. May contain tensors, although this is not rec-
ommended, for the reasons above.

• **kwargs – Additional keyword arguments. May contain tensors, although this is not rec-
ommended, for the reasons above. The following optional keyword arguments are reserved:
- training: Boolean scalar tensor of Python boolean indicating

whether the call is meant for training or inference.

– mask: Boolean input mask. If the layer’s call() method takes a mask argument, its default
value will be set to the mask generated for inputs by the previous layer (if input did come
from a layer that generated a corresponding mask, i.e. if it came from a Keras layer with
masking support).

Returns
A tensor or list/tuple of tensors.

class Highway(*args, **kwargs)
Create a highway layer. y = H(x) * T(x) + x * (1 - T(x))

H(x) = activation_fn(matmul(W_H, x) + b_H) is the non-linear transformed output T(x) = sigmoid(matmul(W_T,
x) + b_T) is the transform gate

Implementation based on paper

Srivastava, Rupesh Kumar, Klaus Greff, and Jürgen Schmidhuber. “Highway networks.” arXiv preprint
arXiv:1505.00387 (2015).

This layer expects its input to be a two dimensional tensor of shape (batch size, # input features). Outputs will
be in the same shape.

__init__(activation_fn='relu', biases_initializer='zeros', weights_initializer=None, **kwargs)

Parameters
• activation_fn (object) – the Tensorflow activation function to apply to the output

• biases_initializer (callable object) – the initializer for bias values. This may be
None, in which case the layer will not include biases.

• weights_initializer (callable object) – the initializer for weight values

get_config()

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled
by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers
should make a copy of the returned dict if they want to modify it.

Returns
Python dictionary.

build(input_shape)
Creates the variables of the layer (for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-creation
step in-between layer instantiation and layer call. It is invoked automatically before the first execution of
call().
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This is typically used to create the weights of Layer subclasses (at the discretion of the subclass imple-
menter).

Parameters
input_shape – Instance of TensorShape, or list of instances of TensorShape if the layer
expects a list of inputs (one instance per input).

call(inputs)
This is where the layer’s logic lives.

The call() method may not create state (except in its first invocation, wrapping the creation of variables or
other resources in tf.init_scope()). It is recommended to create state, including tf.Variable instances and
nested Layer instances,

in __init__(), or in the build() method that is

called automatically before call() executes for the first time.

Parameters
• inputs – Input tensor, or dict/list/tuple of input tensors. The first positional inputs argu-

ment is subject to special rules: - inputs must be explicitly passed. A layer cannot have
zero

arguments, and inputs cannot be provided via the default value of a keyword argument.

– NumPy array or Python scalar values in inputs get cast as tensors.

– Keras mask metadata is only collected from inputs.

– Layers are built (build(input_shape) method) using shape info from inputs only.

– input_spec compatibility is only checked against inputs.

– Mixed precision input casting is only applied to inputs. If a layer has tensor arguments
in *args or **kwargs, their casting behavior in mixed precision should be handled man-
ually.

– The SavedModel input specification is generated using inputs only.

– Integration with various ecosystem packages like TFMOT, TFLite, TF.js, etc is only
supported for inputs and not for tensors in positional and keyword arguments.

• *args – Additional positional arguments. May contain tensors, although this is not rec-
ommended, for the reasons above.

• **kwargs – Additional keyword arguments. May contain tensors, although this is not rec-
ommended, for the reasons above. The following optional keyword arguments are reserved:
- training: Boolean scalar tensor of Python boolean indicating

whether the call is meant for training or inference.

– mask: Boolean input mask. If the layer’s call() method takes a mask argument, its default
value will be set to the mask generated for inputs by the previous layer (if input did come
from a layer that generated a corresponding mask, i.e. if it came from a Keras layer with
masking support).

Returns
A tensor or list/tuple of tensors.
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class WeaveLayer(*args, **kwargs)
This class implements the core Weave convolution from the Google graph convolution paper [1]_
This model contains atom features and bond features separately.Here, bond features are also called pair features.
There are 2 types of transformation, atom->atom, atom->pair, pair->atom, pair->pair that this model implements.

Examples

This layer expects 4 inputs in a list of the form [atom_features, pair_features, pair_split, atom_to_pair]. We’ll
walk through the structure of these inputs. Let’s start with some basic definitions.

>>> import deepchem as dc
>>> import numpy as np

Suppose you have a batch of molecules

>>> smiles = ["CCC", "C"]

Note that there are 4 atoms in total in this system. This layer expects its input molecules to be batched together.

>>> total_n_atoms = 4

Let’s suppose that we have a featurizer that computes n_atom_feat features per atom.

>>> n_atom_feat = 75

Then conceptually, atom_feat is the array of shape (total_n_atoms, n_atom_feat) of atomic features. For sim-
plicity, let’s just go with a random such matrix.

>>> atom_feat = np.random.rand(total_n_atoms, n_atom_feat)

Let’s suppose we have n_pair_feat pairwise features

>>> n_pair_feat = 14

For each molecule, we compute a matrix of shape (n_atoms*n_atoms, n_pair_feat) of pairwise features for each
pair of atoms in the molecule. Let’s construct this conceptually for our example.

>>> pair_feat = [np.random.rand(3*3, n_pair_feat), np.random.rand(1*1, n_pair_feat)]
>>> pair_feat = np.concatenate(pair_feat, axis=0)
>>> pair_feat.shape
(10, 14)

pair_split is an index into pair_feat which tells us which atom each row belongs to. In our case, we hve

>>> pair_split = np.array([0, 0, 0, 1, 1, 1, 2, 2, 2, 3])

That is, the first 9 entries belong to “CCC” and the last entry to “C”. The final entry atom_to_pair goes in a little
more in-depth than pair_split and tells us the precise pair each pair feature belongs to. In our case

>>> atom_to_pair = np.array([[0, 0],
... [0, 1],
... [0, 2],
... [1, 0],
... [1, 1],

(continues on next page)
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(continued from previous page)

... [1, 2],

... [2, 0],

... [2, 1],

... [2, 2],

... [3, 3]])

Let’s now define the actual layer

>>> layer = WeaveLayer()

And invoke it

>>> [A, P] = layer([atom_feat, pair_feat, pair_split, atom_to_pair])

The weave layer produces new atom/pair features. Let’s check their shapes

>>> A = np.array(A)
>>> A.shape
(4, 50)
>>> P = np.array(P)
>>> P.shape
(10, 50)

The 4 is total_num_atoms and the 10 is the total number of pairs. Where does 50 come from? It’s from the
default arguments n_atom_input_feat and n_pair_input_feat.

References

__init__(n_atom_input_feat: int = 75, n_pair_input_feat: int = 14, n_atom_output_feat: int = 50,
n_pair_output_feat: int = 50, n_hidden_AA: int = 50, n_hidden_PA: int = 50, n_hidden_AP: int =
50, n_hidden_PP: int = 50, update_pair: bool = True, init: str = 'glorot_uniform', activation: str =
'relu', batch_normalize: bool = True, batch_normalize_kwargs: Dict = {'renorm': True},
**kwargs)

Parameters
• n_atom_input_feat (int, optional (default 75)) – Number of features for each

atom in input.

• n_pair_input_feat (int, optional (default 14)) – Number of features for each
pair of atoms in input.

• n_atom_output_feat (int, optional (default 50)) – Number of features for each
atom in output.

• n_pair_output_feat (int, optional (default 50)) – Number of features for each
pair of atoms in output.

• n_hidden_AA (int, optional (default 50)) – Number of units(convolution depths)
in corresponding hidden layer

• n_hidden_PA (int, optional (default 50)) – Number of units(convolution depths)
in corresponding hidden layer

• n_hidden_AP (int, optional (default 50)) – Number of units(convolution depths)
in corresponding hidden layer
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• n_hidden_PP (int, optional (default 50)) – Number of units(convolution depths)
in corresponding hidden layer

• update_pair (bool, optional (default True)) – Whether to calculate for pair fea-
tures, could be turned off for last layer

• init (str, optional (default 'glorot_uniform')) – Weight initialization for fil-
ters.

• activation (str, optional (default 'relu')) – Activation function applied

• batch_normalize (bool, optional (default True)) – If this is turned on, apply
batch normalization before applying activation functions on convolutional layers.

• batch_normalize_kwargs (Dict, optional (default {renorm=True})) – Batch normaliza-
tion is a complex layer which has many potential argumentswhich change behavior. This
layer accepts user-defined parameters which are passed to all BatchNormalization layers in
WeaveModel, WeaveLayer, and WeaveGather.

get_config()→ Dict
Returns config dictionary for this layer.

build(input_shape)
Construct internal trainable weights.

Parameters
input_shape (tuple) – Ignored since we don’t need the input shape to create internal
weights.

call(inputs: List)→ List
Creates weave tensors.

Parameters
inputs (List) – Should contain 4 tensors [atom_features, pair_features, pair_split,
atom_to_pair]

class WeaveGather(*args, **kwargs)
Implements the weave-gathering section of weave convolutions.

Implements the gathering layer from [1]_. The weave gathering layer gathers per-atom features to create a
molecule-level fingerprint in a weave convolutional network. This layer can also performs Gaussian histogram
expansion as detailed in [1]_. Note that the gathering function here is simply addition as in [1]_>

Examples

This layer expects 2 inputs in a list of the form [atom_features, pair_features]. We’ll walk through the structure
of these inputs. Let’s start with some basic definitions.

>>> import deepchem as dc
>>> import numpy as np

Suppose you have a batch of molecules

>>> smiles = ["CCC", "C"]

Note that there are 4 atoms in total in this system. This layer expects its input molecules to be batched together.

>>> total_n_atoms = 4
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Let’s suppose that we have n_atom_feat features per atom.

>>> n_atom_feat = 75

Then conceptually, atom_feat is the array of shape (total_n_atoms, n_atom_feat) of atomic features. For sim-
plicity, let’s just go with a random such matrix.

>>> atom_feat = np.random.rand(total_n_atoms, n_atom_feat)

We then need to provide a mapping of indices to the atoms they belong to. In ours case this would be

>>> atom_split = np.array([0, 0, 0, 1])

Let’s now define the actual layer

>>> gather = WeaveGather(batch_size=2, n_input=n_atom_feat)
>>> output_molecules = gather([atom_feat, atom_split])
>>> len(output_molecules)
2

References

Note: This class requires tensorflow_probability to be installed.

__init__(batch_size: int, n_input: int = 128, gaussian_expand: bool = True,
compress_post_gaussian_expansion: bool = False, init: str = 'glorot_uniform', activation: str =
'tanh', **kwargs)

Parameters
• batch_size (int) – number of molecules in a batch

• n_input (int, optional (default 128)) – number of features for each input
molecule

• gaussian_expand (boolean, optional (default True)) – Whether to expand
each dimension of atomic features by gaussian histogram

• compress_post_gaussian_expansion (bool, optional (default False)) – If
True, compress the results of the Gaussian expansion back to the original dimensions of the
input by using a linear layer with specified activation function. Note that this compression
was not in the original paper, but was present in the original DeepChem implementation
so is left present for backwards compatibility.

• init (str, optional (default 'glorot_uniform')) – Weight initialization for fil-
ters if compress_post_gaussian_expansion is True.

• activation (str, optional (default 'tanh')) – Activation function applied for
filters if compress_post_gaussian_expansion is True. Should be recognizable by
tf.keras.activations.

get_config()

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.
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The config of a layer does not include connectivity information, nor the layer class name. These are handled
by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers
should make a copy of the returned dict if they want to modify it.

Returns
Python dictionary.

build(input_shape)
Creates the variables of the layer (for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-creation
step in-between layer instantiation and layer call. It is invoked automatically before the first execution of
call().

This is typically used to create the weights of Layer subclasses (at the discretion of the subclass imple-
menter).

Parameters
input_shape – Instance of TensorShape, or list of instances of TensorShape if the layer
expects a list of inputs (one instance per input).

call(inputs: List)→ List
Creates weave tensors.

Parameters
inputs (List) – Should contain 2 tensors [atom_features, atom_split]

Returns
output_molecules – Each entry in this list is of shape (self.n_inputs,)

Return type
List

gaussian_histogram(x)
Expands input into a set of gaussian histogram bins.

Parameters
x (tf.Tensor) – Of shape (N, n_feat)

Examples

This method uses 11 bins spanning portions of a Gaussian with zero mean and unit standard deviation.

>>> gaussian_memberships = [(-1.645, 0.283), (-1.080, 0.170),
... (-0.739, 0.134), (-0.468, 0.118),
... (-0.228, 0.114), (0., 0.114),
... (0.228, 0.114), (0.468, 0.118),
... (0.739, 0.134), (1.080, 0.170),
... (1.645, 0.283)]

We construct a Gaussian at gaussian_memberships[i][0] with standard deviation gaus-
sian_memberships[i][1]. Each feature in x is assigned the probability of falling in each Gaussian,
and probabilities are normalized across the 11 different Gaussians.

Returns
outputs – Of shape (N, 11*n_feat)
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Return type
tf.Tensor

class DTNNEmbedding(*args, **kwargs)

__init__(n_embedding=30, periodic_table_length=30, init='glorot_uniform', **kwargs)

Parameters
• n_embedding (int, optional) – Number of features for each atom

• periodic_table_length (int, optional) – Length of embedding, 83=Bi

• init (str, optional) – Weight initialization for filters.

get_config()

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled
by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers
should make a copy of the returned dict if they want to modify it.

Returns
Python dictionary.

build(input_shape)
Creates the variables of the layer (for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-creation
step in-between layer instantiation and layer call. It is invoked automatically before the first execution of
call().

This is typically used to create the weights of Layer subclasses (at the discretion of the subclass imple-
menter).

Parameters
input_shape – Instance of TensorShape, or list of instances of TensorShape if the layer
expects a list of inputs (one instance per input).

call(inputs)
parent layers: atom_number

class DTNNStep(*args, **kwargs)

__init__(n_embedding=30, n_distance=100, n_hidden=60, init='glorot_uniform', activation='tanh',
**kwargs)

Parameters
• n_embedding (int, optional) – Number of features for each atom

• n_distance (int, optional) – granularity of distance matrix

• n_hidden (int, optional) – Number of nodes in hidden layer

• init (str, optional) – Weight initialization for filters.

• activation (str, optional) – Activation function applied
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get_config()

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled
by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers
should make a copy of the returned dict if they want to modify it.

Returns
Python dictionary.

build(input_shape)
Creates the variables of the layer (for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-creation
step in-between layer instantiation and layer call. It is invoked automatically before the first execution of
call().

This is typically used to create the weights of Layer subclasses (at the discretion of the subclass imple-
menter).

Parameters
input_shape – Instance of TensorShape, or list of instances of TensorShape if the layer
expects a list of inputs (one instance per input).

call(inputs)
parent layers: atom_features, distance, distance_membership_i, distance_membership_j

class DTNNGather(*args, **kwargs)

__init__(n_embedding=30, n_outputs=100, layer_sizes=[100], output_activation=True,
init='glorot_uniform', activation='tanh', **kwargs)

Parameters
• n_embedding (int, optional) – Number of features for each atom

• n_outputs (int, optional) – Number of features for each molecule(output)

• layer_sizes (list of int, optional(default=[1000])) – Structure of hidden
layer(s)

• init (str, optional) – Weight initialization for filters.

• activation (str, optional) – Activation function applied

get_config()

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled
by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers
should make a copy of the returned dict if they want to modify it.

Returns
Python dictionary.
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build(input_shape)
Creates the variables of the layer (for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-creation
step in-between layer instantiation and layer call. It is invoked automatically before the first execution of
call().

This is typically used to create the weights of Layer subclasses (at the discretion of the subclass imple-
menter).

Parameters
input_shape – Instance of TensorShape, or list of instances of TensorShape if the layer
expects a list of inputs (one instance per input).

call(inputs)
parent layers: atom_features, atom_membership

class DAGLayer(*args, **kwargs)
DAG computation layer.

This layer generates a directed acyclic graph for each atom in a molecule. This layer is based on the algorithm
from the following paper:

Lusci, Alessandro, Gianluca Pollastri, and Pierre Baldi. “Deep architectures and deep learning in chemoin-
formatics: the prediction of aqueous solubility for drug-like molecules.” Journal of chemical information and
modeling 53.7 (2013): 1563-1575.

This layer performs a sort of inward sweep. Recall that for each atom, a DAG is generated that “points inward”
to that atom from the undirected molecule graph. Picture this as “picking up” the atom as the vertex and using
the natural tree structure that forms from gravity. The layer “sweeps inwards” from the leaf nodes of the DAG
upwards to the atom. This is batched so the transformation is done for each atom.

__init__(n_graph_feat=30, n_atom_feat=75, max_atoms=50, layer_sizes=[100], init='glorot_uniform',
activation='relu', dropout=None, batch_size=64, **kwargs)

Parameters
• n_graph_feat (int, optional) – Number of features for each node(and the whole

grah).

• n_atom_feat (int, optional) – Number of features listed per atom.

• max_atoms (int, optional) – Maximum number of atoms in molecules.

• layer_sizes (list of int, optional(default=[100])) – List of hidden layer
size(s): length of this list represents the number of hidden layers, and each element is
the width of corresponding hidden layer.

• init (str, optional) – Weight initialization for filters.

• activation (str, optional) – Activation function applied.

• dropout (float, optional) – Dropout probability in hidden layer(s).

• batch_size (int, optional) – number of molecules in a batch.

get_config()

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.
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The config of a layer does not include connectivity information, nor the layer class name. These are handled
by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers
should make a copy of the returned dict if they want to modify it.

Returns
Python dictionary.

build(input_shape)
“Construct internal trainable weights.

call(inputs, training=True)
parent layers: atom_features, parents, calculation_orders, calculation_masks, n_atoms

class DAGGather(*args, **kwargs)

__init__(n_graph_feat=30, n_outputs=30, max_atoms=50, layer_sizes=[100], init='glorot_uniform',
activation='relu', dropout=None, **kwargs)

DAG vector gathering layer

Parameters
• n_graph_feat (int, optional) – Number of features for each atom.

• n_outputs (int, optional) – Number of features for each molecule.

• max_atoms (int, optional) – Maximum number of atoms in molecules.

• layer_sizes (list of int, optional) – List of hidden layer size(s): length of this
list represents the number of hidden layers, and each element is the width of corresponding
hidden layer.

• init (str, optional) – Weight initialization for filters.

• activation (str, optional) – Activation function applied.

• dropout (float, optional) – Dropout probability in the hidden layer(s).

get_config()

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled
by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers
should make a copy of the returned dict if they want to modify it.

Returns
Python dictionary.

build(input_shape)
Creates the variables of the layer (for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-creation
step in-between layer instantiation and layer call. It is invoked automatically before the first execution of
call().

This is typically used to create the weights of Layer subclasses (at the discretion of the subclass imple-
menter).
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Parameters
input_shape – Instance of TensorShape, or list of instances of TensorShape if the layer
expects a list of inputs (one instance per input).

call(inputs, training=True)
parent layers: atom_features, membership

class MessagePassing(*args, **kwargs)
General class for MPNN default structures built according to https://arxiv.org/abs/1511.06391

__init__(T , message_fn='enn', update_fn='gru', n_hidden=100, **kwargs)

Parameters
• T (int) – Number of message passing steps

• message_fn (str, optional) – message function in the model

• update_fn (str, optional) – update function in the model

• n_hidden (int, optional) – number of hidden units in the passing phase

get_config()

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled
by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers
should make a copy of the returned dict if they want to modify it.

Returns
Python dictionary.

build(input_shape)
Creates the variables of the layer (for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-creation
step in-between layer instantiation and layer call. It is invoked automatically before the first execution of
call().

This is typically used to create the weights of Layer subclasses (at the discretion of the subclass imple-
menter).

Parameters
input_shape – Instance of TensorShape, or list of instances of TensorShape if the layer
expects a list of inputs (one instance per input).

call(inputs)
Perform T steps of message passing

class EdgeNetwork(*args, **kwargs)
Submodule for Message Passing

get_config()

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.
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The config of a layer does not include connectivity information, nor the layer class name. These are handled
by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers
should make a copy of the returned dict if they want to modify it.

Returns
Python dictionary.

build(input_shape)
Creates the variables of the layer (for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-creation
step in-between layer instantiation and layer call. It is invoked automatically before the first execution of
call().

This is typically used to create the weights of Layer subclasses (at the discretion of the subclass imple-
menter).

Parameters
input_shape – Instance of TensorShape, or list of instances of TensorShape if the layer
expects a list of inputs (one instance per input).

call(inputs)
This is where the layer’s logic lives.

The call() method may not create state (except in its first invocation, wrapping the creation of variables or
other resources in tf.init_scope()). It is recommended to create state, including tf.Variable instances and
nested Layer instances,

in __init__(), or in the build() method that is

called automatically before call() executes for the first time.

Parameters
• inputs – Input tensor, or dict/list/tuple of input tensors. The first positional inputs argu-

ment is subject to special rules: - inputs must be explicitly passed. A layer cannot have
zero

arguments, and inputs cannot be provided via the default value of a keyword argument.

– NumPy array or Python scalar values in inputs get cast as tensors.

– Keras mask metadata is only collected from inputs.

– Layers are built (build(input_shape) method) using shape info from inputs only.

– input_spec compatibility is only checked against inputs.

– Mixed precision input casting is only applied to inputs. If a layer has tensor arguments
in *args or **kwargs, their casting behavior in mixed precision should be handled man-
ually.

– The SavedModel input specification is generated using inputs only.

– Integration with various ecosystem packages like TFMOT, TFLite, TF.js, etc is only
supported for inputs and not for tensors in positional and keyword arguments.

• *args – Additional positional arguments. May contain tensors, although this is not rec-
ommended, for the reasons above.
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• **kwargs – Additional keyword arguments. May contain tensors, although this is not rec-
ommended, for the reasons above. The following optional keyword arguments are reserved:
- training: Boolean scalar tensor of Python boolean indicating

whether the call is meant for training or inference.

– mask: Boolean input mask. If the layer’s call() method takes a mask argument, its default
value will be set to the mask generated for inputs by the previous layer (if input did come
from a layer that generated a corresponding mask, i.e. if it came from a Keras layer with
masking support).

Returns
A tensor or list/tuple of tensors.

class GatedRecurrentUnit(*args, **kwargs)
Submodule for Message Passing

get_config()

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled
by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers
should make a copy of the returned dict if they want to modify it.

Returns
Python dictionary.

build(input_shape)
Creates the variables of the layer (for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-creation
step in-between layer instantiation and layer call. It is invoked automatically before the first execution of
call().

This is typically used to create the weights of Layer subclasses (at the discretion of the subclass imple-
menter).

Parameters
input_shape – Instance of TensorShape, or list of instances of TensorShape if the layer
expects a list of inputs (one instance per input).

call(inputs)
This is where the layer’s logic lives.

The call() method may not create state (except in its first invocation, wrapping the creation of variables or
other resources in tf.init_scope()). It is recommended to create state, including tf.Variable instances and
nested Layer instances,

in __init__(), or in the build() method that is

called automatically before call() executes for the first time.

Parameters
• inputs – Input tensor, or dict/list/tuple of input tensors. The first positional inputs argu-

ment is subject to special rules: - inputs must be explicitly passed. A layer cannot have
zero
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arguments, and inputs cannot be provided via the default value of a keyword argument.

– NumPy array or Python scalar values in inputs get cast as tensors.

– Keras mask metadata is only collected from inputs.

– Layers are built (build(input_shape) method) using shape info from inputs only.

– input_spec compatibility is only checked against inputs.

– Mixed precision input casting is only applied to inputs. If a layer has tensor arguments
in *args or **kwargs, their casting behavior in mixed precision should be handled man-
ually.

– The SavedModel input specification is generated using inputs only.

– Integration with various ecosystem packages like TFMOT, TFLite, TF.js, etc is only
supported for inputs and not for tensors in positional and keyword arguments.

• *args – Additional positional arguments. May contain tensors, although this is not rec-
ommended, for the reasons above.

• **kwargs – Additional keyword arguments. May contain tensors, although this is not rec-
ommended, for the reasons above. The following optional keyword arguments are reserved:
- training: Boolean scalar tensor of Python boolean indicating

whether the call is meant for training or inference.

– mask: Boolean input mask. If the layer’s call() method takes a mask argument, its default
value will be set to the mask generated for inputs by the previous layer (if input did come
from a layer that generated a corresponding mask, i.e. if it came from a Keras layer with
masking support).

Returns
A tensor or list/tuple of tensors.

class SetGather(*args, **kwargs)
set2set gather layer for graph-based model

Models using this layer must set pad_batches=True.

__init__(M, batch_size, n_hidden=100, init='orthogonal', **kwargs)

Parameters
• M (int) – Number of LSTM steps

• batch_size (int) – Number of samples in a batch(all batches must have same size)

• n_hidden (int, optional) – number of hidden units in the passing phase

get_config()

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled
by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers
should make a copy of the returned dict if they want to modify it.
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Returns
Python dictionary.

build(input_shape)
Creates the variables of the layer (for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-creation
step in-between layer instantiation and layer call. It is invoked automatically before the first execution of
call().

This is typically used to create the weights of Layer subclasses (at the discretion of the subclass imple-
menter).

Parameters
input_shape – Instance of TensorShape, or list of instances of TensorShape if the layer
expects a list of inputs (one instance per input).

call(inputs)
Perform M steps of set2set gather,

Detailed descriptions in: https://arxiv.org/abs/1511.06391

3.23.3 Torch Layers

class AtomicConv(n_tasks: int, frag1_num_atoms: int = 70, frag2_num_atoms: int = 634, complex_num_atoms:
int = 701, max_num_neighbors: int = 12, batch_size: int = 24, atom_types: Sequence[float] =
[6, 7.0, 8.0, 9.0, 11.0, 12.0, 15.0, 16.0, 17.0, 20.0, 25.0, 30.0, 35.0, 53.0, -1.0], radial:
Sequence[Sequence[float]] = [[1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0,
8.5, 9.0, 9.5, 10.0, 10.5, 11.0, 11.5, 12.0], [0.0, 4.0, 8.0], [0.4]], layer_sizes=[100],
weight_init_stddevs: float | Sequence[float] = 0.02, bias_init_consts: float | Sequence[float] =
1.0, dropouts: float | Sequence[float] = 0.5, activation_fns: Callable | str | Sequence[Callable
| str] = ['relu'], init: str = 'trunc_normal_', **kwargs)

Implements an Atomic Convolution Model.

The atomic convolutional networks function as a variant of graph convolutions. The difference is that the “graph”
here is the nearest neighbors graph in 3D space [1]. The AtomicConvModule leverages these connections in 3D
space to train models that learn to predict energetic states starting from the spatial geometry of the model.

References

Examples

>>> n_tasks = 1
>>> frag1_num_atoms = 70
>>> frag2_num_atoms = 634
>>> complex_num_atoms = 701
>>> max_num_neighbors = 12
>>> batch_size = 24
>>> atom_types = [
... 6, 7., 8., 9., 11., 12., 15., 16., 17., 20., 25., 30., 35., 53.,
... -1.
... ]
>>> radial = [[
... 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5,

(continues on next page)
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(continued from previous page)

... 8.0, 8.5, 9.0, 9.5, 10.0, 10.5, 11.0, 11.5, 12.0

... ], [0.0, 4.0, 8.0], [0.4]]
>>> layer_sizes = [32, 32, 16]
>>> acnn_model = AtomicConv(n_tasks=n_tasks,
... frag1_num_atoms=frag1_num_atoms,
... frag2_num_atoms=frag2_num_atoms,
... complex_num_atoms=complex_num_atoms,
... max_num_neighbors=max_num_neighbors,
... batch_size=batch_size,
... atom_types=atom_types,
... radial=radial,
... layer_sizes=layer_sizes)

__init__(n_tasks: int, frag1_num_atoms: int = 70, frag2_num_atoms: int = 634, complex_num_atoms: int
= 701, max_num_neighbors: int = 12, batch_size: int = 24, atom_types: Sequence[float] = [6, 7.0,
8.0, 9.0, 11.0, 12.0, 15.0, 16.0, 17.0, 20.0, 25.0, 30.0, 35.0, 53.0, -1.0], radial:
Sequence[Sequence[float]] = [[1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5,
9.0, 9.5, 10.0, 10.5, 11.0, 11.5, 12.0], [0.0, 4.0, 8.0], [0.4]], layer_sizes=[100],
weight_init_stddevs: float | Sequence[float] = 0.02, bias_init_consts: float | Sequence[float] = 1.0,
dropouts: float | Sequence[float] = 0.5, activation_fns: Callable | str | Sequence[Callable | str] =
['relu'], init: str = 'trunc_normal_', **kwargs)→ None

Parameters
• n_tasks (int) – number of tasks

• frag1_num_atoms (int) – Number of atoms in first fragment

• frag2_num_atoms (int) – Number of atoms in sec

• max_num_neighbors (int) – Maximum number of neighbors possible for an atom. Recall
neighbors are spatial neighbors.

• atom_types (list) – List of atoms recognized by model. Atoms are indicated by their
nuclear numbers.

• radial (list) – Radial parameters used in the atomic convolution transformation.

• layer_sizes (list) – the size of each dense layer in the network. The length of this list
determines the number of layers.

• weight_init_stddevs (list or float) – the standard deviation of the distribu-
tion to use for weight initialization of each layer. The length of this list should equal
len(layer_sizes). Alternatively, this may be a single value instead of a list, where the same
value is used for every layer.

• bias_init_consts (list or float) – the value to initialize the biases in each layer.
The length of this list should equal len(layer_sizes). Alternatively, this may be a single
value instead of a list, where the same value is used for every layer.

• dropouts (list or float) – the dropout probability to use for each layer. The length
of this list should equal len(layer_sizes). Alternatively, this may be a single value instead
of a list, where the same value is used for every layer.

• activation_fns (list or object) – the Tensorflow activation function to apply to
each layer. The length of this list should equal len(layer_sizes). Alternatively, this may be
a single value instead of a list, where the same value is used for every layer.
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forward(inputs: Tensor | Sequence[Tensor])

Parameters
inputs (torch.Tensor) – Input Tensor

Returns
Output for each label.

Return type
torch.Tensor

class MultilayerPerceptron(d_input: int, d_output: int, d_hidden: tuple | None = None, dropout: float = 0.0,
batch_norm: bool = False, batch_norm_momentum: float = 0.1, activation_fn:
Callable | str = 'relu', skip_connection: bool = False, weighted_skip: bool =
True)

A simple fully connected feed-forward network, otherwise known as a multilayer perceptron (MLP).

Examples

>>> model = MultilayerPerceptron(d_input=10, d_hidden=(2,3), d_output=2, dropout=0.
→˓0, activation_fn='relu')
>>> x = torch.ones(2, 10)
>>> out = model(x)
>>> print(out.shape)
torch.Size([2, 2])

__init__(d_input: int, d_output: int, d_hidden: tuple | None = None, dropout: float = 0.0, batch_norm: bool
= False, batch_norm_momentum: float = 0.1, activation_fn: Callable | str = 'relu',
skip_connection: bool = False, weighted_skip: bool = True)

Initialize the model.

Parameters
• d_input (int) – the dimension of the input layer

• d_output (int) – the dimension of the output layer

• d_hidden (tuple) – the dimensions of the hidden layers

• dropout (float) – the dropout probability

• batch_norm (bool) – whether to use batch normalization

• batch_norm_momentum (float) – the momentum for batch normalization

• activation_fn (str) – the activation function to use in the hidden layers

• skip_connection (bool) – whether to add a skip connection from the input to the output

• weighted_skip (bool) – whether to add a weighted skip connection from the input to the
output

build_layers()

Build the layers of the model, iterating through the hidden dimensions to produce a list of layers.

forward(x: Tensor)→ Tensor
Forward pass of the model.
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class CNNModule(n_tasks: int, n_features: int, dims: int, layer_filters: List[int] = [100], kernel_size: int |
Sequence[int] = 5, strides: int | Sequence[int] = 1, weight_init_stddevs: float | Sequence[float]
= 0.02, bias_init_consts: float | Sequence[float] = 1.0, dropouts: float | Sequence[float] = 0.5,
activation_fns: Callable | str | Sequence[Callable | str] = 'relu', pool_type: str = 'max', mode:
str = 'classification', n_classes: int = 2, uncertainty: bool = False, residual: bool = False,
padding: int | str = 'valid')

A 1, 2, or 3 dimensional convolutional network for either regression or classification. The network consists of
the following sequence of layers: - A configurable number of convolutional layers - A global pooling layer (either
max pool or average pool) - A final fully connected layer to compute the output It optionally can compose the
model from pre-activation residual blocks, as described in https://arxiv.org/abs/1603.05027, rather than a simple
stack of convolution layers. This often leads to easier training, especially when using a large number of layers.
Note that residual blocks can only be used when successive layers have the same output shape. Wherever the
output shape changes, a simple convolution layer will be used even if residual=True. .. rubric:: Examples

>>> model = CNNModule(n_tasks=5, n_features=8, dims=2, layer_filters=[3,8,8,16],␣
→˓kernel_size=3, n_classes = 7, mode='classification', uncertainty=False, padding=
→˓'same')
>>> x = torch.ones(2, 224, 224, 8)
>>> x = model(x)
>>> for tensor in x:
... print(tensor.shape)
torch.Size([2, 5, 7])
torch.Size([2, 5, 7])

__init__(n_tasks: int, n_features: int, dims: int, layer_filters: List[int] = [100], kernel_size: int |
Sequence[int] = 5, strides: int | Sequence[int] = 1, weight_init_stddevs: float | Sequence[float] =
0.02, bias_init_consts: float | Sequence[float] = 1.0, dropouts: float | Sequence[float] = 0.5,
activation_fns: Callable | str | Sequence[Callable | str] = 'relu', pool_type: str = 'max', mode: str
= 'classification', n_classes: int = 2, uncertainty: bool = False, residual: bool = False, padding:
int | str = 'valid')→ None

Create a CNN.

Parameters
• n_tasks (int) – number of tasks

• n_features (int) – number of features

• dims (int) – the number of dimensions to apply convolutions over (1, 2, or 3)

• layer_filters (list) – the number of output filters for each convolutional layer in the
network. The length of this list determines the number of layers.

• kernel_size (int, tuple, or list) – a list giving the shape of the convolutional
kernel for each layer. Each element may be either an int (use the same kernel width for
every dimension) or a tuple (the kernel width along each dimension). Alternatively this
may be a single int or tuple instead of a list, in which case the same kernel shape is used
for every layer.

• strides (int, tuple, or list) – a list giving the stride between applications of the
kernel for each layer. Each element may be either an int (use the same stride for every
dimension) or a tuple (the stride along each dimension). Alternatively this may be a single
int or tuple instead of a list, in which case the same stride is used for every layer.

• weight_init_stddevs (list or float) – the standard deviation of the distribu-
tion to use for weight initialization of each layer. The length of this list should equal
len(layer_filters)+1, where the final element corresponds to the dense layer. Alternatively
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this may be a single value instead of a list, in which case the same value is used for every
layer.

• bias_init_consts (list or float) – the value to initialize the biases in each layer to.
The length of this list should equal len(layer_filters)+1, where the final element corresponds
to the dense layer. Alternatively this may be a single value instead of a list, in which case
the same value is used for every layer.

• dropouts (list or float) – the dropout probability to use for each layer. The length
of this list should equal len(layer_filters). Alternatively this may be a single value instead
of a list, in which case the same value is used for every layer

• activation_fns (str or list) – the torch activation function to apply to each layer.
The length of this list should equal len(layer_filters). Alternatively this may be a single
value instead of a list, in which case the same value is used for every layer, ‘relu’ by default

• pool_type (str) – the type of pooling layer to use, either ‘max’ or ‘average’

• mode (str) – Either ‘classification’ or ‘regression’

• n_classes (int) – the number of classes to predict (only used in classification mode)

• uncertainty (bool) – if True, include extra outputs and loss terms to enable the uncer-
tainty in outputs to be predicted

• residual (bool) – if True, the model will be composed of pre-activation residual blocks
instead of a simple stack of convolutional layers.

• padding (str, int or tuple) – the padding to use for convolutional layers, either
‘valid’ or ‘same’

forward(inputs: Tensor | Sequence[Tensor])→ List[Any]

Parameters
x (torch.Tensor) – Input Tensor

Returns
Output as per use case : regression/classification

Return type
torch.Tensor

class ScaleNorm(scale: float, eps: float = 1e-05)
Apply Scale Normalization to input.

The ScaleNorm layer first computes the square root of the scale, then computes the matrix/vector norm of the
input tensor. The norm value is calculated as sqrt(scale) / matrix norm. Finally, the result is returned as in-
put_tensor * norm value.

This layer can be used instead of LayerNorm when a scaled version of the norm is required. Instead of performing
the scaling operation (scale / norm) in a lambda-like layer, we are defining it within this layer to make prototyping
more efficient.
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References

Examples

>>> from deepchem.models.torch_models.layers import ScaleNorm
>>> scale = 0.35
>>> layer = ScaleNorm(scale)
>>> input_tensor = torch.tensor([[1.269, 39.36], [0.00918, -9.12]])
>>> output_tensor = layer(input_tensor)

__init__(scale: float, eps: float = 1e-05)
Initialize a ScaleNorm layer.

Parameters
• scale (float) – Scale magnitude.

• eps (float) – Epsilon value. Default = 1e-5.

forward(x: Tensor)→ Tensor
Define the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks while
the latter silently ignores them.

class MATEncoderLayer(dist_kernel: str = 'softmax', lambda_attention: float = 0.33, lambda_distance: float =
0.33, h: int = 16, sa_hsize: int = 1024, sa_dropout_p: float = 0.0, output_bias: bool =
True, d_input: int = 1024, d_hidden: int = 1024, d_output: int = 1024, activation: str =
'leakyrelu', n_layers: int = 1, ff_dropout_p: float = 0.0, encoder_hsize: int = 1024,
encoder_dropout_p: float = 0.0)

Encoder layer for use in the Molecular Attention Transformer [1]_.

The MATEncoder layer primarily consists of a self-attention layer (MultiHeadedMATAttention) and a feed-
forward layer (PositionwiseFeedForward). This layer can be stacked multiple times to form an encoder.

References

Examples

>>> from rdkit import Chem
>>> import torch
>>> import deepchem
>>> from deepchem.models.torch_models.layers import MATEmbedding, MATEncoderLayer
>>> input_smile = "CC"
>>> feat = deepchem.feat.MATFeaturizer()
>>> out = feat.featurize(input_smile)
>>> node = torch.tensor(out[0].node_features).float().unsqueeze(0)
>>> adj = torch.tensor(out[0].adjacency_matrix).float().unsqueeze(0)
>>> dist = torch.tensor(out[0].distance_matrix).float().unsqueeze(0)
>>> mask = torch.sum(torch.abs(node), dim=-1) != 0

(continues on next page)
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(continued from previous page)

>>> layer = MATEncoderLayer()
>>> op = MATEmbedding()(node)
>>> output = layer(op, mask, adj, dist)

__init__(dist_kernel: str = 'softmax', lambda_attention: float = 0.33, lambda_distance: float = 0.33, h: int
= 16, sa_hsize: int = 1024, sa_dropout_p: float = 0.0, output_bias: bool = True, d_input: int =
1024, d_hidden: int = 1024, d_output: int = 1024, activation: str = 'leakyrelu', n_layers: int = 1,
ff_dropout_p: float = 0.0, encoder_hsize: int = 1024, encoder_dropout_p: float = 0.0)

Initialize a MATEncoder layer.

Parameters
• dist_kernel (str) – Kernel activation to be used. Can be either ‘softmax’ for softmax

or ‘exp’ for exponential, for the self-attention layer.

• lambda_attention (float) – Constant to be multiplied with the attention matrix in the
self-attention layer.

• lambda_distance (float) – Constant to be multiplied with the distance matrix in the
self-attention layer.

• h (int) – Number of attention heads for the self-attention layer.

• sa_hsize (int) – Size of dense layer in the self-attention layer.

• sa_dropout_p (float) – Dropout probability for the self-attention layer.

• output_bias (bool) – If True, dense layers will use bias vectors in the self-attention layer.

• d_input (int) – Size of input layer in the feed-forward layer.

• d_hidden (int) – Size of hidden layer in the feed-forward layer.

• d_output (int) – Size of output layer in the feed-forward layer.

• activation (str) – Activation function to be used in the feed-forward layer. Can choose
between ‘relu’ for ReLU, ‘leakyrelu’ for LeakyReLU, ‘prelu’ for PReLU, ‘tanh’ for TanH,
‘selu’ for SELU, ‘elu’ for ELU and ‘linear’ for linear activation.

• n_layers (int) – Number of layers in the feed-forward layer.

• dropout_p (float) – Dropout probability in the feeed-forward layer.

• encoder_hsize (int) – Size of Dense layer for the encoder itself.

• encoder_dropout_p (float) – Dropout probability for connections in the encoder layer.

forward(x: Tensor, mask: Tensor, adj_matrix: Tensor, distance_matrix: Tensor, sa_dropout_p: float = 0.0)
→ Tensor

Output computation for the MATEncoder layer.

In the MATEncoderLayer intialization, self.sublayer is defined as an nn.ModuleList of 2 layers. We will
be passing our computation through these layers sequentially. nn.ModuleList is subscriptable and thus we
can access it as self.sublayer[0], for example.

Parameters
• x (torch.Tensor) – Input tensor.

• mask (torch.Tensor) – Masks out padding values so that they are not taken into account
when computing the attention score.

• adj_matrix (torch.Tensor) – Adjacency matrix of a molecule.
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• distance_matrix (torch.Tensor) – Distance matrix of a molecule.

• sa_dropout_p (float) – Dropout probability for the self-attention layer (MultiHeaded-
MATAttention).

class MultiHeadedMATAttention(dist_kernel: str = 'softmax', lambda_attention: float = 0.33,
lambda_distance: float = 0.33, h: int = 16, hsize: int = 1024, dropout_p:
float = 0.0, output_bias: bool = True)

First constructs an attention layer tailored to the Molecular Attention Transformer [1]_ and then converts it into
Multi-Headed Attention.

In Multi-Headed attention the attention mechanism multiple times parallely through the multiple attention heads.
Thus, different subsequences of a given sequences can be processed differently. The query, key and value pa-
rameters are split multiple ways and each split is passed separately through a different attention head. .. rubric::
References

Examples

>>> from deepchem.models.torch_models.layers import MultiHeadedMATAttention,␣
→˓MATEmbedding
>>> import deepchem as dc
>>> import torch
>>> input_smile = "CC"
>>> feat = dc.feat.MATFeaturizer()
>>> input_smile = "CC"
>>> out = feat.featurize(input_smile)
>>> node = torch.tensor(out[0].node_features).float().unsqueeze(0)
>>> adj = torch.tensor(out[0].adjacency_matrix).float().unsqueeze(0)
>>> dist = torch.tensor(out[0].distance_matrix).float().unsqueeze(0)
>>> mask = torch.sum(torch.abs(node), dim=-1) != 0
>>> layer = MultiHeadedMATAttention(
... dist_kernel='softmax',
... lambda_attention=0.33,
... lambda_distance=0.33,
... h=16,
... hsize=1024,
... dropout_p=0.0)
>>> op = MATEmbedding()(node)
>>> output = layer(op, op, op, mask, adj, dist)

__init__(dist_kernel: str = 'softmax', lambda_attention: float = 0.33, lambda_distance: float = 0.33, h: int
= 16, hsize: int = 1024, dropout_p: float = 0.0, output_bias: bool = True)

Initialize a multi-headed attention layer. :param dist_kernel: Kernel activation to be used. Can be either
‘softmax’ for softmax or ‘exp’ for exponential. :type dist_kernel: str :param lambda_attention: Constant to
be multiplied with the attention matrix. :type lambda_attention: float :param lambda_distance: Constant to
be multiplied with the distance matrix. :type lambda_distance: float :param h: Number of attention heads.
:type h: int :param hsize: Size of dense layer. :type hsize: int :param dropout_p: Dropout probability. :type
dropout_p: float :param output_bias: If True, dense layers will use bias vectors. :type output_bias: bool

forward(query: Tensor, key: Tensor, value: Tensor, mask: Tensor, adj_matrix: Tensor, distance_matrix:
Tensor, dropout_p: float = 0.0, eps: float = 1e-06, inf: float = 1000000000000.0)→ Tensor

Output computation for the MultiHeadedAttention layer. :param query: Standard query parameter for
attention. :type query: torch.Tensor :param key: Standard key parameter for attention. :type key:
torch.Tensor :param value: Standard value parameter for attention. :type value: torch.Tensor :param
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mask: Masks out padding values so that they are not taken into account when computing the attention
score. :type mask: torch.Tensor :param adj_matrix: Adjacency matrix of the input molecule, returned
from dc.feat.MATFeaturizer() :type adj_matrix: torch.Tensor :param dist_matrix: Distance matrix of the
input molecule, returned from dc.feat.MATFeaturizer() :type dist_matrix: torch.Tensor :param dropout_p:
Dropout probability. :type dropout_p: float :param eps: Epsilon value :type eps: float :param inf: Value of
infinity to be used. :type inf: float

class SublayerConnection(size: int, dropout_p: float = 0.0)
SublayerConnection layer based on the paper Attention Is All You Need.

The SublayerConnection normalizes and adds dropout to output tensor of an arbitary layer. It further adds a
residual layer connection between the input of the arbitary layer and the dropout-adjusted layer output.

Examples

>>> from deepchem.models.torch_models.layers import SublayerConnection
>>> scale = 0.35
>>> layer = SublayerConnection(2, 0.)
>>> input_ar = torch.tensor([[1., 2.], [5., 6.]])
>>> output = layer(input_ar, input_ar)

__init__(size: int, dropout_p: float = 0.0)
Initialize a SublayerConnection Layer.

Parameters
• size (int) – Size of layer.

• dropout_p (float) – Dropout probability.

forward(x: Tensor, output: Tensor)→ Tensor
Output computation for the SublayerConnection layer.

Takes an input tensor x, then adds the dropout-adjusted sublayer output for normalized x to it. This is done
to add a residual connection followed by LayerNorm.

Parameters
• x (torch.Tensor) – Input tensor.

• output (torch.Tensor) – Layer whose normalized output will be added to x.

class PositionwiseFeedForward(d_input: int = 1024, d_hidden: int = 1024, d_output: int = 1024, activation:
str = 'leakyrelu', n_layers: int = 1, dropout_p: float = 0.0,
dropout_at_input_no_act: bool = False)

PositionwiseFeedForward is a layer used to define the position-wise feed-forward (FFN) algorithm for the Molec-
ular Attention Transformer [1]_
Each layer in the MAT encoder contains a fully connected feed-forward network which applies two linear trans-
formations and the given activation function. This is done in addition to the SublayerConnection module.

Note: This modified version of PositionwiseFeedForward class contains dropout_at_input_no_act
condition to facilitate its use in defining

the feed-forward (FFN) algorithm for the Directed Message Passing Neural Network (D-MPNN) [2]_
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References

Examples

>>> from deepchem.models.torch_models.layers import PositionwiseFeedForward
>>> feed_fwd_layer = PositionwiseFeedForward(d_input = 2, d_hidden = 2, d_output =␣
→˓2, activation = 'relu', n_layers = 1, dropout_p = 0.1)
>>> input_tensor = torch.tensor([[1., 2.], [5., 6.]])
>>> output_tensor = feed_fwd_layer(input_tensor)

__init__(d_input: int = 1024, d_hidden: int = 1024, d_output: int = 1024, activation: str = 'leakyrelu',
n_layers: int = 1, dropout_p: float = 0.0, dropout_at_input_no_act: bool = False)

Initialize a PositionwiseFeedForward layer.

Parameters
• d_input (int) – Size of input layer.

• d_hidden (int (same as d_input if d_output = 0)) – Size of hidden layer.

• d_output (int (same as d_input if d_output = 0)) – Size of output layer.

• activation (str) – Activation function to be used. Can choose between ‘relu’ for ReLU,
‘leakyrelu’ for LeakyReLU, ‘prelu’ for PReLU, ‘tanh’ for TanH, ‘selu’ for SELU, ‘elu’ for
ELU and ‘linear’ for linear activation.

• n_layers (int) – Number of layers.

• dropout_p (float) – Dropout probability.

• dropout_at_input_no_act (bool) – If true, dropout is applied on the input tensor. For
single layer, it is not passed to an activation function.

forward(x: Tensor)→ Tensor
Output Computation for the PositionwiseFeedForward layer.

Parameters
x (torch.Tensor) – Input tensor.

class MATEmbedding(d_input: int = 36, d_output: int = 1024, dropout_p: float = 0.0)
Embedding layer to create embedding for inputs.

In an embedding layer, input is taken and converted to a vector representation for each input. In the MATEm-
bedding layer, an input tensor is processed through a dropout-adjusted linear layer and the resultant vector is
returned.

References

Examples

>>> from deepchem.models.torch_models.layers import MATEmbedding
>>> layer = MATEmbedding(d_input = 3, d_output = 3, dropout_p = 0.2)
>>> input_tensor = torch.tensor([1., 2., 3.])
>>> output = layer(input_tensor)

__init__(d_input: int = 36, d_output: int = 1024, dropout_p: float = 0.0)
Initialize a MATEmbedding layer.
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Parameters
• d_input (int) – Size of input layer.

• d_output (int) – Size of output layer.

• dropout_p (float) – Dropout probability for layer.

forward(x: Tensor)→ Tensor
Computation for the MATEmbedding layer.

Parameters
x (torch.Tensor) – Input tensor to be converted into a vector.

class MATGenerator(hsize: int = 1024, aggregation_type: str = 'mean', d_output: int = 1, n_layers: int = 1,
dropout_p: float = 0.0, attn_hidden: int = 128, attn_out: int = 4)

MATGenerator defines the linear and softmax generator step for the Molecular Attention Transformer [1]_.

In the MATGenerator, a Generator is defined which performs the Linear + Softmax generation step. Depending
on the type of aggregation selected, the attention output layer performs different operations.

References

Examples

>>> from deepchem.models.torch_models.layers import MATGenerator
>>> layer = MATGenerator(hsize = 3, aggregation_type = 'mean', d_output = 1, n_
→˓layers = 1, dropout_p = 0.3, attn_hidden = 128, attn_out = 4)
>>> input_tensor = torch.tensor([1., 2., 3.])
>>> mask = torch.tensor([1., 1., 1.])
>>> output = layer(input_tensor, mask)

__init__(hsize: int = 1024, aggregation_type: str = 'mean', d_output: int = 1, n_layers: int = 1, dropout_p:
float = 0.0, attn_hidden: int = 128, attn_out: int = 4)

Initialize a MATGenerator.

Parameters
• hsize (int) – Size of input layer.

• aggregation_type (str) – Type of aggregation to be used. Can be ‘grover’, ‘mean’ or
‘contextual’.

• d_output (int) – Size of output layer.

• n_layers (int) – Number of layers in MATGenerator.

• dropout_p (float) – Dropout probability for layer.

• attn_hidden (int) – Size of hidden attention layer.

• attn_out (int) – Size of output attention layer.

forward(x: Tensor, mask: Tensor)→ Tensor
Computation for the MATGenerator layer.

Parameters
• x (torch.Tensor) – Input tensor.
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• mask (torch.Tensor) – Mask for padding so that padded values do not get included in
attention score calculation.

cosine_dist(x, y)
Computes the inner product (cosine similarity) between two tensors.

This assumes that the two input tensors contain rows of vectors where each column represents a different feature.
The output tensor will have elements that represent the inner product between pairs of normalized vectors in
the rows of x and y. The two tensors need to have the same number of columns, because one cannot take the
dot product between vectors of different lengths. For example, in sentence similarity and sentence classification
tasks, the number of columns is the embedding size. In these tasks, the rows of the input tensors would be
different test vectors or sentences. The input tensors themselves could be different batches. Using vectors or
tensors of all 0s should be avoided.

The vectors in the input tensors are first l2-normalized such that each vector

has length or magnitude of 1. The inner product (dot product) is then taken

between corresponding pairs of row vectors in the input tensors and returned.

Examples

The cosine similarity between two equivalent vectors will be 1. The cosine similarity between two equivalent
tensors (tensors where all the elements are the same) will be a tensor of 1s. In this scenario, if the input tensors
x and y are each of shape (n,p), where each element in x and y is the same, then the output tensor would be a
tensor of shape (n,n) with 1 in every entry.

>>> import numpy as np
>>> import tensorflow as tf
>>> import deepchem.models.layers as layers
>>> x = tf.ones((6, 4), dtype=tf.dtypes.float32, name=None)
>>> y_same = tf.ones((6, 4), dtype=tf.dtypes.float32, name=None)
>>> cos_sim_same = layers.cosine_dist(x,y_same)

x and y_same are the same tensor (equivalent at every element, in this case 1). As such, the pairwise inner product
of the rows in x and y will always be 1. The output tensor will be of shape (6,6).

>>> diff = cos_sim_same - tf.ones((6, 6), dtype=tf.dtypes.float32, name=None)
>>> np.allclose(0.0, tf.reduce_sum(diff).numpy(), atol=1e-05)
True
>>> cos_sim_same.shape
TensorShape([6, 6])

The cosine similarity between two orthogonal vectors will be 0 (by definition). If every row in x is orthogonal
to every row in y, then the output will be a tensor of 0s. In the following example, each row in the tensor x1 is
orthogonal to each row in x2 because they are halves of an identity matrix.

>>> identity_tensor = tf.eye(512, dtype=tf.dtypes.float32)
>>> x1 = identity_tensor[0:256,:]
>>> x2 = identity_tensor[256:512,:]
>>> cos_sim_orth = layers.cosine_dist(x1,x2)

Each row in x1 is orthogonal to each row in x2. As such, the pairwise inner product of the rows in x1`and `x2
will always be 0. Furthermore, because the shape of the input tensors are both of shape (256,512), the output
tensor will be of shape (256,256).
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>>> np.allclose(0.0, tf.reduce_sum(cos_sim_orth).numpy(), atol=1e-05)
True
>>> cos_sim_orth.shape
TensorShape([256, 256])

Parameters
• x (tf.Tensor) – Input Tensor of shape (n, p). The shape of this input tensor should be n

rows by p columns. Note that n need not equal m (the number of rows in y).

• y (tf.Tensor) – Input Tensor of shape (m, p) The shape of this input tensor should be m
rows by p columns. Note that m need not equal n (the number of rows in x).

Returns
Returns a tensor of shape (n, m), that is, n rows by m columns. Each i,j-th entry of this output
tensor is the inner product between the l2-normalized i-th row of the input tensor x and the the
l2-normalized j-th row of the output tensor y.

Return type
tf.Tensor

class GraphNetwork(n_node_features: int = 32, n_edge_features: int = 32, n_global_features: int = 32,
is_undirected: bool = True, residual_connection: bool = True)

Graph Networks

A Graph Network [1]_ takes a graph as input and returns an updated graph as output. The output graph has same
structure as input graph but it has updated node features, edge features and global state features.

Parameters
• n_node_features (int) – Number of features in a node

• n_edge_features (int) – Number of features in a edge

• n_global_features (int) – Number of global features

• is_undirected (bool, optional (default True)) – Directed or undirected graph

• residual_connection (bool, optional (default True)) – If True, the layer uses a
residual connection during training

Example

>>> import torch
>>> from deepchem.models.torch_models.layers import GraphNetwork as GN
>>> n_nodes, n_node_features = 5, 10
>>> n_edges, n_edge_features = 5, 2
>>> n_global_features = 4
>>> node_features = torch.randn(n_nodes, n_node_features)
>>> edge_features = torch.randn(n_edges, n_edge_features)
>>> edge_index = torch.tensor([[0, 1, 2, 3, 4], [1, 2, 3, 4, 0]]).long()
>>> global_features = torch.randn(1, n_global_features)
>>> gn = GN(n_node_features=n_node_features, n_edge_features=n_edge_features, n_
→˓global_features=n_global_features)
>>> node_features, edge_features, global_features = gn(node_features, edge_index,␣
→˓edge_features, global_features)
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References

__init__(n_node_features: int = 32, n_edge_features: int = 32, n_global_features: int = 32, is_undirected:
bool = True, residual_connection: bool = True)

Initialize internal Module state, shared by both nn.Module and ScriptModule.

forward(node_features: Tensor, edge_index: Tensor, edge_features: Tensor, global_features: Tensor, batch:
Tensor | None = None)→ Tuple[Tensor, Tensor, Tensor]

Output computation for a GraphNetwork

Parameters
• node_features (torch.Tensor) – Input node features of shape (|𝒱|, 𝐹𝑛)

• edge_index (torch.Tensor) – Edge indexes of shape (2, |ℰ|)

• edge_features (torch.Tensor) – Edge features of the graph, shape: (|ℰ|, 𝐹𝑒)

• global_features (torch.Tensor) – Global features of the graph, shape: (𝐹𝑔, 1)where,
|𝒱| and |ℰ| denotes the number of nodes and edges in the graph, 𝐹𝑛, 𝐹𝑒, 𝐹𝑔 denotes the
number of node features, edge features and global state features respectively.

• batch (torch.LongTensor (optional, default: None)) – A vector that maps
each node to its respective graph identifier. The attribute is used only when more than
one graph are batched together during a single forward pass.

class Affine(dim: int)
Class which performs the Affine transformation.

This transformation is based on the affinity of the base distribution with the target distribution. A geometric
transformation is applied where the parameters performs changes on the scale and shift of a function (inputs).

Normalizing Flow transformations must be bijective in order to compute the logarithm of jacobian’s determinant.
For this reason, transformations must perform a forward and inverse pass.

Example

>>> import deepchem as dc
>>> from deepchem.models.torch_models.layers import Affine
>>> import torch
>>> from torch.distributions import MultivariateNormal
>>> # initialize the transformation layer's parameters
>>> dim = 2
>>> samples = 96
>>> transforms = Affine(dim)
>>> # forward pass based on a given distribution
>>> distribution = MultivariateNormal(torch.zeros(dim), torch.eye(dim))
>>> input = distribution.sample(torch.Size((samples, dim)))
>>> len(transforms.forward(input))
2
>>> # inverse pass based on a distribution
>>> len(transforms.inverse(input))
2

__init__(dim: int)→ None
Create a Affine transform layer.
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Parameters
dim (int) – Value of the Nth dimension of the dataset.

forward(x: Sequence)→ Tuple[Tensor, Tensor]
Performs a transformation between two different distributions. This particular transformation represents
the following function: y = x * exp(a) + b, where a is scale parameter and b performs a shift. This class
also returns the logarithm of the jacobians determinant which is useful when invert a transformation and
compute the probability of the transformation.

Parameters
x (Sequence) – Tensor sample with the initial distribution data which will pass into the nor-
malizing flow algorithm.

Returns
• y (torch.Tensor) – Transformed tensor according to Affine layer with the shape of ‘x’.

• log_det_jacobian (torch.Tensor) – Tensor which represents the info about the deviation of
the initial and target distribution.

inverse(y: Sequence)→ Tuple[Tensor, Tensor]
Performs a transformation between two different distributions. This transformation represents the bacward
pass of the function mention before. Its mathematical representation is x = (y - b) / exp(a) , where “a” is
scale parameter and “b” performs a shift. This class also returns the logarithm of the jacobians determinant
which is useful when invert a transformation and compute the probability of the transformation.

Parameters
y (Sequence) – Tensor sample with transformed distribution data which will be used in the
normalizing algorithm inverse pass.

Returns
• x (torch.Tensor) – Transformed tensor according to Affine layer with the shape of ‘y’.

• inverse_log_det_jacobian (torch.Tensor) – Tensor which represents the information of the
deviation of the initial and target distribution.

class RealNVPLayer(mask: Tensor, hidden_size: int)
Real NVP Transformation Layer

This class class is a constructor transformation layer used on a NormalizingFLow model. The Real Non-
Preserving-Volumen (Real NVP) is a type of normalizing flow layer which gives advantages over this mainly
because an ease to compute the inverse pass [1]_, this is to learn a target distribution.

Example

>>> import torch
>>> import torch.nn as nn
>>> from torch.distributions import MultivariateNormal
>>> from deepchem.models.torch_models.layers import RealNVPLayer
>>> dim = 2
>>> samples = 96
>>> data = MultivariateNormal(torch.zeros(dim), torch.eye(dim))
>>> tensor = data.sample(torch.Size((samples, dim)))

>>> layers = 4
>>> hidden_size = 16

(continues on next page)
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(continued from previous page)

>>> masks = F.one_hot(torch.tensor([i % 2 for i in range(layers)])).float()
>>> layers = nn.ModuleList([RealNVPLayer(mask, hidden_size) for mask in masks])

>>> for layer in layers:
... _, inverse_log_det_jacobian = layer.inverse(tensor)
... inverse_log_det_jacobian = inverse_log_det_jacobian.detach().numpy()
>>> len(inverse_log_det_jacobian)
96

References

Distributions of Normalizing Flows. (2017). Retrieved from http://arxiv.org/abs/2110.15828

__init__(mask: Tensor, hidden_size: int)→ None

Parameters
• mask (torch.Tensor) – Tensor with zeros and ones and its size depende on the number

of layers and dimenssions the user request.

• hidden_size (int) – The size of the outputs and inputs used on the internal nodes of the
transformation layer.

forward(x: Sequence)→ Tuple[Tensor, Tensor]
Forward pass.

This particular transformation is represented by the following function: y = x + (1 - x) * exp( s(x)) + t(x),
where t and s needs an activation function. This class also returns the logarithm of the jacobians determinant
which is useful when invert a transformation and compute the probability of the transformation.

Parameters
x (Sequence) – Tensor sample with the initial distribution data which will pass into the nor-
malizing algorithm

Returns
• y (torch.Tensor) – Transformed tensor according to Real NVP layer with the shape of ‘x’.

• log_det_jacobian (torch.Tensor) – Tensor which represents the info about the deviation of
the initial and target distribution.

inverse(y: Sequence)→ Tuple[Tensor, Tensor]
Inverse pass

This class performs the inverse of the previous method (formward). Also, this metehod returns the logarithm
of the jacobians determinant which is useful to compute the learneable features of target distribution.

Parameters
y (Sequence) – Tensor sample with transformed distribution data which will be used in the
normalizing algorithm inverse pass.

Returns
• x (torch.Tensor) – Transformed tensor according to Real NVP layer with the shape of ‘y’.

• inverse_log_det_jacobian (torch.Tensor) – Tensor which represents the information of the
deviation of the initial and target distribution.
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class DMPNNEncoderLayer(use_default_fdim: bool = True, atom_fdim: int = 133, bond_fdim: int = 14,
d_hidden: int = 300, depth: int = 3, bias: bool = False, activation: str = 'relu',
dropout_p: float = 0.0, aggregation: str = 'mean', aggregation_norm: int | float =
100)

Encoder layer for use in the Directed Message Passing Neural Network (D-MPNN) [1]_.

The role of the DMPNNEncoderLayer class is to generate molecule encodings in following steps:

• Message passing phase

• Get new atom hidden states and readout phase

• Concatenate the global features

Let the diagram given below represent a molecule containing 5 atoms (nodes) and 4 bonds (edges):-

1 — 5
|
2 — 4
|
3

Let the bonds from atoms 1->2 (B[12]) and 2->1 (B[21]) be considered as 2 different bonds. Hence, by consid-
ering the same for all atoms, the total number of bonds = 8.

Let:

• atom features : a1, a2, a3, a4, a5

• hidden states of atoms : h1, h2, h3, h4, h5

• bond features bonds : b12, b21, b23, b32, b24, b42, b15, b51

• initial hidden states of bonds : (0)h12, (0)h21, (0)h23, (0)h32, (0)h24, (0)h42, (0)h15,
(0)h51

The hidden state of every bond is a function of the concatenated feature vector which contains concatenation of
the features of initial atom of the bond and bond features.
Example: (0)h21 = func1(concat(a2, b21))

Note: Here func1 is self.W_i

The Message passing phase
The goal of the message-passing phase is to generate hidden states of all the atoms in the molecule.

The hidden state of an atom is a function of concatenation of atom features and messages (at T depth).
A message is a sum of hidden states of bonds coming to the atom (at T depth).

Note: Depth refers to the number of iterations in the message passing phase (here, T iterations). After each
iteration, the hidden states of the bonds are updated.

Example: h1 = func3(concat(a1, m1))
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Note: Here func3 is self.W_o.

m1 refers to the message coming to the atom.

m1 = (T-1)h21 + (T-1)h51 (hidden state of bond 2->1 + hidden state of bond 5->1) (at T depth)

for, depth T = 2:

• the hidden states of the bonds @ 1st iteration will be => (0)h21, (0)h51

• the hidden states of the bonds @ 2nd iteration will be => (1)h21, (1)h51

The hidden states of the bonds in 1st iteration are already know. For hidden states of the bonds in 2nd iteration,
we follow the criterion that:

• hidden state of the bond is a function of initial hidden state of bond
and messages coming to that bond in that iteration
Example: (1)h21 = func2( (0)h21 , (1)m21 )

Note: Here func2 is self.W_h.

(1)m21 refers to the messages coming to that bond 2->1 in that 2nd iteration.

Messages coming to a bond in an iteration is a sum of hidden states of bonds (from previous iteration) coming
to this bond.

Example: (1)m21 = (0)h32 + (0)h42

2 <— 3
^
|
4

Computing the messages

B0 B1 B2 B3 B4 B5 B6 B7 ␣
→˓ B8
f_ini_atoms_bonds = [(0)h12, (0)h21, (0)h23, (0)h32, (0)h24, (0)h42, (0)h15, (0)h51,
→˓ h(-1)]

Note: h(-1) is an empty array of the same size as other hidden states of bond states.

B0 B1 B2 B3 B4 B5 B6 B7 B8
mapping = [ [-1,B7] [B3,B5] [B0,B5] [-1,-1] [B0,B3] [-1,-1] [B1,-1] [-1,-1] [-1,-
→˓1] ]

Later, the encoder will map the concatenated features from the f_ini_atoms_bonds to mapping in each itera-
tion upto Tth iteration.

Next the encoder will sum-up the concat features within same bond index.
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(1)m12 (1)m21 (1)m23 (1)m32 ␣
→˓ (1)m24 (1)m42 (1)m15 (1)m51 m(-1)
message = [ [h(-1) + (0)h51] [(0)h32 + (0)h42] [(0)h12 + (0)h42] [h(-1) + h(-1)]␣
→˓[(0)h12 + (0)h32] [h(-1) + h(-1)] [(0)h21 + h(-1)] [h(-1) + h(-1)] [h(-1) + h(-
→˓1)] ]

Hence, this is how encoder can get messages for message-passing steps.

Get new atom hidden states and readout phase
Hence now for h1:

h1 = func3(
concat(

a1,
[

func2( (0)h21 , (0)h32 + (0)h42 ) +
func2( (0)h51 , 0 )

]
)

)

Similarly, h2, h3, h4 and h5 are calculated.

Next, all atom hidden states are concatenated to make a feature vector of the molecule:

mol_encodings = [[h1, h2, h3, h4, h5]]

Concatenate the global features
Let, global_features = [[gf1, gf2, gf3]] This array contains molecule level features. In case of this
example, it contains 3 global features.

Hence after concatenation,

mol_encodings = [[h1, h2, h3, h4, h5, gf1, gf2, gf3]] (Final output of the encoder)

References

Examples

>>> from rdkit import Chem
>>> import torch
>>> import deepchem as dc
>>> input_smile = "CC"
>>> feat = dc.feat.DMPNNFeaturizer(features_generators=['morgan'])
>>> graph = feat.featurize(input_smile)
>>> from deepchem.models.torch_models.dmpnn import _MapperDMPNN
>>> mapper = _MapperDMPNN(graph[0])
>>> atom_features, f_ini_atoms_bonds, atom_to_incoming_bonds, mapping, global_
→˓features = mapper.values
>>> atom_features = torch.from_numpy(atom_features).float()
>>> f_ini_atoms_bonds = torch.from_numpy(f_ini_atoms_bonds).float()
>>> atom_to_incoming_bonds = torch.from_numpy(atom_to_incoming_bonds)
>>> mapping = torch.from_numpy(mapping)
>>> global_features = torch.from_numpy(global_features).float()

(continues on next page)
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(continued from previous page)

>>> molecules_unbatch_key = len(atom_features)
>>> layer = DMPNNEncoderLayer(d_hidden=2)
>>> output = layer(atom_features, f_ini_atoms_bonds, atom_to_incoming_bonds,␣
→˓mapping, global_features, molecules_unbatch_key)

__init__(use_default_fdim: bool = True, atom_fdim: int = 133, bond_fdim: int = 14, d_hidden: int = 300,
depth: int = 3, bias: bool = False, activation: str = 'relu', dropout_p: float = 0.0, aggregation: str
= 'mean', aggregation_norm: int | float = 100)

Initialize a DMPNNEncoderLayer layer.

Parameters
• use_default_fdim (bool) – If True, self.atom_fdim and self.bond_fdim are ini-

tialized using values from the GraphConvConstants class. If False, self.atom_fdim
and self.bond_fdim are initialized from the values provided.

• atom_fdim (int) – Dimension of atom feature vector.

• bond_fdim (int) – Dimension of bond feature vector.

• d_hidden (int) – Size of hidden layer in the encoder layer.

• depth (int) – No of message passing steps.

• bias (bool) – If True, dense layers will use bias vectors.

• activation (str) – Activation function to be used in the encoder layer. Can choose
between ‘relu’ for ReLU, ‘leakyrelu’ for LeakyReLU, ‘prelu’ for PReLU, ‘tanh’ for TanH,
‘selu’ for SELU, and ‘elu’ for ELU.

• dropout_p (float) – Dropout probability for the encoder layer.

• aggregation (str) – Aggregation type to be used in the encoder layer. Can choose be-
tween ‘mean’, ‘sum’, and ‘norm’.

• aggregation_norm (Union[int, float]) – Value required if aggregation type is
‘norm’.

forward(atom_features: Tensor, f_ini_atoms_bonds: Tensor, atom_to_incoming_bonds: Tensor, mapping:
Tensor, global_features: Tensor, molecules_unbatch_key: List)→ Tensor

Output computation for the DMPNNEncoderLayer.

Steps:

• Get original bond hidden states from concatenation of initial atom and bond features. (input)

• Get initial messages hidden states. (message)

• Execute message passing step for self.depth - 1 iterations.

• Get atom hidden states using atom features and message hidden states.

• Get molecule encodings.

• Concatenate global molecular features and molecule encodings.

Parameters
• atom_features (torch.Tensor) – Tensor containing atoms features.

• f_ini_atoms_bonds (torch.Tensor) – Tensor containing concatenated feature vector
which contains concatenation of initial atom and bond features.

508 Chapter 3. About Us



deepchem, Release 2.8.0

• atom_to_incoming_bonds (torch.Tensor) – Tensor containing mapping from atom
index to list of indicies of incoming bonds.

• mapping (torch.Tensor) – Tensor containing the mapping that maps bond index to ‘array
of indices of the bonds’ incoming at the initial atom of the bond (excluding the reverse
bonds).

• global_features (torch.Tensor) – Tensor containing molecule features.

• molecules_unbatch_key (List) – List containing number of atoms in various molecules
of a batch

Returns
output – Tensor containing the encodings of the molecules.

Return type
torch.Tensor

class InfoGraphEncoder(num_features, edge_features, embedding_dim)

The encoder for the InfoGraph model. It is a message passing graph convolutional network that produces encoded
representations for molecular graph inputs.

Parameters
• num_features (int) – Number of node features for each input

• edge_features (int) – Number of edge features for each input

• embedding_dim (int) – Dimension of the embedding

Example

>>> import numpy as np
>>> from deepchem.models.torch_models.infograph import InfoGraphEncoder
>>> from deepchem.feat.graph_data import GraphData
>>> encoder = InfoGraphEncoder(num_features=25, edge_features=10, embedding_dim=32)
>>> node_features = np.random.randn(10, 25)
>>> edge_index = np.array([[0, 1, 2], [1, 2, 3]])
>>> edge_features = np.random.randn(3, 10)
>>> graph_index = np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
>>> data = GraphData(node_features=node_features, edge_index=edge_index, edge_
→˓features=edge_features, graph_index=graph_index).numpy_to_torch()
>>> embedding, feature_map = encoder(data)
>>> print(embedding.shape)
torch.Size([1, 64])

__init__(num_features, edge_features, embedding_dim)

Initialize internal Module state, shared by both nn.Module and ScriptModule.

forward(data)
Encode input graphs into an embedding and feature map.

Parameters
data (Union[BatchGraphData, GraphData]) – Contains information about graphs.

Returns
• torch.Tensor – Encoded tensor of input data.
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• torch.Tensor – Feature map tensor of input data.

class GINEncoder(num_features: int, embedding_dim: int, num_gc_layers: int = 5)
Graph Information Network (GIN) encoder. This is a graph convolutional network that produces encoded rep-
resentations for molecular graph inputs.

Parameters
• num_features (int) – The number of node features

• embedding_dim (int) – The dimension of the output embedding

• num_gc_layers (int, optional (default 5)) – The number of graph convolutional
layers to use

Example

>>> import numpy as np
>>> from deepchem.models.torch_models.infograph import GINEncoder
>>> from deepchem.feat.graph_data import GraphData
>>> encoder = GINEncoder(num_features=25, embedding_dim=32)
>>> node_features = np.random.randn(10, 25)
>>> edge_index = np.array([[0, 1, 2], [1, 2, 3]])
>>> edge_features = np.random.randn(3, 10)
>>> graph_index = np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
>>> data = GraphData(node_features=node_features, edge_index=edge_index, edge_
→˓features=edge_features, graph_index=graph_index).numpy_to_torch()
>>> embedding, intermediate_embeddings = encoder(data)
>>> print(embedding.shape)
torch.Size([1, 30])

References

__init__(num_features: int, embedding_dim: int, num_gc_layers: int = 5)
Initialize internal Module state, shared by both nn.Module and ScriptModule.

forward(data)
Encodes the input graph data.

Parameters
data (BatchGraphData) – The batched input graph data.

Returns
A tuple containing the encoded representation and intermediate embeddings.

Return type
Tuple[torch.Tensor, torch.Tensor]

class SetGather(M: int, batch_size: int, n_hidden: int = 100, init='orthogonal', **kwargs)
set2set gather layer for graph-based model

Models using this layer must set pad_batches=True

Torch Equivalent of Keras SetGather layer

Parameters
• M (int) – Number of LSTM steps
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• batch_size (int) – Number of samples in a batch(all batches must have same size)

• n_hidden (int, optional) – number of hidden units in the passing phase

Examples

>>> import deepchem as dc
>>> import numpy as np
>>> from deepchem.models.torch_models import layers
>>> total_n_atoms = 4
>>> n_atom_feat = 4
>>> atom_feat = np.random.rand(total_n_atoms, n_atom_feat)
>>> atom_split = np.array([0, 0, 1, 1], dtype=np.int32)
>>> gather = layers.SetGather(2, 2, n_hidden=4)
>>> output_molecules = gather([atom_feat, atom_split])
>>> print(output_molecules.shape)
torch.Size([2, 8])

__init__(M: int, batch_size: int, n_hidden: int = 100, init='orthogonal', **kwargs)
Initialize internal Module state, shared by both nn.Module and ScriptModule.

forward(inputs: List)→ Tensor
Perform M steps of set2set gather,

Detailed descriptions in: https://arxiv.org/abs/1511.06391

Parameters
inputs (List) – This contains two elements. atom_features: np.ndarray atom_split:
np.ndarray

Returns
q_star – Final state of the model after all M steps.

Return type
torch.Tensor

class GNN(node_type_embedding, chirality_embedding, gconvs, batch_norms, dropout, jump_knowledge,
init_emb=False)

GNN module for the GNNModular model.

This module is responsible for the graph neural network layers in the GNNModular model.

Parameters
• node_type_embedding (torch.nn.Embedding) – Embedding layer for node types.

• chirality_embedding (torch.nn.Embedding) – Embedding layer for chirality tags.

• gconvs (torch.nn.ModuleList) – ModuleList of graph convolutional layers.

• batch_norms (torch.nn.ModuleList) – ModuleList of batch normalization layers.

• dropout (int) – Dropout probability.

• jump_knowledge (str) – The type of jump knowledge to use. [1] Must be one of “last”,
“sum”, “max”, “concat” or “none”. “last”: Use the node representation from the last GNN
layer. “concat”: Concatenate the node representations from all GNN layers. “max”: Take
the element-wise maximum of the node representations from all GNN layers. “sum”: Take
the element-wise sum of the node representations from all GNN layers.
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• init_emb (bool) – Whether to initialize the embedding layers with Xavier uniform initial-
ization.

References

Example

>>> from deepchem.models.torch_models.gnn import GNNModular
>>> from deepchem.feat.graph_data import BatchGraphData
>>> from deepchem.feat.molecule_featurizers import SNAPFeaturizer
>>> featurizer = SNAPFeaturizer()
>>> smiles = ["C1=CC=CC=C1", "C1=CC=CC=C1C=O", "C1=CC=CC=C1C(=O)O"]
>>> features = featurizer.featurize(smiles)
>>> modular = GNNModular(emb_dim = 8, task = "edge_pred")
>>> batched_graph = BatchGraphData(features).numpy_to_torch(device=modular.device)
>>> gnnmodel = modular.gnn
>>> print(gnnmodel(batched_graph)[0].shape)
torch.Size([23, 8])

__init__(node_type_embedding, chirality_embedding, gconvs, batch_norms, dropout, jump_knowledge,
init_emb=False)

Initialize internal Module state, shared by both nn.Module and ScriptModule.

forward(data: BatchGraphData)
Forward pass for the GNN module.

Parameters
data (BatchGraphData) – Batched graph data.

class GNNHead(pool, head, task, num_tasks, num_classes)
Prediction head module for the GNNModular model.

Parameters
• pool (Union[function,torch.nn.Module]) – Pooling function or nn.Module to use

• head (torch.nn.Module) – Prediction head to use

• task (str) – The type of task. Must be one of “regression”, “classification”.

• num_tasks (int) – Number of tasks.

• num_classes (int) – Number of classes for classification.

__init__(pool, head, task, num_tasks, num_classes)
Initialize internal Module state, shared by both nn.Module and ScriptModule.

forward(data)
Forward pass for the GNN head module.

Parameters
data (tuple) – A tuple containing the node representations and the input graph data.
node_representation is a torch.Tensor created after passing input through the GNN layers.
input_batch is the original input BatchGraphData.
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class LocalGlobalDiscriminator(hidden_dim)

This discriminator module is a linear layer without bias, used to measure the similarity between local node
representations (x) and global graph representations (summary).

The goal of the discriminator is to distinguish between positive and negative pairs of local and global represen-
tations.

Examples

>>> import torch
>>> from deepchem.models.torch_models.gnn import LocalGlobalDiscriminator
>>> discriminator = LocalGlobalDiscriminator(hidden_dim=64)
>>> x = torch.randn(32, 64) # Local node representations
>>> summary = torch.randn(32, 64) # Global graph representations
>>> similarity_scores = discriminator(x, summary)
>>> print(similarity_scores.shape)
torch.Size([32])

__init__(hidden_dim)

self.weight is a learnable weight matrix of shape (hidden_dim, hidden_dim).

nn.Parameters are tensors that require gradients and are optimized during the training process.

Parameters
hidden_dim (int) – The size of the hidden dimension for the weight matrix.

forward(x, summary)
Computes the product of summary and self.weight, and then calculates the element-wise product of x and the
resulting matrix h. It then sums over the hidden_dim dimension, resulting in a tensor of shape (batch_size,),
which represents the similarity scores between the local and global representations.

Parameters
• x (torch.Tensor) – Local node representations of shape (batch_size, hidden_dim).

• summary (torch.Tensor) – Global graph representations of shape (batch_size, hid-
den_dim).

Returns
A tensor of shape (batch_size,), representing the similarity scores between the local and global
representations.

Return type
torch.Tensor

class AtomEncoder(emb_dim, padding=False)
Encodes atom features into embeddings based on the Open Graph Benchmark feature set in conformer_featurizer.

Parameters
• emb_dim (int) – The dimension that the returned embedding will have.

• padding (bool, optional (default=False)) – If true then the last index will be used
for padding.
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Examples

>>> from deepchem.feat.molecule_featurizers.conformer_featurizer import full_atom_
→˓feature_dims
>>> atom_encoder = AtomEncoder(emb_dim=32)
>>> num_rows = 10
>>> atom_features = torch.stack([
... torch.randint(low=0, high=dim, size=(num_rows,))
... for dim in full_atom_feature_dims
... ], dim=1)
>>> atom_embeddings = atom_encoder(atom_features)

__init__(emb_dim, padding=False)
Initialize internal Module state, shared by both nn.Module and ScriptModule.

reset_parameters()

Reset the parameters of the atom embeddings.

This method resets the weights of the atom embeddings by initializing them with a uniform distribution
between -sqrt(3) and sqrt(3).

forward(x)
Compute the atom embeddings for the given atom features.

Parameters
x (torch.Tensor, shape (batch_size, num_atoms, num_features)) – The input
atom features tensor.

Returns
x_embedding – The computed atom embeddings.

Return type
torch.Tensor, shape (batch_size, num_atoms, emb_dim)

class BondEncoder(emb_dim, padding=False)
Encodes bond features into embeddings based on the Open Graph Benchmark feature set in conformer_featurizer.

Parameters
• emb_dim (int) – The dimension that the returned embedding will have.

• padding (bool, optional (default=False)) – If true then the last index will be used
for padding.

Examples

>>> from deepchem.feat.molecule_featurizers.conformer_featurizer import full_bond_
→˓feature_dims
>>> bond_encoder = BondEncoder(emb_dim=32)
>>> num_rows = 10
>>> bond_features = torch.stack([
... torch.randint(low=0, high=dim, size=(num_rows,))
... for dim in full_bond_feature_dims
... ], dim=1)
>>> bond_embeddings = bond_encoder(bond_features)
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__init__(emb_dim, padding=False)
Initialize internal Module state, shared by both nn.Module and ScriptModule.

forward(edge_attr)
Compute the bond embeddings for the given bond features.

Parameters
edge_attr (torch.Tensor, shape (batch_size, num_edges, num_features)) –
The input bond features tensor.

Returns
bond_embedding – The computed bond embeddings.

Return type
torch.Tensor, shape (batch_size, num_edges, emb_dim)

class PNALayer(in_dim: int, out_dim: int, in_dim_edges: int, aggregators: List[str], scalers: List[str],
activation: Callable | str = 'relu', dropout: float = 0.0, residual: bool = True,
pairwise_distances: bool = False, batch_norm: bool = True, batch_norm_momentum=0.1,
avg_d: Dict[str, float] = {'log': 1.0}, posttrans_layers: int = 2, pretrans_layers: int = 1)

Principal Neighbourhood Aggregation Layer (PNA) from [1].

Parameters
• in_dim (int) – Input dimension of the node features.

• out_dim (int) – Output dimension of the node features.

• in_dim_edges (int) – Input dimension of the edge features.

• aggregators (List[str]) – List of aggregator functions to use. Options are “mean”,
“sum”, “max”, “min”, “std”, “var”, “moment3”, “moment4”, “moment5”.

• scalers (List[str]) – List of scaler functions to use. Options are “identity”, “amplifica-
tion”, “attenuation”.

• activation (Union[Callable, str], optional, default="relu") – Activation
function to use.

• last_activation (Union[Callable, str], optional, default="none") – Last
activation function to use.

• dropout (float, optional, default=0.0) – Dropout rate.

• residual (bool, optional, default=True) – Whether to use residual connections.

• pairwise_distances (bool, optional, default=False) – Whether to use pairwise
distances.

• batch_norm (bool, optional, default=True) – Whether to use batch normalization.

• batch_norm_momentum (float, optional, default=0.1) – Momentum for the batch
normalization layers.

• avg_d (Dict[str, float], optional, default={"log": 1.0}) – Dictionary con-
taining the average degree of the graph.

• posttrans_layers (int, optional, default=2) – Number of post-transformation
layers.

• pretrans_layers (int, optional, default=1) – Number of pre-transformation lay-
ers.
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References

Examples

>>> import dgl
>>> import numpy as np
>>> import torch
>>> from deepchem.models.torch_models.pna_gnn import PNALayer
>>> in_dim = 32
>>> out_dim = 64
>>> in_dim_edges = 16
>>> aggregators = ["mean", "max"]
>>> scalers = ["identity", "amplification", "attenuation"]
>>> pna_layer = PNALayer(in_dim=in_dim,
... out_dim=out_dim,
... in_dim_edges=in_dim_edges,
... aggregators=aggregators,
... scalers=scalers)
>>> num_nodes = 10
>>> num_edges = 20
>>> node_features = torch.randn(num_nodes, in_dim)
>>> edge_features = torch.randn(num_edges, in_dim_edges)
>>> g = dgl.graph((np.random.randint(0, num_nodes, num_edges),
... np.random.randint(0, num_nodes, num_edges)))
>>> g.ndata['feat'] = node_features
>>> g.edata['feat'] = edge_features
>>> g.ndata['feat'] = pna_layer(g)

__init__(in_dim: int, out_dim: int, in_dim_edges: int, aggregators: List[str], scalers: List[str], activation:
Callable | str = 'relu', dropout: float = 0.0, residual: bool = True, pairwise_distances: bool =
False, batch_norm: bool = True, batch_norm_momentum=0.1, avg_d: Dict[str, float] = {'log':
1.0}, posttrans_layers: int = 2, pretrans_layers: int = 1)

Initialize internal Module state, shared by both nn.Module and ScriptModule.

forward(g)
Forward pass of the PNA layer.

Parameters
g (dgl.DGLGraph ) – Input graph

Returns
h – Node feature tensor

Return type
torch.Tensor

message_func(edges)→ Dict[str, Tensor]
The message function to generate messages along the edges.

Parameters
edges (dgl.EdgeBatch ) – Batch of edges.

Returns
Dictionary containing the edge features.

Return type
Dict[str, torch.Tensor]
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reduce_func(nodes)→ Dict[str, Tensor]
The reduce function to aggregate the messages. Apply the aggregators and scalers, and concatenate the
results.

Parameters
nodes (dgl.NodeBatch ) – Batch of nodes.

Returns
Dictionary containing the aggregated node features.

Return type
Dict[str, torch.Tensor]

pretrans_edges(edges)→ Dict[str, Tensor]
Return a mapping to the concatenation of the features from the source node, the destination node, and the
edge between them (if applicable).

Parameters
edges (dgl.EdgeBatch ) – Batch of edges.

Returns
Dictionary containing the concatenated features.

Return type
Dict[str, torch.Tensor]

class PNAGNN(hidden_dim, aggregators: List[str], scalers: List[str], residual: bool = True, pairwise_distances:
bool = False, activation: Callable | str = 'relu', batch_norm: bool = True,
batch_norm_momentum=0.1, propagation_depth: int = 5, dropout: float = 0.0, posttrans_layers:
int = 1, pretrans_layers: int = 1, **kwargs)

Principal Neighbourhood Aggregation Graph Neural Network [1]. This defines the message passing layers of
the PNA model.

Parameters
• hidden_dim (int) – Dimension of the hidden layers.

• aggregators (List[str]) – List of aggregator functions to use.

• scalers (List[str]) – List of scaler functions to use. Options are “identity”, “amplifica-
tion”, “attenuation”.

• residual (bool, optional, default=True) – Whether to use residual connections.

• pairwise_distances (bool, optional, default=False) – Whether to use pairwise
distances.

• activation (Union[Callable, str], optional, default="relu") – Activation
function to use.

• batch_norm (bool, optional, default=True) – Whether to use batch normalization
in the layers before the aggregator.

• batch_norm_momentum (float, optional, default=0.1) – Momentum for the batch
normalization layers.

• propagation_depth (int, optional, default=5) – Number of propagation layers.

• dropout (float, optional, default=0.0) – Dropout rate.

• posttrans_layers (int, optional, default=1) – Number of post-transformation
layers.
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• pretrans_layers (int, optional, default=1) – Number of pre-transformation lay-
ers.

References

Examples

>>> import numpy as np
>>> from deepchem.feat.molecule_featurizers.conformer_featurizer import␣
→˓RDKitConformerFeaturizer
>>> from deepchem.feat.graph_data import BatchGraphData
>>> from deepchem.models.torch_models.pna_gnn import PNAGNN
>>> featurizer = RDKitConformerFeaturizer()
>>> smiles = ['C1=CC=NC=C1', 'CC(=O)C', 'C']
>>> featurizer = RDKitConformerFeaturizer()
>>> data = featurizer.featurize(smiles)
>>> features = BatchGraphData(data)
>>> features = features.to_dgl_graph()
>>> model = PNAGNN(hidden_dim=16,
... aggregators=['mean', 'sum'],
... scalers=['identity'])
>>> output = model(features)

__init__(hidden_dim, aggregators: List[str], scalers: List[str], residual: bool = True, pairwise_distances:
bool = False, activation: Callable | str = 'relu', batch_norm: bool = True,
batch_norm_momentum=0.1, propagation_depth: int = 5, dropout: float = 0.0, posttrans_layers:
int = 1, pretrans_layers: int = 1, **kwargs)

Initialize internal Module state, shared by both nn.Module and ScriptModule.

forward(input_graph: DGLGraph)→ DGLGraph
Forward pass of the PNAGNN model.

Parameters
input_graph (dgl.DGLGraph ) – Input graph with node and edge features.

Returns
graph – Output graph with updated node features after applying the message passing layers.

Return type
dgl.DGLGraph

class PNA(hidden_dim: int, target_dim: int, task: str, aggregators: List[str] = ['mean'], scalers: List[str] =
['identity'], readout_aggregators: List[str] = ['mean'], readout_hidden_dim: int = 1, readout_layers:
int = 2, residual: bool = True, pairwise_distances: bool = False, activation: Callable | str = 'relu',
batch_norm: bool = True, batch_norm_momentum: float = 0.1, propagation_depth: int = 5, dropout:
float = 0.0, posttrans_layers: int = 1, pretrans_layers: int = 1, n_tasks: int = 1, n_classes: int = 2,
**kwargs)

Message passing neural network for graph representation learning [1]_.

Parameters
• hidden_dim (int) – Hidden dimension size.

• target_dim (int) – Dimensionality of the output, for example for binary classification
target_dim = 1.
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• aggregators (List[str]) – Type of message passing functions. Options are
‘mean’,’sum’,’max’,’min’,’std’,’var’,’moment3’,’moment4’,’moment5’.

• scalers (List[str]) – Type of normalization layers in the message passing network. Op-
tions are ‘identity’,’amplification’,’attenuation’.

• readout_aggregators (List[str]) – Type of aggregators in the readout network.

• readout_hidden_dim (int, default None) – The dimension of the hidden layer in the
readout network. If not provided, the readout has the same dimensionality of the final layer
of the PNA layer, which is the hidden dimension size.

• readout_layers (int, default 1) – The number of linear layers in the readout network.

• residual (bool, default True) – Whether to use residual connections.

• pairwise_distances (bool, default False) – Whether to use pairwise distances.

• activation (Union[Callable, str]) – Activation function to use.

• batch_norm (bool, default True) – Whether to use batch normalization in the layers
before the aggregator..

• batch_norm_momentum (float, default 0.1) – Momentum for the batch normaliza-
tion layers.

• propagation_depth (int, default) – Number of propagation layers.

• dropout (float, default 0.0) – Dropout probability in the message passing layers.

• posttrans_layers (int, default 1) – Number of post-transformation layers.

• pretrans_layers (int, default 1) – Number of pre-transformation layers.

References

Examples

>>> import numpy as np
>>> from deepchem.feat.graph_data import BatchGraphData
>>> from deepchem.models.torch_models.pna_gnn import PNA
>>> from deepchem.feat.molecule_featurizers.conformer_featurizer import␣
→˓RDKitConformerFeaturizer
>>> smiles = ["C1=CC=CN=C1", "C1CCC1"]
>>> featurizer = RDKitConformerFeaturizer()
>>> data = featurizer.featurize(smiles)
>>> features = BatchGraphData(data)
>>> features = features.to_dgl_graph()
>>> target_dim = 1
>>> model = PNA(hidden_dim=16, target_dim=target_dim, task='regression')
>>> output = model(features)
>>> print(output.shape)
torch.Size([1, 1])

__init__(hidden_dim: int, target_dim: int, task: str, aggregators: List[str] = ['mean'], scalers: List[str] =
['identity'], readout_aggregators: List[str] = ['mean'], readout_hidden_dim: int = 1,
readout_layers: int = 2, residual: bool = True, pairwise_distances: bool = False, activation:
Callable | str = 'relu', batch_norm: bool = True, batch_norm_momentum: float = 0.1,
propagation_depth: int = 5, dropout: float = 0.0, posttrans_layers: int = 1, pretrans_layers: int =
1, n_tasks: int = 1, n_classes: int = 2, **kwargs)

3.23. Layers 519



deepchem, Release 2.8.0

Initialize internal Module state, shared by both nn.Module and ScriptModule.

forward(graph: DGLGraph)
Define the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks while
the latter silently ignores them.

class Net3DLayer(edge_dim: int, hidden_dim: int, reduce_func: str = 'sum', batch_norm: bool = False,
batch_norm_momentum: float = 0.1, dropout: float = 0.0, message_net_layers: int = 2,
update_net_layers: int = 2)

Net3DLayer is a single layer of a 3D graph neural network based on the 3D Infomax architecture [1].

This class expects a DGL graph with node features stored under the name ‘feat’ and edge features stored under
the name ‘d’ (representing 3D distances). The edge features are updated by the message network and the node
features are updated by the update network.

Parameters
• edge_dim (int) – The dimension of the edge features.

• hidden_dim (int) – The dimension of the hidden layers.

• reduce_func (str) – The reduce function to use for aggregating messages. Can be either
‘sum’ or ‘mean’.

• batch_norm (bool, optional (default=False)) – Whether to use batch normaliza-
tion.

• batch_norm_momentum (float, optional (default=0.1)) – The momentum for the
batch normalization layers.

• dropout (float, optional (default=0.0)) – The dropout rate for the layers.

• mid_activation (str, optional (default='SiLU')) – The activation function to use
in the network.

• message_net_layers (int, optional (default=2)) – The number of message net-
work layers.

• update_net_layers (int, optional (default=2)) – The number of update network
layers.

References

Examples

>>> net3d_layer = Net3DLayer(edge_dim=3, hidden_dim=3)
>>> graph = dgl.graph(([0, 1], [1, 2]))
>>> graph.ndata['feat'] = torch.tensor([[1., 2., 3.], [4., 5., 6.], [7., 8., 9.]])
>>> graph.edata['d'] = torch.tensor([[0.5, 0.6, 0.7], [0.8, 0.9, 1.0]])
>>> output = net3d_layer(graph)
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__init__(edge_dim: int, hidden_dim: int, reduce_func: str = 'sum', batch_norm: bool = False,
batch_norm_momentum: float = 0.1, dropout: float = 0.0, message_net_layers: int = 2,
update_net_layers: int = 2)

Initialize internal Module state, shared by both nn.Module and ScriptModule.

forward(input_graph: DGLGraph)
Perform a forward pass on the given graph.

Parameters
input_graph (dgl.DGLGraph ) – The graph to perform the forward pass on.

Returns
The updated graph after the forward pass.

Return type
dgl.DGLGraph

message_function(edges)
Computes the message and edge weight for a given set of edges.

Parameters
edges (dgl.EdgeBatch ) – A dgl.EdgeBatch object containing the edges information (data,
batch size, etc.).

Returns
A dictionary containing the message multiplied by the edge weight.

Return type
dict

update_function(nodes)
Update function for updating node features based on the aggregated messages.

This function is used in the forward method to perform a forward pass on the graph.

Parameters
nodes (dgl.NodeBatch ) – A node batch object containing the nodes information (data,
batch size, etc.).

Returns
A dictionary containing the updated features.

Return type
dict

class Net3D(hidden_dim, target_dim, readout_aggregators: List[str], node_wise_output_layers=2,
batch_norm=True, batch_norm_momentum=0.1, reduce_func='sum', dropout=0.0,
propagation_depth: int = 4, readout_layers: int = 2, readout_hidden_dim=None,
fourier_encodings=4, update_net_layers=2, message_net_layers=2, use_node_features=False)

Net3D is a 3D graph neural network that expects a DGL graph input with 3D coordinates stored under the name
‘d’ and node features stored under the name ‘feat’. It is based on the 3D Infomax architecture [1].

Parameters
• hidden_dim (int) – The dimension of the hidden layers.

• target_dim (int) – The dimension of the output layer.

• readout_aggregators (List[str]) – A list of aggregator functions for the readout layer.
Options are ‘sum’, ‘max’, ‘min’, ‘mean’.

3.23. Layers 521



deepchem, Release 2.8.0

• batch_norm (bool, optional (default=False)) – Whether to use batch normaliza-
tion.

• node_wise_output_layers (int, optional (default=2)) – The number of output
layers for each node.

• readout_batchnorm (bool, optional (default=True)) – Whether to use batch nor-
malization in the readout layer.

• batch_norm_momentum (float, optional (default=0.1)) – The momentum for the
batch normalization layers.

• reduce_func (str, optional (default='sum')) – The reduce function to use for ag-
gregating messages.

• dropout (float, optional (default=0.0)) – The dropout rate for the layers.

• propagation_depth (int, optional (default=4)) – The number of propagation lay-
ers in the network.

• readout_layers (int, optional (default=2)) – The number of readout layers in the
network.

• readout_hidden_dim (int, optional (default=None)) – The dimension of the hid-
den layers in the readout network.

• fourier_encodings (int, optional (default=0)) – The number of Fourier encod-
ings to use.

• activation (str, optional (default='SiLU')) – The activation function to use in the
network.

• update_net_layers (int, optional (default=2)) – The number of update network
layers.

• message_net_layers (int, optional (default=2)) – The number of message net-
work layers.

• use_node_features (bool, optional (default=False)) – Whether to use node fea-
tures as input.

Examples

>>> from deepchem.feat.molecule_featurizers.conformer_featurizer import␣
→˓RDKitConformerFeaturizer
>>> from deepchem.models.torch_models.gnn3d import Net3D
>>> smiles = ["C[C@H](F)Cl", "C[C@@H](F)Cl"]
>>> featurizer = RDKitConformerFeaturizer()
>>> data = featurizer.featurize(smiles)
>>> dgldata = [graph.to_dgl_graph() for graph in data]
>>> net3d = Net3D(hidden_dim=3, target_dim=2, readout_aggregators=['sum', 'mean'])
>>> output = [net3d(graph) for graph in dgldata]
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References

__init__(hidden_dim, target_dim, readout_aggregators: List[str], node_wise_output_layers=2,
batch_norm=True, batch_norm_momentum=0.1, reduce_func='sum', dropout=0.0,
propagation_depth: int = 4, readout_layers: int = 2, readout_hidden_dim=None,
fourier_encodings=4, update_net_layers=2, message_net_layers=2, use_node_features=False)

Initialize internal Module state, shared by both nn.Module and ScriptModule.

forward(graph: DGLGraph)
Forward pass of the Net3D model.

Parameters
graph (dgl.DGLGraph ) – The input graph with node features stored under the key ‘x’ and
edge distances stored under the key ‘d’.

Returns
The graph representation tensor of shape (1, target_dim).

Return type
torch.Tensor

output_node_func(nodes)
Apply the node-wise output network to the node features.

Parameters
nodes (dgl.NodeBatch ) – A batch of nodes with features stored under the key ‘feat’.

Returns
A dictionary with the updated node features under the key ‘feat’.

Return type
dict

input_edge_func(edges)
Apply the edge input network to the edge features.

Parameters
edges (dgl.EdgeBatch ) – A batch of edges with distances stored under the key ‘d’.

Returns
A dictionary with the updated edge features under the key ‘d’.

Return type
dict

class DTNNEmbedding(n_embedding: int = 30, periodic_table_length: int = 30, initalizer: str =
'xavier_uniform_', **kwargs)

DTNNEmbedding layer for DTNN model.

Assign initial atomic descriptors. [1]_
This layer creates ‘n’ number of embeddings as initial atomic descriptors. According to the required weight
initializer and periodic_table_length (Total number of unique atoms).
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Examples

>>> from deepchem.models.torch_models import layers
>>> import torch
>>> layer = layers.DTNNEmbedding(30, 30, 'xavier_uniform_')
>>> output = layer(torch.tensor([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]))
>>> output.shape
torch.Size([10, 30])

__init__(n_embedding: int = 30, periodic_table_length: int = 30, initalizer: str = 'xavier_uniform_',
**kwargs)

Parameters
• n_embedding (int, optional) – Number of features for each atom

• periodic_table_length (int, optional) – Length of embedding, 83=Bi

• initalizer (str, optional) – Weight initialization for filters. Options:
{xavier_uniform_, xavier_normal_, kaiming_uniform_, kaiming_normal_,
trunc_normal_}

forward(inputs: Tensor)
Returns Embeddings according to indices.

Parameters
inputs (torch.Tensor) – Indices of Atoms whose embeddings are requested.

Returns
atom_embeddings – Embeddings of atoms accordings to indices.

Return type
torch.Tensor

class DTNNStep(n_embedding: int = 30, n_distance: int = 100, n_hidden: int = 60, initializer: str =
'xavier_uniform_', activation='tanh', **kwargs)

DTNNStep Layer for DTNN model.

Encodes the atom’s interaction with other atoms according to distance relationships. [1]_
This Layer implements the Eq (7) from DTNN Paper. Then sums them up to get the final output using Eq (6)
from DTNN Paper.

Eq (7): V_ij = tanh[W_fc . ((W_cf . C_j + b_cf) * (W_df . d_ij + b_df))]

Eq (6): C_i = C_i + sum(V_ij)

Here : ‘.’=Matrix Multiplication , ‘*’=Multiplication
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Examples

>>> from deepchem.models.torch_models import layers
>>> import torch
>>> embedding_layer = layers.DTNNEmbedding(4, 4)
>>> emb = embedding_layer(torch.Tensor([0,1,2,3]).to(torch.int64))
>>> step_layer = layers.DTNNStep(4, 6, 8)
>>> output_torch = step_layer([
... torch.Tensor(emb),
... torch.Tensor([0, 1, 2, 3, 4, 5]).to(torch.float32),
... torch.Tensor([1]).to(torch.int64),
... torch.Tensor([[1]]).to(torch.int64)
... ])
>>> output_torch.shape
torch.Size([2, 4, 4])

__init__(n_embedding: int = 30, n_distance: int = 100, n_hidden: int = 60, initializer: str =
'xavier_uniform_', activation='tanh', **kwargs)

Parameters
• n_embedding (int, optional) – Number of features for each atom

• n_distance (int, optional) – granularity of distance matrix

• n_hidden (int, optional) – Number of nodes in hidden layer

• initializer (str, optional) – Weight initialization for filters. Options:
{xavier_uniform_, xavier_normal_, kaiming_uniform_, kaiming_normal_,
trunc_normal_}

• activation (str, optional) – Activation function applied

forward(inputs)
Executes the equations and Returns the intraction vector of the atom with other atoms.

Parameters
inputs (torch.Tensor) – List of Tensors having atom_features, distance, dis-
tance_membership_i, distance_membership_j.

Returns
interaction_vector – interaction of the atom with other atoms based on distance and dis-
tance_membership.

Return type
torch.Tensor

class DTNNGather(n_embedding=30, n_outputs=100, layer_sizes=[100], output_activation=True,
initializer='xavier_uniform_', activation='tanh', **kwargs)

DTNNGather Layer for DTNN Model.

Predict Molecular Energy using atom_features and atom_membership. [1]_
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This Layer gathers the inputs got from the step layer according to atom_membership and calulates the total
Molecular Energy.

References

[1] Schütt, Kristof T., et al. “Quantum-chemical insights from deep
tensor neural networks.” Nature communications 8.1 (2017): 1-8.

Examples

>>> from deepchem.models.torch_models import layers as layers_torch
>>> import torch
>>> gather_layer_torch = layers_torch.DTNNGather(3, 3, [10])
>>> result = gather_layer_torch([torch.Tensor([[3, 2, 1]]).to(torch.float32), torch.
→˓Tensor([0]).to(torch.int64)])
>>> result.shape
torch.Size([1, 3])

__init__(n_embedding=30, n_outputs=100, layer_sizes=[100], output_activation=True,
initializer='xavier_uniform_', activation='tanh', **kwargs)

Parameters
• n_embedding (int, optional) – Number of features for each atom

• n_outputs (int, optional) – Number of features for each molecule(output)

• layer_sizes (list of int, optional(default=[100])) – Structure of hidden
layer(s)

• initializer (str, optional) – Weight initialization for filters.

• activation (str, optional) – Activation function applied

forward(inputs)
Executes the equation and Returns Molecular Energies according to atom_membership.

Parameters
inputs (torch.Tensor) – List of Tensor containing atom_features and atom_membership

Returns
molecular_energies – Tensor containing the Molecular Energies according to
atom_membership.

Return type
torch.Tensor

class GradientPenaltyLayer(gan: WGANModel, discriminator: Module, **kwargs)
Implements the gradient penalty loss term for WGANs.

This class implements the gradient penalty loss term for WGANs as described in Gulrajani et al., “Improved
Training of Wasserstein GANs” [1]_. It is used internally by WGANModel
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Examples

Importing necessary modules

>>> import deepchem
>>> from deepchem.models.torch_models.gan import WGANModel
>>> from deepchem.models.torch_models import GradientPenaltyLayer
>>> import torch
>>> import torch.nn as nn
>>> import torch.nn.functional as F

Creating a Generator

>>> class Generator(nn.Module):
... def __init__(self, noise_input_shape, conditional_input_shape):
... super(Generator, self).__init__()
... self.noise_input_shape = noise_input_shape
... self.conditional_input_shape = conditional_input_shape
... self.noise_dim = noise_input_shape[1:]
... self.conditional_dim = conditional_input_shape[1:]
... input_dim = sum(self.noise_dim) + sum(self.conditional_dim)
... self.output = nn.Linear(input_dim, 1)
... def forward(self, input):
... noise_input, conditional_input = input
... inputs = torch.cat((noise_input, conditional_input), dim=1)
... output = self.output(inputs)
... return output

Creating a Discriminator

>>> class Discriminator(nn.Module):
... def __init__(self, data_input_shape, conditional_input_shape):
... super(Discriminator, self).__init__()
... self.data_input_shape = data_input_shape
... self.conditional_input_shape = conditional_input_shape
... # Extracting the actual data dimension
... data_dim = data_input_shape[1:]
... # Extracting the actual conditional dimension
... conditional_dim = conditional_input_shape[1:]
... input_dim = sum(data_dim) + sum(conditional_dim)
... # Define the dense layers
... self.dense1 = nn.Linear(input_dim, 10)
... self.dense2 = nn.Linear(10, 1)
... def forward(self, input):
... data_input, conditional_input = input
... # Concatenate data_input and conditional_input along the second␣
→˓dimension
... discrim_in = torch.cat((data_input, conditional_input), dim=1)
... # Pass the concatenated input through the dense layers
... x = F.relu(self.dense1(discrim_in))
... output = self.dense2(x)
... return output

Creating an Example WGANModel class
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>>> class ExampleWGAN(WGANModel):
... def get_noise_input_shape(self):
... return (100,2,)
... def get_data_input_shapes(self):
... return [(100,1,)]
... def get_conditional_input_shapes(self):
... return [(100,1,)]
... def create_generator(self):
... noise_dim = self.get_noise_input_shape()
... conditional_dim = self.get_conditional_input_shapes()[0]
... return nn.Sequential(Generator(noise_dim, conditional_dim))
... def create_discriminator(self):
... data_input_shape = self.get_data_input_shapes()[0]
... conditional_input_shape = self.get_conditional_input_shapes()[0]
... return nn.Sequential(
... Discriminator(data_input_shape, conditional_input_shape))

Defining an Example GradientPenaltyLayer

>>> wgan = ExampleWGAN()
>>> discriminator = wgan.discriminators[0]
>>> gpl = GradientPenaltyLayer(wgan, discriminator)
>>> inputs = [torch.randn(4, 1)]
>>> conditional_inputs = [torch.randn(4, 1)]
>>> output, penalty = gpl(inputs, conditional_inputs)

References

__init__(gan: WGANModel, discriminator: Module, **kwargs)→ None
Construct a GradientPenaltyLayer.

Parameters
• gan (WGANModel) – the WGANModel that this layer is part of

• discriminator (nn.Module) – the discriminator to compute the gradient penalty for

forward(inputs: list | Tensor, conditional_inputs: Tensor)→ list
Compute the output of the gradient penalty layer.

Parameters
• inputs (list of Tensor) – the inputs to the discriminator.

• conditional_inputs (Tensor) – the conditional inputs to the discriminator.

Returns
output – the output from the discriminator, followed by the gradient penalty.

Return type
list [Tensor, Tensor]

class MolGANConvolutionLayer(units: int, nodes: int, activation=<built-in method tanh of type object>,
dropout_rate: float = 0.0, edges: int = 5, name: str = '', prev_shape: int = 0,
device: ~torch.device = device(type='cpu'))

Graph convolution layer used in MolGAN model. MolGAN is a WGAN type model for generation of small
molecules. Not used directly, higher level layers like MolGANMultiConvolutionLayer use it. This layer performs
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basic convolution on one-hot encoded matrices containing atom and bond information. This layer also accepts
three inputs for the case when convolution is performed more than once and results of previous convolution need
to used. It was done in such a way to avoid creating another layer that accepts three inputs rather than two. The
last input layer is so-called hidden_layer and it hold results of the convolution while first two are unchanged input
tensors.

Examples

See: MolGANMultiConvolutionLayer for using in layers.

>>> import torch
>>> import torch.nn as nn
>>> import torch.nn.functional as F
>>> vertices = 9
>>> nodes = 5
>>> edges = 5
>>> units = 128

>>> layer1 = MolGANConvolutionLayer(units=units, edges=edges, nodes=nodes, name=
→˓'layer1')
>>> adjacency_tensor = torch.randn((1, vertices, vertices, edges))
>>> node_tensor = torch.randn((1, vertices, nodes))
>>> output = layer1([adjacency_tensor, node_tensor])

References

__init__(units: int, nodes: int, activation=<built-in method tanh of type object>, dropout_rate: float = 0.0,
edges: int = 5, name: str = '', prev_shape: int = 0, device: ~torch.device = device(type='cpu'))

Initialize this layer.

Parameters
• units (int) – Dimesion of dense layers used for convolution

• nodes (int) – Number of features in node tensor

• activation (function, optional (default=Tanh)) – activation function used
across model, default is Tanh

• dropout_rate (float, optional (default=0.0)) – Dropout rate used by dropout
layer

• edges (int, optional (default=5)) – How many dense layers to use in convolution.
Typically equal to number of bond types used in the model.

• name (string, optional (default="")) – Name of the layer

• prev_shape (int, optional (default=0)) – Shape of the previous layer, used when
more than two inputs are passed

forward(inputs: List)→ Tuple[Tensor, Tensor, Tensor]
Invoke this layer

Parameters
inputs (list) – List of two input matrices, adjacency tensor and node features tensors in
one-hot encoding format.
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Returns
First and second are original input tensors Third is the result of convolution

Return type
tuple(torch.Tensor,torch.Tensor,torch.Tensor)

class MolGANAggregationLayer(units: int = 128, activation=<built-in method tanh of type object>,
dropout_rate: float = 0.0, name: str = '', prev_shape: int = 0, device:
~torch.device = device(type='cpu'))

Graph Aggregation layer used in MolGAN model. MolGAN is a WGAN type model for generation of small
molecules. Performs aggregation on tensor resulting from convolution layers. Given its simple nature it might
be removed in future and moved to MolGANEncoderLayer.

Examples

>>> import torch
>>> import torch.nn as nn
>>> import torch.nn.functional as F
>>> vertices = 9
>>> nodes = 5
>>> edges = 5
>>> units = 128

>>> layer_1 = MolGANConvolutionLayer(units=units,nodes=nodes,edges=edges, name=
→˓'layer1')
>>> layer_2 = MolGANAggregationLayer(units=128, name='layer2')
>>> adjacency_tensor = torch.randn((1, vertices, vertices, edges))
>>> node_tensor = torch.randn((1, vertices, nodes))
>>> hidden_1 = layer_1([adjacency_tensor, node_tensor])
>>> output = layer_2(hidden_1[2])

References

__init__(units: int = 128, activation=<built-in method tanh of type object>, dropout_rate: float = 0.0,
name: str = '', prev_shape: int = 0, device: ~torch.device = device(type='cpu'))

Initialize the layer

Parameters
• units (int, optional (default=128)) – Dimesion of dense layers used for aggrega-

tion

• activation (function, optional (default=Tanh)) – activation function used
across model, default is Tanh

• dropout_rate (float, optional (default=0.0)) – Used by dropout layer

• name (string, optional (default="")) – Name of the layer

• prev_shape (int, optional (default=0)) – Shape of the input tensor

forward(inputs: Tensor)→ Tensor
Invoke this layer

Parameters
inputs (List) – Single tensor resulting from graph convolution layer
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Returns
aggregation tensor – Result of aggregation function on input convolution tensor.

Return type
torch.Tensor

class MolGANMultiConvolutionLayer(units: ~typing.Tuple = (128, 64), nodes: int = 5, activation=<built-in
method tanh of type object>, dropout_rate: float = 0.0, edges: int = 5,
name: str = '', device: ~torch.device = device(type='cpu'), **kwargs)

Multiple pass convolution layer used in MolGAN model. MolGAN is a WGAN type model for generation of
small molecules. It takes outputs of previous convolution layer and uses them as inputs for the next one. It
simplifies the overall framework, but might be moved to MolGANEncoderLayer in the future in order to reduce
number of layers.

Example

>>> import torch
>>> import torch.nn as nn
>>> import torch.nn.functional as F
>>> vertices = 9
>>> nodes = 5
>>> edges = 5
>>> units = (128,64)

>>> layer_1 = MolGANMultiConvolutionLayer(units=units, nodes=nodes, edges=edges,␣
→˓name='layer1')
>>> adjacency_tensor = torch.randn((1, vertices, vertices, edges))
>>> node_tensor = torch.randn((1, vertices, nodes))
>>> output = layer_1([adjacency_tensor, node_tensor])

References

__init__(units: ~typing.Tuple = (128, 64), nodes: int = 5, activation=<built-in method tanh of type object>,
dropout_rate: float = 0.0, edges: int = 5, name: str = '', device: ~torch.device =
device(type='cpu'), **kwargs)

Initialize the layer

Parameters
• units (Tuple, optional (default=(128,64)), min_length=2) – ist of dimen-

sions used by consecutive convolution layers. The more values the more convolution layers
invoked.

• nodes (int, optional (default=5)) – Number of features in node tensor

• activation (function, optional (default=Tanh)) – activation function used
across model, default is Tanh

• dropout_rate (float, optional (default=0.0)) – Used by dropout layer

• edges (int, optional (default=5)) – Controls how many dense layers use for single
convolution unit. Typically matches number of bond types used in the molecule.

• name (string, optional (default="")) – Name of the layer
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forward(inputs: List)→ Tensor
Invoke this layer

Parameters
inputs (list) – List of two input matrices, adjacency tensor and node features tensors in
one-hot encoding format.

Returns
convolution tensor – Result of input tensors going through convolution a number of times.

Return type
torch.Tensor

class MolGANEncoderLayer(units: ~typing.List = [(128, 64), 128], activation: ~typing.Callable = <built-in
method tanh of type object>, dropout_rate: float = 0.0, edges: int = 5, nodes: int =
5, name: str = '', device: ~torch.device = device(type='cpu'), **kwargs)

Main learning layer used by MolGAN model. MolGAN is a WGAN type model for generation of small
molecules. It role is to further simplify model. This layer can be manually built by stacking graph convolu-
tion layers followed by graph aggregation.

Example

>>> import torch
>>> import torch.nn as nn
>>> import torch.nn.functional as F
>>> vertices = 9
>>> nodes = 5
>>> edges = 5
>>> dropout_rate = 0.0
>>> adjacency_tensor = torch.randn((1, vertices, vertices, edges))
>>> node_tensor = torch.randn((1, vertices, nodes))

>>> graph = MolGANEncoderLayer(units = [(128,64),128], dropout_rate= dropout_rate,␣
→˓edges=edges, nodes=nodes)([adjacency_tensor,node_tensor])
>>> dense = nn.Linear(128,128)(graph)
>>> dense = torch.tanh(dense)
>>> dense = nn.Dropout(dropout_rate)(dense)
>>> dense = nn.Linear(128,64)(dense)
>>> dense = torch.tanh(dense)
>>> dense = nn.Dropout(dropout_rate)(dense)
>>> output = nn.Linear(64,1)(dense)

References

__init__(units: ~typing.List = [(128, 64), 128], activation: ~typing.Callable = <built-in method tanh of type
object>, dropout_rate: float = 0.0, edges: int = 5, nodes: int = 5, name: str = '', device:
~torch.device = device(type='cpu'), **kwargs)

Initialize the layer

Parameters
• units (List, optional (default=[(128,64),128])) – List of dimensions used by

consecutive convolution layers. The more values the more convolution layers invoked.
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• activation (function, optional (default=Tanh)) – activation function used
across model, default is Tanh

• dropout_rate (float, optional (default=0.0)) – Used by dropout layer

• edges (int, optional (default=5)) – Controls how many dense layers use for single
convolution unit. Typically matches number of bond types used in the molecule.

• nodes (int, optional (default=5)) – Number of features in node tensor

• name (string, optional (default="")) – Name of the layer

forward(inputs: List)→ Tensor
Invoke this layer

Parameters
inputs (list) – List of two input matrices, adjacency tensor and node features tensors in
one-hot encoding format.

Returns
encoder tensor – Tensor that been through number of convolutions followed by aggregation.

Return type
tf.Tensor

class EdgeNetwork(n_pair_features: int = 8, n_hidden: int = 100, init: str = 'xavier_uniform_', **kwargs)
The EdgeNetwork module is a PyTorch submodule designed for message passing in graph neural networks.

Examples

>>> pair_features = torch.rand((4, 2), dtype=torch.float32)
>>> atom_features = torch.rand((5, 2), dtype=torch.float32)
>>> atom_to_pair = []
>>> n_atoms = 2
>>> start = 0
>>> C0, C1 = np.meshgrid(np.arange(n_atoms), np.arange(n_atoms))
>>> atom_to_pair.append(np.transpose(np.array([C1.flatten() + start, C0.flatten() +␣
→˓start])))
>>> atom_to_pair = torch.Tensor(atom_to_pair)
>>> atom_to_pair = torch.squeeze(atom_to_pair.to(torch.int64), dim=0)
>>> inputs = [pair_features, atom_features, atom_to_pair]
>>> n_pair_features = 2
>>> n_hidden = 2
>>> init = 'xavier_uniform_'
>>> layer = EdgeNetwork(n_pair_features, n_hidden, init)
>>> result = layer(inputs)
>>> result.shape[1]
2

__init__(n_pair_features: int = 8, n_hidden: int = 100, init: str = 'xavier_uniform_', **kwargs)
Initalises a EdgeNetwork Layer

Parameters
• n_pair_features (int, optional) – The length of the pair features vector.

• n_hidden (int, optional) – number of hidden units in the passing phase

• init (str, optional) – Initialization function to be used in the message passing layer.
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forward(inputs: List[Tensor])→ Tensor

Parameters
inputs (List[torch.Tensor]) – The length of atom_to_pair should be same as
n_pair_features.

Returns
result – Tensor containing the mapping of the edge vector to a d × d matrix, where d denotes
the dimension of the internal hidden representation of each node in the graph.

Return type
torch.Tensor

class WeaveLayer(n_atom_input_feat: int = 75, n_pair_input_feat: int = 14, n_atom_output_feat: int = 50,
n_pair_output_feat: int = 50, n_hidden_AA: int = 50, n_hidden_PA: int = 50, n_hidden_AP:
int = 50, n_hidden_PP: int = 50, update_pair: bool = True, init_: str = 'xavier_uniform_',
activation: str = 'relu', batch_normalize: bool = True, **kwargs)

This class implements the core Weave convolution from the Google graph convolution paper [1]_ This is the
Torch equivalent of the original implementation using Keras.

This model contains atom features and bond features separately.Here, bond features are also called pair features.
There are 2 types of transformation, atom->atom, atom->pair, pair->atom, pair->pair that this model implements.

Examples

This layer expects 4 inputs in a list of the form [atom_features, pair_features, pair_split, atom_to_pair]. We’ll
walk through the structure of these inputs. Let’s start with some basic definitions.

>>> import deepchem as dc
>>> import numpy as np

Suppose you have a batch of molecules

>>> smiles = ["CCC", "C"]

Note that there are 4 atoms in total in this system. This layer expects its input molecules to be batched together.

>>> total_n_atoms = 4

Let’s suppose that we have a featurizer that computes n_atom_feat features per atom.

>>> n_atom_feat = 75

Then conceptually, atom_feat is the array of shape (total_n_atoms, n_atom_feat) of atomic features. For sim-
plicity, let’s just go with a random such matrix.

>>> atom_feat = np.random.rand(total_n_atoms, n_atom_feat)

Let’s suppose we have n_pair_feat pairwise features

>>> n_pair_feat = 14

For each molecule, we compute a matrix of shape (n_atoms*n_atoms,n_pair_feat) of pairwise features for each
pair of atoms in the molecule. Let’s construct this conceptually for our example.
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>>> pair_feat = [np.random.rand(3*3, n_pair_feat), np.random.rand(1*1,n_pair_feat)]
>>> pair_feat = np.concatenate(pair_feat, axis=0)
>>> pair_feat.shape
(10, 14)

pair_split is an index into pair_feat which tells us which atom each row belongs to. In our case, we hve

>>> pair_split = np.array([0, 0, 0, 1, 1, 1, 2, 2, 2, 3])

That is, the first 9 entries belong to “CCC” and the last entry to “C”. The final entry atom_to_pair goes in a little
more in-depth than pair_split and tells us the precise pair each pair feature belongs to. In our case

>>> atom_to_pair = np.array([[0, 0],
... [0, 1],
... [0, 2],
... [1, 0],
... [1, 1],
... [1, 2],
... [2, 0],
... [2, 1],
... [2, 2],
... [3, 3]])

Let’s now define the actual layer

>>> layer = WeaveLayer()

And invoke it

>>> [A, P] = layer([atom_feat, pair_feat, pair_split, atom_to_pair])

The weave layer produces new atom/pair features. Let’s check their shapes

>>> A = A.detach().numpy()
>>> A.shape
(4, 50)
>>> P = P.detach().numpy()
>>> P.shape
(10, 50)

The 4 is total_num_atoms and the 10 is the total number of pairs. Where does 50 come from? It’s from the
default arguments n_atom_input_feat and n_pair_input_feat.

References

__init__(n_atom_input_feat: int = 75, n_pair_input_feat: int = 14, n_atom_output_feat: int = 50,
n_pair_output_feat: int = 50, n_hidden_AA: int = 50, n_hidden_PA: int = 50, n_hidden_AP: int =
50, n_hidden_PP: int = 50, update_pair: bool = True, init_: str = 'xavier_uniform_', activation:
str = 'relu', batch_normalize: bool = True, **kwargs)

Parameters
• n_atom_input_feat (int, optional (default 75)) – Number of features for each

atom in input.
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• n_pair_input_feat (int, optional (default 14)) – Number of features for each
pair of atoms in input.

• n_atom_output_feat (int, optional (default 50)) – Number of features for each
atom in output.

• n_pair_output_feat (int, optional (default 50)) – Number of features for each
pair of atoms in output.

• n_hidden_AA (int, optional (default 50)) – Number of units(convolution depths)
in corresponding hidden layer

• n_hidden_PA (int, optional (default 50)) – Number of units(convolution depths)
in corresponding hidden layer

• n_hidden_AP (int, optional (default 50)) – Number of units(convolution depths)
in corresponding hidden layer

• n_hidden_PP (int, optional (default 50)) – Number of units(convolution depths)
in corresponding hidden layer

• update_pair (bool, optional (default True)) – Whether to calculate for pair fea-
tures, could be turned off for last layer

• init (str, optional (default ‘xavier_uniform_’)) – Weight initialization for filters.

• activation (str, optional (default 'relu')) – Activation function applied

• batch_normalize (bool, optional (default True)) – If this is turned on, apply
batch normalization before applying activation functions on convolutional layers.

forward(inputs: List[ndarray])→ List[Tensor]
Creates weave tensors.

Parameters
inputs (List[Union[np.ndarray, np.ndarray, np.ndarray, np.ndarray]]) –
Should contain 4 tensors [atom_features, pair_features, pair_split, atom_to_pair]

Returns
A: Atom features tensor of shape (total_num_atoms,atom feature size)

P: Pair features tensor of shape (total num of pairs,bond feature size)

Return type
List[Union[torch.Tensor, torch.Tensor]]

class WeaveGather(batch_size: int, n_input: int = 128, gaussian_expand: bool = True,
compress_post_gaussian_expansion: bool = False, init_: str = 'xavier_uniform_', activation:
str = 'tanh', **kwargs)

Implements the weave-gathering section of weave convolutions. This is the Torch equivalent of the original
implementation using Keras.

Implements the gathering layer from [1]_. The weave gathering layer gathers per-atom features to create a
molecule-level fingerprint in a weave convolutional network. This layer can also performs Gaussian histogram
expansion as detailed in [1]_. Note that the gathering function here is simply addition as in [1]_>
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Examples

This layer expects 2 inputs in a list of the form [atom_features, pair_features]. We’ll walk through the structure
of these inputs. Let’s start with some basic definitions.

>>> import deepchem as dc
>>> import numpy as np

Suppose you have a batch of molecules

>>> smiles = ["CCC", "C"]

Note that there are 4 atoms in total in this system. This layer expects its input molecules to be batched together.

>>> total_n_atoms = 4

Let’s suppose that we have n_atom_feat features per atom.

>>> n_atom_feat = 75

Then conceptually, atom_feat is the array of shape (total_n_atoms, n_atom_feat) of atomic features. For sim-
plicity, let’s just go with a random such matrix.

>>> atom_feat = np.random.rand(total_n_atoms, n_atom_feat)

We then need to provide a mapping of indices to the atoms they belong to. In ours case this would be

>>> atom_split = np.array([0, 0, 0, 1])

Let’s now define the actual layer

>>> gather = WeaveGather(batch_size=2, n_input=n_atom_feat)
>>> output_molecules = gather([atom_feat, atom_split])
>>> len(output_molecules)
2

References

__init__(batch_size: int, n_input: int = 128, gaussian_expand: bool = True,
compress_post_gaussian_expansion: bool = False, init_: str = 'xavier_uniform_', activation: str =
'tanh', **kwargs)

Parameters
• batch_size (int) – number of molecules in a batch

• n_input (int, optional (default 128)) – number of features for each input
molecule

• gaussian_expand (boolean, optional (default True)) – Whether to expand
each dimension of atomic features by gaussian histogram

• compress_post_gaussian_expansion (bool, optional (default False)) – If
True, compress the results of the Gaussian expansion back to the original dimensions of the
input by using a linear layer with specified activation function. Note that this compression
was not in the original paper, but was present in the original DeepChem implementation
so is left present for backwards compatibility.
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• init (str, optional (default ‘xavier_uniform_’)) – Weight initialization for filters if com-
press_post_gaussian_expansion is True.

• activation (str, optional (default 'tanh')) – Activation function applied for fil-
ters if compress_post_gaussian_expansion is True.

forward(inputs: List[ndarray])→ Tensor
Creates weave tensors.

Parameters
inputs (List[Union[np.ndarray,np.ndarray]]) – Should contain 2 tensors
[atom_features, atom_split]

Returns
output_molecules – Each entry in this list is of shape (self.n_inputs,)

Return type
torch.Tensor

gaussian_histogram(x: Tensor)→ Tensor
Expands input into a set of gaussian histogram bins.

Parameters
x (torch.Tensor) – Of shape (N, n_feat)

Examples

This method uses 11 bins spanning portions of a Gaussian with zero mean and unit standard deviation.

>>> gaussian_memberships = [(-1.645, 0.283), (-1.080, 0.170),
... (-0.739, 0.134), (-0.468, 0.118),
... (-0.228, 0.114), (0., 0.114),
... (0.228, 0.114), (0.468, 0.118),
... (0.739, 0.134), (1.080, 0.170),
... (1.645, 0.283)]

We construct a Gaussian at gaussian_memberships[i][0] with standard deviation gaus-
sian_memberships[i][1]. Each feature in x is assigned the probability of falling in each Gaussian,
and probabilities are normalized across the 11 different Gaussians.

Returns
outputs – Of shape (N, 11*n_feat)

Return type
torch.Tensor

class MXMNetGlobalMessagePassing(dim: int, activation_fn: Callable | str = 'silu')
This class implements the Global Message Passing Layer from the Molecular Mechanics-Driven Graph Neural
Network with Multiplex Graph for Molecular Structures(MXMNet) paper [1]_.

This layer consists of two message passing steps and an update step between them.

Let:
• x_i : The node to be updated

• h_i : The hidden state of x_i

• x_j : The neighbour node connected to x_i by edge e_ij

• h_j : The hidden state of x_j
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• W : The edge weights

• m_ij : The message between x_i and x_j

• h_j (self_loop) : The set of hidden states of atom features

• mlp : MultilayerPerceptron

• res : ResidualBlock

In each message passing step

m_ij = mlp1([h_i || h_j || e_ij])*(e_ij W)

To handle self loops

m_ij = m_ij + h_j(self_loop)

In each update step

hm_j = res1(sum(m_ij))
h_j_new = mlp2(hm_j) + h_j
h_j_new = res2(h_j_new)
h_j_new = res3(h_j_new)

Message passing and message aggregation(sum) is handled by propagate().

References

Examples

The provided example demonstrates how to use the GlobalMessagePassing layer by creating an instance, passing
input tensors (node_features, edge_attributes, edge_indices) through it, and checking the shape of the output.

Initializes variables and creates a configuration dictionary with specific values.

>>> dim = 1
>>> node_features = torch.tensor([[0.8343], [1.2713], [1.2713], [1.2713], [1.2713]])
>>> edge_attributes = torch.tensor([[1.0004], [1.0004], [1.0005], [1.0004], [1.
→˓0004],[-0.2644], [-0.2644], [-0.2644], [1.0004],[-0.2644], [-0.2644], [-0.2644],␣
→˓[1.0005],[-0.2644], [-0.2644], [-0.2644], [1.0004],[-0.2644], [-0.2644], [-0.
→˓2644]])
>>> edge_indices = torch.tensor([[0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4,
→˓ 4, 4, 4],[1, 2, 3, 4, 0, 2, 3, 4, 0, 1, 3, 4, 0, 1, 2, 4, 0, 1, 2, 3]])
>>> out = MXMNetGlobalMessagePassing(dim)
>>> output = out(node_features, edge_attributes, edge_indices)
>>> output.shape
torch.Size([5, 1])

__init__(dim: int, activation_fn: Callable | str = 'silu')
Initializes the MXMNETGlobalMessagePassing layer.

Parameters
dim (int) – The dimension of the input and output features.

forward(node_features: Tensor, edge_attributes: Tensor, edge_indices: Tensor)→ Tensor
Performs the forward pass of the GlobalMessagePassing layer.
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Parameters
• node_features (torch.Tensor) – The input node features tensor of shape (num_nodes,

feature_dim).

• edge_attributes (torch.Tensor) – The input edge attribute tensor of shape
(num_edges, attribute_dim).

• edge_indices (torch.Tensor) – The input edge index tensor of shape (2, num_edges).

Returns
The updated node features tensor after message passing of shape (num_nodes, feature_dim).

Return type
torch.Tensor

message(x_i: Tensor, x_j: Tensor, edge_attr: Tensor)→ Tensor
Constructs messages to be passed along the edges in the graph.

Parameters
• x_i (torch.Tensor) – The source node features tensor of shape (num_edges+num_nodes,

feature_dim).

• x_j (torch.Tensor) – The target node features tensor of shape (num_edges+num_nodes,
feature_dim).

• edge_attributes (torch.Tensor) – The edge attribute tensor of shape (num_edges,
attribute_dim).

Returns
The constructed messages tensor.

Return type
torch.Tensor

class MXMNetBesselBasisLayer(num_radial: int, cutoff: float = 5.0, envelope_exponent: int = 5)
This layer implements a basis layer for the MXMNet model using Bessel functions. The basis layer is used to
model radial symmetry in molecular systems.

The output of the layer is given by: output = envelope(dist / cutoff) * (freq * dist / cutoff).sin()

Examples

>>> radial_layer = MXMNetBesselBasisLayer(num_radial=2, cutoff=2.0, envelope_
→˓exponent=2)
>>> distances = torch.tensor([0.5, 1.0, 2.0, 3.0])
>>> output = radial_layer(distances)
>>> output.shape
torch.Size([4, 2])

__init__(num_radial: int, cutoff: float = 5.0, envelope_exponent: int = 5)
Initialize the MXMNet Bessel Basis Layer.

Parameters
• num_radial (int) – The number of radial basis functions to use.

• cutoff (float, optional (default 5.0)) – The radial cutoff distance used to scale
the distances.
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• envelope_exponent (int, optional (default 5)) – The exponent of the envelope
function.

reset_parameters()

Reset and initialize the learnable parameters of the MXMNet Bessel Basis Layer.

The ‘freq’ tensor, representing the frequencies of the Bessel functions, is set up with initial values propor-
tional to (PI) and becomes a learnable parameter.

The ‘freq’ tensor will be updated during the training process to optimize the performance of the MXMNet
model for the specific task it is being trained on.

forward(dist: Tensor)→ Tensor
Compute the output of the MXMNet Bessel Basis Layer.

Parameters
dist (torch.Tensor) – The input tensor representing the pairwise distances between atoms.

Returns
output – The output tensor representing the radial basis functions applied to the input dis-
tances.

Return type
torch.Tensor

class DTNN(n_tasks: int, n_embedding: int = 30, n_hidden: int = 100, n_distance: int = 100, distance_min: float
= -1, distance_max: float = 18, output_activation: bool = True, mode: str = 'regression', dropout:
float = 0.0, n_steps: int = 2)

Deep Tensor Neural Networks

DTNN is based on the many-body Hamiltonian concept, which is a fundamental principle in quantum mechan-
ics. The DTNN recieves a molecule’s distance matrix and membership of its atom from its Coulomb Matrix
representation. Then, it iteratively refines the representation of each atom by considering its interactions with
neighboring atoms. Finally, it predicts the energy of the molecule by summing up the energies of the individual
atoms.

In this class, we establish a sequential model for the Deep Tensor Neural Network (DTNN) [1]_.

Examples

>>> import os
>>> import torch
>>> from deepchem.models.torch_models import DTNN
>>> from deepchem.data import SDFLoader
>>> from deepchem.feat import CoulombMatrix
>>> from deepchem.utils import batch_coulomb_matrix_features
>>> # Get Data
>>> model_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
>>> dataset_file = os.path.join(model_dir, 'tests/assets/qm9_mini.sdf')
>>> TASKS = ["alpha", "homo"]
>>> loader = SDFLoader(tasks=TASKS, featurizer=CoulombMatrix(29), sanitize=True)
>>> data = loader.create_dataset(dataset_file, shard_size=100)
>>> inputs = batch_coulomb_matrix_features(data.X)
>>> atom_number, distance, atom_membership, distance_membership_i, distance_
→˓membership_j = inputs
>>> inputs = [torch.tensor(atom_number).to(torch.int64),

(continues on next page)
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... torch.tensor(distance).to(torch.float32),

... torch.tensor(atom_membership).to(torch.int64),

... torch.tensor(distance_membership_i).to(torch.int64),

... torch.tensor(distance_membership_j).to(torch.int64)]
>>> n_tasks = data.y.shape[0]
>>> model = DTNN(n_tasks)
>>> pred = model(inputs)

References

__init__(n_tasks: int, n_embedding: int = 30, n_hidden: int = 100, n_distance: int = 100, distance_min:
float = -1, distance_max: float = 18, output_activation: bool = True, mode: str = 'regression',
dropout: float = 0.0, n_steps: int = 2)

Parameters
• n_tasks (int) – Number of tasks

• n_embedding (int (default 30)) – Number of features per atom.

• n_hidden (int (default 100)) – Number of features for each molecule after
DTNNStep

• n_distance (int (default 100)) – granularity of distance matrix step size will be
(distance_max-distance_min)/n_distance

• distance_min (float (default -1)) – minimum distance of atom pairs (in
Angstrom)

• distance_max (float (default 18)) – maximum distance of atom pairs (in
Angstrom)

• output_activation (bool (default True)) – determines whether an activation
function should be apply to its output.

• mode (str (default "regression")) – Only “regression” is currently supported.

• dropout (float (default 0.0)) – the dropout probablity to use.

• n_steps (int (default 2)) – Number of DTNNStep Layers to use.

forward(inputs: List[Tensor])

Parameters
inputs (List) – A list of tensors containing atom_number, distance, atom_membership,
distance_membership_i, and distance_membership_j.

Returns
output – Predictions of the Molecular Energy.

Return type
torch.Tensor

class VariationalRandomizer(embedding_dimension: int, annealing_start_step: int, annealing_final_step:
int, **kwargs)

Add random noise to the embedding and include a corresponding loss.
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This adds random noise to the encoder, and also adds a constraint term to the loss that forces the embedding
vector to have a unit Gaussian distribution. We can then pick random vectors from a Gaussian distribution, and
the output sequences should follow the same distribution as the training data.

We can use this layer with an AutoEncoder, which makes it a Variational AutoEncoder. The constraint term in
the loss is initially set to 0, so the optimizer just tries to minimize the reconstruction loss. Once it has made
reasonable progress toward that, the constraint term can be gradually turned back on. The range of steps over
which this happens is configured by modifying the annealing_start_step and annealing final_step parameter.

Examples

>>> from deepchem.models.torch_models.layers import VariationalRandomizer
>>> import torch
>>> embedding_dimension = 512
>>> batch_size = 100
>>> annealing_start_step = 1000
>>> annealing_final_step = 2000
>>> embedding_shape = (batch_size, embedding_dimension)
>>> embeddings = torch.rand(embedding_shape)
>>> global_step = torch.tensor([100])
>>> layer = VariationalRandomizer(embedding_dimension, annealing_start_step,␣
→˓annealing_final_step)
>>> output = layer([embeddings, global_step])
>>> output.shape
torch.Size([100, 512])

References

__init__(embedding_dimension: int, annealing_start_step: int, annealing_final_step: int, **kwargs)
Initialize the VariationalRandomizer layer.

Parameters
• embedding_dimension (int) – The dimension of the embedding.

• annealing_start_step (int) – the step (that is, batch) at which to begin turning on the
constraint term for KL cost annealing.

• annealing_final_step (int) – the step (that is, batch) at which to finish turning on the
constraint term for KL cost annealing.

forward(inputs: List[Tensor], training=True)
Returns the Variationally Randomized Embedding.

Parameters
• inputs (List[torch.Tensor]) – A list of two tensors, the first of which is the input to

the layer and the second of which is the global step.

• training (bool, optional (default True)) – Whether to use the layer in training
mode or inference mode.

Returns
embedding – The embedding tensor.

Return type
torch.Tensor
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add_loss(loss)
Add a loss term to the layer.

Parameters
loss (torch.Tensor) – The loss tensor to add to the layer.

class EncoderRNN(input_size: int, hidden_size: int, n_layers: int, dropout_p: float = 0.1, **kwargs)
Encoder Layer for SeqToSeq Model.

It takes input sequences and converts them into a fixed-size context vector called the “embedding”. This vector
contains all relevant information from the input sequence. This context vector is then used by the decoder to
generate the output sequence and can also be used as a representation of the input sequence for other Models.

Examples

>>> from deepchem.models.torch_models.layers import EncoderRNN
>>> import torch
>>> embedding_dimensions = 7
>>> num_input_token = 4
>>> n_layers = 9
>>> input = torch.tensor([[1, 0, 2, 3, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]])
>>> layer = EncoderRNN(num_input_token, embedding_dimensions, n_layers)
>>> emb, hidden = layer(input)
>>> emb.shape
torch.Size([3, 5, 7])

References

__init__(input_size: int, hidden_size: int, n_layers: int, dropout_p: float = 0.1, **kwargs)
Initialize the EncoderRNN layer.

Parameters
• input_size (int) – The number of expected features.

• hidden_size (int) – The number of features in the hidden state.

• dropout_p (float (default 0.1)) – The dropout probability to use during training.

forward(input: Tensor)
Returns Embeddings according to provided sequences.

Parameters
input (torch.Tensor) – Batch of input sequences.

Returns
• output (torch.Tensor) – Batch of Embeddings.

• hidden (torch.Tensor) – Batch of hidden states.

class DecoderRNN(hidden_size: int, output_size: int, n_layers: int, max_length: int, batch_size: int,
step_activation: str = 'relu', **kwargs)

Decoder Layer for SeqToSeq Model.

The decoder transforms the embedding vector into the output sequence. It is trained to predict the next token
in the sequence given the previous tokens in the sequence. It uses the context vector from the encoder to help
generate the correct token in the sequence.
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Examples

>>> from deepchem.models.torch_models.layers import DecoderRNN
>>> import torch
>>> embedding_dimensions = 512
>>> num_output_tokens = 7
>>> max_length = 10
>>> batch_size = 100
>>> n_layers = 2
>>> layer = DecoderRNN(embedding_dimensions, num_output_tokens, n_layers, max_
→˓length, batch_size)
>>> embeddings = torch.randn(batch_size, embedding_dimensions)
>>> output, hidden = layer([embeddings, None])
>>> output.shape
torch.Size([100, 10, 7])

References

__init__(hidden_size: int, output_size: int, n_layers: int, max_length: int, batch_size: int, step_activation:
str = 'relu', **kwargs)

Initialize the DecoderRNN layer.

Parameters
• hidden_size (int) – Number of features in the hidden state.

• output_size (int) – Number of expected features.

• max_length (int) – Maximum length of the sequence.

• batch_size (int) – Batch size of the input.

• step_activation (str (default "relu")) – Activation function to use after every
step.

forward(inputs: List[Tensor])

Parameters
inputs (List[torch.Tensor]) – A list of tensor containg encoder_hidden and tar-
get_tensor.

Returns
• decoder_outputs (torch.Tensor) – Predicted output sequences.

• decoder_hidden (torch.Tensor) – Hidden state of the decoder.

class SeqToSeq(n_input_tokens: int, n_output_tokens: int, max_output_length: int, encoder_layers: int = 4,
decoder_layers: int = 4, batch_size: int = 100, embedding_dimension: int = 512, dropout: float
= 0.0, variational: bool = False, annealing_start_step: int = 5000, annealing_final_step: int =
10000)

Implements sequence to sequence translation models.

The model is based on the description in Sutskever et al., “Sequence to Sequence Learning with Neural Networks”
(https://arxiv.org/abs/1409.3215), although this implementation uses GRUs instead of LSTMs. The goal is to
take sequences of tokens as input, and translate each one into a different output sequence. The input and output
sequences can both be of variable length, and an output sequence need not have the same length as the input
sequence it was generated from. For example, these models were originally developed for use in natural language
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processing. In that context, the input might be a sequence of English words, and the output might be a sequence
of French words. The goal would be to train the model to translate sentences from English to French.

The model consists of two parts called the “encoder” and “decoder”. Each one consists of a stack of recurrent
layers. The job of the encoder is to transform the input sequence into a single, fixed length vector called the “em-
bedding”. That vector contains all relevant information from the input sequence. The decoder then transforms
the embedding vector into the output sequence.

These models can be used for various purposes. First and most obviously, they can be used for sequence to
sequence translation. In any case where you have sequences of tokens, and you want to translate each one into a
different sequence, a SeqToSeq model can be trained to perform the translation.

Another possible use case is transforming variable length sequences into fixed length vectors. Many types of
models require their inputs to have a fixed shape, which makes it difficult to use them with variable sized inputs
(for example, when the input is a molecule, and different molecules have different numbers of atoms). In that
case, you can train a SeqToSeq model as an autoencoder, so that it tries to make the output sequence identical to
the input one. That forces the embedding vector to contain all information from the original sequence. You can
then use the encoder for transforming sequences into fixed length embedding vectors, suitable to use as inputs to
other types of models.

Another use case is to train the decoder for use as a generative model. Here again you begin by training the
SeqToSeq model as an autoencoder. Once training is complete, you can supply arbitrary embedding vectors,
and transform each one into an output sequence. When used in this way, you typically train it as a variational
autoencoder. This adds random noise to the encoder, and also adds a constraint term to the loss that forces
the embedding vector to have a unit Gaussian distribution. You can then pick random vectors from a Gaussian
distribution, and the output sequences should follow the same distribution as the training data.

When training as a variational autoencoder, it is best to use KL cost annealing, as described in https://arxiv.
org/abs/1511.06349. The constraint term in the loss is initially set to 0, so the optimizer just tries to minimize
the reconstruction loss. Once it has made reasonable progress toward that, the constraint term can be gradually
turned back on. The range of steps over which this happens is configurable.

In this class, we establish a sequential model for the Sequence to Sequence (SeqToSeq) [1]_.

Examples

>>> import torch
>>> from deepchem.models.torch_models.seqtoseq import SeqToSeq
>>> from deepchem.utils.batch_utils import create_input_array
>>> # Dataset of SMILES strings for testing SeqToSeq models.
>>> train_smiles = [
... 'Cc1cccc(N2CCN(C(=O)C34CC5CC(CC(C5)C3)C4)CC2)c1C',
... 'Cn1ccnc1SCC(=O)Nc1ccc(Oc2ccccc2)cc1',
... 'COc1cc2c(cc1NC(=O)CN1C(=O)NC3(CCc4ccccc43)C1=O)oc1ccccc12',
... 'CCCc1cc(=O)nc(SCC(=O)N(CC(C)C)C2CCS(=O)(=O)C2)[nH]1',
... ]
>>> tokens = set()
>>> for s in train_smiles:
... tokens = tokens.union(set(c for c in s))
>>> token_list = sorted(list(tokens))
>>> batch_size = len(train_smiles)
>>> MAX_LENGTH = max(len(s) for s in train_smiles)
>>> token_list = token_list + [" "]
>>> input_dict = dict((x, i) for i, x in enumerate(token_list))
>>> n_tokens = len(token_list)

(continues on next page)
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(continued from previous page)

>>> embedding_dimension = 16
>>> model = SeqToSeq(n_tokens, n_tokens, MAX_LENGTH, batch_size=batch_size,
... embedding_dimension=embedding_dimension)
>>> inputs = create_input_array(train_smiles, MAX_LENGTH, False, batch_size,
... input_dict, " ")
>>> output, embeddings = model([torch.tensor(inputs), torch.tensor([1])])
>>> output.shape
torch.Size([4, 57, 19])
>>> embeddings.shape
torch.Size([4, 16])

References

__init__(n_input_tokens: int, n_output_tokens: int, max_output_length: int, encoder_layers: int = 4,
decoder_layers: int = 4, batch_size: int = 100, embedding_dimension: int = 512, dropout: float =
0.0, variational: bool = False, annealing_start_step: int = 5000, annealing_final_step: int =
10000)

Initialize SeqToSeq model.

Parameters
• n_input_tokens (int) – Number of input tokens.

• n_output_tokens (int) – Number of output tokens.

• max_output_length (int) – Maximum length of output sequence.

• encoder_layers (int (default 4)) – Number of recurrent layers in the encoder

• decoder_layers (int (default 4)) – Number of recurrent layers in the decoder

• embedding_dimension (int (default 512)) – Width of the embedding vector. This
also is the width of all recurrent layers.

• dropout (float (default 0.0)) – Dropout probability to use during training.

• variational (bool (default False)) – If True, train the model as a variational au-
toencoder. This adds random noise to the encoder, and also constrains the embedding to
follow a unit Gaussian distribution.

• annealing_start_step (int (default 5000)) – the step (that is, batch) at which to
begin turning on the constraint term for KL cost annealing.

• annealing_final_step (int (default 10000)) – the tep (that is, batch) at which to
finish turning on the constraint term for KL cost annealing.

forward(inputs: List)
Generates Embeddings using Encoder then passes it to Decoder to predict output sequences.

Parameters
inputs (List) – List of two tensors. First tensor is batch of input sequence. Second tensor
is the current global_step.

Returns
• output (torch.Tensor) – Predicted output sequence.

• _embedding (torch.Tensor) – Embeddings generated by the Encoder.

3.23. Layers 547



deepchem, Release 2.8.0

class FerminetElectronFeature(n_one: List[int], n_two: List[int], no_of_atoms: int, batch_size: int,
total_electron: int, spin: List[int])

A Pytorch Module implementing the ferminet’s electron features interaction layer _[1]. This is a helper class for
the Ferminet model.

The layer consists of 2 types of linear layers - v for the one elctron features and w for the two electron features.
The number and dimensions of each layer depends on the number of atoms and electrons in the molecule system.

References

Examples

>>> import deepchem as dc
>>> electron_layer = dc.models.torch_models.layers.FerminetElectronFeature([32,32,
→˓32],[16,16,16], 4, 8, 10, [5,5])
>>> one_electron_test = torch.randn(8, 10, 4*4)
>>> two_electron_test = torch.randn(8, 10, 10, 4)
>>> one, two = electron_layer.forward(one_electron_test, two_electron_test)
>>> one.size()
torch.Size([8, 10, 32])
>>> two.size()
torch.Size([8, 10, 10, 16])

__init__(n_one: List[int], n_two: List[int], no_of_atoms: int, batch_size: int, total_electron: int, spin:
List[int])

Parameters
• n_one (List[int]) – List of integer values containing the dimensions of each n_one

layer’s output

• n_two (List[int]) – List of integer values containing the dimensions of each n_one
layer’s output

• no_of_atoms (int:) – Value containing the number of atoms in the molecule system

• batch_size (int) – Value containing the number of batches for the input provided

• total_electron (int) – Value containing the total number of electrons in the molecule
system

• spin (List[int]) – List data structure in the format of [number of up-spin electrons,
number of down-spin electrons]

• v (torch.nn.ModuleList) – torch ModuleList containing the linear layer with the n_one
layer’s dimension size.

• w (torch.nn.ModuleList) – torch ModuleList containing the linear layer with the n_two
layer’s dimension size.

• layer_size (int) – Value containing the number of n_one and n_two layers

forward(one_electron: Tensor, two_electron: Tensor)

Parameters
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• one_electron (torch.Tensor) – The one electron feature which has the shape
(batch_size, number of electrons, number of atoms * 4). Here the last dimension con-
tains the electron’s distance from each of the atom as a vector concatenated with norm of
that vector.

• two_electron (torch.Tensor) – The two electron feature which has the shape
(batch_size, number of electrons, number of electron , 4). Here the last dimension con-
tains the electron’s distance from the other electrons as a vector concatenated with norm of
that vector.

Returns
• one_electron (torch.Tensor) – The one electron feature after passing through the layer

which has the shape (batch_size, number of electrons, n_one shape).

• two_electron (torch.Tensor) – The two electron feature after passing through the layer
which has the shape (batch_size, number of electrons, number of electron , n_two shape).

class FerminetEnvelope(n_one: List[int], n_two: List[int], total_electron: int, batch_size: int, spin: List[int],
no_of_atoms: int, determinant: int)

A Pytorch Module implementing the ferminet’s envlope layer _[1], which is used to calculate the spin up and
spin down orbital values. This is a helper class for the Ferminet model. The layer consists of 4 types of parameter
lists - envelope_w, envelope_g, sigma and pi, which helps to calculate the orbital vlaues.

References

Examples

>>> import deepchem as dc
>>> import torch
>>> envelope_layer = dc.models.torch_models.layers.FerminetEnvelope([32, 32, 32],␣
→˓[16, 16, 16], 10, 8, [5, 5], 5, 16)
>>> one_electron = torch.randn(8, 10, 32)
>>> one_electron_permuted = torch.randn(8, 10, 5, 3)
>>> psi, psi_up, psi_down = envelope_layer.forward(one_electron, one_electron_
→˓permuted)
>>> psi.size()
torch.Size([8])
>>> psi_up.size()
torch.Size([8, 16, 5, 5])
>>> psi_down.size()
torch.Size([8, 16, 5, 5])

__init__(n_one: List[int], n_two: List[int], total_electron: int, batch_size: int, spin: List[int], no_of_atoms:
int, determinant: int)

Parameters
• n_one (List[int]) – List of integer values containing the dimensions of each n_one

layer’s output

• n_two (List[int]) – List of integer values containing the dimensions of each n_one
layer’s output

• total_electron (int) – Value containing the total number of electrons in the molecule
system
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• batch_size (int) – Value containing the number of batches for the input provided

• spin (List[int]) – List data structure in the format of [number of up-spin electrons,
number of down-spin electrons]

• no_of_atoms (int) – Value containing the number of atoms in the molecule system

• determinant (int) – The number of determinants to be incorporated in the post-HF so-
lution.

• envelope_w (torch.nn.ParameterList) – torch ParameterList containing the torch
Tensor with n_one layer’s dimension size.

• envelope_g (torch.nn.ParameterList) – torch ParameterList containing the torch
Tensor with the unit dimension size, which acts as bias.

• sigma (torch.nn.ParameterList) – torch ParameterList containing the torch Tensor
with the unit dimension size.

• pi (torch.nn.ParameterList) – torch ParameterList containing the linear layer with
the n_two layer’s dimension size.

• layer_size (int) – Value containing the number of n_one and n_two layers

forward(one_electron: Tensor, one_electron_vector_permuted: Tensor)

Parameters
• one_electron (torch.Tensor) – Torch tensor which is output from FerminElectron-

Feature layer in the shape of (batch_size, number of elctrons, n_one layer size).

• one_electron_vector_permuted (torch.Tensor) – Torch tensor which is shape per-
muted vector of the original one_electron vector tensor. shape of the tensor should be
(batch_size, number of atoms, number of electrons, 3).

Returns
psi_up – Torch tensor with a scalar value containing the sampled wavefunction value for each
batch.

Return type
torch.Tensor

class MXMNetLocalMessagePassing(dim: int, activation_fn: Callable | str = 'silu')
The MXMNetLocalMessagePassing class defines a local message passing layer used in the MXMNet model [1]_.
This layer integrates cross-layer mappings inside the local message passing, allowing for the transformation
of input tensors representing pairwise distances and angles between atoms in a molecular system. The layer
aggregates information using message passing and updates atom representations accordingly. The 3-step message
passing scheme is proposed in the paper [1]_.

1. Step 1 contains Message Passing 1 that captures the two-hop angles and related pairwise distances to update
edge-level embeddings {mji}.

2. Step 2 contains Message Passing 2 that captures the one-hop angles and related pairwise distances to further
update {mji}.

3. Step 3 finally aggregates {mji} to update the node-level embedding hi.

These steps in the t-th iteration can be formulated as follows:

Let:
• mlp : MultilayerPerceptron

• res : ResidualBlock
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• h : node_features

• m : message with radial basis function

• idx_kj: Tensor containing indices for the k and j atoms

• x_i : The node to be updated

• h_i : The hidden state of x_i

• x_j : The neighbour node connected to x_i by edge e_ij

• h_j : The hidden state of x_j

• rbf : Input tensor representing radial basis functions

• sbf : Input tensor representing the spherical basis functions

• idx_jj : Tensor containing indices for the j and j' where j' is other
neighbours of i

Step 1: Message Passing 1

m = [h[i] || h[j] || rbf]
m_kj = mlp_kj(m[idx_kj]) * (rbf*W) * mlp_sbf1(sbf1)
m_ji = mlp_ji_1(m) + reduce_sum(m_kj)

Step 2: Message Passing 2

m_ji = mlp_jj(m_ji[idx_jj]) * (rbf*W) * mlp_sbf2(sbf2)
m_ji = mlp_ji_2(m_ji) + reduce_sum(m_ji)

Step 3: Aggregation and Update

In each aggregation step

m = reduce_sum(m_ji*(rbf*W))

In each update step

hm_i = res1(m)
h_i_new = mlp2(hm_i) + h_i
h_i_new = res2(h_i_new)
h_i_new = res3(h_i_new)

References

Examples

>>> dim = 1
>>> h = torch.tensor([[0.8343], [1.2713], [1.2713], [1.2713], [1.2713]])
>>> rbf = torch.tensor([[-0.2628], [-0.2628], [-0.2628], [-0.2628],
... [-0.2629], [-0.2629], [-0.2628], [-0.2628]])
>>> sbf1 = torch.tensor([[-0.2767], [-0.2767], [-0.2767], [-0.2767],
... [-0.2767], [-0.2767], [-0.2767], [-0.2767],
... [-0.2767], [-0.2767], [-0.2767], [-0.2767]])
>>> sbf2 = torch.tensor([[-0.0301], [-0.0301], [-0.1483], [-0.1486], [-0.1484],
... [-0.0301], [-0.1483], [-0.0301], [-0.1485], [-0.1483],

(continues on next page)
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(continued from previous page)

... [-0.0301], [-0.1486], [-0.1485], [-0.0301], [-0.1486],

... [-0.0301], [-0.1484], [-0.1483], [-0.1486], [-0.0301]])
>>> idx_kj = torch.tensor([3, 5, 7, 1, 5, 7, 1, 3, 7, 1, 3, 5])
>>> idx_ji_1 = torch.tensor([0, 0, 0, 2, 2, 2, 4, 4, 4, 6, 6, 6])
>>> idx_jj = torch.tensor([0, 1, 3, 5, 7, 2, 1, 3, 5, 7, 4, 1, 3, 5, 7, 6, 1, 3, 5,␣
→˓7])
>>> idx_ji_2 = torch.tensor([0, 1, 1, 1, 1, 2, 3, 3, 3, 3, 4, 5, 5, 5, 5, 6, 7, 7,␣
→˓7, 7])
>>> edge_index = torch.tensor([[0, 1, 0, 2, 0, 3, 0, 4],
... [1, 0, 2, 0, 3, 0, 4, 0]])
>>> out = MXMNetLocalMessagePassing(dim, activation_fn='silu')
>>> output = out(h,
... rbf,
... sbf1,
... sbf2,
... idx_kj,
... idx_ji_1,
... idx_jj,
... idx_ji_2,
... edge_index)
>>> output[0].shape
torch.Size([5, 1])
>>> output[1].shape
torch.Size([5, 1])

__init__(dim: int, activation_fn: Callable | str = 'silu')
Initializes the MXMNetLocalMessagePassing layer.

Parameters
• dim (int) – The dimension of the input and output tensors for the local message passing

layer.

• activation_fn (Union[Callable, str], optional (default: 'silu')) – The
activation function to be used in the multilayer perceptrons (MLPs) within the layer.

forward(node_features: Tensor, rbf: Tensor, sbf1: Tensor, sbf2: Tensor, idx_kj: Tensor, idx_ji_1: Tensor,
idx_jj: Tensor, idx_ji_2: Tensor, edge_index: Tensor)→ Tuple[Tensor, Tensor]

The forward method performs the computation for the MXMNetLocalMessagePassing Layer. This method
processes the input tensors representing atom features, radial basis functions (RBF), and spherical basis
functions (SBF) using message passing over the molecular graph. The message passing updates the atom
representations, and the resulting tensor represents the updated atom feature after local message passing.

Parameters
• node_features (torch.Tensor) – Input tensor representing atom features.

• rbf (torch.Tensor) – Input tensor representing radial basis functions.

• sbf1 (torch.Tensor) – Input tensor representing the first set of spherical basis functions.

• sbf2 (torch.Tensor) – Input tensor representing the second set of spherical basis func-
tions.

• idx_kj (torch.Tensor) – Tensor containing indices for the k and j atoms involved in
each interaction.

552 Chapter 3. About Us



deepchem, Release 2.8.0

• idx_ji_1 (torch.Tensor) – Tensor containing indices for the j and i atoms involved in
the first message passing step.

• idx_jj (torch.Tensor) – Tensor containing indices for the j and j’ atoms involved in the
second message passing step.

• idx_ji_2 (torch.Tensor) – Tensor containing indices for the j and i atoms involved in
the second message passing step.

• edge_index (torch.Tensor) – Tensor containing the edge indices of the molecular
graph, with shape (2, M), where M is the number of edges.

Returns
• node_features (torch.Tensor) – Updated atom representations after local message passing.

• output (torch.Tensor) – Output tensor representing a fixed-size representation, with shape
(N, 1).

class MXMNetSphericalBasisLayer(num_spherical: int, num_radial: int, cutoff: float = 5.0,
envelope_exponent: int = 5)

It takes pairwise distances and angles between atoms as input and combines radial basis functions with spherical
harmonic functions to generate a fixed-size representation that captures both radial and orientation information.
This type of representation is commonly used in molecular modeling and simulations to capture the behavior of
atoms and molecules in chemical systems.

Inside the initialization, Bessel basis functions and real spherical harmonic functions are generated. The Bessel
basis functions capture the radial information, and the spherical harmonic functions capture the orientation in-
formation. These functions are generated based on the provided num_spherical and num_radial parameters.

Examples

>>> dist = torch.tensor([0.5, 1.0, 2.0, 3.0])
>>> angle = torch.tensor([0.1, 0.2, 0.3, 0.4])
>>> idx_kj = torch.tensor([0, 1, 2, 3])
>>> spherical_layer = MXMNetSphericalBasisLayer(envelope_exponent=2, num_
→˓spherical=2, num_radial=2, cutoff=2.0)
>>> output = spherical_layer(dist, angle, idx_kj)
>>> output.shape
torch.Size([4, 4])

__init__(num_spherical: int, num_radial: int, cutoff: float = 5.0, envelope_exponent: int = 5)
Initialize the MXMNetSphericalBasisLayer.

Parameters
• num_spherical (int) – The number of spherical harmonic functions to use. These func-

tions capture orientation information related to atom positions.

• num_radial (int) – The number of radial basis functions to use. These functions capture
information about pairwise distances between atoms.

• cutoff (float, optional (default 5.0)) – The cutoff distance for the radial basis
functions. It specifies the distance beyond which the interactions are ignored.

• envelope_exponent (int, optional (default 5)) – The exponent for the envelope
function. It controls the degree of damping for the radial basis functions.
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forward(dist: Tensor, angle: Tensor, idx_kj: Tensor)→ Tensor
Forward pass of the MXMNetSphericalBasisLayer.

Parameters
• dist (torch.Tensor) – Input tensor representing pairwise distances between atoms.

• angle (torch.Tensor) – Input tensor representing pairwise angles between atoms.

• idx_kj (torch.Tensor) – Tensor containing indices for the k and j atoms.

Returns
output – The output tensor containing the fixed-size representation.

Return type
torch.Tensor

class HighwayLayer(d_input: int, activation_fn: Callable | str = 'relu')
Highway layer from “Training Very Deep Networks” [1]

y = H(x) * T(x) + x * C(x), where

H(x): 1-layer neural network with non-linear activation T(x): 1-layer neural network with sigmoid activation
C(X): 1 - T(X); As per the original paper

The output will be of the same dimension as the input

References

Examples

>>> x = torch.randn(16, 20)
>>> highway_layer = HighwayLayer(d_input=x.shape[1])
>>> y = highway_layer(x)
>>> x.shape
torch.Size([16, 20])
>>> y.shape
torch.Size([16, 20])

__init__(d_input: int, activation_fn: Callable | str = 'relu')
Initializes the HighwayLayer.

Parameters
• d_input (int) – the dimension of the input layer

• activation_fn (str) – the activation function to use for H(x)

forward(x: Tensor)→ Tensor
Forward pass of the HighwayLayer.

Parameters
x (torch.Tensor) – Input tensor of dimension (,input_dim).

Returns
output – Output tensor of dimension (,input_dim)

Return type
torch.Tensor
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Grover Layers

The following layers are used for implementing GROVER model as described in the paper <Self-Supervised Graph
Transformer on Large-Scale Molecular Data <https://drug.ai.tencent.com/publications/GROVER.pdf>_

class GroverMPNEncoder(atom_messages: bool, init_message_dim: int, hidden_size: int, depth: int, undirected:
bool, attach_feats: bool, attached_feat_fdim: int = 0, bias: bool = True, dropout: float
= 0.2, activation: str = 'relu', input_layer: str = 'fc', dynamic_depth: str = 'none')

Performs Message Passing to generate encodings for the molecule.

Parameters
• atom_messages (bool) – True if encoding atom-messages else False.

• init_message_dim (int) – Dimension of embedding message.

• attach_feats (bool) – Set to True if additional features are passed along with node/edge
embeddings.

• attached_feat_fdim (int) – Dimension of additional features when attach_feats is True

• undirected (bool) – If set to True, the graph is considered as an undirected graph.

• depth (int) – number of hops in a message passing iteration

• dynamic_depth (str, default: none) – If set to uniform for randomly sampling dy-
namic depth from an uniform distribution else if set to truncnorm, dynamic depth is sampled
from a truncated normal distribution.

• input_layer (str) – If set to fc, adds an initial feed-forward layer. If set to none, does not
add an initial feed forward layer.

__init__(atom_messages: bool, init_message_dim: int, hidden_size: int, depth: int, undirected: bool,
attach_feats: bool, attached_feat_fdim: int = 0, bias: bool = True, dropout: float = 0.2, activation:
str = 'relu', input_layer: str = 'fc', dynamic_depth: str = 'none')

Initialize internal Module state, shared by both nn.Module and ScriptModule.

forward(init_messages, init_attached_features, a2nei, a2attached, b2a=None, b2revb=None, adjs=None)→
FloatTensor

Define the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks while
the latter silently ignores them.

class GroverAttentionHead(hidden_size: int = 128, bias: bool = True, depth: int = 1, dropout: float = 0.0,
undirected: bool = False, atom_messages: bool = False)

Generates attention head using GroverMPNEncoder for generating query, key and value

Parameters
• hidden_size (int) – Dimension of hidden layer

• undirected (bool) – If set to True, the graph is considered as an undirected graph.

• depth (int) – number of hops in a message passing iteration

• atom_messages (bool) – True if encoding atom-messages else False.
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__init__(hidden_size: int = 128, bias: bool = True, depth: int = 1, dropout: float = 0.0, undirected: bool =
False, atom_messages: bool = False)

Initialize internal Module state, shared by both nn.Module and ScriptModule.

forward(f_atoms, f_bonds, a2b, a2a, b2a, b2revb)
Define the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks while
the latter silently ignores them.

class GroverMTBlock(atom_messages: bool, input_dim: int, num_heads: int, depth: int, undirected: bool =
False, hidden_size: int = 128, dropout: float = 0.0, bias: bool = True, res_connection:
bool = True, activation: str = 'relu')

Message passing combined with transformer architecture

The layer combines message passing performed using GroverMPNEncoder and uses it to generate query, key
and value for multi-headed Attention block.

Parameters
• atom_messages (bool) – True if encoding atom-messages else False.

• input_dim (int) – Dimension of input features

• num_heads (int) – Number of attention heads

• depth (int) – Number of hops in a message passing iteration

• undirected (bool) – If set to True, the graph is considered as an undirected graph.

__init__(atom_messages: bool, input_dim: int, num_heads: int, depth: int, undirected: bool = False,
hidden_size: int = 128, dropout: float = 0.0, bias: bool = True, res_connection: bool = True,
activation: str = 'relu')

Initialize internal Module state, shared by both nn.Module and ScriptModule.

forward(batch)
Define the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks while
the latter silently ignores them.

class GroverTransEncoder(node_fdim: int, edge_fdim: int, depth: int = 3, undirected: bool = False,
num_mt_block: int = 2, num_heads: int = 2, hidden_size: int = 64, dropout: float =
0.2, res_connection: bool = True, bias: bool = True, activation: str = 'relu')

GroverTransEncoder for encoding a molecular graph

The GroverTransEncoder layer is used for encoding a molecular graph. The layer returns 4 outputs. They are
atom messages aggregated from atom hidden states, atom messages aggregated from bond hidden states, bond
messages aggregated from atom hidden states, bond messages aggregated from bond hidden states.

Parameters
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• hidden_size (int) – the hidden size of the model.

• edge_fdim (int) – the dimension of additional feature for edge/bond.

• node_fdim (int) – the dimension of additional feature for node/atom.

• depth (int) – Dynamic message passing depth for use in MPNEncoder

• undirected (bool) – The message passing is undirected or not

• dropout (float) – the dropout ratio

• activation (str) – the activation function

• num_mt_block (int) – the number of mt block.

• num_head (int) – the number of attention AttentionHead.

• bias (bool) – enable bias term in all linear layers.

• res_connection (bool) – enables the skip-connection in MTBlock.

__init__(node_fdim: int, edge_fdim: int, depth: int = 3, undirected: bool = False, num_mt_block: int = 2,
num_heads: int = 2, hidden_size: int = 64, dropout: float = 0.2, res_connection: bool = True,
bias: bool = True, activation: str = 'relu')

Initialize internal Module state, shared by both nn.Module and ScriptModule.

forward(batch)
Forward layer

Parameters
batch (Tuple) – A tuple of tensors representing grover attributes

Returns
embeddings – Embeddings for atom generated from hidden state of nodes and bonds and
embeddings of bond generated from hidden states of nodes and bond.

Return type
Tuple[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor, torch.Tensor]]

class GroverEmbedding(node_fdim, edge_fdim, hidden_size=128, depth=1, undirected=False, dropout=0.2,
activation='relu', num_mt_block=1, num_heads=4, bias=False, res_connection=False)

GroverEmbedding layer.

This layer is a simple wrapper over GroverTransEncoder layer for retrieving the embeddings from the Grover-
TransEncoder layer.

Parameters
• edge_fdim (int) – the dimension of additional feature for edge/bond.

• node_fdim (int) – the dimension of additional feature for node/atom.

• depth (int) – Dynamic message passing depth for use in MPNEncoder

• undirected (bool) – The message passing is undirected or not

• num_mt_block (int) – the number of message passing blocks.

• num_head (int) – the number of attention heads.

__init__(node_fdim, edge_fdim, hidden_size=128, depth=1, undirected=False, dropout=0.2,
activation='relu', num_mt_block=1, num_heads=4, bias=False, res_connection=False)

Initialize internal Module state, shared by both nn.Module and ScriptModule.
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forward(graph_batch: List[Tensor])
Forward function

Parameters
graph_batch (List[torch.Tensor]) – A list containing f_atoms, f_bonds, a2b, b2a,
b2revb, a_scope, b_scope, a2a

Returns
embedding – Returns a dictionary of embeddings. The embeddings are: - atom_from_atom:
node messages aggregated from node hidden states - bond_from_atom: bond messages ag-
gregated from bond hidden states - atom_from_bond: node message aggregated from bond
hidden states - bond_from_bond: bond messages aggregated from bond hidden states.

Return type
Dict[str, torch.Tensor]

class GroverEmbedding(node_fdim, edge_fdim, hidden_size=128, depth=1, undirected=False, dropout=0.2,
activation='relu', num_mt_block=1, num_heads=4, bias=False, res_connection=False)

GroverEmbedding layer.

This layer is a simple wrapper over GroverTransEncoder layer for retrieving the embeddings from the Grover-
TransEncoder layer.

Parameters
• edge_fdim (int) – the dimension of additional feature for edge/bond.

• node_fdim (int) – the dimension of additional feature for node/atom.

• depth (int) – Dynamic message passing depth for use in MPNEncoder

• undirected (bool) – The message passing is undirected or not

• num_mt_block (int) – the number of message passing blocks.

• num_head (int) – the number of attention heads.

__init__(node_fdim, edge_fdim, hidden_size=128, depth=1, undirected=False, dropout=0.2,
activation='relu', num_mt_block=1, num_heads=4, bias=False, res_connection=False)

Initialize internal Module state, shared by both nn.Module and ScriptModule.

forward(graph_batch: List[Tensor])
Forward function

Parameters
graph_batch (List[torch.Tensor]) – A list containing f_atoms, f_bonds, a2b, b2a,
b2revb, a_scope, b_scope, a2a

Returns
embedding – Returns a dictionary of embeddings. The embeddings are: - atom_from_atom:
node messages aggregated from node hidden states - bond_from_atom: bond messages ag-
gregated from bond hidden states - atom_from_bond: node message aggregated from bond
hidden states - bond_from_bond: bond messages aggregated from bond hidden states.

Return type
Dict[str, torch.Tensor]

class GroverAtomVocabPredictor(vocab_size: int, in_features: int = 128)
Grover Atom Vocabulary Prediction Module.

The GroverAtomVocabPredictor module is used for predicting atom-vocabulary for the self-supervision task in
Grover architecture. In the self-supervision tasks, one task is to learn contextual-information of nodes (atoms).

558 Chapter 3. About Us



deepchem, Release 2.8.0

Contextual information are encoded as strings, like C_N-DOUBLE1_O-SINGLE1. The module accepts an atom
encoding and learns to predict the contextual information of the atom as a multi-class classification problem.

Example

>>> from deepchem.models.torch_models.grover_layers import GroverAtomVocabPredictor
>>> num_atoms, in_features, vocab_size = 30, 16, 10
>>> layer = GroverAtomVocabPredictor(vocab_size, in_features)
>>> embedding = torch.randn(num_atoms, in_features)
>>> result = layer(embedding)
>>> result.shape
torch.Size([30, 10])

Reference

__init__(vocab_size: int, in_features: int = 128)
Initializing Grover Atom Vocabulary Predictor

Parameters
• vocab_size (int) – size of vocabulary (vocabulary here is the total number of different

possible contexts)

• in_features (int) – feature size of atom embeddings.

forward(embeddings)

Parameters
embeddings (torch.Tensor) – the atom embeddings of shape (vocab_size, in_features)

Returns
logits – the prediction for each atom of shape (num_bond, vocab_size)

Return type
torch.Tensor

class GroverBondVocabPredictor(vocab_size: int, in_features: int = 128)
Layer for learning contextual information for bonds.

The layer is used in Grover architecture to learn contextual information of a bond by predicting the context of a
bond from the bond embedding in a multi-class classification setting. The contextual information of a bond are
encoded as strings (ex: ‘(DOUBLE-STEREONONE-NONE)_C-(SINGLE-STEREONONE-NONE)2’).

Example

>>> from deepchem.models.torch_models.grover_layers import GroverBondVocabPredictor
>>> num_bonds = 20
>>> in_features, vocab_size = 16, 10
>>> layer = GroverBondVocabPredictor(vocab_size, in_features)
>>> embedding = torch.randn(num_bonds * 2, in_features)
>>> result = layer(embedding)
>>> result.shape
torch.Size([20, 10])
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Reference

__init__(vocab_size: int, in_features: int = 128)
Initializes GroverBondVocabPredictor

Parameters
• vocab_size (int) – Size of vocabulary, used for number of classes in prediction.

• in_features (int, default: 128) – Input feature size of bond embeddings.

forward(embeddings)

Parameters
embeddings (torch.Tensor) – bond embeddings of shape (num_bond, in_features)

Returns
logits – the prediction for each bond, (num_bond, vocab_size)

Return type
torch.Tensor

class GroverFunctionalGroupPredictor(functional_group_size: int, in_features=128)
The functional group prediction task for self-supervised learning.

Molecules have functional groups in them. This module is used for predicting the functional group and the
problem is formulated as an multi-label classification problem.

Parameters
• functional_group_size (int,) – size of functional group

• in_features (int,) – hidden_layer size, default 128

Example

>>> from deepchem.models.torch_models.grover_layers import␣
→˓GroverFunctionalGroupPredictor
>>> in_features, functional_group_size = 8, 20
>>> num_atoms, num_bonds = 10, 20
>>> predictor = GroverFunctionalGroupPredictor(functional_group_size=20, in_
→˓features=8)
>>> atom_scope, bond_scope = [(0, 3), (3, 3), (6, 4)], [(0, 5), (5, 4), (9, 11)]
>>> embeddings = {}
>>> embeddings['bond_from_atom'] = torch.randn(num_bonds, in_features)
>>> embeddings['bond_from_bond'] = torch.randn(num_bonds, in_features)
>>> embeddings['atom_from_atom'] = torch.randn(num_atoms, in_features)
>>> embeddings['atom_from_bond'] = torch.randn(num_atoms, in_features)
>>> result = predictor(embeddings, atom_scope, bond_scope)
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Reference

__init__(functional_group_size: int, in_features=128)
Initialize internal Module state, shared by both nn.Module and ScriptModule.

forward(embeddings: Dict, atom_scope: List, bond_scope: List)
The forward function for the GroverFunctionalGroupPredictor (semantic motif prediction) layer. It takes
atom/bond embeddings produced from node and bond hidden states from GroverEmbedding module and
the atom, bond scopes and produces prediction logits for different each embedding. The scopes are used to
differentiate atoms/bonds belonging to a molecule in a batched molecular graph.

Parameters
• embedding (Dict) – The input embeddings organized as an dictionary. The input embed-

dings are output of GroverEmbedding layer.

• atom_scope (List) – The scope for atoms.

• bond_scope (List) – The scope for bonds

Returns
• preds (Dict) – A dictionary containing the predicted logits of functional group from four

different types of input embeddings. The key and their corresponding predictions

• are described below. –

– atom_from_atom - prediction logits from atom embeddings generated via node hidden
states

– atom_from_bond - prediction logits from atom embeddings generated via bond hidden
states

– bond_from_atom - prediction logits from bond embeddings generated via node hidden
states

– bond_from_bond - prediction logits from bond embeddings generated via bond hidden
states

class GroverPretrain(embedding: Module, atom_vocab_task_atom: Module, atom_vocab_task_bond: Module,
bond_vocab_task_atom: Module, bond_vocab_task_bond: Module,
functional_group_predictor: Module)

The Grover Pretrain module.

The GroverPretrain module is used for training an embedding based on the Grover Pretraining task. Grover
pretraining is a self-supervised task where an embedding is trained to learn the contextual information of atoms
and bonds along with graph-level properties, which are functional groups in case of molecular graphs.

Parameters
• embedding (nn.Module) – An embedding layer to generate embedding from input molec-

ular graph

• atom_vocab_task_atom (nn.Module) – A layer used for predicting atom vocabulary from
atom features generated via atom hidden states.

• atom_vocab_task_bond (nn.Module) – A layer used for predicting atom vocabulary from
atom features generated via bond hidden states.

• bond_vocab_task_atom (nn.Module) – A layer used for predicting bond vocabulary from
bond features generated via atom hidden states.
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• bond_vocab_task_bond (nn.Module) – A layer used for predicting bond vocabulary from
bond features generated via bond hidden states.

Returns
• prediction_logits (Tuple) – A tuple of prediction logits containing prediction logits of atom

vocabulary task from atom hidden state,

• prediction logits for atom vocabulary task from bond hidden states, prediction logits for bond
vocabulary task

• from atom hidden states, prediction logits for bond vocabulary task from bond hidden states,
functional

• group prediction logits from atom embedding generated from atom and bond hidden states,
functional group

• prediction logits from bond embedding generated from atom and bond hidden states.

Example

>>> import deepchem as dc
>>> from deepchem.utils.grover import BatchGroverGraph
>>> from deepchem.models.torch_models.grover import GroverPretrain
>>> from deepchem.models.torch_models.grover_layers import GroverEmbedding,␣
→˓GroverAtomVocabPredictor, GroverBondVocabPredictor, GroverFunctionalGroupPredictor
>>> smiles = ['CC', 'CCC', 'CC(=O)C']

>>> fg = dc.feat.CircularFingerprint()
>>> featurizer = dc.feat.GroverFeaturizer(features_generator=fg)

>>> graphs = featurizer.featurize(smiles)
>>> batched_graph = BatchGroverGraph(graphs)
>>> grover_graph_attributes = batched_graph.get_components()
>>> f_atoms, f_bonds, a2b, b2a, b2revb, a2a, a_scope, b_scope, _ = grover_graph_
→˓attributes
>>> components = {}
>>> components['embedding'] = GroverEmbedding(node_fdim=f_atoms.shape[1], edge_
→˓fdim=f_bonds.shape[1])
>>> components['atom_vocab_task_atom'] = GroverAtomVocabPredictor(vocab_size=10, in_
→˓features=128)
>>> components['atom_vocab_task_bond'] = GroverAtomVocabPredictor(vocab_size=10, in_
→˓features=128)
>>> components['bond_vocab_task_atom'] = GroverBondVocabPredictor(vocab_size=10, in_
→˓features=128)
>>> components['bond_vocab_task_bond'] = GroverBondVocabPredictor(vocab_size=10, in_
→˓features=128)
>>> components['functional_group_predictor'] = GroverFunctionalGroupPredictor(10)
>>> model = GroverPretrain(**components)

>>> inputs = f_atoms, f_bonds, a2b, b2a, b2revb, a_scope, b_scope, a2a
>>> output = model(inputs)
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Reference

__init__(embedding: Module, atom_vocab_task_atom: Module, atom_vocab_task_bond: Module,
bond_vocab_task_atom: Module, bond_vocab_task_bond: Module, functional_group_predictor:
Module)

Initialize internal Module state, shared by both nn.Module and ScriptModule.

forward(graph_batch)
Forward function

Parameters
graph_batch (List[torch.Tensor]) – A list containing grover graph attributes

class GroverFinetune(embedding: Module, readout: Module, mol_atom_from_atom_ffn: Module,
mol_atom_from_bond_ffn: Module, hidden_size: int = 128, mode: str = 'regression',
n_tasks: int = 1, n_classes: int | None = None)

Grover Finetune model.

For a graph level prediction task, the GroverFinetune model uses node/edge embeddings output by the GroverEm-
beddong layer and applies a readout function on it to get graph embeddings and use additional MLP layers to
predict the property of the molecular graph.

Parameters
• embedding (nn.Module) – An embedding layer to generate embedding from input molec-

ular graph

• readout (nn.Module) – A readout layer to perform readout atom and bond hidden states

• mol_atom_from_atom_ffn (nn.Module) – A feed forward network which learns repre-
sentation from atom messages generated via atom hidden states of a molecular graph

• mol_atom_from_bond_ffn (nn.Module) – A feed forward network which learns repre-
sentation from atom messages generated via bond hidden states of a molecular graph

• mode (str) – classification or regression

Returns
prediction_logits – prediction logits

Return type
torch.Tensor

Example

>>> import deepchem as dc
>>> from deepchem.utils.grover import BatchGroverGraph
>>> from deepchem.models.torch_models.grover_layers import GroverEmbedding
>>> from deepchem.models.torch_models.readout import GroverReadout
>>> from deepchem.models.torch_models.grover import GroverFinetune
>>> smiles = ['CC', 'CCC', 'CC(=O)C']
>>> fg = dc.feat.CircularFingerprint()
>>> featurizer = dc.feat.GroverFeaturizer(features_generator=fg)
>>> graphs = featurizer.featurize(smiles)
>>> batched_graph = BatchGroverGraph(graphs)
>>> attributes = batched_graph.get_components()
>>> components = {}

(continues on next page)
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(continued from previous page)

>>> additional_features = batched_graph.additional_features
>>> f_atoms, f_bonds, a2b, b2a, b2revb, a2a, a_scope, b_scope, fg_labels =␣
→˓attributes
>>> inputs = f_atoms, f_bonds, a2b, b2a, b2revb, a_scope, b_scope, a2a
>>> components = {}
>>> components['embedding'] = GroverEmbedding(node_fdim=f_atoms.shape[1], edge_
→˓fdim=f_bonds.shape[1])
>>> components['readout'] = GroverReadout(rtype="mean", in_features=128)
>>> components['mol_atom_from_atom_ffn'] = nn.Linear(in_features=additional_
→˓features.shape[1]+ 128, out_features=128)
>>> components['mol_atom_from_bond_ffn'] = nn.Linear(in_features=additional_
→˓features.shape[1] + 128, out_features=128)
>>> model = GroverFinetune(**components, mode='regression', hidden_size=128)
>>> model.training = False
>>> output = model((inputs, additional_features))

Reference

__init__(embedding: Module, readout: Module, mol_atom_from_atom_ffn: Module,
mol_atom_from_bond_ffn: Module, hidden_size: int = 128, mode: str = 'regression', n_tasks: int
= 1, n_classes: int | None = None)

Initialize internal Module state, shared by both nn.Module and ScriptModule.

forward(inputs)

Parameters
inputs (Tuple) – grover batch graph attributes

Attention Layers

class ScaledDotProductAttention

The Scaled Dot Production Attention operation from Attention Is All You Need
<https://arxiv.org/abs/1706.03762>_ paper.

Example

>>> from deepchem.models import ScaledDotProductAttention as SDPA
>>> attn = SDPA()
>>> x = torch.ones(1, 5)
>>> # Linear layers for making query, key, value
>>> Q, K, V = nn.Parameter(torch.ones(5)), nn.Parameter(torch.ones(5)), nn.
→˓Parameter(torch.ones(5))
>>> query, key, value = Q * x, K * x, V * x
>>> x_out, attn_score = attn(query, key, value)

__init__()

Initialize internal Module state, shared by both nn.Module and ScriptModule.
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forward(query: Tensor, key: Tensor, value: Tensor, mask: Tensor | None = None, dropout: Dropout | None =
None)

Parameters
• query (torch.Tensor) – Query tensor for attention

• key (torch.Tensor) – Key tensor for attention

• value (torch.Tensor) – Value tensor for attention

• mask (torch.Tensor (optional)) – Mask to apply during attention computation

• dropout (nn.Dropout (optional)) – Dropout layer for attention output

class SelfAttention(in_features, out_features, hidden_size=128)
SelfAttention Layer

Given $Xin mathbb{R}^{n imes in_feature}$, the attention is calculated by: $a=softmax(W_2tanh(W_1X))$,
where $W_1 in mathbb{R}^{hidden imes in_feature}$, $W_2 in mathbb{R}^{out_feature imes hidden}$. The
final output is $y=aX$ where $y in mathbb{R}^{n imes out_feature}$.

Parameters
• in_features (int) – Dimension of input features

• out_features (int) – Dimension of output features

• hidden_size (int) – Dimension of hidden layer

__init__(in_features, out_features, hidden_size=128)
Initialize internal Module state, shared by both nn.Module and ScriptModule.

forward(X)
The forward function.

Parameters
X (torch.Tensor) – input feature of shape $mathbb{R}^{n imes in_feature}$.

Returns
• embedding (torch.Tensor) – The final embedding of shape $mathbb{R}^{out_features

imes in_feature}$

• attention-matrix (torch.Tensor) – The attention matrix

Readout Layers

class GroverReadout(rtype: str = 'mean', in_features: int = 128, attn_hidden_size: int = 32, attn_out_size: int =
32)

Performs readout on a batch of graph

The readout module is used for performing readouts on batched graphs to convert node embeddings/edge em-
beddings into graph embeddings. It is used in the Grover architecture to generate a graph embedding from node
and edge embeddings. The generate embedding can be used in downstream tasks like graph classification or
graph prediction problems.

Parameters
• rtype (str) – Readout type, can be ‘mean’ or ‘self-attention’

• in_features (int) – Size fof input features
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• attn_hidden_size (int) – If readout type is attention, size of hidden layer in attention
network.

• attn_out_size (int) – If readout type is attention, size of attention out layer.

Example

>>> import torch
>>> from deepchem.models.torch_models.readout import GroverReadout
>>> n_nodes, n_features = 6, 32
>>> readout = GroverReadout(rtype="mean")
>>> embedding = torch.ones(n_nodes, n_features)
>>> result = readout(embedding, scope=[(0, 6)])
>>> result.size()
torch.Size([1, 32])

__init__(rtype: str = 'mean', in_features: int = 128, attn_hidden_size: int = 32, attn_out_size: int = 32)
Initialize internal Module state, shared by both nn.Module and ScriptModule.

forward(graph_embeddings: Tensor, scope: List[List])→ Tensor
Given a batch node/edge embedding and a scope list, produce the graph-level embedding by scope.

Parameters
• embeddings (torch.Tensor) – The embedding matrix, num_nodes x in_features or

num_edges x in_features.

• scope (List[List]) – A list, in which the element is a list [start, range]. start is the
index, range is the length of scope. (start + range = end)

Returns
graph_embeddings – A stacked tensor containing graph embeddings of shape len(scope) x
in_features if readout type is mean or len(scope) x attn_out_size when readout type is self-
attention.

Return type
torch.Tensor

3.23.4 Jax Layers

class Linear(num_output: int, initializer: str = 'linear', use_bias: bool = True, bias_init: float = 0.0, name: str =
'linear')

Protein folding specific Linear Module.

This differs from the standard Haiku Linear in a few ways:
• It supports inputs of arbitrary rank

• Initializers are specified by strings

This code is adapted from DeepMind’s AlphaFold code release (https://github.com/deepmind/alphafold).
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Examples

>>> import deepchem as dc
>>> import haiku as hk
>>> import jax
>>> import deepchem.models.jax_models.layers
>>> def forward_model(x):
... layer = dc.models.jax_models.layers.Linear(2)
... return layer(x)
>>> f = hk.transform(forward_model)
>>> rng = jax.random.PRNGKey(42)
>>> x = jnp.ones([8, 28 * 28])
>>> params = f.init(rng, x)
>>> output = f.apply(params, rng, x)

__init__(num_output: int, initializer: str = 'linear', use_bias: bool = True, bias_init: float = 0.0, name: str
= 'linear')

Constructs Linear Module.

Parameters
• num_output (int) – number of output channels.

• initializer (str (default 'linear')) – What initializer to use, should be one of
{‘linear’, ‘relu’, ‘zeros’}

• use_bias (bool (default True)) – Whether to include trainable bias

• bias_init (float (default 0)) – Value used to initialize bias.

• name (str (default 'linear')) – name of module, used for name scopes.

3.23.5 Density Functional Theory Layers

3.24 Metrics

Metrics are one of the most important parts of machine learning. Unlike traditional software, in which algorithms either
work or don’t work, machine learning models work in degrees. That is, there’s a continuous range of “goodness” for a
model. “Metrics” are functions which measure how well a model works. There are many different choices of metrics
depending on the type of model at hand.

3.24.1 Metric Utilities

Metric utility functions allow for some common manipulations such as switching to/from one-hot representations.

to_one_hot(y: ndarray, n_classes: int = 2)→ ndarray
Transforms label vector into one-hot encoding.

Turns y into vector of shape (N, n_classes) with a one-hot encoding. Assumes that y takes values from 0 to
n_classes - 1.

Parameters
• y (np.ndarray) – A vector of shape (N,) or (N, 1)
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• n_classes (int, default 2) – If specified use this as the number of classes. Else will try
to impute it as n_classes = max(y) + 1 for arrays and as n_classes=2 for the case of scalars.
Note this parameter only has value if mode==”classification”

Returns
A numpy array of shape (N, n_classes).

Return type
np.ndarray

from_one_hot(y: ndarray, axis: int = 1)→ ndarray
Transforms label vector from one-hot encoding.

Parameters
• y (np.ndarray) – A vector of shape (n_samples, num_classes)

• axis (int, optional (default 1)) – The axis with one-hot encodings to reduce on.

Returns
A numpy array of shape (n_samples,)

Return type
np.ndarray

3.24.2 Metric Shape Handling

One of the trickiest parts of handling metrics correctly is making sure the shapes of input weights, predictions and labels
and processed correctly. This is challenging in particular since DeepChem supports multitask, multiclass models which
means that shapes must be handled with care to prevent errors. DeepChem maintains the following utility functions
which attempt to facilitate shape handling for you.

normalize_weight_shape(w: ndarray | None, n_samples: int, n_tasks: int)→ ndarray
A utility function to correct the shape of the weight array.

This utility function is used to normalize the shapes of a given weight array.

Parameters
• w (np.ndarray) – w can be None or a scalar or a np.ndarray of shape (n_samples,) or

of shape (n_samples, n_tasks). If w is a scalar, it’s assumed to be the same weight for all
samples/tasks.

• n_samples (int) – The number of samples in the dataset. If w is not None, we should have
n_samples = w.shape[0] if w is a ndarray

• n_tasks (int) – The number of tasks. If w is 2d ndarray, then we should have w.shape[1]
== n_tasks.

Examples

>>> import numpy as np
>>> w_out = normalize_weight_shape(None, n_samples=10, n_tasks=1)
>>> (w_out == np.ones((10, 1))).all()
True

Returns
w_out – Array of shape (n_samples, n_tasks)
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Return type
np.ndarray

normalize_labels_shape(y: ndarray, mode: str | None = None, n_tasks: int | None = None, n_classes: int | None
= None)→ ndarray

A utility function to correct the shape of the labels.

Parameters
• y (np.ndarray) – y is an array of shape (N,) or (N, n_tasks) or (N, n_tasks, 1).

• mode (str, default None) – If mode is “classification” or “regression”, attempts to apply
data transformations.

• n_tasks (int, default None) – The number of tasks this class is expected to handle.

• n_classes (int, default None) – If specified use this as the number of classes. Else
will try to impute it as n_classes = max(y) + 1 for arrays and as n_classes=2 for the case of
scalars. Note this parameter only has value if mode==”classification”

Returns
y_out – If mode==”classification”, y_out is an array of shape (N, n_tasks, n_classes). If
mode==”regression”, y_out is an array of shape (N, n_tasks).

Return type
np.ndarray

normalize_prediction_shape(y: ndarray, mode: str | None = None, n_tasks: int | None = None, n_classes: int |
None = None)

A utility function to correct the shape of provided predictions.

The metric computation classes expect that inputs for classification have the uniform shape (N, n_tasks, n_classes)
and inputs for regression have the uniform shape (N, n_tasks). This function normalizes the provided input array
to have the desired shape.

Examples

>>> import numpy as np
>>> y = np.random.rand(10)
>>> y_out = normalize_prediction_shape(y, "regression", n_tasks=1)
>>> y_out.shape
(10, 1)

Parameters
• y (np.ndarray) – If mode==”classification”, y is an array of shape (N,) or (N, n_tasks)

or (N, n_tasks, n_classes). If mode==”regression”, y is an array of shape (N,) or (N,
n_tasks)`or `(N, n_tasks, 1).

• mode (str, default None) – If mode is “classification” or “regression”, attempts to apply
data transformations.

• n_tasks (int, default None) – The number of tasks this class is expected to handle.

• n_classes (int, default None) – If specified use this as the number of classes. Else
will try to impute it as n_classes = max(y) + 1 for arrays and as n_classes=2 for the case of
scalars. Note this parameter only has value if mode==”classification”
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Returns
y_out – If mode==”classification”, y_out is an array of shape (N, n_tasks, n_classes). If
mode==”regression”, y_out is an array of shape (N, n_tasks).

Return type
np.ndarray

handle_classification_mode(y: ndarray, classification_handling_mode: str | None, threshold_value: float |
None = None)→ ndarray

Handle classification mode.

Transform predictions so that they have the correct classification mode.

Parameters
• y (np.ndarray) – Must be of shape (N, n_tasks, n_classes)

• classification_handling_mode (str, default None) – DeepChem models by de-
fault predict class probabilities for classification problems. This means that for a given sin-
gletask prediction, after shape normalization, the DeepChem prediction will be a numpy
array of shape (N, n_classes) with class probabilities. classification_handling_mode is a
string that instructs this method how to handle transforming these probabilities. It can take
on the following values: - None: default value. Pass in y_pred directy into self.metric. -
“threshold”: Use threshold_predictions to threshold y_pred. Use

threshold_value as the desired threshold.

– ”threshold-one-hot”: Use threshold_predictions to threshold y_pred using thresh-
old_values, then apply to_one_hot to output.

• threshold_value (float, default None) – If set, and classification_handling_mode is
“threshold” or “threshold-one-hot” apply a thresholding operation to values with this thresh-
old. This option isj only sensible on binary classification tasks. If float, this will be applied
as a binary classification value.

Returns
y_out – If classification_handling_mode is “direct”, then of shape (N, n_tasks, n_classes).
If classification_handling_mode is “threshold”, then of shape (N, n_tasks). If `classifica-
tion_handling_mode is “threshold-one-hot”, then of shape `(N, n_tasks, n_classes)”

Return type
np.ndarray

3.24.3 Metric Functions

DeepChem has a variety of different metrics which are useful for measuring model performance. A number (but not
all) of these metrics are directly sourced from sklearn.

matthews_corrcoef(y_true, y_pred, *, sample_weight=None)
Compute the Matthews correlation coefficient (MCC).

The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary and
multiclass classifications. It takes into account true and false positives and negatives and is generally regarded
as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a
correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average
random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source:
Wikipedia]

570 Chapter 3. About Us



deepchem, Release 2.8.0

Binary and multiclass labels are supported. Only in the binary case does this relate to information about true and
false positives and negatives. See references below.

Read more in the User Guide.

Parameters
• y_true (array-like of shape (n_samples,)) – Ground truth (correct) target values.

• y_pred (array-like of shape (n_samples,)) – Estimated targets as returned by a
classifier.

• sample_weight (array-like of shape (n_samples,), default=None) – Sample
weights.

New in version 0.18.

Returns
mcc – The Matthews correlation coefficient (+1 represents a perfect prediction, 0 an average
random prediction and -1 and inverse prediction).

Return type
float

References

Examples

>>> from sklearn.metrics import matthews_corrcoef
>>> y_true = [+1, +1, +1, -1]
>>> y_pred = [+1, -1, +1, +1]
>>> matthews_corrcoef(y_true, y_pred)
-0.33...

recall_score(y_true, y_pred, *, labels=None, pos_label=1, average='binary', sample_weight=None,
zero_division='warn')

Compute the recall.

The recall is the ratio tp / (tp + fn) where tp is the number of true positives and fn the number of false
negatives. The recall is intuitively the ability of the classifier to find all the positive samples.

The best value is 1 and the worst value is 0.

Support beyond term:binary targets is achieved by treating multiclass and multilabel data as a collection of binary
problems, one for each label. For the binary case, setting average=’binary’ will return recall for pos_label. If
average is not ‘binary’, pos_label is ignored and recall for both classes are computed then averaged or both
returned (when average=None). Similarly, for multiclass and multilabel targets, recall for all labels are either
returned or averaged depending on the average parameter. Use labels specify the set of labels to calculate recall
for.

Read more in the User Guide.

Parameters
• y_true (1d array-like, or label indicator array / sparse matrix) –

Ground truth (correct) target values.

• y_pred (1d array-like, or label indicator array / sparse matrix) – Esti-
mated targets as returned by a classifier.
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• labels (array-like, default=None) – The set of labels to include when average !=
‘binary’, and their order if average is None. Labels present in the data can be excluded, for
example in multiclass classification to exclude a “negative class”. Labels not present in the
data can be included and will be “assigned” 0 samples. For multilabel targets, labels are
column indices. By default, all labels in y_true and y_pred are used in sorted order.

Changed in version 0.17: Parameter labels improved for multiclass problem.

• pos_label (int, float, bool or str, default=1) – The class to report if aver-
age=’binary’ and the data is binary, otherwise this parameter is ignored. For multiclass
or multilabel targets, set labels=[pos_label] and average != ‘binary’ to report metrics for
one label only.

• average ({'micro', 'macro', 'samples', 'weighted', 'binary'} or None,
default='binary') – This parameter is required for multiclass/multilabel targets. If
None, the scores for each class are returned. Otherwise, this determines the type of
averaging performed on the data:

'binary':
Only report results for the class specified by pos_label. This is applicable only if targets
(y_{true,pred}) are binary.

'micro':
Calculate metrics globally by counting the total true positives, false negatives and false
positives.

'macro':
Calculate metrics for each label, and find their unweighted mean. This does not take label
imbalance into account.

'weighted':
Calculate metrics for each label, and find their average weighted by support (the number
of true instances for each label). This alters ‘macro’ to account for label imbalance; it can
result in an F-score that is not between precision and recall. Weighted recall is equal to
accuracy.

'samples':
Calculate metrics for each instance, and find their average (only meaningful for multilabel
classification where this differs from accuracy_score()).

• sample_weight (array-like of shape (n_samples,), default=None) – Sample
weights.

• zero_division ({"warn", 0.0, 1.0, np.nan}, default="warn") – Sets the value
to return when there is a zero division.

Notes: - If set to “warn”, this acts like 0, but a warning is also raised. - If set to np.nan, such
values will be excluded from the average.

New in version 1.3: np.nan option was added.

Returns
recall – Recall of the positive class in binary classification or weighted average of the recall of
each class for the multiclass task.

Return type
float (if average is not None) or array of float of shape (n_unique_labels,)

See also:
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precision_recall_fscore_support
Compute precision, recall, F-measure and support for each class.

precision_score
Compute the ratio tp / (tp + fp) where tp is the number of true positives and fp the number of false
positives.

balanced_accuracy_score
Compute balanced accuracy to deal with imbalanced datasets.

multilabel_confusion_matrix
Compute a confusion matrix for each class or sample.

PrecisionRecallDisplay.from_estimator
Plot precision-recall curve given an estimator and some data.

PrecisionRecallDisplay.from_predictions
Plot precision-recall curve given binary class predictions.

Notes

When true positive + false negative == 0, recall returns 0 and raises UndefinedMetricWarning.
This behavior can be modified with zero_division.

Examples

>>> import numpy as np
>>> from sklearn.metrics import recall_score
>>> y_true = [0, 1, 2, 0, 1, 2]
>>> y_pred = [0, 2, 1, 0, 0, 1]
>>> recall_score(y_true, y_pred, average='macro')
0.33...
>>> recall_score(y_true, y_pred, average='micro')
0.33...
>>> recall_score(y_true, y_pred, average='weighted')
0.33...
>>> recall_score(y_true, y_pred, average=None)
array([1., 0., 0.])
>>> y_true = [0, 0, 0, 0, 0, 0]
>>> recall_score(y_true, y_pred, average=None)
array([0.5, 0. , 0. ])
>>> recall_score(y_true, y_pred, average=None, zero_division=1)
array([0.5, 1. , 1. ])
>>> recall_score(y_true, y_pred, average=None, zero_division=np.nan)
array([0.5, nan, nan])

>>> # multilabel classification
>>> y_true = [[0, 0, 0], [1, 1, 1], [0, 1, 1]]
>>> y_pred = [[0, 0, 0], [1, 1, 1], [1, 1, 0]]
>>> recall_score(y_true, y_pred, average=None)
array([1. , 1. , 0.5])

r2_score(y_true, y_pred, *, sample_weight=None, multioutput='uniform_average', force_finite=True)
𝑅2 (coefficient of determination) regression score function.
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Best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). In the general
case when the true y is non-constant, a constant model that always predicts the average y disregarding the input
features would get a 𝑅2 score of 0.0.

In the particular case when y_true is constant, the 𝑅2 score is not finite: it is either NaN (perfect predictions) or
-Inf (imperfect predictions). To prevent such non-finite numbers to pollute higher-level experiments such as a
grid search cross-validation, by default these cases are replaced with 1.0 (perfect predictions) or 0.0 (imperfect
predictions) respectively. You can set force_finite to False to prevent this fix from happening.

Note: when the prediction residuals have zero mean, the 𝑅2 score is identical to the Explained Variance
score.

Read more in the User Guide.

Parameters
• y_true (array-like of shape (n_samples,) or (n_samples, n_outputs)) –

Ground truth (correct) target values.

• y_pred (array-like of shape (n_samples,) or (n_samples, n_outputs)) –
Estimated target values.

• sample_weight (array-like of shape (n_samples,), default=None) – Sample
weights.

• multioutput ({'raw_values', 'uniform_average', 'variance_weighted'},
array-like of shape (n_outputs,) or None, default='uniform_average') –
Defines aggregating of multiple output scores. Array-like value defines weights used to
average scores. Default is “uniform_average”.

’raw_values’ :
Returns a full set of scores in case of multioutput input.

’uniform_average’ :
Scores of all outputs are averaged with uniform weight.

’variance_weighted’ :
Scores of all outputs are averaged, weighted by the variances of each individual output.

Changed in version 0.19: Default value of multioutput is ‘uniform_average’.

• force_finite (bool, default=True) – Flag indicating if NaN and -Inf scores resulting
from constant data should be replaced with real numbers (1.0 if prediction is perfect, 0.0
otherwise). Default is True, a convenient setting for hyperparameters’ search procedures
(e.g. grid search cross-validation).

New in version 1.1.

Returns
z – The 𝑅2 score or ndarray of scores if ‘multioutput’ is ‘raw_values’.

Return type
float or ndarray of floats
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Notes

This is not a symmetric function.

Unlike most other scores, 𝑅2 score may be negative (it need not actually be the square of a quantity R).

This metric is not well-defined for single samples and will return a NaN value if n_samples is less than two.

References

Examples

>>> from sklearn.metrics import r2_score
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> r2_score(y_true, y_pred)
0.948...
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> r2_score(y_true, y_pred,
... multioutput='variance_weighted')
0.938...
>>> y_true = [1, 2, 3]
>>> y_pred = [1, 2, 3]
>>> r2_score(y_true, y_pred)
1.0
>>> y_true = [1, 2, 3]
>>> y_pred = [2, 2, 2]
>>> r2_score(y_true, y_pred)
0.0
>>> y_true = [1, 2, 3]
>>> y_pred = [3, 2, 1]
>>> r2_score(y_true, y_pred)
-3.0
>>> y_true = [-2, -2, -2]
>>> y_pred = [-2, -2, -2]
>>> r2_score(y_true, y_pred)
1.0
>>> r2_score(y_true, y_pred, force_finite=False)
nan
>>> y_true = [-2, -2, -2]
>>> y_pred = [-2, -2, -2 + 1e-8]
>>> r2_score(y_true, y_pred)
0.0
>>> r2_score(y_true, y_pred, force_finite=False)
-inf

mean_squared_error(y_true, y_pred, *, sample_weight=None, multioutput='uniform_average',
squared='deprecated')

Mean squared error regression loss.

Read more in the User Guide.

Parameters
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• y_true (array-like of shape (n_samples,) or (n_samples, n_outputs)) –
Ground truth (correct) target values.

• y_pred (array-like of shape (n_samples,) or (n_samples, n_outputs)) –
Estimated target values.

• sample_weight (array-like of shape (n_samples,), default=None) – Sample
weights.

• multioutput ({'raw_values', 'uniform_average'} or array-like of shape
(n_outputs,), default='uniform_average') – Defines aggregating of multiple output
values. Array-like value defines weights used to average errors.

’raw_values’ :
Returns a full set of errors in case of multioutput input.

’uniform_average’ :
Errors of all outputs are averaged with uniform weight.

• squared (bool, default=True) – If True returns MSE value, if False returns RMSE
value.

Deprecated since version 1.4: squared is deprecated in 1.4 and will be removed in 1.6. Use
root_mean_squared_error() instead to calculate the root mean squared error.

Returns
loss – A non-negative floating point value (the best value is 0.0), or an array of floating point
values, one for each individual target.

Return type
float or ndarray of floats

Examples

>>> from sklearn.metrics import mean_squared_error
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> mean_squared_error(y_true, y_pred)
0.375
>>> y_true = [[0.5, 1],[-1, 1],[7, -6]]
>>> y_pred = [[0, 2],[-1, 2],[8, -5]]
>>> mean_squared_error(y_true, y_pred)
0.708...
>>> mean_squared_error(y_true, y_pred, multioutput='raw_values')
array([0.41666667, 1. ])
>>> mean_squared_error(y_true, y_pred, multioutput=[0.3, 0.7])
0.825...

mean_absolute_error(y_true, y_pred, *, sample_weight=None, multioutput='uniform_average')
Mean absolute error regression loss.

Read more in the User Guide.

Parameters
• y_true (array-like of shape (n_samples,) or (n_samples, n_outputs)) –

Ground truth (correct) target values.
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• y_pred (array-like of shape (n_samples,) or (n_samples, n_outputs)) –
Estimated target values.

• sample_weight (array-like of shape (n_samples,), default=None) – Sample
weights.

• multioutput ({'raw_values', 'uniform_average'} or array-like of shape
(n_outputs,), default='uniform_average') – Defines aggregating of multiple output
values. Array-like value defines weights used to average errors.

’raw_values’ :
Returns a full set of errors in case of multioutput input.

’uniform_average’ :
Errors of all outputs are averaged with uniform weight.

Returns
loss – If multioutput is ‘raw_values’, then mean absolute error is returned for each output sepa-
rately. If multioutput is ‘uniform_average’ or an ndarray of weights, then the weighted average
of all output errors is returned.

MAE output is non-negative floating point. The best value is 0.0.

Return type
float or ndarray of floats

Examples

>>> from sklearn.metrics import mean_absolute_error
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> mean_absolute_error(y_true, y_pred)
0.5
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> mean_absolute_error(y_true, y_pred)
0.75
>>> mean_absolute_error(y_true, y_pred, multioutput='raw_values')
array([0.5, 1. ])
>>> mean_absolute_error(y_true, y_pred, multioutput=[0.3, 0.7])
0.85...

precision_score(y_true, y_pred, *, labels=None, pos_label=1, average='binary', sample_weight=None,
zero_division='warn')

Compute the precision.

The precision is the ratio tp / (tp + fp) where tp is the number of true positives and fp the number of false
positives. The precision is intuitively the ability of the classifier not to label as positive a sample that is negative.

The best value is 1 and the worst value is 0.

Support beyond term:binary targets is achieved by treating multiclass and multilabel data as a collection of binary
problems, one for each label. For the binary case, setting average=’binary’ will return precision for pos_label.
If average is not ‘binary’, pos_label is ignored and precision for both classes are computed, then averaged or
both returned (when average=None). Similarly, for multiclass and multilabel targets, precision for all labels are
either returned or averaged depending on the average parameter. Use labels specify the set of labels to calculate
precision for.
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Read more in the User Guide.

Parameters
• y_true (1d array-like, or label indicator array / sparse matrix) –

Ground truth (correct) target values.

• y_pred (1d array-like, or label indicator array / sparse matrix) – Esti-
mated targets as returned by a classifier.

• labels (array-like, default=None) – The set of labels to include when average !=
‘binary’, and their order if average is None. Labels present in the data can be excluded, for
example in multiclass classification to exclude a “negative class”. Labels not present in the
data can be included and will be “assigned” 0 samples. For multilabel targets, labels are
column indices. By default, all labels in y_true and y_pred are used in sorted order.

Changed in version 0.17: Parameter labels improved for multiclass problem.

• pos_label (int, float, bool or str, default=1) – The class to report if aver-
age=’binary’ and the data is binary, otherwise this parameter is ignored. For multiclass
or multilabel targets, set labels=[pos_label] and average != ‘binary’ to report metrics for
one label only.

• average ({'micro', 'macro', 'samples', 'weighted', 'binary'} or None,
default='binary') – This parameter is required for multiclass/multilabel targets. If
None, the scores for each class are returned. Otherwise, this determines the type of
averaging performed on the data:

'binary':
Only report results for the class specified by pos_label. This is applicable only if targets
(y_{true,pred}) are binary.

'micro':
Calculate metrics globally by counting the total true positives, false negatives and false
positives.

'macro':
Calculate metrics for each label, and find their unweighted mean. This does not take label
imbalance into account.

'weighted':
Calculate metrics for each label, and find their average weighted by support (the number
of true instances for each label). This alters ‘macro’ to account for label imbalance; it can
result in an F-score that is not between precision and recall.

'samples':
Calculate metrics for each instance, and find their average (only meaningful for multilabel
classification where this differs from accuracy_score()).

• sample_weight (array-like of shape (n_samples,), default=None) – Sample
weights.

• zero_division ({"warn", 0.0, 1.0, np.nan}, default="warn") – Sets the value
to return when there is a zero division.

Notes: - If set to “warn”, this acts like 0, but a warning is also raised. - If set to np.nan, such
values will be excluded from the average.

New in version 1.3: np.nan option was added.
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Returns
precision – Precision of the positive class in binary classification or weighted average of the
precision of each class for the multiclass task.

Return type
float (if average is not None) or array of float of shape (n_unique_labels,)

See also:

precision_recall_fscore_support
Compute precision, recall, F-measure and support for each class.

recall_score
Compute the ratio tp / (tp + fn) where tp is the number of true positives and fn the number of false
negatives.

PrecisionRecallDisplay.from_estimator
Plot precision-recall curve given an estimator and some data.

PrecisionRecallDisplay.from_predictions
Plot precision-recall curve given binary class predictions.

multilabel_confusion_matrix
Compute a confusion matrix for each class or sample.

Notes

When true positive + false positive == 0, precision returns 0 and raises
UndefinedMetricWarning. This behavior can be modified with zero_division.

Examples

>>> import numpy as np
>>> from sklearn.metrics import precision_score
>>> y_true = [0, 1, 2, 0, 1, 2]
>>> y_pred = [0, 2, 1, 0, 0, 1]
>>> precision_score(y_true, y_pred, average='macro')
0.22...
>>> precision_score(y_true, y_pred, average='micro')
0.33...
>>> precision_score(y_true, y_pred, average='weighted')
0.22...
>>> precision_score(y_true, y_pred, average=None)
array([0.66..., 0. , 0. ])
>>> y_pred = [0, 0, 0, 0, 0, 0]
>>> precision_score(y_true, y_pred, average=None)
array([0.33..., 0. , 0. ])
>>> precision_score(y_true, y_pred, average=None, zero_division=1)
array([0.33..., 1. , 1. ])
>>> precision_score(y_true, y_pred, average=None, zero_division=np.nan)
array([0.33..., nan, nan])

>>> # multilabel classification
>>> y_true = [[0, 0, 0], [1, 1, 1], [0, 1, 1]]

(continues on next page)
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(continued from previous page)

>>> y_pred = [[0, 0, 0], [1, 1, 1], [1, 1, 0]]
>>> precision_score(y_true, y_pred, average=None)
array([0.5, 1. , 1. ])

precision_recall_curve(y_true, probas_pred, *, pos_label=None, sample_weight=None,
drop_intermediate=False)

Compute precision-recall pairs for different probability thresholds.

Note: this implementation is restricted to the binary classification task.

The precision is the ratio tp / (tp + fp) where tp is the number of true positives and fp the number of false
positives. The precision is intuitively the ability of the classifier not to label as positive a sample that is negative.

The recall is the ratio tp / (tp + fn) where tp is the number of true positives and fn the number of false
negatives. The recall is intuitively the ability of the classifier to find all the positive samples.

The last precision and recall values are 1. and 0. respectively and do not have a corresponding threshold. This
ensures that the graph starts on the y axis.

The first precision and recall values are precision=class balance and recall=1.0 which corresponds to a classifier
that always predicts the positive class.

Read more in the User Guide.

Parameters
• y_true (array-like of shape (n_samples,)) – True binary labels. If labels are not

either {-1, 1} or {0, 1}, then pos_label should be explicitly given.

• probas_pred (array-like of shape (n_samples,)) – Target scores, can either be
probability estimates of the positive class, or non-thresholded measure of decisions (as re-
turned by decision_function on some classifiers).

• pos_label (int, float, bool or str, default=None) – The label of the positive
class. When pos_label=None, if y_true is in {-1, 1} or {0, 1}, pos_label is set to 1,
otherwise an error will be raised.

• sample_weight (array-like of shape (n_samples,), default=None) – Sample
weights.

• drop_intermediate (bool, default=False) – Whether to drop some suboptimal
thresholds which would not appear on a plotted precision-recall curve. This is useful in
order to create lighter precision-recall curves.

New in version 1.3.

Returns
• precision (ndarray of shape (n_thresholds + 1,)) – Precision values such that element i is

the precision of predictions with score >= thresholds[i] and the last element is 1.

• recall (ndarray of shape (n_thresholds + 1,)) – Decreasing recall values such that element i
is the recall of predictions with score >= thresholds[i] and the last element is 0.

• thresholds (ndarray of shape (n_thresholds,)) – Increasing thresholds on the
decision function used to compute precision and recall where n_thresholds =
len(np.unique(probas_pred)).

See also:
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PrecisionRecallDisplay.from_estimator
Plot Precision Recall Curve given a binary classifier.

PrecisionRecallDisplay.from_predictions
Plot Precision Recall Curve using predictions from a binary classifier.

average_precision_score
Compute average precision from prediction scores.

det_curve
Compute error rates for different probability thresholds.

roc_curve
Compute Receiver operating characteristic (ROC) curve.

Examples

>>> import numpy as np
>>> from sklearn.metrics import precision_recall_curve
>>> y_true = np.array([0, 0, 1, 1])
>>> y_scores = np.array([0.1, 0.4, 0.35, 0.8])
>>> precision, recall, thresholds = precision_recall_curve(
... y_true, y_scores)
>>> precision
array([0.5 , 0.66666667, 0.5 , 1. , 1. ])
>>> recall
array([1. , 1. , 0.5, 0.5, 0. ])
>>> thresholds
array([0.1 , 0.35, 0.4 , 0.8 ])

auc(x, y)
Compute Area Under the Curve (AUC) using the trapezoidal rule.

This is a general function, given points on a curve. For computing the area under the ROC-
curve, see roc_auc_score(). For an alternative way to summarize a precision-recall curve, see
average_precision_score().

Parameters
• x (array-like of shape (n,)) – X coordinates. These must be either monotonic in-

creasing or monotonic decreasing.

• y (array-like of shape (n,)) – Y coordinates.

Returns
auc – Area Under the Curve.

Return type
float

See also:

roc_auc_score
Compute the area under the ROC curve.

average_precision_score
Compute average precision from prediction scores.
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precision_recall_curve
Compute precision-recall pairs for different probability thresholds.

Examples

>>> import numpy as np
>>> from sklearn import metrics
>>> y = np.array([1, 1, 2, 2])
>>> pred = np.array([0.1, 0.4, 0.35, 0.8])
>>> fpr, tpr, thresholds = metrics.roc_curve(y, pred, pos_label=2)
>>> metrics.auc(fpr, tpr)
0.75

jaccard_score(y_true, y_pred, *, labels=None, pos_label=1, average='binary', sample_weight=None,
zero_division='warn')

Jaccard similarity coefficient score.

The Jaccard index [1], or Jaccard similarity coefficient, defined as the size of the intersection divided by the size
of the union of two label sets, is used to compare set of predicted labels for a sample to the corresponding set of
labels in y_true.

Support beyond term:binary targets is achieved by treating multiclass and multilabel data as a collection of binary
problems, one for each label. For the binary case, setting average=’binary’ will return the Jaccard similarity
coefficient for pos_label. If average is not ‘binary’, pos_label is ignored and scores for both classes are computed,
then averaged or both returned (when average=None). Similarly, for multiclass and multilabel targets, scores for
all labels are either returned or averaged depending on the average parameter. Use labels specify the set of labels
to calculate the score for.

Read more in the User Guide.

Parameters
• y_true (1d array-like, or label indicator array / sparse matrix) –

Ground truth (correct) labels.

• y_pred (1d array-like, or label indicator array / sparse matrix) – Pre-
dicted labels, as returned by a classifier.

• labels (array-like of shape (n_classes,), default=None) – The set of labels
to include when average != ‘binary’, and their order if average is None. Labels present
in the data can be excluded, for example in multiclass classification to exclude a “negative
class”. Labels not present in the data can be included and will be “assigned” 0 samples. For
multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are
used in sorted order.

• pos_label (int, float, bool or str, default=1) – The class to report if aver-
age=’binary’ and the data is binary, otherwise this parameter is ignored. For multiclass
or multilabel targets, set labels=[pos_label] and average != ‘binary’ to report metrics for
one label only.

• average ({'micro', 'macro', 'samples', 'weighted', 'binary'} or None,
default='binary') – If None, the scores for each class are returned. Otherwise, this
determines the type of averaging performed on the data:

'binary':
Only report results for the class specified by pos_label. This is applicable only if targets
(y_{true,pred}) are binary.
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'micro':
Calculate metrics globally by counting the total true positives, false negatives and false
positives.

'macro':
Calculate metrics for each label, and find their unweighted mean. This does not take label
imbalance into account.

'weighted':
Calculate metrics for each label, and find their average, weighted by support (the number
of true instances for each label). This alters ‘macro’ to account for label imbalance.

'samples':
Calculate metrics for each instance, and find their average (only meaningful for multilabel
classification).

• sample_weight (array-like of shape (n_samples,), default=None) – Sample
weights.

• zero_division ("warn", {0.0, 1.0}, default="warn") – Sets the value to return
when there is a zero division, i.e. when there there are no negative values in predictions and
labels. If set to “warn”, this acts like 0, but a warning is also raised.

Returns
score – The Jaccard score. When average is not None, a single scalar is returned.

Return type
float or ndarray of shape (n_unique_labels,), dtype=np.float64

See also:

accuracy_score
Function for calculating the accuracy score.

f1_score
Function for calculating the F1 score.

multilabel_confusion_matrix
Function for computing a confusion matrix for each class or sample.

Notes

jaccard_score() may be a poor metric if there are no positives for some samples or classes. Jaccard is unde-
fined if there are no true or predicted labels, and our implementation will return a score of 0 with a warning.

References

Examples

>>> import numpy as np
>>> from sklearn.metrics import jaccard_score
>>> y_true = np.array([[0, 1, 1],
... [1, 1, 0]])
>>> y_pred = np.array([[1, 1, 1],
... [1, 0, 0]])

In the binary case:
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>>> jaccard_score(y_true[0], y_pred[0])
0.6666...

In the 2D comparison case (e.g. image similarity):

>>> jaccard_score(y_true, y_pred, average="micro")
0.6

In the multilabel case:

>>> jaccard_score(y_true, y_pred, average='samples')
0.5833...
>>> jaccard_score(y_true, y_pred, average='macro')
0.6666...
>>> jaccard_score(y_true, y_pred, average=None)
array([0.5, 0.5, 1. ])

In the multiclass case:

>>> y_pred = [0, 2, 1, 2]
>>> y_true = [0, 1, 2, 2]
>>> jaccard_score(y_true, y_pred, average=None)
array([1. , 0. , 0.33...])

f1_score(y_true, y_pred, *, labels=None, pos_label=1, average='binary', sample_weight=None,
zero_division='warn')

Compute the F1 score, also known as balanced F-score or F-measure.

The F1 score can be interpreted as a harmonic mean of the precision and recall, where an F1 score reaches its
best value at 1 and worst score at 0. The relative contribution of precision and recall to the F1 score are equal.
The formula for the F1 score is:

F1 =
2 * TP

2 * TP + FP + FN

Where TP is the number of true positives, FN is the number of false negatives, and FP is the number of false
positives. F1 is by default calculated as 0.0 when there are no true positives, false negatives, or false positives.

Support beyond binary targets is achieved by treating multiclass and multilabel data as a collection of binary
problems, one for each label. For the binary case, setting average=’binary’ will return F1 score for pos_label. If
average is not ‘binary’, pos_label is ignored and F1 score for both classes are computed, then averaged or both
returned (when average=None). Similarly, for multiclass and multilabel targets, F1 score for all labels are either
returned or averaged depending on the average parameter. Use labels specify the set of labels to calculate F1
score for.

Read more in the User Guide.

Parameters
• y_true (1d array-like, or label indicator array / sparse matrix) –

Ground truth (correct) target values.

• y_pred (1d array-like, or label indicator array / sparse matrix) – Esti-
mated targets as returned by a classifier.

• labels (array-like, default=None) – The set of labels to include when average !=
‘binary’, and their order if average is None. Labels present in the data can be excluded, for
example in multiclass classification to exclude a “negative class”. Labels not present in the
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data can be included and will be “assigned” 0 samples. For multilabel targets, labels are
column indices. By default, all labels in y_true and y_pred are used in sorted order.

Changed in version 0.17: Parameter labels improved for multiclass problem.

• pos_label (int, float, bool or str, default=1) – The class to report if aver-
age=’binary’ and the data is binary, otherwise this parameter is ignored. For multiclass
or multilabel targets, set labels=[pos_label] and average != ‘binary’ to report metrics for
one label only.

• average ({'micro', 'macro', 'samples', 'weighted', 'binary'} or None,
default='binary') – This parameter is required for multiclass/multilabel targets. If
None, the scores for each class are returned. Otherwise, this determines the type of
averaging performed on the data:

'binary':
Only report results for the class specified by pos_label. This is applicable only if targets
(y_{true,pred}) are binary.

'micro':
Calculate metrics globally by counting the total true positives, false negatives and false
positives.

'macro':
Calculate metrics for each label, and find their unweighted mean. This does not take label
imbalance into account.

'weighted':
Calculate metrics for each label, and find their average weighted by support (the number
of true instances for each label). This alters ‘macro’ to account for label imbalance; it can
result in an F-score that is not between precision and recall.

'samples':
Calculate metrics for each instance, and find their average (only meaningful for multilabel
classification where this differs from accuracy_score()).

• sample_weight (array-like of shape (n_samples,), default=None) – Sample
weights.

• zero_division ({"warn", 0.0, 1.0, np.nan}, default="warn") – Sets the value
to return when there is a zero division, i.e. when all predictions and labels are negative.

Notes: - If set to “warn”, this acts like 0, but a warning is also raised. - If set to np.nan, such
values will be excluded from the average.

New in version 1.3: np.nan option was added.

Returns
f1_score – F1 score of the positive class in binary classification or weighted average of the F1
scores of each class for the multiclass task.

Return type
float or array of float, shape = [n_unique_labels]

See also:

fbeta_score
Compute the F-beta score.

precision_recall_fscore_support
Compute the precision, recall, F-score, and support.
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jaccard_score
Compute the Jaccard similarity coefficient score.

multilabel_confusion_matrix
Compute a confusion matrix for each class or sample.

Notes

When true positive + false positive + false negative == 0 (i.e. a class is completely absent
from both y_true or y_pred), f-score is undefined. In such cases, by default f-score will be set to 0.0, and
UndefinedMetricWarning will be raised. This behavior can be modified by setting the zero_division pa-
rameter.

References

Examples

>>> import numpy as np
>>> from sklearn.metrics import f1_score
>>> y_true = [0, 1, 2, 0, 1, 2]
>>> y_pred = [0, 2, 1, 0, 0, 1]
>>> f1_score(y_true, y_pred, average='macro')
0.26...
>>> f1_score(y_true, y_pred, average='micro')
0.33...
>>> f1_score(y_true, y_pred, average='weighted')
0.26...
>>> f1_score(y_true, y_pred, average=None)
array([0.8, 0. , 0. ])

>>> # binary classification
>>> y_true_empty = [0, 0, 0, 0, 0, 0]
>>> y_pred_empty = [0, 0, 0, 0, 0, 0]
>>> f1_score(y_true_empty, y_pred_empty)
0.0...
>>> f1_score(y_true_empty, y_pred_empty, zero_division=1.0)
1.0...
>>> f1_score(y_true_empty, y_pred_empty, zero_division=np.nan)
nan...

>>> # multilabel classification
>>> y_true = [[0, 0, 0], [1, 1, 1], [0, 1, 1]]
>>> y_pred = [[0, 0, 0], [1, 1, 1], [1, 1, 0]]
>>> f1_score(y_true, y_pred, average=None)
array([0.66666667, 1. , 0.66666667])

roc_auc_score(y_true, y_score, *, average='macro', sample_weight=None, max_fpr=None, multi_class='raise',
labels=None)

Compute Area Under the Receiver Operating Characteristic Curve (ROC AUC) from prediction scores.

Note: this implementation can be used with binary, multiclass and multilabel classification, but some restrictions
apply (see Parameters).
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Read more in the User Guide.

Parameters
• y_true (array-like of shape (n_samples,) or (n_samples, n_classes)) –

True labels or binary label indicators. The binary and multiclass cases expect labels with
shape (n_samples,) while the multilabel case expects binary label indicators with shape
(n_samples, n_classes).

• y_score (array-like of shape (n_samples,) or (n_samples, n_classes)) –
Target scores.

– In the binary case, it corresponds to an array of shape (n_samples,). Both probability esti-
mates and non-thresholded decision values can be provided. The probability estimates cor-
respond to the probability of the class with the greater label, i.e. estimator.classes_[1]
and thus estimator.predict_proba(X, y)[:, 1]. The decision values corresponds to the out-
put of estimator.decision_function(X, y). See more information in the User guide;

– In the multiclass case, it corresponds to an array of shape (n_samples, n_classes) of prob-
ability estimates provided by the predict_proba method. The probability estimates must
sum to 1 across the possible classes. In addition, the order of the class scores must cor-
respond to the order of labels, if provided, or else to the numerical or lexicographical
order of the labels in y_true. See more information in the User guide;

– In the multilabel case, it corresponds to an array of shape (n_samples, n_classes). Prob-
ability estimates are provided by the predict_proba method and the non-thresholded de-
cision values by the decision_function method. The probability estimates correspond to
the probability of the class with the greater label for each output of the classifier. See
more information in the User guide.

• average ({'micro', 'macro', 'samples', 'weighted'} or None, default='macro')
– If None, the scores for each class are returned. Otherwise, this determines the type of
averaging performed on the data. Note: multiclass ROC AUC currently only handles the
‘macro’ and ‘weighted’ averages. For multiclass targets, average=None is only implemented
for multi_class=’ovr’ and average=’micro’ is only implemented for multi_class=’ovr’.

'micro':
Calculate metrics globally by considering each element of the label indicator matrix as a
label.

'macro':
Calculate metrics for each label, and find their unweighted mean. This does not take label
imbalance into account.

'weighted':
Calculate metrics for each label, and find their average, weighted by support (the number
of true instances for each label).

'samples':
Calculate metrics for each instance, and find their average.

Will be ignored when y_true is binary.

• sample_weight (array-like of shape (n_samples,), default=None) – Sample
weights.

• max_fpr (float > 0 and <= 1, default=None) – If not None, the standardized partial
AUC [2]_ over the range [0, max_fpr] is returned. For the multiclass case, max_fpr, should
be either equal to None or 1.0 as AUC ROC partial computation currently is not supported
for multiclass.
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• multi_class ({'raise', 'ovr', 'ovo'}, default='raise') – Only used for multiclass
targets. Determines the type of configuration to use. The default value raises an error, so
either 'ovr' or 'ovo' must be passed explicitly.

'ovr':
Stands for One-vs-rest. Computes the AUC of each class against the rest [3]_ [4]_. This
treats the multiclass case in the same way as the multilabel case. Sensitive to class imbal-
ance even when average == 'macro', because class imbalance affects the composition
of each of the ‘rest’ groupings.

'ovo':
Stands for One-vs-one. Computes the average AUC of all possible pairwise combinations
of classes5. Insensitive to class imbalance when average == 'macro'.

• labels (array-like of shape (n_classes,), default=None) – Only used for
multiclass targets. List of labels that index the classes in y_score. If None, the numeri-
cal or lexicographical order of the labels in y_true is used.

Returns
auc – Area Under the Curve score.

Return type
float

See also:

average_precision_score
Area under the precision-recall curve.

roc_curve
Compute Receiver operating characteristic (ROC) curve.

RocCurveDisplay.from_estimator
Plot Receiver Operating Characteristic (ROC) curve given an estimator and some data.

RocCurveDisplay.from_predictions
Plot Receiver Operating Characteristic (ROC) curve given the true and predicted values.

Notes

The Gini Coefficient is a summary measure of the ranking ability of binary classifiers. It is expressed using the
area under of the ROC as follows:

G = 2 * AUC - 1

Where G is the Gini coefficient and AUC is the ROC-AUC score. This normalisation will ensure that random
guessing will yield a score of 0 in expectation, and it is upper bounded by 1.

5 Hand, D.J., Till, R.J. (2001). A Simple Generalisation of the Area Under the ROC Curve for Multiple Class Classification Problems. Machine
Learning, 45(2), 171-186.
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References

Examples

Binary case:

>>> from sklearn.datasets import load_breast_cancer
>>> from sklearn.linear_model import LogisticRegression
>>> from sklearn.metrics import roc_auc_score
>>> X, y = load_breast_cancer(return_X_y=True)
>>> clf = LogisticRegression(solver="liblinear", random_state=0).fit(X, y)
>>> roc_auc_score(y, clf.predict_proba(X)[:, 1])
0.99...
>>> roc_auc_score(y, clf.decision_function(X))
0.99...

Multiclass case:

>>> from sklearn.datasets import load_iris
>>> X, y = load_iris(return_X_y=True)
>>> clf = LogisticRegression(solver="liblinear").fit(X, y)
>>> roc_auc_score(y, clf.predict_proba(X), multi_class='ovr')
0.99...

Multilabel case:

>>> import numpy as np
>>> from sklearn.datasets import make_multilabel_classification
>>> from sklearn.multioutput import MultiOutputClassifier
>>> X, y = make_multilabel_classification(random_state=0)
>>> clf = MultiOutputClassifier(clf).fit(X, y)
>>> # get a list of n_output containing probability arrays of shape
>>> # (n_samples, n_classes)
>>> y_pred = clf.predict_proba(X)
>>> # extract the positive columns for each output
>>> y_pred = np.transpose([pred[:, 1] for pred in y_pred])
>>> roc_auc_score(y, y_pred, average=None)
array([0.82..., 0.86..., 0.94..., 0.85... , 0.94...])
>>> from sklearn.linear_model import RidgeClassifierCV
>>> clf = RidgeClassifierCV().fit(X, y)
>>> roc_auc_score(y, clf.decision_function(X), average=None)
array([0.81..., 0.84... , 0.93..., 0.87..., 0.94...])

accuracy_score(y_true, y_pred, *, normalize=True, sample_weight=None)
Accuracy classification score.

In multilabel classification, this function computes subset accuracy: the set of labels predicted for a sample must
exactly match the corresponding set of labels in y_true.

Read more in the User Guide.

Parameters
• y_true (1d array-like, or label indicator array / sparse matrix) –

Ground truth (correct) labels.
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• y_pred (1d array-like, or label indicator array / sparse matrix) – Pre-
dicted labels, as returned by a classifier.

• normalize (bool, default=True) – If False, return the number of correctly classified
samples. Otherwise, return the fraction of correctly classified samples.

• sample_weight (array-like of shape (n_samples,), default=None) – Sample
weights.

Returns
score – If normalize == True, return the fraction of correctly classified samples (float), else
returns the number of correctly classified samples (int).

The best performance is 1 with normalize == True and the number of samples with
normalize == False.

Return type
float

See also:

balanced_accuracy_score
Compute the balanced accuracy to deal with imbalanced datasets.

jaccard_score
Compute the Jaccard similarity coefficient score.

hamming_loss
Compute the average Hamming loss or Hamming distance between two sets of samples.

zero_one_loss
Compute the Zero-one classification loss. By default, the function will return the percentage of imperfectly
predicted subsets.

Notes

In binary classification, this function is equal to the jaccard_score function.

Examples

>>> from sklearn.metrics import accuracy_score
>>> y_pred = [0, 2, 1, 3]
>>> y_true = [0, 1, 2, 3]
>>> accuracy_score(y_true, y_pred)
0.5
>>> accuracy_score(y_true, y_pred, normalize=False)
2.0

In the multilabel case with binary label indicators:

>>> import numpy as np
>>> accuracy_score(np.array([[0, 1], [1, 1]]), np.ones((2, 2)))
0.5
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balanced_accuracy_score(y_true, y_pred, *, sample_weight=None, adjusted=False)
Compute the balanced accuracy.

The balanced accuracy in binary and multiclass classification problems to deal with imbalanced datasets. It is
defined as the average of recall obtained on each class.

The best value is 1 and the worst value is 0 when adjusted=False.

Read more in the User Guide.

New in version 0.20.

Parameters
• y_true (array-like of shape (n_samples,)) – Ground truth (correct) target values.

• y_pred (array-like of shape (n_samples,)) – Estimated targets as returned by a
classifier.

• sample_weight (array-like of shape (n_samples,), default=None) – Sample
weights.

• adjusted (bool, default=False) – When true, the result is adjusted for chance, so that
random performance would score 0, while keeping perfect performance at a score of 1.

Returns
balanced_accuracy – Balanced accuracy score.

Return type
float

See also:

average_precision_score
Compute average precision (AP) from prediction scores.

precision_score
Compute the precision score.

recall_score
Compute the recall score.

roc_auc_score
Compute Area Under the Receiver Operating Characteristic Curve (ROC AUC) from prediction scores.

Notes

Some literature promotes alternative definitions of balanced accuracy. Our definition is equivalent to
accuracy_score() with class-balanced sample weights, and shares desirable properties with the binary case.
See the User Guide.
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References

Examples

>>> from sklearn.metrics import balanced_accuracy_score
>>> y_true = [0, 1, 0, 0, 1, 0]
>>> y_pred = [0, 1, 0, 0, 0, 1]
>>> balanced_accuracy_score(y_true, y_pred)
0.625

top_k_accuracy_score(y_true, y_score, *, k=2, normalize=True, sample_weight=None, labels=None)
Top-k Accuracy classification score.

This metric computes the number of times where the correct label is among the top k labels predicted (ranked
by predicted scores). Note that the multilabel case isn’t covered here.

Read more in the User Guide

Parameters
• y_true (array-like of shape (n_samples,)) – True labels.

• y_score (array-like of shape (n_samples,) or (n_samples, n_classes)) –
Target scores. These can be either probability estimates or non-thresholded decision val-
ues (as returned by decision_function on some classifiers). The binary case expects scores
with shape (n_samples,) while the multiclass case expects scores with shape (n_samples,
n_classes). In the multiclass case, the order of the class scores must correspond to the order
of labels, if provided, or else to the numerical or lexicographical order of the labels in
y_true. If y_true does not contain all the labels, labels must be provided.

• k (int, default=2) – Number of most likely outcomes considered to find the correct label.

• normalize (bool, default=True) – If True, return the fraction of correctly classified
samples. Otherwise, return the number of correctly classified samples.

• sample_weight (array-like of shape (n_samples,), default=None) – Sample
weights. If None, all samples are given the same weight.

• labels (array-like of shape (n_classes,), default=None) – Multiclass only.
List of labels that index the classes in y_score. If None, the numerical or lexicographi-
cal order of the labels in y_true is used. If y_true does not contain all the labels, labels
must be provided.

Returns
score – The top-k accuracy score. The best performance is 1 with normalize == True and the
number of samples with normalize == False.

Return type
float

See also:

accuracy_score
Compute the accuracy score. By default, the function will return the fraction of correct predictions divided
by the total number of predictions.
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Notes

In cases where two or more labels are assigned equal predicted scores, the labels with the highest indices will be
chosen first. This might impact the result if the correct label falls after the threshold because of that.

Examples

>>> import numpy as np
>>> from sklearn.metrics import top_k_accuracy_score
>>> y_true = np.array([0, 1, 2, 2])
>>> y_score = np.array([[0.5, 0.2, 0.2], # 0 is in top 2
... [0.3, 0.4, 0.2], # 1 is in top 2
... [0.2, 0.4, 0.3], # 2 is in top 2
... [0.7, 0.2, 0.1]]) # 2 isn't in top 2
>>> top_k_accuracy_score(y_true, y_score, k=2)
0.75
>>> # Not normalizing gives the number of "correctly" classified samples
>>> top_k_accuracy_score(y_true, y_score, k=2, normalize=False)
3

pearson_r2_score(y: ndarray, y_pred: ndarray)→ float
Computes Pearson R^2 (square of Pearson correlation).

Parameters
• y (np.ndarray) – ground truth array

• y_pred (np.ndarray) – predicted array

Returns
The Pearson-R^2 score.

Return type
float

jaccard_index(y: ndarray, y_pred: ndarray)→ float
Computes Jaccard Index which is the Intersection Over Union metric which is commonly used in image segmen-
tation tasks.

DEPRECATED: WILL BE REMOVED IN A FUTURE VERSION OF DEEEPCHEM. USE jaccard_score
instead.

Parameters
• y (np.ndarray) – ground truth array

• y_pred (np.ndarray) – predicted array

Returns
score – The jaccard index. A number between 0 and 1.

Return type
float

pixel_error(y: ndarray, y_pred: ndarray)→ float
An error metric in case y, y_pred are images.

Defined as 1 - the maximal F-score of pixel similarity, or squared Euclidean distance between the original and
the result labels.
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Parameters
• y (np.ndarray) – ground truth array

• y_pred (np.ndarray) – predicted array

Returns
score – The pixel-error. A number between 0 and 1.

Return type
float

prc_auc_score(y: ndarray, y_pred: ndarray)→ float
Compute area under precision-recall curve

Parameters
• y (np.ndarray) – A numpy array of shape (N, n_classes) or (N,) with true labels

• y_pred (np.ndarray) – Of shape (N, n_classes) with class probabilities.

Returns
The area under the precision-recall curve. A number between 0 and 1.

Return type
float

rms_score(y_true: ndarray, y_pred: ndarray)→ float
Computes RMS error.

mae_score(y_true: ndarray, y_pred: ndarray)→ float
Computes MAE.

kappa_score(y1, y2, *, labels=None, weights=None, sample_weight=None)
Compute Cohen’s kappa: a statistic that measures inter-annotator agreement.

This function computes Cohen’s kappa [1]_, a score that expresses the level of agreement between two annotators
on a classification problem. It is defined as

𝜅 = (𝑝𝑜 − 𝑝𝑒)/(1− 𝑝𝑒)

where 𝑝𝑜 is the empirical probability of agreement on the label assigned to any sample (the observed agreement
ratio), and 𝑝𝑒 is the expected agreement when both annotators assign labels randomly. 𝑝𝑒 is estimated using a
per-annotator empirical prior over the class labels [2]_.

Read more in the User Guide.

Parameters
• y1 (array-like of shape (n_samples,)) – Labels assigned by the first annotator.

• y2 (array-like of shape (n_samples,)) – Labels assigned by the second annotator.
The kappa statistic is symmetric, so swapping y1 and y2 doesn’t change the value.

• labels (array-like of shape (n_classes,), default=None) – List of labels to in-
dex the matrix. This may be used to select a subset of labels. If None, all labels that appear
at least once in y1 or y2 are used.

• weights ({'linear', 'quadratic'}, default=None) – Weighting type to calculate the
score. None means no weighted; “linear” means linear weighted; “quadratic” means
quadratic weighted.

• sample_weight (array-like of shape (n_samples,), default=None) – Sample
weights.
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Returns
kappa – The kappa statistic, which is a number between -1 and 1. The maximum value means
complete agreement; zero or lower means chance agreement.

Return type
float

References

Examples

>>> from sklearn.metrics import cohen_kappa_score
>>> y1 = ["negative", "positive", "negative", "neutral", "positive"]
>>> y2 = ["negative", "positive", "negative", "neutral", "negative"]
>>> cohen_kappa_score(y1, y2)
0.6875

bedroc_score(y_true: ndarray, y_pred: ndarray, alpha: float = 20.0)
Compute BEDROC metric.

BEDROC metric implemented according to Truchon and Bayley that modifies the ROC score by allowing for a
factor of early recognition. Please confirm details from [1]_.

Parameters
• y_true (np.ndarray) – Binary class labels. 1 for positive class, 0 otherwise

• y_pred (np.ndarray) – Predicted labels

• alpha (float, default 20.0) – Early recognition parameter

Returns
Value in [0, 1] that indicates the degree of early recognition

Return type
float

Notes

This function requires RDKit to be installed.

References

concordance_index(y_true: ndarray, y_pred: ndarray)→ float
Compute Concordance index.

Statistical metric indicates the quality of the predicted ranking. Please confirm details from [1]_.

Parameters
• y_true (np.ndarray) – continous value

• y_pred (np.ndarray) – Predicted value

Returns
score between [0,1]
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Return type
float

References

get_motif_scores(encoded_sequences: ndarray, motif_names: List[str], max_scores: int | None = None,
return_positions: bool = False, GC_fraction: float = 0.4)→ ndarray

Computes pwm log odds.

Parameters
• encoded_sequences (np.ndarray) – A numpy array of shape (N_sequences, N_letters,

sequence_length, 1).

• motif_names (List[str]) – List of motif file names.

• max_scores (int, optional) – Get top max_scores scores.

• return_positions (bool, default False) – Whether to return postions or not.

• GC_fraction (float, default 0.4) – GC fraction in background sequence.

Returns
A numpy array of complete score. The shape is (N_sequences, num_motifs, seq_length) by de-
fault. If max_scores, the shape of score array is (N_sequences, num_motifs*max_scores). If
max_scores and return_positions, the shape of score array with max scores and their positions.
is (N_sequences, 2*num_motifs*max_scores).

Return type
np.ndarray

Notes

This method requires simdna to be installed.

get_pssm_scores(encoded_sequences: ndarray, pssm: ndarray)→ ndarray
Convolves pssm and its reverse complement with encoded sequences and returns the maximum score at each
position of each sequence.

Parameters
• encoded_sequences (np.ndarray) – A numpy array of shape (N_sequences, N_letters,

sequence_length, 1).

• pssm (np.ndarray) – A numpy array of shape (4, pssm_length).

Returns
scores – A numpy array of shape (N_sequences, sequence_length).

Return type
np.ndarray

in_silico_mutagenesis(model: Model, encoded_sequences: ndarray)→ ndarray
Computes in-silico-mutagenesis scores

Parameters
• model (Model) – This can be any model that accepts inputs of the required shape and pro-

duces an output of shape (N_sequences, N_tasks).

596 Chapter 3. About Us



deepchem, Release 2.8.0

• encoded_sequences (np.ndarray) – A numpy array of shape (N_sequences, N_letters,
sequence_length, 1)

Returns
A numpy array of ISM scores. The shape is (num_task, N_sequences, N_letters, se-
quence_length, 1).

Return type
np.ndarray

3.24.4 Metric Class

The dc.metrics.Metric class is a wrapper around metric functions which interoperates with DeepChem dc.
models.Model.

class Metric(metric: Callable[[...], float], task_averager: Callable[[...], Any] | None = None, name: str | None =
None, threshold: float | None = None, mode: str | None = None, n_tasks: int | None = None,
classification_handling_mode: str | None = None, threshold_value: float | None = None)

Wrapper class for computing user-defined metrics.

The Metric class provides a wrapper for standardizing the API around different classes of metrics that may be
useful for DeepChem models. The implementation provides a few non-standard conveniences such as built-in
support for multitask and multiclass metrics.

There are a variety of different metrics this class aims to support. Metrics for classification and regression that
assume that values to compare are scalars are supported.

At present, this class doesn’t support metric computation on models which don’t present scalar outputs. For
example, if you have a generative model which predicts images or molecules, you will need to write a custom
evaluation and metric setup.

__init__(metric: Callable[[...], float], task_averager: Callable[[...], Any] | None = None, name: str | None
= None, threshold: float | None = None, mode: str | None = None, n_tasks: int | None = None,
classification_handling_mode: str | None = None, threshold_value: float | None = None)

Parameters
• metric (function) – Function that takes args y_true, y_pred (in that order) and computes

desired score. If sample weights are to be considered, metric may take in an additional
keyword argument sample_weight.

• task_averager (function, default None) – If not None, should be a function that
averages metrics across tasks.

• name (str, default None) – Name of this metric

• threshold (float, default None (DEPRECATED)) – Used for binary metrics and is
the threshold for the positive class.

• mode (str, default None) – Should usually be “classification” or “regression.”

• n_tasks (int, default None) – The number of tasks this class is expected to handle.

• classification_handling_mode (str, default None) – DeepChem models by de-
fault predict class probabilities for classification problems. This means that for a given
singletask prediction, after shape normalization, the DeepChem labels and prediction will
be numpy arrays of shape (n_samples, n_tasks, n_classes) with class probabilities. classi-
fication_handling_mode is a string that instructs this method how to handle transforming
these probabilities. It can take on the following values: - “direct”: Pass y_true and y_pred
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directy into self.metric. - “threshold”: Use threshold_predictions to threshold y_true and
y_pred.

Use threshold_value as the desired threshold. This converts them into arrays of shape
(n_samples, n_tasks), where each element is a class index.

– ”threshold-one-hot”: Use threshold_predictions to threshold y_true and y_pred using
threshold_values, then apply to_one_hot to output.

– None: Select a mode automatically based on the metric.

• threshold_value (float, default None) – If set, and classification_handling_mode
is “threshold” or “threshold-one-hot”, apply a thresholding operation to values with this
threshold. This option is only sensible on binary classification tasks. For multiclass prob-
lems, or if threshold_value is None, argmax() is used to select the highest probability class
for each task.

compute_metric(y_true: _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] |
bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str |
bytes], y_pred: _SupportsArray[dtype[Any]] |
_NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes |
_NestedSequence[bool | int | float | complex | str | bytes], w: _SupportsArray[dtype[Any]] |
_NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes |
_NestedSequence[bool | int | float | complex | str | bytes] | None = None, n_tasks: int | None
= None, n_classes: int = 2, per_task_metrics: bool = False, use_sample_weights: bool =
False, **kwargs)→ Any

Compute a performance metric for each task.

Parameters
• y_true (ArrayLike) – An ArrayLike containing true values for each task. Must be of

shape (N,) or (N, n_tasks) or (N, n_tasks, n_classes) if a classification metric. If of shape
(N, n_tasks) values can either be class-labels or probabilities of the positive class for binary
classification problems. If a regression problem, must be of shape (N,) or (N, n_tasks) or
(N, n_tasks, 1) if a regression metric.

• y_pred (ArrayLike) – An ArrayLike containing predicted values for each task. Must be
of shape (N, n_tasks, n_classes) if a classification metric, else must be of shape (N, n_tasks)
if a regression metric.

• w (ArrayLike, default None) – An ArrayLike containing weights for each datapoint.
If specified, must be of shape (N, n_tasks).

• n_tasks (int, default None) – The number of tasks this class is expected to handle.

• n_classes (int, default 2) – Number of classes in data for classification tasks.

• per_task_metrics (bool, default False) – If true, return computed metric for each
task on multitask dataset.

• use_sample_weights (bool, default False) – If set, use per-sample weights w.

• kwargs (dict) – Will be passed on to self.metric

Returns
A numpy array containing metric values for each task.

Return type
np.ndarray
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compute_singletask_metric(y_true: _SupportsArray[dtype[Any]] |
_NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex |
str | bytes | _NestedSequence[bool | int | float | complex | str | bytes], y_pred:
_SupportsArray[dtype[Any]] |
_NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex |
str | bytes | _NestedSequence[bool | int | float | complex | str | bytes], w:
_SupportsArray[dtype[Any]] |
_NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex |
str | bytes | _NestedSequence[bool | int | float | complex | str | bytes] | None =
None, n_samples: int | None = None, use_sample_weights: bool = False,
**kwargs)→ float

Compute a metric value.

Parameters
• y_true (ArrayLike) – True values array. This array must be of shape (N, n_classes) if

classification and (N,) if regression.

• y_pred (ArrayLike) – Predictions array. This array must be of shape (N, n_classes) if
classification and (N,) if regression.

• w (ArrayLike, default None) – Sample weight array. This array must be of shape (N,)

• n_samples (int, default None (DEPRECATED)) – The number of samples in the
dataset. This is N. This argument is ignored.

• use_sample_weights (bool, default False) – If set, use per-sample weights w.

• kwargs (dict) – Will be passed on to self.metric

Returns
metric_value – The computed value of the metric.

Return type
float

3.25 Hyperparameter Tuning

One of the most important aspects of machine learning is hyperparameter tuning. Many machine learning models have
a number of hyperparameters that control aspects of the model. These hyperparameters typically cannot be learned
directly by the same learning algorithm used for the rest of learning and have to be set in an alternate fashion. The
dc.hyper module contains utilities for hyperparameter tuning.

DeepChem’s hyperparameter optimzation algorithms are simple and run in single-threaded fashion. They are not in-
tended to be production grade hyperparameter utilities, but rather useful first tools as you start exploring your parameter
space. As the needs of your application grow, we recommend swapping to a more heavy duty hyperparameter opti-
mization library.
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3.25.1 Hyperparameter Optimization API

class HyperparamOpt(model_builder: Callable[[...], Model])
Abstract superclass for hyperparameter search classes.

This class is an abstract base class for hyperparameter search classes in DeepChem. Hyperparameter search
is performed on dc.models.Model classes. Each hyperparameter object accepts a dc.models.Model class upon
construct. When the hyperparam_search class is invoked, this class is used to construct many different concrete
models which are trained on the specified training set and evaluated on a given validation set.

Different subclasses of HyperparamOpt differ in the choice of strategy for searching the hyperparameter evalu-
ation space. This class itself is an abstract superclass and should never be directly instantiated.

__init__(model_builder: Callable[[...], Model])
Initialize Hyperparameter Optimizer.

Note this is an abstract constructor which should only be used by subclasses.

Parameters
model_builder (constructor function.) – This parameter must be constructor func-
tion which returns an object which is an instance of dc.models.Model. This function must
accept two arguments, model_params of type dict and model_dir, a string specifying a path
to a model directory. See the example.

hyperparam_search(params_dict: Dict, train_dataset: Dataset, valid_dataset: Dataset, metric: Metric,
output_transformers: List[Transformer] = [], nb_epoch: int = 10, use_max: bool =
True, logfile: str = 'results.txt', logdir: str | None = None, **kwargs)→ Tuple[Model,
Dict[str, Any], Dict[str, Any]]

Conduct Hyperparameter search.

This method defines the common API shared by all hyperparameter optimization subclasses. Different
classes will implement different search methods but they must all follow this common API.

Parameters
• params_dict (Dict) – Dictionary mapping strings to values. Note that the precise seman-

tics of params_dict will change depending on the optimizer that you’re using. Depending
on the type of hyperparameter optimization, these values can be ints/floats/strings/lists/etc.
Read the documentation for the concrete hyperparameter optimization subclass you’re us-
ing to learn more about what’s expected.

• train_dataset (Dataset) – dataset used for training

• valid_dataset (Dataset) – dataset used for validation(optimization on valid scores)

• metric (Metric) – metric used for evaluation

• output_transformers (list[Transformer]) – Transformers for evaluation. This ar-
gument is needed since train_dataset and valid_dataset may have been transformed for
learning and need the transform to be inverted before the metric can be evaluated on a
model.

• nb_epoch (int, (default 10)) – Specifies the number of training epochs during each
iteration of optimization.

• use_max (bool, optional) – If True, return the model with the highest score. Else
return model with the minimum score.

• logdir (str, optional) – The directory in which to store created models. If not set,
will use a temporary directory.

600 Chapter 3. About Us



deepchem, Release 2.8.0

• logfile (str, optional (default results.txt)) – Name of logfile to write results to. If speci-
fied, this must be a valid file name. If not specified, results of hyperparameter search will
be written to logdir/results.txt.

Returns
(best_model, best_hyperparams, all_scores) where best_model is an instance of
dc.models.Model, best_hyperparams is a dictionary of parameters, and all_scores is a
dictionary mapping string representations of hyperparameter sets to validation scores.

Return type
Tuple[best_model, best_hyperparams, all_scores]

3.25.2 Grid Hyperparameter Optimization

This is the simplest form of hyperparameter optimization that simply involves iterating over a fixed grid of possible
values for hyperaparameters.

class GridHyperparamOpt(model_builder: Callable[[...], Model])
Provides simple grid hyperparameter search capabilities.

This class performs a grid hyperparameter search over the specified hyperparameter space. This implementation
is simple and simply does a direct iteration over all possible hyperparameters and doesn’t use parallelization to
speed up the search.

Examples

This example shows the type of constructor function expected.

>>> import sklearn
>>> import deepchem as dc
>>> optimizer = dc.hyper.GridHyperparamOpt(lambda **p: dc.models.
→˓GraphConvModel(**p))

Here’s a more sophisticated example that shows how to optimize only some parameters of a model. In this case,
we have some parameters we want to optimize, and others which we don’t. To handle this type of search, we
create a model_builder which hard codes some arguments (in this case, max_iter is a hyperparameter which we
don’t want to search over)

>>> import deepchem as dc
>>> import numpy as np
>>> from sklearn.linear_model import LogisticRegression as LR
>>> # generating data
>>> X = np.arange(1, 11, 1).reshape(-1, 1)
>>> y = np.hstack((np.zeros(5), np.ones(5)))
>>> dataset = dc.data.NumpyDataset(X, y)
>>> # splitting dataset into train and test
>>> splitter = dc.splits.RandomSplitter()
>>> train_dataset, test_dataset = splitter.train_test_split(dataset)
>>> # metric to evaluate result of a set of parameters
>>> metric = dc.metrics.Metric(dc.metrics.accuracy_score)
>>> # defining `model_builder`
>>> def model_builder(**model_params):
... penalty = model_params['penalty']
... solver = model_params['solver']

(continues on next page)
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(continued from previous page)

... lr = LR(penalty=penalty, solver=solver, max_iter=100)

... return dc.models.SklearnModel(lr)
>>> # the parameters which are to be optimized
>>> params = {
... 'penalty': ['l1', 'l2'],
... 'solver': ['liblinear', 'saga']
... }
>>> # Creating optimizer and searching over hyperparameters
>>> optimizer = dc.hyper.GridHyperparamOpt(model_builder)
>>> best_model, best_hyperparams, all_results = optimizer.hyperparam_
→˓search(params, train_dataset, test_dataset, metric)
>>> best_hyperparams # the best hyperparameters
{'penalty': 'l2', 'solver': 'saga'}

hyperparam_search(params_dict: Dict, train_dataset: Dataset, valid_dataset: Dataset, metric: Metric,
output_transformers: List[Transformer] = [], nb_epoch: int = 10, use_max: bool =
True, logfile: str = 'results.txt', logdir: str | None = None, **kwargs)→ Tuple[Model,
Dict, Dict]

Perform hyperparams search according to params_dict.

Each key to hyperparams_dict is a model_param. The values should be a list of potential values for that
hyperparam.

Parameters
• params_dict (Dict) – Maps hyperparameter names (strings) to lists of possible parameter

values.

• train_dataset (Dataset) – dataset used for training

• valid_dataset (Dataset) – dataset used for validation(optimization on valid scores)

• metric (Metric) – metric used for evaluation

• output_transformers (list[Transformer]) – Transformers for evaluation. This ar-
gument is needed since train_dataset and valid_dataset may have been transformed for
learning and need the transform to be inverted before the metric can be evaluated on a
model.

• nb_epoch (int, (default 10)) – Specifies the number of training epochs during each
iteration of optimization. Not used by all model types.

• use_max (bool, optional) – If True, return the model with the highest score. Else
return model with the minimum score.

• logdir (str, optional) – The directory in which to store created models. If not set,
will use a temporary directory.

• logfile (str, optional (default results.txt)) – Name of logfile to write results to. If spec-
ified, this is must be a valid file name. If not specified, results of hyperparameter search
will be written to logdir/results.txt.

Returns
• Tuple[best_model, best_hyperparams, all_scores]

• (best_model, best_hyperparams, all_scores) where best_model is

• an instance of dc.model.Model, best_hyperparams is a
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• dictionary of parameters, and all_scores is a dictionary mapping

• string representations of hyperparameter sets to validation

• scores.

Notes

From DeepChem 2.6, the return type of best_hyperparams is a dictionary of parameters rather than a tuple
of parameters as it was previously. The new changes have been made to standardize the behaviour across
different hyperparameter optimization techniques available in DeepChem.

3.25.3 Gaussian Process Hyperparameter Optimization

class GaussianProcessHyperparamOpt(model_builder: Callable[[...], Model], max_iter: int = 20,
search_range: int | float | Dict = 4)

Gaussian Process Global Optimization(GPGO)

This class uses Gaussian Process optimization to select hyperparameters. Underneath the hood it uses pyGPGO
to optimize models. If you don’t have pyGPGO installed, you won’t be able to use this class.

Note that params_dict has a different semantics than for GridHyperparamOpt. param_dict[hp] must be an
int/float and is used as the center of a search range.

Examples

This example shows the type of constructor function expected.

>>> import deepchem as dc
>>> optimizer = dc.hyper.GaussianProcessHyperparamOpt(lambda **p: dc.models.
→˓GraphConvModel(n_tasks=1, **p))

Here’s a more sophisticated example that shows how to optimize only some parameters of a model. In this case,
we have some parameters we want to optimize, and others which we don’t. To handle this type of search, we create
a model_builder which hard codes some arguments (in this case, n_tasks and n_features which are properties of
a dataset and not hyperparameters to search over.)

>>> import numpy as np
>>> from sklearn.ensemble import RandomForestRegressor as RF
>>> def model_builder(**model_params):
... n_estimators = model_params['n_estimators']
... min_samples_split = model_params['min_samples_split']
... rf_model = RF(n_estimators=n_estimators, min_samples_split=min_samples_split)
... rf_model = RF(n_estimators=n_estimators)
... return dc.models.SklearnModel(rf_model)
>>> optimizer = dc.hyper.GaussianProcessHyperparamOpt(model_builder)
>>> params_dict = {"n_estimators":100, "min_samples_split":2}
>>> train_dataset = dc.data.NumpyDataset(X=np.random.rand(50, 5),
... y=np.random.rand(50, 1))
>>> valid_dataset = dc.data.NumpyDataset(X=np.random.rand(20, 5),
... y=np.random.rand(20, 1))
>>> metric = dc.metrics.Metric(dc.metrics.pearson_r2_score)
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>> best_model, best_hyperparams, all_results = optimizer.hyperparam_search(params_dict, train_dataset,
valid_dataset, metric, max_iter=2) >> type(best_hyperparams) <class ‘dict’>

Parameters
• model_builder (constructor function.) – This parameter must be constructor func-

tion which returns an object which is an instance of dc.models.Model. This function must
accept two arguments, model_params of type dict and model_dir, a string specifying a path
to a model directory.

• max_iter (int, default 20) – number of optimization trials

• search_range (int/float/Dict (default 4)) – The search_range specifies the range
of parameter values to search for. If search_range is an int/float, it is used as the global search
range for parameters. This creates a search problem on the following space:

optimization on [initial value / search_range,
initial value * search_range]

If search_range is a dict, it must contain the same keys as for params_dict. In this case,
search_range specifies a per-parameter search range. This is useful in case some parameters
have a larger natural range than others. For a given hyperparameter hp this would create the
following search range:

optimization on hp on [initial value[hp] / search_range[hp],
initial value[hp] * search_range[hp]]

Notes

This class requires pyGPGO to be installed.

__init__(model_builder: Callable[[...], Model], max_iter: int = 20, search_range: int | float | Dict = 4)
Initialize Hyperparameter Optimizer.

Note this is an abstract constructor which should only be used by subclasses.

Parameters
model_builder (constructor function.) – This parameter must be constructor func-
tion which returns an object which is an instance of dc.models.Model. This function must
accept two arguments, model_params of type dict and model_dir, a string specifying a path
to a model directory. See the example.

hyperparam_search(params_dict: Dict, train_dataset: Dataset, valid_dataset: Dataset, metric: Metric,
output_transformers: List[Transformer] = [], nb_epoch: int = 10, use_max: bool =
True, logfile: str = 'results.txt', logdir: str | None = None, **kwargs)→ Tuple[Model,
Dict[str, Any], Dict[str, Any]]

Perform hyperparameter search using a gaussian process.

Parameters
• params_dict (Dict) – Maps hyperparameter names (strings) to possible parameter val-

ues. The semantics of this list are different than for GridHyperparamOpt. params_dict[hp]
must map to an int/float, which is used as the center of a search with radius search_range
since pyGPGO can only optimize numerical hyperparameters.

• train_dataset (Dataset) – dataset used for training

• valid_dataset (Dataset) – dataset used for validation(optimization on valid scores)

• metric (Metric) – metric used for evaluation
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• output_transformers (list[Transformer]) – Transformers for evaluation. This ar-
gument is needed since train_dataset and valid_dataset may have been transformed for
learning and need the transform to be inverted before the metric can be evaluated on a
model.

• nb_epoch (int, (default 10)) – Specifies the number of training epochs during each
iteration of optimization. Not used by all model types.

• use_max (bool, (default True)) – Specifies whether to maximize or minimize met-
ric. maximization(True) or minimization(False)

• logdir (str, optional, (default None)) – The directory in which to store created
models. If not set, will use a temporary directory.

• logfile (str, optional (default results.txt)) – Name of logfile to write results to. If speci-
fied, this is must be a valid file. If not specified, results of hyperparameter search will be
written to logdir/results.txt.

Returns
(best_model, best_hyperparams, all_scores) where best_model is an instance of
dc.model.Model, best_hyperparams is a dictionary of parameters, and all_scores is a
dictionary mapping string representations of hyperparameter sets to validation scores.

Return type
Tuple[best_model, best_hyperparams, all_scores]

3.26 Metalearning

One of the hardest challenges in scientific machine learning is lack of access of sufficient data. Sometimes experiments
are slow and expensive and there’s no easy way to gain access to more data. What do you do then?

This module contains a collection of techniques for doing low data learning. “Metalearning” traditionally refers to
techniques for “learning to learn” but here we take it to mean any technique which proves effective for learning with
low amounts of data.

3.26.1 MetaLearner

This is the abstract superclass for metalearning algorithms.

class MetaLearner

Model and data to which the MAML algorithm can be applied.

To use MAML, create a subclass of this defining the learning problem to solve. It consists of a model that can
be trained to perform many different tasks, and data for training it on a large (possibly infinite) set of different
tasks.

compute_model(inputs, variables, training)
Compute the model for a set of inputs and variables.

Parameters
• inputs (list of tensors) – the inputs to the model

• variables (list of tensors) – the values to use for the model’s variables. This might
be the actual variables (as returned by the MetaLearner’s variables property), or alterna-
tively it might be the values of those variables after one or more steps of gradient descent
for the current task.
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• training (bool) – indicates whether the model is being invoked for training or prediction

Returns
• (loss, outputs) where loss is the value of the model’s loss function, and

• outputs is a list of the model’s outputs

property variables

Get the list of variables to train.

select_task()

Select a new task to train on.

If there is a fixed set of training tasks, this will typically cycle through them. If there are infinitely many
training tasks, this can simply select a new one each time it is called.

get_batch()

Get a batch of data for training.

This should return the data as a list of arrays, one for each of the model’s inputs. This will usually be called
twice for each task, and should return a different batch on each call.

parameters()

Returns an iterator over the MetaLearner parameters.

3.27 Tensorflow implementation

3.27.1 MAML

class MAML(learner, learning_rate=0.001, optimization_steps=1, meta_batch_size=10,
optimizer=<deepchem.models.optimizers.Adam object>, model_dir=None)

Implements the Model-Agnostic Meta-Learning algorithm for low data learning.

The algorithm is described in Finn et al., “Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks”
(https://arxiv.org/abs/1703.03400). It is used for training models that can perform a variety of tasks, depending
on what data they are trained on. It assumes you have training data for many tasks, but only a small amount for
each one. It performs “meta-learning” by looping over tasks and trying to minimize the loss on each one after
one or a few steps of gradient descent. That is, it does not try to create a model that can directly solve the tasks,
but rather tries to create a model that is very easy to train.

To use this class, create a subclass of MetaLearner that encapsulates the model and data for your learning problem.
Pass it to a MAML object and call fit(). You can then use train_on_current_task() to fine tune the model for a
particular task.

__init__(learner, learning_rate=0.001, optimization_steps=1, meta_batch_size=10,
optimizer=<deepchem.models.optimizers.Adam object>, model_dir=None)

Create an object for performing meta-optimization.

Parameters
• learner (MetaLearner) – defines the meta-learning problem

• learning_rate (float or Tensor) – the learning rate to use for optimizing each task
(not to be confused with the one used for meta-learning). This can optionally be made a
variable (represented as a Tensor), in which case the learning rate will itself be learnable.
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• optimization_steps (int) – the number of steps of gradient descent to perform for each
task

• meta_batch_size (int) – the number of tasks to use for each step of meta-learning

• optimizer (Optimizer) – the optimizer to use for meta-learning (not to be confused with
the gradient descent optimization performed for each task)

• model_dir (str) – the directory in which the model will be saved. If None, a temporary
directory will be created.

fit(steps, max_checkpoints_to_keep=5, checkpoint_interval=600, restore=False)
Perform meta-learning to train the model.

Parameters
• steps (int) – the number of steps of meta-learning to perform

• max_checkpoints_to_keep (int) – the maximum number of checkpoint files to keep.
When this number is reached, older files are deleted.

• checkpoint_interval (float) – the time interval at which to save checkpoints, mea-
sured in seconds

• restore (bool) – if True, restore the model from the most recent checkpoint before train-
ing it further

restore()

Reload the model parameters from the most recent checkpoint file.

train_on_current_task(optimization_steps=1, restore=True)
Perform a few steps of gradient descent to fine tune the model on the current task.

Parameters
• optimization_steps (int) – the number of steps of gradient descent to perform

• restore (bool) – if True, restore the model from the most recent checkpoint before opti-
mizing

predict_on_batch(inputs)
Compute the model’s outputs for a batch of inputs.

Parameters
inputs (list of arrays) – the inputs to the model

Returns
• (loss, outputs) where loss is the value of the model’s loss function, and

• outputs is a list of the model’s outputs

3.28 Torch implementation

3.28.1 MAML

class MAML(learner: ~deepchem.metalearning.MetaLearner, learning_rate: float |
~deepchem.models.optimizers.LearningRateSchedule = 0.001, optimization_steps: int = 1,
meta_batch_size: int = 10, optimizer: ~deepchem.models.optimizers.Optimizer =
<deepchem.models.optimizers.Adam object>, model_dir: str | None = None, device: ~torch.device |
None = None)
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Implements the Model-Agnostic Meta-Learning algorithm for low data learning.

The algorithm is described in Finn et al., “Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks”
(https://arxiv.org/abs/1703.03400). It is used for training models that can perform a variety of tasks, depending
on what data they are trained on. It assumes you have training data for many tasks, but only a small amount for
each one. It performs “meta-learning” by looping over tasks and trying to minimize the loss on each one after
one or a few steps of gradient descent. That is, it does not try to create a model that can directly solve the tasks,
but rather tries to create a model that is very easy to train.

To use this class, create a subclass of MetaLearner that encapsulates the model and data for your learning problem.
Pass it to a MAML object and call fit(). You can then use train_on_current_task() to fine tune the model for a
particular task. .. rubric:: Example

>>> import deepchem as dc
>>> import numpy as np
>>> import torch
>>> import torch.nn.functional as F
>>> from deepchem.metalearning.torch_maml import MetaLearner, MAML
>>> class SineLearner(MetaLearner):
... def __init__(self):
... self.batch_size = 10
... self.w1 = torch.nn.Parameter(torch.tensor(np.random.normal(size=[1, 40],
→˓ scale=1.0),requires_grad=True))
... self.w2 = torch.nn.Parameter(torch.tensor(np.random.normal(size=[40,␣
→˓40], scale=np.sqrt(1 / 40)),requires_grad=True))
... self.w3 = torch.nn.Parameter(torch.tensor(np.random.normal(size=[40, 1],
→˓ scale=np.sqrt(1 / 40)),requires_grad=True))
... self.b1 = torch.nn.Parameter(torch.tensor(np.zeros(40)),requires_
→˓grad=True)
... self.b2 = torch.nn.Parameter(torch.tensor(np.zeros(40)),requires_
→˓grad=True)
... self.b3 = torch.nn.Parameter(torch.tensor(np.zeros(1)),requires_
→˓grad=True)
... def compute_model(self, inputs, variables, training):
... x, y = inputs
... w1, w2, w3, b1, b2, b3 = variables
... dense1 = F.relu(torch.matmul(x, w1) + b1)
... dense2 = F.relu(torch.matmul(dense1, w2) + b2)
... output = torch.matmul(dense2, w3) + b3
... loss = torch.mean(torch.square(output - y))
... return loss, [output]
... @property
... def variables(self):
... return [self.w1, self.w2, self.w3, self.b1, self.b2, self.b3]
... def select_task(self):
... self.amplitude = 5.0 * np.random.random()
... self.phase = np.pi * np.random.random()
... def get_batch(self):
... x = torch.tensor(np.random.uniform(-5.0, 5.0, (self.batch_size, 1)))
... return [x, torch.tensor(self.amplitude * np.sin(x + self.phase))]
... def parameters(self):
... for key, value in self.__dict__.items():
... if isinstance(value, torch.nn.Parameter):

(continues on next page)
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(continued from previous page)

... yield value
>>> learner = SineLearner()
>>> optimizer = dc.models.optimizers.Adam(learning_rate=5e-3)
>>> maml = MAML(learner,meta_batch_size=4,optimizer=optimizer)
>>> maml.fit(9000)

To test it out on a new task and see how it works

>>> learner.select_task()
>>> maml.restore()
>>> batch = learner.get_batch()
>>> loss, outputs = maml.predict_on_batch(batch)
>>> maml.train_on_current_task()
>>> loss, outputs = maml.predict_on_batch(batch)

__init__(learner: ~deepchem.metalearning.MetaLearner, learning_rate: float |
~deepchem.models.optimizers.LearningRateSchedule = 0.001, optimization_steps: int = 1,
meta_batch_size: int = 10, optimizer: ~deepchem.models.optimizers.Optimizer =
<deepchem.models.optimizers.Adam object>, model_dir: str | None = None, device: ~torch.device
| None = None)

Create an object for performing meta-optimization.

Parameters
• learner (MetaLearner) – defines the meta-learning problem

• learning_rate (float or Tensor) – the learning rate to use for optimizing each task
(not to be confused with the one used for meta-learning). This can optionally be made a
variable (represented as a Tensor), in which case the learning rate will itself be learnable.

• optimization_steps (int) – the number of steps of gradient descent to perform for each
task

• meta_batch_size (int) – the number of tasks to use for each step of meta-learning

• optimizer (Optimizer) – the optimizer to use for meta-learning (not to be confused with
the gradient descent optimization performed for each task)

• model_dir (str) – the directory in which the model will be saved. If None, a temporary
directory will be created.

• device (torch.device, optional (default None)) – the device on which to run
computations. If None, a device is chosen automatically.

fit(steps: int, max_checkpoints_to_keep: int = 5, checkpoint_interval: int = 600, restore: bool = False)
Perform meta-learning to train the model.

Parameters
• steps (int) – the number of steps of meta-learning to perform

• max_checkpoints_to_keep (int) – the maximum number of checkpoint files to keep.
When this number is reached, older files are deleted.

• checkpoint_interval (int) – the time interval at which to save checkpoints, measured
in seconds

• restore (bool) – if True, restore the model from the most recent checkpoint before train-
ing it further
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restore()→ None
Reload the model parameters from the most recent checkpoint file.

train_on_current_task(optimization_steps: int = 1, restore: bool = True)
Perform a few steps of gradient descent to fine tune the model on the current task.

Parameters
• optimization_steps (int) – the number of steps of gradient descent to perform

• restore (bool) – if True, restore the model from the most recent checkpoint before opti-
mizing

predict_on_batch(inputs: Tensor | Sequence[Tensor])→ Tuple[Tensor, Sequence[Tensor]]
Compute the model’s outputs for a batch of inputs.

Parameters
inputs (list of arrays) – the inputs to the model

Returns
• (loss, outputs) where loss is the value of the model’s loss function, and

• outputs is a list of the model’s outputs

save_checkpoint(max_checkpoints_to_keep: int = 5, model_dir: str | None = None)→ None
Save a checkpoint to disk.

Usually you do not need to call this method, since fit() saves checkpoints automatically. If you have disabled
automatic checkpointing during fitting, this can be called to manually write checkpoints.

Parameters
• max_checkpoints_to_keep (int) – the maximum number of checkpoints to keep. Older

checkpoints are discarded.

• model_dir (str, default None) – Model directory to save checkpoint to. If None,
revert to self.model_dir

get_checkpoints(model_dir: str | None = None)→ List[str]
Get a list of all available checkpoint files.

Parameters
model_dir (str, default None) – Directory to get list of checkpoints from. Reverts to
self.model_dir if None

3.29 Reinforcement Learning

Reinforcement Learning is a powerful technique for learning when you have access to a simulator. That is, suppose
that you have a high fidelity way of predicting the outcome of an experiment. This is perhaps a physics engine, perhaps
a chemistry engine, or anything. And you’d like to solve some task within this engine. You can use reinforcement
learning for this purpose.
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3.29.1 Environments

class Environment(state_shape, n_actions=None, state_dtype=None, action_shape=None)
An environment in which an actor performs actions to accomplish a task.

An environment has a current state, which is represented as either a single NumPy array, or optionally a list of
NumPy arrays. When an action is taken, that causes the state to be updated. The environment also computes
a reward for each action, and reports when the task has been terminated (meaning that no more actions may be
taken).

Two types of actions are supported. For environments with discrete action spaces, the action is an integer speci-
fying the index of the action to perform (out of a fixed list of possible actions). For environments with continuous
action spaces, the action is a NumPy array.

Environment objects should be written to support pickle and deepcopy operations. Many algorithms involve cre-
ating multiple copies of the Environment, possibly running in different processes or even on different computers.

__init__(state_shape, n_actions=None, state_dtype=None, action_shape=None)
Subclasses should call the superclass constructor in addition to doing their own initialization.

A value should be provided for either n_actions (for discrete action spaces) or action_shape (for continuous
action spaces), but not both.

Parameters
• state_shape (tuple or list of tuples) – the shape(s) of the array(s) making up

the state

• n_actions (int) – the number of discrete actions that can be performed. If the action
space is continuous, this should be None.

• state_dtype (dtype or list of dtypes) – the type(s) of the array(s) making up the
state. If this is None, all arrays are assumed to be float32.

• action_shape (tuple) – the shape of the array describing an action. If the action space
is discrete, this should be none.

property state

The current state of the environment, represented as either a NumPy array or list of arrays.

If reset() has not yet been called at least once, this is undefined.

property terminated

Whether the task has reached its end.

If reset() has not yet been called at least once, this is undefined.

property state_shape

The shape of the arrays that describe a state.

If the state is a single array, this returns a tuple giving the shape of that array. If the state is a list of arrays,
this returns a list of tuples where each tuple is the shape of one array.

property state_dtype

The dtypes of the arrays that describe a state.

If the state is a single array, this returns the dtype of that array. If the state is a list of arrays, this returns a
list containing the dtypes of the arrays.
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property n_actions

The number of possible actions that can be performed in this Environment.

If the environment uses a continuous action space, this returns None.

property action_shape

The expected shape of NumPy arrays representing actions.

If the environment uses a discrete action space, this returns None.

reset()

Initialize the environment in preparation for doing calculations with it.

This must be called before calling step() or querying the state. You can call it again later to reset the
environment back to its original state.

step(action)
Take a time step by performing an action.

This causes the “state” and “terminated” properties to be updated.

Parameters
action (object) – an object describing the action to take

Returns
• the reward earned by taking the action, represented as a floating point number

• (higher values are better)

class GymEnvironment(name)
This is a convenience class for working with environments from OpenAI Gym.

__init__(name)
Create an Environment wrapping the OpenAI Gym environment with a specified name.

reset()

Initialize the environment in preparation for doing calculations with it.

This must be called before calling step() or querying the state. You can call it again later to reset the
environment back to its original state.

step(action)
Take a time step by performing an action.

This causes the “state” and “terminated” properties to be updated.

Parameters
action (object) – an object describing the action to take

Returns
• the reward earned by taking the action, represented as a floating point number

• (higher values are better)
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3.29.2 Policies

class Policy(output_names, rnn_initial_states=[])
A policy for taking actions within an environment.

A policy is defined by a tf.keras.Model that takes the current state as input and performs the necessary calcu-
lations. There are many algorithms for reinforcement learning, and they differ in what values they require a
policy to compute. That makes it impossible to define a single interface allowing any policy to be optimized
with any algorithm. Instead, this interface just tries to be as flexible and generic as possible. Each algorithm
must document what values it expects the model to output.

Special handling is needed for models that include recurrent layers. In that case, the model has its own internal
state which the learning algorithm must be able to specify and query. To support this, the Policy must do three
things:

1. The Model must take additional inputs that specify the initial states of
all its recurrent layers. These will be appended to the list of arrays specifying the environment state.

2. The Model must also return the final states of all its recurrent layers as
outputs.

3. The constructor argument rnn_initial_states must be specified to define
the states to use for the Model’s recurrent layers at the start of a new rollout.

Policy objects should be written to support pickling. Many algorithms involve creating multiple copies of the
Policy, possibly running in different processes or even on different computers.

__init__(output_names, rnn_initial_states=[])
Subclasses should call the superclass constructor in addition to doing their own initialization.

Parameters
• output_names (list of strings) – the names of the Model’s outputs, in order. It is

up to each reinforcement learning algorithm to document what outputs it expects policies
to compute. Outputs that return the final states of recurrent layers should have the name
‘rnn_state’.

• rnn_initial_states (list of NumPy arrays) – the initial states of the Model’s re-
current layers at the start of a new rollout

create_model(**kwargs)
Construct and return a tf.keras.Model that computes the policy.

The inputs to the model consist of the arrays representing the current state of the environment, followed
by the initial states for all recurrent layers. Depending on the algorithm being used, other inputs might get
passed as well. It is up to each algorithm to document that.

3.29.3 A2C

class A2C(env, policy, max_rollout_length=20, discount_factor=0.99, advantage_lambda=0.98,
value_weight=1.0, entropy_weight=0.01, optimizer=None, model_dir=None, use_hindsight=False)

Implements the Advantage Actor-Critic (A2C) algorithm for reinforcement learning.

The algorithm is described in Mnih et al, “Asynchronous Methods for Deep Reinforcement Learning” (https:
//arxiv.org/abs/1602.01783). This class supports environments with both discrete and continuous action spaces.
For discrete action spaces, the “action” argument passed to the environment is an integer giving the index of the
action to perform. The policy must output a vector called “action_prob” giving the probability of taking each
action. For continuous action spaces, the action is an array where each element is chosen independently from a
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normal distribution. The policy must output two arrays of the same shape: “action_mean” gives the mean value
for each element, and “action_std” gives the standard deviation for each element. In either case, the policy must
also output a scalar called “value” which is an estimate of the value function for the current state.

The algorithm optimizes all outputs at once using a loss that is the sum of three terms:

1. The policy loss, which seeks to maximize the discounted reward for each action.

2. The value loss, which tries to make the value estimate match the actual discounted reward
that was attained at each step.

3. An entropy term to encourage exploration.

This class supports Generalized Advantage Estimation as described in Schulman et al., “High-Dimensional Con-
tinuous Control Using Generalized Advantage Estimation” (https://arxiv.org/abs/1506.02438). This is a method
of trading off bias and variance in the advantage estimate, which can sometimes improve the rate of convergance.
Use the advantage_lambda parameter to adjust the tradeoff.

This class supports Hindsight Experience Replay as described in Andrychowicz et al., “Hindsight Experience
Replay” (https://arxiv.org/abs/1707.01495). This is a method that can enormously accelerate learning when
rewards are very rare. It requires that the environment state contains information about the goal the agent is
trying to achieve. Each time it generates a rollout, it processes that rollout twice: once using the actual goal the
agent was pursuing while generating it, and again using the final state of that rollout as the goal. This guarantees
that half of all rollouts processed will be ones that achieved their goals, and hence received a reward.

To use this feature, specify use_hindsight=True to the constructor. The environment must have a method defined
as follows:

def apply_hindsight(self, states, actions, goal):
. . . return new_states, rewards

The method receives the list of states generated during the rollout, the action taken for each one, and a new
goal state. It should generate a new list of states that are identical to the input ones, except specifying the new
goal. It should return that list of states, and the rewards that would have been received for taking the specified
actions from those states. The output arrays may be shorter than the input ones, if the modified rollout would
have terminated sooner.

Note: Using this class on continuous action spaces requires that tensorflow_probability be installed.

__init__(env, policy, max_rollout_length=20, discount_factor=0.99, advantage_lambda=0.98,
value_weight=1.0, entropy_weight=0.01, optimizer=None, model_dir=None,
use_hindsight=False)

Create an object for optimizing a policy.

Parameters
• env (Environment) – the Environment to interact with

• policy (Policy) – the Policy to optimize. It must have outputs with the names ‘ac-
tion_prob’ and ‘value’ (for discrete action spaces) or ‘action_mean’, ‘action_std’, and
‘value’ (for continuous action spaces)

• max_rollout_length (int) – the maximum length of rollouts to generate

• discount_factor (float) – the discount factor to use when computing rewards

• advantage_lambda (float) – the parameter for trading bias vs. variance in Generalized
Advantage Estimation

• value_weight (float) – a scale factor for the value loss term in the loss function
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• entropy_weight (float) – a scale factor for the entropy term in the loss function

• optimizer (Optimizer) – the optimizer to use. If None, a default optimizer is used.

• model_dir (str) – the directory in which the model will be saved. If None, a temporary
directory will be created.

• use_hindsight (bool) – if True, use Hindsight Experience Replay

fit(total_steps, max_checkpoints_to_keep=5, checkpoint_interval=600, restore=False)
Train the policy.

Parameters
• total_steps (int) – the total number of time steps to perform on the environment, across

all rollouts on all threads

• max_checkpoints_to_keep (int) – the maximum number of checkpoint files to keep.
When this number is reached, older files are deleted.

• checkpoint_interval (float) – the time interval at which to save checkpoints, mea-
sured in seconds

• restore (bool) – if True, restore the model from the most recent checkpoint and continue
training from there. If False, retrain the model from scratch.

predict(state, use_saved_states=True, save_states=True)
Compute the policy’s output predictions for a state.

If the policy involves recurrent layers, this method can preserve their internal states between calls. Use the
use_saved_states and save_states arguments to specify how it should behave.

Parameters
• state (array or list of arrays) – the state of the environment for which to generate

predictions

• use_saved_states (bool) – if True, the states most recently saved by a previous call to
predict() or select_action() will be used as the initial states. If False, the internal states of
all recurrent layers will be set to the initial values defined by the policy before computing
the predictions.

• save_states (bool) – if True, the internal states of all recurrent layers at the end of the
calculation will be saved, and any previously saved states will be discarded. If False, the
states at the end of the calculation will be discarded, and any previously saved states will
be kept.

Return type
the array of action probabilities, and the estimated value function

select_action(state, deterministic=False, use_saved_states=True, save_states=True)
Select an action to perform based on the environment’s state.

If the policy involves recurrent layers, this method can preserve their internal states between calls. Use the
use_saved_states and save_states arguments to specify how it should behave.

Parameters
• state (array or list of arrays) – the state of the environment for which to select

an action

• deterministic (bool) – if True, always return the best action (that is, the one with highest
probability). If False, randomly select an action based on the computed probabilities.
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• use_saved_states (bool) – if True, the states most recently saved by a previous call to
predict() or select_action() will be used as the initial states. If False, the internal states of
all recurrent layers will be set to the initial values defined by the policy before computing
the predictions.

• save_states (bool) – if True, the internal states of all recurrent layers at the end of the
calculation will be saved, and any previously saved states will be discarded. If False, the
states at the end of the calculation will be discarded, and any previously saved states will
be kept.

Return type
the index of the selected action

restore()

Reload the model parameters from the most recent checkpoint file.

class A2CLossDiscrete(value_weight, entropy_weight, action_prob_index, value_index)
This class computes the loss function for A2C with discrete action spaces.

__init__(value_weight, entropy_weight, action_prob_index, value_index)

3.29.4 PPO

class PPO(env, policy, max_rollout_length=20, optimization_rollouts=8, optimization_epochs=4, batch_size=64,
clipping_width=0.2, discount_factor=0.99, advantage_lambda=0.98, value_weight=1.0,
entropy_weight=0.01, optimizer=None, model_dir=None, use_hindsight=False)

Implements the Proximal Policy Optimization (PPO) algorithm for reinforcement learning.

The algorithm is described in Schulman et al, “Proximal Policy Optimization Algorithms” (https://openai-public.
s3-us-west-2.amazonaws.com/blog/2017-07/ppo/ppo-arxiv.pdf). This class requires the policy to output two
quantities: a vector giving the probability of taking each action, and an estimate of the value function for the
current state. It optimizes both outputs at once using a loss that is the sum of three terms:

1. The policy loss, which seeks to maximize the discounted reward for each action.

2. The value loss, which tries to make the value estimate match the actual discounted reward
that was attained at each step.

3. An entropy term to encourage exploration.

This class only supports environments with discrete action spaces, not continuous ones. The “action” argument
passed to the environment is an integer, giving the index of the action to perform.

This class supports Generalized Advantage Estimation as described in Schulman et al., “High-Dimensional Con-
tinuous Control Using Generalized Advantage Estimation” (https://arxiv.org/abs/1506.02438). This is a method
of trading off bias and variance in the advantage estimate, which can sometimes improve the rate of convergance.
Use the advantage_lambda parameter to adjust the tradeoff.

This class supports Hindsight Experience Replay as described in Andrychowicz et al., “Hindsight Experience
Replay” (https://arxiv.org/abs/1707.01495). This is a method that can enormously accelerate learning when
rewards are very rare. It requires that the environment state contains information about the goal the agent is
trying to achieve. Each time it generates a rollout, it processes that rollout twice: once using the actual goal the
agent was pursuing while generating it, and again using the final state of that rollout as the goal. This guarantees
that half of all rollouts processed will be ones that achieved their goals, and hence received a reward.

To use this feature, specify use_hindsight=True to the constructor. The environment must have a method defined
as follows:
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def apply_hindsight(self, states, actions, goal):
. . . return new_states, rewards

The method receives the list of states generated during the rollout, the action taken for each one, and a new
goal state. It should generate a new list of states that are identical to the input ones, except specifying the new
goal. It should return that list of states, and the rewards that would have been received for taking the specified
actions from those states. The output arrays may be shorter than the input ones, if the modified rollout would
have terminated sooner.

__init__(env, policy, max_rollout_length=20, optimization_rollouts=8, optimization_epochs=4,
batch_size=64, clipping_width=0.2, discount_factor=0.99, advantage_lambda=0.98,
value_weight=1.0, entropy_weight=0.01, optimizer=None, model_dir=None,
use_hindsight=False)

Create an object for optimizing a policy.

Parameters
• env (Environment) – the Environment to interact with

• policy (Policy) – the Policy to optimize. It must have outputs with the names ‘ac-
tion_prob’ and ‘value’, corresponding to the action probabilities and value estimate

• max_rollout_length (int) – the maximum length of rollouts to generate

• optimization_rollouts (int) – the number of rollouts to generate for each iteration of
optimization

• optimization_epochs (int) – the number of epochs of optimization to perform within
each iteration

• batch_size (int) – the batch size to use during optimization. If this is 0, each rollout
will be used as a separate batch.

• clipping_width (float) – in computing the PPO loss function, the probability ratio is
clipped to the range (1-clipping_width, 1+clipping_width)

• discount_factor (float) – the discount factor to use when computing rewards

• advantage_lambda (float) – the parameter for trading bias vs. variance in Generalized
Advantage Estimation

• value_weight (float) – a scale factor for the value loss term in the loss function

• entropy_weight (float) – a scale factor for the entropy term in the loss function

• optimizer (Optimizer) – the optimizer to use. If None, a default optimizer is used.

• model_dir (str) – the directory in which the model will be saved. If None, a temporary
directory will be created.

• use_hindsight (bool) – if True, use Hindsight Experience Replay

fit(total_steps, max_checkpoints_to_keep=5, checkpoint_interval=600, restore=False)
Train the policy.

Parameters
• total_steps (int) – the total number of time steps to perform on the environment, across

all rollouts on all threads

• max_checkpoints_to_keep (int) – the maximum number of checkpoint files to keep.
When this number is reached, older files are deleted.
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• checkpoint_interval (float) – the time interval at which to save checkpoints, mea-
sured in seconds

• restore (bool) – if True, restore the model from the most recent checkpoint and continue
training from there. If False, retrain the model from scratch.

predict(state, use_saved_states=True, save_states=True)
Compute the policy’s output predictions for a state.

If the policy involves recurrent layers, this method can preserve their internal states between calls. Use the
use_saved_states and save_states arguments to specify how it should behave.

Parameters
• state (array or list of arrays) – the state of the environment for which to generate

predictions

• use_saved_states (bool) – if True, the states most recently saved by a previous call to
predict() or select_action() will be used as the initial states. If False, the internal states of
all recurrent layers will be set to the initial values defined by the policy before computing
the predictions.

• save_states (bool) – if True, the internal states of all recurrent layers at the end of the
calculation will be saved, and any previously saved states will be discarded. If False, the
states at the end of the calculation will be discarded, and any previously saved states will
be kept.

Return type
the array of action probabilities, and the estimated value function

select_action(state, deterministic=False, use_saved_states=True, save_states=True)
Select an action to perform based on the environment’s state.

If the policy involves recurrent layers, this method can preserve their internal states between calls. Use the
use_saved_states and save_states arguments to specify how it should behave.

Parameters
• state (array or list of arrays) – the state of the environment for which to select

an action

• deterministic (bool) – if True, always return the best action (that is, the one with highest
probability). If False, randomly select an action based on the computed probabilities.

• use_saved_states (bool) – if True, the states most recently saved by a previous call to
predict() or select_action() will be used as the initial states. If False, the internal states of
all recurrent layers will be set to the initial values defined by the policy before computing
the predictions.

• save_states (bool) – if True, the internal states of all recurrent layers at the end of the
calculation will be saved, and any previously saved states will be discarded. If False, the
states at the end of the calculation will be discarded, and any previously saved states will
be kept.

Return type
the index of the selected action

restore()

Reload the model parameters from the most recent checkpoint file.
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class PPOLoss(value_weight, entropy_weight, clipping_width, action_prob_index, value_index)
This class computes the loss function for PPO.

__init__(value_weight, entropy_weight, clipping_width, action_prob_index, value_index)

3.30 Docking

Thanks to advances in biophysics, we are often able to find the structure of proteins from experimental techniques
like Cryo-EM or X-ray crystallography. These structures can be powerful aides in designing small molecules. The
technique of Molecular docking performs geometric calculations to find a “binding pose” with the small molecule
interacting with the protein in question in a suitable binding pocket (that is, a region on the protein which has a groove
in which the small molecule can rest). For more information about docking, check out the Autodock Vina paper:

Trott, Oleg, and Arthur J. Olson. “AutoDock Vina: improving the speed and accuracy of docking with a new scoring
function, efficient optimization, and multithreading.” Journal of computational chemistry 31.2 (2010): 455-461.

3.30.1 Binding Pocket Discovery

DeepChem has some utilities to help find binding pockets on proteins automatically. For now, these utilities are simple,
but we will improve these in future versions of DeepChem.

class BindingPocketFinder

Abstract superclass for binding pocket detectors

Many times when working with a new protein or other macromolecule, it’s not clear what zones of the macro-
molecule may be good targets for potential ligands or other molecules to interact with. This abstract class pro-
vides a template for child classes that algorithmically locate potential binding pockets that are good potential
interaction sites.

Note that potential interactions sites can be found by many different methods, and that this abstract class doesn’t
specify the technique to be used.

find_pockets(molecule: Any)
Finds potential binding pockets in proteins.

Parameters
molecule (object) – Some representation of a molecule.

class ConvexHullPocketFinder(scoring_model: Model | None = None, pad: float = 5.0)
Implementation that uses convex hull of protein to find pockets.

Based on https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4112621/pdf/1472-6807-14-18.pdf

__init__(scoring_model: Model | None = None, pad: float = 5.0)
Initialize the pocket finder.

Parameters
• scoring_model (Model, optional (default None)) – If specified, use this model

to prune pockets.

• pad (float, optional (default 5.0)) – The number of angstroms to pad around a
binding pocket’s atoms to get a binding pocket box.
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find_all_pockets(protein_file: str)→ List[CoordinateBox]
Find list of binding pockets on protein.

Parameters
protein_file (str) – Protein to load in.

Returns
List of binding pockets on protein. Each pocket is a CoordinateBox

Return type
List[CoordinateBox]

find_pockets(macromolecule_file: str)→ List[CoordinateBox]
Find list of suitable binding pockets on protein.

This function computes putative binding pockets on this protein. This class uses the ConvexHull to compute
binding pockets. Each face of the hull is converted into a coordinate box used for binding.

Parameters
macromolecule_file (str) – Location of the macromolecule file to load

Returns
List of pockets. Each pocket is a CoordinateBox

Return type
List[CoordinateBox]

3.30.2 Pose Generation

Pose generation is the task of finding a “pose”, that is a geometric configuration of a small molecule interacting with
a protein. Pose generation is a complex process, so for now DeepChem relies on external software to perform pose
generation. This software is invoked and installed under the hood.

class PoseGenerator

A Pose Generator computes low energy conformations for molecular complexes.

Many questions in structural biophysics reduce to that of computing the binding free energy of molecular com-
plexes. A key step towards computing the binding free energy of two complexes is to find low energy “poses”,
that is energetically favorable conformations of molecules with respect to each other. One application of this
technique is to find low energy poses for protein-ligand interactions.

generate_poses(molecular_complex: Tuple[str, str], centroid: ndarray | None = None, box_dims: ndarray |
None = None, exhaustiveness: int = 10, num_modes: int = 9, num_pockets: int | None =
None, out_dir: str | None = None, generate_scores: bool = False)

Generates a list of low energy poses for molecular complex

Parameters
• molecular_complexes (Tuple[str, str]) – A representation of a molecular complex.

This tuple is (protein_file, ligand_file).

• centroid (np.ndarray, optional (default None)) – The centroid to dock against.
Is computed if not specified.

• box_dims (np.ndarray, optional (default None)) – A numpy array of shape (3,)
holding the size of the box to dock. If not specified is set to size of molecular complex plus
5 angstroms.

• exhaustiveness (int, optional (default 10)) – Tells pose generator how exhaus-
tive it should be with pose generation.
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• num_modes (int, optional (default 9)) – Tells pose generator how many binding
modes it should generate at each invocation.

• num_pockets (int, optional (default None)) – If specified, self.pocket_finder
must be set. Will only generate poses for the first num_pockets returned by
self.pocket_finder.

• out_dir (str, optional (default None)) – If specified, write generated poses to
this directory.

• generate_score (bool, optional (default False)) – If True, the pose generator
will return scores for complexes. This is used typically when invoking external docking
programs that compute scores.

Return type
A list of molecular complexes in energetically favorable poses.

class VinaPoseGenerator(pocket_finder: BindingPocketFinder | None = None)
Uses Autodock Vina to generate binding poses.

This class uses Autodock Vina to make make predictions of binding poses.

Example

>> import deepchem as dc >> vpg = dc.dock.VinaPoseGenerator(pocket_finder=None) >> protein_file =
‘1jld_protein.pdb’ >> ligand_file = ‘1jld_ligand.sdf’ >> poses, scores = vpg.generate_poses( .. (protein_file,
ligand_file), .. exhaustiveness=1, .. num_modes=1, .. out_dir=tmp, .. generate_scores=True)

Note: This class requires RDKit and vina to be installed. As on 9-March-22, Vina is not available on Windows.
Hence, this utility is currently available only on Ubuntu and MacOS.

__init__(pocket_finder: BindingPocketFinder | None = None)
Initializes Vina Pose Generator

Parameters
pocket_finder (BindingPocketFinder, optional (default None)) – If specified
should be an instance of dc.dock.BindingPocketFinder.

generate_poses(molecular_complex: Tuple[str, str], centroid: ndarray | None = None, box_dims: ndarray |
None = None, exhaustiveness: int = 10, num_modes: int = 9, num_pockets: int | None =
None, out_dir: str | None = None, generate_scores: bool | None = False, **kwargs)→
Tuple[List[Tuple[Any, Any]], List[float]] | List[Tuple[Any, Any]]

Generates the docked complex and outputs files for docked complex.

Parameters
• molecular_complexes (Tuple[str, str]) – A representation of a molecular complex.

This tuple is (protein_file, ligand_file). The protein should be a pdb file and the ligand
should be an sdf file.

• centroid (np.ndarray, optional) – The centroid to dock against. Is computed if not
specified.

• box_dims (np.ndarray, optional) – A numpy array of shape (3,) holding the size of
the box to dock. If not specified is set to size of molecular complex plus 5 angstroms.
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• exhaustiveness (int, optional (default 10)) – Tells Autodock Vina how ex-
haustive it should be with pose generation. A higher value of exhaustiveness implies more
computation effort for the docking experiment.

• num_modes (int, optional (default 9)) – Tells Autodock Vina how many binding
modes it should generate at each invocation.

• num_pockets (int, optional (default None)) – If specified, self.pocket_finder
must be set. Will only generate poses for the first num_pockets returned by
self.pocket_finder.

• out_dir (str, optional) – If specified, write generated poses to this directory.

• generate_score (bool, optional (default False)) – If True, the pose generator
will return scores for complexes. This is used typically when invoking external docking
programs that compute scores.

• kwargs – The kwargs - cpu, min_rmsd, max_evals, energy_range supported by VINA are
as documented in https://autodock-vina.readthedocs.io/en/latest/vina.html

Returns
Tuple of (docked_poses, scores), docked_poses, or scores. docked_poses is a list of docked
molecular complexes. Each entry in this list contains a (protein_mol, ligand_mol) pair of
RDKit molecules. scores is a list of binding free energies predicted by Vina.

Return type
Tuple[docked_poses, scores] or docked_poses or scores

Raises
ValueError –

class GninaPoseGenerator

Use GNINA to generate binding poses.

This class uses GNINA (a deep learning framework for molecular docking) to generate binding poses. It down-
loads the GNINA executable to DEEPCHEM_DATA_DIR (an environment variable you set) and invokes the
executable to perform pose generation.

GNINA uses pre-trained convolutional neural network (CNN) scoring functions to rank binding poses based on
learned representations of 3D protein-ligand interactions. It has been shown to outperform AutoDock Vina in
virtual screening applications [1]_.

If you use the GNINA molecular docking engine, please cite the relevant papers: https://github.com/gnina/
gnina#citation The primary citation for GNINA is [1]_.

References

“Protein–Ligand Scoring with Convolutional Neural Networks.” Journal of chemical information and modeling
(2017).

Note:
• GNINA currently only works on Linux operating systems.

• GNINA requires CUDA >= 10.1 for fast CNN scoring.

• Almost all dependencies are included in the most compatible way
possible, which reduces performance. Build GNINA from source for production use.
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__init__()

Initialize GNINA pose generator.

generate_poses(molecular_complex: Tuple[str, str], centroid: ndarray | None = None, box_dims: ndarray |
None = None, exhaustiveness: int = 10, num_modes: int = 9, num_pockets: int | None =
None, out_dir: str | None = None, generate_scores: bool = True, **kwargs)→
Tuple[List[Tuple[Any, Any]], ndarray] | List[Tuple[Any, Any]]

Generates the docked complex and outputs files for docked complex.

Parameters
• molecular_complexes (Tuple[str, str]) – A representation of a molecular complex.

This tuple is (protein_file, ligand_file).

• centroid (np.ndarray, optional (default None)) – The centroid to dock against.
Is computed if not specified.

• box_dims (np.ndarray, optional (default None)) – A numpy array of shape (3,)
holding the size of the box to dock. If not specified is set to size of molecular complex plus
4 angstroms.

• exhaustiveness (int (default 8)) – Tells GNINA how exhaustive it should be with
pose generation.

• num_modes (int (default 9)) – Tells GNINA how many binding modes it should gen-
erate at each invocation.

• out_dir (str, optional) – If specified, write generated poses to this directory.

• generate_scores (bool, optional (default True)) – If True, the pose generator
will return scores for complexes. This is used typically when invoking external docking
programs that compute scores.

• kwargs – Any args supported by GNINA as documented https://github.com/gnina/gnina#
usage

Returns
Tuple of (docked_poses, scores) or docked_poses. docked_poses is a list of docked molec-
ular complexes. Each entry in this list contains a (protein_mol, ligand_mol) pair of RDKit
molecules. scores is an array of binding affinities (kcal/mol), CNN pose scores, and CNN
affinities predicted by GNINA.

Return type
Tuple[docked_poses, scores] or docked_poses

3.30.3 Docking

The dc.dock.docking module provides a generic docking implementation that depends on provide pose generation
and pose scoring utilities to perform docking. This implementation is generic.

class Docker(pose_generator: PoseGenerator, featurizer: ComplexFeaturizer | None = None, scoring_model:
Model | None = None)

A generic molecular docking class

This class provides a docking engine which uses provided models for featurization, pose generation, and scoring.
Most pieces of docking software are command line tools that are invoked from the shell. The goal of this class
is to provide a python clean API for invoking molecular docking programmatically.

The implementation of this class is lightweight and generic. It’s expected that the majority of the heavy lifting
will be done by pose generation and scoring classes that are provided to this class.
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__init__(pose_generator: PoseGenerator, featurizer: ComplexFeaturizer | None = None, scoring_model:
Model | None = None)

Builds model.

Parameters
• pose_generator (PoseGenerator) – The pose generator to use for this model

• featurizer (ComplexFeaturizer, optional (default None)) – Featurizer asso-
ciated with scoring_model

• scoring_model (Model, optional (default None)) – Should make predictions on
molecular complex.

dock(molecular_complex: Tuple[str, str], centroid: ndarray | None = None, box_dims: ndarray | None =
None, exhaustiveness: int = 10, num_modes: int = 9, num_pockets: int | None = None, out_dir: str |
None = None, use_pose_generator_scores: bool = False)→ Generator[Tuple[Any, Any], None, None] |
Generator[Tuple[Tuple[Any, Any], float], None, None]

Generic docking function.

This docking function uses this object’s featurizer, pose generator, and scoring model to make docking
predictions. This function is written in generic style so

Parameters
• molecular_complex (Tuple[str, str]) – A representation of a molecular complex.

This tuple is (protein_file, ligand_file).

• centroid (np.ndarray, optional (default None)) – The centroid to dock against.
Is computed if not specified.

• box_dims (np.ndarray, optional (default None)) – A numpy array of shape (3,)
holding the size of the box to dock. If not specified is set to size of molecular complex plus
5 angstroms.

• exhaustiveness (int, optional (default 10)) – Tells pose generator how exhaus-
tive it should be with pose generation.

• num_modes (int, optional (default 9)) – Tells pose generator how many binding
modes it should generate at each invocation.

• num_pockets (int, optional (default None)) – If specified, self.pocket_finder
must be set. Will only generate poses for the first num_pockets returned by
self.pocket_finder.

• out_dir (str, optional (default None)) – If specified, write generated poses to
this directory.

• use_pose_generator_scores (bool, optional (default False)) – If True, ask
pose generator to generate scores. This cannot be True if self.featurizer and
self.scoring_model are set since those will be used to generate scores in that case.

Returns
A generator. If use_pose_generator_scores==True or self.scoring_model is set, then will
yield tuples (posed_complex, score). Else will yield posed_complex.

Return type
Generator[Tuple[posed_complex, score]] or Generator[posed_complex]
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3.30.4 Pose Scoring

This module contains some utilities for computing docking scoring functions directly in Python. For now, support for
custom pose scoring is limited.

pairwise_distances(coords1: ndarray, coords2: ndarray)→ ndarray
Returns matrix of pairwise Euclidean distances.

Parameters
• coords1 (np.ndarray) – A numpy array of shape (N, 3)

• coords2 (np.ndarray) – A numpy array of shape (M, 3)

Returns
A (N,M) array with pairwise distances.

Return type
np.ndarray

cutoff_filter(d: ndarray, x: ndarray, cutoff=8.0)→ ndarray
Applies a cutoff filter on pairwise distances

Parameters
• d (np.ndarray) – Pairwise distances matrix. A numpy array of shape (N, M)

• x (np.ndarray) – Matrix of shape (N, M)

• cutoff (float, optional (default 8)) – Cutoff for selection in Angstroms

Returns
A (N,M) array with values where distance is too large thresholded to 0.

Return type
np.ndarray

vina_nonlinearity(c: ndarray, w: float, Nrot: int)→ ndarray
Computes non-linearity used in Vina.

Parameters
• c (np.ndarray) – A numpy array of shape (N, M)

• w (float) – Weighting term

• Nrot (int) – Number of rotatable bonds in this molecule

Returns
A (N, M) array with activations under a nonlinearity.

Return type
np.ndarray

vina_repulsion(d: ndarray)→ ndarray
Computes Autodock Vina’s repulsion interaction term.

Parameters
d (np.ndarray) – A numpy array of shape (N, M).

Returns
A (N, M) array with repulsion terms.

Return type
np.ndarray
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vina_hydrophobic(d: ndarray)→ ndarray
Computes Autodock Vina’s hydrophobic interaction term.

Here, d is the set of surface distances as defined in [1]_
Parameters
d (np.ndarray) – A numpy array of shape (N, M).

Returns
A (N, M) array of hydrophoboic interactions in a piecewise linear curve.

Return type
np.ndarray

References

vina_hbond(d: ndarray)→ ndarray
Computes Autodock Vina’s hydrogen bond interaction term.

Here, d is the set of surface distances as defined in [1]_
Parameters
d (np.ndarray) – A numpy array of shape (N, M).

Returns
A (N, M) array of hydrophoboic interactions in a piecewise linear curve.

Return type
np.ndarray

References

vina_gaussian_first(d: ndarray)→ ndarray
Computes Autodock Vina’s first Gaussian interaction term.

Here, d is the set of surface distances as defined in [1]_
Parameters
d (np.ndarray) – A numpy array of shape (N, M).

Returns
A (N, M) array of gaussian interaction terms.

Return type
np.ndarray

References

vina_gaussian_second(d: ndarray)→ ndarray
Computes Autodock Vina’s second Gaussian interaction term.

Here, d is the set of surface distances as defined in [1]_
Parameters
d (np.ndarray) – A numpy array of shape (N, M).

Returns
A (N, M) array of gaussian interaction terms.
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Return type
np.ndarray

References

vina_energy_term(coords1: ndarray, coords2: ndarray, weights: ndarray, wrot: float, Nrot: int)→ ndarray
Computes the Vina Energy function for two molecular conformations

Parameters
• coords1 (np.ndarray) – Molecular coordinates of shape (N, 3)

• coords2 (np.ndarray) – Molecular coordinates of shape (M, 3)

• weights (np.ndarray) – A numpy array of shape (5,). The 5 values are weights for re-
pulsion interaction term, hydrophobic interaction term, hydrogen bond interaction term, first
Gaussian interaction term and second Gaussian interaction term.

• wrot (float) – The scaling factor for nonlinearity

• Nrot (int) – Number of rotatable bonds in this calculation

Returns
A scalar value with free energy

Return type
np.ndarray

3.31 Utilities

DeepChem has a broad collection of utility functions. Many of these maybe be of independent interest to users since
they deal with some tricky aspects of processing scientific datatypes.

3.31.1 Data Utilities

Array Utilities

pad_array(x: ndarray, shape: Tuple | int, fill: float = 0.0, both: bool = False)→ ndarray
Pad an array with a fill value.

Parameters
• x (np.ndarray) – A numpy array.

• shape (Tuple or int) – Desired shape. If int, all dimensions are padded to that size.

• fill (float, optional (default 0.0)) – The padded value.

• both (bool, optional (default False)) – If True, split the padding on both sides of
each axis. If False, padding is applied to the end of each axis.

Returns
A padded numpy array

Return type
np.ndarray
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Data Directory

The DeepChem data directory is where downloaded MoleculeNet datasets are stored.

get_data_dir()→ str
Get the DeepChem data directory.

Returns
The default path to store DeepChem data. If you want to change this path, please set your own
path to DEEPCHEM_DATA_DIR as an environment variable.

Return type
str

URL Handling

download_url(url: str, dest_dir: str = '/tmp', name: str | None = None)
Download a file to disk.

Parameters
• url (str) – The URL to download from

• dest_dir (str) – The directory to save the file in

• name (str) – The file name to save it as. If omitted, it will try to extract a file name from
the URL

File Handling

untargz_file(file: str, dest_dir: str = '/tmp', name: str | None = None)
Untar and unzip a .tar.gz file to disk.

Parameters
• file (str) – The filepath to decompress

• dest_dir (str) – The directory to save the file in

• name (str) – The file name to save it as. If omitted, it will use the file name

unzip_file(file: str, dest_dir: str = '/tmp', name: str | None = None)
Unzip a .zip file to disk.

Parameters
• file (str) – The filepath to decompress

• dest_dir (str) – The directory to save the file in

• name (str) – The directory name to unzip it to. If omitted, it will use the file name

load_data(input_files: List[str], shard_size: int | None = None)→ Iterator[Any]
Loads data from files.

Parameters
• input_files (List[str]) – List of filenames.

• shard_size (int, default None) – Size of shard to yield
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Returns
Iterator which iterates over provided files.

Return type
Iterator[Any]

Notes

The supported file types are SDF, CSV and Pickle.

load_sdf_files(input_files: List[str], clean_mols: bool = True, tasks: List[str] = [], shard_size: int | None =
None)→ Iterator[DataFrame]

Load SDF file into dataframe.

Parameters
• input_files (List[str]) – List of filenames

• clean_mols (bool, default True) – Whether to sanitize molecules.

• tasks (List[str], default []) – Each entry in tasks is treated as a property in the SDF
file and is retrieved with mol.GetProp(str(task)) where mol is the RDKit mol loaded from a
given SDF entry.

• shard_size (int, default None) – The shard size to yield at one time.

Returns
Generator which yields the dataframe which is the same shard size.

Return type
Iterator[pd.DataFrame]

Notes

This function requires RDKit to be installed.

load_csv_files(input_files: List[str], shard_size: int | None = None)→ Iterator[DataFrame]
Load data as pandas dataframe from CSV files.

Parameters
• input_files (List[str]) – List of filenames

• shard_size (int, default None) – The shard size to yield at one time.

Returns
Generator which yields the dataframe which is the same shard size.

Return type
Iterator[pd.DataFrame]

load_json_files(input_files: List[str], shard_size: int | None = None)→ Iterator[DataFrame]
Load data as pandas dataframe.

Parameters
• input_files (List[str]) – List of json filenames.

• shard_size (int, default None) – Chunksize for reading json files.

Returns
Generator which yields the dataframe which is the same shard size.
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Return type
Iterator[pd.DataFrame]

Notes

To load shards from a json file into a Pandas dataframe, the file must be originally saved with df.
to_json('filename.json', orient='records', lines=True)

load_pickle_files(input_files: List[str])→ Iterator[Any]
Load dataset from pickle files.

Parameters
input_files (List[str]) – The list of filenames of pickle file. This function can load from
gzipped pickle file like XXXX.pkl.gz.

Returns
Generator which yields the objects which is loaded from each pickle file.

Return type
Iterator[Any]

load_from_disk(filename: str)→ Any
Load a dataset from file.

Parameters
filename (str) – A filename you want to load data.

Returns
A loaded object from file.

Return type
Any

save_to_disk(dataset: Any, filename: str, compress: int = 3)
Save a dataset to file.

Parameters
• dataset (str) – A data saved

• filename (str) – Path to save data.

• compress (int, default 3) – The compress option when dumping joblib file.

load_dataset_from_disk(save_dir: str)→ Tuple[bool, Tuple[DiskDataset, DiskDataset, DiskDataset] | None,
List[Transformer]]

Loads MoleculeNet train/valid/test/transformers from disk.

Expects that data was saved using save_dataset_to_disk below. Expects the following directory structure for
save_dir: save_dir/

—> train_dir/ | —> valid_dir/ | —> test_dir/ | —> transformers.pkl

Parameters
save_dir (str) – Directory name to load datasets.

Returns
• loaded (bool) – Whether the load succeeded
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• all_dataset (Tuple[DiskDataset, DiskDataset, DiskDataset]) – The train, valid, test datasets

• transformers (Transformer) – The transformers used for this dataset

See also:
save_dataset_to_disk

save_dataset_to_disk(save_dir: str, train: DiskDataset, valid: DiskDataset, test: DiskDataset, transformers:
List[Transformer])

Utility used by MoleculeNet to save train/valid/test datasets.

This utility function saves a train/valid/test split of a dataset along with transformers in the same directory. The
saved datasets will take the following structure: save_dir/

—> train_dir/ | —> valid_dir/ | —> test_dir/ | —> transformers.pkl

Parameters
• save_dir (str) – Directory name to save datasets to.

• train (DiskDataset) – Training dataset to save.

• valid (DiskDataset) – Validation dataset to save.

• test (DiskDataset) – Test dataset to save.

• transformers (List[Transformer]) – List of transformers to save to disk.

See also:
load_dataset_from_disk

3.31.2 Molecular Utilities

class ConformerGenerator(max_conformers: int = 1, rmsd_threshold: float = 0.5, force_field: str = 'uff',
pool_multiplier: int = 10)

Generate molecule conformers.

Notes

Procedure 1. Generate a pool of conformers. 2. Minimize conformers. 3. Prune conformers using an RMSD
threshold.

Note that pruning is done _after_ minimization, which differs from the protocol described in the references [1]_
[2]_.
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References

Notes

This class requires RDKit to be installed.

__init__(max_conformers: int = 1, rmsd_threshold: float = 0.5, force_field: str = 'uff', pool_multiplier: int
= 10)

Parameters
• max_conformers (int, optional (default 1)) – Maximum number of conformers

to generate (after pruning).

• rmsd_threshold (float, optional (default 0.5)) – RMSD threshold for pruning
conformers. If None or negative, no pruning is performed.

• force_field (str, optional (default 'uff')) – Force field to use for conformer
energy calculation and minimization. Options are ‘uff’, ‘mmff94’, and ‘mmff94s’.

• pool_multiplier (int, optional (default 10)) – Factor to multiply by
max_conformers to generate the initial conformer pool. Since conformers are pruned after
energy minimization, increasing the size of the pool increases the chance of identifying
max_conformers unique conformers.

generate_conformers(mol: Any)→ Any
Generate conformers for a molecule.

This function returns a copy of the original molecule with embedded conformers.

Parameters
mol (rdkit.Chem.rdchem.Mol) – RDKit Mol object

Returns
mol – A new RDKit Mol object containing the chosen conformers, sorted by increasing en-
ergy.

Return type
rdkit.Chem.rdchem.Mol

embed_molecule(mol: Any)→ Any
Generate conformers, possibly with pruning.

Parameters
mol (rdkit.Chem.rdchem.Mol) – RDKit Mol object

Returns
mol – RDKit Mol object with embedded multiple conformers.

Return type
rdkit.Chem.rdchem.Mol

get_molecule_force_field(mol: Any, conf_id: int | None = None, **kwargs)→ Any
Get a force field for a molecule.

Parameters
• mol (rdkit.Chem.rdchem.Mol) – RDKit Mol object with embedded conformers.

• conf_id (int, optional) – ID of the conformer to associate with the force field.

• kwargs (dict, optional) – Keyword arguments for force field constructor.
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Returns
ff – RDKit force field instance for a molecule.

Return type
rdkit.ForceField.rdForceField.ForceField

minimize_conformers(mol: Any)→ None
Minimize molecule conformers.

Parameters
mol (rdkit.Chem.rdchem.Mol) – RDKit Mol object with embedded conformers.

get_conformer_energies(mol: Any)→ ndarray
Calculate conformer energies.

Parameters
mol (rdkit.Chem.rdchem.Mol) – RDKit Mol object with embedded conformers.

Returns
energies – Minimized conformer energies.

Return type
np.ndarray

prune_conformers(mol: Any)→ Any
Prune conformers from a molecule using an RMSD threshold, starting with the lowest energy conformer.

Parameters
mol (rdkit.Chem.rdchem.Mol) – RDKit Mol object

Returns
new_mol – A new rdkit.Chem.rdchem.Mol containing the chosen conformers, sorted by in-
creasing energy.

Return type
rdkit.Chem.rdchem.Mol

static get_conformer_rmsd(mol: Any)→ ndarray
Calculate conformer-conformer RMSD.

Parameters
mol (rdkit.Chem.rdchem.Mol) – RDKit Mol object

Returns
rmsd – A conformer-conformer RMSD value. The shape is (NumConformers, NumConform-
ers)

Return type
np.ndarray

class MoleculeLoadException(*args, **kwargs)

__init__(*args, **kwargs)

get_xyz_from_mol(mol)
Extracts a numpy array of coordinates from a molecules.

Returns a (N, 3) numpy array of 3d coords of given rdkit molecule

Parameters
mol (rdkit Molecule) – Molecule to extract coordinates for
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Return type
Numpy ndarray of shape (N, 3) where N = mol.GetNumAtoms().

add_hydrogens_to_mol(mol, is_protein=False)
Add hydrogens to a molecule object

Parameters
• mol (Rdkit Mol) – Molecule to hydrogenate

• is_protein (bool, optional (default False)) – Whether this molecule is a protein.

Return type
Rdkit Mol

Note: This function requires RDKit and PDBFixer to be installed.

compute_charges(mol)
Attempt to compute Gasteiger Charges on Mol

This also has the side effect of calculating charges on mol. The mol passed into this function has to already have
been sanitized

Parameters
mol (rdkit molecule) –

Return type
No return since updates in place.

Note: This function requires RDKit to be installed.

load_molecule(molecule_file, add_hydrogens=True, calc_charges=True, sanitize=True, is_protein=False)
Converts molecule file to (xyz-coords, obmol object)

Given molecule_file, returns a tuple of xyz coords of molecule and an rdkit object representing that molecule in
that order (xyz, rdkit_mol). This ordering convention is used in the code in a few places.

Parameters
• molecule_file (str) – filename for molecule

• add_hydrogens (bool, optional (default True)) – If True, add hydrogens via pdb-
fixer

• calc_charges (bool, optional (default True)) – If True, add charges via rdkit

• sanitize (bool, optional (default False)) – If True, sanitize molecules via rdkit

• is_protein (bool, optional (default False)) – If True`, this molecule is loaded as
a protein. This flag will affect some of the cleanup procedures applied.

Returns
• Tuple (xyz, mol) if file contains single molecule. Else returns a

• list of the tuples for the separate molecules in this list.

Note: This function requires RDKit to be installed.
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write_molecule(mol, outfile, is_protein=False)
Write molecule to a file

This function writes a representation of the provided molecule to the specified outfile. Doesn’t return anything.

Parameters
• mol (rdkit Mol) – Molecule to write

• outfile (str) – Filename to write mol to

• is_protein (bool, optional) – Is this molecule a protein?

Note: This function requires RDKit to be installed.

Raises
ValueError – if outfile isn’t of a supported format.:

3.31.3 Molecular Fragment Utilities

It’s often convenient to manipulate subsets of a molecule. The MolecularFragment class aids in such manipulations.

class MolecularFragment(atoms: Sequence[Any], coords: ndarray)
A class that represents a fragment of a molecule.

It’s often convenient to represent a fragment of a molecule. For example, if two molecules form a molecular
complex, it may be useful to create two fragments which represent the subsets of each molecule that’s close to
the other molecule (in the contact region).

Ideally, we’d be able to do this in RDKit direct, but manipulating molecular fragments doesn’t seem to be sup-
ported functionality.

Examples

>>> import numpy as np
>>> from rdkit import Chem
>>> mol = Chem.MolFromSmiles("C")
>>> coords = np.array([[0.0, 0.0, 0.0]])
>>> atom = mol.GetAtoms()[0]
>>> fragment = MolecularFragment([atom], coords)

__init__(atoms: Sequence[Any], coords: ndarray)
Initialize this object.

Parameters
• atoms (Iterable[rdkit.Chem.rdchem.Atom]) – Each entry in this list should be a

RDKit Atom.

• coords (np.ndarray) – Array of locations for atoms of shape (N, 3) where N ==
len(atoms).
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GetAtoms()→ List[AtomShim]
Returns the list of atoms

Returns
list of atoms in this fragment.

Return type
List[AtomShim]

GetNumAtoms()→ int
Returns the number of atoms

Returns
Number of atoms in this fragment.

Return type
int

GetCoords()→ ndarray
Returns 3D coordinates for this fragment as numpy array.

Returns
A numpy array of shape (N, 3) with coordinates for this fragment. Here, N is the number of
atoms.

Return type
np.ndarray

class AtomShim(atomic_num: int, partial_charge: float, atom_coords: ndarray)
This is a shim object wrapping an atom.

We use this class instead of raw RDKit atoms since manipulating a large number of rdkit Atoms seems to result
in segfaults. Wrapping the basic information in an AtomShim seems to avoid issues.

__init__(atomic_num: int, partial_charge: float, atom_coords: ndarray)
Initialize this object

Parameters
• atomic_num (int) – Atomic number for this atom.

• partial_charge (float) – The partial Gasteiger charge for this atom

• atom_coords (np.ndarray) – Of shape (3,) with the coordinates of this atom

GetAtomicNum()→ int
Returns atomic number for this atom.

Returns
Atomic number for this atom.

Return type
int

GetPartialCharge()→ float
Returns partial charge for this atom.

Returns
A partial Gasteiger charge for this atom.

Return type
float
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GetCoords()→ ndarray
Returns 3D coordinates for this atom as numpy array.

Returns
Numpy array of shape (3,) with coordinates for this atom.

Return type
np.ndarray

strip_hydrogens(coords: ndarray, mol: Any | MolecularFragment)→ Tuple[ndarray, MolecularFragment]
Strip the hydrogens from input molecule

Parameters
• coords (np.ndarray) – The coords must be of shape (N, 3) and correspond to coordinates

of mol.

• mol (rdkit.Chem.rdchem.Mol or MolecularFragment) – The molecule to strip

Returns
A tuple of (coords, mol_frag) where coords is a numpy array of coordinates with hydrogen co-
ordinates. mol_frag is a MolecularFragment.

Return type
Tuple[np.ndarray, MolecularFragment]

Notes

This function requires RDKit to be installed.

merge_molecular_fragments(molecules: List[MolecularFragment])→ MolecularFragment | None
Helper method to merge two molecular fragments.

Parameters
molecules (List[MolecularFragment]) – List of MolecularFragment objects.

Returns
Returns a merged MolecularFragment

Return type
Optional[MolecularFragment]

get_contact_atom_indices(fragments: List[Tuple[ndarray, Any]], cutoff: float = 4.5)→ List[List[int]]
Compute that atoms close to contact region.

Molecular complexes can get very large. This can make it unwieldy to compute functions on them. To improve
memory usage, it can be very useful to trim out atoms that aren’t close to contact regions. This function computes
pairwise distances between all pairs of molecules in the molecular complex. If an atom is within cutoff distance
of any atom on another molecule in the complex, it is regarded as a contact atom. Otherwise it is trimmed.

Parameters
• fragments (List[Tuple[np.ndarray, rdkit.Chem.rdchem.Mol]]) – As returned

by rdkit_utils.load_complex, a list of tuples of (coords, mol) where coords is a (N_atoms,
3) array and mol is the rdkit molecule object.

• cutoff (float, optional (default 4.5)) – The cutoff distance in angstroms.

Returns
A list of length len(molecular_complex). Each entry in this list is a list of atom indices from that
molecule which should be kept, in sorted order.

3.31. Utilities 637



deepchem, Release 2.8.0

Return type
List[List[int]]

reduce_molecular_complex_to_contacts(fragments: List[Tuple[ndarray, Any]], cutoff: float = 4.5)→
List[Tuple[ndarray, MolecularFragment]]

Reduce a molecular complex to only those atoms near a contact.

Molecular complexes can get very large. This can make it unwieldy to compute functions on them. To improve
memory usage, it can be very useful to trim out atoms that aren’t close to contact regions. This function takes in
a molecular complex and returns a new molecular complex representation that contains only contact atoms. The
contact atoms are computed by calling get_contact_atom_indices under the hood.

Parameters
• fragments (List[Tuple[np.ndarray, rdkit.Chem.rdchem.Mol]]) – As returned

by rdkit_utils.load_complex, a list of tuples of (coords, mol) where coords is a (N_atoms,
3) array and mol is the rdkit molecule object.

• cutoff (float) – The cutoff distance in angstroms.

Returns
A list of length len(molecular_complex). Each entry in this list is a tuple of (coords, Molecular-
Fragment). The coords is stripped down to (N_contact_atoms, 3) where N_contact_atoms is the
number of contact atoms for this complex. MolecularFragment is used since it’s tricky to make
a RDKit sub-molecule.

Return type
List[Tuple[np.ndarray, MolecularFragment]]

3.31.4 Coordinate Box Utilities

class CoordinateBox(x_range: Tuple[float, float], y_range: Tuple[float, float], z_range: Tuple[float, float])
A coordinate box that represents a block in space.

Molecular complexes are typically represented with atoms as coordinate points. Each complex is naturally as-
sociated with a number of different box regions. For example, the bounding box is a box that contains all atoms
in the molecular complex. A binding pocket box is a box that focuses in on a binding region of a protein to a
ligand. A interface box is the region in which two proteins have a bulk interaction.

The CoordinateBox class is designed to represent such regions of space. It consists of the coordinates of the box,
and the collection of atoms that live in this box alongside their coordinates.

__init__(x_range: Tuple[float, float], y_range: Tuple[float, float], z_range: Tuple[float, float])
Initialize this box.

Parameters
• x_range (Tuple[float, float]) – A tuple of (x_min, x_max) with max and min x-

coordinates.

• y_range (Tuple[float, float]) – A tuple of (y_min, y_max) with max and min y-
coordinates.

• z_range (Tuple[float, float]) – A tuple of (z_min, z_max) with max and min z-
coordinates.

Raises
ValueError –
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__contains__(point: Sequence[float])→ bool
Check whether a point is in this box.

Parameters
point (Sequence[float]) – 3-tuple or list of length 3 or np.ndarray of shape (3,). The (x,
y, z) coordinates of a point in space.

Returns
True if other is contained in this box.

Return type
bool

center()→ Tuple[float, float, float]
Computes the center of this box.

Returns
(x, y, z) the coordinates of the center of the box.

Return type
Tuple[float, float, float]

Examples

>>> box = CoordinateBox((0, 1), (0, 1), (0, 1))
>>> box.center()
(0.5, 0.5, 0.5)

volume()→ float
Computes and returns the volume of this box.

Returns
The volume of this box. Can be 0 if box is empty

Return type
float

Examples

>>> box = CoordinateBox((0, 1), (0, 1), (0, 1))
>>> box.volume()
1

contains(other: CoordinateBox)→ bool
Test whether this box contains another.

This method checks whether other is contained in this box.

Parameters
other (CoordinateBox) – The box to check is contained in this box.

Returns
True if other is contained in this box.

Return type
bool
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Raises
ValueError –

intersect_interval(interval1: Tuple[float, float], interval2: Tuple[float, float])→ Tuple[float, float]
Computes the intersection of two intervals.

Parameters
• interval1 (Tuple[float, float]) – Should be (x1_min, x1_max)

• interval2 (Tuple[float, float]) – Should be (x2_min, x2_max)

Returns
x_intersect – Should be the intersection. If the intersection is empty returns (0, 0) to represent
the empty set. Otherwise is (max(x1_min, x2_min), min(x1_max, x2_max)).

Return type
Tuple[float, float]

union(box1: CoordinateBox, box2: CoordinateBox)→ CoordinateBox
Merges provided boxes to find the smallest union box.

This method merges the two provided boxes.

Parameters
• box1 (CoordinateBox) – First box to merge in

• box2 (CoordinateBox) – Second box to merge into this box

Returns
Smallest CoordinateBox that contains both box1 and box2

Return type
CoordinateBox

merge_overlapping_boxes(boxes: List[CoordinateBox], threshold: float = 0.8)→ List[CoordinateBox]
Merge boxes which have an overlap greater than threshold.

Parameters
• boxes (list[CoordinateBox]) – A list of CoordinateBox objects.

• threshold (float, default 0.8) – The volume fraction of the boxes that must overlap
for them to be merged together.

Returns
List[CoordinateBox] of merged boxes. This list will have length less than or equal to the length
of boxes.

Return type
List[CoordinateBox]

get_face_boxes(coords: ndarray, pad: float = 5.0)→ List[CoordinateBox]
For each face of the convex hull, compute a coordinate box around it.

The convex hull of a macromolecule will have a series of triangular faces. For each such triangular face, we
construct a bounding box around this triangle. Think of this box as attempting to capture some binding interaction
region whose exterior is controlled by the box. Note that this box will likely be a crude approximation, but the
advantage of this technique is that it only uses simple geometry to provide some basic biological insight into the
molecule at hand.

The pad parameter is used to control the amount of padding around the face to be used for the coordinate box.
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Parameters
• coords (np.ndarray) – A numpy array of shape (N, 3). The coordinates of a molecule.

• pad (float, optional (default 5.0)) – The number of angstroms to pad.

Returns
boxes – List of CoordinateBox

Return type
List[CoordinateBox]

Examples

>>> coords = np.array([[0, 0, 0], [1, 0, 0], [0, 1, 0], [0, 0, 1]])
>>> boxes = get_face_boxes(coords, pad=5)

3.31.5 Evaluation Utils

class Evaluator(model, dataset: Dataset, transformers: List[Transformer])
Class that evaluates a model on a given dataset.

The evaluator class is used to evaluate a dc.models.Model class on a given dc.data.Dataset object. The evaluator
is aware of dc.trans.Transformer objects so will automatically undo any transformations which have been applied.

Examples

Evaluators allow for a model to be evaluated directly on a Metric for sklearn. Let’s do a bit of setup constructing
our dataset and model.

>>> import deepchem as dc
>>> import numpy as np
>>> X = np.random.rand(10, 5)
>>> y = np.random.rand(10, 1)
>>> dataset = dc.data.NumpyDataset(X, y)
>>> model = dc.models.MultitaskRegressor(1, 5)
>>> transformers = []

Then you can evaluate this model as follows >>> import sklearn >>> evaluator = Evalua-
tor(model, dataset, transformers) >>> multitask_scores = evaluator.compute_model_performance( . . .
sklearn.metrics.mean_absolute_error)

Evaluators can also be used with dc.metrics.Metric objects as well in case you want to customize your metric
further.

>>> evaluator = Evaluator(model, dataset, transformers)
>>> metric = dc.metrics.Metric(dc.metrics.mae_score)
>>> multitask_scores = evaluator.compute_model_performance(metric)

__init__(model, dataset: Dataset, transformers: List[Transformer])
Initialize this evaluator

Parameters
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• model (Model) – Model to evaluate. Note that this must be a regression or classification
model and not a generative model.

• dataset (Dataset) – Dataset object to evaluate model on.

• transformers (List[Transformer]) – List of dc.trans.Transformer objects. These
transformations must have been applied to dataset previously. The dataset will be untrans-
formed for metric evaluation.

output_statistics(scores: Dict[str, float], stats_out: str)
Write computed stats to file.

Parameters
• scores (dict) – Dictionary mapping names of metrics to scores.

• stats_out (str) – Name of file to write scores to.

output_predictions(y_preds: ndarray, csv_out: str)
Writes predictions to file.

Writes predictions made on self.dataset to a specified file on disk. self.dataset.ids are used to format pre-
dictions.

Parameters
• y_preds (np.ndarray) – Predictions to output

• csv_out (str) – Name of file to write predictions to.

compute_model_performance(metrics: Metric | Callable[[...], Any] | List[Metric] | List[Callable[[...],
Any]], csv_out: str | None = None, stats_out: str | None = None,
per_task_metrics: bool = False, use_sample_weights: bool = False,
n_classes: int = 2)→ Dict[str, float] | Tuple[Dict[str, float], Dict[str, float]]

Computes statistics of model on test data and saves results to csv.

Parameters
• metrics (dc.metrics.Metric/list[dc.metrics.Metric]/function) – The set of

metrics provided. This class attempts to do some intelligent handling of input. If a single
dc.metrics.Metric object is provided or a list is provided, it will evaluate self.model on these
metrics. If a function is provided, it is assumed to be a metric function that this method
will attempt to wrap in a dc.metrics.Metric object. A metric function must accept two
arguments, y_true, y_pred both of which are np.ndarray objects and return a floating point
score. The metric function may also accept a keyword argument sample_weight to account
for per-sample weights.

• csv_out (str, optional (DEPRECATED)) – Filename to write CSV of model predic-
tions.

• stats_out (str, optional (DEPRECATED)) – Filename to write computed statistics.

• per_task_metrics (bool, optional) – If true, return computed metric for each task
on multitask dataset.

• use_sample_weights (bool, optional (default False)) – If set, use per-sample
weights w.

• n_classes (int, optional (default None)) – If specified, will use n_classes as the
number of unique classes in self.dataset. Note that this argument will be ignored for re-
gression metrics.

Returns
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• multitask_scores (dict) – Dictionary mapping names of metrics to metric scores.

• all_task_scores (dict, optional) – If per_task_metrics == True, then returns a second dic-
tionary of scores for each task separately.

class GeneratorEvaluator(model, generator: Iterable[Tuple[Any, Any, Any]], transformers: List[Transformer],
labels: List | None = None, weights: List | None = None)

Evaluate models on a stream of data.

This class is a partner class to Evaluator. Instead of operating over datasets this class operates over a generator
which yields batches of data to feed into provided model.

Examples

>>> import deepchem as dc
>>> import numpy as np
>>> X = np.random.rand(10, 5)
>>> y = np.random.rand(10, 1)
>>> dataset = dc.data.NumpyDataset(X, y)
>>> model = dc.models.MultitaskRegressor(1, 5)
>>> generator = model.default_generator(dataset, pad_batches=False)
>>> transformers = []

Then you can evaluate this model as follows

>>> import sklearn
>>> evaluator = GeneratorEvaluator(model, generator, transformers)
>>> multitask_scores = evaluator.compute_model_performance(
... sklearn.metrics.mean_absolute_error)

Evaluators can also be used with dc.metrics.Metric objects as well in case you want to customize your metric
further. (Note that a given generator can only be used once so we have to redefine the generator here.)

>>> generator = model.default_generator(dataset, pad_batches=False)
>>> evaluator = GeneratorEvaluator(model, generator, transformers)
>>> metric = dc.metrics.Metric(dc.metrics.mae_score)
>>> multitask_scores = evaluator.compute_model_performance(metric)

__init__(model, generator: Iterable[Tuple[Any, Any, Any]], transformers: List[Transformer], labels: List |
None = None, weights: List | None = None)

Parameters
• model (Model) – Model to evaluate.

• generator (generator) – Generator which yields batches to feed into the model. For a
KerasModel, it should be a tuple of the form (inputs, labels, weights). The “correct” way
to create this generator is to use model.default_generator as shown in the example above.

• transformers (List[Transformer]) – Tranformers to “undo” when applied to the
models outputs

• labels (list of Layer) – layers which are keys in the generator to compare to outputs

• weights (list of Layer) – layers which are keys in the generator for weight matrices
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compute_model_performance(metrics: Metric | Callable[[...], Any] | List[Metric] | List[Callable[[...],
Any]], per_task_metrics: bool = False, use_sample_weights: bool = False,
n_classes: int = 2)→ Dict[str, float] | Tuple[Dict[str, float], Dict[str, float]]

Computes statistics of model on test data and saves results to csv.

Parameters
• metrics (dc.metrics.Metric/list[dc.metrics.Metric]/function) – The set of

metrics provided. This class attempts to do some intelligent handling of input. If a single
dc.metrics.Metric object is provided or a list is provided, it will evaluate self.model on these
metrics. If a function is provided, it is assumed to be a metric function that this method
will attempt to wrap in a dc.metrics.Metric object. A metric function must accept two
arguments, y_true, y_pred both of which are np.ndarray objects and return a floating point
score.

• per_task_metrics (bool, optional) – If true, return computed metric for each task
on multitask dataset.

• use_sample_weights (bool, optional (default False)) – If set, use per-sample
weights w.

• n_classes (int, optional (default None)) – If specified, will assume that all met-
rics are classification metrics and will use n_classes as the number of unique classes in
self.dataset.

Returns
• multitask_scores (dict) – Dictionary mapping names of metrics to metric scores.

• all_task_scores (dict, optional) – If per_task_metrics == True, then returns a second dic-
tionary of scores for each task separately.

relative_difference(x: ndarray, y: ndarray)→ ndarray
Compute the relative difference between x and y

The two argument arrays must have the same shape.

Parameters
• x (np.ndarray) – First input array

• y (np.ndarray) – Second input array

Returns
z – We will have z == np.abs(x-y) / np.abs(max(x, y)).

Return type
np.ndarray

3.31.6 Genomic Utilities

seq_one_hot_encode(sequences, letters: str = 'ATCGN')→ ndarray
One hot encodes list of genomic sequences.

Sequences encoded have shape (N_sequences, N_letters, sequence_length, 1). These sequences will be processed
as images with one color channel.

Parameters
• sequences (np.ndarray or Iterator[Bio.SeqRecord]) – Iterable object of genetic

sequences
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• letters (str, optional (default "ATCGN")) – String with the set of possible letters
in the sequences.

Raises
ValueError: – If sequences are of different lengths.

Returns
A numpy array of shape (N_sequences, N_letters, sequence_length, 1).

Return type
np.ndarray

encode_bio_sequence(fname: str, file_type: str = 'fasta', letters: str = 'ATCGN')→ ndarray
Loads a sequence file and returns an array of one-hot sequences.

Parameters
• fname (str) – Filename of fasta file.

• file_type (str, optional (default "fasta")) – The type of file encoding to pro-
cess, e.g. fasta or fastq, this is passed to Biopython.SeqIO.parse.

• letters (str, optional (default "ATCGN")) – The set of letters that the sequences
consist of, e.g. ATCG.

Returns
A numpy array of shape (N_sequences, N_letters, sequence_length, 1).

Return type
np.ndarray

Notes

This function requires BioPython to be installed.

hhblits(dataset_path, database=None, data_dir=None, evalue=0.001, num_iterations=2, num_threads=4)
Run hhblits multisequence alignment search on a dataset. This function requires the hhblits binary to be installed
and in the path. This function also requires a Hidden Markov Model reference database to be provided. Both
can be found here: https://github.com/soedinglab/hh-suite

The database should be in the deepchem data directory or specified as an argument. To set the deepchem data
directory, run this command in your environment:

export DEEPCHEM_DATA_DIR=<path to data directory>

Parameters
• dataset_path (str) – Path to single sequence or multiple sequence alignment (MSA)

dataset. Results will be saved in this directory.

• database (str) – Name of database to search against. Note this is not the path, but the
name of the database.

• data_dir (str) – Path to database directory.

• evalue (float) – E-value cutoff.

• num_iterations (int) – Number of iterations.

• num_threads (int) – Number of threads.

Returns
• results (.a3m file) – MSA file containing the results of the hhblits search.
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• results (.hhr file) – hhsuite results file containing the results of the hhblits search.

Examples

>>> from deepchem.utils.sequence_utils import hhblits
>>> msa_path = hhblits('test/data/example.fasta', database='example_db', data_dir=
→˓'test/data/', evalue=0.001, num_iterations=2, num_threads=4)

hhsearch(dataset_path, database=None, data_dir=None, evalue=0.001, num_iterations=2, num_threads=4)
Run hhsearch multisequence alignment search on a dataset. This function requires the hhblits binary to be
installed and in the path. This function also requires a Hidden Markov Model reference database to be provided.
Both can be found here: https://github.com/soedinglab/hh-suite

The database should be in the deepchem data directory or specified as an argument. To set the deepchem data
directory, run this command in your environment:

export DEEPCHEM_DATA_DIR=<path to data directory>

Examples

>>> from deepchem.utils.sequence_utils import hhsearch
>>> msa_path = hhsearch('test/data/example.fasta', database='example_db', data_dir=
→˓'test/data/', evalue=0.001, num_iterations=2, num_threads=4)

Parameters
• dataset_path (str) – Path to multiple sequence alignment dataset. Results will be saved

in this directory.

• database (str) – Name of database to search against. Note this is not the path, but the
name of the database.

• data_dir (str) – Path to database directory.

• evalue (float) – E-value cutoff.

• num_iterations (int) – Number of iterations.

• num_threads (int) – Number of threads.

Returns
• results (.a3m file) – MSA file containing the results of the hhblits search.

• results (.hhr file) – hhsuite results file containing the results of the hhblits search.

MSA_to_dataset(msa_path)
Convert a multiple sequence alignment to a NumpyDataset object.
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3.31.7 Geometry Utilities

unit_vector(vector: ndarray)→ ndarray
Returns the unit vector of the vector.

Parameters
vector (np.ndarray) – A numpy array of shape (3,), where 3 is (x,y,z).

Returns
A numpy array of shape (3,). The unit vector of the input vector.

Return type
np.ndarray

angle_between(vector_i: ndarray, vector_j: ndarray)→ float
Returns the angle in radians between vectors “vector_i” and “vector_j”

Note that this function always returns the smaller of the two angles between the vectors (value between 0 and pi).

Parameters
• vector_i (np.ndarray) – A numpy array of shape (3,), where 3 is (x,y,z).

• vector_j (np.ndarray) – A numpy array of shape (3,), where 3 is (x,y,z).

Returns
The angle in radians between the two vectors.

Return type
np.ndarray

Examples

>>> print("%0.06f" % angle_between((1, 0, 0), (0, 1, 0)))
1.570796
>>> print("%0.06f" % angle_between((1, 0, 0), (1, 0, 0)))
0.000000
>>> print("%0.06f" % angle_between((1, 0, 0), (-1, 0, 0)))
3.141593

generate_random_unit_vector()→ ndarray
Generate a random unit vector on the sphere S^2.

Citation: http://mathworld.wolfram.com/SpherePointPicking.html

Pseudocode:
a. Choose random theta element [0, 2*pi]

b. Choose random z element [-1, 1]

c. Compute output vector u: (x,y,z) = (sqrt(1-z^2)*cos(theta), sqrt(1-z^2)*sin(theta),z)

Returns
u – A numpy array of shape (3,). u is an unit vector

Return type
np.ndarray
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generate_random_rotation_matrix()→ ndarray
Generates a random rotation matrix.

1. Generate a random unit vector u, randomly sampled from the

unit sphere (see function generate_random_unit_vector() for details)

2. Generate a second random unit vector v

a. If absolute value of u dot v > 0.99, repeat.

(This is important for numerical stability. Intuition: we want them to be as linearly indepen-
dent as possible or else the orthogonalized version of v will be much shorter in magnitude
compared to u. I assume in Stack they took this from Gram-Schmidt orthogonalization?)

b. v” = v - (u dot v)*u, i.e. subtract out the component of

v that’s in u’s direction

c. normalize v” (this isn”t in Stack but I assume it must be

done)

3. find w = u cross v”

4. u, v”, and w will form the columns of a rotation matrix, R.

The intuition is that u, v” and w are, respectively, what the standard basis vectors e1, e2, and e3 will
be mapped to under the transformation.

Returns
R – A numpy array of shape (3, 3). R is a rotation matrix.

Return type
np.ndarray

is_angle_within_cutoff(vector_i: ndarray, vector_j: ndarray, angle_cutoff: float)→ bool
A utility function to compute whether two vectors are within a cutoff from 180 degrees apart.

Parameters
• vector_i (np.ndarray) – A numpy array of shape (3,)`, where 3 is (x,y,z).

• vector_j (np.ndarray) – A numpy array of shape (3,), where 3 is (x,y,z).

• cutoff (float) – The deviation from 180 (in degrees)

Returns
Whether two vectors are within a cutoff from 180 degrees apart

Return type
bool
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3.31.8 Graph Utilities

fourier_encode_dist(x, num_encodings=4, include_self=True)
Fourier encode the input tensor x based on the specified number of encodings.

This function applies a Fourier encoding to the input tensor x by dividing it by a range of scales (2^i for i in
range(num_encodings)) and then concatenating the sine and cosine of the scaled values. Optionally, the original
input tensor can be included in the output.

Parameters
• x (torch.Tensor) – Input tensor to be Fourier encoded.

• num_encodings (int, optional, default=4) – Number of Fourier encodings to apply.

• include_self (bool, optional, default=True) – Whether to include the original in-
put tensor in the output.

Returns
Fourier encoded tensor.

Return type
torch.Tensor

Examples

>>> import torch
>>> x = torch.tensor([1.0, 2.0, 3.0])
>>> encoded_x = fourier_encode_dist(x, num_encodings=4, include_self=True)

aggregate_mean(h, **kwargs)
Compute the mean of the input tensor along the second to last dimension.

Parameters
h (torch.Tensor) – Input tensor.

Returns
Mean of the input tensor along the second to last dimension.

Return type
torch.Tensor

aggregate_max(h, **kwargs)
Compute the max of the input tensor along the second to last dimension.

Parameters
h (torch.Tensor) – Input tensor.

Returns
Max of the input tensor along the second to last dimension.

Return type
torch.Tensor

aggregate_min(h, **kwargs)
Compute the min of the input tensor along the second to last dimension.

Parameters
• h (torch.Tensor) – Input tensor.
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• **kwargs – Additional keyword arguments.

Returns
Min of the input tensor along the second to last dimension.

Return type
torch.Tensor

aggregate_std(h, **kwargs)
Compute the standard deviation of the input tensor along the second to last dimension.

Parameters
h (torch.Tensor) – Input tensor.

Returns
Standard deviation of the input tensor along the second to last dimension.

Return type
torch.Tensor

aggregate_var(h, **kwargs)
Compute the variance of the input tensor along the second to last dimension.

Parameters
h (torch.Tensor) – Input tensor.

Returns
Variance of the input tensor along the second to last dimension.

Return type
torch.Tensor

aggregate_moment(h, n=3, **kwargs)
Compute the nth moment of the input tensor along the second to last dimension.

Parameters
• h (torch.Tensor) – Input tensor.

• n (int, optional, default=3) – The order of the moment to compute.

Returns
Nth moment of the input tensor along the second to last dimension.

Return type
torch.Tensor

aggregate_sum(h, **kwargs)
Compute the sum of the input tensor along the second to last dimension.

Parameters
h (torch.Tensor) – Input tensor.

Returns
Sum of the input tensor along the second to last dimension.

Return type
torch.Tensor

scale_identity(h, D=None, avg_d=None)
Identity scaling function.

Parameters
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• h (torch.Tensor) – Input tensor.

• D (torch.Tensor, optional) – Degree tensor.

• avg_d (dict, optional) – Dictionary containing averages over the training set.

Returns
Scaled input tensor.

Return type
torch.Tensor

scale_amplification(h, D, avg_d)
Amplification scaling function. log(D + 1) / d * h where d is the average of the log(D + 1) in the training set

Parameters
• h (torch.Tensor) – Input tensor.

• D (torch.Tensor) – Degree tensor.

• avg_d (dict) – Dictionary containing averages over the training set.

Returns
Scaled input tensor.

Return type
torch.Tensor

scale_attenuation(h, D, avg_d)
Attenuation scaling function. (log(D + 1))^-1 / d * X where d is the average of the log(D + 1))^-1 in the
training set

Parameters
• h (torch.Tensor) – Input tensor.

• D (torch.Tensor) – Degree tensor.

• avg_d (dict) – Dictionary containing averages over the training set.

Returns
Scaled input tensor.

Return type
torch.Tensor

3.31.9 Hash Function Utilities

hash_ecfp(ecfp: str, size: int = 1024)→ int
Returns an int < size representing given ECFP fragment.

Input must be a string. This utility function is used for various ECFP based fingerprints.

Parameters
• ecfp (str) – String to hash. Usually an ECFP fragment.

• size (int, optional (default 1024)) – Hash to an int in range [0, size)

Returns
ecfp_hash – An int < size representing given ECFP fragment
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Return type
int

hash_ecfp_pair(ecfp_pair: Tuple[str, str], size: int = 1024)→ int
Returns an int < size representing that ECFP pair.

Input must be a tuple of strings. This utility is primarily used for spatial contact featurizers. For example, if a
protein and ligand have close contact region, the first string could be the protein’s fragment and the second the
ligand’s fragment. The pair could be hashed together to achieve one hash value for this contact region.

Parameters
• ecfp_pair (Tuple[str, str]) – Pair of ECFP fragment strings

• size (int, optional (default 1024)) – Hash to an int in range [0, size)

Returns
ecfp_hash – An int < size representing given ECFP pair.

Return type
int

vectorize(hash_function: Callable[[Any, int], int], feature_dict: Dict[int, str] | None = None, size: int = 1024,
feature_list: List | None = None)→ ndarray

Helper function to vectorize a spatial description from a hash.

Hash functions are used to perform spatial featurizations in DeepChem. However, it’s necessary to convert
backwards from the hash function to feature vectors. This function aids in this conversion procedure. It creates
a vector of zeros of length size. It then loops through feature_dict, uses hash_function to hash the stored value
to an integer in range [0, size) and bumps that index.

Parameters
• hash_function (Function, Callable[[str, int], int]) – Should accept two ar-

guments, feature, and size and return a hashed integer. Here feature is the item to hash, and
size is an int. For example, if size=1024, then hashed values must fall in range [0, 1024).

• feature_dict (Dict, optional (default None)) – Maps unique keys to features
computed.

• size (int (default 1024)) – Length of generated bit vector

• feature_list (List, optional (default None)) – List of features.

Returns
feature_vector – A numpy array of shape (size,)

Return type
np.ndarray

3.31.10 Voxel Utils

convert_atom_to_voxel(coordinates: ndarray, atom_index: int, box_width: float, voxel_width: float)→ ndarray
Converts atom coordinates to an i,j,k grid index.

This function offsets molecular atom coordinates by (box_width/2, box_width/2, box_width/2) and then divides
by voxel_width to compute the voxel indices.

Parameters
• coordinates (np.ndarray) – Array with coordinates of all atoms in the molecule, shape

(N, 3).
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• atom_index (int) – Index of an atom in the molecule.

• box_width (float) – Size of the box in Angstroms.

• voxel_width (float) – Size of a voxel in Angstroms

Returns
indices – A 1D numpy array of length 3 with [i, j, k], the voxel coordinates of specified atom.

Return type
np.ndarray

convert_atom_pair_to_voxel(coordinates_tuple: Tuple[ndarray, ndarray], atom_index_pair: Tuple[int, int],
box_width: float, voxel_width: float)→ ndarray

Converts a pair of atoms to i,j,k grid indexes.

Parameters
• coordinates_tuple (Tuple[np.ndarray, np.ndarray]) – A tuple containing two

molecular coordinate arrays of shapes (N, 3) and (M, 3).

• atom_index_pair (Tuple[int, int]) – A tuple of indices for the atoms in the two
molecules.

• box_width (float) – Size of the box in Angstroms.

• voxel_width (float) – Size of a voxel in Angstroms

Returns
indices_list – A numpy array of shape (2, 3), where 3 is [i, j, k] of the voxel coordinates of
specified atom.

Return type
np.ndarray

voxelize(get_voxels: Callable[[...], Any], coordinates: Any, box_width: float = 16.0, voxel_width: float = 1.0,
hash_function: Callable[[...], Any] | None = None, feature_dict: Dict[Any, Any] | None = None,
feature_list: List[int | Tuple[int]] | None = None, nb_channel: int = 16, dtype: str = 'int')→ ndarray

Helper function to voxelize inputs.

This helper function helps convert a hash function which specifies spatial features of a molecular complex into
a voxel tensor. This utility is used by various featurizers that generate voxel grids.

Parameters
• get_voxels (Function) – Function that voxelizes inputs

• coordinates (Any) – Contains the 3D coordinates of a molecular system. This should have
whatever type get_voxels() expects as its first argument.

• box_width (float, optional (default 16.0)) – Size of a box in which voxel features
are calculated. Box is centered on a ligand centroid.

• voxel_width (float, optional (default 1.0)) – Size of a 3D voxel in a grid in
Angstroms.

• hash_function (Function) – Used to map feature choices to voxel channels.

• feature_dict (Dict, optional (default None)) – Keys are atom indices or tuples
of atom indices, the values are computed features. If hash_function is not None, then the
values are hashed using the hash function into [0, nb_channels) and this channel at the voxel
for the given key is incremented by 1 for each dictionary entry. If hash_function is None,
then the value must be a vector of size (n_channels,) which is added to the existing channel
values at that voxel grid.
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• feature_list (List, optional (default None)) – List of atom indices or tuples of
atom indices. This can only be used if nb_channel==1. Increments the voxels corresponding
to these indices by 1 for each entry.

• nb_channel (int, , optional (default 16)) – The number of feature channels com-
puted per voxel. Should be a power of 2.

• dtype (str ('int' or 'float'), optional (default 'int')) – The type of the
numpy ndarray created to hold features.

Returns
feature_tensor – The voxel of the input with the shape (voxels_per_edge, voxels_per_edge, vox-
els_per_edge, nb_channel).

Return type
np.ndarray

3.31.11 Graph Convolution Utilities

one_hot_encode(val: int | str, allowable_set: List[str] | List[int], include_unknown_set: bool = False)→
List[float]

One hot encoder for elements of a provided set.

Examples

>>> one_hot_encode("a", ["a", "b", "c"])
[1.0, 0.0, 0.0]
>>> one_hot_encode(2, [0, 1, 2])
[0.0, 0.0, 1.0]
>>> one_hot_encode(3, [0, 1, 2])
[0.0, 0.0, 0.0]
>>> one_hot_encode(3, [0, 1, 2], True)
[0.0, 0.0, 0.0, 1.0]

Parameters
• val (int or str) – The value must be present in allowable_set.

• allowable_set (List[int] or List[str]) – List of allowable quantities.

• include_unknown_set (bool, default False) – If true, the index of all values not in
allowable_set is len(allowable_set).

Returns
An one-hot vector of val. If include_unknown_set is False, the length is len(allowable_set). If
include_unknown_set is True, the length is len(allowable_set) + 1.

Return type
List[float]

Raises
ValueError – If include_unknown_set is False and val is not in allowable_set.

get_atom_type_one_hot(atom: Any, allowable_set: List[str] = ['C', 'N', 'O', 'F', 'P', 'S', 'Cl', 'Br', 'I'],
include_unknown_set: bool = True)→ List[float]

Get an one-hot feature of an atom type.
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Parameters
• atom (rdkit.Chem.rdchem.Atom) – RDKit atom object

• allowable_set (List[str]) – The atom types to consider. The default set is [“C”, “N”,
“O”, “F”, “P”, “S”, “Cl”, “Br”, “I”].

• include_unknown_set (bool, default True) – If true, the index of all atom not in
allowable_set is len(allowable_set).

Returns
An one-hot vector of atom types. If include_unknown_set is False, the length is
len(allowable_set). If include_unknown_set is True, the length is len(allowable_set) + 1.

Return type
List[float]

construct_hydrogen_bonding_info(mol: Any)→ List[Tuple[int, str]]
Construct hydrogen bonding infos about a molecule.

Parameters
mol (rdkit.Chem.rdchem.Mol) – RDKit mol object

Returns
A list of tuple (atom_index, hydrogen_bonding_type). The hydrogen_bonding_type value is “Ac-
ceptor” or “Donor”.

Return type
List[Tuple[int, str]]

get_atom_hydrogen_bonding_one_hot(atom: Any, hydrogen_bonding: List[Tuple[int, str]])→ List[float]
Get an one-hot feat about whether an atom accepts electrons or donates electrons.

Parameters
• atom (rdkit.Chem.rdchem.Atom) – RDKit atom object

• hydrogen_bonding (List[Tuple[int, str]]) – The return value of con-
struct_hydrogen_bonding_info. The value is a list of tuple (atom_index, hydrogen_bonding)
like (1, “Acceptor”).

Returns
A one-hot vector of the ring size type. The first element indicates “Donor”, and the second
element indicates “Acceptor”.

Return type
List[float]

get_atom_is_in_aromatic_one_hot(atom: Any)→ List[float]
Get ans one-hot feature about whether an atom is in aromatic system or not.

Parameters
atom (rdkit.Chem.rdchem.Atom) – RDKit atom object

Returns
A vector of whether an atom is in aromatic system or not.

Return type
List[float]

get_atom_hybridization_one_hot(atom: Any, allowable_set: List[str] = ['SP', 'SP2', 'SP3'],
include_unknown_set: bool = False)→ List[float]

Get an one-hot feature of hybridization type.
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Parameters
• atom (rdkit.Chem.rdchem.Atom) – RDKit atom object

• allowable_set (List[str]) – The hybridization types to consider. The default set is
[“SP”, “SP2”, “SP3”]

• include_unknown_set (bool, default False) – If true, the index of all types not in
allowable_set is len(allowable_set).

Returns
An one-hot vector of the hybridization type. If include_unknown_set is False, the length is
len(allowable_set). If include_unknown_set is True, the length is len(allowable_set) + 1.

Return type
List[float]

get_atom_total_num_Hs_one_hot(atom: Any, allowable_set: List[int] = [0, 1, 2, 3, 4], include_unknown_set:
bool = True)→ List[float]

Get an one-hot feature of the number of hydrogens which an atom has.

Parameters
• atom (rdkit.Chem.rdchem.Atom) – RDKit atom object

• allowable_set (List[int]) – The number of hydrogens to consider. The default set is
[0, 1, . . . , 4]

• include_unknown_set (bool, default True) – If true, the index of all types not in
allowable_set is len(allowable_set).

Returns
A one-hot vector of the number of hydrogens which an atom has. If include_unknown_set
is False, the length is len(allowable_set). If include_unknown_set is True, the length is
len(allowable_set) + 1.

Return type
List[float]

get_atom_chirality_one_hot(atom: Any)→ List[float]
Get an one-hot feature about an atom chirality type.

Parameters
atom (rdkit.Chem.rdchem.Atom) – RDKit atom object

Returns
A one-hot vector of the chirality type. The first element indicates “R”, and the second element
indicates “S”.

Return type
List[float]

get_atom_formal_charge(atom: Any)→ List[float]
Get a formal charge of an atom.

Parameters
atom (rdkit.Chem.rdchem.Atom) – RDKit atom object

Returns
A vector of the formal charge.

Return type
List[float]
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get_atom_partial_charge(atom: Any)→ List[float]
Get a partial charge of an atom.

Parameters
atom (rdkit.Chem.rdchem.Atom) – RDKit atom object

Returns
A vector of the parital charge.

Return type
List[float]

Notes

Before using this function, you must calculate GasteigerCharge like AllChem.ComputeGasteigerCharges(mol).

get_atom_total_degree_one_hot(atom: Any, allowable_set: List[int] = [0, 1, 2, 3, 4, 5], include_unknown_set:
bool = True)→ List[float]

Get an one-hot feature of the degree which an atom has.

Parameters
• atom (rdkit.Chem.rdchem.Atom) – RDKit atom object

• allowable_set (List[int]) – The degree to consider. The default set is [0, 1, . . . , 5]

• include_unknown_set (bool, default True) – If true, the index of all types not in
allowable_set is len(allowable_set).

Returns
A one-hot vector of the degree which an atom has. If include_unknown_set is False, the length
is len(allowable_set). If include_unknown_set is True, the length is len(allowable_set) + 1.

Return type
List[float]

get_bond_type_one_hot(bond: Any, allowable_set: List[str] = ['SINGLE', 'DOUBLE', 'TRIPLE', 'AROMATIC'],
include_unknown_set: bool = False)→ List[float]

Get an one-hot feature of bond type.

Parameters
• bond (rdkit.Chem.rdchem.Bond) – RDKit bond object

• allowable_set (List[str]) – The bond types to consider. The default set is [“SINGLE”,
“DOUBLE”, “TRIPLE”, “AROMATIC”].

• include_unknown_set (bool, default False) – If true, the index of all types not in
allowable_set is len(allowable_set).

Returns
A one-hot vector of the bond type. If include_unknown_set is False, the length is
len(allowable_set). If include_unknown_set is True, the length is len(allowable_set) + 1.

Return type
List[float]

get_bond_is_in_same_ring_one_hot(bond: Any)→ List[float]
Get an one-hot feature about whether atoms of a bond is in the same ring or not.

Parameters
bond (rdkit.Chem.rdchem.Bond) – RDKit bond object
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Returns
A one-hot vector of whether a bond is in the same ring or not.

Return type
List[float]

get_bond_is_conjugated_one_hot(bond: Any)→ List[float]
Get an one-hot feature about whether a bond is conjugated or not.

Parameters
bond (rdkit.Chem.rdchem.Bond) – RDKit bond object

Returns
A one-hot vector of whether a bond is conjugated or not.

Return type
List[float]

get_bond_stereo_one_hot(bond: Any, allowable_set: List[str] = ['STEREONONE', 'STEREOANY', 'STEREOZ',
'STEREOE'], include_unknown_set: bool = True)→ List[float]

Get an one-hot feature of the stereo configuration of a bond.

Parameters
• bond (rdkit.Chem.rdchem.Bond) – RDKit bond object

• allowable_set (List[str]) – The stereo configuration types to consider. The default set
is [“STEREONONE”, “STEREOANY”, “STEREOZ”, “STEREOE”].

• include_unknown_set (bool, default True) – If true, the index of all types not in
allowable_set is len(allowable_set).

Returns
A one-hot vector of the stereo configuration of a bond. If include_unknown_set is False, the
length is len(allowable_set). If include_unknown_set is True, the length is len(allowable_set) +
1.

Return type
List[float]

get_bond_graph_distance_one_hot(bond: Any, graph_dist_matrix: ndarray, allowable_set: List[int] = [1, 2, 3,
4, 5, 6, 7], include_unknown_set: bool = True)→ List[float]

Get an one-hot feature of graph distance.

Parameters
• bond (rdkit.Chem.rdchem.Bond) – RDKit bond object

• graph_dist_matrix (np.ndarray) – The return value of Chem.GetDistanceMatrix(mol).
The shape is (num_atoms, num_atoms).

• allowable_set (List[int]) – The graph distance types to consider. The default set is [1,
2, . . . , 7].

• include_unknown_set (bool, default False) – If true, the index of all types not in
allowable_set is len(allowable_set).

Returns
A one-hot vector of the graph distance. If include_unknown_set is False, the length is
len(allowable_set). If include_unknown_set is True, the length is len(allowable_set) + 1.

Return type
List[float]
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3.31.12 Grover Utilities

extract_grover_attributes(molgraph: BatchGraphData)
Utility to extract grover attributes for grover model

Parameters
molgraph (BatchGraphData) – A batched graph data representing a collection of molecules.

Returns
graph_attributes – A tuple containing atom features, bond features, atom to bond mapping,
bond to atom mapping, bond to reverse bond mapping, atom to atom mapping, atom scope, bond
scope, functional group labels and other additional features.

Return type
Tuple

Example

>>> import deepchem as dc
>>> from deepchem.feat.graph_data import BatchGraphData
>>> smiles = ['CC', 'CCC', 'CC(=O)C']
>>> featurizer = dc.feat.GroverFeaturizer(features_generator=dc.feat.
→˓CircularFingerprint())
>>> graphs = featurizer.featurize(smiles)
>>> molgraph = BatchGraphData(graphs)
>>> attributes = extract_grover_attributes(molgraph)

3.31.13 Debug Utilities

3.31.14 Docking Utilities

These utilities assist in file preparation and processing for molecular docking.

write_vina_conf(protein_filename: str, ligand_filename: str, centroid: ndarray, box_dims: ndarray,
conf_filename: str, num_modes: int = 9, exhaustiveness: int | None = None)→ None

Writes Vina configuration file to disk.

Autodock Vina accepts a configuration file which provides options under which Vina is invoked. This utility
function writes a vina configuration file which directs Autodock vina to perform docking under the provided
options.

Parameters
• protein_filename (str) – Filename for protein

• ligand_filename (str) – Filename for the ligand

• centroid (np.ndarray) – A numpy array with shape (3,) holding centroid of system

• box_dims (np.ndarray) – A numpy array of shape (3,) holding the size of the box to dock

• conf_filename (str) – Filename to write Autodock Vina configuration to.

• num_modes (int, optional (default 9)) – The number of binding modes Autodock
Vina should find
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• exhaustiveness (int, optional) – The exhaustiveness of the search to be performed
by Vina

write_gnina_conf(protein_filename: str, ligand_filename: str, conf_filename: str, num_modes: int = 9,
exhaustiveness: int | None = None, **kwargs)→ None

Writes GNINA configuration file to disk.

GNINA accepts a configuration file which provides options under which GNINA is invoked. This utility function
writes a configuration file which directs GNINA to perform docking under the provided options.

Parameters
• protein_filename (str) – Filename for protein

• ligand_filename (str) – Filename for the ligand

• conf_filename (str) – Filename to write Autodock Vina configuration to.

• num_modes (int, optional (default 9)) – The number of binding modes GNINA
should find

• exhaustiveness (int, optional) – The exhaustiveness of the search to be performed
by GNINA

• kwargs – Args supported by GNINA documented here https://github.com/gnina/gnina#
usage

load_docked_ligands(pdbqt_output: str)→ Tuple[List[Any], List[float]]
This function loads ligands docked by autodock vina.

Autodock vina writes outputs to disk in a PDBQT file format. This PDBQT file can contain multiple docked
“poses”. Recall that a pose is an energetically favorable 3D conformation of a molecule. This utility function
reads and loads the structures for multiple poses from vina’s output file.

Parameters
pdbqt_output (str) – Should be the filename of a file generated by autodock vina’s docking
software.

Returns
Tuple of molecules, scores. molecules is a list of rdkit molecules with 3D information. scores is
the associated vina score.

Return type
Tuple[List[rdkit.Chem.rdchem.Mol], List[float]]

Notes

This function requires RDKit to be installed.

prepare_inputs(protein: str, ligand: str, replace_nonstandard_residues: bool = True, remove_heterogens: bool =
True, remove_water: bool = True, add_hydrogens: bool = True, pH: float = 7.0, optimize_ligand:
bool = True, pdb_name: str | None = None)→ Tuple[Any, Any]

This prepares protein-ligand complexes for docking.

Autodock Vina requires PDB files for proteins and ligands with sensible inputs. This function uses PDBFixer
and RDKit to ensure that inputs are reasonable and ready for docking. Default values are given for convenience,
but fixing PDB files is complicated and human judgement is required to produce protein structures suitable for
docking. Always inspect the results carefully before trying to perform docking.

Parameters
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• protein (str) – Filename for protein PDB file or a PDBID.

• ligand (str) – Either a filename for a ligand PDB file or a SMILES string.

• replace_nonstandard_residues (bool (default True)) – Replace nonstandard
residues with standard residues.

• remove_heterogens (bool (default True)) – Removes residues that are not standard
amino acids or nucleotides.

• remove_water (bool (default True)) – Remove water molecules.

• add_hydrogens (bool (default True)) – Add missing hydrogens at the protonation
state given by pH.

• pH (float (default 7.0)) – Most common form of each residue at given pH value is
used.

• optimize_ligand (bool (default True)) – If True, optimize ligand with RDKit. Re-
quired for SMILES inputs.

• pdb_name (Optional[str]) – If given, write sanitized protein and ligand to files called
“pdb_name.pdb” and “ligand_pdb_name.pdb”

Returns
Tuple of protein_molecule, ligand_molecule with 3D information.

Return type
Tuple[RDKitMol, RDKitMol]

Note: This function requires RDKit and OpenMM to be installed. Read more about PDBFixer here: https:
//github.com/openmm/pdbfixer.

Examples

>>> p, m = prepare_inputs('3cyx', 'CCC')

>> p.GetNumAtoms() >> m.GetNumAtoms()

>>> p, m = prepare_inputs('3cyx', 'CCC', remove_heterogens=False)

>> p.GetNumAtoms()

read_gnina_log(log_file: str)→ ndarray
Read GNINA logfile and get docking scores.

GNINA writes computed binding affinities to a logfile.

Parameters
log_file (str) – Filename of logfile generated by GNINA.

Returns
scores – Array of binding affinity (kcal/mol), CNN pose score, and CNN affinity for each binding
mode.

Return type
np.array, dimension (num_modes, 3)
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Print Threshold

The printing threshold controls how many dataset elements are printed when dc.data.Dataset objects are converted
to strings or represnted in the IPython repl.

get_print_threshold()→ int
Return the printing threshold for datasets.

The print threshold is the number of elements from ids/tasks to print when printing representations of Dataset
objects.

Returns
threshold – Number of elements that will be printed

Return type
int

set_print_threshold(threshold: int)
Set print threshold

The print threshold is the number of elements from ids/tasks to print when printing representations of Dataset
objects.

Parameters
threshold (int) – Number of elements to print.

get_max_print_size()→ int
Return the max print size for a dataset.

If a dataset is large, printing self.ids as part of a string representation can be very slow. This field controls the
maximum size for a dataset before ids are no longer printed.

Returns
max_print_size – Maximum length of a dataset for ids to be printed in string representation.

Return type
int

set_max_print_size(max_print_size: int)
Set max_print_size

If a dataset is large, printing self.ids as part of a string representation can be very slow. This field controls the
maximum size for a dataset before ids are no longer printed.

Parameters
max_print_size (int) – Maximum length of a dataset for ids to be printed in string represen-
tation.

3.31.15 Fake Data Generator

The utilities here are used to generate random sample data which can be used for testing model architectures or other
purposes.

class FakeGraphGenerator(min_nodes: int = 10, max_nodes: int = 10, n_node_features: int = 5, avg_degree:
int = 4, n_edge_features: int = 3, n_classes: int = 2, task: str = 'graph', **kwargs)

Generates a random graphs which can be used for testing or other purposes.

The generated graph supports both node-level and graph-level labels.
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Example

>>> from deepchem.utils.fake_data_generator import FakeGraphGenerator
>>> fgg = FakeGraphGenerator(min_nodes=8, max_nodes=10, n_node_features=5, avg_
→˓degree=8, n_edge_features=3, n_classes=2, task='graph', z=5)
>>> graphs = fgg.sample(n_graphs=10)
>>> type(graphs)
<class 'deepchem.data.datasets.NumpyDataset'>
>>> type(graphs.X[0])
<class 'deepchem.feat.graph_data.GraphData'>
>>> len(graphs) == 10 # num_graphs
True

Note: The FakeGraphGenerator class is based on torch_geometric.dataset.FakeDataset class.

__init__(min_nodes: int = 10, max_nodes: int = 10, n_node_features: int = 5, avg_degree: int = 4,
n_edge_features: int = 3, n_classes: int = 2, task: str = 'graph', **kwargs)

Parameters
• min_nodes (int, default 10) – Minimum number of permissible nodes in a graph

• max_nodes (int, default 10) – Maximum number of permissible nodes in a graph

• n_node_features (int, default 5) – Average number of node features in a graph

• avg_degree (int, default 4) – Average degree of the graph (avg_degree should be a
positive number greater than the min_nodes)

• n_edge_features (int, default 3) – Average number of features in the edge

• task (str, default 'graph') – Indicates node-level labels or graph-level labels

• kwargs (optional) – Additional graph attributes and their shapes , e.g. global_features
= 5

sample(n_graphs: int = 100)→ NumpyDataset
Samples graphs

Parameters
n_graphs (int, default 100) – Number of graphs to generate

Returns
graphs – Generated Graphs

Return type
NumpyDataset
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3.31.16 Electron Sampler

The utilities here are used to sample electrons in a given molecule and update it using monte carlo methods, which can
be used for methods like Variational Monte Carlo, etc.

class ElectronSampler(central_value: ndarray, f: Callable[[ndarray], ndarray], batch_no: int = 10, x:
ndarray = array([], dtype=float64), steps: int = 200, steps_per_update: int = 10, seed:
int | None = None, symmetric: bool = True, simultaneous: bool = True)

This class enables to initialize electron’s position using gauss distribution around a nucleus and update using
Markov Chain Monte-Carlo(MCMC) moves.

Using the probability obtained from the square of magnitude of wavefunction of a molecule/atom, MCMC steps
can be performed to get the electron’s positions and further update the wavefunction. This method is primarily
used in methods like Variational Monte Carlo to sample electrons around the nucleons. Sampling can be done
in 2 ways: -Simultaneous: All the electrons’ positions are updated all at once.

-Single-electron: MCMC steps are performed only a particular electron, given their index value.

Further these moves can be done in 2 methods: -Symmetric: In this configuration, the standard deviation for all
the steps are uniform.

-Asymmetric: In this configuration, the standard deviation are not uniform and typically the standard deviation
is obtained a function like harmonic distances, etc.

Irrespective of these methods, the initialization is done uniformly around the respective nucleus and the number
of electrons specified.

Example

>>> from deepchem.utils.electron_sampler import ElectronSampler
>>> test_f = lambda x: 2*np.log(np.random.uniform(low=0,high=1.0,size=np.
→˓shape(x)[0]))
>>> distribution=ElectronSampler(central_value=np.array([[1,1,3],[3,2,3]]),f=test_f,
→˓seed=0,batch_no=2,steps=1000,)
>>> distribution.gauss_initialize_position(np.array([[1],[2]]))

>> print(distribution.x) [[[[1.03528105 1.00800314 3.01957476]]

[[3.01900177 1.99697286 2.99793562]]

[[3.00821197 2.00288087 3.02908547]]]

[[[1.04481786 1.03735116 2.98045444]]

[[3.01522075 2.0024335 3.00887726]]

[[3.00667349 2.02988158 2.99589683]]]]

>>> distribution.move()
0.5115

>> print(distribution.x) [[[[-0.32441754 1.23330263 2.67927645]]

[[ 3.42250997 2.23617126 3.55806632]]

[[ 3.37491385 1.54374006 3.13575241]]]

[[[ 0.49067726 1.03987841 3.70277884]]
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[[ 3.5631939 1.68703947 2.5685874 ]]

[[ 2.84560249 1.73998364 3.41274181]]]]

__init__(central_value: ndarray, f: Callable[[ndarray], ndarray], batch_no: int = 10, x: ndarray =
array([], dtype=float64), steps: int = 200, steps_per_update: int = 10, seed: int | None = None,
symmetric: bool = True, simultaneous: bool = True)

Parameters
• central_value (np.ndarray) – Contains each nucleus’ coordinates in a 2D array. The

shape of the array should be(number_of_nucleus,3).Ex: [[1,2,3],[3,4,5],..]

• f (Callable[[np.ndarray],np.ndarray]) – A function that should give the twice the
log probability of wavefunction of the molecular system when called. Should taken in a
4D array of electron’s positions(x) as argument and return a numpy array containing the
log probabilities of each batch.

• batch_no (int, optional (default 10)) – Number of batches of the electron’s po-
sitions to be initialized.

• x (np.ndarray, optional (default np.ndarray([]))) – Contains the electron’s
coordinates in a 4D array. The shape of the array should be(batch_no,no_of_electrons,1,3).
Can be a 1D empty array, when electron’s positions are yet to be initialized.

• steps (int, optional (default 10)) – The number of MCMC steps to be performed
when the moves are called.

• steps_per_update (int (default 10)) – The number of steps after which the param-
eters of the MCMC gets updated.

• seed (int, optional (default None)) – Random seed to use.

• symmetric (bool, optional(default True)) – If true, symmetric moves will be
used, else asymmetric moves will be followed.

• simultaneous (bool, optional(default True)) – If true, MCMC steps will be per-
formed on all the electrons, else only a single electron gets updated.

sampled_electrons

Keeps track of the sampled electrons at every step, must be empty at start.
Type

np.ndarray

harmonic_mean(y: ndarray)→ ndarray
Calculates the harmonic mean of the value ‘y’ from the self.central value. The numpy array returned is
typically scaled up to get the standard deviation matrix.

Parameters
y (np.ndarray) – Containing the data distribution. Shape of y should be
(batch,no_of_electron,1,3)

Returns
Contains the harmonic mean of the data distribution of each batch. Shape of the array obtained
(batch_no, no_of_electrons,1,1)

Return type
np.ndarray

log_prob_gaussian(y: ndarray, mu: ndarray, sigma: ndarray)→ ndarray
Calculates the log probability of a gaussian distribution, given the mean and standard deviation
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Parameters
• y (np.ndarray) – data for which the log normal distribution is to be found

• mu (np.ndarray) – Means wrt which the log normal is calculated. Same shape as x or
should be brodcastable to x

• sigma (np.ndarray,) – The standard deviation of the log normal distribution. Same
shape as x or should be brodcastable to x

Returns
Log probability of gaussian distribution, with the shape - (batch_no,).

Return type
np.ndarray

gauss_initialize_position(no_sample: ndarray, stddev: float = 0.02)
Initializes the position around a central value as mean sampled from a gauss distribution and updates self.x.
:param no_sample: Contains the number of samples to initialize under each mean. should be in the form
[[3],[2]..], where here it means 3 samples and 2 samples around the first entry and second entry,respectively
in self.central_value is taken. :type no_sample: np.ndarray, :param stddev: contains the stddev with which
the electrons’ coordinates are initialized :type stddev: float, optional (default 0.02)

electron_update(lp1, lp2, move_prob, ratio, x2)→ ndarray
Performs sampling & parameter updates of electrons and appends the sampled electrons to
self.sampled_electrons.

Parameters
• lp1 (np.ndarray) – Log probability of initial parameter state.

• lp2 (np.ndarray) – Log probability of the new sampled state.

• move_prob (np.ndarray) – Sampled log probabilty of the electron moving from the ini-
tial to final state, sampled assymetrically or symetrically.

• ratio (np.ndarray) – Ratio of lp1 and lp2 state.

• x2 (np.ndarray) – Numpy array of the new sampled electrons.

Returns
lp1 – The update log probability of initial parameter state.

Return type
np.ndarray

move(stddev: float = 0.02, asymmetric_func: Callable[[ndarray], ndarray] | None = None, index: int | None
= None)→ float

Performs Metropolis-Hasting move for self.x(electrons). The type of moves to be followed -(simultaneous
or single-electron, symmetric or asymmetric) have been specified when calling the class. The self.x array
is replaced with a new array at the end of each step containing the new electron’s positions.

Parameters
• asymmetric_func (Callable[[np.ndarray],np.ndarray], optional(default
None)) – Should be specified for an asymmetric move.The function should take in only 1
argument- y: a numpy array wrt to which mean should be calculated. This function should
return the mean for the asymmetric proposal. For ferminet, this function is the harmonic
mean of the distance between the electron and the nucleus.

• stddev (float, optional (default 0.02)) – Specifies the standard deviation in the
case of symmetric moves and the scaling factor of the standard deviation matrix in the case
of asymmetric moves.
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• index (int, optional (default None)) – Specifies the index of the electron to be
updated in the case of a single electron move.

Returns
accepted move ratio of the MCMC steps.

Return type
float

3.31.17 Density Functional Theory Utilities

The utilites here are used to create an object that contains information about a system’s self-consistent iteration steps
and other processes.

class Lattice(a: Tensor)
Lattice is an object that describe the periodicity of the lattice. Note that this object does not know about atoms.
For the integrated object between the lattice and atoms, please see Sol

Examples

>>> import torch
>>> from deepchem.utils.dft_utils import Lattice
>>> a = torch.tensor([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]])
>>> lattice = Lattice(a)
>>> lattice.lattice_vectors()
tensor([[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]])

>>> lattice.recip_vectors()
tensor([[6.2832, 0.0000, 0.0000],

[0.0000, 6.2832, 0.0000],
[0.0000, 0.0000, 6.2832]])

>>> lattice.volume() # volume of the unit cell
tensor(1.)
>>> lattice.get_lattice_ls(1.0) # get the neighboring lattice vectors
tensor([[ 0., 0., -1.],

[ 0., -1., 0.],
[-1., 0., 0.],
[ 0., 0., 0.],
[ 1., 0., 0.],
[ 0., 1., 0.],
[ 0., 0., 1.]])

>>> lattice.get_gvgrids(6.0) # get the neighboring G-vectors
(tensor([[ 0.0000, 0.0000, -6.2832],

[ 0.0000, -6.2832, 0.0000],
[-6.2832, 0.0000, 0.0000],
[ 0.0000, 0.0000, 0.0000],
[ 6.2832, 0.0000, 0.0000],
[ 0.0000, 6.2832, 0.0000],
[ 0.0000, 0.0000, 6.2832]]), tensor([1.0000, 1.0000, 1.0000, 1.0000, 1.

→˓0000, 1.0000, 1.0000]))
>>> lattice.estimate_ewald_eta(1e-5) # estimate the ewald's sum eta
1.8
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__init__(a: Tensor)
Initialize the lattice object.

2D or 1D repetition are not implemented yet

Parameters
a (torch.Tensor) – The lattice vectors with shape (ndim, ndim) with ndim == 3

lattice_vectors()→ Tensor
Returns the 3D lattice vectors (nv, ndim) with nv == 3

recip_vectors()→ Tensor
Returns the 3D reciprocal vectors with norm == 2 * pi with shape (nv, ndim) with nv == 3

Note: torch.det(self.a) should not be equal to zero.

volume()→ Tensor
Returns the volume of a lattice.

property params: Tuple[Tensor, ...]

Returns the list of parameters of this object

get_lattice_ls(rcut: float, exclude_zeros: bool = False)→ Tensor
Returns a tensor that contains the coordinates of the neighboring lattices.

Parameters
• rcut (float) – The threshold of the distance from the main cell to be included in the

neighbor.

• exclude_zeros (bool (default: False)) – If True, then it will exclude the vector
that are all zeros.

Returns
ls – Tensor with size (nb, ndim) containing the coordinates of the neighboring cells.

Return type
torch.Tensor

get_gvgrids(gcut: float, exclude_zeros: bool = False)→ Tuple[Tensor, Tensor]
Returns a tensor that contains the coordinate in reciprocal space of the neighboring Brillouin zones.

Parameters
• gcut (float) – Cut off for generating the G-points.

• exclude_zeros (bool (default: False)) – If True, then it will exclude the vector
that are all zeros.

Returns
• gvgrids (torch.Tensor) – Tensor with size (ng, ndim) containing the G-coordinates of the

Brillouin zones.

• weights (torch.Tensor) – Tensor with size (ng) representing the weights of the G-points.

estimate_ewald_eta(precision: float)→ float
estimate the ewald’s sum eta for nuclei interaction energy the precision is assumed to be relative precision
this formula is obtained by estimating the sum as an integral.

Parameters
precision (float) – The precision of the ewald’s sum.
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Returns
eta – The estimated eta.

Return type
float

class SpinParam(u: T , d: T)
Data structure to store different values for spin-up and spin-down electrons.

Examples

>>> import torch
>>> from deepchem.utils.dft_utils import SpinParam
>>> dens_u = torch.ones(1)
>>> dens_d = torch.zeros(1)
>>> sp = SpinParam(u=dens_u, d=dens_d)
>>> sp.u
tensor([1.])
>>> sp.sum()
tensor([1.])
>>> sp.reduce(torch.multiply)
tensor([0.])

__init__(u: T , d: T)
Initialize the SpinParam object.

Parameters
• u (any type) – The parameters that corresponds to the spin-up electrons.

• d (any type) – The parameters that corresponds to the spin-down electrons.

sum()

Returns the sum of up and down parameters.

reduce(fcn: Callable)→ T
Reduce up and down parameters with the given function.

class ValGrad(value: Tensor, grad: Tensor | None = None, lapl: Tensor | None = None, kin: Tensor | None =
None)

Data structure that contains local information about density profiles. Data structure used as a umbrella class for
density profiles and the derivative of the potential w.r.t. density profiles.

Examples

>>> import torch
>>> from deepchem.utils.dft_utils import ValGrad
>>> dens = torch.ones(1)
>>> grad = torch.zeros(1)
>>> lapl = torch.ones(1)
>>> kin = torch.ones(1)
>>> vg = ValGrad(value=dens, grad=grad, lapl=lapl, kin=kin)
>>> vg + vg
ValGrad(value=tensor([2.]), grad=tensor([0.]), lapl=tensor([2.]), kin=tensor([2.]))

(continues on next page)
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>>> vg * 5
ValGrad(value=tensor([5.]), grad=tensor([0.]), lapl=tensor([5.]), kin=tensor([5.]))

__init__(value: Tensor, grad: Tensor | None = None, lapl: Tensor | None = None, kin: Tensor | None =
None)

Initialize the ValGrad object.

Parameters
• value (torch.Tensor) – Tensors containing the value of the local information.

• grad (torch.Tensor or None) – If tensor, it represents the gradient of the local infor-
mation with shape (..., 3) where ... should be the same shape as value.

• lapl (torch.Tensor or None) – If tensor, represents the laplacian value of the local
information. It should have the same shape as value.

• kin (torch.Tensor or None) – If tensor, represents the local kinetic energy density. It
should have the same shape as value.

__add__(b)
Add two ValGrad objects together.

__mul__(f: float | int | Tensor)
Multiply the ValGrad object with a scalar.

class CGTOBasis(angmom: int, alphas: Tensor, coeffs: Tensor)
Data structure that contains information about a contracted gaussian type orbital (CGTO).

Examples

>>> import torch
>>> from deepchem.utils.dft_utils import CGTOBasis
>>> alphas = torch.ones(1)
>>> coeffs = torch.ones(1)
>>> cgto = CGTOBasis(angmom=0, alphas=alphas, coeffs=coeffs)
>>> cgto.wfnormalize_()
CGTOBasis(angmom=0, alphas=tensor([1.]), coeffs=tensor([2.5265]), normalized=True)

__init__(angmom: int, alphas: Tensor, coeffs: Tensor)
Initialize the CGTOBasis object.

Parameters
• angmom (int) – The angular momentum of the basis.

• alphas (torch.Tensor) – The gaussian exponents of the basis. Shape: (nbasis,)

• coeffs (torch.Tensor) – The coefficients of the basis. Shape: (nbasis,)

wfnormalize_()→ CGTOBasis
Wavefunction normalization

The normalization is obtained from CINTgto_norm from libcint/src/misc.c, or https://github.com/sunqm/
libcint/blob/b8594f1d27c3dad9034984a2a5befb9d607d4932/src/misc.c#L80

Please note that the square of normalized wavefunctions do not integrate to 1, but e.g. for s: 4*pi, p:
(4*pi/3)
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class AtomCGTOBasis(atomz: int | float | Tensor, bases: List[CGTOBasis], pos: List[List[float]] | ndarray |
Tensor)

Data structure that contains information about a atom and its contracted gaussian type orbital (CGTO).

Examples

>>> import torch
>>> from deepchem.utils.dft_utils import AtomCGTOBasis, CGTOBasis
>>> alphas = torch.ones(1)
>>> coeffs = torch.ones(1)
>>> cgto = CGTOBasis(angmom=0, alphas=alphas, coeffs=coeffs)
>>> atomcgto = AtomCGTOBasis(atomz=1, bases=[cgto], pos=[[0.0, 0.0, 0.0]])
>>> atomcgto
AtomCGTOBasis(atomz=1, bases=[CGTOBasis(angmom=0, alphas=tensor([1.]),␣
→˓coeffs=tensor([1.]), normalized=False)], pos=tensor([[0., 0., 0.]]))

__init__(atomz: int | float | Tensor, bases: List[CGTOBasis], pos: List[List[float]] | ndarray | Tensor)
Initialize the AtomCGTOBasis object.

Parameters
• atomz (ZType) – Atomic number of the atom.

• bases (List[CGTOBasis]) – List of CGTOBasis objects.

• pos (AtomPosType) – Position of the atom. Shape: (ndim,)

class BaseXC

This is the base class for the exchange-correlation (XC) functional. The XC functional is used to calculate the
exchange-correlation energy and potential. The XC functional is usually divided into three families: LDA, GGA,
and Meta-GGA. The LDA is the simplest one, which only depends on the density. The GGA depends on the
density and its gradient. The Meta-GGA depends on the density, its gradient, and its Laplacian.

Examples

>>> import torch
>>> from deepchem.utils.dft_utils import ValGrad, SpinParam
>>> from deepchem.utils.dft_utils import BaseXC
>>> class MyXC(BaseXC):
... @property
... def family(self) -> int:
... return 1
... def get_edensityxc(self, densinfo: Union[ValGrad, SpinParam[ValGrad]]) ->␣
→˓torch.Tensor:
... if isinstance(densinfo, ValGrad):
... return densinfo.value.pow(2)
... else:
... return densinfo.u.value.pow(2) + densinfo.d.value.pow(2)
... def get_vxc(self, densinfo: Union[ValGrad, SpinParam[ValGrad]]) ->␣
→˓Union[ValGrad, SpinParam[ValGrad]]:
... if isinstance(densinfo, ValGrad):
... return ValGrad(value=2*densinfo.value)
... else:

(continues on next page)
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... return SpinParam(u=ValGrad(value=2*densinfo.u.value),

... d=ValGrad(value=2*densinfo.d.value))
>>> xc = MyXC()
>>> densinfo = ValGrad(value=torch.tensor([1., 2., 3.], requires_grad=True))
>>> xc.get_edensityxc(densinfo)
tensor([1., 4., 9.], grad_fn=<PowBackward0>)
>>> xc.get_vxc(densinfo)
ValGrad(value=tensor([2., 4., 6.], grad_fn=<MulBackward0>), grad=None, lapl=None,␣
→˓kin=None)
>>> densinfo = SpinParam(u=ValGrad(value=torch.tensor([1., 2., 3.], requires_
→˓grad=True)),
... d=ValGrad(value=torch.tensor([4., 5., 6.], requires_
→˓grad=True)))
>>> xc.get_edensityxc(densinfo)
tensor([17., 29., 45.], grad_fn=<AddBackward0>)
>>> xc.get_vxc(densinfo)
SpinParam(u=ValGrad(value=tensor([2., 4., 6.], grad_fn=<MulBackward0>), grad=None,␣
→˓lapl=None, kin=None), d=ValGrad(value=tensor([ 8., 10., 12.], grad_fn=
→˓<MulBackward0>), grad=None, lapl=None, kin=None))

abstract property family: int

Returns 1 for LDA, 2 for GGA, and 4 for Meta-GGA.

abstract get_edensityxc(densinfo: ValGrad | SpinParam[ValGrad])→ Tensor
Returns the xc energy density (energy per unit volume)

Parameters
densinfo (Union[ValGrad, SpinParam[ValGrad]]) – The density information. If the
XC is unpolarized, then densinfo is ValGrad. If the XC is polarized, then densinfo is Spin-
Param[ValGrad]. The ValGrad contains the value and gradient of the density. The Spin-
Param[ValGrad] contains the value and gradient of the density for each spin channel.

Returns
The energy density of the XC.

Return type
torch.Tensor

get_vxc(densinfo: ValGrad | SpinParam[ValGrad])
Returns the ValGrad for the xc potential given the density info for unpolarized case.

This is the default implementation of vxc if there is no implementation in the specific class of XC.

Parameters
densinfo (Union[ValGrad, SpinParam[ValGrad]]) – The density information. If the
XC is unpolarized, then densinfo is ValGrad. If the XC is polarized, then densinfo is Spin-
Param[ValGrad]. The ValGrad contains the value and gradient of the density. The Spin-
Param[ValGrad] contains the value and gradient of the density for each spin channel.

Returns
The ValGrad for the xc potential. If the XC is unpolarized, then the return is ValGrad. If the
XC is polarized, then the return is SpinParam[ValGrad].

Return type
Union[ValGrad, SpinParam[ValGrad]]
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getparamnames(methodname: str, prefix: str = '')→ List[str]
This method should list tensor names that affect the output of the method with name indicated in
methodname. If the methodname is not on the list in this function, it should raise KeyError.

Parameters
• methodname (str) – The name of the method of the class.

• prefix (str) – The prefix to be appended in front of the parameters name. This usually
contains the dots.

Returns
Sequence of name of parameters affecting the output of the method.

Return type
List[str]

Raises
KeyError – If the list in this function does not contain methodname.

__add__(other: Any)→ Any
Add two BaseXC together

Examples

>>> import torch
>>> from deepchem.utils.dft_utils import ValGrad, SpinParam
>>> from deepchem.utils.dft_utils import BaseXC, AddBaseXC
>>> class MyXC(BaseXC):
... @property
... def family(self) -> int:
... return 1
... def get_edensityxc(self, densinfo: Union[ValGrad, SpinParam[ValGrad]]) -
→˓> torch.Tensor:
... if isinstance(densinfo, ValGrad):
... return densinfo.value.pow(2)
... else:
... return densinfo.u.value.pow(2) + densinfo.d.value.pow(2)
... def get_vxc(self, densinfo: Union[ValGrad, SpinParam[ValGrad]]) ->␣
→˓Union[ValGrad, SpinParam[ValGrad]]:
... if isinstance(densinfo, ValGrad):
... return ValGrad(value=2*densinfo.value)
... else:
... return SpinParam(u=ValGrad(value=2*densinfo.u.value),
... d=ValGrad(value=2*densinfo.d.value))
>>> xc = MyXC()
>>> densinfo = ValGrad(value=torch.tensor([1., 2., 3.], requires_grad=True))
>>> xc.get_edensityxc(densinfo)
tensor([1., 4., 9.], grad_fn=<PowBackward0>)
>>> xc.get_vxc(densinfo)
ValGrad(value=tensor([2., 4., 6.], grad_fn=<MulBackward0>), grad=None,␣
→˓lapl=None, kin=None)
>>> densinfo = SpinParam(u=ValGrad(value=torch.tensor([1., 2., 3.], requires_
→˓grad=True)),
... d=ValGrad(value=torch.tensor([4., 5., 6.], requires_

(continues on next page)
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→˓grad=True)))
>>> xc.get_edensityxc(densinfo)
tensor([17., 29., 45.], grad_fn=<AddBackward0>)
>>> xc.get_vxc(densinfo)
SpinParam(u=ValGrad(value=tensor([2., 4., 6.], grad_fn=<MulBackward0>),␣
→˓grad=None, lapl=None, kin=None), d=ValGrad(value=tensor([ 8., 10., 12.], grad_
→˓fn=<MulBackward0>), grad=None, lapl=None, kin=None))
>>> xc2 = AddBaseXC(xc, xc)
>>> xc2.get_edensityxc(densinfo)
tensor([34., 58., 90.], grad_fn=<AddBackward0>)
>>> xc2.get_vxc(densinfo)
SpinParam(u=ValGrad(value=tensor([ 4., 8., 12.], grad_fn=<AddBackward0>),␣
→˓grad=None, lapl=None, kin=None), d=ValGrad(value=tensor([16., 20., 24.], grad_
→˓fn=<AddBackward0>), grad=None, lapl=None, kin=None))
>>> xc3 = xc + xc
>>> xc3.get_edensityxc(densinfo)
tensor([34., 58., 90.], grad_fn=<AddBackward0>)
>>> xc3.get_vxc(densinfo)
SpinParam(u=ValGrad(value=tensor([ 4., 8., 12.], grad_fn=<AddBackward0>),␣
→˓grad=None, lapl=None, kin=None), d=ValGrad(value=tensor([16., 20., 24.], grad_
→˓fn=<AddBackward0>), grad=None, lapl=None, kin=None))

Parameters
other (BaseXC) – The BaseXC to be added with.

Returns
The BaseXC that is the sum of the two BaseXC.

Return type
BaseXC

__mul__(other: float | int | Tensor)
Multiply a BaseXC with a float or a tensor.

Examples

>>> import torch
>>> from deepchem.utils.dft_utils import ValGrad, SpinParam
>>> from deepchem.utils.dft_utils import BaseXC, MulBaseXC
>>> class MyXC(BaseXC):
... @property
... def family(self) -> int:
... return 1
... def get_edensityxc(self, densinfo: Union[ValGrad, SpinParam[ValGrad]]) -
→˓> torch.Tensor:
... if isinstance(densinfo, ValGrad):
... return densinfo.value.pow(2)
... else:
... return densinfo.u.value.pow(2) + densinfo.d.value.pow(2)
... def get_vxc(self, densinfo: Union[ValGrad, SpinParam[ValGrad]]) ->␣
→˓Union[ValGrad, SpinParam[ValGrad]]:

(continues on next page)
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... if isinstance(densinfo, ValGrad):

... return ValGrad(value=2*densinfo.value)

... else:

... return SpinParam(u=ValGrad(value=2*densinfo.u.value),

... d=ValGrad(value=2*densinfo.d.value))
>>> xc = MyXC()
>>> densinfo = ValGrad(value=torch.tensor([1., 2., 3.], requires_grad=True))
>>> xc.get_edensityxc(densinfo)
tensor([1., 4., 9.], grad_fn=<PowBackward0>)
>>> xc.get_vxc(densinfo)
ValGrad(value=tensor([2., 4., 6.], grad_fn=<MulBackward0>), grad=None,␣
→˓lapl=None, kin=None)
>>> densinfo = SpinParam(u=ValGrad(value=torch.tensor([1., 2., 3.], requires_
→˓grad=True)),
... d=ValGrad(value=torch.tensor([4., 5., 6.], requires_
→˓grad=True)))
>>> xc.get_edensityxc(densinfo)
tensor([17., 29., 45.], grad_fn=<AddBackward0>)
>>> xc.get_vxc(densinfo)
SpinParam(u=ValGrad(value=tensor([2., 4., 6.], grad_fn=<MulBackward0>),␣
→˓grad=None, lapl=None, kin=None), d=ValGrad(value=tensor([ 8., 10., 12.], grad_
→˓fn=<MulBackward0>), grad=None, lapl=None, kin=None))
>>> xc2 = MulBaseXC(xc, 2.)
>>> xc2.get_edensityxc(densinfo)
tensor([34., 58., 90.], grad_fn=<MulBackward0>)
>>> xc2.get_vxc(densinfo)
SpinParam(u=ValGrad(value=tensor([ 4., 8., 12.], grad_fn=<MulBackward0>),␣
→˓grad=None, lapl=None, kin=None), d=ValGrad(value=tensor([16., 20., 24.], grad_
→˓fn=<MulBackward0>), grad=None, lapl=None, kin=None))
>>> xc3 = xc * 2.
>>> xc3.get_edensityxc(densinfo)
tensor([34., 58., 90.], grad_fn=<MulBackward0>)
>>> xc3.get_vxc(densinfo)
SpinParam(u=ValGrad(value=tensor([ 4., 8., 12.], grad_fn=<MulBackward0>),␣
→˓grad=None, lapl=None, kin=None), d=ValGrad(value=tensor([16., 20., 24.], grad_
→˓fn=<MulBackward0>), grad=None, lapl=None, kin=None))

Parameters
other (Union[float, int, torch.Tensor]) – The float or tensor to be multiplied with.

Returns
The BaseXC that is the product of the BaseXC and the float or tensor.

Return type
BaseXC

__rmul__(other: float | int | Tensor)
Multiply a BaseXC with a float or a tensor.
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Examples

>>> import torch
>>> from deepchem.utils.dft_utils import ValGrad, SpinParam
>>> from deepchem.utils.dft_utils import BaseXC, MulBaseXC
>>> class MyXC(BaseXC):
... @property
... def family(self) -> int:
... return 1
... def get_edensityxc(self, densinfo: Union[ValGrad, SpinParam[ValGrad]]) -
→˓> torch.Tensor:
... if isinstance(densinfo, ValGrad):
... return densinfo.value.pow(2)
... else:
... return densinfo.u.value.pow(2) + densinfo.d.value.pow(2)
... def get_vxc(self, densinfo: Union[ValGrad, SpinParam[ValGrad]]) ->␣
→˓Union[ValGrad, SpinParam[ValGrad]]:
... if isinstance(densinfo, ValGrad):
... return ValGrad(value=2*densinfo.value)
... else:
... return SpinParam(u=ValGrad(value=2*densinfo.u.value),
... d=ValGrad(value=2*densinfo.d.value))
>>> xc = MyXC()
>>> densinfo = ValGrad(value=torch.tensor([1., 2., 3.], requires_grad=True))
>>> xc.get_edensityxc(densinfo)
tensor([1., 4., 9.], grad_fn=<PowBackward0>)
>>> xc.get_vxc(densinfo)
ValGrad(value=tensor([2., 4., 6.], grad_fn=<MulBackward0>), grad=None,␣
→˓lapl=None, kin=None)
>>> densinfo = SpinParam(u=ValGrad(value=torch.tensor([1., 2., 3.], requires_
→˓grad=True)),
... d=ValGrad(value=torch.tensor([4., 5., 6.], requires_
→˓grad=True)))
>>> xc.get_edensityxc(densinfo)
tensor([17., 29., 45.], grad_fn=<AddBackward0>)
>>> xc.get_vxc(densinfo)
SpinParam(u=ValGrad(value=tensor([2., 4., 6.], grad_fn=<MulBackward0>),␣
→˓grad=None, lapl=None, kin=None), d=ValGrad(value=tensor([ 8., 10., 12.], grad_
→˓fn=<MulBackward0>), grad=None, lapl=None, kin=None))
>>> xc2 = MulBaseXC(xc, 2.)
>>> xc2.get_edensityxc(densinfo)
tensor([34., 58., 90.], grad_fn=<MulBackward0>)
>>> xc2.get_vxc(densinfo)
SpinParam(u=ValGrad(value=tensor([ 4., 8., 12.], grad_fn=<MulBackward0>),␣
→˓grad=None, lapl=None, kin=None), d=ValGrad(value=tensor([16., 20., 24.], grad_
→˓fn=<MulBackward0>), grad=None, lapl=None, kin=None))
>>> xc3 = 2. * xc
>>> xc3.get_edensityxc(densinfo)
tensor([34., 58., 90.], grad_fn=<MulBackward0>)
>>> xc3.get_vxc(densinfo)
SpinParam(u=ValGrad(value=tensor([ 4., 8., 12.], grad_fn=<MulBackward0>),␣
→˓grad=None, lapl=None, kin=None), d=ValGrad(value=tensor([16., 20., 24.], grad_
→˓fn=<MulBackward0>), grad=None, lapl=None, kin=None))
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Parameters
other (Union[float, int, torch.Tensor]) – The float or tensor to be multiplied with.

Returns
The BaseXC that is the product of the BaseXC and the float or tensor.

Return type
BaseXC

class AddBaseXC(a: BaseXC, b: BaseXC)
Add two BaseXC together

Examples

>>> import torch
>>> from deepchem.utils.dft_utils import ValGrad, SpinParam
>>> from deepchem.utils.dft_utils import BaseXC, AddBaseXC
>>> class MyXC(BaseXC):
... @property
... def family(self) -> int:
... return 1
... def get_edensityxc(self, densinfo: Union[ValGrad, SpinParam[ValGrad]]) ->␣
→˓torch.Tensor:
... if isinstance(densinfo, ValGrad):
... return densinfo.value.pow(2)
... else:
... return densinfo.u.value.pow(2) + densinfo.d.value.pow(2)
... def get_vxc(self, densinfo: Union[ValGrad, SpinParam[ValGrad]]) ->␣
→˓Union[ValGrad, SpinParam[ValGrad]]:
... if isinstance(densinfo, ValGrad):
... return ValGrad(value=2*densinfo.value)
... else:
... return SpinParam(u=ValGrad(value=2*densinfo.u.value),
... d=ValGrad(value=2*densinfo.d.value))
>>> xc = MyXC()
>>> densinfo = ValGrad(value=torch.tensor([1., 2., 3.], requires_grad=True))
>>> xc.get_edensityxc(densinfo)
tensor([1., 4., 9.], grad_fn=<PowBackward0>)
>>> xc.get_vxc(densinfo)
ValGrad(value=tensor([2., 4., 6.], grad_fn=<MulBackward0>), grad=None, lapl=None,␣
→˓kin=None)
>>> densinfo = SpinParam(u=ValGrad(value=torch.tensor([1., 2., 3.], requires_
→˓grad=True)),
... d=ValGrad(value=torch.tensor([4., 5., 6.], requires_
→˓grad=True)))
>>> xc.get_edensityxc(densinfo)
tensor([17., 29., 45.], grad_fn=<AddBackward0>)
>>> xc.get_vxc(densinfo)
SpinParam(u=ValGrad(value=tensor([2., 4., 6.], grad_fn=<MulBackward0>), grad=None,␣
→˓lapl=None, kin=None), d=ValGrad(value=tensor([ 8., 10., 12.], grad_fn=
→˓<MulBackward0>), grad=None, lapl=None, kin=None))
>>> xc2 = AddBaseXC(xc, xc)
>>> xc2.get_edensityxc(densinfo)

(continues on next page)
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tensor([34., 58., 90.], grad_fn=<AddBackward0>)
>>> xc2.get_vxc(densinfo)
SpinParam(u=ValGrad(value=tensor([ 4., 8., 12.], grad_fn=<AddBackward0>),␣
→˓grad=None, lapl=None, kin=None), d=ValGrad(value=tensor([16., 20., 24.], grad_fn=
→˓<AddBackward0>), grad=None, lapl=None, kin=None))
>>> xc3 = xc + xc
>>> xc3.get_edensityxc(densinfo)
tensor([34., 58., 90.], grad_fn=<AddBackward0>)
>>> xc3.get_vxc(densinfo)
SpinParam(u=ValGrad(value=tensor([ 4., 8., 12.], grad_fn=<AddBackward0>),␣
→˓grad=None, lapl=None, kin=None), d=ValGrad(value=tensor([16., 20., 24.], grad_fn=
→˓<AddBackward0>), grad=None, lapl=None, kin=None))

__init__(a: BaseXC, b: BaseXC)→ None
Initialize the AddBaseXC

Parameters
• a (BaseXC) – BaseXC to be added to.

• b (BaseXC) – BaseXC to be added with.

property family

Returns 1 for LDA, 2 for GGA, and 4 for Meta-GGA.

get_vxc(densinfo: ValGrad | SpinParam[ValGrad])→ ValGrad | SpinParam[ValGrad]
Returns the ValGrad for the xc potential given the density info for unpolarized case.

Parameters
densinfo (Union[ValGrad, SpinParam[ValGrad]]) – The density information. If the
XC is unpolarized, then densinfo is ValGrad. If the XC is polarized, then densinfo is Spin-
Param[ValGrad]. The ValGrad contains the value and gradient of the density. The Spin-
Param[ValGrad] contains the value and gradient of the density for each spin channel.

Returns
The ValGrad for the xc potential. If the XC is unpolarized, then the return is ValGrad. If the
XC is polarized, then the return is SpinParam[ValGrad].

Return type
Union[ValGrad, SpinParam[ValGrad]]

get_edensityxc(densinfo: ValGrad | SpinParam[ValGrad])→ Tensor
Returns the xc energy density (energy per unit volume)

Parameters
densinfo (Union[ValGrad, SpinParam[ValGrad]]) – The density information. If the
XC is unpolarized, then densinfo is ValGrad. If the XC is polarized, then densinfo is Spin-
Param[ValGrad]. The ValGrad contains the value and gradient of the density. The Spin-
Param[ValGrad] contains the value and gradient of the density for each spin channel.

Returns
The energy density of the XC.

Return type
torch.Tensor
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getparamnames(methodname: str, prefix: str = '')→ List[str]
This method should list tensor names that affect the output of the method with name indicated in
methodname. If the methodname is not on the list in this function, it should raise KeyError.

Parameters
• methodname (str) – The name of the method of the class.

• prefix (str) – The prefix to be appended in front of the parameters name. This usually
contains the dots.

Returns
Sequence of name of parameters affecting the output of the method.

Return type
List[str]

Raises
KeyError – If the list in this function does not contain methodname.

class MulBaseXC(a: BaseXC, b: float | Tensor)
Multiply a BaseXC with a float or a tensor

Examples

>>> import torch
>>> from deepchem.utils.dft_utils import ValGrad, SpinParam
>>> from deepchem.utils.dft_utils import BaseXC, MulBaseXC
>>> class MyXC(BaseXC):
... @property
... def family(self) -> int:
... return 1
... def get_edensityxc(self, densinfo: Union[ValGrad, SpinParam[ValGrad]]) ->␣
→˓torch.Tensor:
... if isinstance(densinfo, ValGrad):
... return densinfo.value.pow(2)
... else:
... return densinfo.u.value.pow(2) + densinfo.d.value.pow(2)
... def get_vxc(self, densinfo: Union[ValGrad, SpinParam[ValGrad]]) ->␣
→˓Union[ValGrad, SpinParam[ValGrad]]:
... if isinstance(densinfo, ValGrad):
... return ValGrad(value=2*densinfo.value)
... else:
... return SpinParam(u=ValGrad(value=2*densinfo.u.value),
... d=ValGrad(value=2*densinfo.d.value))
>>> xc = MyXC()
>>> densinfo = ValGrad(value=torch.tensor([1., 2., 3.], requires_grad=True))
>>> xc.get_edensityxc(densinfo)
tensor([1., 4., 9.], grad_fn=<PowBackward0>)
>>> xc.get_vxc(densinfo)
ValGrad(value=tensor([2., 4., 6.], grad_fn=<MulBackward0>), grad=None, lapl=None,␣
→˓kin=None)
>>> densinfo = SpinParam(u=ValGrad(value=torch.tensor([1., 2., 3.], requires_
→˓grad=True)),
... d=ValGrad(value=torch.tensor([4., 5., 6.], requires_

(continues on next page)
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→˓grad=True)))
>>> xc.get_edensityxc(densinfo)
tensor([17., 29., 45.], grad_fn=<AddBackward0>)
>>> xc.get_vxc(densinfo)
SpinParam(u=ValGrad(value=tensor([2., 4., 6.], grad_fn=<MulBackward0>), grad=None,␣
→˓lapl=None, kin=None), d=ValGrad(value=tensor([ 8., 10., 12.], grad_fn=
→˓<MulBackward0>), grad=None, lapl=None, kin=None))
>>> xc2 = MulBaseXC(xc, 2.)
>>> xc2.get_edensityxc(densinfo)
tensor([34., 58., 90.], grad_fn=<MulBackward0>)
>>> xc2.get_vxc(densinfo)
SpinParam(u=ValGrad(value=tensor([ 4., 8., 12.], grad_fn=<MulBackward0>),␣
→˓grad=None, lapl=None, kin=None), d=ValGrad(value=tensor([16., 20., 24.], grad_fn=
→˓<MulBackward0>), grad=None, lapl=None, kin=None))
>>> xc3 = xc * 2.
>>> xc3.get_edensityxc(densinfo)
tensor([34., 58., 90.], grad_fn=<MulBackward0>)
>>> xc3.get_vxc(densinfo)
SpinParam(u=ValGrad(value=tensor([ 4., 8., 12.], grad_fn=<MulBackward0>),␣
→˓grad=None, lapl=None, kin=None), d=ValGrad(value=tensor([16., 20., 24.], grad_fn=
→˓<MulBackward0>), grad=None, lapl=None, kin=None))

__init__(a: BaseXC, b: float | Tensor)→ None
Initialize the MulBaseXC

Parameters
• a (BaseXC) – BaseXC to be multiplied to.

• b (Union[float, torch.Tensor]) – float or tensor to be multiplied with.

property family

Returns 1 for LDA, 2 for GGA, and 4 for Meta-GGA.

get_vxc(densinfo: ValGrad | SpinParam[ValGrad])→ ValGrad | SpinParam[ValGrad]
Returns the ValGrad for the xc potential given the density info for unpolarized case.

Parameters
densinfo (Union[ValGrad, SpinParam[ValGrad]]) – The density information. If the
XC is unpolarized, then densinfo is ValGrad. If the XC is polarized, then densinfo is Spin-
Param[ValGrad]. The ValGrad contains the value and gradient of the density. The Spin-
Param[ValGrad] contains the value and gradient of the density for each spin channel.

Returns
The ValGrad for the xc potential. If the XC is unpolarized, then the return is ValGrad. If the
XC is polarized, then the return is SpinParam[ValGrad].

Return type
Union[ValGrad, SpinParam[ValGrad]]

get_edensityxc(densinfo: ValGrad | SpinParam[ValGrad])→ Tensor
Returns the xc energy density (energy per unit volume)

Parameters
densinfo (Union[ValGrad, SpinParam[ValGrad]]) – The density information. If the
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XC is unpolarized, then densinfo is ValGrad. If the XC is polarized, then densinfo is Spin-
Param[ValGrad]. The ValGrad contains the value and gradient of the density. The Spin-
Param[ValGrad] contains the value and gradient of the density for each spin channel.

Returns
The energy density of the XC.

Return type
torch.Tensor

getparamnames(methodname: str, prefix: str = '')→ List[str]
This method should list tensor names that affect the output of the method with name indicated in
methodname. If the methodname is not on the list in this function, it should raise KeyError.

Parameters
• methodname (str) – The name of the method of the class.

• prefix (str) – The prefix to be appended in front of the parameters name. This usually
contains the dots.

Returns
Sequence of name of parameters affecting the output of the method.

Return type
List[str]

Raises
KeyError – If the list in this function does not contain methodname.

class BaseGrid

BaseGrid is a class that regulates the integration points over the spatial dimensions.

Examples

>>> import torch
>>> from deepchem.utils.dft_utils import BaseGrid
>>> class Grid(BaseGrid):
... def __init__(self):
... super(Grid, self).__init__()
... self.ngrid = 10
... self.ndim = 3
... self.dvolume = torch.ones(self.ngrid, dtype=self.dtype, device=self.
→˓device)
... self.rgrid = torch.ones((self.ngrid, self.ndim), dtype=self.dtype,␣
→˓device=self.device)
... def get_dvolume(self):
... return self.dvolume
... def get_rgrid(self):
... return self.rgrid
>>> grid = Grid()
>>> grid.get_dvolume()
tensor([1., 1., 1., 1., 1., 1., 1., 1., 1., 1.])
>>> grid.get_rgrid()
tensor([[1., 1., 1.],

[1., 1., 1.],
[1., 1., 1.],

(continues on next page)
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[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.]])

References

Kasim, Muhammad F., and Sam M. Vinko. “Learning the exchange-correlation functional from nature with fully
differentiable density functional theory.” Physical Review Letters 127.12 (2021): 126403. https://github.com/
diffqc/dqc/blob/0fe821fc92cb3457fb14f6dff0c223641c514ddb/dqc/grid/base_grid.py

abstract property dtype: dtype

dtype of the grid points.

Returns
dtype of the grid points

Return type
torch.dtype

abstract property device: device

device of the grid points

Returns
device of the grid points

Return type
torch.device

abstract property coord_type: str

type of the coordinate returned in get_rgrid. It can be ‘cartesian’ or ‘spherical’.

Returns
• str – type of the coordinate returned in get_rgrid. It can be ‘cartesian’

• or ‘spherical’.

abstract get_dvolume()→ Tensor
Obtain the torch.tensor containing the dV elements for the integration.

Returns
The dV elements for the integration. *BG is the length of the BaseGrid.

Return type
torch.tensor (*BG, ngrid)

abstract get_rgrid()→ Tensor
Returns the grid points position in the specified coordinate in self.coord_type.

Returns
The grid points position. *BG is the length of the BaseGrid.

Return type
torch.tensor (*BG, ngrid, ndim)
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abstract getparamnames(methodname: str, prefix: str = '')→ List[str]
Return a list with the parameter names corresponding to the given method (methodname)

Returns
List of parameter names of methodname

Return type
List[str]

class BaseDF

BaseDF represents the density fitting object used in calculating the electron repulsion (and xc energy) in Hamil-
tonian.

Density fitting in density functional theory (DFT) is a technique used to reduce the computational cost of evalu-
ating electron repulsion integrals. In DFT, the key quantity is the electron density rather than the wave function,
and the electron repulsion integrals involve four-electron interactions, making them computationally demanding.

Density fitting exploits the fact that many-electron integrals can be expressed as a sum of two-electron integrals
involving auxiliary basis functions. By approximating these auxiliary basis functions, often referred to as fitting
functions, the computational cost can be significantly reduced.

Examples

>>> from deepchem.utils.dft_utils import BaseDF
>>> import torch
>>> class MyDF(BaseDF):
... def __init__(self):
... super(MyDF, self).__init__()
... def get_j2c(self):
... return torch.ones((3, 3))
... def get_j3c(self):
... return torch.ones((3, 3, 3))
>>> df = MyDF()
>>> df.get_j2c()
tensor([[1., 1., 1.],

[1., 1., 1.],
[1., 1., 1.]])

abstract build()→ BaseDF
Construct the matrices required to perform the calculation and return self.

Returns
The constructed density fitting object.

Return type
BaseDF

abstract get_elrep(dm: Tensor)→ LinearOperator
Construct the electron repulsion linear operator from the given density matrix using the density fitting
method.

Parameters
dm (torch.Tensor) – The density matrix.

Returns
The electron repulsion linear operator.
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Return type
LinearOperator

abstract property j2c: Tensor

Returns the 2-centre 2-electron integrals of the auxiliary basis.

Returns
The 2-centre 2-electron integrals of the auxiliary basis.

Return type
torch.Tensor

abstract property j3c: Tensor

Return the 3-centre 2-electron integrals of the auxiliary basis and the basis.

Returns
The 3-centre 2-electron integrals of the auxiliary basis and the basis.

Return type
torch.Tensor

abstract getparamnames(methodname: str, prefix: str = '')→ List[str]
This method should list tensor names that affect the output of the method with name indicated in
methodname.

Parameters
• methodname (str) – The name of the method of the class.

• prefix (str (default="")) – The prefix to be appended in front of the parameters
name. This usually contains the dots.

Returns
Sequence of name of parameters affecting the output of the method.

Return type
List[str]

class BaseHamilton

Hamilton is a class that provides the LinearOperator of the Hamiltonian components.

The Hamiltonian represents the total energy operator for a system of interacting electrons. The Kohn-Sham DFT
approach introduces a set of fictitious non-interacting electrons that move in an effective potential. The total
energy functional, which includes the kinetic energy of these fictitious electrons and their interaction with an
effective potential (including the electron-electron interaction), is minimized to obtain the ground-state electronic
structure.

The Kohn-Sham Hamiltonian is a key component of this approach, representing the operator that governs the
evolution of the Kohn-Sham orbitals. It includes terms for the kinetic energy of electrons, the external potential
(usually from nuclei), and the exchange-correlation potential that accounts for the electron-electron interactions.

The Fock matrix represents the one-electron part of the Hamiltonian matrix. Its components include kinetic
energy, nuclear attraction, and electron-electron repulsion integrals. The Fock matrix is pivotal in solving the
electronic Schrödinger equation and determining the electronic structure of molecular systems.
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Examples

>>> from deepchem.utils.dft_utils import BaseHamilton
>>> class MyHamilton(BaseHamilton):
... def __init__(self):
... self._nao = 2
... self._kpts = torch.tensor([[0.0, 0.0, 0.0]])
... self._df = None
... @property
... def nao(self):
... return self._nao
... @property
... def kpts(self):
... return self._kpts
... @property
... def df(self):
... return self._df
... def build(self):
... return self
... def get_nuclattr(self):
... return torch.ones((1, 1, self.nao, self.nao))
>>> ham = MyHamilton()
>>> hamilton = ham.build()
>>> hamilton.get_nuclattr()
tensor([[[[1., 1.],

[1., 1.]]]])

abstract property nao: int

Number of atomic orbital basis.

Returns
Number of atomic orbital basis.

Return type
int

abstract property kpts: Tensor

List of k-points in the Hamiltonian.

Returns
List of k-points in the Hamiltonian. Shape: (nkpts, ndim)

Return type
torch.Tensor

abstract property df: BaseDF | None

Returns the density fitting object (if any) attached to this Hamiltonian object.

Returns
Returns the density fitting object (if any) attached to this Hamiltonian object.

Return type
Optional[BaseDF]

abstract build()

Construct the elements needed for the Hamiltonian. Heavy-lifting operations should be put here.
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abstract setup_grid(grid: BaseGrid, xc: BaseXC | None = None)→ None
Setup the basis (with its grad) in the spatial grid and prepare the gradient of atomic orbital according to the
ones required by the xc. If xc is not given, then only setup the grid with ao (without any gradients of ao)

Parameters
• grid (BaseGrid) – Grid used to setup this Hamilton.

• xc (Optional[BaseXC] (default None)) – Exchange Corelation functional of this
Hamiltonian.

abstract get_nuclattr()→ LinearOperator
LinearOperator of the nuclear Coulomb attraction.

Nuclear Coulomb attraction is the electrostatic force binding electrons to a nucleus. Positively charged
protons attract negatively charged electrons, creating stability in quantum systems. This force plays a fun-
damental role in determining the structure and behavior of atoms, contributing significantly to the overall
potential energy in atomic physics.

Returns
LinearOperator of the nuclear Coulomb attraction. Shape: (*BH, nao, nao)

Return type
LinearOperator

abstract get_kinnucl()→ LinearOperator
Returns the LinearOperator of the one-electron operator (i.e. kinetic and nuclear attraction). Action of a
LinearOperator on a function is a linear transformation. In the case of one-electron operators, these trans-
formations are essential for solving the Schrödinger equation and understanding the behavior of electrons
in an atomic or molecular system.

Returns
LinearOperator of the one-electron operator. Shape: (*BH, nao, nao)

Return type
LinearOperator

abstract get_overlap()→ LinearOperator
Returns the LinearOperator representing the overlap of the basis. The overlap of the basis refers to the
degree to which atomic or molecular orbitals in a quantum mechanical system share common space.

Returns
LinearOperator representing the overlap of the basis. Shape: (*BH, nao, nao)

Return type
LinearOperator

abstract get_elrep(dm: Tensor)→ LinearOperator
Obtains the LinearOperator of the Coulomb electron repulsion operator. Known as the J-matrix.

In the context of electronic structure theory, it accounts for the repulsive interaction between electrons
in a many-electron system. The J-matrix elements involve the Coulombic interactions between pairs of
electrons, influencing the total energy and behavior of the system.

Parameters
dm (torch.Tensor) – Density matrix. Shape: (*BD, nao, nao)

Returns
LinearOperator of the Coulomb electron repulsion operator. Shape: (*BDH, nao, nao)

Return type
LinearOperator
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abstract get_exchange(dm: Tensor | SpinParam[Tensor])→ LinearOperator |
SpinParam[LinearOperator]

Obtains the LinearOperator of the exchange operator. It is -0.5 * K where K is the K matrix obtained from
2-electron integral.

Exchange operator is a mathematical representation of the exchange interaction between identical particles,
such as electrons. The exchange operator quantifies the effect of interchanging the positions of two particles.

Parameters
dm (Union[torch.Tensor, SpinParam[torch.Tensor]]) – Density matrix. Shape:
(*BD, nao, nao)

Returns
LinearOperator of the exchange operator. Shape: (*BDH, nao, nao)

Return type
Union[LinearOperator, SpinParam[LinearOperator]]

abstract get_vext(vext: Tensor)→ LinearOperator
Returns a LinearOperator of the external potential in the grid.

V𝑖𝑗 =

∫︁
𝑏𝑖(r)𝑉 (r)𝑏𝑗(r) 𝑑r

External potential energy that a particle experiences in a discretized space or grid. In quantum mechanics or
computational physics, when solving for the behavior of particles, an external potential is often introduced
to represent the influence of external forces.

Parameters
vext (torch.Tensor) – External potential in the grid. Shape: (*BR, ngrid)

Returns
LinearOperator of the external potential in the grid. Shape: (*BRH, nao, nao)

Return type
LinearOperator

abstract get_vxc(dm: Tensor | SpinParam[Tensor])→ LinearOperator | SpinParam[LinearOperator]
Returns a LinearOperator for the exchange-correlation potential

The exchange-correlation potential combines two effects:

1. Exchange potential: Arises from the antisymmetry of the electron wave function. It quantifies the
tendency of electrons to avoid each other due to their indistinguishability.

2. Correlation potential: Accounts for the electron-electron correlation effects that arise from the repulsion
between electrons.

TODO: check if what we need for Meta-GGA involving kinetics and for exact-exchange

Parameters
dm (Union[torch.Tensor, SpinParam[torch.Tensor]]) – Density matrix. Shape:
(*BD, nao, nao)

Returns
LinearOperator for the exchange-correlation potential. Shape: (*BDH, nao, nao)

Return type
Union[LinearOperator, SpinParam[LinearOperator]]
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abstract ao_orb2dm(orb: Tensor, orb_weight: Tensor)→ Tensor
Convert the atomic orbital to the density matrix.

Parameters
• orb (torch.Tensor) – Atomic orbital. Shape: (*BO, nao, norb)

• orb_weight (torch.Tensor) – Orbital weight. Shape: (*BW, norb)

Returns
Density matrix. Shape: (*BOWH, nao, nao)

Return type
torch.Tensor

abstract aodm2dens(dm: Tensor, xyz: Tensor)→ Tensor
Get the density value in the Cartesian coordinate.

Parameters
• dm (torch.Tensor) – Density matrix. Shape: (*BD, nao, nao)

• xyz (torch.Tensor) – Cartesian coordinate. Shape: (*BR, ndim)

Returns
Density value in the Cartesian coordinate. Shape: (*BRD)

Return type
torch.Tensor

abstract get_e_hcore(dm: Tensor)→ Tensor
Get the energy from the one-electron Hamiltonian. The input is total density matrix.

Parameters
dm (torch.Tensor) – Total Density matrix.

Returns
Energy from the one-electron Hamiltonian.

Return type
torch.Tensor

abstract get_e_elrep(dm: Tensor)→ Tensor
Get the energy from the electron repulsion. The input is total density matrix.

Parameters
dm (torch.Tensor) – Total Density matrix.

Returns
Energy from the one-electron Hamiltonian.

Return type
torch.Tensor

abstract get_e_exchange(dm: Tensor | SpinParam[Tensor])→ Tensor
Get the energy from the exact exchange.

Parameters
dm (Union[torch.Tensor, SpinParam[torch.Tensor]]) – Density matrix.

Returns
Energy from the exact exchange.
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Return type
torch.Tensor

abstract get_e_xc(dm: Tensor | SpinParam[Tensor])→ Tensor
Returns the exchange-correlation energy using the xc object given in .setup_grid()

Parameters
dm (Union[torch.Tensor, SpinParam[torch.Tensor]]) – Density matrix. Shape:
(*BD, nao, nao)

Returns
Exchange-correlation energy.

Return type
torch.Tensor

abstract ao_orb_params2dm(ao_orb_params: Tensor, ao_orb_coeffs: Tensor, orb_weight: Tensor,
with_penalty: float | None = None)→ List[Tensor]

Convert the atomic orbital free parameters (parametrized in such a way so it is not bounded) to the density
matrix.

Parameters
• ao_orb_params (torch.Tensor) – The tensor that parametrized atomic orbital in an

unbounded space.

• ao_orb_coeffs (torch.Tensor) – The tensor that helps ao_orb_params in describing
the orbital. The difference with ao_orb_params is that ao_orb_coeffs is not differen-
tiable and not to be optimized in variational method.

• orb_weight (torch.Tensor) – The orbital weights.

• with_penalty (float or None) – If a float, it returns a tuple of tensors where the first
element is dm, and the second element is the penalty multiplied by the penalty weights.
The penalty is to compensate the overparameterization of ao_orb_params, stabilizing the
Hessian for gradient calculation.

Returns
The density matrix from the orbital parameters and (if with_penalty) the penalty of the
overparameterization of ao_orb_params.

Return type
torch.Tensor or tuple of torch.Tensor

Notes

• The penalty should be 0 if ao_orb_params is from dm2ao_orb_params.

• The density matrix should be recoverable when put through dm2ao_orb_params and
ao_orb_params2dm.

abstract dm2ao_orb_params(dm: Tensor, norb: int)→ Tuple[Tensor, Tensor]
Convert from the density matrix to the orbital parameters. The map is not one-to-one, but instead one-
to-many where there might be more than one orbital parameters to describe the same density matrix. For
restricted systems, only one of the dm (dm.u or dm.d) is sufficient.

Parameters
• dm (torch.Tensor) – The density matrix.
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• norb (int) – The number of orbitals for the system.

Returns
The atomic orbital parameters for the first returned value and the atomic orbital coefficients
for the second value.

Return type
tuple of 2 torch.Tensor

abstract getparamnames(methodname: str, prefix: str = '')→ List[str]
Return the paramnames

Parameters
• methodname (str) – The name of the method.

• prefix (str (default "")) – The prefix of the paramnames.

Returns
The paramnames.

Return type
List[str]

class _Config(THRESHOLD_MEMORY: int = 10737418240, CHUNK_MEMORY: int = 16777216, VERBOSE:
int = 0)

Contains the configuration for the DFT module

Examples

>>> from deepchem.utils.dft_utils.config import config
>>> Memory_usage = 1024**4 # Sample Memory usage by some Object/Matrix
>>> if Memory_usage > config.THRESHOLD_MEMORY :
... print("Overload")
Overload

THRESHOLD_MEMORY

Threshold memory (matrix above this size should not be constructed)

Type
int (default=10*1024**3)

CHUNK_MEMORY

The memory for splitting big tensors into chunks.

Type
int (default=16*1024**2)

VERBOSE

Allowed Verbosity level (Defines the level of detail) Used by Looger for maintaining Logs.

Type
int (default=0)

Usage

-----
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1. HamiltonCGTO

Type
Usage it for splitting big tensors into chunks.

__init__(THRESHOLD_MEMORY: int = 10737418240, CHUNK_MEMORY: int = 16777216, VERBOSE:
int = 0)→ None

class BaseOrbParams

Class that provides free-parameterization of orthogonal orbitals.

Examples

>>> import torch
>>> from deepchem.utils.dft_utils import BaseOrbParams
>>> class MyOrbParams(BaseOrbParams):
... @staticmethod
... def params2orb(params, coeffs, with_penalty):
... return params, coeffs
... @staticmethod
... def orb2params(orb):
... return orb, torch.tensor([0], dtype=orb.dtype, device=orb.device)
>>> params = torch.randn(3, 4, 5)
>>> coeffs = torch.randn(3, 4, 5)
>>> with_penalty = 0.1
>>> orb, penalty = MyOrbParams.params2orb(params, coeffs, with_penalty)
>>> params2, coeffs2 = MyOrbParams.orb2params(orb)
>>> torch.allclose(params, params2)
True

static params2orb(params: Tensor, coeffs: Tensor, with_penalty: float = 0.0)→ List[Tensor]
Convert the parameters & coefficients to the orthogonal orbitals. params is the tensor to be optimized in
variational method, while coeffs is a tensor that is needed to get the orbital, but it is not optimized in the
variational method.

Parameters
• params (torch.Tensor) – The free parameters to be optimized.

• coeffs (torch.Tensor) – The coefficients to get the orthogonal orbitals.

• with_penalty (float (default 0.0)) – If not 0.0, return the penalty term for the free
parameters.

Returns
• orb (torch.Tensor) – The orthogonal orbitals.

• penalty (torch.Tensor) – The penalty term for the free parameters. If with_penalty is
0.0, this is not returned.

static orb2params(orb: Tensor)→ List[Tensor]
Get the free parameters from the orthogonal orbitals. Returns params and coeffs described in
params2orb.

Parameters
orb (torch.Tensor) – The orthogonal orbitals.
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Returns
• params (torch.Tensor) – The free parameters to be optimized.

• coeffs (torch.Tensor) – The coefficients to get the orthogonal orbitals.

class QROrbParams

Orthogonal orbital parameterization using QR decomposition. The orthogonal orbital is represented by:

P = QR

Where Q is the parameters defining the rotation of the orthogonal tensor, and R is the coefficients tensor.

Examples

>>> import torch
>>> from deepchem.utils.dft_utils import QROrbParams
>>> params = torch.randn(3, 3)
>>> coeffs = torch.randn(4, 3)
>>> with_penalty = 0.1
>>> orb, penalty = QROrbParams.params2orb(params, coeffs, with_penalty)
>>> params2, coeffs2 = QROrbParams.orb2params(orb)

static params2orb(params: Tensor, coeffs: Tensor, with_penalty: float = 0.0)→ List[Tensor]
Convert the parameters & coefficients to the orthogonal orbitals. params is the tensor to be optimized in
variational method, while coeffs is a tensor that is needed to get the orbital, but it is not optimized in the
variational method.

Parameters
• params (torch.Tensor) – The free parameters to be optimized.

• coeffs (torch.Tensor) – The coefficients to get the orthogonal orbitals.

• with_penalty (float (default 0.0)) – If not 0.0, return the penalty term for the free
parameters.

Returns
• orb (torch.Tensor) – The orthogonal orbitals.

• penalty (torch.Tensor) – The penalty term for the free parameters. If with_penalty is
0.0, this is not returned.

static orb2params(orb: Tensor)→ List[Tensor]
Get the free parameters from the orthogonal orbitals. Returns params and coeffs described in
params2orb.

Parameters
orb (torch.Tensor) – The orthogonal orbitals.

Returns
• params (torch.Tensor) – The free parameters to be optimized.

• coeffs (torch.Tensor) – The coefficients to get the orthogonal orbitals.

class MatExpOrbParams

Orthogonal orbital parameterization using matrix exponential. The orthogonal orbital is represented by:

P = matrix_exp(Q) @ C
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where C is an orthogonal coefficient tensor, and Q is the parameters defining the rotation of the orthogonal tensor.

Examples

>>> from deepchem.utils.dft_utils import MatExpOrbParams
>>> params = torch.randn(3, 3)
>>> coeffs = torch.randn(4, 3)
>>> with_penalty = 0.1
>>> orb, penalty = MatExpOrbParams.params2orb(params, coeffs, with_penalty)
>>> params2, coeffs2 = MatExpOrbParams.orb2params(orb)

static params2orb(params: Tensor, coeffs: Tensor, with_penalty: float = 0.0)→ List[Tensor]
Convert the parameters & coefficients to the orthogonal orbitals. params is the tensor to be optimized in
variational method, while coeffs is a tensor that is needed to get the orbital, but it is not optimized in the
variational method.

Parameters
• params (torch.Tensor) – The free parameters to be optimized. (*, nparams)

• coeffs (torch.Tensor) – The coefficients to get the orthogonal orbitals. (*, nao, norb)

• with_penalty (float (default 0.0)) – If not 0.0, return the penalty term for the free
parameters.

Returns
• orb (torch.Tensor) – The orthogonal orbitals.

• penalty (torch.Tensor) – The penalty term for the free parameters. If with_penalty is
0.0, this is not returned.

static orb2params(orb: Tensor)→ List[Tensor]
Get the free parameters from the orthogonal orbitals. Returns params and coeffs described in
params2orb.

Parameters
orb (torch.Tensor) – The orthogonal orbitals.

Returns
• params (torch.Tensor) – The free parameters to be optimized.

• coeffs (torch.Tensor) – The coefficients to get the orthogonal orbitals.

class parse_moldesc(moldesc: str | Tuple[List[str] | List[int | float | Tensor] | Tensor, List[List[float]] | ndarray |
Tensor], dtype: dtype = torch.float64, device: device = device(type='cpu'))

Parse the string of molecular descriptor and returns tensors of atomzs and atom positions. .. rubric:: Examples

>>> from deepchem.utils.dft_utils import parse_moldesc
>>> system = {
... 'type': 'mol',
... 'kwargs': {
... 'moldesc': 'H 0.86625 0 0; F -0.86625 0 0',
... 'basis': '6-311++G(3df,3pd)'
... }
... }
>>> atomzs, atomposs = parse_moldesc(system["kwargs"]["moldesc"])

(continues on next page)
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(continued from previous page)

>>> atomzs
tensor([1., 9.], dtype=torch.float64)
>>> atomposs
tensor([[ 0.8662, 0.0000, 0.0000],

[-0.8662, 0.0000, 0.0000]], dtype=torch.float64)

Parameters
• moldesc (Union[str, Tuple[AtomZsType, AtomPosType]]) – String that describes

the system, e.g. "H -1 0 0; H 1 0 0" for H2 molecule separated by 2 Bohr.

• dtype (torch.dtype (default torch.float64)) – The datatype of the returned
atomic positions.

• device (torch.device (default torch.device('cpu'))) – The device to store the
returned tensors.

Returns
• atomzs (torch.Tensor) – The tensor of atomzs [Atom Number].

• atompos (torch.Tensor) – The tensor of atomic positions [Bohr].

class BaseSystem

System is a class describing the environment before doing the quantum chemistry calculation. It contains the
information of the atoms, the external electric field, the spin, the charge, etc. It also contains the Hamiltonian
object and the grid object for the calculation. The system object is also responsible for setting up the cache for
the parameters that can be read/written from/to the cache file.

Examples

>>> from deepchem.utils.dft_utils import BaseSystem
>>> from deepchem.utils.dft_utils import BaseHamilton
>>> from deepchem.utils.dft_utils import BaseGrid
>>> class MySystem(BaseSystem):
... def __init__(self):
... self.hamiltonian = BaseHamilton()
... self.grid = BaseGrid()
... def get_hamiltonian(self):
... return self.hamiltonian
... def get_grid(self):
... return self.grid
... def requires_grid(self):
... return True
>>> system = MySystem()
>>> system.requires_grid()
True

abstract densityfit(method: str | None = None, auxbasis: str | List[CGTOBasis] | List[str] |
List[List[CGTOBasis]] | Dict[str | int, List[CGTOBasis] | str] | None = None)→
BaseSystem

Indicate that the system’s Hamiltonian will use density fitting.

Parameters
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• method (Optional[str] (default None)) – The density fitting method to use.

• auxbasis (Optional[BasisInpType] (default None)) – Auxiliary basis set to use
for density fitting.

Returns
The system with density fitting enabled.

Return type
BaseSystem

abstract get_hamiltonian()→ BaseHamilton
Hamiltonian object for the system.

Returns
Hamiltonian object for the system.

Return type
BaseHamilton

abstract set_cache(fname: str, paramnames: List[str] | None = None)→ BaseSystem
Set up the cache to read/write some parameters from the given files. If paramnames is not given, then
read/write all cache-able parameters specified by each class.

Parameters
• fname (str) – The file name of the cache file.

• paramnames (Optional[List[str]] (default None)) – The list of parameter
names to read/write from the cache file.

Returns
The system with cache enabled.

Return type
BaseSystem

abstract get_orbweight(polarized: bool = False)→ Tensor | SpinParam[Tensor]
Returns the atomic orbital weights. If polarized == False, then it returns the total orbital weights. Otherwise,
it returns a tuple of orbital weights for spin-up and spin-down.

Parameters
polarized (bool (default False)) – Whether to return the orbital weights for each spin.

Returns
The orbital weights. Shape (*BS, norb)

Return type
Union[torch.Tensor, SpinParam[torch.Tensor]]

abstract get_nuclei_energy()→ Tensor
Returns the nuclei-nuclei repulsion energy.

Returns
The nuclei-nuclei repulsion energy.

Return type
torch.Tensor

abstract setup_grid()→ None
Construct the integration grid for the system.
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abstract get_grid()→ BaseGrid
Returns the grid of the system

abstract requires_grid()→ bool
True if the system needs the grid to be constructed. Otherwise, returns False

abstract getparamnames(methodname: str, prefix: str = '')→ List[str]
Return a list with the parameter names corresponding to the given method (methodname)

Parameters
• methodname (str) – The name of the method.

• prefix (str (default "")) – The prefix of the parameter names.

Returns
List of parameter names of methodname

Return type
List[str]

abstract make_copy(**kwargs)→ BaseSystem
Copy of the system identical to the orginal except for new parameters set in the kwargs.

Parameters
kwargs – New parameters to set in the copy.

Returns
Copy of the system identical to the orginal except for new parameters set in the kwargs.

Return type
BaseSystem

abstract property atompos: Tensor

Atom positions with shape (natoms, ndim).

Returns
Atom positions with shape (natoms, ndim).

Return type
torch.Tensor

abstract property atomzs: Tensor

Atomic number with shape (natoms,).

Returns
Atomic number with shape (natoms,).

Return type
torch.Tensor

abstract property atommasses: Tensor

Atomic mass with shape (natoms) in atomic unit.

Returns
Atomic mass with shape (natoms) in atomic unit.

Return type
torch.Tensor
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abstract property spin: int | float | Tensor

Total spin of the system.

Returns
Total spin of the system.

Return type
ZType

abstract property charge: int | float | Tensor

Charge of the system.

Returns
Charge of the system.

Return type
ZType

abstract property numel: int | float | Tensor

Total number of the electrons in the system.

Returns
Total number of the electrons in the system.

Return type
ZType

abstract property efield: Tuple[Tensor, ...] | None

External electric field of the system, or None if there is no electric field.

class RadialGrid(ngrid: int, grid_integrator: str = 'chebyshev', grid_transform: str | BaseGridTransform =
'logm3', dtype: dtype = torch.float64, device: device = device(type='cpu'))

Grid for radially symmetric system. This grid consists grid_integrator and grid_transform specifiers.

grid_integrator is to specify how to perform an integration on a fixed interval from -1 to 1.

grid_transform is to transform the integration from the coordinate of grid_integrator to the actual coordinate.

Examples

>>> grid = RadialGrid(100, grid_integrator="chebyshev",
... grid_transform="logm3")
>>> grid.get_rgrid().shape
torch.Size([100, 1])
>>> grid.get_dvolume().shape
torch.Size([100])

__init__(ngrid: int, grid_integrator: str = 'chebyshev', grid_transform: str | BaseGridTransform = 'logm3',
dtype: dtype = torch.float64, device: device = device(type='cpu'))

Initialize the RadialGrid.

Parameters
• ngrid (int) – Number of grid points.

• grid_integrator (str (default "chebyshev")) – The grid integrator to use. Avail-
able options are “chebyshev”, “chebyshev2”, and “uniform”.

• grid_transform (Union[str, BaseGridTransform] (default "logm3")) – The
grid transformation to use. Available options are “logm3”, “de2”, and “treutlerm4”.
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• dtype (torch.dtype, optional (default torch.float64)) – The data type to use
for the grid.

• device (torch.device, optional (default torch.device('cpu'))) – The de-
vice to use for the grid.

property coord_type

Returns the coordinate type of the grid.

Returns
The coordinate type of the grid. For RadialGrid, this is “radial”.

Return type
str

property dtype

Returns the data type of the grid.

Returns
The data type of the grid.

Return type
torch.dtype

property device

Returns the device of the grid.

Returns
The device of the grid.

Return type
torch.device

get_dvolume()→ Tensor
Returns the integration element of the grid.

Returns
The integration element of the grid.

Return type
torch.Tensor

get_rgrid()→ Tensor
Returns the grid points.

Returns
The grid points.

Return type
torch.Tensor

__getitem__(key: int | slice)→ RadialGrid
Returns a sliced RadialGrid.

Parameters
key (Union[int, slice]) – The index or slice to use for slicing the grid.

Returns
The sliced RadialGrid.

Return type
RadialGrid
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getparamnames(methodname: str, prefix: str = '')
Returns the parameter names for the given method.

Parameters
• methodname (str) – The name of the method.

• prefix (str, optional (default "")) – The prefix to use for the parameter names.

Returns
The parameter names for the given method.

Return type
List[str]

class get_xw_integration(n: int, s0: str)
returns n points of integration from -1 to 1 and its integration weights

Examples

>>> x, w = get_xw_integration(100, "chebyshev")
>>> x.shape
(100,)
>>> w.shape
(100,)

Parameters
• n (int) – Number of grid points.

• s0 (str) – The grid integrator to use. Available options are chebyshev, chebyshev2, and
uniform.

Returns
The integration points and weights.

Return type
Tuple[np.ndarray, np.ndarray]

References

class SlicedRadialGrid(obj: RadialGrid, key: slice)
Internal class to represent the sliced radial grid

__init__(obj: RadialGrid, key: slice)
Initialize the SlicedRadialGrid.

Parameters
• obj (RadialGrid) – The original RadialGrid.

• key (slice) – The slice to use for slicing the grid.

class BaseGridTransform

Base class for grid transformation Grid transformation is to transform the integration from the coordinate of
grid_integrator to the actual coordinate.

It is used as a base class for other grid transformations. x2r and get_drdx are abstract methods that need to be
implemented.
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abstract x2r(x: Tensor)→ Tensor
Transform from x to r coordinate

Parameters
x (torch.Tensor) – The coordinate from -1 to 1.

Returns
r – The coordinate from 0 to inf.

Return type
torch.Tensor

abstract get_drdx(x: Tensor)→ Tensor
Returns the dr/dx

Parameters
x (torch.Tensor) – The coordinate from -1 to 1.

Returns
drdx – The dr/dx.

Return type
torch.Tensor

class DE2Transformation(alpha: float = 1.0, rmin: float = 1e-07, rmax: float = 20)
Double exponential formula grid transformation

Examples

>>> x = torch.linspace(-1, 1, 100)
>>> r = DE2Transformation().x2r(x)
>>> r.shape
torch.Size([100])
>>> drdx = DE2Transformation().get_drdx(x)
>>> drdx.shape
torch.Size([100])

References

__init__(alpha: float = 1.0, rmin: float = 1e-07, rmax: float = 20)

x2r(x: Tensor)→ Tensor
Transform from x to r coordinate

Parameters
x (torch.Tensor) – The coordinate from -1 to 1.

Returns
r – The coordinate from 0 to inf.

Return type
torch.Tensor

get_drdx(x: Tensor)→ Tensor
Returns the dr/dx

Parameters
x (torch.Tensor) – The coordinate from -1 to 1.
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Returns
drdx – The dr/dx.

Return type
torch.Tensor

class LogM3Transformation(ra: float = 1.0, eps: float = 1e-15)
LogM3 grid transformation

Examples

>>> x = torch.linspace(-1, 1, 100)
>>> r = LogM3Transformation().x2r(x)
>>> r.shape
torch.Size([100])
>>> drdx = LogM3Transformation().get_drdx(x)
>>> drdx.shape
torch.Size([100])

References

__init__(ra: float = 1.0, eps: float = 1e-15)
Initialize the LogM3Transformation.

Parameters
• ra (float (default 1.0)) – The parameter to control the range of the grid.

• eps (float (default 1e-15)) – The parameter to avoid numerical instability.

x2r(x: Tensor)→ Tensor
Transform from x to r coordinate

Parameters
x (torch.Tensor) – The coordinate from -1 to 1.

Returns
The coordinate from 0 to inf.

Return type
torch.Tensor

get_drdx(x: Tensor)→ Tensor
Returns the dr/dx

Parameters
x (torch.Tensor) – The coordinate from -1 to 1.

Returns
The dr/dx.

Return type
torch.Tensor

class TreutlerM4Transformation(xi: float = 1.0, alpha: float = 0.6, eps: float = 1e-15)
Treutler M4 grid transformation
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Examples

>>> x = torch.linspace(-1, 1, 100)
>>> r = TreutlerM4Transformation().x2r(x)
>>> r.shape
torch.Size([100])
>>> drdx = TreutlerM4Transformation().get_drdx(x)
>>> drdx.shape
torch.Size([100])

References

__init__(xi: float = 1.0, alpha: float = 0.6, eps: float = 1e-15)
Initialize the TreutlerM4Transformation.

Parameters
• xi (float (default 1.0)) – The parameter to control the range of the grid.

• alpha (float (default 0.6)) – The parameter to control the range of the grid.

• eps (float (default 1e-15)) – The parameter to avoid numerical instability.

x2r(x: Tensor)→ Tensor
Transform from x to r coordinate

Parameters
x (torch.Tensor) – The coordinate from -1 to 1.

Returns
The coordinate from 0 to inf.

Return type
torch.Tensor

get_drdx(x: Tensor)→ Tensor
Returns the dr/dx

Parameters
x (torch.Tensor) – The coordinate from -1 to 1.

Returns
The dr/dx.

Return type
torch.Tensor

class get_grid_transform(s0: str | BaseGridTransform)

grid transformation object from the input

702 Chapter 3. About Us



deepchem, Release 2.8.0

Examples

>>> transform = get_grid_transform("logm3")
>>> transform.x2r(torch.tensor([0.5]))
tensor([2.])

Parameters
s0 (Union[str, BaseGridTransform]) – The grid transformation to use. Available options
are logm3, de2, and treutlerm4.

Returns
The grid transformation object.

Return type
BaseGridTransform

Raises
RuntimeError – If the input is not a valid grid transformation.

class EditableModule

EditableModule is a base class to enable classes that it inherits be converted to pure functions for higher order
derivatives purpose.

Usage

To use this class, the user must implement the getparamnames method which returns a list of tensor names that
affect the output of the method with name indicated in methodname.

Used in:

• Classes of Density Functional Theory (DFT).

• It can also be used in other classes that need to be converted to pure functions for higher order derivatives
purpose.

Examples

>>> import torch
>>> from deepchem.utils.differentiation_utils import EditableModule
>>> class A(EditableModule):
... def __init__(self, a):
... self.b = a*a
...
... def mult(self, x):
... return self.b * x
...
... def getparamnames(self, methodname, prefix=""):
... if methodname == "mult":
... return [prefix+"b"]
... else:
... raise KeyError()
>>> a = torch.tensor(2.0).requires_grad_()
>>> x = torch.tensor(0.4).requires_grad_()

(continues on next page)
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(continued from previous page)

>>> alpha = A(a)
>>> alpha.mult(x)
tensor(1.6000, grad_fn=<MulBackward0>)
>>> alpha.getparamnames("mult")
['b']
>>> alpha.assertparams(alpha.mult, x)
"mult" method check done

getparams(methodname: str)→ Sequence[Tensor]
Returns a list of tensor parameters used in the object’s operations. Requires the getparamnames method
to be implemented.

Parameters
methodname (str) – The name of the method of the class.

Returns
Sequence of tensors that are involved in the specified method of the object.

Return type
Sequence[torch.Tensor]

setparams(methodname: str, *params)→ int
Set the input parameters to the object’s parameters to make a copy of the operations.

Parameters
• methodname (str) – The name of the method of the class.

• *params – The parameters to be set to the object’s parameters.

Returns
The number of parameters that are set to the object’s parameters.

Return type
int

cached_getparamnames(methodname: str, refresh: bool = False)→ List[str]
getparamnames, but cached, so it is only called once

Parameters
• methodname (str) – The name of the method of the class.

• refresh (bool) – If True, the cache is refreshed.

Returns
Sequence of name of parameters affecting the output of the method.

Return type
List[str]

abstract getparamnames(methodname: str, prefix: str = '')→ List[str]
This method should list tensor names that affect the output of the method with name indicated in
methodname. If the methodname is not on the list in this function, it should raise KeyError.

Parameters
• methodname (str) – The name of the method of the class.

• prefix (str) – The prefix to be appended in front of the parameters name. This usually
contains the dots.
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Returns
Sequence of name of parameters affecting the output of the method.

Return type
List[str]

Raises
KeyError – If the list in this function does not contain methodname.

getuniqueparams(methodname: str, onlyleaves: bool = False)→ List[Tensor]
Returns the list of unique parameters involved in the method specified by methodname.

Parameters
• methodname (str) – Name of the method where the returned parameters play roles.

• onlyleaves (bool) – If True, only returns leaf tensors. Otherwise, returns all tensors.

Returns
List of tensors that are involved in the specified method of the object.

Return type
List[torch.Tensor]

setuniqueparams(methodname: str, *uniqueparams)→ int
Set the input parameters to the object’s parameters to make a copy of the operations. The input parameters
are unique parameters, i.e. they are not necessarily the same tensors as the object’s parameters.

Note: This function can only be run after running getuniqueparams.

Parameters
• methodname (str) – The name of the method of the class.

• *uniqueparams – The parameters to be set to the object’s parameters. The num-
ber of parameters must be the same as the number of unique parameters returned by
getuniqueparams.

Returns
The number of parameters that are set to the object’s parameters.

Return type
int

assertparams(method: Callable, *args, **kwargs)
Perform a rigorous check on the implemented getparamnames in the class for a given method and its
parameters as well as keyword Parameters. It raises warnings if there are missing or excess parameters in
the getparamnames implementation.

Parameters
• method (Callable) – The method of this class to be tested

• *args – Parameters of the method

• **kwargs – Keyword parameters of the method

normalize_bcast_dims(*shapes)
Normalize the lengths of the input shapes to have the same length. The shapes are padded at the front by 1 to
make the lengths equal.
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Examples

>>> normalize_bcast_dims([1, 2, 3], [2, 3])
[[1, 2, 3], [1, 2, 3]]

Parameters
shapes (List[List[int]]) – The shapes to normalize.

Returns
The normalized shapes.

Return type
List[List[int]]

get_bcasted_dims(*shapes)
Return the broadcasted shape of the given shapes.

Examples

>>> get_bcasted_dims([1, 2, 5], [2, 3, 4])
[2, 3, 5]

Parameters
shapes (List[List[int]]) – The shapes to broadcast.

Returns
The broadcasted shape.

Return type
List[int]

match_dim(*xs: Tensor, contiguous: bool = False)→ Tuple[Tensor, ...]
match the N-1 dimensions of x and xq for searchsorted and gather with dim=-1

Examples

>>> x = torch.randn(10, 5)
>>> xq = torch.randn(10, 3)
>>> x_new, xq_new = match_dim(x, xq)
>>> x_new.shape
torch.Size([10, 5])
>>> xq_new.shape
torch.Size([10, 3])

class LinearOperator(*args, **kwargs)
LinearOperator is a base class designed to behave as a linear operator without explicitly determining the ma-
trix. This LinearOperator should be able to operate as batched linear operators where its shape is (B1,B2,..
.,Bb,p,q) with B* as the (optional) batch dimensions. For a user-defined class to behave as LinearOperator,
it must use LinearOperator as one of the parent and it has to have ._mv() method implemented and .
_getparamnames() if used in xitorch’s functionals with torch grad enabled.
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Examples

>>> import torch
>>> seed = torch.manual_seed(100)
>>> class MyLinOp(LinearOperator):
... def __init__(self, shape):
... super(MyLinOp, self).__init__(shape)
... self.param = torch.rand(shape)
... def _getparamnames(self, prefix=""):
... return [prefix + "param"]
... def _mv(self, x):
... return torch.matmul(self.param, x)
... def _rmv(self, x):
... return torch.matmul(self.param.transpose(-2,-1).conj(), x)
... def _mm(self, x):
... return torch.matmul(self.param, x)
... def _rmm(self, x):
... return torch.matmul(self.param.transpose(-2,-1).conj(), x)
... def _fullmatrix(self):
... return self.param
>>> linop = MyLinOp((1,3,1,2))
>>> print(linop)
LinearOperator (MyLinOp) with shape (1, 3, 1, 2), dtype = torch.float32, device =␣
→˓cpu
>>> x = torch.rand(1,3,2,2)
>>> linop.mv(x)
tensor([[[[0.1991, 0.1011]],

[[0.3764, 0.5742]],

[[1.0345, 1.1802]]]])
>>> x = torch.rand(1,3,1,1)
>>> linop.rmv(x)
tensor([[[[0.0250],

[0.1827]],

[[0.0794],
[0.1463]],

[[0.1207],
[0.1345]]]])

>>> x = torch.rand(1,3,2,2)
>>> linop.mm(x)
tensor([[[[0.8891, 0.4243]],

[[0.4856, 0.3128]],

[[0.6601, 0.9532]]]])
>>> x = torch.rand(1,3,1,2)
>>> linop.rmm(x)
tensor([[[[0.0473, 0.0019],

[0.3455, 0.0138]],

(continues on next page)
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[[0.0580, 0.2504],
[0.1069, 0.4614]],

[[0.4779, 0.1102],
[0.5326, 0.1228]]]])

>>> linop.fullmatrix()
tensor([[[[0.1117, 0.8158]],

[[0.2626, 0.4839]],

[[0.6765, 0.7539]]]])

static __new__(self , *args, **kwargs)
Check the implemented functions in the class.

classmethod m(mat: Tensor, is_hermitian: bool | None = None)
Class method to wrap a matrix into LinearOperator.

Parameters
• mat (torch.Tensor) – Matrix to be wrapped in the LinearOperator.

• is_hermitian (bool or None) – Indicating if the matrix is Hermitian. If None, the
symmetry will be checked. If supplied as a bool, there is no check performed.

Returns
Linear operator object that represents the matrix.

Return type
LinearOperator

Example

>>> import torch
>>> from deepchem.utils.differentiation_utils import LinearOperator
>>> seed = torch.manual_seed(100)
>>> mat = torch.rand(1,3,1,2) # 1x2 matrix with (1,3) batch dimensions
>>> linop = LinearOperator.m(mat)
>>> print(linop)
MatrixLinearOperator with shape (1, 3, 1, 2):

tensor([[[[0.1117, 0.8158]],

[[0.2626, 0.4839]],

[[0.6765, 0.7539]]]])

__init__(shape: Sequence[int], is_hermitian: bool = False, dtype: dtype | None = None, device: device |
None = None, _suppress_hermit_warning: bool = False)→ None

Initialize the LinearOperator.

Parameters
• shape (Sequence[int]) – The shape of the linear operator.

• is_hermitian (bool) – Whether the linear operator is Hermitian.
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• dtype (torch.dtype or None) – The dtype of the linear operator.

• device (torch.device or None) – The device of the linear operator.

• _suppress_hermit_warning (bool) – Whether to suppress the warning when the linear
operator is Hermitian but the .rmv() or .rmm() is implemented.

getlinopparams()→ Sequence[Tensor]
Get the parameters that affects most of the methods (i.e. mm, mv, rmm, rmv).

uselinopparams(*params)
Context manager to temporarily set the parameters that affects most of the methods (i.e. mm, mv, rmm,
rmv).

mv(x: Tensor)→ Tensor
Apply the matrix-vector operation to vector x with shape (...,q). The batch dimensions of x need not
be the same as the batch dimensions of the LinearOperator, but it must be broadcastable.

Parameters
x (torch.tensor) – The vector with shape (...,q) where the linear operation is operated
on

Returns
y – The result of the linear operation with shape (...,p)

Return type
torch.tensor

mm(x: Tensor)→ Tensor
Apply the matrix-matrix operation to matrix x with shape (...,q,r). The batch dimensions of x need
not be the same as the batch dimensions of the LinearOperator, but it must be broadcastable.

Parameters
x (torch.tensor) – The matrix with shape (...,q,r) where the linear operation is oper-
ated on.

Returns
y – The result of the linear operation with shape (...,p,r)

Return type
torch.tensor

rmv(x: Tensor)→ Tensor
Apply the matrix-vector adjoint operation to vector x with shape (...,p), i.e. A^H x. The batch di-
mensions of x need not be the same as the batch dimensions of the LinearOperator, but it must be
broadcastable.

Parameters
x (torch.tensor) – The vector of shape (...,p) where the adjoint linear operation is
operated at.

Returns
y – The result of the adjoint linear operation with shape (...,q)

Return type
torch.tensor

rmm(x: Tensor)→ Tensor
Apply the matrix-matrix adjoint operation to matrix x with shape (...,p,r), i.e. A^H X. The batch di-
mensions of x need not be the same as the batch dimensions of the LinearOperator, but it must be
broadcastable.
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Parameters
x (torch.Tensor) – The matrix of shape (...,p,r) where the adjoint linear operation is
operated on.

Returns
y – The result of the adjoint linear operation with shape (...,q,r).

Return type
torch.Tensor

fullmatrix()→ Tensor
Full matrix representation of the linear operator.

scipy_linalg_op()

Return the scipy.sparse.linalg.LinearOperator object of the linear operator.

getparamnames(methodname: str, prefix: str = '')→ List[str]
Get the parameter names that affects the method.

property H

Returns a LinearOperator representing the Hermite / transposed of the self LinearOperator.

Returns
The Hermite / transposed LinearOperator

Return type
LinearOperator

matmul(b: LinearOperator, is_hermitian: bool = False)
Returns a LinearOperator representing self @ b.

Examples

>>> import torch
>>> seed = torch.manual_seed(100)
>>> class MyLinOp(LinearOperator):
... def __init__(self, shape):
... super(MyLinOp, self).__init__(shape)
... self.param = torch.rand(shape)
... def _getparamnames(self, prefix=""):
... return [prefix + "param"]
... def _mv(self, x):
... return torch.matmul(self.param, x)
>>> linop1 = MyLinOp((1,3,1,2))
>>> linop2 = MyLinOp((1,3,2,1))
>>> linop = linop1.matmul(linop2)
>>> print(linop)
MatmulLinearOperator with shape (1, 3, 1, 1) of:
* LinearOperator (MyLinOp) with shape (1, 3, 1, 2), dtype = torch.float32,␣
→˓device = cpu
* LinearOperator (MyLinOp) with shape (1, 3, 2, 1), dtype = torch.float32,␣
→˓device = cpu
>>> x = torch.rand(1,3,1,1)
>>> linop.mv(x)
tensor([[[[0.0458]],

(continues on next page)
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[[0.0880]],

[[0.2664]]]])

Parameters
• b (LinearOperator) – Other linear operator

• is_hermitian (bool) – Flag to indicate if the resulting LinearOperator is Hermitian.

Returns
LinearOperator representing self @ b

Return type
LinearOperator

__add__(b: LinearOperator)
Addition with another linear operator.

Examples

>>> class Operator(LinearOperator):
... def __init__(self, mat: torch.Tensor, is_hermitian: bool) -> None:
... super(Operator, self).__init__(
... shape=mat.shape,
... is_hermitian=is_hermitian,
... dtype=mat.dtype,
... device=mat.device,
... _suppress_hermit_warning=True,
... )
... self.mat = mat
... def _mv(self, x: torch.Tensor) -> torch.Tensor:
... return torch.matmul(self.mat, x.unsqueeze(-1)).squeeze(-1)
... def _mm(self, x: torch.Tensor) -> torch.Tensor:
... return torch.matmul(self.mat, x)
... def _rmv(self, x: torch.Tensor) -> torch.Tensor:
... return torch.matmul(self.mat.transpose(-3, -1).conj(), x.unsqueeze(-
→˓1)).squeeze(-1)
... def _rmm(self, x: torch.Tensor) -> torch.Tensor:
... return torch.matmul(self.mat.transpose(-2, -1).conj(), x)
... def _fullmatrix(self) -> torch.Tensor:
... return self.mat
... def _getparamnames(self, prefix: str = "") -> List[str]:
... return [prefix + "mat"]
>>> op = Operator(torch.tensor([[1, 2.],
... [3, 4]]), is_hermitian=False)
>>> x = torch.tensor([[2, 2],
... [1, 2.]])
>>> op.mm(x)
tensor([[ 4., 6.],

[10., 14.]])
(continues on next page)
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>>> op2 = op + op
>>> op2.mm(x)
tensor([[ 8., 12.],

[20., 28.]])

Parameters
b (LinearOperator) – The linear operator to be added.

Returns
The result of the addition.

Return type
LinearOperator

__sub__(b: LinearOperator)
Subtraction with another linear operator.

Examples

>>> class Operator(LinearOperator):
... def __init__(self, mat: torch.Tensor, is_hermitian: bool) -> None:
... super(Operator, self).__init__(
... shape=mat.shape,
... is_hermitian=is_hermitian,
... dtype=mat.dtype,
... device=mat.device,
... _suppress_hermit_warning=True,
... )
... self.mat = mat
... def _mv(self, x: torch.Tensor) -> torch.Tensor:
... return torch.matmul(self.mat, x.unsqueeze(-1)).squeeze(-1)
... def _mm(self, x: torch.Tensor) -> torch.Tensor:
... return torch.matmul(self.mat, x)
... def _rmv(self, x: torch.Tensor) -> torch.Tensor:
... return torch.matmul(self.mat.transpose(-3, -1).conj(), x.unsqueeze(-
→˓1)).squeeze(-1)
... def _rmm(self, x: torch.Tensor) -> torch.Tensor:
... return torch.matmul(self.mat.transpose(-2, -1).conj(), x)
... def _fullmatrix(self) -> torch.Tensor:
... return self.mat
... def _getparamnames(self, prefix: str = "") -> List[str]:
... return [prefix + "mat"]
>>> op = Operator(torch.tensor([[1, 2.],
... [3, 4]]), is_hermitian=False)
>>> op1 = Operator(torch.tensor([[0, 1.],
... [1, 2]]), is_hermitian=False)
>>> x = torch.tensor([[2, 2],
... [1, 2.]])
>>> op.mm(x)
tensor([[ 4., 6.],

[10., 14.]])
(continues on next page)
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>>> op2 = op - op1
>>> op2.mm(x)
tensor([[3., 4.],

[6., 8.]])

Parameters
b (LinearOperator) – The linear operator to be subtracted.

Returns
The result of the subtraction.

Return type
LinearOperator

property dtype: dtype

The dtype of the linear operator.

property device: device

The device of the linear operator.

property shape: Sequence[int]

The shape of the linear operator.

property is_hermitian: bool

Whether the linear operator is Hermitian.

property is_mv_implemented: bool

Whether the .mv() method is implemented.

property is_mm_implemented: bool

Whether the .mm() method is implemented.

property is_rmv_implemented: bool

Whether the .rmv() method is implemented.

property is_rmm_implemented: bool

Whether the .rmm() method is implemented.

property is_fullmatrix_implemented: bool

Whether the .fullmatrix() method is implemented.

property is_getparamnames_implemented: bool

Whether the ._getparamnames() method is implemented.

class AddLinearOperator(*args, **kwargs)
Adds two linear operators.
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Examples

>>> import torch
>>> seed = torch.manual_seed(100)
>>> class MyLinOp(LinearOperator):
... def __init__(self, shape):
... super(MyLinOp, self).__init__(shape)
... self.param = torch.rand(shape)
... def _getparamnames(self, prefix=""):
... return [prefix + "param"]
... def _mv(self, x):
... return torch.matmul(self.param, x)
... def _rmv(self, x):
... return torch.matmul(self.param.transpose(-2,-1).conj(), x)
... def _mm(self, x):
... return torch.matmul(self.param, x)
... def _rmm(self, x):
... return torch.matmul(self.param.transpose(-2,-1).conj(), x)
... def _fullmatrix(self):
... return self.param
>>> linop1 = MyLinOp((1,3,1,2))
>>> linop2 = MyLinOp((1,3,1,2))
>>> linop = AddLinearOperator(linop1, linop2)
>>> print(linop)
AddLinearOperator with shape (1, 3, 1, 2) of:
* LinearOperator (MyLinOp) with shape (1, 3, 1, 2), dtype = torch.float32, device␣
→˓= cpu
* LinearOperator (MyLinOp) with shape (1, 3, 1, 2), dtype = torch.float32, device␣
→˓= cpu
>>> x = torch.rand(1,3,2,2)
>>> linop.mv(x)
tensor([[[[0.6256, 1.0689]],

[[0.6039, 0.5380]],

[[0.9702, 2.1129]]]])
>>> x = torch.rand(1,3,1,1)
>>> linop.rmv(x)
tensor([[[[0.1662],

[0.3813]],

[[0.4460],
[0.5705]],

[[0.5942],
[1.1089]]]])

>>> x = torch.rand(1,2,2,1)
>>> linop.mm(x)
tensor([[[[0.7845],

[0.5439]]],

[[[0.6518],
(continues on next page)
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[0.4318]]],

[[[1.4336],
[0.9796]]]])

__init__(a: LinearOperator, b: LinearOperator, mul: int = 1)
Initialize the AddLinearOperator.

Parameters
• a (LinearOperator) – The first linear operator to be added.

• b (LinearOperator) – The second linear operator to be added.

• mul (int) – The multiplier of the second linear operator. Default to 1. If -1, then the
second linear operator will be subtracted.

class MulLinearOperator(*args, **kwargs)
Multiply a linear operator with a scalar.

Examples

>>> import torch
>>> seed = torch.manual_seed(100)
>>> class MyLinOp(LinearOperator):
... def __init__(self, shape):
... super(MyLinOp, self).__init__(shape)
... self.param = torch.rand(shape)
... def _getparamnames(self, prefix=""):
... return [prefix + "param"]
... def _mv(self, x):
... return torch.matmul(self.param, x)
>>> linop = MyLinOp((1,3,1,2))
>>> print(linop)
LinearOperator (MyLinOp) with shape (1, 3, 1, 2), dtype = torch.float32, device =␣
→˓cpu
>>> x = torch.rand(1,3,2,2)
>>> linop.mv(x)
tensor([[[[0.1991, 0.1011]],

[[0.3764, 0.5742]],

[[1.0345, 1.1802]]]])
>>> linop2 = linop * 2
>>> linop2.mv(x)
tensor([[[[0.3981, 0.2022]],

[[0.7527, 1.1485]],

[[2.0691, 2.3603]]]])

__init__(a: LinearOperator, f: int | float)
Initialize the MulLinearOperator.
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Parameters
• a (LinearOperator) – Linear operator to be multiplied.

• f (Union[int, float]) – Integer or floating point number to be multiplied.

class AdjointLinearOperator(*args, **kwargs)
Adjoint of a LinearOperator.

This is used to calculate the adjoint of a LinearOperator without explicitly constructing the adjoint matrix. This
is useful when the adjoint matrix is not explicitly constructed, e.g. when the LinearOperator is a function of
other parameters.

Examples

>>> import torch
>>> seed = torch.manual_seed(100)
>>> class MyLinOp(LinearOperator):
... def __init__(self, shape):
... super(MyLinOp, self).__init__(shape)
... self.param = torch.rand(shape)
... def _getparamnames(self, prefix=""):
... return [prefix + "param"]
... def _mv(self, x):
... return torch.matmul(self.param, x)
... def _rmv(self, x):
... return torch.matmul(self.param.transpose(-2,-1).conj(), x)
>>> linop = MyLinOp((1,3,1,2))
>>> print(linop)
LinearOperator (MyLinOp) with shape (1, 3, 1, 2), dtype = torch.float32, device =␣
→˓cpu
>>> x = torch.rand(1,3,1,1)
>>> linop.rmv(x)
tensor([[[[0.0293],

[0.2143]],

[[0.0112],
[0.0207]],

[[0.1407],
[0.1568]]]])

>>> linop2 = linop.H
>>> linop2.mv(x)
tensor([[[[0.0293],

[0.2143]],

[[0.0112],
[0.0207]],

[[0.1407],
[0.1568]]]])

__init__(obj: LinearOperator)
Initialize the AdjointLinearOperator.
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Parameters
obj (LinearOperator) – The linear operator to be adjointed.

property H

Adjoint of the linear operator.

Returns
Adjoint of the linear operator.

Return type
LinearOperator

class MatmulLinearOperator(*args, **kwargs)
Matrix-matrix multiplication of two linear operators.

Examples

>>> import torch
>>> seed = torch.manual_seed(100)
>>> class MyLinOp(LinearOperator):
... def __init__(self, shape):
... super(MyLinOp, self).__init__(shape)
... self.param = torch.rand(shape)
... def _getparamnames(self, prefix=""):
... return [prefix + "param"]
... def _mv(self, x):
... return torch.matmul(self.param, x)
>>> linop1 = MyLinOp((1,3,2,2))
>>> linop2 = MyLinOp((1,3,2,2))
>>> linop = MatmulLinearOperator(linop1, linop2)
>>> print(linop)
MatmulLinearOperator with shape (1, 3, 2, 2) of:
* LinearOperator (MyLinOp) with shape (1, 3, 2, 2), dtype = torch.float32, device␣
→˓= cpu
* LinearOperator (MyLinOp) with shape (1, 3, 2, 2), dtype = torch.float32, device␣
→˓= cpu
>>> x = torch.rand(1,2,2,1)
>>> linop.mm(x)
tensor([[[[0.7998],

[0.8016]],

[[0.6515],
[0.6835]]],

[[[0.9251],
[1.1611]],

[[0.2781],
[0.3609]]],

[[[0.2591],
[0.2376]],

(continues on next page)
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[[0.8009],
[0.8087]]]])

__init__(a: LinearOperator, b: LinearOperator, is_hermitian: bool = False)
Initialize the MatmulLinearOperator.

Parameters
• a (LinearOperator) – The first linear operator to be multiplied.

• b (LinearOperator) – The second linear operator to be multiplied.

• is_hermitian (bool) – Whether the result is Hermitian. Default to False.

class MatrixLinearOperator(*args, **kwargs)
Class method to wrap a matrix into LinearOperator. It is a standard linear operator, used in many operations.

Examples

>>> import torch
>>> seed = torch.manual_seed(100)
>>> mat = torch.rand(3, 2)
>>> linop = MatrixLinearOperator(mat, is_hermitian=False)
>>> print(linop)
MatrixLinearOperator with shape (3, 2):

tensor([[0.1117, 0.8158],
[0.2626, 0.4839],
[0.6765, 0.7539]])

>>> x = torch.rand(2, 2)
>>> linop.mm(x)
tensor([[0.1991, 0.1011],

[0.1696, 0.0684],
[0.3345, 0.1180]])

>>> x = torch.rand(3, 2)
>>> linop.mv(x)
tensor([[0.6137, 0.3879, 0.6369],

[0.7220, 0.5680, 1.0753],
[0.7821, 0.5460, 0.9626]])

__init__(mat: Tensor, is_hermitian: bool)→ None
Initialize the MatrixLinearOperator.

Parameters
• mat (torch.Tensor) – The matrix to be wrapped.

• is_hermitian (bool) – Indicating if the matrix is Hermitian. If None, the symmetry will
be checked. If supplied as a bool, there is no check performed.

class PureFunction(fcntocall: Callable)
PureFunction class wraps methods to make it stateless and expose the pure function to take inputs of the original
inputs (params) and the object’s states (objparams). For functions, this class only acts as a thin wrapper.

Restore stack stores list of (objparams, identical) everytime the objparams are set, it will store the old objparams
and indication if the old and new objparams are identical.
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For Using this Class we first need to implement _get_all_obj_params_init and _set_all_obj_params.

Examples

>>> class WrapperFunction(PureFunction):
... def _get_all_obj_params_init(self):
... return []
... def _set_all_obj_params(self, objparams):
... pass
>>> def fcn(x, y):
... return x + y
>>> pfunc = WrapperFunction(fcn)
>>> pfunc(1, 2)
3

__init__(fcntocall: Callable)
Initialize the PureFunction.

Parameters
fcntocall (Callable) – The function to be wrapped

objparams()→ List
Get the current object parameters.

Returns
The current object parameters

Return type
List

set_objparams(objparams: List)
Set the object parameters.

Parameters
• objparams (List) – The object parameters to be set

• TODO (check if identical with current object parameters) –

restore_objparams()

Restore the object parameters to the previous state.

useobjparams(objparams: List)
Context manager to temporarily set the object parameters.

Parameters
objparams (List) – The object parameters to be set temporarily

disable_state_change()

Context manager to temporarily disable the state change.

class FunctionPureFunction(fcntocall: Callable)
Implementation of PureFunction for functions. It just acts as a thin wrapper for the function.
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Examples

>>> def fcn(x, y):
... return x + y
>>> pfunc = FunctionPureFunction(fcn)
>>> pfunc(1, 2)
3

class EditableModulePureFunction(obj: EditableModule, method: Callable)
Implementation of PureFunction for EditableModule.

Examples

>>> import torch
>>> from deepchem.utils.differentiation_utils import EditableModule, get_pure_
→˓function
>>> class A(EditableModule):
... def __init__(self, a):
... self.b = a*a
... def mult(self, x):
... return self.b * x
... def getparamnames(self, methodname, prefix=""):
... if methodname == "mult":
... return [prefix+"b"]
... else:
... raise KeyError()
>>> B = A(4)
>>> m = get_pure_function(B.mult)
>>> m.set_objparams([3])
>>> m(2)
6

__init__(obj: EditableModule, method: Callable)
Initialize the EditableModulePureFunction.

Parameters
• obj (EditableModule) – The object to be wrapped

• method (Callable) – The method to be wrapped

class TorchNNPureFunction(obj: Module, method: Callable)
Implementation of PureFunction for torch.nn.Module.
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Examples

>>> import torch
>>> from deepchem.utils.differentiation_utils import get_pure_function
>>> class A(torch.nn.Module):
... def __init__(self, a):
... super().__init__()
... self.b = torch.nn.Parameter(torch.tensor(a*a))
... def forward(self, x):
... return self.b * x
>>> B = A(4.)
>>> m = get_pure_function(B.forward)
>>> m.set_objparams([3.])
>>> m(2)
6.0

__init__(obj: Module, method: Callable)
Initialize the TorchNNPureFunction.

Parameters
• obj (torch.nn.Module) – Object to be wrapped

• method (Callable) – Method to be wrapped

class PureFunction(fcntocall: Callable)
PureFunction class wraps methods to make it stateless and expose the pure function to take inputs of the original
inputs (params) and the object’s states (objparams). For functions, this class only acts as a thin wrapper.

Restore stack stores list of (objparams, identical) everytime the objparams are set, it will store the old objparams
and indication if the old and new objparams are identical.

For Using this Class we first need to implement _get_all_obj_params_init and _set_all_obj_params.

Examples

>>> class WrapperFunction(PureFunction):
... def _get_all_obj_params_init(self):
... return []
... def _set_all_obj_params(self, objparams):
... pass
>>> def fcn(x, y):
... return x + y
>>> pfunc = WrapperFunction(fcn)
>>> pfunc(1, 2)
3

__init__(fcntocall: Callable)
Initialize the PureFunction.

Parameters
fcntocall (Callable) – The function to be wrapped

objparams()→ List
Get the current object parameters.
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Returns
The current object parameters

Return type
List

set_objparams(objparams: List)
Set the object parameters.

Parameters
• objparams (List) – The object parameters to be set

• TODO (check if identical with current object parameters) –

restore_objparams()

Restore the object parameters to the previous state.

useobjparams(objparams: List)
Context manager to temporarily set the object parameters.

Parameters
objparams (List) – The object parameters to be set temporarily

disable_state_change()

Context manager to temporarily disable the state change.

_check_identical_objs(objs1: List, objs2: List)→ bool
Check if the two lists of objects are identical.

Examples

>>> l1 = [2, 2, 3]
>>> l2 = [1, 2, 3]
>>> _check_identical_objs(l1, l2)
False

Parameters
• objs1 (List) – The first list of objects

• objs2 (List) – The second list of objects

Returns
True if the two lists of objects are identical, False otherwise

Return type
bool

get_pure_function(fcn)→ PureFunction
Get the pure function form of the function or method fcn.
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Examples

>>> import torch
>>> from deepchem.utils.differentiation_utils import get_pure_function
>>> def fcn(x, y):
... return x + y
>>> pfunc = get_pure_function(fcn)
>>> pfunc(1, 2)
3

Parameters
fcn (function or method) – Function or method to be converted into a PureFunction by
exposing the hidden parameters affecting its outputs.

Returns
The pure function wrapper

Return type
PureFunction

set_default_option(defopt: Dict, opt: Dict)→ Dict
return a dictionary based on the options and if no item from option, take it from defopt make a shallow copy to
detach the results from defopt

Examples

>>> set_default_option({'a': 1, 'b': 2}, {'a': 3})
{'a': 3, 'b': 2}

Parameters
• defopt (dict) – Default options

• opt (dict) – Options

Returns
Merged options

Return type
dict

get_and_pop_keys(dct: Dict, keys: List)→ Dict
Get and pop keys from a dictionary
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Examples

>>> get_and_pop_keys({'a': 1, 'b': 2}, ['a'])
{'a': 1}

Parameters
• dct (dict) – Dictionary to pop from

• keys (list) – Keys to pop

Returns
Dictionary containing the popped keys

Return type
dict

get_method(algname: str, methods: Mapping[str, Callable], method: str | Callable)→ Callable
Get a method from a dictionary of methods

Examples

>>> get_method('foo', {'bar': lambda: 1}, 'bar')()
1

Parameters
• algname (str) – Name of the algorithm

• methods (dict) – Dictionary of methods

• method (str or callable) – Method to get

Returns
The method

Return type
callable

dummy_context_manager()

Dummy context manager

assert_runtime(cond, msg='')
Assert at runtime

Examples

>>> assert_runtime(False, "This is a test")
Traceback (most recent call last):
...
RuntimeError: This is a test

Parameters
• cond (bool) – Condition to assert
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• msg (str) – Message to raise if condition is not met

Raises
RuntimeError – If condition is not met

_set_initial_v(vinit_type: str, dtype: dtype, device: device, batch_dims: Sequence, na: int, nguess: int, M:
LinearOperator | None = None)→ Tensor

Set the initial guess for the eigenvectors.

Examples

>>> import torch
>>> vinit_type = "eye"
>>> dtype = torch.float64
>>> device = torch.device("cpu")
>>> batch_dims = (2, 3)
>>> na = 4
>>> nguess = 2
>>> M = None
>>> V = _set_initial_v(vinit_type, dtype, device, batch_dims, na, nguess, M)
>>> V
tensor([[[[1., 0.],

[0., 1.],
[0., 0.],
[0., 0.]],

[[1., 0.],
[0., 1.],
[0., 0.],
[0., 0.]],

[[1., 0.],
[0., 1.],
[0., 0.],
[0., 0.]]],

[[[1., 0.],
[0., 1.],
[0., 0.],
[0., 0.]],

[[1., 0.],
[0., 1.],
[0., 0.],
[0., 0.]],

[[1., 0.],
[0., 1.],
[0., 0.],
[0., 0.]]]], dtype=torch.float64)

Parameters
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• vinit_type (str) – Mode of the initial guess ("randn", "rand", "eye")

• dtype (torch.dtype) – Data type of the initial guess.

• device (torch.device) – Device of the initial guess.

• batch_dims (Sequence) – Batch dimensions of the initial guess.

• na (int) – Number of basis functions.

• nguess (int) – Number of initial guesses.

• M (Optional[LinearOperator] (default None)) – The overlap matrix. If None, iden-
tity matrix is used.

Returns
V – Initial guess for the eigenvectors.

Return type
torch.Tensor

_take_eigpairs(eival: Tensor, eivec: Tensor, neig: int, mode: str)
Take the eigenpairs from the eigendecomposition.

Examples

>>> import torch
>>> eival = torch.tensor([[1., 2., 3.], [4., 5., 6.]])
>>> eivec = torch.tensor([[[1., 2., 3.], [4., 5., 6.], [7., 8., 9.]],
... [[1., 2., 3.], [4., 5., 6.], [7., 8., 9.]]])
>>> neig = 2
>>> mode = "lowest"
>>> eival, eivec = _take_eigpairs(eival, eivec, neig, mode)
>>> eival
tensor([[1., 2.],

[4., 5.]])
>>> eivec
tensor([[[1., 2.],

[4., 5.],
[7., 8.]],

[[1., 2.],
[4., 5.],
[7., 8.]]])

Parameters
• eival (torch.Tensor) – Eigenvalues of the linear operator. Shape: (*BV, na).

• eivec (torch.Tensor) – Eigenvectors of the linear operator. Shape: (*BV, na, na).

• neig (int) – Number of eigenvalues and eigenvectors to be calculated.

• mode (str) – Mode of the eigenvalues to be calculated ("lowest", "uppest")

Returns
• eival (torch.Tensor) – Eigenvalues of the linear operator.

• eivec (torch.Tensor) – Eigenvectors of the linear operator.
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exacteig(A: LinearOperator, neig: int, mode: str, M: LinearOperator | None)→ Tuple[Tensor, Tensor]
Eigendecomposition using explicit matrix construction. No additional option for this method.

Examples

>>> import torch
>>> import numpy as np
>>> from deepchem.utils.differentiation_utils import LinearOperator
>>> A = LinearOperator.m(torch.rand(2, 2))
>>> neig = 2
>>> mode = "lowest"
>>> M = None
>>> evals, evecs = exacteig(A, neig, mode, M)
>>> evals.shape
torch.Size([2])
>>> evecs.shape
torch.Size([2, 2])

Parameters
• A (LinearOperator) – Linear operator to be diagonalized. Shape: (*BA, q, q).

• neig (int) – Number of eigenvalues and eigenvectors to be calculated.

• mode (str) – Mode of the eigenvalues to be calculated ("lowest", "uppest")

• M (Optional[LinearOperator] (default None)) – The overlap matrix. If None, iden-
tity matrix is used. Shape: (*BM, q, q).

Returns
• evals (torch.Tensor) – Eigenvalues of the linear operator.

• evecs (torch.Tensor) – Eigenvectors of the linear operator.

Warning:
• As this method construct the linear operators explicitly, it might requires a large memory.

degen_symeig(*args, **kwargs)
A wrapper for torch.linalg.eigh to avoid complex eigenvalues for degenerate case.

Examples

>>> import torch
>>> import numpy as np
>>> from deepchem.utils.differentiation_utils import LinearOperator
>>> A = LinearOperator.m(torch.rand(2, 2))
>>> evals, evecs = degen_symeig.apply(A.fullmatrix())
>>> evals.shape
torch.Size([2])
>>> evecs.shape
torch.Size([2, 2])
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davidson(A: LinearOperator, neig: int, mode: str, M: LinearOperator | None = None, max_niter: int = 1000,
nguess: int | None = None, v_init: str = 'randn', max_addition: int | None = None, min_eps: float =
1e-06, verbose: bool = False, **unused)→ Tuple[Tensor, Tensor]

Using Davidson method for large sparse matrix eigendecomposition [2]_.

Examples

>>> import torch
>>> import numpy as np
>>> from deepchem.utils.differentiation_utils import LinearOperator
>>> A = LinearOperator.m(torch.rand(2, 2))
>>> neig = 2
>>> mode = "lowest"
>>> eigen_val, eigen_vec = davidson(A, neig, mode)

Parameters
• A (LinearOperator) – Linear operator to be diagonalized. Shape: (*BA, q, q).

• neig (int) – Number of eigenvalues and eigenvectors to be calculated.

• mode (str) – Mode of the eigenvalues to be calculated ("lowest", "uppest")

• M (Optional[LinearOperator] (default None)) – The overlap matrix. If None, iden-
tity matrix is used. Shape: (*BM, q, q).

• max_niter (int) – Maximum number of iterations

• v_init (str) – Mode of the initial guess ("randn", "rand", "eye")

• max_addition (int or None) – Maximum number of new guesses to be added to the
collected vectors. If None, set to neig.

• min_eps (float) – Minimum residual error to be stopped

• verbose (bool) – Option to be verbose

Returns
• evals (torch.Tensor) – Eigenvalues of the linear operator.

• evecs (torch.Tensor) – Eigenvectors of the linear operator.

References

lsymeig(A: LinearOperator, neig: int | None = None, M: LinearOperator | None = None, bck_options: Mapping[str,
Any] = {}, method: Callable | str | None = None, **fwd_options)→ Tuple[Tensor, Tensor]

Obtain neig lowest eigenvalues and eigenvectors of a linear operator

usymeig(A: LinearOperator, neig: int | None = None, M: LinearOperator | None = None, bck_options: Mapping[str,
Any] = {}, method: Callable | str | None = None, **fwd_options)→ Tuple[Tensor, Tensor]

Obtain neig uppest eigenvalues and eigenvectors of a linear operator

symeig(A: LinearOperator, neig: int | None = None, mode: str = 'lowest', M: LinearOperator | None = None,
bck_options: Mapping[str, Any] = {}, method: Callable | str | None = None, **fwd_options)→
Tuple[Tensor, Tensor]

Obtain neig lowest eigenvalues and eigenvectors of a linear operator,
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Examples

>>> import torch
>>> from deepchem.utils.differentiation_utils import LinearOperator
>>> A = LinearOperator.m(torch.tensor([[3, -1j], [1j, 4]]))
>>> evals, evecs = symeig(A)
>>> evals.shape
torch.Size([2])
>>> evecs.shape
torch.Size([2, 2])

AX = MXE

where A,M are linear operators, E is a diagonal matrix containing the eigenvalues, and X is a matrix containing
the eigenvectors. This function can handle derivatives for degenerate cases by setting non-zero degen_atol and
degen_rtol in the backward option using the expressions in [1]_.

Parameters
• A (LinearOperator) – The linear operator object on which the eigenpairs are constructed.

It must be a Hermitian linear operator with shape (*BA, q, q)

• neig (int or None) – The number of eigenpairs to be retrieved. If None, all eigenpairs
are retrieved

• mode (str) – "lowest" or "uppermost"/"uppest". If "lowest", it will take the lowest
neig eigenpairs. If "uppest", it will take the uppermost neig.

• M (LinearOperator) – The transformation on the right hand side. If None, then M=I. If
specified, it must be a Hermitian with shape (*BM, q, q).

• bck_options (dict) – Method-specific options for solve() which used in backpropaga-
tion calculation with some additional arguments for computing the backward derivatives:

– degen_atol (float or None): Minimum absolute difference between two eigenvalues
to be treated as degenerate. If None, it is torch.finfo(dtype).eps**0.6. If 0.0, no
special treatment on degeneracy is applied. (default: None)

– degen_rtol (float or None): Minimum relative difference between two eigenvalues
to be treated as degenerate. If None, it is torch.finfo(dtype).eps**0.4. If 0.0, no
special treatment on degeneracy is applied. (default: None)

Note: the default values of degen_atol and degen_rtol are going to change in the future.
So, for future compatibility, please specify the specific values.

• method (str or callable or None) – Method for the eigendecomposition. If None, it
will choose "exacteig".

• **fwd_options – Method-specific options (see method section below).

Returns
It will return eigenvalues and eigenvectors with shapes respectively (*BAM, neig) and (*BAM,
na, neig), where *BAM is the broadcasted shape of *BA and *BM.

Return type
tuple of tensors (eigenvalues, eigenvectors)
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References

class symeig_torchfcn(*args, **kwargs)
A wrapper for symeig to be used in torch.autograd.Function

static forward(ctx, A, neig, mode, M, fwd_options, bck_options, na, *amparams)
Calculate the eigenvalues and eigenvectors of a linear operator

Parameters
• A (LinearOperator) – The linear operator object on which the eigenpairs are constructed.

It must be a Hermitian linear operator with shape (*BA, q, q)

• neig (int) – The number of eigenpairs to be retrieved. If None, all eigenpairs are retrieved

• mode (str) – "lowest" or "uppermost"/"uppest". If "lowest", it will take the lowest
neig eigenpairs. If "uppest", it will take the uppermost neig.

• M (xitorch.LinearOperator) – The transformation on the right hand side. If None, then
M=I. If specified, it must be a Hermitian with shape (*BM, q, q).

• fwd_options (dict) – Method-specific options (see method section below).

• bck_options (dict) – Method-specific options for solve() which used in backpropaga-
tion calculation with some additional arguments for computing the backward derivatives:
degen_atol and degen_rtol.

• na (int) – Number of parameters of A (and M if M is not None)

• *amparams (torch.Tensor) – Parameters of A (and M if M is not None)

static backward(ctx, grad_evals, grad_evecs)
Calculate the gradient of the eigenvalues and eigenvectors of a linear operator

Parameters
• grad_evals (torch.Tensor) – The gradient of the eigenvalues. Shape: (*BAM, neig)

• grad_evecs (torch.Tensor) – The gradient of the eigenvectors. Shape: (*BAM, na,
neig)

_check_degen(evals: Tensor, degen_atol: float, degen_rtol: float)→ Tuple[Tensor, bool]
Check the degeneracy of the eigenvalues

Examples

>>> import torch
>>> evals = torch.tensor([1, 1, 2, 3, 3, 3, 4, 5, 5])
>>> degen_atol = 0.1
>>> degen_rtol = 0.1
>>> idx_degen, isdegenerate = _check_degen(evals, degen_atol, degen_rtol)
>>> idx_degen.shape
torch.Size([9, 9])
>>> isdegenerate
True

Parameters
• evals (torch.Tensor) – Eigenvalues of the linear operator. Shape: (*BAM, neig)
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• degen_atol (float) – Minimum absolute difference between two eigenvalues to be treated
as degenerate.

• degen_rtol (float) – Minimum relative difference between two eigenvalues to be treated
as degenerate.

Returns
• idx_degen (torch.Tensor) – The degeneracy map. Shape: (*BAM, neig, neig)

• isdegenerate (bool) – Whether the eigenvalues are degenerate

ortho(A: Tensor, B: Tensor, *, D: Tensor | None = None, M: LinearOperator | None = None, mright: bool = False)
→ Tensor

Orthogonalize A w.r.t. B

Examples

>>> import torch
>>> A = torch.tensor([[1, 2], [3, 4]])
>>> B = torch.tensor([[1, 0], [0, 1]])
>>> ortho(A, B)
tensor([[0, 2],

[3, 0]])

Parameters
• A (torch.Tensor) – The tensor to be orthogonalized. Shape: (*BAM, na, neig)

• B (torch.Tensor) – The tensor to be orthogonalized against. Shape: (*BAM, na, neig)

• D (torch.Tensor or None) – The degeneracy map. If None, it is identity matrix. Shape:
(*BAM, neig, neig)

• M (LinearOperator or None) – The overlap matrix. If None, identity matrix is used.
Shape: (*BM, q, q)

• mright (bool) – Whether to operate M at the right or at the left

Returns
The orthogonalized tensor. Shape: (*BAM, na, neig)

Return type
torch.Tensor

jac(fcn: Callable[[...], Tensor], params: Sequence[Any], idxs: None | int | Sequence[int] = None)
Returns the LinearOperator that acts as the jacobian of the params. The shape of LinearOperator is (nout, nin)
where nout and nin are the total number of elements in the output and the input, respectively.
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Examples

>>> import torch
>>> from deepchem.utils.differentiation_utils import jac
>>> def fcn(x, y):
... return x * y
>>> x = torch.tensor([1.0, 2.0, 3.0], requires_grad=True)
>>> y = torch.tensor([4.0, 5.0, 6.0], requires_grad=True)
>>> jac(fcn, [x, y])
[LinearOperator (_Jac) with shape (3, 3), dtype = torch.float32, device = cpu,␣
→˓LinearOperator (_Jac) with shape (3, 3), dtype = torch.float32, device = cpu]

Parameters
• fcn (Callable[...,torch.Tensor]) – Callable with tensor output and arbitrary numbers

of input parameters.

• params (Sequence[Any]) – List of input parameters of the function.

• idxs (int or list of int or None) – List of the parameters indices to get the jaco-
bian. The pointed parameters in params must be tensors and requires_grad. If it is None,
then it will return all jacobian for all parameters that are tensor which requires_grad.

Returns
linops – List of LinearOperator of the jacobian

Return type
Union[LinearOperator, List]

class _Jac(*args, **kwargs)
Jacobian of a function with respect to a parameter in the function.

Examples

>>> import torch
>>> def fcn(x, y):
... return x * y
>>> x = torch.tensor([1.0, 2.0, 3.0], requires_grad=True)
>>> y = torch.tensor([4.0, 5.0, 6.0], requires_grad=True)
>>> pfcn = get_pure_function(fcn)
>>> _Jac(pfcn, [x, y], 1)
LinearOperator (_Jac) with shape (3, 3), dtype = torch.float32, device = cpu

__init__(fcn: PureFunction, params: Sequence[Any], idx: int, is_hermitian=False)→ None
Initialize the _Jac object.

Parameters
• fcn (PureFunction) – The function that will be differentiated.

• params (Sequence[Any]) – List of input parameters of the function.

• idx (int) – The index of the parameter to be differentiated.

• is_hermitian (bool) – If True, then the LinearOperator is hermitian.
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_setup_idxs(idxs: None | int | Sequence[int], params: Sequence[Any])→ Sequence[int]
Check the idxs and return the list of indices.

Examples

>>> import torch
>>> import numpy as np
>>> x = torch.tensor([1.0, 2.0, 3.0], requires_grad=True)
>>> y = torch.tensor([4.0, 5.0, 6.0], requires_grad=True)
>>> _setup_idxs(None, [x, y])
[0, 1]

Parameters
• idxs (int or list of int or None) – List of the parameters indices to get the jaco-

bian. The pointed parameters in params must be tensors and requires_grad. If it is None,
then it will return all jacobian for all parameters that are tensor which requires_grad.

• params (Sequence[Any]) – List of input parameters of the function.

Returns
idxs – List of the parameters indices to get the jacobian.

Return type
list of int

connect_graph(out: Tensor, params: Sequence[Any])
Just to have a dummy graph, in case there is a parameter that is disconnected in calculating df/dy.

Examples

>>> import torch
>>> x = torch.tensor([1.0, 2.0, 3.0], requires_grad=True)
>>> y = torch.tensor([4.0, 5.0, 6.0], requires_grad=True)
>>> out = x * y
>>> connect_graph(out, [x, y])
tensor([ 4., 10., 18.], grad_fn=<AddBackward0>)

Parameters
• out (torch.Tensor) – The output tensor. It will be added with a dummy graph.

• params (Sequence[Any]) – List of parameters that will be added with a dummy graph.

Returns
out – The output tensor with a dummy graph.

Return type
torch.Tensor

wrap_gmres(A, B, E=None, M=None, min_eps=1e-09, max_niter=None, **unused)
Using SciPy’s gmres method to solve the linear equation.

3.31. Utilities 733



deepchem, Release 2.8.0

Examples

>>> import torch
>>> from deepchem.utils.differentiation_utils import LinearOperator
>>> A = LinearOperator.m(torch.tensor([[1., 2], [3, 4]]))
>>> B = torch.tensor([[[5., 6], [7, 8]]])
>>> wrap_gmres(A, B, None, None)
tensor([[[-3.0000, -4.0000],

[ 4.0000, 5.0000]]])

Parameters
• A (LinearOperator) – The linear operator A to be solved. Shape: (*BA, na, na)

• B (torch.Tensor) – Batched matrix B. Shape: (*BB, na, ncols)

• E (torch.Tensor or None) – Batched vector E. Shape: (*BE, ncols)

• M (LinearOperator or None) – The linear operator M. Shape: (*BM, na, na)

• min_eps (float) – Relative tolerance for stopping conditions

• max_niter (int or None) – Maximum number of iterations. If None, default to twice of
the number of columns of A.

Returns
The Solution matrix X. Shape: (*BBE, na, ncols)

Return type
torch.Tensor

exactsolve(A: LinearOperator, B: Tensor, E: Tensor | None, M: LinearOperator | None)
Solve the linear equation by contructing the full matrix of LinearOperators.

Examples

>>> import torch
>>> from deepchem.utils.differentiation_utils import LinearOperator
>>> A = LinearOperator.m(torch.tensor([[1., 2], [3, 4]]))
>>> B = torch.tensor([[5., 6], [7, 8]])
>>> exactsolve(A, B, None, None)
tensor([[-3., -4.],

[ 4., 5.]])

Parameters
• A (LinearOperator) – The linear operator A to be solved. Shape: (*BA, na, na)

• B (torch.Tensor) – Batched matrix B. Shape: (*BB, na, ncols)

• E (torch.Tensor or None) – Batched vector E. Shape: (*BE, ncols)

• M (LinearOperator or None) – The linear operator M. Shape: (*BM, na, na)

Returns
The Solution matrix X. Shape: (*BBE, na, ncols)
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Return type
torch.Tensor

Warning:
• As this method construct the linear operators explicitly, it might requires a large memory.

solve_ABE(A: Tensor, B: Tensor, E: Tensor)
Solve the linear equation AX = B - diag(E)X.

Examples

>>> import torch
>>> A = torch.tensor([[1., 2], [3, 4]])
>>> B = torch.tensor([[5., 6], [7, 8]])
>>> E = torch.tensor([1., 2])
>>> solve_ABE(A, B, E)
tensor([[-0.1667, 0.5000],

[ 2.5000, 3.2500]])

Parameters
• A (torch.Tensor) – The batched matrix A. Shape: (*BA, na, na)

• B (torch.Tensor) – The batched matrix B. Shape: (*BB, na, ncols)

• E (torch.Tensor) – The batched vector E. Shape: (*BE, ncols)

Returns
The batched matrix X.

Return type
torch.Tensor

get_batchdims(A: LinearOperator, B: Tensor, E: Tensor | None, M: LinearOperator | None)
Get the batch dimensions of the linear operator and the matrix B

Examples

>>> from deepchem.utils.differentiation_utils import MatrixLinearOperator
>>> import torch
>>> A = MatrixLinearOperator(torch.randn(4, 3, 3), True)
>>> B = torch.randn(3, 3, 2)
>>> get_batchdims(A, B, None, None)
[4]

Parameters
• A (LinearOperator) – The linear operator. It can be a batched linear operator.

• B (torch.Tensor) – The matrix B. It can be a batched matrix.

• E (Union[torch.Tensor, None]) – The matrix E. It can be a batched matrix.
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• M (Union[LinearOperator, None]) – The linear operator M. It can be a batched linear
operator.

Returns
The batch dimensions of the linear operator and the matrix B

Return type
List[int]

setup_precond(precond: LinearOperator | None = None)→ Callable[[Tensor], Tensor]
Setup the preconditioning function

Examples

>>> from deepchem.utils.differentiation_utils import MatrixLinearOperator
>>> import torch
>>> A = MatrixLinearOperator(torch.randn(4, 3, 3), True)
>>> B = torch.randn(4, 3, 2)
>>> cond = setup_precond(A)
>>> cond(B).shape
torch.Size([4, 3, 2])

Parameters
precond (Optional[LinearOperator]) – The preconditioning linear operator. If None, no
preconditioning is applied.

Returns
The preconditioning function. It takes a tensor and returns a tensor.

Return type
Callable[[torch.Tensor], torch.Tensor]

dot(r: Tensor, z: Tensor)→ Tensor
Dot product of two vectors. r and z must have the same shape. Then sums it up across the last dimension.

Examples

>>> import torch
>>> r = torch.tensor([[1, 2], [3, 4]])
>>> z = torch.tensor([[5, 6], [7, 8]])
>>> dot(r, z)
tensor([[26, 44]])

Parameters
• r (torch.Tensor) – The first vector. Shape: (*BR, nr, nc)

• z (torch.Tensor) – The second vector. Shape: (*BR, nr, nc)

Returns
The dot product of r and z. Shape: (*BR, 1, nc)

Return type
torch.Tensor
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gmres(A: LinearOperator, B: Tensor, E: Tensor | None = None, M: LinearOperator | None = None, posdef: bool |
None = None, max_niter: int | None = None, rtol: float = 1e-06, atol: float = 1e-08, eps: float = 1e-12,
**unused)→ Tensor

Solve the linear equations using Generalised minial residual method.

Examples

>>> import torch
>>> from deepchem.utils.differentiation_utils import LinearOperator
>>> A = LinearOperator.m(torch.tensor([[1., 2], [3, 4]]))
>>> B = torch.tensor([[5., 6], [7, 8]])
>>> gmres(A, B)
tensor([[0.8959, 1.0697],

[1.2543, 1.4263]])

Parameters
• A (LinearOperator) – The linear operator A to be solved. Shape: (*BA, na, na)

• B (torch.Tensor) – Batched matrix B. Shape: (*BB, na, ncols)

• E (torch.Tensor or None) – Batched vector E. Shape: (*BE, ncols)

• M (LinearOperator or None) – The linear operator M. Shape: (*BM, na, na)

• posdef (bool or None) – Indicating if the operation AX−MXE a positive definite for
all columns and batches. If None, it will be determined by power iterations.

• max_niter (int or None) – Maximum number of iteration. If None, it is set to int(1.5
* A.shape[-1])

• rtol (float) – Relative tolerance for stopping condition w.r.t. norm of B

• atol (float) – Absolute tolerance for stopping condition w.r.t. norm of B

• eps (float) – Substitute the absolute zero in the algorithm’s denominator with this value to
avoid nan.

Returns
The solution matrix X. Shape: (*BBE, na, ncols)

Return type
torch.Tensor

setup_linear_problem(A: LinearOperator, B: Tensor, E: Tensor | None, M: LinearOperator | None, batchdims:
Sequence[int], posdef: bool | None, need_hermit: bool)→ Tuple[Callable[[Tensor],
Tensor], Callable[[Tensor], Tensor], Tensor, bool]

Setup the linear problem for solving AX = B
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Examples

>>> from deepchem.utils.differentiation_utils import MatrixLinearOperator
>>> import torch
>>> A = MatrixLinearOperator(torch.randn(4, 3, 3), True)
>>> B = torch.randn(4, 3, 2)
>>> A_fcn, AT_fcn, B_new, col_swapped = setup_linear_problem(A, B, None, None, [4],␣
→˓None, False)
>>> A_fcn(B).shape
torch.Size([4, 3, 2])

Parameters
• A (LinearOperator) – The linear operator A. It can be a batched linear operator.

• B (torch.Tensor) – The matrix B. It can be a batched matrix.

• E (Optional[torch.Tensor]) – The matrix E. It can be a batched matrix.

• M (Optional[LinearOperator]) – The linear operator M. It can be a batched linear oper-
ator.

• batchdims (Sequence[int]) – The batch dimensions of the linear operator and the matrix
B

• posdef (Optional[bool]) – Whether the linear operator is positive definite. If None, it
will be estimated.

• need_hermit (bool) – Whether the linear operator is Hermitian. If True, it will be esti-
mated.

Returns
Callable[[torch.Tensor], torch.Tensor],

torch.Tensor, bool]

The function A, its transposed function, the matrix B, and whether the columns of B are swapped.

Return type
Tuple[Callable[[torch.Tensor], torch.Tensor],

safedenom(r: Tensor, eps: float)→ Tensor
Make sure the denominator is not zero

Examples

>>> import torch
>>> r = torch.tensor([[0., 2], [3, 4]])
>>> safedenom(r, 1e-9)
tensor([[1.0000e-09, 2.0000e+00],

[3.0000e+00, 4.0000e+00]])

Parameters
• r (torch.Tensor) – The input tensor. Shape: (*BR, nr, nc)

• eps (float) – The small number to replace the zero denominator
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Returns
The tensor with non-zero denominator. Shape: (*BR, nr, nc)

Return type
torch.Tensor

get_largest_eival(Afcn: Callable, x: Tensor)→ Tensor
Get the largest eigenvalue of the linear operator Afcn

Examples

>>> import torch
>>> def Afcn(x):
... return 10 * x
>>> x = torch.tensor([[1., 2], [3, 4]])
>>> get_largest_eival(Afcn, x)
tensor([[10., 10.]])

Parameters
• Afcn (Callable) – The linear operator A. It takes a tensor and returns a tensor.

• x (torch.Tensor) – The input tensor. Shape: (*, nr, nc)

Returns
The largest eigenvalue. Shape: (*, 1, nc)

Return type
torch.Tensor

solve(A: LinearOperator, B: Tensor, E: Tensor | None = None, M: LinearOperator | None = None, bck_options:
Mapping[str, Any] = {}, method: Callable | str | None = None, **fwd_options)→ Tensor

Performing iterative method to solve the equation.

Examples

>>> import torch
>>> from deepchem.utils.differentiation_utils import LinearOperator
>>> A = LinearOperator.m(torch.tensor([[1., 2], [3, 4]]))
>>> B = torch.tensor([[5., 6], [7, 8]])
>>> solve(A, B)
tensor([[-3., -4.],

[ 4., 5.]])

AX = B

or

AX−MXE = B

where E is a diagonal matrix. This function can also solve batched multiple inverse equation at the same time
by applying A to a tensor X with shape (...,na,ncols). The applied E are not necessarily identical for each
column.
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Parameters
• A (LinearOperator) – A linear operator that takes an input X and produce the vectors in

the same space as B. It should have the shape of (*BA, na, na)

• B (torch.Tensor) – The tensor on the right hand side with shape (*BB, na, ncols)

• E (Union[torch.Tensor, None]) – If a tensor, it will solveAX−MXE = B. It will be
regarded as the diagonal of the matrix. Otherwise, it just solves AX = B and M is ignored.
If it is a tensor, it should have shape of (*BE, ncols).

• M (Optional[LinearOperator]) – The transformation on the E side. If E is None, then
this argument is ignored. If E is not None and M is None, then M=I. If LinearOperator, it must
be Hermitian with shape (*BM, na, na).

• bck_options (dict) – Options of the iterative solver in the backward calculation.

• method (Union[str, Callable, None]) – The method of linear equation solver. If
None, it will choose "cg" or "bicgstab" based on the matrices symmetry. Note: default
method will be changed quite frequently, so if you want future compatibility, please specify
a method.

• **fwd_options – Method-specific options

Returns
The tensor X that satisfies AX−MXE = B.

Return type
torch.Tensor

broyden1_solve(fcn: Callable, x0: Tensor, params, method: str, alpha=None, uv0=None, max_rank=None,
maxiter=None, f_tol=None, f_rtol=None, x_tol=None, x_rtol=None, line_search=True,
verbose=False, custom_terminator=None, **unused)

Solve the root finder or linear equation using the first Broyden method [1]_. It can be used to solve minimization
by finding the root of the function’s gradient.

Examples

>>> def fcn(x):
... return x**2 - 4
>>> x0 = torch.tensor(0.0, requires_grad=True)
>>> x = broyden1(fcn, x0)
>>> x
tensor(-2.0000, grad_fn=<ViewBackward0>)

Parameters
• fcn (callable) – The function to solve. It should take a tensor and return a tensor.

• x0 (torch.Tensor) – The initial guess of the solution.

• params (tuple) – The parameters to pass to the function.
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References

_rootfinder_solve(alg: str, A: LinearOperator, B: Tensor, E: Tensor | None = None, M: LinearOperator | None =
None, **options)

Solve the linear equations using rootfinder algorithm

Examples

>>> import torch
>>> A = torch.tensor([[1., 2], [3, 4]])
>>> B = torch.tensor([[5., 6], [7, 8]])
>>> _rootfinder_solve("broyden1", A, B)
tensor([[-3.0000, -4.0000],

[ 4.0000, 5.0000]])

Parameters
• alg (str) – The algorithm to use. Currently, only “broyden1” is supported.

• A (torch.Tensor) – The matrix A. Shape: (*BA, nr, nr)

• B (torch.Tensor) – The matrix B. Shape: (*BB, nr, ncols)

• E (torch.Tensor or None) – The matrix E. Shape: (*BE, ncols)

• M (torch.Tensor or None) – The matrix M. Shape: (*BM, nr, nr)

• options (dict) – The options for the rootfinder algorithm

Returns
The solution matrix X. Shape: (*BBE, nr, ncols)

Return type
torch.Tensor

cg(A: LinearOperator, B: Tensor, E: Tensor | None = None, M: LinearOperator | None = None, posdef: bool | None
= None, precond: LinearOperator | None = None, max_niter: int | None = None, rtol: float = 1e-06, atol: float =
1e-08, eps: float = 1e-12, resid_calc_every: int = 10, verbose: bool = False, **unused)→ Tensor

Solve the linear equations using Conjugate-Gradient (CG) method.

Parameters
• A (LinearOperator) – A linear operator that takes an input X and produce the vectors in

the same space as B. It should have the shape of (*BA, na, na)

• B (torch.Tensor) – The tensor on the right hand side with shape (*BB, na, ncols)

• E (Union[torch.Tensor, None]) – If a tensor, it will solveAX−MXE = B. It will be
regarded as the diagonal of the matrix. Otherwise, it just solves AX = B and M is ignored.
If it is a tensor, it should have shape of (*BE, ncols).

• M (Optional[LinearOperator]) – The transformation on the E side. If E is None, then
this argument is ignored. If E is not None and M is None, then M=I.

• posdef (bool or None) – Indicating if the operation AX−MXE a positive definite for
all columns and batches. If None, it will be determined by power iterations.

• precond (LinearOperator or None) – LinearOperator for the preconditioning. If None,
no preconditioner is applied.
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• max_niter (int or None) – Maximum number of iteration. If None, it is set to int(1.5
* A.shape[-1])

• rtol (float) – Relative tolerance for stopping condition w.r.t. norm of B

• atol (float) – Absolute tolerance for stopping condition w.r.t. norm of B

• eps (float) – Substitute the absolute zero in the algorithm’s denominator with this value to
avoid nan.

• resid_calc_every (int) – Calculate the residual in its actual form instead of substitution
form with this frequency, to avoid rounding error accummulation. If your linear operator has
bad numerical precision, set this to be low. If 0, then never calculate the residual in its actual
form.

• verbose (bool) – Verbosity of the algorithm.

bicgstab(A: LinearOperator, B: Tensor, E: Tensor | None = None, M: LinearOperator | None = None, posdef: bool
| None = None, precond_l: LinearOperator | None = None, precond_r: LinearOperator | None = None,
max_niter: int | None = None, rtol: float = 1e-06, atol: float = 1e-08, eps: float = 1e-12, verbose: bool =
False, resid_calc_every: int = 10, **unused)→ Tensor

Solve the linear equations using stabilized Biconjugate-Gradient method.

Parameters
• posdef (bool or None) – Indicating if the operation AX−MXE a positive definite for

all columns and batches. If None, it will be determined by power iterations.

• precond_l (LinearOperator or None) – LinearOperator for the left preconditioning. If
None, no preconditioner is applied.

• precond_r (LinearOperator or None) – LinearOperator for the right preconditioning.
If None, no preconditioner is applied.

• max_niter (int or None) – Maximum number of iteration. If None, it is set to int(1.5
* A.shape[-1])

• rtol (float) – Relative tolerance for stopping condition w.r.t. norm of B

• atol (float) – Absolute tolerance for stopping condition w.r.t. norm of B

• eps (float) – Substitute the absolute zero in the algorithm’s denominator with this value to
avoid nan.

• resid_calc_every (int) – Calculate the residual in its actual form instead of substitution
form with this frequency, to avoid rounding error accummulation. If your linear operator has
bad numerical precision, set this to be low. If 0, then never calculate the residual in its actual
form.

• verbose (bool) – Verbosity of the algorithm.

class solve_torchfcn(*args, **kwargs)

static forward(ctx, A, B, E, M, method, fwd_options, bck_options, na, *all_params)
Forward calculation of the solve function.

Parameters
• A (LinearOperator) – A linear operator that takes an input X and produce the vectors in

the same space as B. It should have the shape of (*BA, na, na)

• B (torch.Tensor) – The tensor on the right hand side with shape (*BB, na, ncols)
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• E (Union[torch.Tensor, None]) – If a tensor, it will solve AX−MXE = B. It will
be regarded as the diagonal of the matrix. Otherwise, it just solves AX = B and M is
ignored. If it is a tensor, it should have shape of (*BE, ncols).

• M (Optional[LinearOperator]) – The transformation on the E side. If E is None, then
this argument is ignored. If E is not None and M is None, then M=I.

• method (Union[str, Callable, None]) – The method of linear equation solver. If
None, it will choose "cg" or "bicgstab" based on the matrices symmetry. Note: default
method will be changed quite frequently, so if you want future compatibility, please specify
a method.

• fwd_options – Method-specific options

• bck_options (dict) – Options of the iterative solver in the backward calculation.

• na (int) – Number of parameters of A

• all_params (Sequence[torch.Tensor]) – All the parameters of M and A

static backward(ctx, grad_x)
Define a formula for differentiating the operation with backward mode automatic differentiation.

This function is to be overridden by all subclasses. (Defining this function is equivalent to defining the vjp
function.)

It must accept a context ctx as the first argument, followed by as many outputs as the forward() returned
(None will be passed in for non tensor outputs of the forward function), and it should return as many tensors,
as there were inputs to forward(). Each argument is the gradient w.r.t the given output, and each returned
value should be the gradient w.r.t. the corresponding input. If an input is not a Tensor or is a Tensor not
requiring grads, you can just pass None as a gradient for that input.

The context can be used to retrieve tensors saved during the forward pass. It also has an attribute
ctx.needs_input_grad as a tuple of booleans representing whether each input needs gradient. E.g.,
backward() will have ctx.needs_input_grad[0] = True if the first input to forward() needs gra-
dient computed w.r.t. the output.

anderson_acc(fcn: Callable[[...], Tensor], x0: Tensor, params: List, feat_ndims: int = 1, msize: int = 5, beta:
float = 1.0, lmbda: float = 0.0001, maxiter=None, f_tol=None, f_rtol=None, x_tol=None,
x_rtol=None, custom_terminator=None, verbose: bool = False)→ Tensor

Solve the equilibrium (or fixed-point iteration) problem using Anderson acceleration.

Examples

>>> import torch
>>> def fcn(x):
... return x
>>> x0 = torch.tensor([0.0], requires_grad=True)
>>> x = anderson_acc(fcn, x0, [], 2, 10, maxiter=1000)
>>> x
tensor([0.], requires_grad=True)

Parameters
• feat_ndims (int) – The number of dimensions at the end that describe the features (i.e.

non-batch dimensions)

• msize (int) – The maximum number of previous iterations we should save for the algorithm
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• beta (float) – The damped or overcompensated parameters

• lmbda (float) – Small number to ensure invertability of the matrix

• maxiter (int or None) – Maximum number of iterations, or inf if it is set to None.

• f_tol (float or None) – The absolute tolerance of the norm of the output f - x.

• f_rtol (float or None) – The relative tolerance of the norm of the output f - x.

• x_tol (float or None) – The absolute tolerance of the norm of the input x.

• x_rtol (float or None) – The relative tolerance of the norm of the input x.

• verbose (bool) – Options for verbosity

References

gd(fcn: Callable[[...], Tensor], x0: Tensor, params: List, step: float = 0.001, gamma: float = 0.9, maxiter: int =
1000, f_tol: float = 0.0, f_rtol: float = 1e-08, x_tol: float = 0.0, x_rtol: float = 1e-08, verbose=False, **unused)

Vanilla gradient descent with momentum. The stopping conditions use OR criteria. The update step is following
the equations below.

Examples

>>> import torch
>>> from deepchem.utils.differentiation_utils.optimize.minimizer import gd
>>> def fcn(x):
... return (x - 2) ** 2, 2 * (x - 2)
>>> x0 = torch.tensor(0.0, requires_grad=True)
>>> x = gd(fcn, x0, [])
>>> x
tensor(2.0000)

v𝑡+1 = 𝛾v𝑡 − 𝜂∇x𝑓(x𝑡)

x𝑡+1 = x𝑡 + v𝑡+1

Parameters
• fcn (callable) – The objective function to minimize. It should take a tensor and return a

tensor and its gradient.

• x0 (torch.Tensor) – The initial guess.

• step (float) – The step size towards the steepest descent direction, i.e. 𝜂 in the equations
above.

• gamma (float) – The momentum factor, i.e. 𝛾 in the equations above.

• maxiter (int) – Maximum number of iterations.

• f_tol (float or None) – The absolute tolerance of the output f.

• f_rtol (float or None) – The relative tolerance of the output f.

• x_tol (float or None) – The absolute tolerance of the norm of the input x.

• x_rtol (float or None) – The relative tolerance of the norm of the input x.

744 Chapter 3. About Us



deepchem, Release 2.8.0

adam(fcn: Callable[[...], Tensor], x0: Tensor, params: List, step: float = 0.001, beta1: float = 0.9, beta2: float =
0.999, eps: float = 1e-08, maxiter: int = 1000, f_tol: float = 0.0, f_rtol: float = 1e-08, x_tol: float = 0.0,
x_rtol: float = 1e-08, verbose=False, **unused)
Adam optimizer by Kingma & Ba (2015). The stopping conditions use OR criteria. The update step is following
the equations below.

Examples

>>> from deepchem.utils.differentiation_utils.optimize.minimizer import adam
>>> def fcn(x):
... return (x - 4) * 2, (x * 2) + 3
>>> x0 = torch.tensor(0.0, requires_grad=True)
>>> x = adam(fcn, x0, [], maxiter=10000)
>>> x
tensor(-1.4999)

g𝑡 = ∇x𝑓(x𝑡−1)

m𝑡 = 𝛽1m𝑡−1 + (1− 𝛽1)g𝑡

v𝑡 = 𝛽2v𝑡−1 + (1− 𝛽2)g
2
𝑡

m̂𝑡 = m𝑡/(1− 𝛽𝑡
1)

v̂𝑡 = v𝑡/(1− 𝛽𝑡
2)

x𝑡 = x𝑡−1 − 𝛼m̂𝑡/(
√︀
v̂𝑡 + 𝜖)

Parameters
• step (float) – The step size towards the descent direction, i.e. 𝛼 in the equations above.

• beta1 (float) – Exponential decay rate for the first moment estimate.

• beta2 (float) – Exponential decay rate for the first moment estimate.

• eps (float) – Small number to prevent division by 0.

• maxiter (int) – Maximum number of iterations.

• f_tol (float or None) – The absolute tolerance of the output f.

• f_rtol (float or None) – The relative tolerance of the output f.

• x_tol (float or None) – The absolute tolerance of the norm of the input x.

• x_rtol (float or None) – The relative tolerance of the norm of the input x.

TerminationCondition(f_tol: float, f_rtol: float, x_tol: float, x_rtol: float, verbose: bool)
The class to handle the stopping conditions.

Examples

>>> stop_cond = TerminationCondition(1e-8, 1e-8, 1e-8, 1e-8, True)

_nonlin_solver(fcn: Callable, x0: Tensor, params, method: str, alpha=None, uv0=None, max_rank=None,
maxiter=None, f_tol=None, f_rtol=None, x_tol=None, x_rtol=None, line_search=True,
verbose=False, custom_terminator=None, **unused)

Parameters
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• alpha (float or None) – The initial guess of inverse Jacobian is - alpha * I + u
v^T.

• uv0 (tuple of tensors or str or None) – The initial guess of inverse Jacobian is -
alpha * I + u v^T. If "svd", then it uses 1-rank svd to obtain u and v. If None, then u
and v are zeros.

• max_rank (int or None) – The maximum rank of inverse Jacobian approximation. If
None, it is inf.

• maxiter (int or None) – Maximum number of iterations, or inf if it is set to None.

• f_tol (float or None) – The absolute tolerance of the norm of the output f.

• f_rtol (float or None) – The relative tolerance of the norm of the output f.

• x_tol (float or None) – The absolute tolerance of the norm of the input x.

• x_rtol (float or None) – The relative tolerance of the norm of the input x.

• line_search (bool or str) – Options to perform line search. If True, it is set to
"armijo".

• verbose (bool) – Options for verbosity

broyden1(fcn: Callable, x0: Tensor, params, method: str, alpha=None, uv0=None, max_rank=None,
maxiter=None, f_tol=None, f_rtol=None, x_tol=None, x_rtol=None, line_search=True, verbose=False,
custom_terminator=None, **unused)

Solve the root finder or linear equation using the first Broyden method [1]_. It can be used to solve minimization
by finding the root of the function’s gradient.

Examples

>>> def fcn(x):
... return x**2 - 4
>>> x0 = torch.tensor(0.0, requires_grad=True)
>>> x = broyden1(fcn, x0)
>>> x
tensor(-2.0000, grad_fn=<ViewBackward0>)

Parameters
• fcn (callable) – The function to solve. It should take a tensor and return a tensor.

• x0 (torch.Tensor) – The initial guess of the solution.

• params (tuple) – The parameters to pass to the function.

References

broyden2(fcn: Callable, x0: Tensor, params, method: str, alpha=None, uv0=None, max_rank=None,
maxiter=None, f_tol=None, f_rtol=None, x_tol=None, x_rtol=None, line_search=True, verbose=False,
custom_terminator=None, **unused)

Solve the root finder or linear equation using the second Broyden method [2]_. It can be used to solve minimiza-
tion by finding the root of the function’s gradient.
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Examples

>>> def fcn(x):
... return x**2 - 4
>>> x0 = torch.tensor(0.0, requires_grad=True)
>>> x = broyden1(fcn, x0)
>>> x
tensor(-2.0000, grad_fn=<ViewBackward0>)

Parameters
• fcn (callable) – The function to solve. It should take a tensor and return a tensor.

• x0 (torch.Tensor) – The initial guess of the solution.

• params (tuple) – The parameters to pass to the function.

References

linearmixing(fcn: Callable, x0: Tensor, params=(), alpha=None, maxiter=None, f_tol=None, f_rtol=None,
x_tol=None, x_rtol=None, line_search=True, verbose=False, **unused)

Solve the root finding problem by approximating the inverse of Jacobian to be a constant scalar.

Examples

>>> def fcn(x):
... return x**2 - 4
>>> x0 = torch.tensor(0.0, requires_grad=True)
>>> x = broyden1(fcn, x0)
>>> x
tensor(-2.0000, grad_fn=<ViewBackward0>)

Parameters
• fcn (Callable) – The function to solve. It should take a tensor and return a tensor.

• x0 (torch.Tensor) – The initial guess of the solution.

• params (tuple) – The parameters to pass to the function.

• alpha (float or None) – The initial guess of inverse Jacobian is -alpha * I.

• maxiter (int or None) – Maximum number of iterations, or inf if it is set to None.

• f_tol (float or None) – The absolute tolerance of the norm of the output f.

• f_rtol (float or None) – The relative tolerance of the norm of the output f.

• x_tol (float or None) – The absolute tolerance of the norm of the input x.

• x_rtol (float or None) – The relative tolerance of the norm of the input x.

• line_search (bool or str) – Options to perform line search. If True, it is set to
"armijo".

• verbose (bool) – Options for verbosity
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References

_safe_norm(v)
Compute the norm of a vector, checking for finite values.

_nonline_line_search(func: Callable, x: Tensor, y: Tensor, dx: Tensor, search_type='armijo', rdiff=1e-08,
smin=0.01)

Find a suitable step length for a line search.

Parameters
• func (Callable) – The function to minimize.

• x (torch.Tensor) – The current point.

• y (torch.Tensor) – The function value at the current point.

• dx (torch.Tensor) – The search direction.

• search_type (str) – The type of line search to perform. Currently, only “armijo” is sup-
ported.

• rdiff (float) – The relative difference to compute the derivative.

• smin (float) – The minimum step length to take.

Returns
• s (float) – The step length.

• x (torch.Tensor) – The new point.

• y (torch.Tensor) – The function value at the new point.

• y_norm (float) – The norm of the function value at the new point.

_scalar_search_armijo(phi: Callable, phi0: float, derphi0: float, c1: float = 0.0001, alpha0=1, amin=0,
max_niter=20)

Minimize over alpha, the function phi(s) at the current point and the derivative derphi(s) at the current point.

Parameters
• phi (callable) – The function to minimize.

• phi0 (float) – The value of phi at 0.

• derphi0 (float) – The value of the derivative of phi at 0.

• c1 (float) – The Armijo condition parameter.

• alpha0 (float) – The initial guess of the step length.

• amin (float) – The minimum step length to take.

• max_niter (int) – The maximum number of iterations to take.

Returns
• alpha (float) – The step length.

• phi (float) – The value of the function at the step length.

TerminationCondition(f_tol: float, f_rtol: float, f0_norm: float, x_tol: float, x_rtol: float)
Class to check the termination condition of the root finder.
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class Jacobian

Base class for the Jacobians used in rootfinder algorithms.

A Jacobian can best be defined as a determinant which is defined for a finite number of functions of the same
number of variables in which each row consists of the first partial derivatives of the same function with respect
to each of the variables.

References

[1].. https://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant [2].. Kasim, Muhammad & Vinko, Sam.
(2020). xi$-torch: differentiable scientific computing library.

abstract setup(x0: Tensor, y0: Tensor, func: Callable)
Setup the Jacobian for the rootfinder.

abstract solve(v: Tensor, tol: Any = 0)
Solve the linear system J dx = v.

abstract update(x: Tensor, y: Tensor)
Update the Jacobian approximation.

class BroydenFirst(alpha: Tensor | None = None, uv0: Any | None = None, max_rank: float | None = None)
Approximating the Jacobian based on Broyden’s first approximation.

Examples

>>> from deepchem.utils.differentiation_utils.optimize.jacobian import BroydenFirst
>>> jacobian = BroydenFirst()
>>> x0 = torch.tensor([1.0, 1.0], requires_grad=True)
>>> def func(x):
... return torch.tensor([x[0]**2 + x[1]**2 - 1.0, x[0] - x[1]])
>>> y0 = func(x0)
>>> v = torch.tensor([1.0, 1.0])
>>> jacobian.setup(x0, y0, func)
>>> jacobian.solve(v)
tensor([-0.7071, -0.7071], grad_fn=<MulBackward0>)

References

[1].. B.A. van der Rotten, PhD thesis,
“A limited memory Broyden method to solve high-dimensional systems of nonlinear equations”. Mathe-
matisch Instituut, Universiteit Leiden, The Netherlands (2003).

__init__(alpha: Tensor | None = None, uv0: Any | None = None, max_rank: float | None = None)
The initial guess of inverse Jacobian is -alpha * I + u v^T. max_rank indicates the maximum rank of the
Jacoabian before reducing it

Parameters
• alpha (Union[torch.Tensor, None]) – The initial guess of inverse Jacobian is -alpha

* I. If None, it is set to -1.0.

• uv0 (tuple, optional) – The initial guess of the inverse Jacobian.
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• max_rank (Union[float, None]) – The maximum rank of the Jacobian before reducing
it. If None, it is set to inf.

setup(x0: Tensor, y0: Tensor, func: Callable)
Setup the Jacobian for the rootfinder.

Parameters
• x0 – The initial guess of the root.

• y0 – The function value at the initial guess.

• func – The function to find the root.

solve(v: Tensor, tol=0)→ Tensor
Solve the linear system J dx = v.

Parameters
• v (torch.Tensor) – The right-hand side of the linear system.

• tol (torch.Tensor) – The tolerance for the linear system.

Returns
res – The solution of the linear system.

Return type
torch.Tensor

update(x: Tensor, y: Tensor)
Update the Jacobian approximation.

Parameters
• x (torch.Tensor) – The current point.

• y (torch.Tensor) – The function value at the current point.

class BroydenSecond(alpha: Tensor | None = None, uv0: Any | None = None, max_rank: float | None = None)
Inverse Jacobian approximation based on Broyden’s second method.

Examples

>>> from deepchem.utils.differentiation_utils.optimize.jacobian import BroydenSecond
>>> jacobian = BroydenSecond()
>>> x0 = torch.tensor([1.0, 1.0], requires_grad=True)
>>> def func(x):
... return torch.tensor([x[0]**2 + x[1]**2 - 1.0, x[0] - x[1]])
>>> y0 = func(x0)
>>> v = torch.tensor([1.0, 1.0])
>>> jacobian.setup(x0, y0, func)
>>> jacobian.solve(v)
tensor([-0.7071, -0.7071], grad_fn=<MulBackward0>)
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References

[1] B.A. van der Rotten, PhD thesis,
“A limited memory Broyden method to solve high-dimensional systems of nonlinear equations”. Mathe-
matisch Instituut, Universiteit Leiden, The Netherlands (2003).

class LinearMixing(alpha: float | None = None)
Approximating the Jacobian based on linear mixing. It acts as a simple check for the functionality of the
rootfinder.

Examples

>>> from deepchem.utils.differentiation_utils.optimize.jacobian import LinearMixing
>>> jacobian = LinearMixing()
>>> x0 = torch.tensor([1.0, 1.0], requires_grad=True)
>>> def func(x):
... return torch.tensor([x[0]**2 + x[1]**2 - 1.0, x[0] - x[1]])
>>> y0 = func(x0)
>>> v = torch.tensor([1.0, 1.0])
>>> jacobian.setup(x0, y0, func)
>>> jacobian.solve(v)
tensor([1., 1.])

__init__(alpha: float | None = None)
The initial guess of inverse Jacobian is -alpha * I

Parameters
alpha (float, optional) – The initial guess of inverse Jacobian is -alpha * I. If None,
it is set to -1.0.

setup(x0: Tensor, y0: Tensor, func: Callable)
Setup the Jacobian for the rootfinder.

Parameters
• x0 (torch.Tensor) – The initial guess of the root.

• y0 (torch.Tensor) – The function value at the initial guess.

• func (Callable) – The function to find the root.

solve(v: Tensor, tol=0)→ Tensor
Solve the linear system J dx = v.

Parameters
• v (torch.Tensor) – The right-hand side of the linear system.

• tol – The tolerance for the linear system.

update(x: Tensor, y: Tensor)
Update the Jacobian approximation.

Parameters
• x (torch.Tensor) – The current point.

• y (torch.Tensor) – The function value at the current point.
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class LowRankMatrix(alpha: Tensor, uv0, reduce_method: str)
represents a matrix of lpha * I + sum_n c_n d_n^T

Examples

>>> from deepchem.utils.differentiation_utils.optimize.jacobian import LowRankMatrix
>>> import torch
>>> alpha = 1.0
>>> uv0 = (torch.tensor([1.0, 1.0]), torch.tensor([1.0, 1.0]))
>>> reduce_method = "restart"
>>> matrix = LowRankMatrix(alpha, uv0, reduce_method)
>>> v = torch.tensor([1.0, 1.0])
>>> matrix.mv(v)
tensor([3., 3.])
>>> matrix.rmv(v)
tensor([3., 3.])

__init__(alpha: Tensor, uv0, reduce_method: str)
initialize the matrix

Parameters
• alpha (torch.Tensor) – The coefficient of the identity matrix

• uv0 (tuple) – The initial guess of the inverse Jacobian

• reduce_method (str) – The method to reduce the rank of the matrix

mv(v: Tensor)→ Tensor
multiply the matrix with a vector

Parameters
v (torch.Tensor) – Vector to multiply

Returns
res – Result of the multiplication

Return type
torch.Tensor

rmv(v: Tensor)→ Tensor
multiply the transpose of the matrix with a vector

Parameters
v (torch.Tensor) – Vector to multiply

Returns
res – Result of the multiplication

Return type
torch.Tensor

append(c: Tensor, d: Tensor)
append a rank-1 matrix to the matrix

Parameters
• c (torch.Tensor) – The first vector

• d (torch.Tensor) – The second vector
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Returns
res – The matrix after appending the rank-1 matrix

Return type
Union[‘LowRankMatrix’, ‘FullRankMatrix’]

reduce(max_rank: int, **otherparams)
reduce the rank of the matrix

Parameters
• max_rank (int) – The maximum rank of the matrix

• otherparams – Other parameters

class FullRankMatrix(alpha: Tensor, cns: Any, dns: Any)
represents a full rank matrix of lpha * I + sum_n c_n d_n^T

Examples

>>> from deepchem.utils.differentiation_utils.optimize.jacobian import␣
→˓FullRankMatrix
>>> import torch
>>> alpha = 1.0
>>> cns = [torch.tensor([1.0, 1.0]), torch.tensor([1.0, 1.0])]
>>> dns = [torch.tensor([1.0, 1.0]), torch.tensor([1.0, 1.0])]
>>> matrix = FullRankMatrix(alpha, cns, dns)
>>> v = torch.tensor([1.0, 1.0])
>>> matrix.mv(v)
tensor([5., 5.])
>>> matrix.rmv(v)
tensor([5., 5.])

__init__(alpha: Tensor, cns: Any, dns: Any)
initialize the matrix

Parameters
• alpha (torch.Tensor) – Coefficient of the identity matrix

• cns (List) – List of the first vectors

• dns (List) – List of the second vectors

mv(v: Tensor)→ Tensor
multiply the matrix with a vector

Parameters
v (torch.Tensor) – The vector to multiply

Returns
res – The result of the multiplication

Return type
torch.Tensor

rmv(v: Tensor)→ Tensor
multiply the transpose of the matrix with a vector
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Parameters
v (torch.Tensor) – The vector to multiply

Returns
The result of the multiplication

Return type
torch.Tensor

append(c: Tensor, d: Tensor)
append a rank-1 matrix to the matrix

Parameters
• c (torch.Tensor) – The first vector

• d (torch.Tensor) – The second vector

Returns
The matrix after appending the rank-1 matrix

Return type
FullRankMatrix

reduce(max_rank: int, **kwargs)
reduce the rank of the matrix

Parameters
• max_rank (int) – The maximum rank of the matrix

• otherparams – Other parameters

rootfinder(fcn: Callable[[...], Tensor], y0: Tensor, params: Sequence[Any] = [], bck_options: Mapping[str, Any]
= {}, method: Callable | str | None = None, **fwd_options)→ Tensor

Solving the rootfinder equation of a given function,

0 = f(y, 𝜃)

where f is a function that can be non-linear and produce output of the same shape of y, and 𝜃 is other parameters
required in the function. The output of this block is y that produces the 0 as the output.

Parameters
• fcn (callable) – The function f with output tensor (*ny)

• y0 (torch.tensor) – Initial guess of the solution with shape (*ny)

• params (list) – Sequence of any other parameters to be put in fcn

• bck_options (dict) – Method-specific options for the backward solve (see xitorch.
linalg.solve())

• method (str or callable or None) – Rootfinder method. If None, it will choose
"broyden1".

• **fwd_options – Method-specific options (see method section)

Returns
The solution which satisfies 0 = f(y, 𝜃) with shape (*ny)

Return type
torch.tensor
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Example

>>> import torch
>>> def func1(y, A): # example function
... return torch.tanh(A @ y + 0.1) + y / 2.0
>>> A = torch.tensor([[1.1, 0.4], [0.3, 0.8]]).requires_grad_()
>>> y0 = torch.zeros((2,1)) # zeros as the initial guess
>>> yroot = rootfinder(func1, y0, params=(A,))
>>> print(yroot)
tensor([[-0.0459],

[-0.0663]], grad_fn=<_RootFinderBackward>)

equilibrium(fcn: Callable[[...], Tensor], y0: Tensor, params: Sequence[Any] = [], bck_options: Mapping[str,
Any] = {}, method: Callable | str | None = None, **fwd_options)→ Tensor

Solving the equilibrium equation of a given function,

y = f(y, 𝜃)

where f is a function that can be non-linear and produce output of the same shape of y, and 𝜃 is other parameters
required in the function. The output of this block is y that produces the same y as the output.

Parameters
• fcn (callable) – The function f with output tensor (*ny)

• y0 (torch.tensor) – Initial guess of the solution with shape (*ny)

• params (list) – Sequence of any other parameters to be put in fcn

• bck_options (dict) – Method-specific options for the backward solve (see xitorch.
linalg.solve())

• method (str or None) – Rootfinder method. If None, it will choose "broyden1".

• **fwd_options – Method-specific options (see method section)

Returns
The solution which satisfies y = f(y, 𝜃) with shape (*ny)

Return type
torch.tensor

Example

>>> import torch
>>> def func1(y, A): # example function
... return torch.tanh(A @ y + 0.1) + y / 2.0
>>> A = torch.tensor([[1.1, 0.4], [0.3, 0.8]]).requires_grad_()
>>> y0 = torch.zeros((2,1)) # zeros as the initial guess
>>> yequil = equilibrium(func1, y0, params=(A,))
>>> print(yequil)
tensor([[ 0.2313],

[-0.5957]], grad_fn=<_RootFinderBackward>)

Note:
• This is a direct implementation of finding the root of g(y, 𝜃) = y − f(y, 𝜃)
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minimize(fcn: Callable[[...], Tensor], y0: Tensor, params: Sequence[Any] = [], bck_options: Mapping[str, Any] =
{}, method: Callable | str | None = None, **fwd_options)→ Tensor

Solve the unbounded minimization problem:

y* = argmin
y

𝑓(y, 𝜃)

to find the best y that minimizes the output of the function 𝑓 .

Parameters
• fcn (callable) – The function to be optimized with output tensor with 1 element.

• y0 (torch.tensor) – Initial guess of the solution with shape (*ny)

• params (list) – Sequence of any other parameters to be put in fcn

• bck_options (dict) – Method-specific options for the backward solve (see xitorch.
linalg.solve())

• method (str or callable or None) – Minimization method. If None, it will choose
"broyden1".

• **fwd_options – Method-specific options (see method section)

Returns
The solution of the minimization with shape (*ny)

Return type
torch.tensor

Example

>>> import torch
>>> def func1(y, A): # example function
... return torch.sum((A @ y)**2 + y / 2.0)
>>> A = torch.tensor([[1.1, 0.4], [0.3, 0.8]]).requires_grad_()
>>> y0 = torch.zeros((2,1)) # zeros as the initial guess
>>> ymin = minimize(func1, y0, params=(A,))
>>> print(ymin)
tensor([[-0.0519],

[-0.2684]], grad_fn=<_RootFinderBackward>)

class _RootFinder(*args, **kwargs)

static forward(ctx, fcn, y0, fwd_fcn, alg_type, options, bck_options, nparams, *allparams)
Forward method for the rootfinder, minimizer, and equilibrium

Parameters
• fcn – a function that returns what has to be 0 (will be used in the backward, not used in

the forward). For minimization, it is the gradient

• y0 – initial guess

• fwd_fcn – a function that will be executed in the forward method (unused in the backward)

• alg_type – the type of algorithm: “rootfinder”, “minimizer”, or “equilibrium”

• options – options for the forward method

756 Chapter 3. About Us



deepchem, Release 2.8.0

• bck_options – options for the backward method

• nparams – number of parameters

• allparams – all parameters (including the non-tensor parameters)

• minimization (This class is also used for) –

• might (where fcn and fwd_fcn) –

• different (be slightly) –

Returns
The solution of the rootfinder, minimizer, or equilibrium

Return type
torch.tensor

static backward(ctx, grad_yout)
Backward method for the rootfinder, minimizer, and equilibrium

Parameters
grad_yout (torch.tensor) – the gradient of the output of the rootfinder, minimizer, or
equilibrium

Returns
The gradients of the parameters

Return type
tuple

_get_rootfinder_default_method(method: Callable | str | None = None)→ str | Callable | None
Get the default method for the rootfinder, minimizer, and equilibrium

Examples

>>> _get_rootfinder_default_method(None)
'broyden1'

Parameters
method (str or None) – The method name

Returns
The method name

Return type
str

_get_equilibrium_default_method(method: Callable | str | None = None)→ str | Callable | None
Get the default method for the equilibrium
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Examples

>>> _get_equilibrium_default_method(None)
'broyden1'

Parameters
method (str or None) – The method name

Returns
The method name

Return type
str

_get_minimizer_default_method(method: Callable | str | None = None)→ str | Callable | None
Get the default method for the minimizer

Examples

>>> _get_minimizer_default_method(None)
'broyden1'

Parameters
method (str or None) – The method name

Returns
The method name

Return type
str

3.31.18 Attribute Utilities

The utilities here are used to modify the attributes of the classes. Used by differentiation_utils.

class get_attr(obj: object, name: str)
Get the attribute of an object.

Examples

>>> from deepchem.utils.attribute_utils import get_attr
>>> class MyClass:
... def __init__(self):
... self.a = 1
... self.b = 2
>>> obj = MyClass()
>>> get_attr(obj, "a")
1

Parameters
• obj (object) – The object to get the attribute from.
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• name (str) – The name of the attribute.

Returns
val – The value of the attribute.

Return type
object

class set_attr(obj: object, name: str, val: object)
Set the attribute of an object.

Examples

>>> from deepchem.utils import set_attr
>>> class MyClass:
... def __init__(self):
... self.a = 1
... self.b = 2
>>> obj = MyClass()
>>> set_attr(obj, "a", 3)
>>> set_attr(obj, "c", 4)
>>> obj.a
3
>>> obj.c
4

Parameters
• obj (object) – The object to set the attribute to.

• name (str) – The name of the attribute.

• val (object) – The value to set the attribute to.

class del_attr(obj: Any, name: str)
Delete the attribute of an object.

Examples

>>> from deepchem.utils import del_attr
>>> class MyClass:
... def __init__(self):
... self.a = 1
... self.b = 2
>>> obj = MyClass()
>>> del_attr(obj, "a")
>>> try:
... obj.a
... except AttributeError:
... print("AttributeError")
AttributeError
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3.31.19 Pytorch Utilities

unsorted_segment_sum(data: Tensor, segment_ids: Tensor, num_segments: int)→ Tensor
Computes the sum along segments of a tensor. Analogous to tf.unsorted_segment_sum.

Parameters
• data (torch.Tensor) – A tensor whose segments are to be summed.

• segment_ids (torch.Tensor) – The segment indices tensor.

• num_segments (int) – The number of segments.

Returns
tensor

Return type
torch.Tensor

Examples

>>> segment_ids = torch.Tensor([0, 1, 0]).to(torch.int64)
>>> data = torch.Tensor([[1, 2, 3, 4], [5, 6, 7, 8], [4, 3, 2, 1]])
>>> num_segments = 2
>>> result = unsorted_segment_sum(data=data,
... segment_ids=segment_ids,
... num_segments=num_segments)
>>> data.shape[0]
3
>>> segment_ids.shape[0]
3
>>> len(segment_ids.shape)
1
>>> result
tensor([[5., 5., 5., 5.],

[5., 6., 7., 8.]])

segment_sum(data: Tensor, segment_ids: Tensor)→ Tensor
This function computes the sum of values along segments within a tensor. It is useful when you have a tensor
with segment IDs and you want to compute the sum of values for each segment. This function is analogous to
tf.segment_sum. (https://www.tensorflow.org/api_docs/python/tf/math/segment_sum).

Parameters
• data (torch.Tensor) – A pytorch tensor containing the values to be summed. It can have

any shape, but its rank (number of dimensions) should be at least 1.

• segment_ids (torch.Tensor) – A 1-D tensor containing the indices for the segmenta-
tion. The segments can be any non-negative integer values, but they must be sorted in non-
decreasing order.

Returns
out_tensor – Tensor with the same shape as data, where each value corresponds to the sum of
values within the corresponding segment.

Return type
torch.Tensor
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Examples

>>> data = torch.Tensor([[1, 2, 3, 4], [4, 3, 2, 1], [5, 6, 7, 8]])
>>> segment_ids = torch.Tensor([0, 0, 1]).to(torch.int64)
>>> result = segment_sum(data=data, segment_ids=segment_ids)
>>> data.shape[0]
3
>>> segment_ids.shape[0]
3
>>> len(segment_ids.shape)
1
>>> result
tensor([[5., 5., 5., 5.],

[5., 6., 7., 8.]])

chunkify(a: Tensor, dim: int, maxnumel: int)→ Generator[Tuple[Tensor, int, int], None, None]
Splits the tensor a into several chunks of size maxnumel along the dimension given by dim.

Examples

>>> import torch
>>> from deepchem.utils.pytorch_utils import chunkify
>>> a = torch.arange(10)
>>> for chunk, istart, iend in chunkify(a, 0, 3):
... print(chunk, istart, iend)
tensor([0, 1, 2]) 0 3
tensor([3, 4, 5]) 3 6
tensor([6, 7, 8]) 6 9
tensor([9]) 9 12

Parameters
• a (torch.Tensor) – The big tensor to be splitted into chunks.

• dim (int) – The dimension where the tensor would be splitted.

• maxnumel (int) – Maximum number of elements in a chunk.

Returns
chunks – A generator that yields a tuple of three elements: the chunk tensor, the starting index
of the chunk and the ending index of the chunk.

Return type
Generator[Tuple[torch.Tensor, int, int], None, None]

get_memory(a: Tensor)→ int
Returns the size of the tensor in bytes.
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Examples

>>> import torch
>>> from deepchem.utils.pytorch_utils import get_memory
>>> a = torch.randn(100, 100, dtype=torch.float64)
>>> get_memory(a)
80000

Parameters
a (torch.Tensor) – The tensor to be measured.

Returns
size – The size of the tensor in bytes.

Return type
int

gaussian_integral(n: int, alpha: float | Tensor)→ float | Tensor
Performs the gaussian integration.

Examples

>>> gaussian_integral(5, 1.0)
1.0

Parameters
• n (int) – The order of the integral

• alpha (Union[float, torch.Tensor]) – The parameter of the gaussian

Returns
The value of the integral

Return type
Union[float, torch.Tensor]

TensorNonTensorSeparator(params: Sequence, varonly: bool = True)
Class that provides function to separate/combine tensors and nontensors parameters.

Examples

>>> import torch
>>> from deepchem.utils.pytorch_utils import TensorNonTensorSeparator
>>> a = torch.tensor([1.,2,3])
>>> b = 4.
>>> c = torch.tensor([5.,6,7], requires_grad=True)
>>> params = [a, b, c]
>>> separator = TensorNonTensorSeparator(params)
>>> tensor_params = separator.get_tensor_params()
>>> tensor_params
[tensor([5., 6., 7.], requires_grad=True)]
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tallqr(V , MV=None)
QR decomposition for tall and skinny matrix.

Examples

>>> import torch
>>> from deepchem.utils.pytorch_utils import tallqr
>>> V = torch.randn(3, 2)
>>> Q, R = tallqr(V)
>>> Q.shape
torch.Size([3, 2])
>>> R.shape
torch.Size([2, 2])
>>> torch.allclose(Q @ R, V)
True

Parameters
• V (torch.Tensor) – V is a matrix to be decomposed. (*BV, na, nguess)

• MV (torch.Tensor) – (*BM, na, nguess) where M is the basis to make Q M-orthogonal if
MV is None, then MV=V (default=None)

Returns
• Q (torch.Tensor) – The Orthogonal Part. Shape: (*BV, na, nguess)

• R (torch.Tensor) – The (*BM, nguess, nguess) where M is the basis to make Q M-orthogonal

to_fortran_order(V)
Convert a tensor to Fortran order. (The last two dimensions are made Fortran order.) Fortran order/ array is a
special case in which all elements of an array are stored in column-major order.

Examples

>>> import torch
>>> from deepchem.utils.pytorch_utils import to_fortran_order
>>> V = torch.randn(3, 2)
>>> V.is_contiguous()
True
>>> V = to_fortran_order(V)
>>> V.is_contiguous()
False
>>> V.shape
torch.Size([3, 2])
>>> V = torch.randn(3, 2).transpose(-2, -1)
>>> V.is_contiguous()
False
>>> V = to_fortran_order(V)
>>> V.is_contiguous()
False
>>> V.shape
torch.Size([2, 3])
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Parameters
V (torch.Tensor) – V is a matrix to be converted. (*BV, na, nguess)

Returns
outV – (*BV, nguess, na)

Return type
torch.Tensor

get_np_dtype(dtype: dtype)→ Any
corresponding numpy dtype from the input pytorch’s tensor dtype

Examples

>>> import torch
>>> from deepchem.utils.pytorch_utils import get_np_dtype
>>> get_np_dtype(torch.float32)
<class 'numpy.float32'>
>>> get_np_dtype(torch.float64)
<class 'numpy.float64'>

Parameters
dtype (torch.dtype) – pytorch’s tensor dtype

Returns
corresponding numpy dtype

Return type
np.dtype

3.31.20 Batch Utilities

The utilites here are used for computing features on batch of data. Can be used inside of default_generator function.

batch_coulomb_matrix_features(X_b: ndarray, distance_max: float = -1, distance_min: float = 18,
n_distance: int = 100)

Computes the values for different Feature on given batch. It works as a helper function to coulomb matrix.

This function takes in a batch of Molecules represented as Coulomb Matrix.

It proceeds as follows:

• It calculates the Number of atoms per molecule by counting all the non zero elements(numbers) of every
molecule layer in matrix in one dimension.

• The Gaussian distance is calculated using the Euclidean distance between the Cartesian coordinates of two
atoms. The distance value is then passed through a Gaussian function, which transforms it into a continuous
value.

• Then using number of atom per molecule, calculates the atomic charge by looping over the molecule layer
in the Coulomb matrix and takes the 2.4 root of the diagonal of 2X of each molecule layer. Undoing the
Equation of coulomb matrix.

• Atom_membership is assigned as a commomn repeating integers for all the atoms for a specific molecule.

• Distance Membership encodes spatial information, assigning closer values to atoms that are in that specific
molecule. All initial Distances are added a start value to them which are unique to each molecule.
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Models Used in:

• DTNN

Parameters
• X_b (np.ndarray) – It is a 3d Matrix containing information of each the atom’s ionic inter-

action with other atoms in the molecule.

• distance_min (float (default -1)) – minimum distance of atom pairs (in Angstrom)

• distance_max (float (default = 18)) – maximum distance of atom pairs (in
Angstrom)

• n_distance (int (default 100)) – granularity of distance matrix step size will be
(distance_max-distance_min)/n_distance

Returns
• atom_number (np.ndarray) – Atom numbers are assigned to each atom based on their

atomic properties. The atomic numbers are derived from the periodic table of elements.
For example, hydrogen -> 1, carbon -> 6, and oxygen -> 8.

• gaussian_dist (np.ndarray) – Gaussian distance refers to the method of representing the
pairwise distances between atoms in a molecule using Gaussian functions. The Gaussian
distance is calculated using the Euclidean distance between the Cartesian coordinates of two
atoms. The distance value is then passed through a Gaussian function, which transforms it
into a continuous value.

• atom_mem (np.ndarray) – Atom membership refers to the binary representation of whether
an atom belongs to a specific group or property within a molecule. It allows the model to
incorporate domain-specific information and enhance its understanding of the molecule’s
properties and interactions.

• dist_mem_i (np.ndarray) – Distance membership i are utilized to encode spatial informa-
tion and capture the influence of atom distances on the properties and interactions within a
molecule. The inner membership function assigns higher values to atoms that are closer to
the atoms’ interaction region, thereby emphasizing the impact of nearby atoms.

• dist_mem_j (np.ndarray) – It captures the long-range effects and influences between atoms
that are not in direct proximity but still contribute to the overall molecular properties. Dis-
tance membership j are utilized to encode spatial information and capture the influence of
atom distances on the properties and interactions outside a molecule. The outer member-
ship function assigns higher values to atoms that are farther to the atoms’ interaction region,
thereby emphasizing the impact of farther atoms.

Examples

>>> import os
>>> import deepchem as dc
>>> current_dir = os.path.dirname(os.path.abspath(__file__))
>>> dataset_file = os.path.join(current_dir, 'test/assets/qm9_mini.sdf')
>>> TASKS = ["alpha", "homo"]
>>> loader = dc.data.SDFLoader(tasks=TASKS,
... featurizer=dc.feat.CoulombMatrix(29),
... sanitize=True)
>>> data = loader.create_dataset(dataset_file, shard_size=100)
>>> inputs = dc.utils.batch_utils.batch_coulomb_matrix_features(data.X)

3.31. Utilities 765



deepchem, Release 2.8.0

References

batch_elements(elements: List[Any], batch_size: int)
Combine elements into batches.

Parameters
• elements (List[Any]) – List of Elements to be combined into batches.

• batch_size (int) – Batch size in which to divide.

Returns
batch – List of Lists of elements divided into batches.

Return type
List[Any]

Examples

>>> import deepchem as dc
>>> # Prepare Data
>>> inputs = [[i, i**2, i**3] for i in range(10)]
>>> # Run
>>> output = list(dc.utils.batch_utils.batch_elements(inputs, 3))
>>> len(output)
4

create_input_array(sequences: Collection, max_input_length: int, reverse_input: bool, batch_size: int,
input_dict: Dict, end_mark: Any)

Create the array describing the input sequences.

It creates a 2d Matrix empty matrix according to batch size and max_length. Then iteratively fills it with the
key-values from the input dictionary.

Many NLP Models like SeqToSeq has sentences as there inputs. We need to convert these sentences into numbers
so that the model can do computation on them.

This function takes in the sentence then using the input_dict dictionary picks up the words/letters equivalent
numerical represntation. Then makes an numpy array of it.

If the reverse_input is True, then the order of the input sequences is reversed before sending them into the encoder.
This can improve performance when working with long sequences.

These values can be used to generate embeddings for further processing.

Models used in:

• SeqToSeq

Parameters
• sequences (Collection) – List of sequences to be converted into input array.

• reverse_input (bool) – If True, reverse the order of input sequences before sending them
into the encoder. This can improve performance when working with long sequences.

• batch_size (int) – Batch size of the input array.

• input_dict (dict) – Dictionary containing the key-value pairs of input sequences.

• end_mark (Any) – End mark for the input sequences.
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Returns
features – Numeric Representation of the given sequence according to input_dict.

Return type
np.Array

Examples

>>> import deepchem as dc
>>> # Prepare Data
>>> inputs = [["a", "b"], ["b", "b", "b"]]
>>> input_dict = {"c": 0, "a": 1, "b": 2}
>>> # Inputs property
>>> max_length = max([len(x) for x in inputs])
>>> # Without reverse input
>>> output_1 = dc.utils.batch_utils.create_input_array(inputs, max_length,
... False, 2, input_dict,
... "c")
>>> output_1.shape
(2, 4)
>>> # With revercse input
>>> output_2 = dc.utils.batch_utils.create_input_array(inputs, max_length,
... True, 2, input_dict,
... "c")
>>> output_2.shape
(2, 4)

create_output_array(sequences: Collection, max_output_length: int, batch_size: int, output_dict: Dict,
end_mark: Any)

Create the array describing the target sequences.

It creates a 2d Matrix empty matrix according to batch size and max_length. Then iteratively fills it with the
key-values from the output dictionary.

This function is similar to create_input_array function. The only difference is that it is used for output sequences
and does not have the reverse_input parameter as it is not required for output sequences.

It is used in NLP Models like SeqToSeq where the output is also a sentence and we need to convert it into numbers
so that the model can do computation on them. This function takes in the sentence then using the output_dict
dictionary picks up the words/letters equivalent numerical represntation. Then makes an numpy array of it.

These values can be used to generate embeddings for further processing.

Models used in:

• SeqToSeq

Parameters
• sequences (Collection) – List of sequences to be converted into output array.

• max_output_length (bool) – Maximum length of output sequence that may be generated

• batch_size (int) – Batch size of the output array.

• output_dict (dict) – Dictionary containing the key-value pairs of output sequences.

• end_mark (Any) – End mark for the output sequences.
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Returns
features – Numeric Representation of the given sequence according to output_dict.

Return type
np.Array

Examples

>>> import deepchem as dc
>>> # Prepare Data
>>> inputs = [["a", "b"], ["b", "b", "b"]]
>>> output_dict = {"c": 0, "a": 1, "b": 2}
>>> # Inputs property
>>> max_length = max([len(x) for x in inputs])
>>> output = dc.utils.batch_utils.create_output_array(inputs, max_length, 2,
... output_dict, "c")
>>> output.shape
(2, 3)

3.31.21 Periodic Table Utilities

The Utilities here are used to computing atomic mass and radii data. These can be used by DFT and many other
Molecular Models.

get_atomz(element: str | int | float | Tensor)→ int | float | Tensor
Returns the atomic number for the given element

Examples

>>> from deepchem.utils import get_atomz
>>> element_symbol = "Al" # Aluminium
>>> get_atomz(element_symbol)
13
>>> get_atomz(17)
17

Parameters
element (Union[str, ZType]) – String symbol of Element or Atomic Number. Ex: H, He,
C

Returns
atom_n – Atomic Number of the given Element.

Return type
ZType
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Kasim, Muhammad F., and Sam M. Vinko. “Learning the exchange-correlation functional from nature with fully
differentiable density functional theory.” Physical Review Letters 127.12 (2021): 126403. https://github.com/
diffqc/dqc/blob/master/dqc/utils/periodictable.py

3.31.22 Equivariance Utilities

The utilities here refer to equivariance tools that play a vital role in mathematics and applied sciences. They excel
in preserving the relationships between objects or data points when undergoing transformations such as rotations or
scaling.

You can refer to the tutorials for additional information regarding equivariance and Deepchem’s support for equivari-
ance.

su2_generators(k: int)→ Tensor
Generate the generators of the special unitary group SU(2) in a given representation.

The function computes the generators of the SU(2) group for a specific representation determined by the value
of ‘k’. These generators are commonly used in the study of quantum mechanics, angular momentum, and related
areas of physics and mathematics. The generators are represented as matrices.

The SU(2) group is a fundamental concept in quantum mechanics and symmetry theory. The generators of the
group, denoted as J_x, J_y, and J_z, represent the three components of angular momentum operators. These
generators play a key role in describing the transformation properties of physical systems under rotations.

The returned tensor contains three matrices corresponding to the x, y, and z generators, usually denoted as J_x,
J_y, and J_z. These matrices form a basis for the Lie algebra of the SU(2) group.

In linear algebra, specifically within the context of quantum mechanics, lowering and raising operators are funda-
mental concepts that play a crucial role in altering the eigenvalues of certain operators while acting on quantum
states. These operators are often referred to collectively as “ladder operators.”

A lowering operator is an operator that, when applied to a quantum state, reduces the eigenvalue associated with
a particular observable. In the context of SU(2), the lowering operator corresponds to J_-.

Conversely, a raising operator is an operator that increases the eigenvalue of an observable when applied to a
quantum state. In the context of SU(2), the raising operator corresponds to J_+.

The z-generator matrix represents the component of angular momentum along the z-axis, often denoted as J_z.
It commutes with both J_x and J_y and is responsible for quantizing the angular momentum.

Note that the dimensions of the returned tensor will be (3, 2j+1, 2j+1), where each matrix has a size of (2j+1) x
(2j+1). :param k: The representation index, which determines the order of the representation. :type k: int

Returns
A stack of three SU(2) generators, corresponding to J_x, J_z, and J_y.

Return type
torch.Tensor
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Notes

A generating set of a group is a subset $S$ of the group $G$ such that every element of $G$ can be expressed
as a combination (under the group operation) of finitely many elements of the subset $S$ and their inverses.

The special unitary group $SU_n(q)$ is the set of $n*n$ unitary matrices with determinant +1. $SU(2)$ is
homeomorphic with the orthogonal group $O_3^+(2)$. It is also called the unitary unimodular group and is a
Lie group.

References

Examples

>>> su2_generators(1)
tensor([[[ 0.0000+0.0000j, 0.7071+0.0000j, 0.0000+0.0000j],

[-0.7071+0.0000j, 0.0000+0.0000j, 0.7071+0.0000j],
[ 0.0000+0.0000j, -0.7071+0.0000j, 0.0000+0.0000j]],

[[-0.0000-1.0000j, 0.0000+0.0000j, 0.0000+0.0000j],
[ 0.0000+0.0000j, 0.0000+0.0000j, 0.0000+0.0000j],
[ 0.0000+0.0000j, 0.0000+0.0000j, 0.0000+1.0000j]],

[[ 0.0000-0.0000j, 0.0000+0.7071j, 0.0000-0.0000j],
[ 0.0000+0.7071j, 0.0000-0.0000j, 0.0000+0.7071j],
[ 0.0000-0.0000j, 0.0000+0.7071j, 0.0000-0.0000j]]])

so3_generators(k: int)→ Tensor
Construct the generators of the SO(3) Lie algebra for a given quantum angular momentum.

The function generates the generators of the special orthogonal group SO(3), which represents the group of
rotations in three-dimensional space. Its Lie algebra, which consists of the generators of infinitesimal rotations,
is often used in physics to describe angular momentum operators. The generators of the Lie algebra can be related
to the SU(2) group, and this function uses a transformation to convert the SU(2) generators to the SO(3) basis.

The primary significance of the SO(3) group lies in its representation of three-dimensional rotations. Each matrix
in SO(3) corresponds to a unique rotation, capturing the intricate ways in which objects can be oriented in 3D
space. This concept finds application in numerous fields, ranging from physics to engineering.

Parameters
k (int) – The representation index, which determines the order of the representation.

Returns
A stack of three SO(3) generators, corresponding to J_x, J_z, and J_y.

Return type
torch.Tensor
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Notes

The special orthogonal group $SO_n(q)$ is the subgroup of the elements of general orthogonal group $GO_n(q)$
with determinant 1. $SO_3$ (often written $SO(3)$) is the rotation group for three-dimensional space.

These matrices are orthogonal, which means their rows and columns form mutually perpendicular unit vectors.
This preservation of angles and lengths makes orthogonal matrices fundamental in various mathematical and
practical applications.

The “special” part of $SO(3)$ refers to the determinant of these matrices being $+1$. The determinant is a scalar
value that indicates how much a matrix scales volumes. A determinant of $+1$ ensures that the matrix represents
a rotation in three-dimensional space without involving any reflection or scaling operations that would reverse
the orientation of space.

References

Examples

>>> so3_generators(1)
tensor([[[ 0.0000, 0.0000, 0.0000],

[ 0.0000, 0.0000, -1.0000],
[ 0.0000, 1.0000, 0.0000]],

[[ 0.0000, 0.0000, 1.0000],
[ 0.0000, 0.0000, 0.0000],
[-1.0000, 0.0000, 0.0000]],

[[ 0.0000, -1.0000, 0.0000],
[ 1.0000, 0.0000, 0.0000],
[ 0.0000, 0.0000, 0.0000]]])

change_basis_real_to_complex(k: int, dtype: dtype | None = None, device: device | None = None)→ Tensor
Construct a transformation matrix to change the basis from real to complex spherical harmonics.

This function constructs a transformation matrix Q that converts real spherical harmonics into complex spherical
harmonics. It operates on the basis functions $Y_{ell m}$ and $Y_{ell}^{m}$, and accounts for the relationship
between the real and complex forms of these harmonics as defined in the provided mathematical expressions.

The resulting transformation matrix Q is used to change the basis of vectors or tensors of real spherical harmonics
to their complex counterparts.

Parameters
• k (int) – The representation index, which determines the order of the representation.

• dtype (torch.dtype, optional) – The data type for the output tensor. If not provided,
the function will infer it. Default is None.

• device (torch.device, optional) – The device where the output tensor will be placed.
If not provided, the function will use the default device. Default is None.

Returns
A transformation matrix Q that changes the basis from real to complex spherical harmonics.

Return type
torch.Tensor
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Notes

Spherical harmonics Y_l^m are a family of functions that are defined on the surface of a unit sphere. They are
used to represent various physical and mathematical phenomena that exhibit spherical symmetry. The indices l
and m represent the degree and order of the spherical harmonics, respectively.

The conversion from real to complex spherical harmonics is achieved by applying specific transformation coef-
ficients to the real-valued harmonics. These coefficients are derived from the properties of spherical harmonics.

References

Examples

# The transformation matrix generated is used to change the basis of a vector of # real spherical harmonics
with representation index 1 to complex spherical harmonics. >>> change_basis_real_to_complex(1) tensor([[-
0.7071+0.0000j, 0.0000+0.0000j, 0.0000-0.7071j],

[ 0.0000+0.0000j, 0.0000-1.0000j, 0.0000+0.0000j], [-0.7071+0.0000j, 0.0000+0.0000j,
0.0000+0.7071j]])

wigner_D(k: int, alpha: Tensor, beta: Tensor, gamma: Tensor)→ Tensor
Wigner D matrix representation of the SO(3) rotation group.

The function computes the Wigner D matrix representation of the SO(3) rotation group for a given representation
index ‘k’ and rotation angles ‘alpha’, ‘beta’, and ‘gamma’. The resulting matrix satisfies properties of the SO(3)
group representation.

Parameters
• k (int) – The representation index, which determines the order of the representation.

• alpha (torch.Tensor) – Rotation angles (in radians) around the Y axis, applied third.

• beta (torch.Tensor) – Rotation angles (in radians) around the X axis, applied second.

• gamma (torch.Tensor)) – Rotation angles (in radians) around the Y axis, applied first.

Returns
The Wigner D matrix of shape (#angles, 2k+1, 2k+1).

Return type
torch.Tensor

Notes

The Wigner D-matrix is a unitary matrix in an irreducible representation of the groups SU(2) and SO(3).

The Wigner D-matrix is used in quantum mechanics to describe the action of rotations on states of particles with
angular momentum. It is a key concept in the representation theory of the rotation group SO(3), and it plays a
crucial role in various physical contexts.
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Examples

>>> k = 1
>>> alpha = torch.tensor([0.1, 0.2])
>>> beta = torch.tensor([0.3, 0.4])
>>> gamma = torch.tensor([0.5, 0.6])
>>> wigner_D_matrix = wigner_D(k, alpha, beta, gamma)
>>> wigner_D_matrix
tensor([[[ 0.8275, 0.1417, 0.5433],

[ 0.0295, 0.9553, -0.2940],
[-0.5607, 0.2593, 0.7863]],

[[ 0.7056, 0.2199, 0.6737],
[ 0.0774, 0.9211, -0.3816],
[-0.7044, 0.3214, 0.6329]]])

3.31.23 Miscellaneous Utilities

The utilities here are used for miscellaneous purposes. Initial usecases are for improving the printing format of
__repr__.

indent(s, nspace)
Gives indentation of the second line and next lines. It is used to format the string representation of an object.
Which might be containing multiples objects in it. Usage: LinearOperator

Parameters
• s (str) – The string to be indented.

• nspace (int) – The number of spaces to be indented.

Returns
The indented string.

Return type
str

shape2str(shape)
Convert the shape to string representation. It also nicely formats the shape to be readable.

Parameters
shape (Sequence[int]) – The shape to be converted to string representation.

Returns
The string representation of the shape.

Return type
str

class UnimplementedError

Raised if a method is not implemented.

class GetSetParamsError

Raised if there is an error in getting or setting parameters.

class ConvergenceWarning

Warning to be raised if the convergence of an algorithm is not achieved.
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class MathWarning

Raised if there are mathematical conditions that are not satisfied.

class Uniquifier(allobjs: List)
Identifies and tracks unique objects within a list, even if they are duplicates based on internal memory addresses
(using id()). It Optimizes operations involving unique objects by avoiding redundant processing.

Examples

>>> from deepchem.utils import Uniquifier
>>> a = 1
>>> b = 2
>>> c = 3
>>> d = 1
>>> u = Uniquifier([a, b, c, a, d])
>>> u.get_unique_objs()
[1, 2, 3]

__init__(allobjs: List)
Initialize the uniquifier.

Parameters
allobjs (List) – The list of objects to be uniquified.

get_unique_objs(allobjs: List | None = None)→ List
Get the unique objects.

Parameters
allobjs (Optional[List]) – The list of objects to be uniquified.

Returns
The list of unique objects.

Return type
List

map_unique_objs(uniqueobjs: List)→ List
Map the unique objects to the original objects.

Parameters
uniqueobjs (List) – The list of unique objects.

3.31.24 SafeOperations Utilities

The utilities here are used for safe operations on tensors. These are used to avoid NaNs and Infs in the output.

safepow(a: Tensor, p: Tensor, eps: float = 1e-12)→ Tensor
Safely calculate the power of a tensor with a small eps to avoid nan.
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Examples

>>> import torch
>>> a = torch.tensor([1e-35, 2e-40])
>>> p = torch.tensor([2., 3])
>>> safepow(a, p)
tensor([1.0000e-24, 1.0000e-36])
>>> a**p
tensor([0., 0.])

Parameters
• a (torch.Tensor) – Base tensor on which to calculate the power. Must be positive.

• p (torch.Tensor) – Power tensor, by which to calculate the power.

• eps (float (default 1e-12)) – The eps to add to the base tensor.

Returns
The result tensor.

Return type
torch.Tensor

Raises
RuntimeError – If the base tensor contains negative values.

safenorm(a: Tensor, dim: int, eps: float = 1e-15)→ Tensor
Calculate the 2-norm safely. The square root of the inner product of a vector with itself.

Examples

>>> import torch
>>> a = torch.tensor([1e-35, 2e-40])
>>> safenorm(a, 0)
tensor(1.4142e-15)
>>> a.norm()
tensor(0.)

Parameters
• a (torch.Tensor) – The tensor to calculate the norm.

• dim (int) – The dimension to calculate the norm.

• eps (float (default 1e-15)) – The eps to add to the base tensor.

Returns
The result tensor.

Return type
torch.Tensor

occnumber(a: int | float | Tensor, n: int | None = None, dtype: dtype = torch.float64, device: device =
device(type='cpu'))→ Tensor

Occupation number (maxed at 1) where the total sum of the output equals to a with length of the output is n.

3.31. Utilities 775



deepchem, Release 2.8.0

Examples

>>> import torch
>>> occnumber(torch.tensor(2.5), 3, torch.double, torch.device('cpu'))
tensor([1.0000, 1.0000, 0.5000], dtype=torch.float64)
>>> occnumber(2.5)
tensor([1.0000, 1.0000, 0.5000], dtype=torch.float64)

Parameters
• a (ZType) – Total sum of the output

• n (Optional[int] (default None)) – Length of the output

• dtype (torch.dtype (default torch.double)) – Data type of the output

• device (torch.device (default torch.device('cpu'))) – Device of the output

Returns
The constructed occupation number

Return type
torch.Tensor

get_floor_and_ceil(aa: int | float)→ Tuple[int, int]
get the ceiling and flooring of aa.

Examples

>>> get_floor_and_ceil(2.5)
(2, 3)

Parameters
aa (Union[int, float]) – The input number

Returns
The flooring and ceiling of aa

Return type
Tuple[int, int]

safe_cdist(a: Tensor, b: Tensor, add_diag_eps: bool = False, diag_inf: bool = False)
L2 pairwise distance of a and b. The diagonal is either replaced with a small eps or infinite.

Examples

>>> import torch
>>> a = torch.tensor([[1., 2], [3, 4]])
>>> b = torch.tensor([[1., 2], [3, 4]])
>>> safe_cdist(a, b)
tensor([[0.0000, 2.8284],

[2.8284, 0.0000]])
>>> safe_cdist(a, b, add_diag_eps=True)

(continues on next page)
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(continued from previous page)

tensor([[1.4142e-12, 2.8284e+00],
[2.8284e+00, 1.4142e-12]])

>>> safe_cdist(a, b, diag_inf=True)
tensor([[ inf, 2.8284],

[2.8284, inf]])

Parameters
• a (torch.Tensor) – First Tensor. Shape: (*BA, na, ndim)

• n (torch.Tensor) – Second Tensor. Shape: (*BB, nb, ndim)

Returns
Pairwise distance. Shape: (*BAB, na, nb)

Return type
torch.Tensor

3.32 Licensing and Commercial Uses

DeepChem is licensed under the MIT License. We actively support commercial users. Note that any novel molecules,
materials, or other discoveries powered by DeepChem belong entirely to the user and not to DeepChem developers.

That said, we would very much appreciate a citation if you find our tools useful. You can cite DeepChem with the
following reference.

@book{Ramsundar-et-al-2019,
title={Deep Learning for the Life Sciences},
author={Bharath Ramsundar and Peter Eastman and Patrick Walters and Vijay Pande and␣

→˓Karl Leswing and Zhenqin Wu},
publisher={O'Reilly Media},
note={\url{https://www.amazon.com/Deep-Learning-Life-Sciences-Microscopy/dp/

→˓1492039837}},
year={2019}

}

3.33 Contibuting to DeepChem as a Scientist

The scientific community in many ways is quite traditional. Students typically learn in apprenticeship from advisors
who teach a small number of students directly. This system has endured for centuries and allows for expert scientists
to teach their ways of thinking to new students.

For more context, most scientific research today is done in “labs” run in this mostly traditional fashion. A principal in-
vestigator (PI) will run the lab and work with undergraduate, graduate, and postdoctoral students who produce research
papers. Labs are funded by “grants,” typically from governments and philanthropic agencies. Papers and citations
are the critical currencies of this system, and a strong publication record is necessary for any scientist to establish
themselves.

This traditional model can find it difficult to fund the development of high quality software for a few reasons. First, stu-
dents are in a lab for limited periods of time (3-5 years often). This means there’s high turnover, and critical knowledge
can be lost when a student moves on. Second, grants for software are still new and not broadly available. A lab might
very reasonably choose to focus on scientific discovery rather than on necessary software engineering. (Although, it’s
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worth noting there are many exceptions that prove the rule! DeepChem was born in an academic lab like many other
quality projects.)

We believe that contributing to and using DeepChem can be highly valuable for scientific careers. DeepChem can
help maintain new scientific algorithms for the long term, making sure that your discoveries continue to be used after
students graduate. We’ve seen too many brilliant projects flounder after students move on, and we’d like to help you
make sure that your algorithms have the most impact.

3.33.1 Scientist FAQ

Contents

• Wouldn’t it be better for my career to make my own package rather than use DeepChem?

• Is there a DeepChem PI?

• Do I need to add DeepChem team members as co-authors to my paper?

• I want to establish my scientific niche. How can I do that as a DeepChem contributor? Won’t my contribution
be lost in the noise?

• I’m an aspiring scientist, not part of a lab. Can I join DeepChem?

• Is there DeepChem Grant Money?

• I’m an industry researcher. Can I participate too?

• What about intellectual property?

• If I use DeepChem on my organization’s data, do I have to release the data?

• What if I want to release data? Can DeepChem help?

• Is MoleculeNet just about molecules?

• Does MoleculeNet allow for releasing data under different licenses?

Wouldn’t it be better for my career to make my own package rather than use DeepChem?

The answer to this really depends on what you’re looking for out of your career! Making and maintaining good software
is hard. It requires careful testing and continued maintenance. Your code will bitrot over time without attention. If
your focus is on new inventions and you find software engineering less compelling, working with DeepChem may
enable you to go further in your career by letting you focus on new algorithms and leveraging the DeepChem Project’s
infrastructure to maintain your inventions.

In addition, you may find considerable inspiration from participating in the DeepChem community. Looking at how
other scientists solve problems, and connecting with new collaborators across the world can help you look at problems
in a new way. Longtime DeepChem contributors find that they often end up writing papers together!

All that said, there may be very solid reasons for you to build your own project! Especially if you want to explore
designs that we haven’t or can’t easily. In that case, we’d still love to collaborate with you. DeepChem depends on a
broad constellation of scientific packages and we’d love to make your package’s features accessible to our users.
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Is there a DeepChem PI?

While DeepChem was born in the Pande lab at Stanford, the project now lives as a “decentralized research organization.”
It would be more accurate to say that there are informally multiple “DeepChem PIs,” who use it in their work. You too
can be a DeepChem PI!

Do I need to add DeepChem team members as co-authors to my paper?

Our suggestion is to use good judgment and usual scientific etiquette. If a particular DeepChem team member has
contributed a lot to your effort, adding them might make sense. If no one person has contributed sufficiently, an
acknowledgment or citation would be great!

I want to establish my scientific niche. How can I do that as a DeepChem contributor? Won’t my
contribution be lost in the noise?

It’s critically important for a new scientist to establish themselves and their contributions in order to launch a scientific
career. We believe that DeepChem can help you do this! If you add a significant set of new features to DeepChem, it
might be appropriate for you to write a paper (as lead or corresponding author or however makes sense) that introduces
the new feature and your contribution.

As a decentralized research organization, we want to help you launch your careers. We’re very open to other collabo-
ration structures that work for your career needs.

I’m an aspiring scientist, not part of a lab. Can I join DeepChem?

Yes! DeepChem’s core mission is to democratize the use of deep learning for the sciences. This means no barriers, no
walls. Anyone is welcome to join and contribute. Join our developer calls, chat one-on-one with our scientists, many
of whom are glad to work with new students. You may form connections that help you join a more traditional lab, or
you may choose to form your own path. We’re glad to support either.

Is there DeepChem Grant Money?

Not yet, but we’re actively looking into getting grants to support DeepChem researchers. If you’re a PI who wants to
collaborate with us, please get in touch!

I’m an industry researcher. Can I participate too?

Yes! The most powerful features of DeepChem is its community. Becoming part of the DeepChem project can let you
build a network that lasts across jobs and roles. Lifelong employment at a corporation is less and less common. Joining
our community will let you build bonds that cross jobs and could help you do your job today better too!
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What about intellectual property?

One of the core goals for DeepChem is to build a shared set of scientific resources and techniques that aren’t locked up
by patents. Our hope is to enable your company or organization to leverage techniques with less worry about patent
infringement.

We ask in return that you act as a responsible community member and put in as much as you get out. If you find
DeepChem very valuable, please consider contributing back some innovations or improvements so others can benefit.
If you’re getting a patent on your invention, try to make sure that you don’t infringe on anything in DeepChem. Lots of
things sneak past patent review. As an open source community, we don’t have the resources to actively defend ourselves
and we rely on your good judgment and help!

If I use DeepChem on my organization’s data, do I have to release the data?

Not at all! DeepChem is released with a permissive MIT license. Any analyses you perform belong entirely to you.
You are under no obligation to release your proprietary data or inventions.

What if I want to release data? Can DeepChem help?

If you are interested in open sourcing data, the DeepChem project maintains the [MoleculeNet](https://deepchem.
readthedocs.io/en/latest/moleculenet.html) suite of datasets. Adding your dataset to MoleculeNet can be a powerful
way to ensure that a broad community of users can access your released data in convenient fashion. It’s important
to note that MoleculeNet provides programmatic access to data, which may not be appropriate for all types of data
(especially for clinical or patient data which may be governed by regulations/laws). Open source datasets can be a
powerful resource, but need to be handled with care.

Is MoleculeNet just about molecules?

Not anymore! Any scientific datasets are welcome in MoleculeNet. At some point in the future, we may rename the
effort to avoid confusion, but for now, we emphasize that non-molecular datasets are welcome too.

Does MoleculeNet allow for releasing data under different licenses?

MoleculeNet already supports datasets released under different licenses. We can make work with you to use your
license of choice.

3.34 Coding Conventions

3.34.1 Pre-Commit

We use pre-commit to ensure that we’re always keeping up with the best practices when it comes to linting, standard
code conventions and type annotations. Although it may seem time consuming at first as to why is one supposed to
run all these tests and checks but it helps in identifying simple issues before submission to code review. We’ve already
specified a configuration file with a list of hooks that will get executed before every commit.

First you’ll need to setup the git hook scripts by installing them.

pre-commit install

Now whenever you commit, pre-commit will run the necessary hooks on the modified files.
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3.34.2 Code Formatting

We use YAPF to format all of the code in DeepChem. Although it sometimes produces slightly awkward formatting,
it does have two major benefits. First, it ensures complete consistency throughout the entire codebase. And second, it
avoids disagreements about how a piece of code should be formatted.

Whenever you modify a file, run yapf on it to reformat it before checking it in.

yapf -i <modified file>

YAPF is run on every pull request to make sure the formatting is correct, so if you forget to do this the continuous
integration system will remind you. Because different versions of YAPF can produce different results, it is essential to
use the same version that is being run on CI. At present, that is 0.32. We periodically update it to newer versions.

3.34.3 Linting

We use Flake8 to check our code syntax. Lint tools basically provide these benefits.

• Prevent things like syntax errors or typos

• Save our review time (no need to check unused codes or typos)

Whenever you modify a file, run flake8 on it.

flake8 <modified file> --count

If the command returns 0, it means your code passes the Flake8 check.

3.34.4 Docstrings

All classes and functions should include docstrings describing their purpose and intended usage. When in doubt about
how much information to include, always err on the side of including more rather than less. Explain what problem
a class is intended to solve, what algorithms it uses, and how to use it correctly. When appropriate, cite the relevant
publications.

All docstrings should follow the numpy docstring formatting conventions. To ensure that the code examples in the
docstrings are working as expected, run

python -m doctest <modified file>

3.34.5 Unit Tests

Having an extensive collection of test cases is essential to ensure the code works correctly. If you haven’t written tests
for a feature, that means the feature isn’t finished yet. Untested code is code that probably doesn’t work.

Complex numerical code is sometimes challenging to fully test. When an algorithm produces a result, it sometimes is
not obvious how to tell whether the result is correct or not. As far as possible, try to find simple examples for which the
correct answer is exactly known. Sometimes we rely on stochastic tests which will probably pass if the code is correct
and probably fail if the code is broken. This means these tests are expected to fail a small fraction of the time. Such
tests can be marked with the @flaky annotation. If they fail during continuous integration, they will be run a second
time and an error only reported if they fail again.

If possible, each test should run in no more than a few seconds. Occasionally this is not possible. In that case, mark
the test with the @pytest.mark.slow annotation. Slow tests are skipped during continuous integration, so changes
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that break them may sometimes slip through and get merged into the repository. We still try to run them regularly, so
hopefully the problem will be discovered fairly soon.

The full suite of slow tests can be run from the root directory of the source code as

pytest -v -m 'slow' deepchem

To test your code locally, you will have to setup a symbolic link to your current development directory. To do this,
simply run

python setup.py develop

while installing the package from source. This will let you see changes that you make to the source code when you
import the package and, in particular, it allows you to import the new classes/methods for unit tests.

Ensure that the tests pass locally! Check this by running

python -m pytest <modified file>

3.34.6 Testing Machine Learning Models

Testing the correctness of a machine learning model can be quite tricky to do in practice. When adding a new machine
learning model to DeepChem, you should add at least a few basic types of unit tests:

• Overfitting test: Create a small synthetic dataset and test that your model can learn this datasest with high ac-
curacy. For regression and classification task, this should correspond to low training error on the dataset. For
generative tasks, this should correspond to low training loss on the dataset.

• Reloading test: Check that a trained model can be saved to disk and reloaded correctly. This should involve
checking that predictions from the saved and reloaded models matching exactly.

Note that unit tests are not sufficient to gauge the real performance of a model. You should benchmark your model on
larger datasets as well and report your benchmarking tests in the PR comments.

For testing tensorflow models and pytorch models, we recommend testing in different conda environments. Tensorflow
2.6 supports numpy 1.19 while pytorch supports numpy 1.21. This version mismatch on numpy dependency sometimes
causes trouble in installing tensorflow and pytorch backends in the same environment.

For testing tensorflow models of deepchem, we create a tensorflow test environment and then run the test as follows:

conda create -n tf-test python=3.8
conda activate tf-test
pip install conda-merge
conda-merge requirements/tensorflow/env_tensorflow.yml requirements/env_test.yml > env.
→˓yml
conda env update --file env.yml --prune
pytest -v -m 'tensorflow' deepchem

For testing pytorch models of deepchem, first create a pytorch test environment and then run the tests as follows:

conda create -n pytorch-test python=3.8
conda activate pytorch-test
pip install conda-merge
conda-merge requirements/torch/env_torch.yml requirements/torch/env_torch.cpu.yml␣
→˓requirements/env_test.yml > env.yml
conda env update --file env.yml --prune
pytest -v -m 'torch' deepchem
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3.34.7 Type Annotations

Type annotations are an important tool for avoiding bugs. All new code should provide type annotations for function
arguments and return types. When you make significant changes to existing code that does not have type annotations,
please consider adding them at the same time.

We use the mypy static type checker to verify code correctness. It is automatically run on every pull request. If you want
to run it locally to make sure you are using types correctly before checking in your code, cd to the top level directory
of the repository and execute the command

mypy -p deepchem --ignore-missing-imports

Because Python is such a dynamic language, it sometimes is not obvious what type to specify. A good rule of thumb
is to be permissive about input types and strict about output types. For example, many functions are documented as
taking a list as an argument, but actually work just as well with a tuple. In those cases, it is best to specify the input type
as Sequence to accept either one. But if a function returns a list, specify the type as List because we can guarantee
the return value will always have that exact type.

Another important case is NumPy arrays. Many functions are documented as taking an array, but actually can accept
any array-like object: a list of numbers, a list of lists of numbers, a list of arrays, etc. In that case, specify the type as
Sequence to accept any of these. On the other hand, if the function truly requires an array and will fail with any other
input, specify it as np.ndarray.

The deepchem.utils.typing module contains definitions of some types that appear frequently in the DeepChem
API. You may find them useful when annotating code.

3.35 Understanding DeepChem CI

Continuous Integration(CI) is used to continuously build and run tests for the code in your repository to make sure
that the changes introduced by the commits doesn’t introduce errors. DeepChem runs a number of CI tests(jobs) using
workflows provided by Github Actions. When all CI tests in a workflow pass, it implies that the changes introduced by
a commit does not introduce any errors.

When creating a PR to master branch or when pushing to master branch, around 35 CI tests are run from the following
workflows.

1. Tests for DeepChem Core - The jobs are defined in the .github/workflows/main.yml file. The
following jobs are performed in this workflow:

• Building and installation of DeepChem in latest Ubuntu OS and Python 3.8-3.11 and it checks for
import deepchem

• These tests run on Ubuntu latest version using Python 3.8-3.11 and on windows latest version using
Python 3.8. The jobs are run for checking coding conventions using yapf, flake8 and mypy. It also
includes tests for doctest and code-coverage.

• Tests for pypi-build and docker-build are also include but they are mostly skipped.

2. Tests for DeepChem Common - The jobs are defined in the .github/workflows/common_setup.yml
file. The following tests are performed in this workflow:

• For build environments of Python 3.8, 3.9, 3.10, 3.11, DeepChem is built and import checking is
performed.

• The tests are run for checking pytest. All pytests which are not marked as jax, tensorflow or pytorch
is run on ubuntu latest with Python 3.8, 3.9, 3.10, 3.11 and 3.9 and on windows latest, it is run with
Python 3.9.

3. Tests for DeepChem Jax/Tensorflow/PyTorch
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• Jax - DeepChem with jax backend is installed and import check is performed for deepchem and jax.
The tests for pytests with jax markers are run on ubuntu latest with Python 3.9-3.11.

• Tensorflow - DeepChem with tensorflow backend is installed and import check is performed for
DeepChem and tensorflow. The tests for pytests with tensorflow markers are run on ubuntu latest
with Python 3.8-3.11 and on windows latest, it is run with Python 3.9.

• PyTorch - DeepChem with pytorch backend is installed and import check is performed for DeepChem
and torch. The tests for pytests with pytorch markers are run on ubuntu latest with Python 3.8-3.11
and on windows latest, it is run with Python 3.9.

4. Tests for documents
• These tests are used for checking docs build. It is run on ubuntu latest with Python 3.9.

5. Tests for Release
• These tests are run only when pushing a tag. It is run on ubuntu latest with Python 3.9.

General recommendations

1. Handling additional or external files in unittest

When a new feature is added to DeepChem, the respective unittest should included too. Sometimes, this test functions
uses an external or additional file. To avoid problems in the CI the absolute path of the file has to be included. For
example, for the use of a file called “Test_data_feature.csv”, the unittest function should manage the absolute path as :

import os
current_dir = os.path.dirname(os.path.abspath(__file__))
data_dir = os.path.join(current_dir, "Test_data_feature.csv")
result = newFeature(data_dir)

3.35.1 Notes on Requirement Files

DeepChem’s CI as well as installation procedures use requirement files defined in requirements directory. Currently,
there are a number of requirement files. Their purposes are listed here. + env_common.yml - this file lists the scientific
dependencies used by DeepChem like rdkit. + env_ubuntu.yml and env_mac.yml contain scientific dependencies which
are have OS specific support. Currently, vina + env_test.yml - it is mostly used for the purpose of testing in development
purpose. It contains the test dependencies. + The installation files in tensorflow, torch and jax directories contain the
installation command for backend deep learning frameworks. For torch and jax, installation command is different for
CPU and GPU. Hence, we use different installation files for CPU and GPU respectively.

3.36 Infrastructures

The DeepChem project maintains supporting infrastructure on a number of different services. This infrastructure is
maintained by the DeepChem development team.
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3.36.1 GitHub

The core DeepChem repositories are maintained in the deepchem GitHub organization. And, we use GitHub Actions
to build a continuous integration pipeline.

DeepChem developers have write access to the repositories on this repo and technical steering committee members
have admin access.

3.36.2 Conda Forge

The DeepChem feedstock repo maintains the build recipe for conda-forge.

3.36.3 Docker Hub

DeepChem hosts major releases and nightly docker build instances on Docker Hub.

3.36.4 PyPI

DeepChem hosts major releases and nightly builds on PyPI.

3.36.5 Amazon Web Services

DeepChem’s website infrastructure is all managed on AWS through different AWS services. All DeepChem developers
have access to these services through the deepchem-developers IAM role. (An IAM role controls access permissions.)
At present, @rbharath is the only developer with admin access to the IAM role, but longer term we should migrate this
so other folks have access to the roles.

S3

Amazon’s S3 allows for storage of data on “buckets” (Think of buckets like folders.) There are two core deepchem S3
buckets:

• deepchemdata: This bucket hosts the MoleculeNet datasets, pre-featurized datasets, and pretrained models.

• deepchemforum: This bucket hosts backups for the forums. The bucket is private for security reasons. The
forums themselves are hosted on a digital ocean instance that only @rbharath currently has access to. Longer
term, we should migrate the forums onto AWS so all DeepChem developers can access the forums. The forums
themselves are a discord instance. The forums upload their backups to this S3 bucket once a day. If the forums
crash, they can be restored from the backups in this bucket.

Route 53

DNS for the deepchem.io website is handled by Route 53. The “hosted zone” deepchem.io holds all DNS information
for the website.
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Certificate Manager

The AWS certificate manager issues the SSL/TLS certificate for the *.deepchem.io and deepchem.io domains.

GitHub Pages

We make use of GitHub Pages to serve our static website. GitHub Pages connects to the certificate in Certificate
Manager. We set CNAME for www.deepchem.io, and an A-record for deepchem.io.

The GitHub Pages repository is [deepchem/deepchem.github.io](https://github.com/deepchem/deepchem.github.io).

3.36.6 GoDaddy

The deepchem.io domain is registered with GoDaddy. If you change the name servers in AWS Route 53, you will need to
update the GoDaddy record. At present, only @rbharath has access to the GoDaddy account that owns the deepchem.io
domain name. We should explore how to provide access to the domain name for other DeepChem developers.

3.36.7 Digital Ocean

The forums are hosted on a digital ocean instance. At present, only @rbharath has access to this instance. We should
migrate this instance onto AWS so other DeepChem developers can help maintain the forums.

786 Chapter 3. About Us

https://github.com/deepchem/deepchem.github.io


INDEX

Symbols
_Config (class in deepchem.utils.dft_utils.config), 690
_Jac (class in deepchem.utils.differentiation_utils.grad),

732
_RootFinder (class in

deepchem.utils.differentiation_utils.optimize.rootfinder),
756

__add__() (BaseXC method), 673
__add__() (LinearOperator method), 711
__add__() (ValGrad method), 670
__contains__() (CoordinateBox method), 638
__getitem__() (RadialGrid method), 698
__init__() (A2C method), 614
__init__() (A2CLossDiscrete method), 616
__init__() (ANIFeat method), 470
__init__() (AdaGrad method), 300
__init__() (Adam method), 300
__init__() (AdamW method), 300
__init__() (AddBaseXC method), 678
__init__() (AddLinearOperator method), 715
__init__() (AdjointLinearOperator method), 716
__init__() (Affine method), 502
__init__() (AtomCGTOBasis method), 671
__init__() (AtomConvModel method), 368
__init__() (AtomEncoder method), 514
__init__() (AtomShim method), 636
__init__() (AtomicConv method), 490
__init__() (AtomicConvFeaturizer method), 152
__init__() (AtomicConvModel method), 336
__init__() (AtomicConvolution method), 464
__init__() (AtomicCoordinates method), 143
__init__() (AttentiveFPModel method), 364
__init__() (AttnLSTMEmbedding method), 453
__init__() (BAMFeaturizer method), 161
__init__() (BAMLoader method), 60
__init__() (BPSymmetryFunctionInput method), 144
__init__() (BalancingTransformer method), 261
__init__() (BasicMolGANModel method), 326, 412
__init__() (BasicSmilesTokenizer method), 166
__init__() (BertFeaturizer method), 174
__init__() (BondEncoder method), 514
__init__() (BroydenFirst method), 749

__init__() (ButinaSplitter method), 238
__init__() (CDFTransformer method), 256
__init__() (CGCNNFeaturizer method), 156
__init__() (CGCNNModel method), 360
__init__() (CGTOBasis method), 670
__init__() (CNN method), 353
__init__() (CNNModule method), 492
__init__() (CRAMFeaturizer method), 162
__init__() (CRAMLoader method), 61
__init__() (CSVLoader method), 47
__init__() (ChemCeption method), 339
__init__() (Chemberta method), 439
__init__() (CircularFingerprint method), 133
__init__() (ClippingTransformer method), 251
__init__() (CombineMeanStd method), 458
__init__() (ConformerGenerator method), 632
__init__() (ConvMol method), 62
__init__() (ConvMolFeaturizer method), 113
__init__() (ConvexHullPocketFinder method), 619
__init__() (CoordinateBox method), 638
__init__() (CoulombFitTransformer method), 269
__init__() (CoulombMatrix method), 139
__init__() (CoulombMatrixEig method), 141
__init__() (DAGGather method), 484
__init__() (DAGLayer method), 483
__init__() (DAGModel method), 322
__init__() (DAGTransformer method), 274
__init__() (DCLightningModule method), 424
__init__() (DE2Transformation method), 700
__init__() (DFTYamlLoader method), 58
__init__() (DMPNNEncoderLayer method), 508
__init__() (DMPNNFeaturizer method), 121
__init__() (DMPNNModel method), 388
__init__() (DTNN method), 542
__init__() (DTNNEmbedding method), 481, 524
__init__() (DTNNGather method), 482, 526
__init__() (DTNNModel method), 321, 395
__init__() (DTNNStep method), 481, 525
__init__() (DataLoader method), 72
__init__() (Dataset method), 67
__init__() (DecoderRNN method), 545
__init__() (DiskDataset method), 31

787



deepchem, Release 2.8.0

__init__() (Docker method), 623
__init__() (DuplicateBalancingTransformer method),

263
__init__() (EdgeNetwork method), 533
__init__() (EditableModulePureFunction method),

720
__init__() (ElectronSampler method), 665
__init__() (ElementPropertyFingerprint method), 153
__init__() (EncoderRNN method), 544
__init__() (Environment method), 611
__init__() (Evaluator method), 641
__init__() (ExponentialDecay method), 301
__init__() (FASTALoader method), 54
__init__() (FASTQLoader method), 55
__init__() (FakeGraphGenerator method), 663
__init__() (FeaturizationTransformer method), 267
__init__() (FerminetElectronFeature method), 548
__init__() (FerminetEnvelope method), 549
__init__() (FullRankMatrix method), 753
__init__() (GAN method), 331, 401
__init__() (GANModel method), 406
__init__() (GATModel method), 361
__init__() (GBDTModel method), 287
__init__() (GCNModel method), 363
__init__() (GINEncoder method), 510
__init__() (GNN method), 512
__init__() (GNNHead method), 512
__init__() (GNNModular method), 376
__init__() (GaussianProcessHyperparamOpt method),

604
__init__() (GeneratorEvaluator method), 643
__init__() (GninaPoseGenerator method), 622
__init__() (GradientDescent method), 301
__init__() (GradientPenaltyLayer method), 528
__init__() (GraphCNN method), 472
__init__() (GraphConv method), 443
__init__() (GraphConvModel method), 323
__init__() (GraphData method), 65
__init__() (GraphGather method), 447
__init__() (GraphNetwork method), 502
__init__() (GraphPool method), 445
__init__() (GroverAtomVocabPredictor method), 559
__init__() (GroverAtomVocabTokenizer method), 167
__init__() (GroverAtomVocabularyBuilder method),

169, 171
__init__() (GroverAttentionHead method), 555
__init__() (GroverBondVocabPredictor method), 560
__init__() (GroverBondVocabTokenizer method), 168
__init__() (GroverEmbedding method), 557, 558
__init__() (GroverFeaturizer method), 122
__init__() (GroverFinetune method), 564
__init__() (GroverFunctionalGroupPredictor

method), 561
__init__() (GroverMPNEncoder method), 555

__init__() (GroverMTBlock method), 556
__init__() (GroverModel method), 391
__init__() (GroverPretrain method), 563
__init__() (GroverReadout method), 566
__init__() (GroverTransEncoder method), 557
__init__() (GymEnvironment method), 612
__init__() (Highway method), 474
__init__() (HighwayLayer method), 554
__init__() (HuggingFaceFeaturizer method), 166
__init__() (HuggingFaceModel method), 435
__init__() (HyperparamOpt method), 600
__init__() (IRVTransformer method), 271
__init__() (ImageDataset method), 42
__init__() (ImageLoader method), 50
__init__() (ImageTransformer method), 265
__init__() (InMemoryLoader method), 57
__init__() (InfoGraphEncoder method), 509
__init__() (InfoGraphModel method), 372
__init__() (InfoGraphStarModel method), 374
__init__() (InfoMax3DModular method), 380
__init__() (InteratomicL2Distances method), 443
__init__() (IterRefLSTMEmbedding method), 454
__init__() (JaxModel method), 427
__init__() (JsonLoader method), 52
__init__() (KerasModel method), 304
__init__() (LCNNFeaturizer method), 159
__init__() (LCNNModel method), 382
__init__() (LSTMStep method), 452
__init__() (Lattice method), 667
__init__() (Linear method), 567
__init__() (LinearCosineDecay method), 302
__init__() (LinearMixing method), 751
__init__() (LinearOperator method), 708
__init__() (LocalGlobalDiscriminator method), 513
__init__() (LogM3Transformation method), 701
__init__() (LogTransformer method), 253
__init__() (LowRankMatrix method), 752
__init__() (MACCSKeysFingerprint method), 131
__init__() (MAML method), 606, 609
__init__() (MATEmbedding method), 498
__init__() (MATEncoderLayer method), 495
__init__() (MATFeaturizer method), 131
__init__() (MATGenerator method), 499
__init__() (MATModel method), 384
__init__() (MEGNetModel method), 383
__init__() (MPNNModel method), 324, 370
__init__() (MXMNetBesselBasisLayer method), 540
__init__() (MXMNetFeaturizer method), 124
__init__() (MXMNetGlobalMessagePassing method),

539
__init__() (MXMNetLocalMessagePassing method),

552
__init__() (MXMNetSphericalBasisLayer method),

553
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__init__() (MatmulLinearOperator method), 718
__init__() (MatrixLinearOperator method), 718
__init__() (MessagePassing method), 485
__init__() (Metric method), 597
__init__() (MinMaxTransformer method), 249
__init__() (Model method), 283
__init__() (ModularTorchModel method), 350
__init__() (Mol2VecFingerprint method), 135
__init__() (MolGANAggregationLayer method), 449,

530
__init__() (MolGANConvolutionLayer method), 448,

529
__init__() (MolGANEncoderLayer method), 452, 532
__init__() (MolGANMultiConvolutionLayer method),

450, 531
__init__() (MolGanFeaturizer method), 116
__init__() (MolGraphConvFeaturizer method), 118
__init__() (MolecularFeaturizer method), 206
__init__() (MolecularFragment method), 635
__init__() (MoleculeLoadException method), 633
__init__() (MordredDescriptors method), 138
__init__() (MulBaseXC method), 680
__init__() (MulLinearOperator method), 715
__init__() (MultiConvMol method), 63
__init__() (MultiHeadedMATAttention method), 496
__init__() (MultilayerPerceptron method), 491
__init__() (MultitaskClassifier method), 358
__init__() (MultitaskFitTransformRegressor method),

356
__init__() (MultitaskRegressor method), 355
__init__() (NTXentMultiplePositives method), 299
__init__() (NeighborList method), 462
__init__() (Net3D method), 523
__init__() (Net3DLayer method), 520
__init__() (NormalizationTransformer method), 247
__init__() (NormalizingFlowModel method), 340
__init__() (NumpyDataset method), 25
__init__() (OneHotFeaturizer method), 147
__init__() (Optimizer method), 299
__init__() (PFMFeaturizer method), 173
__init__() (PINNModel method), 432
__init__() (PNA method), 519
__init__() (PNAGNN method), 518
__init__() (PNALayer method), 516
__init__() (PPO method), 617
__init__() (PPOLoss method), 619
__init__() (PagtnModel method), 366
__init__() (PagtnMolGraphFeaturizer method), 120
__init__() (Policy method), 613
__init__() (PolynomialDecay method), 301
__init__() (PositionwiseFeedForward method), 498
__init__() (PowerTransformer method), 258
__init__() (ProgressiveMultitaskClassifier method),

314

__init__() (ProgressiveMultitaskModel method), 420
__init__() (ProgressiveMultitaskRegressor method),

316
__init__() (PubChemFingerprint method), 134
__init__() (PureFunction method), 719, 721
__init__() (RDKitDescriptors method), 137
__init__() (RMSProp method), 301
__init__() (RadialGrid method), 697
__init__() (RandomGroupSplitter method), 213
__init__() (RawFeaturizer method), 149
__init__() (RdkitGridFeaturizer method), 150
__init__() (RealNVPLayer method), 504
__init__() (RobertaFeaturizer method), 175
__init__() (RobustMultitaskClassifier method), 312
__init__() (RobustMultitaskRegressor method), 313
__init__() (RxnFeaturizer method), 203
__init__() (RxnSplitTransformer method), 276
__init__() (SAMFeaturizer method), 160
__init__() (SAMLoader method), 59
__init__() (SDFLoader method), 53
__init__() (SNAPFeaturizer method), 150
__init__() (ScScoreModel method), 328
__init__() (ScaleNorm method), 494
__init__() (ScaledDotProductAttention method), 564
__init__() (SelfAttention method), 565
__init__() (SeqToSeq method), 329, 547
__init__() (SeqToSeqModel method), 397
__init__() (SetGather method), 488, 511
__init__() (SineCoulombMatrix method), 155
__init__() (SingletaskStratifiedSplitter method), 219
__init__() (SklearnModel method), 286
__init__() (SlicedRadialGrid method), 699
__init__() (Smiles2Vec method), 337
__init__() (SmilesToImage method), 146
__init__() (SmilesToSeq method), 145
__init__() (SmilesTokenizer method), 164
__init__() (SparseAdam method), 300
__init__() (SparseMatrixOneHotFeaturizer method),

148
__init__() (SpecifiedSplitter method), 225
__init__() (SpinParam method), 669
__init__() (SublayerConnection method), 497
__init__() (TaskSplitter method), 227
__init__() (TensorflowMultitaskIRVClassifier method),

311
__init__() (TextCNNModel method), 335, 422
__init__() (TorchModel method), 342
__init__() (TorchNNPureFunction method), 721
__init__() (Transformer method), 278
__init__() (TreutlerM4Transformation method), 702
__init__() (Uniquifier method), 774
__init__() (UserCSVLoader method), 48
__init__() (UserDefinedFeaturizer method), 204
__init__() (ValGrad method), 670
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__init__() (VariationalRandomizer method), 543
__init__() (VinaPoseGenerator method), 621
__init__() (WGAN method), 334
__init__() (WGANModel method), 410
__init__() (Weave method), 415
__init__() (WeaveFeaturizer method), 115
__init__() (WeaveGather method), 479, 537
__init__() (WeaveLayer method), 477, 535
__init__() (WeaveModel method), 318, 417
__init__() (WeaveMol method), 64
__init__() (WeightedLinearCombo method), 456
__init__() (_Config method), 691
__init__() (_Jac method), 732
__len__() (Dataset method), 67
__len__() (DiskDataset method), 39
__len__() (ImageDataset method), 42
__len__() (NumpyDataset method), 25
__len__() (RobertaFeaturizer method), 175
__module__ (GraphConvConstants attribute), 125
__module__ (MultiConvMol attribute), 63
__module__ (WeaveMol attribute), 64
__mul__() (BaseXC method), 674
__mul__() (ValGrad method), 670
__new__() (LinearOperator static method), 708
__repr__() (FingerprintSplitter method), 241
__repr__() (IndexSplitter method), 222
__repr__() (MaxMinSplitter method), 236
__repr__() (MolecularWeightSplitter method), 233
__repr__() (RandomSplitter method), 210
__repr__() (RandomStratifiedSplitter method), 216
__repr__() (ScaffoldSplitter method), 230
__rmul__() (BaseXC method), 675
__str__() (FingerprintSplitter method), 242
__str__() (IndexSplitter method), 222
__str__() (MaxMinSplitter method), 236
__str__() (MolecularWeightSplitter method), 233
__str__() (RandomSplitter method), 211
__str__() (RandomStratifiedSplitter method), 217
__str__() (ScaffoldSplitter method), 230
__sub__() (LinearOperator method), 712
__weakref__ (FingerprintSplitter attribute), 242
__weakref__ (IndexSplitter attribute), 222
__weakref__ (MaxMinSplitter attribute), 236
__weakref__ (MolecularWeightSplitter attribute), 233
__weakref__ (RandomSplitter attribute), 211
__weakref__ (RandomStratifiedSplitter attribute), 217
__weakref__ (ScaffoldSplitter attribute), 230
_check_degen() (in module

deepchem.utils.differentiation_utils.symeig),
730

_check_identical_objs() (in module
deepchem.utils.differentiation_utils.pure_function),
722

_get_equilibrium_default_method() (in module
deepchem.utils.differentiation_utils.optimize.rootfinder),
757

_get_minimizer_default_method() (in module
deepchem.utils.differentiation_utils.optimize.rootfinder),
758

_get_rootfinder_default_method() (in module
deepchem.utils.differentiation_utils.optimize.rootfinder),
757

_nonlin_solver() (in module
deepchem.utils.differentiation_utils.optimize.rootsolver),
745

_nonline_line_search() (in module
deepchem.utils.differentiation_utils.optimize.rootsolver),
748

_rootfinder_solve() (in module
deepchem.utils.differentiation_utils.solve),
741

_safe_norm() (in module
deepchem.utils.differentiation_utils.optimize.rootsolver),
748

_scalar_search_armijo() (in module
deepchem.utils.differentiation_utils.optimize.rootsolver),
748

_set_initial_v() (in module
deepchem.utils.differentiation_utils.symeig),
725

_setup_idxs() (in module
deepchem.utils.differentiation_utils.grad),
732

_take_eigpairs() (in module
deepchem.utils.differentiation_utils.symeig),
726

A
A2C (class in deepchem.rl.a2c), 613
A2CLossDiscrete (class in deepchem.rl.a2c), 616
accuracy_score() (in module deepchem.metrics), 589
action_shape (Environment property), 612
AdaGrad (class in deepchem.models.optimizers), 299
Adam (class in deepchem.models.optimizers), 300
adam() (in module deepchem.utils.differentiation_utils.optimize.minimizer),

744
AdamW (class in deepchem.models.optimizers), 300
add_adapter() (ProgressiveMultitaskRegressor

method), 316
add_hydrogens_to_mol() (in module

deepchem.utils.rdkit_utils), 634
add_loss() (VariationalRandomizer method), 543
add_padding_tokens() (SmilesTokenizer method), 165
add_shard() (DiskDataset method), 38
add_special_tokens() (RobertaFeaturizer method),

175
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add_special_tokens_ids_sequence_pair()
(SmilesTokenizer method), 165

add_special_tokens_ids_single_sequence()
(SmilesTokenizer method), 164

add_special_tokens_single_sequence()
(SmilesTokenizer method), 164

add_tokens() (RobertaFeaturizer method), 176
AddBaseXC (class in deepchem.utils.dft_utils), 677
added_tokens_decoder (RobertaFeaturizer property),

177
added_tokens_encoder (RobertaFeaturizer property),

177
additional_special_tokens (RobertaFeaturizer

property), 177
additional_special_tokens_ids (RobertaFeatur-

izer property), 177
AddLinearOperator (class in

deepchem.utils.differentiation_utils.linop),
713

AdjointLinearOperator (class in
deepchem.utils.differentiation_utils.linop),
716

Affine (class in deepchem.models.torch_models.layers),
502

agglomerate_mols() (ConvMol static method), 63
aggregate_max() (in module

deepchem.utils.graph_utils), 649
aggregate_mean() (in module

deepchem.utils.graph_utils), 649
aggregate_min() (in module

deepchem.utils.graph_utils), 649
aggregate_moment() (in module

deepchem.utils.graph_utils), 650
aggregate_std() (in module

deepchem.utils.graph_utils), 650
aggregate_sum() (in module

deepchem.utils.graph_utils), 650
aggregate_var() (in module

deepchem.utils.graph_utils), 650
all_special_ids (RobertaFeaturizer property), 177
all_special_tokens (RobertaFeaturizer property),

177
all_special_tokens_extended (RobertaFeaturizer

property), 177
AlphaShareLayer (class in deepchem.models.layers),

467
anderson_acc() (in module

deepchem.utils.differentiation_utils.optimize.equilibrium),
743

angle_between() (in module
deepchem.utils.geometry_utils), 647

angular_symmetry() (ANIFeat method), 471
ANIFeat (class in deepchem.models.layers), 470
ao_orb2dm() (BaseHamilton method), 687

ao_orb_params2dm() (BaseHamilton method), 689
aodm2dens() (BaseHamilton method), 688
append() (FullRankMatrix method), 754
append() (LowRankMatrix method), 752
apply_chat_template() (RobertaFeaturizer method),

178
as_target_tokenizer() (RobertaFeaturizer method),

178
assert_runtime() (in module

deepchem.utils.differentiation_utils), 724
assertparams() (EditableModule method), 705
atom_features() (in module

deepchem.feat.graph_features), 128
atom_features() (MATFeaturizer method), 132
atom_to_feature_vector() (RDKitConformerFeatur-

izer method), 123
atom_to_id() (in module

deepchem.feat.graph_features), 128
atom_to_vocab() (GroverAtomVocabularyBuilder

static method), 170, 172
atom_vocab_random_mask() (GroverModel static

method), 392
AtomCGTOBasis (class in

deepchem.utils.dft_utils.data.datastruct),
671

AtomConvModel (class in
deepchem.models.torch_models), 367

AtomEncoder (class in
deepchem.models.torch_models.pna_gnn),
513

AtomicConv (class in deepchem.models.torch_models.layers),
489

AtomicConvFeaturizer (class in deepchem.feat), 152
AtomicConvModel (class in deepchem.models), 335
AtomicConvolution (class in deepchem.models.layers),

464
AtomicCoordinates (class in deepchem.feat), 142
atommasses (BaseSystem property), 696
atompos (BaseSystem property), 696
AtomShim (class in deepchem.utils.fragment_utils), 636
atomzs (BaseSystem property), 696
AttentiveFPModel (class in deepchem.models), 364
AttnLSTMEmbedding (class in deepchem.models.layers),

453
auc() (in module deepchem.metrics), 581

B
backend_tokenizer (RobertaFeaturizer property), 179
backward() (_RootFinder static method), 757
backward() (solve_torchfcn static method), 743
backward() (symeig_torchfcn static method), 730
balanced_accuracy_score() (in module

deepchem.metrics), 590
BalancingTransformer (class in deepchem.trans), 260
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BAMFeaturizer (class in deepchem.feat), 161
BAMLoader (class in deepchem.data.data_loader), 60
BaseDF (class in deepchem.utils.dft_utils.df.base_df ),

683
BaseGrid (class in deepchem.utils.dft_utils), 681
BaseGridTransform (class in

deepchem.utils.dft_utils.grid.radial_grid),
699

BaseHamilton (class in
deepchem.utils.dft_utils.hamilton.base_hamilton),
684

BaseOrbParams (class in deepchem.utils.dft_utils), 691
BaseSystem (class in

deepchem.utils.dft_utils.system.base_system),
694

BaseXC (class in deepchem.utils.dft_utils), 671
BasicMolGANModel (class in deepchem.models), 325
BasicMolGANModel (class in

deepchem.models.torch_models), 411
BasicSmilesTokenizer (class in deepchem.feat), 165
batch_coulomb_matrix_features() (in module

deepchem.utils.batch_utils), 764
batch_decode() (RobertaFeaturizer method), 179
batch_elements() (in module

deepchem.utils.batch_utils), 766
batch_encode_plus() (RobertaFeaturizer method),

179
bedroc_score() (in module deepchem.metrics), 595
BertFeaturizer (class in deepchem.feat), 174
BetaShare (class in deepchem.models.layers), 469
bicgstab() (in module

deepchem.utils.differentiation_utils.solve),
742

BinaryCrossEntropy (class in
deepchem.models.losses), 288

BindingPocketFeaturizer (class in deepchem.feat),
204

BindingPocketFinder (class in
deepchem.dock.binding_pocket), 619

bond_fdim_base (GraphConvConstants attribute), 125
bond_features() (in module

deepchem.feat.graph_features), 129
bond_to_feature_vector() (RDKitConformerFeatur-

izer method), 123
bond_vocab_random_mask() (GroverModel static

method), 393
BondEncoder (class in

deepchem.models.torch_models.pna_gnn),
514

bos_token (RobertaFeaturizer property), 182
bos_token_id (RobertaFeaturizer property), 182
BPSymmetryFunctionInput (class in deepchem.feat),

143
broyden1() (in module

deepchem.utils.differentiation_utils.optimize.rootsolver),
746

broyden1_solve() (in module
deepchem.utils.differentiation_utils.solve),
740

broyden2() (in module
deepchem.utils.differentiation_utils.optimize.rootsolver),
746

BroydenFirst (class in
deepchem.utils.differentiation_utils.optimize.jacobian),
749

BroydenSecond (class in
deepchem.utils.differentiation_utils.optimize.jacobian),
750

build() (AlphaShareLayer method), 467
build() (AtomicConvolution method), 465
build() (AttnLSTMEmbedding method), 454
build() (BaseDF method), 683
build() (BaseHamilton method), 685
build() (BetaShare method), 470
build() (DAGGather method), 484
build() (DAGLayer method), 484
build() (DTNNEmbedding method), 481
build() (DTNNGather method), 483
build() (DTNNStep method), 482
build() (EdgeNetwork method), 486
build() (GatedRecurrentUnit method), 487
build() (GraphCNN method), 473
build() (GraphConv method), 444
build() (GraphEmbedPoolLayer method), 471
build() (GroverAtomVocabularyBuilder method), 169,

171
build() (Highway method), 474
build() (IterRefLSTMEmbedding method), 455
build() (LSTMStep method), 453
build() (MessagePassing method), 485
build() (SetGather method), 489
build() (VinaFreeEnergy method), 461
build() (VocabularyBuilder method), 208
build() (WeaveGather method), 480
build() (WeaveLayer method), 478
build() (WeightedLinearCombo method), 457
build_char_dict() (TextCNNModel static method),

335, 423
build_components() (GNNModular method), 376
build_components() (GroverModel method), 391
build_components() (InfoGraphModel method), 372
build_components() (InfoGraphStarModel method),

374
build_components() (InfoMax3DModular method),

380
build_components() (ModularTorchModel method),

350
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build_from_csv() (GroverAtomVocabularyBuilder
method), 169, 171

build_gnn() (GNNModular method), 377
build_inception_module() (ChemCeption method),

339
build_inputs_with_special_tokens()

(RobertaFeaturizer method), 182
build_layers() (MultilayerPerceptron method), 491
build_model() (GNNModular method), 377
build_model() (GroverModel method), 392
build_model() (InfoGraphModel method), 372
build_model() (InfoGraphStarModel method), 374
build_model() (InfoMax3DModular method), 381
build_model() (ModularTorchModel method), 350
ButinaSplitter (class in deepchem.splits), 238

C
cached_getparamnames() (EditableModule method),

704
call() (AlphaShareLayer method), 467
call() (ANIFeat method), 471
call() (AtomicConvolution method), 465
call() (AttnLSTMEmbedding method), 454
call() (BetaShare method), 470
call() (CombineMeanStd method), 458
call() (DAGGather method), 485
call() (DAGLayer method), 484
call() (DTNNEmbedding method), 481
call() (DTNNGather method), 483
call() (DTNNStep method), 482
call() (EdgeNetwork method), 486
call() (GatedRecurrentUnit method), 487
call() (GraphCNN method), 473
call() (GraphConv method), 444
call() (GraphEmbedPoolLayer method), 471
call() (GraphGather method), 447
call() (GraphPool method), 446
call() (Highway method), 475
call() (InteratomicL2Distances method), 443
call() (IterRefLSTMEmbedding method), 455
call() (LSTMStep method), 453
call() (MessagePassing method), 485
call() (MolGANAggregationLayer method), 449
call() (MolGANConvolutionLayer method), 448
call() (MolGANEncoderLayer method), 452
call() (MolGANMultiConvolutionLayer method), 450
call() (NeighborList method), 462
call() (SetGather method), 489
call() (SluiceLoss method), 469
call() (Stack method), 460
call() (SwitchedDropout method), 456
call() (VinaFreeEnergy method), 461
call() (WeaveGather method), 480
call() (WeaveLayer method), 478

call() (WeightedLinearCombo method), 457
can_save_slow_tokenizer (RobertaFeaturizer prop-

erty), 182
CategoricalCrossEntropy (class in

deepchem.models.losses), 288
CDFTransformer (class in deepchem.trans), 255
center() (CoordinateBox method), 639
cg() (in module deepchem.utils.differentiation_utils.solve),

741
CGCNNFeaturizer (class in deepchem.feat), 156
CGCNNModel (class in deepchem.models), 359
CGTOBasis (class in deepchem.utils.dft_utils.data.datastruct),

670
change_basis_real_to_complex() (in module

deepchem.utils.equivariance_utils), 771
charge (BaseSystem property), 697
Chemberta (class in deepchem.models.torch_models.chemberta),

438
ChemCeption (class in deepchem.models), 338
CHUNK_MEMORY (_Config attribute), 690
chunkify() (in module deepchem.utils.pytorch_utils),

761
CircularFingerprint (class in deepchem.feat), 133
clean_up_tokenization() (RobertaFeaturizer static

method), 182
ClippingTransformer (class in deepchem.trans), 251
cls_token (RobertaFeaturizer property), 182
cls_token_id (RobertaFeaturizer property), 183
CNN (class in deepchem.models), 352
CNNModule (class in deepchem.models.torch_models.layers),

491
CombineMeanStd (class in deepchem.models.layers), 458
complete_shuffle() (DiskDataset method), 37
ComplexFeaturizer (class in deepchem.feat), 208
compute_charges() (in module

deepchem.utils.rdkit_utils), 634
compute_features_on_batch() (DTNNModel

method), 321
compute_features_on_batch() (WeaveModel

method), 319, 418
compute_metric() (Metric method), 598
compute_model() (MetaLearner method), 605
compute_model_performance() (Evaluator method),

642
compute_model_performance() (GeneratorEvaluator

method), 643
compute_nbr_list() (NeighborList method), 463
compute_saliency() (KerasModel method), 309
compute_saliency() (TorchModel method), 347
compute_singletask_metric() (Metric method), 598
concordance_index() (in module deepchem.metrics),

595
configure_optimizers() (DCLightningModule

method), 424

Index 793



deepchem, Release 2.8.0

ConformerGenerator (class in
deepchem.utils.conformers), 631

connect_graph() (in module
deepchem.utils.differentiation_utils.grad),
733

construct_hydrogen_bonding_info() (in module
deepchem.utils.molecule_feature_utils), 655

construct_mol() (MATFeaturizer method), 132
construct_node_features_matrix() (MATFeatur-

izer method), 132
contains() (CoordinateBox method), 639
context_pred_loss_loader() (GNNModular

method), 378
ConvergenceWarning (class in

deepchem.utils.misc_utils), 773
convert_atom_pair_to_voxel() (in module

deepchem.utils.voxel_utils), 653
convert_atom_to_voxel() (in module

deepchem.utils.voxel_utils), 652
convert_bytes_to_char() (TextCNNModel static

method), 424
convert_ids_to_tokens() (RobertaFeaturizer

method), 183
convert_tokens_to_ids() (RobertaFeaturizer

method), 183
convert_tokens_to_string() (RobertaFeaturizer

method), 183
convert_tokens_to_string() (SmilesTokenizer

method), 164
ConvexHullPocketFinder (class in

deepchem.dock.binding_pocket), 619
ConvMol (class in deepchem.feat.mol_graphs), 62
ConvMolFeaturizer (class in deepchem.feat), 113
coord_type (BaseGrid property), 682
coord_type (RadialGrid property), 698
CoordinateBox (class in

deepchem.utils.coordinate_box_utils), 638
copy() (DiskDataset method), 33
cosine_dist() (in module deepchem.models.layers),

500
coulomb_matrix() (CoulombMatrix method), 139
coulomb_matrix() (CoulombMatrixEig method), 141
CoulombFitTransformer (class in deepchem.trans),

268
CoulombMatrix (class in deepchem.feat), 139
CoulombMatrixEig (class in deepchem.feat), 141
CRAMFeaturizer (class in deepchem.feat), 162
CRAMLoader (class in deepchem.data.data_loader), 61
create_dataset() (BAMLoader method), 60
create_dataset() (CRAMLoader method), 61
create_dataset() (CSVLoader method), 47
create_dataset() (DataLoader method), 73
create_dataset() (DFTYamlLoader method), 58
create_dataset() (DiskDataset static method), 32

create_dataset() (FASTALoader method), 54
create_dataset() (FASTQLoader method), 55
create_dataset() (ImageLoader method), 51
create_dataset() (InMemoryLoader method), 57
create_dataset() (JsonLoader method), 53
create_dataset() (SAMLoader method), 59
create_dataset() (SDFLoader method), 53
create_dataset() (UserCSVLoader method), 49
create_discriminator() (BasicMolGANModel

method), 326, 413
create_discriminator() (GAN method), 332
create_discriminator() (GANModel method), 407
create_discriminator_loss() (GAN method), 332,

402
create_discriminator_loss() (WGAN method), 334
create_discriminator_loss() (WGANModel

method), 410
create_generator() (BasicMolGANModel method),

326, 413
create_generator() (GAN method), 331
create_generator() (GANModel method), 407
create_generator_loss() (GAN method), 332, 402
create_generator_loss() (WGAN method), 334
create_generator_loss() (WGANModel method),

410
create_input_array() (in module

deepchem.utils.batch_utils), 766
create_model() (Policy method), 613
create_nll() (NormalizingFlowModel method), 340
create_output_array() (in module

deepchem.utils.batch_utils), 767
create_token_type_ids_from_sequences()

(RobertaFeaturizer method), 183
CSVLoader (class in deepchem.data), 46
cutoff_filter() (in module

deepchem.dock.pose_scoring), 625

D
DAGGather (class in deepchem.models.layers), 484
DAGLayer (class in deepchem.models.layers), 483
DAGModel (class in deepchem.models), 322
DAGTransformer (class in deepchem.trans), 273
data_dir (DiskDataset attribute), 31
DataLoader (class in deepchem.data), 72
Dataset (class in deepchem.data), 67
davidson() (in module

deepchem.utils.differentiation_utils.symeig),
727

DCLightningModule (class in deepchem.models), 424
DE2Transformation (class in

deepchem.utils.dft_utils.grid.radial_grid),
700

decode() (RobertaFeaturizer method), 184
decoder (RobertaFeaturizer property), 184
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DecoderRNN (class in deepchem.models.torch_models.layers),
544

DeepGraphInfomaxLoss (class in
deepchem.models.losses), 296

default_chat_template (RobertaFeaturizer prop-
erty), 184

default_generator() (AtomConvModel method), 368
default_generator() (AtomicConvModel method),

337
default_generator() (ChemCeption method), 339
default_generator() (CNN method), 354
default_generator() (DAGModel method), 322
default_generator() (DMPNNModel method), 389
default_generator() (DTNNModel method), 321, 395
default_generator() (GNNModular method), 378
default_generator() (GraphConvModel method),

323
default_generator() (InfoGraphStarModel method),

375
default_generator() (JaxModel method), 430
default_generator() (KerasModel method), 309
default_generator() (MATModel method), 386
default_generator() (MPNNModel method), 324
default_generator() (MultitaskClassifier method),

359
default_generator() (MultitaskFitTransformRegres-

sor method), 357
default_generator() (MultitaskRegressor method),

356
default_generator() (PINNModel method), 432
default_generator() (RobustMultitaskClassifier

method), 312
default_generator() (RobustMultitaskRegressor

method), 314
default_generator() (ScScoreModel method), 328
default_generator() (Smiles2Vec method), 338
default_generator() (TextCNNModel method), 335,

423
default_generator() (TorchModel method), 347
default_generator() (WeaveModel method), 320, 419
defeaturize() (MolGanFeaturizer method), 117
degen_symeig() (in module

deepchem.utils.differentiation_utils.symeig),
727

del_attr (class in deepchem.utils.attribute_utils), 759
densityfit() (BaseSystem method), 694
DensityProfileLoss (class in

deepchem.models.losses), 297
descriptors (MordredDescriptors attribute), 138
device (BaseGrid property), 682
device (LinearOperator property), 713
device (RadialGrid property), 698
df (BaseHamilton property), 685
DFTYamlLoader (class in deepchem.data.data_loader),

58
disable_state_change() (PureFunction method),

719, 722
discrim_loss_fn() (GAN method), 403
DiskDataset (class in deepchem.data), 30
distance_cutoff() (ANIFeat method), 471
distance_matrix() (ANIFeat method), 471
distance_matrix() (AtomicConvolution method), 466
distance_tensor() (AtomicConvolution method), 466
dm2ao_orb_params() (BaseHamilton method), 689
DMPNNEncoderLayer (class in

deepchem.models.torch_models.layers), 504
DMPNNFeaturizer (class in deepchem.feat), 120
DMPNNModel (class in deepchem.models.torch_models),

387
dock() (Docker method), 624
Docker (class in deepchem.dock.docking), 623
dot() (in module deepchem.utils.differentiation_utils.solve),

736
download_url() (in module deepchem.utils.data_utils),

628
DTNN (class in deepchem.models.torch_models.dtnn), 541
DTNNEmbedding (class in deepchem.models.layers), 481
DTNNEmbedding (class in

deepchem.models.torch_models.layers), 523
DTNNGather (class in deepchem.models.layers), 482
DTNNGather (class in deepchem.models.torch_models.layers),

525
DTNNModel (class in deepchem.models), 320
DTNNModel (class in deepchem.models.torch_models),

394
DTNNStep (class in deepchem.models.layers), 481
DTNNStep (class in deepchem.models.torch_models.layers),

524
dtype (BaseGrid property), 682
dtype (LinearOperator property), 713
dtype (RadialGrid property), 698
dummy_context_manager() (in module

deepchem.utils.differentiation_utils), 724
DummyFeaturizer (class in deepchem.feat), 205
DuplicateBalancingTransformer (class in

deepchem.trans), 262

E
edge_features (GraphData attribute), 64
edge_index (GraphData attribute), 64
EdgeNetwork (class in deepchem.models.layers), 485
EdgeNetwork (class in

deepchem.models.torch_models.layers), 533
EdgePredictionLoss (class in

deepchem.models.losses), 293
EditableModule (class in

deepchem.utils.differentiation_utils.editable_module),
703
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EditableModulePureFunction (class in
deepchem.utils.differentiation_utils.pure_function),
720

efield (BaseSystem property), 697
electron_update() (ElectronSampler method), 666
ElectronSampler (class in

deepchem.utils.electron_sampler), 664
ElementPropertyFingerprint (class in

deepchem.feat), 153
ElemNetFeaturizer (class in deepchem.feat), 154
embed_molecule() (ConformerGenerator method), 632
encode() (GroverAtomVocabularyBuilder method), 170,

172
encode() (RobertaFeaturizer method), 184
encode_bio_sequence() (in module

deepchem.utils.genomics_utils), 645
encode_plus() (RobertaFeaturizer method), 186
EncoderRNN (class in deepchem.models.torch_models.layers),

544
Environment (class in deepchem.rl), 611
eos_token (RobertaFeaturizer property), 188
eos_token_id (RobertaFeaturizer property), 189
equilibrium() (in module

deepchem.utils.differentiation_utils.optimize.rootfinder),
755

estimate_ewald_eta() (Lattice method), 668
evaluate() (Model method), 284
evaluate_generator() (JaxModel method), 430
evaluate_generator() (KerasModel method), 308
evaluate_generator() (TorchModel method), 346
Evaluator (class in deepchem.utils.evaluate), 641
exacteig() (in module

deepchem.utils.differentiation_utils.symeig),
727

exactsolve() (in module
deepchem.utils.differentiation_utils.solve),
734

expand() (CoulombFitTransformer method), 269
ExponentialDecay (class in

deepchem.models.optimizers), 301
extend() (VocabularyBuilder method), 208
extract_grover_attributes() (in module

deepchem.utils.grover), 659

F
f1_score() (in module deepchem.metrics), 584
FakeGraphGenerator (class in

deepchem.utils.fake_data_generator), 662
family (AddBaseXC property), 678
family (BaseXC property), 672
family (MulBaseXC property), 680
FASTALoader (class in deepchem.data), 54
FASTQLoader (class in deepchem.data), 55

features_to_id() (in module
deepchem.feat.graph_features), 127

FeaturizationTransformer (class in
deepchem.trans), 266

featurize() (AtomicConvFeaturizer method), 152
featurize() (AtomicCoordinates method), 143
featurize() (BAMFeaturizer method), 161
featurize() (BertFeaturizer method), 174
featurize() (BindingPocketFeaturizer method), 204
featurize() (BPSymmetryFunctionInput method), 144
featurize() (CGCNNFeaturizer method), 157
featurize() (CircularFingerprint method), 134
featurize() (ComplexFeaturizer method), 208
featurize() (ConvMolFeaturizer method), 114
featurize() (CoulombMatrix method), 140
featurize() (CoulombMatrixEig method), 141
featurize() (CRAMFeaturizer method), 162
featurize() (DataLoader method), 72
featurize() (DMPNNFeaturizer method), 121
featurize() (DummyFeaturizer method), 205
featurize() (ElementPropertyFingerprint method),

153
featurize() (Featurizer method), 205
featurize() (HuggingFaceFeaturizer method), 166
featurize() (LCNNFeaturizer method), 159
featurize() (MaterialCompositionFeaturizer method),

207
featurize() (MaterialStructureFeaturizer method),

207
featurize() (MATFeaturizer method), 132
featurize() (Mol2VecFingerprint method), 136
featurize() (MolecularFeaturizer method), 206
featurize() (MolGanFeaturizer method), 116
featurize() (MolGraphConvFeaturizer method), 118
featurize() (MordredDescriptors method), 138
featurize() (MXMNetFeaturizer method), 124
featurize() (OneHotFeaturizer method), 147
featurize() (PagtnMolGraphFeaturizer method), 120
featurize() (RawFeaturizer method), 149
featurize() (RDKitDescriptors method), 137
featurize() (RdkitGridFeaturizer method), 151
featurize() (RobertaFeaturizer method), 189
featurize() (RxnFeaturizer method), 203
featurize() (SAMFeaturizer method), 160
featurize() (SineCoulombMatrix method), 155
featurize() (SmilesToImage method), 146
featurize() (SmilesToSeq method), 145
featurize() (SNAPFeaturizer method), 150
featurize() (SparseMatrixOneHotFeaturizer method),

148
featurize() (UserDefinedFeaturizer method), 204
featurize() (WeaveFeaturizer method), 115
Featurizer (class in deepchem.feat), 205
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FerminetElectronFeature (class in
deepchem.models.torch_models.layers), 547

FerminetEnvelope (class in
deepchem.models.torch_models.layers), 549

find_all_pockets() (ConvexHullPocketFinder
method), 619

find_distance() (in module
deepchem.feat.graph_features), 128

find_pockets() (BindingPocketFinder method), 619
find_pockets() (ConvexHullPocketFinder method),

620
FingerprintSplitter (class in deepchem.splits), 240
fit() (A2C method), 615
fit() (GBDTModel method), 287
fit() (JaxModel method), 428
fit() (KerasModel method), 304
fit() (MAML method), 607, 609
fit() (Model method), 284
fit() (PPO method), 617
fit() (ProgressiveMultitaskModel method), 420
fit() (ProgressiveMultitaskRegressor method), 316
fit() (SklearnModel method), 286
fit() (TorchModel method), 343
fit_gan() (GAN method), 332
fit_gan() (GANModel method), 407
fit_generator() (HuggingFaceModel method), 437
fit_generator() (KerasModel method), 305
fit_generator() (ModularTorchModel method), 351
fit_generator() (TorchModel method), 343
fit_on_batch() (KerasModel method), 306
fit_on_batch() (Model method), 283
fit_on_batch() (TorchModel method), 344
fit_sequences() (SeqToSeq method), 329
fit_sequences() (SeqToSeqModel method), 398
fit_task() (ProgressiveMultitaskModel method), 421
fit_task() (ProgressiveMultitaskRegressor method),

317
fit_with_eval() (GBDTModel method), 287
forward() (_RootFinder static method), 756
forward() (Affine method), 503
forward() (AtomEncoder method), 514
forward() (AtomicConv method), 490
forward() (BondEncoder method), 515
forward() (CNNModule method), 493
forward() (DecoderRNN method), 545
forward() (DMPNNEncoderLayer method), 508
forward() (DTNN method), 542
forward() (DTNNEmbedding method), 524
forward() (DTNNGather method), 526
forward() (DTNNStep method), 525
forward() (EdgeNetwork method), 534
forward() (EncoderRNN method), 544
forward() (FerminetElectronFeature method), 548
forward() (FerminetEnvelope method), 550

forward() (GAN method), 402
forward() (GINEncoder method), 510
forward() (GNN method), 512
forward() (GNNHead method), 512
forward() (GradientPenaltyLayer method), 528
forward() (GraphNetwork method), 502
forward() (GroverAtomVocabPredictor method), 559
forward() (GroverAttentionHead method), 556
forward() (GroverBondVocabPredictor method), 560
forward() (GroverEmbedding method), 557, 558
forward() (GroverFinetune method), 564
forward() (GroverFunctionalGroupPredictor method),

561
forward() (GroverMPNEncoder method), 555
forward() (GroverMTBlock method), 556
forward() (GroverPretrain method), 563
forward() (GroverReadout method), 566
forward() (GroverTransEncoder method), 557
forward() (HighwayLayer method), 554
forward() (InfoGraphEncoder method), 509
forward() (LocalGlobalDiscriminator method), 513
forward() (MATEmbedding method), 499
forward() (MATEncoderLayer method), 495
forward() (MATGenerator method), 499
forward() (MolGANAggregationLayer method), 530
forward() (MolGANConvolutionLayer method), 529
forward() (MolGANEncoderLayer method), 533
forward() (MolGANMultiConvolutionLayer method),

531
forward() (MultiHeadedMATAttention method), 496
forward() (MultilayerPerceptron method), 491
forward() (MXMNetBesselBasisLayer method), 541
forward() (MXMNetGlobalMessagePassing method),

539
forward() (MXMNetLocalMessagePassing method),

552
forward() (MXMNetSphericalBasisLayer method), 553
forward() (Net3D method), 523
forward() (Net3DLayer method), 521
forward() (PNA method), 520
forward() (PNAGNN method), 518
forward() (PNALayer method), 516
forward() (PositionwiseFeedForward method), 498
forward() (RealNVPLayer method), 504
forward() (ScaledDotProductAttention method), 564
forward() (ScaleNorm method), 494
forward() (SelfAttention method), 565
forward() (SeqToSeq method), 547
forward() (SetGather method), 511
forward() (solve_torchfcn static method), 742
forward() (SublayerConnection method), 497
forward() (symeig_torchfcn static method), 730
forward() (VariationalRandomizer method), 543
forward() (Weave method), 416
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forward() (WeaveGather method), 538
forward() (WeaveLayer method), 536
fourier_encode_dist() (in module

deepchem.utils.graph_utils), 649
freeze_components() (ModularTorchModel method),

350
from_dataframe() (Dataset static method), 71
from_dataframe() (DiskDataset static method), 40
from_dataframe() (ImageDataset static method), 44
from_dataframe() (NumpyDataset static method), 28
from_DiskDataset() (NumpyDataset static method),

27
from_json() (NumpyDataset static method), 27
from_numpy() (DiskDataset static method), 35
from_one_hot() (in module deepchem.metrics), 568
from_pretrained() (RobertaFeaturizer class method),

189
fullmatrix() (LinearOperator method), 710
FullRankMatrix (class in

deepchem.utils.differentiation_utils.optimize.jacobian),
753

FunctionPureFunction (class in
deepchem.utils.differentiation_utils.pure_function),
719

G
GAN (class in deepchem.models), 330
GAN (class in deepchem.models.torch_models), 399
GANModel (class in deepchem.models.torch_models), 403
GatedRecurrentUnit (class in

deepchem.models.layers), 487
GATModel (class in deepchem.models), 360
gauss_initialize_position() (ElectronSampler

method), 666
gaussian_distance_matrix() (AtomicConvolution

method), 466
gaussian_first() (VinaFreeEnergy method), 461
gaussian_histogram() (WeaveGather method), 480,

538
gaussian_integral() (in module

deepchem.utils.pytorch_utils), 762
gaussian_second() (VinaFreeEnergy method), 461
GaussianProcessHyperparamOpt (class in

deepchem.hyper), 603
GBDTModel (class in deepchem.models), 287
GCNModel (class in deepchem.models), 362
gd() (in module deepchem.utils.differentiation_utils.optimize.minimizer),

744
gen_loss_fn() (GAN method), 403
generate_conformers() (ConformerGenerator

method), 632
generate_poses() (GninaPoseGenerator method), 623
generate_poses() (PoseGenerator method), 620
generate_poses() (VinaPoseGenerator method), 621

generate_random_rotation_matrix() (in module
deepchem.utils.geometry_utils), 647

generate_random_unit_vector() (in module
deepchem.utils.geometry_utils), 647

generate_scaffolds() (ScaffoldSplitter method), 229
GeneratorEvaluator (class in

deepchem.utils.evaluate), 643
get_added_vocab() (RobertaFeaturizer method), 190
get_adjacency_list() (ConvMol method), 62
get_and_pop_keys() (in module

deepchem.utils.differentiation_utils), 723
get_atom_chirality_one_hot() (in module

deepchem.utils.molecule_feature_utils), 656
get_atom_features() (ConvMol method), 62
get_atom_features() (MultiConvMol method), 63
get_atom_features() (WeaveMol method), 64
get_atom_formal_charge() (in module

deepchem.utils.molecule_feature_utils), 656
get_atom_hybridization_one_hot() (in module

deepchem.utils.molecule_feature_utils), 655
get_atom_hydrogen_bonding_one_hot() (in module

deepchem.utils.molecule_feature_utils), 655
get_atom_is_in_aromatic_one_hot() (in module

deepchem.utils.molecule_feature_utils), 655
get_atom_partial_charge() (in module

deepchem.utils.molecule_feature_utils), 656
get_atom_total_degree_one_hot() (in module

deepchem.utils.molecule_feature_utils), 657
get_atom_total_num_Hs_one_hot() (in module

deepchem.utils.molecule_feature_utils), 656
get_atom_type_one_hot() (in module

deepchem.utils.molecule_feature_utils), 654
get_atoms_in_nbrs() (NeighborList method), 463
get_atoms_with_deg() (ConvMol method), 62
get_atomz() (in module

deepchem.utils.periodic_table_utils), 768
get_attr (class in deepchem.utils.attribute_utils), 758
get_batch() (MetaLearner method), 606
get_batchdims() (in module

deepchem.utils.differentiation_utils.solve),
735

get_bcasted_dims() (in module
deepchem.utils.differentiation_utils), 706

get_bond_graph_distance_one_hot() (in module
deepchem.utils.molecule_feature_utils), 658

get_bond_is_conjugated_one_hot() (in module
deepchem.utils.molecule_feature_utils), 658

get_bond_is_in_same_ring_one_hot() (in module
deepchem.utils.molecule_feature_utils), 657

get_bond_stereo_one_hot() (in module
deepchem.utils.molecule_feature_utils), 658

get_bond_type_one_hot() (in module
deepchem.utils.molecule_feature_utils), 657

get_cells() (NeighborList method), 464
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get_cells_for_atoms() (NeighborList method), 464
get_checkpoints() (KerasModel method), 310
get_checkpoints() (MAML method), 610
get_checkpoints() (TorchModel method), 348
get_closest_atoms() (NeighborList method), 463
get_conditional_input_shapes() (GAN method),

331
get_conditional_input_shapes() (GANModel

method), 407
get_config() (AlphaShareLayer method), 467
get_config() (ANIFeat method), 470
get_config() (AtomicConvolution method), 465
get_config() (AttnLSTMEmbedding method), 453
get_config() (BetaShare method), 470
get_config() (CombineMeanStd method), 458
get_config() (DAGGather method), 484
get_config() (DAGLayer method), 483
get_config() (DTNNEmbedding method), 481
get_config() (DTNNGather method), 482
get_config() (DTNNStep method), 481
get_config() (EdgeNetwork method), 485
get_config() (GatedRecurrentUnit method), 487
get_config() (GraphCNN method), 472
get_config() (GraphConv method), 444
get_config() (GraphEmbedPoolLayer method), 471
get_config() (GraphGather method), 447
get_config() (GraphPool method), 445
get_config() (Highway method), 474
get_config() (InteratomicL2Distances method), 443
get_config() (IterRefLSTMEmbedding method), 455
get_config() (LSTMStep method), 453
get_config() (MessagePassing method), 485
get_config() (MolGANAggregationLayer method), 450
get_config() (MolGANConvolutionLayer method),

448
get_config() (MolGANEncoderLayer method), 452
get_config() (MolGANMultiConvolutionLayer

method), 451
get_config() (NeighborList method), 462
get_config() (SetGather method), 488
get_config() (SluiceLoss method), 468
get_config() (Stack method), 459
get_config() (SwitchedDropout method), 455
get_config() (VinaFreeEnergy method), 461
get_config() (WeaveGather method), 479
get_config() (WeaveLayer method), 478
get_config() (WeightedLinearCombo method), 457
get_conformer_energies() (ConformerGenerator

method), 633
get_conformer_rmsd() (ConformerGenerator static

method), 633
get_contact_atom_indices() (in module

deepchem.utils.fragment_utils), 637

get_data_dir() (in module deepchem.utils.data_utils),
628

get_data_input_shapes() (BasicMolGANModel
method), 326, 413

get_data_input_shapes() (GAN method), 331
get_data_input_shapes() (GANModel method), 406
get_data_shape() (DiskDataset method), 33
get_deg_adjacency_lists() (ConvMol method), 62
get_deg_adjacency_lists() (MultiConvMol

method), 63
get_deg_slice() (ConvMol method), 63
get_drdx() (BaseGridTransform method), 700
get_drdx() (DE2Transformation method), 700
get_drdx() (LogM3Transformation method), 701
get_drdx() (TreutlerM4Transformation method), 702
get_dvolume() (BaseGrid method), 682
get_dvolume() (RadialGrid method), 698
get_e_elrep() (BaseHamilton method), 688
get_e_exchange() (BaseHamilton method), 688
get_e_hcore() (BaseHamilton method), 688
get_e_xc() (BaseHamilton method), 689
get_edensityxc() (AddBaseXC method), 678
get_edensityxc() (BaseXC method), 672
get_edensityxc() (MulBaseXC method), 680
get_elrep() (BaseDF method), 683
get_elrep() (BaseHamilton method), 686
get_exchange() (BaseHamilton method), 686
get_face_boxes() (in module

deepchem.utils.coordinate_box_utils), 640
get_feature_list() (in module

deepchem.feat.graph_features), 127
get_floor_and_ceil() (in module

deepchem.utils.safeops_utils), 776
get_global_step() (JaxModel method), 430
get_global_step() (KerasModel method), 310
get_global_step() (TorchModel method), 348
get_grid() (BaseSystem method), 695
get_grid_transform (class in

deepchem.utils.dft_utils.grid.radial_grid),
702

get_gvgrids() (Lattice method), 668
get_hamiltonian() (BaseSystem method), 695
get_interatomic_distances() (CoulombMatrix

static method), 140
get_interatomic_distances() (CoulombMatrixEig

static method), 142
get_intervals() (in module

deepchem.feat.graph_features), 126
get_kinnucl() (BaseHamilton method), 686
get_label_means() (DiskDataset method), 40
get_label_stds() (DiskDataset method), 40
get_largest_eival() (in module

deepchem.utils.differentiation_utils.solve),
739
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get_lattice_ls() (Lattice method), 668
get_loss_func() (GroverModel method), 392
get_max_print_size() (in module

deepchem.utils.debug_utils), 662
get_memory() (in module deepchem.utils.pytorch_utils),

761
get_method() (in module

deepchem.utils.differentiation_utils), 724
get_model_filename() (Model static method), 283
get_molecule_force_field() (ConformerGenerator

method), 632
get_motif_scores() (in module

deepchem.metrics.genomic_metrics), 596
get_neighbor_cells() (NeighborList method), 464
get_noise_batch() (GAN method), 331, 402
get_noise_input_shape() (BasicMolGANModel

method), 326, 413
get_noise_input_shape() (GAN method), 331
get_noise_input_shape() (GANModel method), 406
get_np_dtype() (in module

deepchem.utils.pytorch_utils), 764
get_nuclattr() (BaseHamilton method), 686
get_nuclei_energy() (BaseSystem method), 695
get_null_mol() (ConvMol static method), 63
get_num_atoms() (MultiConvMol method), 63
get_num_atoms() (WeaveMol method), 64
get_num_atoms_with_deg() (ConvMol method), 62
get_num_features() (WeaveMol method), 64
get_num_molecules() (MultiConvMol method), 63
get_num_tasks() (Model method), 285
get_number_shards() (DiskDataset method), 34
get_orbweight() (BaseSystem method), 695
get_overlap() (BaseHamilton method), 686
get_pair_edges() (WeaveMol method), 64
get_pair_features() (WeaveMol method), 64
get_params_filename() (Model static method), 283
get_print_threshold() (in module

deepchem.utils.debug_utils), 662
get_pssm_scores() (in module

deepchem.metrics.genomic_metrics), 596
get_pure_function() (in module

deepchem.utils.differentiation_utils.pure_function),
722

get_rgrid() (BaseGrid method), 682
get_rgrid() (RadialGrid method), 698
get_shape() (Dataset method), 67
get_shape() (DiskDataset method), 39
get_shape() (ImageDataset method), 42
get_shape() (NumpyDataset method), 25
get_shard() (DiskDataset method), 37
get_shard_ids() (DiskDataset method), 38
get_shard_size() (DiskDataset method), 34
get_shard_w() (DiskDataset method), 38
get_shard_y() (DiskDataset method), 38

get_special_tokens_mask() (RobertaFeaturizer
method), 191

get_statistics() (Dataset method), 69
get_statistics() (DiskDataset method), 40
get_statistics() (ImageDataset method), 44
get_statistics() (NumpyDataset method), 28
get_task_names() (Dataset method), 67
get_task_names() (DiskDataset method), 33
get_task_names() (ImageDataset method), 42
get_task_names() (NumpyDataset method), 25
get_task_type() (Model method), 285
get_unique_objs() (Uniquifier method), 774
get_vector() (ElemNetFeaturizer method), 154
get_vext() (BaseHamilton method), 687
get_vocab() (RobertaFeaturizer method), 191
get_vxc() (AddBaseXC method), 678
get_vxc() (BaseHamilton method), 687
get_vxc() (BaseXC method), 672
get_vxc() (MulBaseXC method), 680
get_xw_integration (class in

deepchem.utils.dft_utils.grid.radial_grid),
699

get_xyz_from_mol() (in module
deepchem.utils.rdkit_utils), 633

GetAtomicNum() (AtomShim method), 636
GetAtoms() (MolecularFragment method), 635
GetCoords() (AtomShim method), 636
GetCoords() (MolecularFragment method), 636
getlinopparams() (LinearOperator method), 709
GetNumAtoms() (MolecularFragment method), 636
getparamnames() (AddBaseXC method), 678
getparamnames() (BaseDF method), 684
getparamnames() (BaseGrid method), 682
getparamnames() (BaseHamilton method), 690
getparamnames() (BaseSystem method), 696
getparamnames() (BaseXC method), 672
getparamnames() (EditableModule method), 704
getparamnames() (LinearOperator method), 710
getparamnames() (MulBaseXC method), 681
getparamnames() (RadialGrid method), 698
getparams() (EditableModule method), 704
GetPartialCharge() (AtomShim method), 636
GetSetParamsError (class in

deepchem.utils.misc_utils), 773
getuniqueparams() (EditableModule method), 705
GINEncoder (class in deepchem.models.torch_models),

510
GlobalMutualInformationLoss (class in

deepchem.models.losses), 290
gmres() (in module deepchem.utils.differentiation_utils.solve),

736
GninaPoseGenerator (class in

deepchem.dock.pose_generation), 622
GNN (class in deepchem.models.torch_models.gnn), 511
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GNNHead (class in deepchem.models.torch_models.gnn),
512

GNNModular (class in deepchem.models.torch_models.gnn),
375

GradientDescent (class in
deepchem.models.optimizers), 301

GradientPenaltyLayer (class in
deepchem.models.torch_models.gan), 526

GraphCNN (class in deepchem.models.layers), 472
GraphContextPredLoss (class in

deepchem.models.losses), 297
GraphConv (class in deepchem.models.layers), 443
GraphConvConstants (class in

deepchem.feat.graph_features), 125
GraphConvModel (class in deepchem.models), 323
GraphData (class in deepchem.feat.graph_data), 64
GraphEdgeMaskingLoss (class in

deepchem.models.losses), 295
GraphEmbedPoolLayer (class in

deepchem.models.layers), 471
GraphGather (class in deepchem.models.layers), 446
GraphNetwork (class in

deepchem.models.torch_models.layers), 501
GraphNodeMaskingLoss (class in

deepchem.models.losses), 294
GraphPool (class in deepchem.models.layers), 445
GridHyperparamOpt (class in deepchem.hyper), 601
GroverAtomVocabPredictor (class in

deepchem.models.torch_models.grover_layers),
558

GroverAtomVocabTokenizer (class in
deepchem.feat.vocabulary_builders.grover_vocab),
167

GroverAtomVocabularyBuilder (class in
deepchem.feat.vocabulary_builders.grover_vocab),
168, 171

GroverAttentionHead (class in
deepchem.models.torch_models.grover_layers),
555

GroverBondVocabPredictor (class in
deepchem.models.torch_models.grover_layers),
559

GroverBondVocabTokenizer (class in
deepchem.feat.vocabulary_builders.grover_vocab),
168

GroverEmbedding (class in
deepchem.models.torch_models.grover_layers),
557, 558

GroverFeaturizer (class in deepchem.feat), 122
GroverFinetune (class in

deepchem.models.torch_models.grover),
563

GroverFunctionalGroupPredictor (class in
deepchem.models.torch_models.grover_layers),

560
GroverModel (class in deepchem.models.torch_models),

390
GroverMPNEncoder (class in

deepchem.models.torch_models.grover_layers),
555

GroverMTBlock (class in
deepchem.models.torch_models.grover_layers),
556

GroverPretrain (class in
deepchem.models.torch_models.grover),
561

GroverPretrainLoss (class in
deepchem.models.losses), 292

GroverReadout (class in
deepchem.models.torch_models.readout),
565

GroverTransEncoder (class in
deepchem.models.torch_models.grover_layers),
556

GymEnvironment (class in deepchem.rl), 612

H
H (AdjointLinearOperator property), 717
H (LinearOperator property), 710
handle_classification_mode() (in module

deepchem.metrics), 570
harmonic_mean() (ElectronSampler method), 665
hash_ecfp() (in module deepchem.utils.hash_utils), 651
hash_ecfp_pair() (in module

deepchem.utils.hash_utils), 652
hf_vocab (in module deepchem.feat.vocabulary_builders),

209
hhblits() (in module deepchem.utils.sequence_utils),

645
hhsearch() (in module deepchem.utils.sequence_utils),

646
Highway (class in deepchem.models.layers), 474
HighwayLayer (class in

deepchem.models.torch_models.layers), 554
HingeLoss (class in deepchem.models.losses), 288
HuberLoss (class in deepchem.models.losses), 288
HuggingFaceFeaturizer (class in

deepchem.feat.huggingface_featurizer), 166
HuggingFaceModel (class in

deepchem.models.torch_models.hf_models),
433

hydrogen_bond() (VinaFreeEnergy method), 461
hydrophobic() (VinaFreeEnergy method), 461
hyperparam_search() (GaussianProcessHyper-

paramOpt method), 604
hyperparam_search() (GridHyperparamOpt method),

602
hyperparam_search() (HyperparamOpt method), 600
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HyperparamOpt (class in deepchem.hyper), 600

I
id_to_features() (in module

deepchem.feat.graph_features), 127
ids (Dataset property), 68
ids (DiskDataset property), 39
ids (ImageDataset property), 42
ids (NumpyDataset property), 25
ImageDataset (class in deepchem.data), 42
ImageLoader (class in deepchem.data), 49
ImageTransformer (class in deepchem.trans), 265
in_silico_mutagenesis() (in module

deepchem.metrics.genomic_metrics), 596
indent() (in module deepchem.utils.misc_utils), 773
IndexSplitter (class in deepchem.splits), 221
InfoGraphEncoder (class in

deepchem.models.torch_models), 509
InfoGraphModel (class in

deepchem.models.torch_models), 370
InfoGraphStarModel (class in

deepchem.models.torch_models), 373
InfoMax3DModular (class in

deepchem.models.torch_models.gnn3d), 378
infomax_loss_loader() (GNNModular method), 377
InMemoryLoader (class in deepchem.data), 56
input_edge_func() (Net3D method), 523
InteratomicL2Distances (class in

deepchem.models.layers), 442
intersect_interval() (in module

deepchem.utils.coordinate_box_utils), 640
intervals (GraphConvConstants attribute), 125
inverse() (Affine method), 503
inverse() (RealNVPLayer method), 504
IRVTransformer (class in deepchem.trans), 271
is_angle_within_cutoff() (in module

deepchem.utils.geometry_utils), 648
is_fullmatrix_implemented (LinearOperator prop-

erty), 713
is_getparamnames_implemented (LinearOperator

property), 713
is_hermitian (LinearOperator property), 713
is_mm_implemented (LinearOperator property), 713
is_mv_implemented (LinearOperator property), 713
is_rmm_implemented (LinearOperator property), 713
is_rmv_implemented (LinearOperator property), 713
iterbatches() (Dataset method), 68
iterbatches() (DiskDataset method), 34
iterbatches() (ImageDataset method), 42
iterbatches() (NumpyDataset method), 25
IterRefLSTMEmbedding (class in

deepchem.models.layers), 454
itersamples() (Dataset method), 69
itersamples() (DiskDataset method), 34

itersamples() (ImageDataset method), 43
itersamples() (NumpyDataset method), 26
itershards() (DiskDataset method), 34

J
j2c (BaseDF property), 684
j3c (BaseDF property), 684
jac() (in module deepchem.utils.differentiation_utils.grad),

731
jaccard_index() (in module deepchem.metrics), 593
jaccard_score() (in module deepchem.metrics), 582
Jacobian (class in deepchem.utils.differentiation_utils.optimize.jacobian),

748
JaxModel (class in deepchem.models), 427
JsonLoader (class in deepchem.data), 52

K
k_fold_split() (ButinaSplitter method), 239
k_fold_split() (FingerprintSplitter method), 242
k_fold_split() (IndexSplitter method), 222
k_fold_split() (MaxMinSplitter method), 236
k_fold_split() (MolecularWeightSplitter method),

233
k_fold_split() (RandomGroupSplitter method), 214
k_fold_split() (RandomSplitter method), 211
k_fold_split() (RandomStratifiedSplitter method),

217
k_fold_split() (ScaffoldSplitter method), 230
k_fold_split() (SingletaskStratifiedSplitter method),

219
k_fold_split() (SpecifiedSplitter method), 225
k_fold_split() (Splitter method), 244
k_fold_split() (TaskSplitter method), 227
kappa_score() (in module deepchem.metrics), 594
KerasModel (class in deepchem.models), 303
kpts (BaseHamilton property), 685

L
L1Loss (class in deepchem.models.losses), 288
L2Loss (class in deepchem.models.losses), 288
Lattice (class in deepchem.utils.dft_utils), 667
lattice_vectors() (Lattice method), 668
LCNNFeaturizer (class in deepchem.feat), 157
LCNNModel (class in deepchem.models), 381
LearningRateSchedule (class in

deepchem.models.optimizers), 299
legacy_metadata (DiskDataset attribute), 31
Linear (class in deepchem.models.jax_models.layers),

566
LinearCosineDecay (class in

deepchem.models.optimizers), 302
LinearMixing (class in

deepchem.utils.differentiation_utils.optimize.jacobian),
751
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linearmixing() (in module
deepchem.utils.differentiation_utils.optimize.rootsolver),
747

LinearOperator (class in
deepchem.utils.differentiation_utils.linop),
706

load() (GroverAtomVocabularyBuilder class method),
170, 172

load() (VocabularyBuilder class method), 208
load_bace_classification() (in module

deepchem.molnet), 76
load_bace_regression() (in module

deepchem.molnet), 76
load_bandgap() (in module deepchem.molnet), 90
load_bbbc001() (in module deepchem.molnet), 77
load_bbbc002() (in module deepchem.molnet), 77
load_bbbc003() (in module deepchem.molnet), 78
load_bbbc004() (in module deepchem.molnet), 79
load_bbbc005() (in module deepchem.molnet), 80
load_bbbp() (in module deepchem.molnet), 81
load_cell_counting() (in module deepchem.molnet),

82
load_chembl() (in module deepchem.molnet), 82
load_chembl25() (in module deepchem.molnet), 83
load_clearance() (in module deepchem.molnet), 83
load_clintox() (in module deepchem.molnet), 84
load_csv_files() (in module

deepchem.utils.data_utils), 629
load_data() (in module deepchem.utils.data_utils), 628
load_dataset_from_disk() (in module

deepchem.utils.data_utils), 630
load_delaney() (in module deepchem.molnet), 85
load_docked_ligands() (in module

deepchem.utils.docking_utils), 660
load_factors() (in module deepchem.molnet), 85
load_freesolv() (in module deepchem.molnet), 86
load_from_disk() (in module

deepchem.utils.data_utils), 630
load_from_pretrained() (HuggingFaceModel

method), 436
load_from_pretrained() (KerasModel method), 310
load_from_pretrained() (ModularTorchModel

method), 351
load_from_pretrained() (TorchModel method), 348
load_hiv() (in module deepchem.molnet), 87
load_hopv() (in module deepchem.molnet), 87
load_hppb() (in module deepchem.molnet), 88
load_json_files() (in module

deepchem.utils.data_utils), 629
load_kaggle() (in module deepchem.molnet), 89
load_kinase() (in module deepchem.molnet), 89
load_lipo() (in module deepchem.molnet), 90
load_metadata() (DiskDataset method), 32
load_molecule() (in module

deepchem.utils.rdkit_utils), 634
load_mp_formation_energy() (in module

deepchem.molnet), 92
load_mp_metallicity() (in module

deepchem.molnet), 94
load_muv() (in module deepchem.molnet), 95
load_nci() (in module deepchem.molnet), 96
load_pcba() (in module deepchem.molnet), 96
load_pdbbind() (in module deepchem.molnet), 97
load_perovskite() (in module deepchem.molnet), 91
load_pickle_files() (in module

deepchem.utils.data_utils), 630
load_Platinum_Adsorption() (in module

deepchem.molnet), 109
load_ppb() (in module deepchem.molnet), 98
load_qm7() (in module deepchem.molnet), 98
load_qm8() (in module deepchem.molnet), 100
load_qm9() (in module deepchem.molnet), 101
load_sampl() (in module deepchem.molnet), 102
load_sdf_files() (in module

deepchem.utils.data_utils), 629
load_sider() (in module deepchem.molnet), 103
load_thermosol() (in module deepchem.molnet), 104
load_tox21() (in module deepchem.molnet), 104
load_toxcast() (in module deepchem.molnet), 105
load_uspto() (in module deepchem.molnet), 106
load_uv() (in module deepchem.molnet), 107
load_zinc15() (in module deepchem.molnet), 108
LocalGlobalDiscriminator (class in

deepchem.models.torch_models.gnn), 512
LocalMutualInformationLoss (class in

deepchem.models.losses), 291
log_prob_gaussian() (ElectronSampler method), 665
LogM3Transformation (class in

deepchem.utils.dft_utils.grid.radial_grid),
701

LogTransformer (class in deepchem.trans), 253
Loss (class in deepchem.models.losses), 288
loss_func() (GNNModular method), 377
loss_func() (GroverModel method), 392
loss_func() (InfoGraphModel method), 372
loss_func() (InfoGraphStarModel method), 374
loss_func() (InfoMax3DModular method), 381
loss_func() (ModularTorchModel method), 350
LowRankMatrix (class in

deepchem.utils.differentiation_utils.optimize.jacobian),
751

LSTMStep (class in deepchem.models.layers), 452
lsymeig() (in module

deepchem.utils.differentiation_utils.symeig),
728

M
m() (LinearOperator class method), 708
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MACCSKeysFingerprint (class in deepchem.feat), 131
mae_score() (in module deepchem.metrics), 594
make_copy() (BaseSystem method), 696
make_pytorch_dataset() (Dataset method), 70
make_pytorch_dataset() (DiskDataset method), 35
make_pytorch_dataset() (ImageDataset method), 43
make_pytorch_dataset() (NumpyDataset method), 27
make_tf_dataset() (Dataset method), 70
make_tf_dataset() (DiskDataset method), 40
make_tf_dataset() (ImageDataset method), 45
make_tf_dataset() (NumpyDataset method), 29
MAML (class in deepchem.metalearning), 606
MAML (class in deepchem.metalearning.torch_maml), 607
map_unique_objs() (Uniquifier method), 774
mask_token (RobertaFeaturizer property), 191
mask_token_id (RobertaFeaturizer property), 191
masked_edge_loss_loader() (GNNModular method),

377
masked_node_loss_loader() (GNNModular method),

377
match_dim() (in module

deepchem.utils.differentiation_utils), 706
MATEmbedding (class in

deepchem.models.torch_models.layers), 498
MATEncoderLayer (class in

deepchem.models.torch_models.layers), 494
MaterialCompositionFeaturizer (class in

deepchem.feat), 206
MaterialStructureFeaturizer (class in

deepchem.feat), 207
MatExpOrbParams (class in deepchem.utils.dft_utils),

692
MATFeaturizer (class in deepchem.feat), 131
MATGenerator (class in

deepchem.models.torch_models.layers), 499
MathWarning (class in deepchem.utils.misc_utils), 773
MATModel (class in deepchem.models.torch_models), 384
matmul() (LinearOperator method), 710
MatmulLinearOperator (class in

deepchem.utils.differentiation_utils.linop),
717

matrix_mul() (IRVTransformer static method), 272
MatrixLinearOperator (class in

deepchem.utils.differentiation_utils.linop),
718

matthews_corrcoef() (in module deepchem.metrics),
570

max_len_sentences_pair (RobertaFeaturizer prop-
erty), 191

max_len_single_sentence (RobertaFeaturizer prop-
erty), 191

MaxMinSplitter (class in deepchem.splits), 235
mean_absolute_error() (in module

deepchem.metrics), 576

mean_squared_error() (in module deepchem.metrics),
575

MEGNetModel (class in deepchem.models), 383
memory_cache_size (DiskDataset property), 39
merge() (DiskDataset static method), 36
merge() (NumpyDataset static method), 28
merge_molecular_fragments() (in module

deepchem.utils.fragment_utils), 637
merge_overlapping_boxes() (in module

deepchem.utils.coordinate_box_utils), 640
message() (MXMNetGlobalMessagePassing method),

540
message_func() (PNALayer method), 516
message_function() (Net3DLayer method), 521
MessagePassing (class in deepchem.models.layers), 485
metadata_df (DiskDataset attribute), 31
MetaLearner (class in deepchem.metalearning), 605
Metric (class in deepchem.metrics), 597
minimize() (in module

deepchem.utils.differentiation_utils.optimize.rootfinder),
756

minimize_conformers() (ConformerGenerator
method), 633

MinMaxTransformer (class in deepchem.trans), 249
mm() (LinearOperator method), 709
Model (class in deepchem.models), 283
ModularTorchModel (class in

deepchem.models.torch_models.modular),
349

Mol2VecFingerprint (class in deepchem.feat), 135
MolecularFeaturizer (class in deepchem.feat), 206
MolecularFragment (class in

deepchem.utils.fragment_utils), 635
MolecularWeightSplitter (class in deepchem.splits),

232
MoleculeLoadException (class in

deepchem.utils.rdkit_utils), 633
MolGANAggregationLayer (class in

deepchem.models.layers), 449
MolGANAggregationLayer (class in

deepchem.models.torch_models.layers), 530
MolGANConvolutionLayer (class in

deepchem.models.layers), 447
MolGANConvolutionLayer (class in

deepchem.models.torch_models.layers), 528
MolGANEncoderLayer (class in

deepchem.models.layers), 451
MolGANEncoderLayer (class in

deepchem.models.torch_models.layers), 532
MolGanFeaturizer (class in deepchem.feat), 116
MolGANMultiConvolutionLayer (class in

deepchem.models.layers), 450
MolGANMultiConvolutionLayer (class in

deepchem.models.torch_models.layers), 531
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MolGraphConvFeaturizer (class in deepchem.feat),
117

MordredDescriptors (class in deepchem.feat), 138
move() (DiskDataset method), 33
move() (ElectronSampler method), 666
MPNNModel (class in deepchem.models), 324
MPNNModel (class in deepchem.models.torch_models),

369
MSA_to_dataset() (in module

deepchem.utils.sequence_utils), 646
MulBaseXC (class in deepchem.utils.dft_utils.xc.base_xc),

679
MulLinearOperator (class in

deepchem.utils.differentiation_utils.linop),
715

MultiConvMol (class in deepchem.feat.mol_graphs), 63
MultiHeadedMATAttention (class in

deepchem.models.torch_models.layers), 496
MultilayerPerceptron (class in

deepchem.models.torch_models.layers), 491
MultitaskClassifier (class in deepchem.models), 358
MultitaskFitTransformRegressor (class in

deepchem.models), 356
MultitaskRegressor (class in deepchem.models), 355
mv() (FullRankMatrix method), 753
mv() (LinearOperator method), 709
mv() (LowRankMatrix method), 752
MXMNetBesselBasisLayer (class in

deepchem.models.torch_models.layers), 540
MXMNetFeaturizer (class in deepchem.feat), 124
MXMNetGlobalMessagePassing (class in

deepchem.models.torch_models.layers), 538
MXMNetLocalMessagePassing (class in

deepchem.models.torch_models.layers), 550
MXMNetSphericalBasisLayer (class in

deepchem.models.torch_models.layers), 553

N
n_actions (Environment property), 611
nao (BaseHamilton property), 685
NeighborList (class in deepchem.models.layers), 462
Net3D (class in deepchem.models.torch_models.gnn3d),

521
Net3DLayer (class in deepchem.models.torch_models.gnn3d),

520
node_features (GraphData attribute), 64
node_pos_features (GraphData attribute), 64
nonlinearity() (VinaFreeEnergy method), 461
NormalizationTransformer (class in

deepchem.trans), 247
normalize() (CoulombFitTransformer method), 269
normalize_bcast_dims() (in module

deepchem.utils.differentiation_utils), 705

normalize_labels_shape() (in module
deepchem.metrics), 569

normalize_prediction_shape() (in module
deepchem.metrics), 569

normalize_weight_shape() (in module
deepchem.metrics), 568

NormalizingFlow (class in
deepchem.models.torch_models), 386

NormalizingFlowModel (class in
deepchem.models.normalizing_flows), 340

NTXentMultiplePositives (class in
deepchem.models.losses), 298

num_edges (GraphData attribute), 64
num_edges_features (GraphData attribute), 65
num_node_features (GraphData attribute), 64
num_nodes (GraphData attribute), 64
num_special_tokens_to_add() (RobertaFeaturizer

method), 192
numel (BaseSystem property), 697
numpy_to_torch() (GraphData method), 66
NumpyDataset (class in deepchem.data), 24

O
objparams() (PureFunction method), 719, 721
occnumber() (in module deepchem.utils.safeops_utils),

775
one_hot_encode() (in module

deepchem.utils.molecule_feature_utils), 654
one_of_k_encoding() (in module

deepchem.feat.graph_features), 125
one_of_k_encoding_unk() (in module

deepchem.feat.graph_features), 126
OneHotFeaturizer (class in deepchem.feat), 146
Optimizer (class in deepchem.models.optimizers), 299
orb2params() (BaseOrbParams static method), 691
orb2params() (MatExpOrbParams static method), 693
orb2params() (QROrbParams static method), 692
ortho() (in module deepchem.utils.differentiation_utils.symeig),

731
output_node_func() (Net3D method), 523
output_predictions() (Evaluator method), 642
output_statistics() (Evaluator method), 642

P
pad() (RobertaFeaturizer method), 192
pad_array() (in module deepchem.utils.data_utils), 627
pad_array() (MATModel method), 385
pad_sequence() (MATModel method), 386
pad_smile() (OneHotFeaturizer method), 147
pad_string() (OneHotFeaturizer method), 147
pad_token (RobertaFeaturizer property), 193
pad_token_id (RobertaFeaturizer property), 193
pad_token_type_id (RobertaFeaturizer property), 193
PagtnModel (class in deepchem.models), 365
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PagtnMolGraphFeaturizer (class in deepchem.feat),
119

pair_features() (in module
deepchem.feat.graph_features), 130

pairwise_distances() (in module
deepchem.dock.pose_scoring), 625

parameters() (MetaLearner method), 606
params (Lattice property), 668
params2orb() (BaseOrbParams static method), 691
params2orb() (MatExpOrbParams static method), 693
params2orb() (QROrbParams static method), 692
parse_moldesc (class in

deepchem.utils.dft_utils.api.parser), 693
pearson_r2_score() (in module deepchem.metrics),

593
PFMFeaturizer (class in

deepchem.feat.sequence_featurizers), 173
PINNModel (class in deepchem.models), 431
pixel_error() (in module deepchem.metrics), 593
PNA (class in deepchem.models.torch_models), 518
PNAGNN (class in deepchem.models.torch_models.pna_gnn),

517
PNALayer (class in deepchem.models.torch_models.pna_gnn),

515
PoissonLoss (class in deepchem.models.losses), 288
Policy (class in deepchem.rl), 613
PolynomialDecay (class in

deepchem.models.optimizers), 301
PoseGenerator (class in

deepchem.dock.pose_generation), 620
PositionwiseFeedForward (class in

deepchem.models.torch_models.layers), 497
possible_atom_list (GraphConvConstants attribute),

125
possible_bond_stereo (GraphConvConstants at-

tribute), 125
possible_chirality_list (GraphConvConstants at-

tribute), 125
possible_formal_charge_list (GraphConvCon-

stants attribute), 125
possible_hybridization_list (GraphConvCon-

stants attribute), 125
possible_number_radical_e_list (GraphConvCon-

stants attribute), 125
possible_numH_list (GraphConvConstants attribute),

125
possible_valence_list (GraphConvConstants

attribute), 125
PowerTransformer (class in deepchem.trans), 257
PPO (class in deepchem.rl.ppo), 616
PPOLoss (class in deepchem.rl.ppo), 618
prc_auc_score() (in module deepchem.metrics), 594
precision_recall_curve() (in module

deepchem.metrics), 580

precision_score() (in module deepchem.metrics), 577
predict() (A2C method), 615
predict() (JaxModel method), 430
predict() (KerasModel method), 308
predict() (Model method), 284
predict() (PPO method), 618
predict() (SklearnModel method), 286
predict() (TorchModel method), 345
predict_embedding() (KerasModel method), 308
predict_embedding() (SeqToSeqModel method), 398
predict_embedding() (TorchModel method), 346
predict_embeddings() (SeqToSeq method), 330
predict_from_embedding() (SeqToSeqModel

method), 398
predict_from_embeddings() (SeqToSeq method), 330
predict_from_sequences() (SeqToSeq method), 330
predict_from_sequences() (SeqToSeqModel

method), 398
predict_gan_generator() (BasicMolGANModel

method), 327, 413
predict_gan_generator() (GAN method), 333
predict_gan_generator() (GANModel method), 407
predict_on_batch() (JaxModel method), 429
predict_on_batch() (KerasModel method), 307
predict_on_batch() (MAML method), 607, 610
predict_on_batch() (Model method), 283
predict_on_batch() (SklearnModel method), 286
predict_on_batch() (TorchModel method), 345
predict_on_generator() (JaxModel method), 429
predict_on_generator() (KerasModel method), 306
predict_on_generator() (MultitaskFitTransformRe-

gressor method), 357
predict_on_generator() (TorchModel method), 345
predict_uncertainty() (KerasModel method), 308
predict_uncertainty() (TorchModel method), 346
predict_uncertainty_on_batch() (KerasModel

method), 307
predict_uncertainty_on_batch() (TorchModel

method), 345
prepare_for_model() (RobertaFeaturizer method),

193
prepare_inputs() (in module

deepchem.utils.docking_utils), 660
prepare_seq2seq_batch() (RobertaFeaturizer

method), 196
pretrans_edges() (PNALayer method), 517
ProgressiveMultitaskClassifier (class in

deepchem.models), 314
ProgressiveMultitaskModel (class in

deepchem.models.torch_models), 419
ProgressiveMultitaskRegressor (class in

deepchem.models), 315
prune_conformers() (ConformerGenerator method),

633
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PubChemFingerprint (class in deepchem.feat), 134
PureFunction (class in

deepchem.utils.differentiation_utils.pure_function),
718, 721

push_to_hub() (RobertaFeaturizer method), 197

Q
QROrbParams (class in deepchem.utils.dft_utils), 692

R
r2_score() (in module deepchem.metrics), 573
radial_cutoff() (AtomicConvolution method), 466
radial_symmetry() (ANIFeat method), 471
radial_symmetry_function() (AtomicConvolution

method), 465
RadialGrid (class in deepchem.utils.dft_utils.grid.radial_grid),

697
RandomGroupSplitter (class in deepchem.splits), 213
randomize_coulomb_matrix() (CoulombMatrix

method), 140
randomize_coulomb_matrix() (CoulombMatrixEig

method), 142
RandomSplitter (class in deepchem.splits), 210
RandomStratifiedSplitter (class in

deepchem.splits), 215
RawFeaturizer (class in deepchem.feat), 149
RDKitConformerFeaturizer (class in deepchem.feat),

123
RDKitDescriptors (class in deepchem.feat), 136
RdkitGridFeaturizer (class in deepchem.feat), 150
read_gnina_log() (in module

deepchem.utils.docking_utils), 661
realize() (CoulombFitTransformer method), 269
realize() (IRVTransformer method), 271
RealNVPLayer (class in

deepchem.models.torch_models.layers), 503
recall_score() (in module deepchem.metrics), 571
recip_vectors() (Lattice method), 668
reduce() (FullRankMatrix method), 754
reduce() (LowRankMatrix method), 753
reduce() (SpinParam method), 669
reduce_func() (PNALayer method), 516
reduce_molecular_complex_to_contacts() (in

module deepchem.utils.fragment_utils), 638
reference_lists (GraphConvConstants attribute), 125
register_for_auto_class() (RobertaFeaturizer

class method), 198
relative_difference() (in module

deepchem.utils.evaluate), 644
reload() (AtomicConvModel method), 337
reload() (Model method), 283
reload() (NormalizingFlowModel method), 341
reload() (SklearnModel method), 286
remove_pad() (SmilesToSeq method), 145

repulsion() (VinaFreeEnergy method), 461
requires_grid() (BaseSystem method), 696
reset() (Environment method), 612
reset() (GymEnvironment method), 612
reset_parameters() (AtomEncoder method), 514
reset_parameters() (MXMNetBesselBasisLayer

method), 541
reshard() (DiskDataset method), 33
restore() (A2C method), 616
restore() (GroverModel method), 393
restore() (InfoGraphModel method), 372
restore() (KerasModel method), 310
restore() (MAML method), 607, 609
restore() (ModularTorchModel method), 352
restore() (PPO method), 618
restore() (TorchModel method), 348
restore_objparams() (PureFunction method), 719,

722
rmm() (LinearOperator method), 709
rms_score() (in module deepchem.metrics), 594
RMSProp (class in deepchem.models.optimizers), 301
rmv() (FullRankMatrix method), 753
rmv() (LinearOperator method), 709
rmv() (LowRankMatrix method), 752
RobertaFeaturizer (class in deepchem.feat), 175
RobustMultitaskClassifier (class in

deepchem.models), 311
RobustMultitaskRegressor (class in

deepchem.models), 313
roc_auc_score() (in module deepchem.metrics), 586
rootfinder() (in module

deepchem.utils.differentiation_utils.optimize.rootfinder),
754

RxnFeaturizer (class in deepchem.feat), 202
RxnSplitTransformer (class in deepchem.trans), 275

S
safe_cdist() (in module deepchem.utils.safeops_utils),

776
safe_index() (in module

deepchem.feat.graph_features), 126
safedenom() (in module

deepchem.utils.differentiation_utils.solve),
738

safenorm() (in module deepchem.utils.safeops_utils),
775

safepow() (in module deepchem.utils.safeops_utils), 774
SAMFeaturizer (class in deepchem.feat), 160
SAMLoader (class in deepchem.data.data_loader), 59
sample() (FakeGraphGenerator method), 663
sampled_electrons (ElectronSampler attribute), 665
sanitize_special_tokens() (RobertaFeaturizer

method), 198
save() (AtomicConvModel method), 337
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save() (GroverAtomVocabularyBuilder method), 169,
172

save() (Model method), 284
save() (NormalizingFlowModel method), 341
save() (SklearnModel method), 286
save() (VocabularyBuilder method), 208
save_checkpoint() (KerasModel method), 310
save_checkpoint() (MAML method), 610
save_checkpoint() (ModularTorchModel method),

352
save_checkpoint() (TorchModel method), 347
save_dataset_to_disk() (in module

deepchem.utils.data_utils), 631
save_pretrained() (RobertaFeaturizer method), 198
save_to_disk() (DiskDataset method), 32
save_to_disk() (in module deepchem.utils.data_utils),

630
save_vocabulary() (RobertaFeaturizer method), 199
save_vocabulary() (SmilesTokenizer method), 165
ScaffoldSplitter (class in deepchem.splits), 228
scale_amplification() (in module

deepchem.utils.graph_utils), 651
scale_attenuation() (in module

deepchem.utils.graph_utils), 651
scale_identity() (in module

deepchem.utils.graph_utils), 650
ScaledDotProductAttention (class in

deepchem.models.torch_models.attention),
564

ScaleNorm (class in deepchem.models.torch_models.layers),
493

scipy_linalg_op() (LinearOperator method), 710
ScScoreModel (class in deepchem.models), 327
SDFLoader (class in deepchem.data), 53
segment_sum() (in module

deepchem.utils.pytorch_utils), 760
select() (Dataset method), 69
select() (DiskDataset method), 39
select() (ImageDataset method), 43
select() (NumpyDataset method), 26
select_action() (A2C method), 615
select_action() (PPO method), 618
select_task() (MetaLearner method), 606
SelfAttention (class in

deepchem.models.torch_models.attention),
565

sentences2vec() (Mol2VecFingerprint method), 136
sep_token (RobertaFeaturizer property), 199
sep_token_id (RobertaFeaturizer property), 199
seq_one_hot_encode() (in module

deepchem.utils.genomics_utils), 644
SeqToSeq (class in deepchem.models), 328
SeqToSeq (class in deepchem.models.torch_models.seqtoseq),

545

SeqToSeqModel (class in
deepchem.models.torch_models), 396

set_attr (class in deepchem.utils.attribute_utils), 759
set_cache() (BaseSystem method), 695
set_default_option() (in module

deepchem.utils.differentiation_utils), 723
set_max_print_size() (in module

deepchem.utils.debug_utils), 662
set_objparams() (PureFunction method), 719, 722
set_print_threshold() (in module

deepchem.utils.debug_utils), 662
set_shard() (DiskDataset method), 38
set_truncation_and_padding() (RobertaFeaturizer

method), 200
SetGather (class in deepchem.models.layers), 488
SetGather (class in deepchem.models.torch_models.layers),

510
setparams() (EditableModule method), 704
setuniqueparams() (EditableModule method), 705
setup() (BroydenFirst method), 750
setup() (Jacobian method), 749
setup() (LinearMixing method), 751
setup_grid() (BaseHamilton method), 685
setup_grid() (BaseSystem method), 695
setup_linear_problem() (in module

deepchem.utils.differentiation_utils.solve),
737

setup_precond() (in module
deepchem.utils.differentiation_utils.solve),
736

ShannonEntropy (class in deepchem.models.losses), 290
shape (LinearOperator property), 713
shape2str() (in module deepchem.utils.misc_utils), 773
shuffle_each_shard() (DiskDataset method), 37
shuffle_shards() (DiskDataset method), 37
SigmoidCrossEntropy (class in

deepchem.models.losses), 288
SineCoulombMatrix (class in deepchem.feat), 155
SingletaskStratifiedSplitter (class in

deepchem.splits), 219
SklearnModel (class in deepchem.models), 285
SlicedRadialGrid (class in

deepchem.utils.dft_utils.grid.radial_grid),
699

slow_tokenizer_class (RobertaFeaturizer attribute),
200

SluiceLoss (class in deepchem.models.layers), 468
Smiles2Vec (class in deepchem.models), 337
smiles_from_seq() (SmilesToSeq method), 145
smiles_to_seq() (TextCNNModel method), 335, 423
smiles_to_seq_batch() (TextCNNModel method),

335, 424
SmilesToImage (class in deepchem.feat), 145
SmilesTokenizer (class in deepchem.feat), 163
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SmilesToSeq (class in deepchem.feat), 144
SNAPFeaturizer (class in deepchem.feat), 149
so3_generators() (in module

deepchem.utils.equivariance_utils), 770
SoftmaxCrossEntropy (class in

deepchem.models.losses), 288
solve() (BroydenFirst method), 750
solve() (in module deepchem.utils.differentiation_utils.solve),

739
solve() (Jacobian method), 749
solve() (LinearMixing method), 751
solve_ABE() (in module

deepchem.utils.differentiation_utils.solve),
735

solve_torchfcn (class in
deepchem.utils.differentiation_utils.solve),
742

sparse_shuffle() (DiskDataset method), 37
SparseAdam (class in deepchem.models.optimizers), 300
SparseMatrixOneHotFeaturizer (class in

deepchem.feat), 148
SparseSoftmaxCrossEntropy (class in

deepchem.models.losses), 288
special_tokens_map (RobertaFeaturizer property),

200
special_tokens_map_extended (RobertaFeaturizer

property), 200
SpecifiedSplitter (class in deepchem.splits), 224
spin (BaseSystem property), 696
SpinParam (class in deepchem.utils.dft_utils), 669
split() (ButinaSplitter method), 238
split() (FingerprintSplitter method), 241
split() (IndexSplitter method), 221
split() (MaxMinSplitter method), 235
split() (MolecularWeightSplitter method), 232
split() (RandomGroupSplitter method), 213
split() (RandomSplitter method), 210
split() (RandomStratifiedSplitter method), 216
split() (ScaffoldSplitter method), 229
split() (SingletaskStratifiedSplitter method), 219
split() (SpecifiedSplitter method), 225
split() (Splitter method), 245
split() (TaskSplitter method), 227
Splitter (class in deepchem.splits), 244
SquaredHingeLoss (class in deepchem.models.losses),

288
Stack (class in deepchem.models.layers), 459
state (Environment property), 611
state_dtype (Environment property), 611
state_shape (Environment property), 611
step() (Environment method), 612
step() (GymEnvironment method), 612
strip_hydrogens() (in module

deepchem.utils.fragment_utils), 637

su2_generators() (in module
deepchem.utils.equivariance_utils), 769

subgraph() (GraphData method), 66
SublayerConnection (class in

deepchem.models.torch_models.layers), 497
subset() (DiskDataset method), 36
sum() (SpinParam method), 669
sum_neigh() (GraphConv method), 445
SwitchedDropout (class in deepchem.models.layers),

455
symeig() (in module deepchem.utils.differentiation_utils.symeig),

728
symeig_torchfcn (class in

deepchem.utils.differentiation_utils.symeig),
730

T
tallqr() (in module deepchem.utils.pytorch_utils), 762
TaskSplitter (class in deepchem.splits), 227
TensorflowMultitaskIRVClassifier (class in

deepchem.models), 311
TensorNonTensorSeparator() (in module

deepchem.utils.pytorch_utils), 762
terminated (Environment property), 611
TerminationCondition() (in module

deepchem.utils.differentiation_utils.optimize.minimizer),
745

TerminationCondition() (in module
deepchem.utils.differentiation_utils.optimize.rootsolver),
748

TextCNNModel (class in deepchem.models), 334
TextCNNModel (class in

deepchem.models.torch_models), 422
THRESHOLD_MEMORY (_Config attribute), 690
to_csv() (Dataset method), 71
to_csv() (DiskDataset method), 41
to_csv() (ImageDataset method), 45
to_csv() (NumpyDataset method), 29
to_dataframe() (Dataset method), 70
to_dataframe() (DiskDataset method), 41
to_dataframe() (ImageDataset method), 45
to_dataframe() (NumpyDataset method), 29
to_dgl_graph() (GraphData method), 65
to_fortran_order() (in module

deepchem.utils.pytorch_utils), 763
to_json() (NumpyDataset method), 27
to_one_hot() (in module deepchem.metrics), 567
to_pyg_graph() (GraphData method), 65
to_seq() (SmilesToSeq method), 145
tokenize() (BasicSmilesTokenizer method), 166
tokenize() (RobertaFeaturizer method), 200
top_k_accuracy_score() (in module

deepchem.metrics), 592
TorchModel (class in deepchem.models), 341
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TorchNNPureFunction (class in
deepchem.utils.differentiation_utils.pure_function),
720

train_new_from_iterator() (RobertaFeaturizer
method), 201

train_on_current_task() (MAML method), 607, 610
train_test_split() (ButinaSplitter method), 239
train_test_split() (FingerprintSplitter method), 242
train_test_split() (IndexSplitter method), 223
train_test_split() (MaxMinSplitter method), 237
train_test_split() (MolecularWeightSplitter

method), 234
train_test_split() (RandomGroupSplitter method),

214
train_test_split() (RandomSplitter method), 211
train_test_split() (RandomStratifiedSplitter

method), 217
train_test_split() (ScaffoldSplitter method), 231
train_test_split() (SingletaskStratifiedSplitter

method), 220
train_test_split() (SpecifiedSplitter method), 225
train_test_split() (Splitter method), 245
train_test_split() (TaskSplitter method), 228
train_valid_test_split() (ButinaSplitter method),

240
train_valid_test_split() (FingerprintSplitter

method), 243
train_valid_test_split() (IndexSplitter method),

223
train_valid_test_split() (MaxMinSplitter

method), 237
train_valid_test_split() (MolecularWeightSplitter

method), 234
train_valid_test_split() (RandomGroupSplitter

method), 214
train_valid_test_split() (RandomSplitter

method), 212
train_valid_test_split() (RandomStratifiedSplit-

ter method), 218
train_valid_test_split() (ScaffoldSplitter

method), 231
train_valid_test_split() (SingletaskStratifiedSplit-

ter method), 220
train_valid_test_split() (SpecifiedSplitter

method), 226
train_valid_test_split() (Splitter method), 244
train_valid_test_split() (TaskSplitter method),

227
training_step() (DCLightningModule method), 426
transform() (BalancingTransformer method), 261
transform() (CDFTransformer method), 257
transform() (ClippingTransformer method), 252
transform() (CoulombFitTransformer method), 270
transform() (DAGTransformer method), 274

transform() (Dataset method), 69
transform() (DiskDataset method), 35
transform() (DuplicateBalancingTransformer method),

264
transform() (FeaturizationTransformer method), 267
transform() (ImageDataset method), 43
transform() (ImageTransformer method), 265
transform() (IRVTransformer method), 272
transform() (LogTransformer method), 254
transform() (MinMaxTransformer method), 250
transform() (NormalizationTransformer method), 248
transform() (NumpyDataset method), 26
transform() (PowerTransformer method), 259
transform() (RxnSplitTransformer method), 277
transform() (Transformer method), 278
transform_array() (BalancingTransformer method),

261
transform_array() (CDFTransformer method), 256
transform_array() (ClippingTransformer method),

252
transform_array() (CoulombFitTransformer method),

270
transform_array() (DAGTransformer method), 274
transform_array() (DuplicateBalancingTransformer

method), 263
transform_array() (FeaturizationTransformer

method), 267
transform_array() (ImageTransformer method), 265
transform_array() (IRVTransformer method), 272
transform_array() (LogTransformer method), 254
transform_array() (MinMaxTransformer method),

250
transform_array() (NormalizationTransformer

method), 247
transform_array() (PowerTransformer method), 258
transform_array() (RxnSplitTransformer method),

276
transform_array() (Transformer method), 278
transform_on_array() (BalancingTransformer

method), 261
transform_on_array() (CDFTransformer method),

257
transform_on_array() (ClippingTransformer

method), 252
transform_on_array() (CoulombFitTransformer

method), 270
transform_on_array() (DAGTransformer method),

275
transform_on_array() (DuplicateBalancingTrans-

former method), 264
transform_on_array() (FeaturizationTransformer

method), 268
transform_on_array() (ImageTransformer method),

266
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transform_on_array() (IRVTransformer method), 273
transform_on_array() (LogTransformer method), 255
transform_on_array() (MinMaxTransformer

method), 250
transform_on_array() (NormalizationTransformer

method), 248
transform_on_array() (PowerTransformer method),

259
transform_on_array() (RxnSplitTransformer

method), 277
transform_on_array() (Transformer method), 279
Transformer (class in deepchem.trans), 278
TreutlerM4Transformation (class in

deepchem.utils.dft_utils.grid.radial_grid),
701

truncate_sequences() (RobertaFeaturizer method),
201

U
UG_to_DAG() (DAGTransformer method), 274
unfreeze_components() (ModularTorchModel

method), 350
UnimplementedError (class in

deepchem.utils.misc_utils), 773
union() (in module deepchem.utils.coordinate_box_utils),

640
Uniquifier (class in deepchem.utils.misc_utils), 774
unit_vector() (in module

deepchem.utils.geometry_utils), 647
unk_token (RobertaFeaturizer property), 202
unk_token_id (RobertaFeaturizer property), 202
unsorted_segment_sum() (in module

deepchem.utils.pytorch_utils), 760
untargz_file() (in module deepchem.utils.data_utils),

628
untransform() (BalancingTransformer method), 262
untransform() (CDFTransformer method), 256
untransform() (ClippingTransformer method), 252
untransform() (CoulombFitTransformer method), 270
untransform() (DAGTransformer method), 274
untransform() (DuplicateBalancingTransformer

method), 265
untransform() (FeaturizationTransformer method),

268
untransform() (ImageTransformer method), 266
untransform() (IRVTransformer method), 272
untransform() (LogTransformer method), 254
untransform() (MinMaxTransformer method), 250
untransform() (NormalizationTransformer method),

248
untransform() (OneHotFeaturizer method), 148
untransform() (PowerTransformer method), 259
untransform() (RxnSplitTransformer method), 277

untransform() (SparseMatrixOneHotFeaturizer
method), 148

untransform() (Transformer method), 279
untransform_grad() (NormalizationTransformer

method), 248
unzip_file() (in module deepchem.utils.data_utils),

628
update() (BroydenFirst method), 750
update() (Jacobian method), 749
update() (LinearMixing method), 751
update_function() (Net3DLayer method), 521
Usage (_Config attribute), 690
uselinopparams() (LinearOperator method), 709
useobjparams() (PureFunction method), 719, 722
UserCSVLoader (class in deepchem.data), 48
UserDefinedFeaturizer (class in deepchem.feat), 204
usymeig() (in module

deepchem.utils.differentiation_utils.symeig),
728

V
VAE_ELBO (class in deepchem.models.losses), 289
VAE_KLDivergence (class in deepchem.models.losses),

289
ValGrad (class in deepchem.utils.dft_utils), 669
variables (MetaLearner property), 606
VariationalRandomizer (class in

deepchem.models.torch_models.layers), 542
vectorize() (in module deepchem.utils.hash_utils), 652
VERBOSE (_Config attribute), 690
vina_energy_term() (in module

deepchem.dock.pose_scoring), 627
vina_gaussian_first() (in module

deepchem.dock.pose_scoring), 626
vina_gaussian_second() (in module

deepchem.dock.pose_scoring), 626
vina_hbond() (in module

deepchem.dock.pose_scoring), 626
vina_hydrophobic() (in module

deepchem.dock.pose_scoring), 625
vina_nonlinearity() (in module

deepchem.dock.pose_scoring), 625
vina_repulsion() (in module

deepchem.dock.pose_scoring), 625
VinaFreeEnergy (class in deepchem.models.layers), 460
VinaPoseGenerator (class in

deepchem.dock.pose_generation), 621
vocab_size (RobertaFeaturizer property), 202
vocab_size (SmilesTokenizer property), 164
VocabularyBuilder (class in

deepchem.feat.vocabulary_builders.vocabulary_builder),
208

volume() (CoordinateBox method), 639
volume() (Lattice method), 668
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voxelize() (in module deepchem.utils.voxel_utils), 653

W
w (Dataset property), 68
w (DiskDataset property), 39
w (ImageDataset property), 42
w (NumpyDataset property), 25
Weave (class in deepchem.models.torch_models), 414
WeaveFeaturizer (class in deepchem.feat), 114
WeaveGather (class in deepchem.models.layers), 478
WeaveGather (class in

deepchem.models.torch_models.layers), 536
WeaveLayer (class in deepchem.models.layers), 475
WeaveLayer (class in deepchem.models.torch_models.layers),

534
WeaveModel (class in deepchem.models), 317
WeaveModel (class in deepchem.models.torch_models),

416
WeaveMol (class in deepchem.feat.mol_graphs), 63
WeightedLinearCombo (class in

deepchem.models.layers), 456
wfnormalize_() (CGTOBasis method), 670
WGAN (class in deepchem.models), 333
WGANModel (class in deepchem.models.torch_models),

408
wigner_D() (in module

deepchem.utils.equivariance_utils), 772
wrap_gmres() (in module

deepchem.utils.differentiation_utils.solve),
733

write_data_to_disk() (DiskDataset static method),
32

write_gnina_conf() (in module
deepchem.utils.docking_utils), 660

write_molecule() (in module
deepchem.utils.rdkit_utils), 634

write_vina_conf() (in module
deepchem.utils.docking_utils), 659

X
X (Dataset property), 67
X (DiskDataset property), 39
X (ImageDataset property), 42
X (NumpyDataset property), 25
x2r() (BaseGridTransform method), 699
x2r() (DE2Transformation method), 700
x2r() (LogM3Transformation method), 701
x2r() (TreutlerM4Transformation method), 702
X_transform() (CoulombFitTransformer method), 269
X_transform() (IRVTransformer method), 272

Y
y (Dataset property), 68

y (DiskDataset property), 39
y (ImageDataset property), 42
y (NumpyDataset property), 25
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