The DeepChem project aims to democratize deep learning for science.
The DeepChem project aims to build high quality tools to democratize the use of deep learning in the sciences. The origin of DeepChem focused on applications of deep learning to chemistry, but the project has slowly evolved past its roots to broader applications of deep learning to the sciences.

The core DeepChem Repo serves as a monorepo that organizes the DeepChem suite of scientific tools. As the project matures, smaller more focused tool will be surfaced in more targeted repos. DeepChem is primarily developed in Python, but we are experimenting with adding support for other languages.

What are some of the things you can use DeepChem to do? Here’s a few examples:

- Predict the solubility of small drug-like molecules
- Predict binding affinity for small molecule to protein targets
- Predict physical properties of simple materials
- Analyze protein structures and extract useful descriptors
- Count the number of cells in a microscopy image
- More coming soon…

We should clarify one thing up front though. DeepChem is a machine learning library, so it gives you the tools to solve each of the applications mentioned above yourself. DeepChem may or may not have prebaked models which can solve these problems out of the box.

Over time, we hope to grow the set of scientific applications DeepChem can address. This means we need lots of help! If you’re a scientist who’s interested in open source, please pitch on building DeepChem.
The fastest way to get up and running with DeepChem is to run it on Google Colab. Check out one of the DeepChem Tutorials.

If you'd like to install DeepChem locally,

```
pip install deepchem
```

Then open your IDE or text editor of choice and try running the following code with python.

```
import deepchem
```
DeepChem is managed by a team of open source contributors. Anyone is free to join and contribute! DeepChem has weekly developer calls. You can find meeting minutes on our forums. DeepChem developer calls are open to the public! To listen in, please email X.Y@gmail.com, where X=bharath and Y=ramsundar to introduce yourself and ask for an invite.

Important:

Join our community gitter to discuss DeepChem.
Sign up for our forums to talk about research, development, and general questions.

3.1 Installation

3.1.1 Stable version

Install deepchem via pip or conda by simply running,

```
pip install deepchem
```

or

```
conda install -c conda-forge deepchem
```

3.1.2 Nightly build version

The nightly version is built by the HEAD of DeepChem.
For using general utilities like Molnet, Featurisers, Datasets, etc, then, you install deepchem via pip.

```
pip install --pre deepchem
```

Deepchem provides support for tensorflow, pytorch, jax and each require a individual pip Installation.
For using models with tensorflow dependencies, you install using

```
pip install --pre deepchem[tensorflow]
```

For using models with Pytorch dependencies, you install using
pip install --pre deepchem[torch]

For using models with Jax dependencies, you install using

pip install --pre deepchem[jax]

If GPU support is required, then make sure CUDA is installed and then install the desired deep learning framework using the links below before installing deepchem

1. tensorflow - just cuda installed
2. pytorch - https://pytorch.org/get-started/locally/#start-locally
3. jax - https://github.com/google/jax#pip-installation-gpu-cuda

In zsh square brackets are used for globbing/pattern matching. This means you need to escape the square brackets in the above installation. You can do so by including the dependencies in quotes like pip install --pre 'deepchem[jax]'

Note: Support for jax is not available in windows (jax is not officially supported in windows).

3.1.3 Google Colab

The fastest way to get up and running with DeepChem is to run it on Google Colab. Check out one of the DeepChem Tutorials or this forum post for Colab quick start guides.

3.1.4 Docker

If you want to install using a docker, you can pull two kinds of images from DockerHub.

- **deepchemio/deepchem:x.x.x**
 - Image built by using a conda (x.x.x is a version of deepchem)
 - This image is built when we push x.x.x. tag
 - Dockerfile is put in `docker/tag` directory

- **deepchemio/deepchem:latest**
 - Image built from source codes
 - This image is built every time we commit to the master branch
 - Dockerfile is put in `docker/nightly` directory

First, you pull the image you want to use.

```bash
docker pull deepchemio/deepchem:latest
```

Then, you create a container based on the image.

```bash
docker run --rm -it deepchemio/deepchem:latest
```

If you want GPU support:
If nvidia-docker is installed
nvidia-docker run --rm -it deepchemio/deepchem:latest
docker run --runtime nvidia --rm -it deepchemio/deepchem:latest

If nvidia-container-toolkit is installed
docker run --gpus all --rm -it deepchemio/deepchem:latest

You are now in a docker container which deepchem was installed. You can start playing with it in the command line.

(deepchem) root@xxxxxxxxxxxxx:~/mydir# python
Python 3.6.10 |Anaconda, Inc.| (default, May 8 2020, 02:54:21)
[GCC 7.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import deepchem as dc

If you want to check the tox21 benchmark:

you can run our tox21 benchmark
(deepchem) root@xxxxxxxxxxxxx:~/mydir# wget https://raw.githubusercontent.com/deepchem/deepchem/master/examples/benchmark.py
(deepchem) root@xxxxxxxxxxxxx:~/mydir# python benchmark.py -d tox21 -m graphconv -s --random

3.1.5 Jupyter Notebook

Installing via these steps will allow you to install and import DeepChem into a jupyter notebook within a conda virtual environment.

Prerequisite
- Shell: Bash, Zsh, PowerShell
- Conda: >4.6

First, please create a conda virtual environment (here it’s named “deepchem-test”) and activate it.

conda create --name deepchem-test
conda activate deepchem-test

Install DeepChem, Jupyter and matplotlib into the conda environment.

conda install -y -c conda-forge nb_conda_kernels matplotlib
pip install tensorflow
pip install --pre deepchem

You may need to use pip3 depending on your Python 3 pip installation. Install pip dependencies after deepchem-test is activated.

While the deepchem-test environment is activated, open Jupyter Notebook by running jupyter notebook. Your terminal prompt should be prefixed with (deepchem-test). Once Jupyter Notebook opens in a browser, select the new button, and select the environment “Python[conda env:deepchem-test].” This will open a notebook running in the deepchem-test conda virtual environment.
deepchem, Release 2.7.2.dev

3.1.6 From source with conda
Installing via these steps will ensure you are installing from the source.
Prerequisite
• Shell: Bash, Zsh, PowerShell
• Conda: >4.6
First, please clone the deepchem repository from GitHub.
git clone https://github.com/deepchem/deepchem.git
cd deepchem
Then, execute the shell script. The shell scripts require two arguments, python version and gpu/cpu.
source scripts/install_deepchem_conda.sh 3.8 cpu
If you want GPU support (we supports only CUDA 10.1):
source scripts/install_deepchem_conda.sh 3.8 gpu
If you are using the Windows and the PowerShell:
.\scripts\install_deepchem_conda.ps1 3.7 cpu

Sometimes, PowerShell scripts can’t be executed due to problems in Execution Policies.
In that case, you can either change the Execution policies or use the bypass argument.

powershell -executionpolicy bypass -File .\scripts\install_deepchem_conda.ps1 3.7 cpu

Before activating deepchem environment, make sure conda has been initialized.
Check if there is a (XXXX) in your command line.
If not, use conda init <YOUR_SHELL_NAME> to activate it, then:

conda activate deepchem
pip install -e .
pytest -m "not slow" deepchem # optional

3.1.7 From source lightweight guide
Installing via these steps will ensure you are installing from the source.
Prerequisite
• Shell: Bash, Zsh, PowerShell
• Conda: >4.6
First, please clone the deepchem repository from GitHub.

10

Chapter 3. About Us


We would advise all users to use conda environment, following below-

```
conda create --name deepchem python=3.8
conda activate deepchem
pip install -e .
```

DeepChem provides different additional packages depending on usage & contribution. If one also wants to build the tensorflow environment, add this

```
pip install -e .[tensorflow]
```

If one also wants to build the Pytorch environment, add this

```
pip install -e .[torch]
```

If one also wants to build the Jax environment, add this

```
pip install -e .[jax]
```

DeepChem has soft requirements, which can be installed on the fly during development inside the environment but if you want to install all the soft-dependencies at once, then take a look at deepchem/requirements

3.2. Requirements

3.2.1 Hard requirements

DeepChem officially supports Python 3.6 through 3.7 and requires these packages on any condition.

- joblib
- NumPy
- pandas
- scikit-learn
- SciPy
- TensorFlow
 - `deepchem`>=2.4.0 depends on TensorFlow v2 (2.3.x)
 - `deepchem`<2.4.0 depends on TensorFlow v1 (>=1.14)
3.2.2 Soft requirements

DeepChem has a number of “soft” requirements.

<table>
<thead>
<tr>
<th>Package name</th>
<th>Version</th>
<th>Location where this package is used (dc: deepchem)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BioPython</td>
<td>latest</td>
<td>dc.utils.genomics_utils</td>
</tr>
<tr>
<td>Deep Graph Library</td>
<td>0.5.x</td>
<td>dc.feat.graph_data, dc.models.torch_models</td>
</tr>
<tr>
<td>DGL-LiteSci</td>
<td>0.2.x</td>
<td>dc.models.torch_models</td>
</tr>
<tr>
<td>HuggingFace Transformers</td>
<td>Not Testing</td>
<td>dc.feat.smiles_tokenizer</td>
</tr>
<tr>
<td>HuggingFace Tokenizers</td>
<td>latest</td>
<td>dc.feat.HuggingFaceVocabularyBuilder</td>
</tr>
<tr>
<td>LightGBM</td>
<td>latest</td>
<td>dc.models.gbdt_models</td>
</tr>
<tr>
<td>matminer</td>
<td>latest</td>
<td>dc.feat.materials_featurizers</td>
</tr>
<tr>
<td>MDTraj</td>
<td>latest</td>
<td>dc.utils.pdbqt_utils</td>
</tr>
<tr>
<td>Mol2vec</td>
<td>latest</td>
<td>dc.utils.molecule_featurizers</td>
</tr>
<tr>
<td>Mordred</td>
<td>latest</td>
<td>dc.utils.molecule_featurizers</td>
</tr>
<tr>
<td>NetworkX</td>
<td>latest</td>
<td>dc.utils.rdkit_utils</td>
</tr>
<tr>
<td>OpenAI Gym</td>
<td>Not Testing</td>
<td>dc.rl</td>
</tr>
<tr>
<td>OpenMM</td>
<td>latest</td>
<td>dc.utils.rdkit_utils</td>
</tr>
<tr>
<td>PDBFixer</td>
<td>latest</td>
<td>dc.utils.rdkit_utils</td>
</tr>
<tr>
<td>Pillow</td>
<td>latest</td>
<td>dc.data.data_loader, dc.trans.transformers</td>
</tr>
<tr>
<td>PubChemPy</td>
<td>latest</td>
<td>dc.feat.molecule_featurizers</td>
</tr>
<tr>
<td>pyGPGO</td>
<td>latest</td>
<td>dc.hyper.gaussian_process</td>
</tr>
<tr>
<td>Pymatgen</td>
<td>latest</td>
<td>dc.feat.materials_featurizers</td>
</tr>
<tr>
<td>PyTorch</td>
<td>1.6.0</td>
<td>dc.data.datasets</td>
</tr>
<tr>
<td>PyTorch Geometric</td>
<td>1.6.x (with PyTorch 1.6.0)</td>
<td>dc.feat.graph_data, dc.models.torch_models</td>
</tr>
<tr>
<td>RDKit</td>
<td>latest</td>
<td>Many modules (we recommend you to install)</td>
</tr>
<tr>
<td>simdna</td>
<td>latest</td>
<td>dc.metrics.genomic_metrics, dc.molnet.dnasim</td>
</tr>
<tr>
<td>Tensorflow Probability</td>
<td>0.11.x</td>
<td>dc.rl</td>
</tr>
<tr>
<td>Weights & Biases</td>
<td>Not Testing</td>
<td>dc.models.keras_model, dc.models.callbacks</td>
</tr>
<tr>
<td>XGBoost</td>
<td>latest</td>
<td>dc.models.gbdt_models</td>
</tr>
<tr>
<td>Tensorflow Addons</td>
<td>latest</td>
<td>dc.models.optimizers</td>
</tr>
<tr>
<td>pySCF</td>
<td>latest</td>
<td>dc.models.torch_models.ferminet</td>
</tr>
</tbody>
</table>

3.3 Tutorials

If you’re new to DeepChem, you probably want to know the basics. What is DeepChem? Why should you care about using it? The short answer is that DeepChem is a scientific machine learning library. (The “Chem” indicates the historical fact that DeepChem initially focused on chemical applications, but we aim to support all types of scientific applications more broadly).

Why would you want to use DeepChem instead of another machine learning library? Simply put, DeepChem maintains an extensive collection of utilities to enable scientific deep learning including classes for loading scientific datasets, processing them, transforming them, splitting them up, and learning from them. Behind the scenes DeepChem uses a variety of other machine learning frameworks such as scikit-learn, TensorFlow, and XGBoost. We are also experimenting with adding additional models implemented in PyTorch and JAX. Our focus is to facilitate scientific experimentation using whatever tools are available at hand.

In the rest of this tutorials, we’ll provide a rapid fire overview of DeepChem’s API. DeepChem is a big library so we won’t cover everything, but we should give you enough to get started.
3.3.1 Data Handling

The dc.data module contains utilities to handle Dataset objects. These Dataset objects are the heart of DeepChem. A Dataset is an abstraction of a dataset in machine learning. That is, a collection of features, labels, weights, alongside associated identifiers. Rather than explaining further, we'll just show you.

```python
>>> import deepchem as dc
>>> import numpy as np

>>> N_samples = 50
>>> n_features = 10

>>> X = np.random.rand(N_samples, n_features)
>>> y = np.random.rand(N_samples)

>>> dataset = dc.data.NumpyDataset(X, y)
>>> dataset.X.shape
(50, 10)
>>> dataset.y.shape
(50,)
```

Here we’ve used the NumpyDataset class which stores datasets in memory. This works fine for smaller datasets and is very convenient for experimentation, but is less convenient for larger datasets. For that we have the DiskDataset class.

```python
>>> dataset = dc.data.DiskDataset.from_numpy(X, y)
>>> dataset.X.shape
(50, 10)
>>> dataset.y.shape
(50,)
```

In this example we haven’t specified a data directory, so this DiskDataset is written to a temporary folder. Note that dataset.X and dataset.y load data from disk underneath the hood! So this can get very expensive for larger datasets.
3.3.2 Feature Engineering

“Featurizer” is a chunk of code which transforms raw input data into a processed form suitable for machine learning. The `dc.feat` module contains an extensive collection of featurizers for molecules, molecular complexes and inorganic crystals. We’ll show you the example about the usage of featurizers.

```python
>>> smiles = [
...     'O=Cc1ccc(O)c(OC)c1',
...     'CN1CCC[CH]1c2cccnc2',
...     'C1CCCCC1',
...     'c1cccccc1',
...     'CC(=O)O',
... ]
>>> properties = [0.4, -1.5, 3.2, -0.2, 1.7]
>>> featurizer = dc.feat.CircularFingerprint(size=1024)
>>> ecfp = featurizer.featurize(smiles)
>>> ecfp.shape
(5, 1024)
>>> dataset = dc.data.NumpyDataset(X=ecfp, y=np.array(properties))
>>> len(dataset)
5
```

Here, we’ve used the `CircularFingerprint` and converted SMILES to ECFP. The ECFP is a fingerprint which is a bit vector made by chemical structure information and we can use it as the input for various models.

And then, you may have a CSV file which contains SMILES and property like HOMO-LUMO gap. In such a case, by using `DataLoader`, you can load and featurize your data at once.

```python
>>> import pandas as pd
>>> # make a dataframe object for creating a CSV file
>>> df = pd.DataFrame(list(zip(smiles, properties)), columns=["SMILES", "property"])
>>> import tempfile
>>> with dc.utils.UniversalNamedTemporaryFile(mode='w') as tmpfile:
...     # dump the CSV file
...     df.to_csv(tmpfile.name)
...     # initialize the featurizer
...     featurizer = dc.feat.CircularFingerprint(size=1024)
...     # initialize the dataloader
...     loader = dc.data.CSVLoader("property", feature_field="SMILES",
...                              featurizer=featurizer)
...     # load and featurize the data from the CSV file
...     dataset = loader.create_dataset(tmpfile.name)
...     len(dataset)
5
```
3.3.3 Data Splitting

The dc.splits module contains a collection of scientifically aware splitters. Generally, we need to split the original data to training, validation and test data in order to tune the model and evaluate the model’s performance. We’ll show you the example about the usage of splitters.

```python
>>> splitter = dc.splits.RandomSplitter()
>>> # split 5 datapoints in the ratio of train:valid:test = 3:1:1
>>> train_dataset, valid_dataset, test_dataset = splitter.train_valid_test_split(
...   dataset=dataset, frac_train=0.6, frac_valid=0.2, frac_test=0.2
... )
>>> len(train_dataset) 3
>>> len(valid_dataset) 1
>>> len(test_dataset) 1
```

Here, we’ve used the RandomSplitter and splitted the data randomly in the ratio of train:valid:test = 3:1:1. But, the random splitting sometimes overestimates model’s performance, especially for small data or imbalance data. Please be careful for model evaluation. The dc.splits provides more methods and algorithms to evaluate the model’s performance appropriately, like cross validation or splitting using molecular scaffolds.

3.3.4 Model Training and Evaluating

The dc.models contains an extensive collection of models for scientific applications. Most of all models inherits dc.models.Model and we can train them by just calling fit method. You don’t need to care about how to use specific framework APIs. We’ll show you the example about the usage of models.

```python
>>> from sklearn.ensemble import RandomForestRegressor
>>> rf = RandomForestRegressor()
>>> model = dc.models.SklearnModel(model=rf)
>>> # model training
>>> model.fit(train_dataset)
>>> valid_preds = model.predict(valid_dataset)
>>> valid_preds.shape (1,
>>> test_preds = model.predict(test_dataset)
>>> test_preds.shape (1,
```

Here, we’ve used the SklearnModel and trained the model. Even if you want to train a deep learning model which is implemented by TensorFlow or PyTorch, calling fit method is all you need!

And then, if you use dc.metrics.Metric, you can evaluate your model by just calling evaluate method.

```python
>>> # initialize the metric
>>> metric = dc.metrics.Metric(dc.metrics.mae_score)
>>> # evaluate the model
>>> train_score = model.evaluate(train_dataset, [metric])
>>> valid_score = model.evaluate(valid_dataset, [metric])
>>> test_score = model.evaluate(test_dataset, [metric])
```
3.3.5 More Tutorials

DeepChem maintains an extensive collection of addition tutorials that are meant to be run on Google Colab, an online platform that allows you to execute Jupyter notebooks. Once you’ve finished this introductory tutorial, we recommend working through these more involved tutorials.

3.4 Examples

We show a bunch of examples for DeepChem by the doctest style.

- We match against doctest’s . . . wildcard on code where output is usually ignored
- We often use threshold assertions (e.g: \texttt{score['mean-pearson_r2_score'] > 0.92}), as this is what matters for model training code.

Contents

- Delaney (ESOL)
 - MultitaskRegressor
 - GraphConvModel
- ChEMBL
 - MultitaskRegressor
 - GraphConvModel

Before jumping in to examples, we’ll import our libraries and ensure our doctests are reproducible:

```python
>>> import numpy as np
>>> import tensorflow as tf
>>> import deepchem as dc

>>> # Run before every test for reproducibility
>>> def seed_all():
...   np.random.seed(123)
...   tf.random.set_seed(123)
```

3.4.1 Delaney (ESOL)

Examples of training models on the Delaney (ESOL) dataset included in MoleculeNet.

We’ll be using its \texttt{smiles} field to train models to predict its experimentally measured solvation energy (\texttt{expt}).
MultitaskRegressor

First, we’ll load the dataset with `load_delaney()` and fit a `MultitaskRegressor`:

```python
>>> seed_all()
>>> # Load dataset with default 'scaffold' splitting
tasks, datasets, transformers = dc.molnet.load_delaney()
>>> tasks
['measured log solubility in mols per litre']
>>> train_dataset, valid_dataset, test_dataset = datasets

>>> # We want to know the pearson R squared score, averaged across tasks
>>> avg_pearson_r2 = dc.metrics.Metric(dc.metrics.pearson_r2_score, np.mean)

>>> # We'll train a multitask regressor (fully connected network)
>>> model = dc.models.MultitaskRegressor(
...   len(tasks),
...   n_features=1024,
...   layer_sizes=[500])

>>> model.fit(train_dataset)

0...

>>> # We now evaluate our fitted model on our training and validation sets
>>> train_scores = model.evaluate(train_dataset, [avg_pearson_r2], transformers)
>>> assert train_scores['mean-pearson_r2_score'] > 0.7, train_scores

>>> valid_scores = model.evaluate(valid_dataset, [avg_pearson_r2], transformers)
>>> assert valid_scores['mean-pearson_r2_score'] > 0.3, valid_scores
```

GraphConvModel

The default featurizer for Delaney is ECFP, short for “Extended-connectivity fingerprints.” For a `GraphConvModel`, we’ll reload our datasets with featurizer='GraphConv':

```python
>>> seed_all()
>>> tasks, datasets, transformers = dc.molnet.load_delaney(featurizer='GraphConv')
>>> train_dataset, valid_dataset, test_dataset = datasets

>>> model = dc.models.GraphConvModel(len(tasks), mode='regression', dropout=0.5)

>>> model.fit(train_dataset, nb_epoch=30)

0...

>>> # We now evaluate our fitted model on our training and validation sets
>>> train_scores = model.evaluate(train_dataset, [avg_pearson_r2], transformers)
>>> assert train_scores['mean-pearson_r2_score'] > 0.5, train_scores

>>> valid_scores = model.evaluate(valid_dataset, [avg_pearson_r2], transformers)
>>> assert valid_scores['mean-pearson_r2_score'] > 0.3, valid_scores
```
3.4.2 ChEMBL

Examples of training models on ChEMBL dataset included in MoleculeNet.

ChEMBL is a manually curated database of bioactive molecules with drug-like properties. It brings together chemical, bioactivity and genomic data to aid the translation of genomic information into effective new drugs.

MultitaskRegressor

```python
>>> seed_all()
>>> # Load ChEMBL 5thresh dataset with random splitting
>>> chembl_tasks, datasets, transformers = dc.molnet.load_chembl(
...     shard_size=2000, featurizer="ECFP", set="5thresh", split="random")
>>> train_dataset, valid_dataset, test_dataset = datasets
>>> len(chembl_tasks)
691
>>> f'Compound train/valid/test split: {len(train_dataset)}/{len(valid_dataset)}/
...{len(test_dataset)}'
'Compound train/valid/test split: 19096/2387/2388'
>>> # We want to know the RMS, averaged across tasks
>>> avg_rms = dc.metrics.Metric(dc.metrics.rms_score, np.mean)
>>> # Create our model
>>> n_layers = 3
>>> model = dc.models.MultitaskRegressor(
...     len(chembl_tasks),
...     n_features=1024,
...     layer_sizes=[1000] * n_layers,
...     dropouts=[.25] * n_layers,
...     weight_init_stddevs=[.02] * n_layers,
...     bias_init_consts=[1.] * n_layers,
...     learning_rate=.0003,
...     weight_decay_penalty=.0001,
...     batch_size=100)
>>> model.fit(train_dataset, nb_epoch=5)
0...
>>> # We now evaluate our fitted model on our training and validation sets
>>> train_scores = model.evaluate(train_dataset, [avg_rms], transformers)
>>> assert train_scores['mean-rms_score'] < 10.00
>>> valid_scores = model.evaluate(valid_dataset, [avg_rms], transformers)
>>> assert valid_scores['mean-rms_score'] < 10.00
```
GraphConvModel

```python
>>> # Load ChEMBL dataset
>>> chembl_tasks, datasets, transformers = dc.molnet.load_chembl(
...     shard_size=2000, featurizer="GraphConv", set="5thresh", split="random")
>>> train_dataset, valid_dataset, test_dataset = datasets

>>> # RMS, averaged across tasks
>>> avg_rms = dc.metrics.Metric(dc.metrics.rms_score, np.mean)

>>> model = dc.models.GraphConvModel(
...     len(chembl_tasks), batch_size=128, mode='regression')

>>> # Fit trained model
>>> model.fit(train_dataset, nb_epoch=5)

>>> # We now evaluate our fitted model on our training and validation sets
>>> train_scores = model.evaluate(train_dataset, [avg_rms], transformers)
>>> assert train_scores['mean-rms_score'] < 10.00

>>> valid_scores = model.evaluate(valid_dataset, [avg_rms], transformers)
>>> assert valid_scores['mean-rms_score'] < 10.00
```

3.5 Known Issues & Limitations

3.5.1 Broken features

A small number of Deepchem features are known to be broken. The Deepchem team will either fix or deprecate these broken features. It is impossible to know of every possible bug in a large project like Deepchem, but we hope to save you some headache by listing features that we know are partially or completely broken.

Note: This list is likely to be non-exhaustive. If we missed something, please let us know [here](https://github.com/deepchem/deepchem/issues/2376).

<table>
<thead>
<tr>
<th>Feature</th>
<th>Deepchem response</th>
<th>Tracker and notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANIFeatureizer/ANIModel</td>
<td>Low Priority Likely deprecate</td>
<td>The Deepchem team recommends using TorchANI instead.</td>
</tr>
</tbody>
</table>

3.5.2 Experimental features

Deepchem features usually undergo rigorous code review and testing to ensure that they are ready for production environments. The following Deepchem features have not been thoroughly tested to the level of other Deepchem modules, and could be potentially problematic in production environments.

Note: This list is likely to be non-exhaustive. If we missed something, please let us know [here](https://github.com/deepchem/deepchem/issues/2376).

<table>
<thead>
<tr>
<th>Feature</th>
<th>Tracker and notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mol2 Loading</td>
<td>Needs more testing.</td>
</tr>
<tr>
<td>Interaction Fingerprints</td>
<td>Needs more testing.</td>
</tr>
</tbody>
</table>
3.6 Docker Tutorial

Docker is a software used for easy building, testing and deploying of software. Docker creates an isolated workspace called containers which can avoid dependency version clashes making development of software faster. Also, software can be modularized in different containers, which allows it to be tested without impacting other components or the host computer. Containers contain all the dependencies and the user need not worry about required packages.

This makes it easy for users to access older version of deepchem via docker and to develop with them.

Docker works with the following layers:

- **Images:**

 Images are the instructions for creating docker containers. It specifies all the packages and their version to be installed for the application to run. Images for deepchem can found at docker Hub.

- **Containers:**

 Containers are live instances of Images and are lightweight isolated work-spaces (it does not put much workload on your PC), where you can run and develop on previous deepchem versions.

- **Docker engine:**

 It is the main application that manages, runs and build containers and images. It also provides a means to interact with the docker container after its built and when it is run.

- **Registries:**

 It is a hub or place where docker images can be found. For deepchem, the default registry is the Docker Hub.

For docker installation, visit: https://docs.docker.com/engine/install/

3.6.1 Using deepchem with docker:

To work with deepchem in docker, we first have to pull deepchem images from docker hub. It can be done in the following way.

If latest deepchem version is needed, then:-

```bash
# if latest:
docker pull deepchemio/deepchem:latest
```

Else if one wants to work with older version, then the following method should be used:-

```bash
docker pull deepchemio/deepchem:x.x.x
# x.x.x refers to the version number
```

Now, wait for some time until the image gets downloaded. Then we have to create a container using the image. Then, you have to create a container and use it.

```bash
docker run --rm -it deepchemio/deepchem:x.x.x
# x.x.x refers to the version number
# replace "x.x.x" with "latest" if latest version is used
```

If you want GPU support:
Now, you have successfully entered the container’s bash where you can execute your programs. To exit the container press “Ctrl+D”. This stops the container and opens host computer’s bash.

To view all the containers present, open up a new terminal/bash of the host computer, then:

```
docker ps -a
```

This gives a containers list like this:

<table>
<thead>
<tr>
<th>CONTAINER ID</th>
<th>IMAGE</th>
<th>COMMAND</th>
<th>CREATED</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Thus you can see all the created container’s Names and its details.

Now you can develop code in you host computer(development environment) and test it in a container having specific version of the deepchem(testing environment).

To test the program you have written, you should copy the program to the container. Open a new host computer’s terminal:

```
docker cp host-file-path <container-id>:path-in-container
```

#container ID should be check in a separate terminal

Similarly if you want to copy files out from a container, then open a new host computer’s terminal:

```
docker cp <container-id>:path-in-container host-file-path
```

#container ID should be check in a separate terminal

3.6.2 Hands-on tutorial

Let’s create a simple deepchem script and work it out in the docker container of deepchem 2.4.0.

Let the script be named deepchem.py in the host computer’s location: /home/

deepchem.py contents:

```python
import deepchem as dc
print(dc.__version__)
```

Step 1: pull deepchem 2.4.0 image and wait for it to be downloaded

```
docker pull deepchemio/deepchem:2.4.0
```

Step 2: Create a container

```
docker run --rm -it deepchemio/deepchem:2.4.0
```

(deepchem) root@51b1d2665016:/~mydir#
Step 3: Open a new terminal/bash and copy deep.py

```
$docker ps -a
CONTAINER ID   IMAGE                  COMMAND                  CREATED          STATUS        PORTS NAMES
51b1d2665016   deepchemio/deepchem:2.4.0   /bin/bash              5 seconds ago   Up 4 seconds   
   friendly_lehmann
$docker cp /home/deepchem.py 51b1d2665016:/root/mydir/deepchem.py
```

step 4: return back to the previous terminal in which container is running

```
(deepchem) root@51b1d2665016:~/mydir#python3 deepchem.py>>output.txt
2022-01-12 15:33:27.967170: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcudart.so.10.1
```

This should have created a output file in the container having the deepchem version number. The you should copy it back to host container.

step 5: In a new terminal execute the following commands.

```
$docker cp 51b1d2665016:/root/mydir/output.txt ~/output.txt
$cat ~/output.txt
2.4.0
```

Thus you have successfully executed the program in deepchem 2.4.0!!!

3.7 Data

DeepChem dc.data provides APIs for handling your data.

If your data is stored by the file like CSV and SDF, you can use the Data Loaders. The Data Loaders read your data, convert them to features (ex: SMILES to ECFP) and save the features to Dataset class. If your data is python objects like Numpy arrays or Pandas DataFrames, you can use the Datasets directly.

Contents

- Datasets
 - NumpyDataset
 - DiskDataset
 - ImageDataset
- Data Loaders
 - CSVLoader
 - UserCSVLoader
 - ImageLoader
 - JsonLoader
 - SDFLoader
 - FASTALoader
3.7.1 Datasets

DeepChem `dc.data.Dataset` objects are one of the core building blocks of DeepChem programs. `Dataset` objects hold representations of data for machine learning and are widely used throughout DeepChem.

The goal of the `Dataset` class is to be maximally interoperable with other common representations of machine learning datasets. For this reason we provide interconversion methods mapping from `Dataset` objects to pandas DataFrames, TensorFlow Datasets, and PyTorch datasets.

NumpyDataset

The `dc.data.NumpyDataset` class provides an in-memory implementation of the abstract `Dataset` which stores its data in `numpy.ndarray` objects.

```python
class NumpyDataset:
    def __init__(X: Union[numpy._typing._array_like._SupportsArray[numpy.dtype],
                           numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype],
                           bool, int, float, complex, str, bytes],
                           numpy._typing._nested_sequence._NestedSequence[Union[bool, int, float, complex, str, bytes]],
                           numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype],
                           bool, int, float, complex, str, bytes],
                           numpy._typing._nested_sequence._NestedSequence[Union[numpy._typing._array_like._SupportsArray[numpy.dtype],
                           bool, int, float, complex, str, bytes]],
                           y: Optional[Union[numpy._typing._array_like._SupportsArray[numpy.dtype],
                                             numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype],
                                             bool, int, float, complex, str, bytes]],
                           numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype],
                           bool, int, float, complex, str, bytes],
                           numpy._typing._nested_sequence._NestedSequence[Union[numpy._typing._array_like._SupportsArray[numpy.dtype],
                           bool, int, float, complex, str, bytes]],
                           numpy._typing._nested_sequence._NestedSequence[Union[numpy._typing._array_like._SupportsArray[numpy.dtype],
                           bool, int, float, complex, str, bytes]],
                           numpy._typing._nested_sequence._NestedSequence[Union[numpy._typing._array_like._SupportsArray[numpy.dtype],
                           bool, int, float, complex, str, bytes]],
                           ids: Optional[Union[numpy._typing._array_like._SupportsArray[numpy.dtype],
                                              numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype],
                                              bool, int, float, complex, str, bytes]],
                           n_tasks: int = 1):
        A Dataset defined by in-memory numpy arrays.

        This subclass of `Dataset` stores arrays X,y,w,ids in memory as numpy arrays. This makes it very easy to construct `NumpyDataset` objects.
```
Examples

```python
>>> import numpy as np
>>> dataset = NumpyDataset(X=np.random.rand(5, 3), y=np.random.rand(5,), ids=np.arange(5))
```

```
__init__(X: Union[numpy._typing._array_like._SupportsArray[numpy.dtype],
numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype]],
bool, int, float, complex, str, bytes, numpy._typing._nested_sequence._NestedSequence[Union[bool,
int, float, complex, str, bytes]]], y:
Optional[Union[numpy._typing._array_like._SupportsArray[numpy.dtype],
numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype]],
bool, int, float, complex, str, bytes, numpy._typing._nested_sequence._NestedSequence[Union[bool,
int, float, complex, str, bytes]]]) = None, w:
Optional[Union[numpy._typing._array_like._SupportsArray[numpy.dtype],
numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype]],
bool, int, float, complex, str, bytes, numpy._typing._nested_sequence._NestedSequence[Union[bool,
int, float, complex, str, bytes]]] = None, ids:
Optional[Union[numpy._typing._array_like._SupportsArray[numpy.dtype],
numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype]],
bool, int, float, complex, str, bytes, numpy._typing._nested_sequence._NestedSequence[Union[bool,
int, float, complex, str, bytes]]]) = None, n_tasks: int = 1) → None
```

Initialize this object.

Parameters

- **X** *(np.ndarray)* – Input features. A numpy array of shape \((n_samples, \ldots)\).
- **y** *(np.ndarray, optional (default None))* – Labels. A numpy array of shape \((n_samples, \ldots)\). Note that each label can have an arbitrary shape.
- **w** *(np.ndarray, optional (default None))* – Weights. Should either be 1D array of shape \((n_samples,)\) or if there's more than one task, of shape \((n_samples, n_tasks)\).
- **ids** *(np.ndarray, optional (default None))* – Identifiers. A numpy array of shape \((n_samples,)\)
- **n_tasks** *(int, default 1)* – Number of learning tasks.

__len__() → int

Get the number of elements in the dataset.

get_shape() → Tuple[Tuple[int, ...], Tuple[int, ...], Tuple[int, ...], Tuple[int, ...]]

Get the shape of the dataset.

Returns four tuples, giving the shape of the X, y, w, and ids arrays.

get_task_names() → numpy.ndarray

Get the names of the tasks associated with this dataset.

property X: numpy.ndarray

Get the X vector for this dataset as a single numpy array.

property y: numpy.ndarray

Get the y vector for this dataset as a single numpy array.

property ids: numpy.ndarray

Get the ids vector for this dataset as a single numpy array.
property w: numpy.ndarray
 Get the weight vector for this dataset as a single numpy array.

iterbatches(batch_size: Optional[int] = None, epochs: int = 1, deterministic: bool = False, pad_batches: bool = False) -> Iterator[Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]]
 Get an object that iterates over minibatches from the dataset.
 Each minibatch is returned as a tuple of four numpy arrays: (X, y, w, ids).

 Parameters
 - batch_size (int, optional (default None)) – Number of elements in each batch.
 - epochs (int, default 1) – Number of epochs to walk over dataset.
 - deterministic (bool, optional (default False)) – If True, follow deterministic order.
 - pad_batches (bool, optional (default False)) – If True, pad each batch to batch_size.

 Returns Generator which yields tuples of four numpy arrays (X, y, w, ids).

 Return type Iterator[Batch]

eatersamples() -> Iterator[Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]]
 Get an object that iterates over the samples in the dataset.
 Returns Iterator which yields tuples of four numpy arrays (X, y, w, ids).

 Return type Iterator[Batch]

Examples

```python
>>> dataset = NumpyDataset(np.ones((2,2)))
>>> for x, y, w, id in dataset.itersamples():
...     print(x.tolist(), y.tolist(), w.tolist(), id)
[1.0, 1.0] [0.0] [0.0] 0
[1.0, 1.0] [0.0] [0.0] 1
```

transform(transformer: transformers.Transformer, **args) -> deepchem.data.datasets.NumpyDataset
 Construct a new dataset by applying a transformation to every sample in this dataset.
 The argument is a function that can be called as follows: >> newx, newy, neww = fn(x, y, w)
 It might be called only once with the whole dataset, or multiple times with different subsets of the data.
 Each time it is called, it should transform the samples and return the transformed data.

 Parameters transformer (dc.trans.Transformer) – The transformation to apply to each sample in the dataset

 Returns A newly constructed NumpyDataset object

 Return type NumpyDataset

select(indices: Union[Sequence[int], numpy.ndarray], select_dir: Optional[str] = None) -> deepchem.data.datasets.NumpyDataset
 Creates a new dataset from a selection of indices from self.

 Parameters
• **indices** (*List*[int]) – List of indices to select.
• **select_dir** (*str, optional (default None)) – Used to provide same API as *DiskDataset*. Ignored since *NumpyDataset* is purely in-memory.

Returns A selected NumpyDataset object

Return type *NumpyDataset*

make_pytorch_dataset

```
make_pytorch_dataset(epochs: int = 1, deterministic: bool = False, batch_size: Optional[int] = None)
```

Create a torch.utils.data.IterableDataset that iterates over the data in this Dataset.

Each value returned by the Dataset’s iterator is a tuple of (X, y, w, id) containing the data for one batch, or for a single sample if batch_size is None.

Parameters

• **epochs** (*int, default 1*) – The number of times to iterate over the Dataset

• **deterministic** (*bool, default False*) – If True, the data is produced in order. If False, a different random permutation of the data is used for each epoch.

• **batch_size** (*int, optional (default None]*) – The number of samples to return in each batch. If None, each returned value is a single sample.

Returns torch.utils.data.IterableDataset that iterates over the data in this dataset.

Return type torch.utils.data.IterableDataset

Note: This method requires PyTorch to be installed.

static from_DiskDataset

```
static from_DiskDataset(ds: deepchem.data.datasets.DiskDataset) → deepchem.data.datasets.NumpyDataset
```

Convert DiskDataset to NumpyDataset.

Parameters ds (*DiskDataset*) – DiskDataset to transform to NumpyDataset.

Returns A new NumpyDataset created from DiskDataset.

Return type *NumpyDataset*

to_json

```
to_json(fname: str) → None
```

Dump NumpyDataset to the json file.

Parameters fname (*str*) – The name of the json file.

static from_json

```
static from_json(fname: str) → deepchem.data.datasets.NumpyDataset
```

Create NumpyDataset from the json file.

Parameters fname (*str*) – The name of the json file.

Returns A new NumpyDataset created from the json file.

Return type *NumpyDataset*

static merge

```
static merge(datasets: Sequence[deepchem.data.datasets.Dataset]) → deepchem.data.datasets.NumpyDataset
```

Merge multiple NumpyDatasets.

Parameters datasets (*List[Dataset]*) – List of datasets to merge.

Returns A single NumpyDataset containing all the samples from all datasets.

Return type *NumpyDataset*
Example

```python
>>> X1, y1 = np.random.rand(5, 3), np.random.randn(5, 1)
>>> first_dataset = dc.data.NumpyDataset(X1, y1)
>>> X2, y2 = np.random.rand(5, 3), np.random.randn(5, 1)
>>> second_dataset = dc.data.NumpyDataset(X2, y2)
>>> merged_dataset = dc.data.NumpyDataset.merge([first_dataset, second_dataset])
>>> print(len(merged_dataset) == len(first_dataset) + len(second_dataset))
True
```

static from_dataframe (df: pandas.core.frame.DataFrame, X: Optional[Union[str, Sequence[str]]] = None, y: Optional[Union[str, Sequence[str]]] = None, w: Optional[Union[str, Sequence[str]]] = None, ids: Optional[str] = None)

Construct a Dataset from the contents of a pandas DataFrame.

Parameters

- **df** (pd.DataFrame) – The pandas DataFrame
- **X** (str or List[str], optional (default None)) – The name of the column or columns containing the X array. If this is None, it will look for default column names that match those produced by to_dataframe().
- **y** (str or List[str], optional (default None)) – The name of the column or columns containing the y array. If this is None, it will look for default column names that match those produced by to_dataframe().
- **w** (str or List[str], optional (default None)) – The name of the column or columns containing the w array. If this is None, it will look for default column names that match those produced by to_dataframe().
- **ids** (str, optional (default None)) – The name of the column containing the ids. If this is None, it will look for default column names that match those produced by to_dataframe().

get_statistics (X_stats: bool = True, y_stats: bool = True) → Tuple[numpy.ndarray, ...]

Compute and return statistics of this dataset.

Uses **self.itersamples()** to compute means and standard deviations of the dataset. Can compute on large datasets that don’t fit in memory.

Parameters

- **X_stats** (bool, optional (default True)) – If True, compute feature-level mean and standard deviations.
- **y_stats** (bool, optional (default True)) – If True, compute label-level mean and standard deviations.

Returns

- If \(X_{\text{stats}} == \text{True} \), returns \((X_{\text{means}}, X_{\text{stds}})\).
- If \(y_{\text{stats}} == \text{True} \), returns \((y_{\text{means}}, y_{\text{stds}})\).
- If both are true, returns \((X_{\text{means}}, X_{\text{stds}}, y_{\text{means}}, y_{\text{stds}})\).

Return type Tuple
make_tf_dataset *(batch_size: int = 100, epochs: int = 1, deterministic: bool = False, pad_batches: bool = False)*

Create a tf.data.Dataset that iterates over the data in this Dataset.

Each value returned by the Dataset’s iterator is a tuple of (X, y, w) for one batch.

Parameters

- **batch_size** *(int, default 100)* – The number of samples to include in each batch.
- **epochs** *(int, default 1)* – The number of times to iterate over the Dataset.
- **deterministic** *(bool, default False)* – If True, the data is produced in order. If False, a different random permutation of the data is used for each epoch.
- **pad_batches** *(bool, default False)* – If True, batches are padded as necessary to make the size of each batch exactly equal batch_size.

Returns TensorFlow Dataset that iterates over the same data.

Return type tf.data.Dataset

Note: This class requires TensorFlow to be installed.

to_csv(path: str) → None

Write object to a comma-separated values (CSV) file

Example

```python
>>> import numpy as np
>>> X = np.random.rand(10, 10)
>>> dataset = dc.data.DiskDataset.from_numpy(X)
>>> dataset.to_csv('out.csv')
```

Parameters path *(str)* – File path or object

Return type None

to_dataframe () → pandas.core.frame.DataFrame

Construct a pandas DataFrame containing the data from this Dataset.

Returns Pandas dataframe. If there is only a single feature per datapoint, will have column “X” else will have columns “X1,X2,...” for features. If there is only a single label per datapoint, will have column “y” else will have columns “y1,y2,...” for labels. If there is only a single weight per datapoint will have column “w” else will have columns “w1,w2,...”. Will have column “ids” for identifiers.

Return type pd.DataFrame
DiskDataset

The `dc.data.DiskDataset` class allows for the storage of larger datasets on disk. Each `DiskDataset` is associated with a directory in which it writes its contents to disk. Note that a `DiskDataset` can be very large, so some of the utility methods to access fields of a `Dataset` can be prohibitively expensive.

```python
class DiskDataset(data_dir: str)
    A Dataset that is stored as a set of files on disk.
    
    The DiskDataset is the workhorse class of DeepChem that facilitates analyses on large datasets. Use this class whenever you're working with a large dataset that can't be easily manipulated in RAM.
    
    On disk, a `DiskDataset` has a simple structure. All files for a given `DiskDataset` are stored in a `data_dir`. The contents of `data_dir` should be laid out as follows:
    
    data_dir/
        |
        -- metadata.csv.gz
        |
        -- tasks.json
        |
        -- shard-0-X.npy
        |
        -- shard-0-y.npy
        |
        -- shard-0-w.npy
        |
        -- shard-0-ids.npy
        |
        -- shard-1-X.npy
    .
    .
    .

    The metadata is constructed by static method `DiskDataset._construct_metadata` and saved to disk by `DiskDataset._save_metadata`. The metadata itself consists of a csv file which has columns ("ids", "X", "y", "w", "ids_shape", "X_shape", "y_shape", "w_shape"). `tasks.json` consists of a list of task names for this dataset.
    
    The actual data is stored in `.npy` files (numpy array files) of the form ‘shard-0-X.npy’, ‘shard-0-y.npy’, etc.
    
    The basic structure of `DiskDataset` is quite robust and will likely serve you well for datasets up to about 100 GB or larger. However note that `DiskDataset` has not been tested for very large datasets at the terabyte range and beyond. You may be better served by implementing a custom `Dataset` class for those use cases.
```
Examples

Let’s walk through a simple example of constructing a new `DiskDataset`.

```python
>>> import deepchem as dc
>>> import numpy as np

>>> X = np.random.rand(10, 10)
>>> dataset = dc.data.DiskDataset.from_numpy(X)
```

If you have already saved a `DiskDataset` to `data_dir`, you can reinitialize it with

```python
>>> data_dir = "/path/to/my/data" >> dataset = dc.data.DiskDataset(data_dir)
```

Once you have a dataset you can access its attributes as follows

```python
>>> X = np.random.rand(10, 10)
>>> y = np.random.rand(10,)
>>> w = np.ones_like(y)
>>> dataset = dc.data.DiskDataset.from_numpy(X)
>>> X, y, w = dataset.X, dataset.y, dataset.w
```

One thing to beware of is that `dataset.X`, `dataset.y`, `dataset.w` are loading data from disk! If you have a large dataset, these operations can be extremely slow. Instead try iterating through the dataset instead.

```python
>>> for (xi, yi, wi, idi) in dataset.itersamples():
...    pass
```

data_dir

Location of directory where this `DiskDataset` is stored to disk

- **Type**: str

metadata_df

Pandas Dataframe holding metadata for this `DiskDataset`

- **Type**: pd.DataFrame

legacy_metadata

Whether this `DiskDataset` uses legacy format.

- **Type**: bool

Note: `DiskDataset` originally had a simpler metadata format without shape information. Older `DiskDataset` objects had metadata files with columns (`'ids'`, `'X'`, `'y'`, `'w'`) and not additional shape columns. `DiskDataset` maintains backwards compatibility with this older metadata format, but we recommend for performance reasons not using legacy metadata for new projects.

__init__(data_dir: str) → None

Load a constructed `DiskDataset` from disk

Note that this method cannot construct a new disk dataset. Instead use static methods `DiskDataset.create_dataset` or `DiskDataset.from_numpy` for that purpose. Use this constructor instead to load a `DiskDataset` that has already been created on disk.

Parameters

- **data_dir** *(str)* – Location on disk of an existing `DiskDataset`.
static create_dataset

```python
def static create_dataset(shard_generator: Iterable[Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]], data_dir: Optional[str] = None, tasks: Optional[Union[numpy._typing._array_like._SupportsArray[numpy.dtype], numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.bool, int, float, complex, str, bytes], numpy._typing._nested_sequence._NestedSequence[Union[bool, int, float, complex, str, bytes]]]]] = None) -> deepchem.data.datasets.DiskDataset
```

Creates a new DiskDataset

Parameters

- **shard_generator** *(Iterable[Batch])* – An iterable (either a list or generator) that provides tuples of data (X, y, w, ids). Each tuple will be written to a separate shard on disk.
- **data_dir** *(str, optional (default None))* – Filename for data directory. Creates a temp directory if none specified.
- **tasks** *(Sequence, optional (default []))* – List of tasks for this dataset.

Returns A new DiskDataset constructed from the given data

Return type DiskDataset

load_metadata

```python
def load_metadata() -> Tuple[List[str], pandas.core.frame.DataFrame]
```

Helper method that loads metadata from disk.

static write_data_to_disk

```python
```

Static helper method to write data to disk.

This helper method is used to write a shard of data to disk.

Parameters

- **data_dir** *(str)* – Data directory to write shard to.
- **basename** *(str)* – Basename for the shard in question.
- **X** *(np.ndarray, optional (default None))* – The features array.
- **y** *(np.ndarray, optional (default None))* – The labels array.
- **w** *(np.ndarray, optional (default None))* – The weights array.
- **ids** *(np.ndarray, optional (default None))* – The identifiers array.

Returns List with values [out_ids, out_X, out_y, out_w, out_ids_shape, out_X_shape, out_y_shape, out_w_shape] with filenames of locations to disk which these respective arrays were written.

Return type List[Optional[str]]

save_to_disk

```python
def save_to_disk() -> None
```

Save dataset to disk.

move

```python
def move(new_data_dir: str, delete_if_exists: Optional[bool] = True) -> None
```

Moves dataset to new directory.

Parameters

- **new_data_dir** *(str)* – The new directory name to move this to dataset to.
- **delete_if_exists**(bool, optional (default True)) – If this option is set, delete
 the destination directory if it exists before moving. This is set to True by default to be
 backwards compatible with behavior in earlier versions of DeepChem.

 Note: This is a stateful operation! `self.data_dir` will be moved into `new_data_dir`. If `delete_if_exists` is set to `True` (by default this is set `True`), then `new_data_dir` is deleted if it’s a pre-existing directory.

copy(new_data_dir: str) → deepchem.data.datasets.DiskDataset
Copies dataset to new directory.

 Parameters
 new_data_dir (str) – The new directory name to copy this to dataset to.

 Returns
 A copied DiskDataset object.

 Return type
 DiskDataset

 Note: This is a stateful operation! Any data at `new_data_dir` will be deleted and `self.data_dir` will be deep copied into `new_data_dir`.

get_task_names() → numpy.ndarray
Gets learning tasks associated with this dataset.

reshard(shard_size: int) → None
Reshards data to have specified shard size.

 Parameters
 shard_size (int) – The size of shard.

 Examples

 >>> import deepchem as dc
 >>> import numpy as np
 >>> X = np.random.rand(100, 10)
 >>> d = dc.data.DiskDataset.from_numpy(X)
 >>> d.reshard(shard_size=10)
 >>> d.get_number_shards()
 10

 Note: If this **DiskDataset** is in legacy_metadata format, reshard will convert this dataset to have non-legacy metadata.

get_data_shape() → Tuple[int, ...]
Gets array shape of datapoints in this dataset.

get_shard_size() → int
Gets size of shards on disk.

get_number_shards() → int
Returns the number of shards for this dataset.
`itershards()` → Iterator[Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]]

Return an object that iterates over all shards in dataset.

Datasets are stored in sharded fashion on disk. Each call to `next()` for the generator defined by this function returns the data from a particular shard. The order of shards returned is guaranteed to remain fixed.

Returns Generator which yields tuples of four numpy arrays (X, y, w, ids).

Return type Iterator[Batch]

`iterbatches(batch_size: Optional[int] = None, epochs: int = 1, deterministic: bool = False, pad_batches: bool = False) → Iterator[Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]]`

Get an object that iterates over minibatches from the dataset.

It is guaranteed that the number of batches returned is `math.ceil(len(dataset)/batch_size)`. Each minibatch is returned as a tuple of four numpy arrays: (X, y, w, ids).

Parameters

- **batch_size** (int, optional (default None)) – Number of elements in a batch. If None, then it yields batches with size equal to the size of each individual shard.
- **epoch** (int, default 1) – Number of epochs to walk over dataset
- **deterministic** (bool, default False) – Whether or not we should shuffle each shard before generating the batches. Note that this is only local in the sense that it does not ever mix between different shards.
- **pad_batches** (bool, default False) – Whether or not we should pad the last batch, globally, such that it has exactly `batch_size` elements.

Returns Generator which yields tuples of four numpy arrays (X, y, w, ids).

Return type Iterator[Batch]

`itersamples()` → Iterator[Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]]

Get an object that iterates over the samples in the dataset.

Returns Generator which yields tuples of four numpy arrays (X, y, w, ids).

Return type Iterator[Batch]

Examples

```python
>>> dataset = DiskDataset.from_numpy(np.ones((2,2)), np.ones((2,1)))
>>> for x, y, w, id in dataset.itersamples():
...   print(x.tolist(), y.tolist(), w.tolist(), id)
[1.0, 1.0] [1.0] [1.0] 0
[1.0, 1.0] [1.0] [1.0] 1
```

`transform(transformer: transformers.Transformer, parallel: bool = False, out_dir: Optional[str] = None, **args) → deepchem.data.datasets.DiskDataset`

Construct a new dataset by applying a transformation to every sample in this dataset.

The argument is a function that can be called as follows: `>> newx, newy, neww = fn(x, y, w)`

It might be called only once with the whole dataset, or multiple times with different subsets of the data. Each time it is called, it should transform the samples and return the transformed data.

Parameters
- **transformer** (*dc.trans.Transformer*) – The transformation to apply to each sample in the dataset.
- **parallel** (*bool, default False*) – If True, use multiple processes to transform the dataset in parallel.
- **out_dir** (*str, optional (default None]*) – The directory to save the new dataset in. If this is omitted, a temporary directory is created automatically.

Returns A newly constructed Dataset object

Return type *DiskDataset*

```python
make_pytorch_dataset(epochs: int = 1, deterministic: bool = False, batch_size: Optional[int] = None)
```

Create a torch.utils.data.IterableDataset that iterates over the data in this Dataset.

Each value returned by the Dataset’s iterator is a tuple of (X, y, w, id) containing the data for one batch, or for a single sample if batch_size is None.

Parameters
- **epochs** (*int, default 1*) – The number of times to iterate over the Dataset
- **deterministic** (*bool, default False*) – If True, the data is produced in order. If False, a different random permutation of the data is used for each epoch.
- **batch_size** (*int, optional (default None]*) – The number of samples to return in each batch. If None, each returned value is a single sample.

Returns *torch.utils.data.IterableDataset* that iterates over the data in this dataset.

Return type *torch.utils.data.IterableDataset*

Note: This method requires PyTorch to be installed.
static from_numpy(X: Union[numpy._typing._array_like._SupportsArray[numpy.dtype],
numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype],
bool, int, float, complex, str, bytes],
numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype],
bool, int, float, complex, str, bytes]], y: Optional[Union[numpy._typing._array_like._SupportsArray[numpy.dtype],
numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype],
bool, int, float, complex, str, bytes]] = None, w:
Optional[Union[numpy._typing._array_like._SupportsArray[numpy.dtype],
numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype],
bool, int, float, complex, str, bytes]] = None, ids:
Optional[Union[numpy._typing._array_like._SupportsArray[numpy.dtype],
numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype],
bool, int, float, complex, str, bytes]] = None, tasks:
Optional[Union[numpy._typing._array_like._SupportsArray[numpy.dtype],
numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype],
bool, int, float, complex, str, bytes]] = None, data_dir: Optional[str] = None) →
depthchem.data.datasets.DiskDataset

Creates a DiskDataset object from specified Numpy arrays.

Parameters

• X (np.ndarray) – Feature array.
• y (np.ndarray, optional (default None)) – Labels array.
• w (np.ndarray, optional (default None)) – Weights array.
• ids (np.ndarray, optional (default None)) – Identifiers array.
• tasks (Sequence, optional (default None)) – Tasks in this dataset
• data_dir (str, optional (default None)) – The directory to write this dataset to. If none is specified, will use a temporary directory instead.

Returns A new DiskDataset constructed from the provided information.

Return type DiskDataset

static merge(datasets: Iterable[deepchem.data.datasets.Dataset], merge_dir: Optional[str] = None) →
depthchem.data.datasets.DiskDataset

Merges provided datasets into a merged dataset.

Parameters

• datasets (Iterable[Dataset]) – List of datasets to merge.
• merge_dir (str, optional (default None)) – The new directory path to store the merged DiskDataset.

Returns A merged DiskDataset.

Return type DiskDataset

3.7. Data 35
subset(shard_nums: Sequence[int], subset_dir: Optional[str] = None) → deepchem.data.datasets.DiskDataset

Creates a subset of the original dataset on disk.

Parameters

- **shard_nums** (Sequence[int]) – The indices of shard to extract from the original Disk-Dataset.
- **subset_dir** (str, optional (default None)) – The new directory path to store the subset DiskDataset.

Returns A subset DiskDataset.

Return type DiskDataset

sparse_shuffle() → None

Shuffling that exploits data sparsity to shuffle large datasets.

If feature vectors are sparse, say circular fingerprints or any other representation that contains few nonzero values, it can be possible to exploit the sparsity of the vector to simplify shuffles. This method implements a sparse shuffle by compressing sparse feature vectors down into a compressed representation, then shuffles this compressed dataset in memory and writes the results to disk.

Note: This method only works for 1-dimensional feature vectors (does not work for tensorial featurizations). Note that this shuffle is performed in place.

complete_shuffle(data_dir: Optional[str] = None) → deepchem.data.datasets.Dataset

Completely shuffle across all data, across all shards.

Note: The algorithm used for this complete shuffle is O(N^2) where N is the number of shards. It simply constructs each shard of the output dataset one at a time. Since the complete shuffle can take a long time, it’s useful to watch the logging output. Each shuffled shard is constructed using select() which logs as it selects from each original shard. This will results in O(N^2) logging statements, one for each extraction of shuffled shard i’s contributions from original shard j.

Parameters **data_dir** (Optional[str], (default None)) – Directory to write the shuffled dataset to. If none is specified a temporary directory will be used.

Returns A DiskDataset whose data is a randomly shuffled version of this dataset.

Return type DiskDataset

shuffle_each_shard(shard_basenames: Optional[List[str]] = None) → None

Shuffles elements within each shard of the dataset.

Parameters **shard_basenames** (List[str], optional (default None)) – The base-names for each shard. If this isn’t specified, will assume the basenames of form “shard-i” used by create_dataset and reshard.

shuffle_shards() → None

Shuffles the order of the shards for this dataset.

get_shard(i: int) → Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]

Retrieves data for the i-th shard from disk.
Parameters

- `i (int)` – Shard index for shard to retrieve batch from.

Returns

A batch data for i-th shard.

Return type

Batch

get_shard_ids(i: int) → numpy.ndarray

Retrieves the list of IDs for the i-th shard from disk.

Parameters

- `i (int)` – Shard index for shard to retrieve weights from.

Returns

A numpy array of ids for i-th shard.

Return type

np.ndarray

get_shard_y(i: int) → numpy.ndarray

Retrieves the labels for the i-th shard from disk.

Parameters

- `i (int)` – Shard index for shard to retrieve labels from.

Returns

A numpy array of labels for i-th shard.

Return type

np.ndarray

get_shard_w(i: int) → numpy.ndarray

Retrieves the weights for the i-th shard from disk.

Parameters

- `i (int)` – Shard index for shard to retrieve weights from.

Returns

A numpy array of weights for i-th shard.

Return type

np.ndarray

→ None

Adds a data shard.

Parameters

- `X (np.ndarray)` – Feature array.
- `y (np.ndarray, optional (default None))` – Labels array.
- `w (np.ndarray, optional (default None))` – Weights array.
- `ids (np.ndarray, optional (default None))` – Identifiers array.

→ None

Writes data shard to disk.

Parameters

- `shard_num (int)` – Shard index for shard to set new data.
- `X (np.ndarray)` – Feature array.
- `y (np.ndarray, optional (default None))` – Labels array.
- `w (np.ndarray, optional (default None))` – Weights array.
- `ids (np.ndarray, optional (default None))` – Identifiers array.

select(indices: Union[Sequence[int], numpy.ndarray], select_dir: Optional[str] = None, select_shard_size: Optional[int] = None, output_numpy_dataset: Optional[bool] = False)

→ deepchem.data.datasets.Dataset

Creates a new dataset from a selection of indices from self.
Examples

```python
>>> import numpy as np
>>> X = np.random.rand(10, 10)
>>> dataset = dc.data.DiskDataset.from_numpy(X)
>>> selected = dataset.select([1, 3, 4])
>>> len(selected)
3
```

Parameters

- **indices** (Sequence) – List of indices to select.
- **select_dir** (str, optional (default None)) – Path to new directory that the selected indices will be copied to.
- **select_shard_size** (Optional[int], (default None)) – If specified, the shard-size to use for output selected `DiskDataset`. If not output_numpy_dataset, then this is set to this current dataset’s shard size if not manually specified.
- **output_numpy_dataset** (Optional[bool], (default False)) – If True, output an in-memory `NumpyDataset` instead of a `DiskDataset`. Note that select_dir and select_shard_size must be None if this is True.

Returns A dataset containing the selected samples. The default dataset is `DiskDataset`. If output_numpy_dataset is True, the dataset is `NumpyDataset`.

Return type Dataset

property ids: numpy.ndarray
Get the ids vector for this dataset as a single numpy array.

property X: numpy.ndarray
Get the X vector for this dataset as a single numpy array.

property y: numpy.ndarray
Get the y vector for this dataset as a single numpy array.

property w: numpy.ndarray
Get the weight vector for this dataset as a single numpy array.

property memory_cache_size: int
Get the size of the memory cache for this dataset, measured in bytes.

__len__() → int
Finds number of elements in dataset.

get_shape() → Tuple[Tuple[int, ...], Tuple[int, ...], Tuple[int, ...], Tuple[int, ...]]
Finds shape of dataset.

Returns four tuples, giving the shape of the X, y, w, and ids arrays.

get_label_means() → pandas.core.frame.DataFrame
Return pandas series of label means.

get_label_stds() → pandas.core.frame.DataFrame
Return pandas series of label stds.
static from_dataframe(df: pandas.core.frame.DataFrame, X: Optional[Union[str, Sequence[str]]] = None, y: Optional[Union[str, Sequence[str]]] = None, w: Optional[Union[str, Sequence[str]]] = None, ids: Optional[str] = None)

Construct a Dataset from the contents of a pandas DataFrame.

Parameters

- df (pd.DataFrame) – The pandas DataFrame
- X (str or List[str], optional (default None)) – The name of the column or columns containing the X array. If this is None, it will look for default column names that match those produced by to_dataframe().
- y (str or List[str], optional (default None)) – The name of the column or columns containing the y array. If this is None, it will look for default column names that match those produced by to_dataframe().
- w (str or List[str], optional (default None)) – The name of the column or columns containing the w array. If this is None, it will look for default column names that match those produced by to_dataframe().
- ids (str, optional (default None)) – The name of the column containing the ids. If this is None, it will look for default column names that match those produced by to_dataframe().

get_statistics(X_stats: bool = True, y_stats: bool = True) → Tuple[numpy.ndarray, ...]

Compute and return statistics of this dataset.

Uses self.itersamples() to compute means and standard deviations of the dataset. Can compute on large datasets that don’t fit in memory.

Parameters

- X_stats (bool, optional (default True)) – If True, compute feature-level mean and standard deviations.
- y_stats (bool, optional (default True)) – If True, compute label-level mean and standard deviations.

Returns

- If X_stats == True, returns (X_means, X_stds).
- If y_stats == True, returns (y_means, y_stds).
- If both are true, returns (X_means, X_stds, y_means, y_stds).

Return type Tuple

make_tf_dataset(batch_size: int = 100, epochs: int = 1, deterministic: bool = False, pad_batches: bool = False)

Create a tf.data.Dataset that iterates over the data in this Dataset.

Each value returned by the Dataset’s iterator is a tuple of (X, y, w) for one batch.

Parameters

- batch_size (int, default 100) – The number of samples to include in each batch.
- epochs (int, default 1) – The number of times to iterate over the Dataset.
- deterministic (bool, default False) – If True, the data is produced in order. If False, a different random permutation of the data is used for each epoch.
pad_batches *(bool, default False)* – If True, batches are padded as necessary to make the size of each batch exactly equal *batch_size*.

Returns TensorFlow Dataset that iterates over the same data.

Return type tf.data.Dataset

to_csv *(path: str) → None*
Write object to a comma-separated values (CSV) file

Example

```python
>>> import numpy as np
>>> X = np.random.rand(10, 10)
>>> dataset = dc.data.DiskDataset.from_numpy(X)
>>> dataset.to_csv('out.csv')
```

Parameters
path *(str)* – File path or object

Return type None

to_dataframe() → pandas.core.frame.DataFrame
Construct a pandas DataFrame containing the data from this Dataset.

Returns Pandas dataframe. If there is only a single feature per datapoint, will have column “X” else will have columns “X1,X2,...” for features. If there is only a single label per datapoint, will have column “y” else will have columns “y1,y2,...” for labels. If there is only a single weight per datapoint will have column “w” else will have columns “w1,w2,...”. Will have column “ids” for identifiers.

Return type pd.DataFrame

ImageDataset
The dc.data.ImageDataset class is optimized to allow for convenient processing of image based datasets.

class ImageDataset *(X: Union[numpy.ndarray, List[str]], y: Optional[Union[numpy.ndarray, List[str]]], w: Optional[Union[numpy._typing._array_like._SupportsArray[numpy.dtype], numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype], bool, int, float, complex, str, bytes], numpy._typing._nested_sequence._NestedSequence[Union[bool, int, float, complex, str, bytes]]]) = None, ids: Optional[Union[numpy._typing._array_like._SupportsArray[numpy.dtype], numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype], bool, int, float, complex, str, bytes], numpy._typing._nested_sequence._NestedSequence[Union[bool, int, float, complex, str, bytes]]]) = None)*
A Dataset that loads data from image files on disk.
Create a dataset whose X and/or y array is defined by image files on disk.

Parameters

- **X** *(np.ndarray or List[str])* – The dataset’s input data. This may be either a single NumPy array directly containing the data, or a list containing the paths to the image files.

- **y** *(np.ndarray or List[str])* – The dataset’s labels. This may be either a single NumPy array directly containing the data, or a list containing the paths to the image files.

- **w** *(np.ndarray, optional (default None))* – a 1D or 2D array containing the weights for each sample or sample/task pair.

- **ids** *(np.ndarray, optional (default None))* – the sample IDs.

__len__() → int

Get the number of elements in the dataset.

get_shape() → Tuple[Tuple[int, ...], Tuple[int, ...], Tuple[int, ...], Tuple[int, ...]]

Get the shape of the dataset.

Returns four tuples, giving the shape of the X, y, w, and ids arrays.

get_task_names() → numpy.ndarray

Get the names of the tasks associated with this dataset.

property X: numpy.ndarray

Get the X vector for this dataset as a single numpy array.

property y: numpy.ndarray

Get the y vector for this dataset as a single numpy array.

property ids: numpy.ndarray

Get the ids vector for this dataset as a single numpy array.

property w: numpy.ndarray

Get the weight vector for this dataset as a single numpy array.

iterbatches(batch_size: Optional[int] = None, epochs: int = 1, deterministic: bool = False, pad_batches: bool = False) → Iterator[Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]]

Get an object that iterates over minibatches from the dataset.

Each minibatch is returned as a tuple of four numpy arrays: (X, y, w, ids).

Parameters

- **batch_size** (int, optional (default None)) – Number of elements in each batch.

- **epochs** (int, default 1) – Number of epochs to walk over dataset.

- **deterministic** (bool, default False) – If True, follow deterministic order.
- **pad_batches** (bool, default False) – If True, pad each batch to *batch_size*.

 Returns Generator which yields tuples of four numpy arrays \((X, y, w, ids)\).

 Return type Iterator[Batch]

itersamples () \(\rightarrow\) Iterator[Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]]

Get an object that iterates over the samples in the dataset.

 Returns Iterator which yields tuples of four numpy arrays \((X, y, w, ids)\).

 Return type Iterator[Batch]

transform (**transformer**: transformers.Transformer, ***args**) \(\rightarrow\) deepchem.data.datasets.NumpyDataset

Construct a new dataset by applying a transformation to every sample in this dataset.

 The argument is a function that can be called as follows:

 \[
 \text{>> newx, newy, neww} = \text{fn(x, y, w)}
 \]

 It might be called only once with the whole dataset, or multiple times with different subsets of the data.

 Each time it is called, it should transform the samples and return the transformed data.

 Parameters **transformer** (dc.trans.Transformer) – The transformation to apply to each sample in the dataset

 Returns A newly constructed NumpyDataset object

 Return type NumpyDataset

select (**indices**: Union[Sequence[int], numpy.ndarray], **select_dir**: Optional[str] = None) \(\rightarrow\) deepchem.data.datasets.ImageDataset

Creates a new dataset from a selection of indices from self.

 Parameters

 - **indices** (Sequence) – List of indices to select.

 - **select_dir** (str, optional (default None)) – Used to provide same API as DiskDataset. Ignored since ImageDataset is purely in-memory.

 Returns A selected ImageDataset object

 Return type ImageDataset

make_pytorch_dataset (**epochs**: int = 1, **deterministic**: bool = False, **batch_size**: Optional[int] = None)

Create a torch.utils.data.IterableDataset that iterates over the data in this Dataset.

 Each value returned by the Dataset’s iterator is a tuple of \((X, y, w, id)\) containing the data for one batch, or for a single sample if *batch_size* is None.

 Parameters

 - **epochs** (int, default 1) – The number of times to iterate over the Dataset.

 - **deterministic** (bool, default False) – If True, the data is produced in order. If False, a different random permutation of the data is used for each epoch.

 - **batch_size** (int, optional (default None)) – The number of samples to return in each batch. If None, each returned value is a single sample.

 Returns torch.utils.data.IterableDataset that iterates over the data in this dataset.

 Return type torch.utils.data.IterableDataset
static from_dataframe

```
static from_dataframe(df: pandas.core.frame.DataFrame, X: Optional[Union[str, Sequence[str]]] = None, y: Optional[Union[str, Sequence[str]]] = None, w: Optional[Union[str, Sequence[str]]] = None, ids: Optional[str] = None)
```

Construct a Dataset from the contents of a pandas DataFrame.

Parameters

- **df** *(pd.DataFrame)* – The pandas DataFrame
- **X** *(str or List[str], optional (default None)) – The name of the column or columns containing the X array. If this is None, it will look for default column names that match those produced by to_dataframe().
- **y** *(str or List[str], optional (default None)) – The name of the column or columns containing the y array. If this is None, it will look for default column names that match those produced by to_dataframe().
- **w** *(str or List[str], optional (default None)) – The name of the column or columns containing the w array. If this is None, it will look for default column names that match those produced by to_dataframe().
- **ids** *(str, optional (default None)) – The name of the column containing the ids. If this is None, it will look for default column names that match those produced by to_dataframe().

get_statistics

```
gestatsistics(X_stats: bool = True, y_stats: bool = True) → Tuple[numpy.ndarray, ...]
```

Compute and return statistics of this dataset.

Uses `self._iter_samples()` to compute means and standard deviations of the dataset. Can compute on large datasets that don't fit in memory.

Parameters

- **X_stats** *(bool, optional (default True)) – If True, compute feature-level mean and standard deviations.
- **y_stats** *(bool, optional (default True)) – If True, compute label-level mean and standard deviations.

Returns

- If `X_stats == True`, returns `(X_means, X_stds)`.
- If `y_stats == True`, returns `(y_means, y_stds)`.
- If both are true, returns `(X_means, X_stds, y_means, y_stds)`.

Return type *Tuple*

make_tf_dataset

```
make_tf_dataset(batch_size: int = 100, epochs: int = 1, deterministic: bool = False, pad_batches: bool = False)
```

Create a tf.data.Dataset that iterates over the data in this Dataset.

Each value returned by the Dataset's iterator is a tuple of (X, y, w) for one batch.

Parameters

- **batch_size** *(int, default 100)* – The number of samples to include in each batch.
- **epochs** *(int, default 1)* – The number of times to iterate over the Dataset.
• **deterministic** *(bool, default False)* – If True, the data is produced in order. If False, a different random permutation of the data is used for each epoch.

• **pad_batches** *(bool, default False)* – If True, batches are padded as necessary to make the size of each batch exactly equal batch_size.

Returns TensorFlow Dataset that iterates over the same data.

Return type tf.data.Dataset

Note: This class requires TensorFlow to be installed.

to_csv *(path: str)* → None

Write object to a comma-separated values (CSV) file

Example

```python
>>> import numpy as np
>>> X = np.random.rand(10, 10)
>>> dataset = dc.data.DiskDataset.from_numpy(X)
>>> dataset.to_csv('out.csv')
```

Parameters path *(str)* – File path or object

Return type None

to_dataframe () → pandas.core.frame.DataFrame

Construct a pandas DataFrame containing the data from this Dataset.

Returns Pandas dataframe. If there is only a single feature per datapoint, will have column “X” else will have columns “X1,X2,...” for features. If there is only a single label per datapoint, will have column “y” else will have columns “y1,y2,...” for labels. If there is only a single weight per datapoint will have column “w” else will have columns “w1,w2,...”. Will have column “ids” for identifiers.

Return type pd.DataFrame

3.7.2 Data Loaders

Processing large amounts of input data to construct a dc.data.Dataset object can require some amount of hacking. To simplify this process for you, you can use the dc.data.DataLoader classes. These classes provide utilities for you to load and process large amounts of data.
CSVLoader

```python
class CSVLoader(tasks: List[str], featurizer: deepchem.feat.base_classes.Featurizer, feature_field: Optional[str] = None, id_field: Optional[str] = None, smiles_field: Optional[str] = None, log_every_n: int = 1000)
```

Creates `Dataset` objects from input CSV files.

This class provides conveniences to load data from CSV files. It’s possible to directly featurize data from CSV files using pandas, but this class may prove useful if you’re processing large CSV files that you don’t want to manipulate directly in memory. Note that samples which cannot be featurized are filtered out in the creation of final dataset.

Examples

Let’s suppose we have some smiles and labels

```python
>>> smiles = ["C", "CCC"]
>>> labels = [1.5, 2.3]
```

Let’s put these in a dataframe.

```python
>>> import pandas as pd
>>> df = pd.DataFrame(list(zip(smiles, labels)), columns=
|"smiles", "task1")
```

Let’s now write this to disk somewhere. We can now use `CSVLoader` to process this CSV dataset.

```python
>>> import tempfile
>>> import deepchem as dc
>>> with dc.utils.UniversalNamedTemporaryFile(mode='w') as tmpfile:
...     df.to_csv(tmpfile.name)
...     loader = dc.data.CSVLoader(['task1'], feature_field="smiles",
...          featurizer=dc.feat.CircularFingerprint())
...     dataset = loader.create_dataset(tmpfile.name)
```

```
len(dataset)
2
```

Of course in practice you should already have your data in a CSV file if you’re using `CSVLoader`. If your data is already in memory, use `InMemoryLoader` instead.

Sometimes there will be datasets without specific tasks, for example datasets which are used in unsupervised learning tasks. Such datasets can be loaded by leaving the `tasks` field empty.

Example

```python
>>> x1, x2 = [2, 3, 4], [4, 6, 8]
>>> df = pd.DataFrame({"x1":x1, "x2": x2}).reset_index()
>>> with dc.utils.UniversalNamedTemporaryFile(mode='w') as tmpfile:
...     df.to_csv(tmpfile.name)
...     loader = dc.data.CSVLoader(tasks=[], id_field="index", feature_field=["x1", "x2"],
...          featurizer=dc.feat.DummyFeaturizer())
...     dataset = loader.create_dataset(tmpfile.name)
```

(continues on next page)
>>> len(dataset)
3

__init__(tasks: List[str], featurizer: deepchem.feat.base_classes.Featurizer, feature_field: Optional[str] = None, id_field: Optional[str] = None, smiles_field: Optional[str] = None, log_every_n: int = 1000)

Initializes CSVLoader.

Parameters

- **tasks** (List[str]) – List of task names
- **featurizer** (Featurizer) – Featurizer to use to process data.
- **feature_field** (str, optional (default None)) – Field with data to be featurized.
- **id_field** (str, optional, (default None)) – CSV column that holds sample identifier
- **smiles_field** (str, optional (default None) (DEPRECATED)) – Name of field that holds smiles string.
- **log_every_n** (int, optional (default 1000)) – Writes a logging statement this often.

Creates and returns a Dataset object by featurizing provided files.

Reads in inputs and uses self.featurizer to featurize the data in these inputs. For large files, automatically shards into smaller chunks of shard_size datapoints for convenience. Returns a Dataset object that contains the featurized dataset.

This implementation assumes that the helper methods _get_shards and _featurize_shard are implemented and that each shard returned by _get_shards is a pandas dataframe. You may choose to reuse or override this method in your subclass implementations.

Parameters

- **inputs** (List) – List of inputs to process. Entries can be filenames or arbitrary objects.
- **data_dir** (str, optional (default None)) – Directory to store featurized dataset.
- **shard_size** (int, optional (default 8192)) – Number of examples stored in each shard.

Returns A DiskDataset object containing a featurized representation of data from inputs.

Return type DiskDataset
UserCSVLoader

Handles loading of CSV files with user-defined features.

This is a convenience class that allows for descriptors already present in a CSV file to be extracted without any featurization necessary.

Examples

Let’s suppose we have some descriptors and labels. (Imagine that these descriptors have been computed by an external program.)

```python
>>> desc1 = [1, 43]
>>> desc2 = [-2, -22]
>>> labels = [1.5, 2.3]
>>> ids = ['cp1', 'cp2']

Let’s put these in a dataframe.

```python
>>> import pandas as pd

```python
>>> df = pd.DataFrame(list(zip(ids, desc1, desc2, labels)), columns=['id', 'desc1', 'desc2', 'task1'])

Let’s now write this to disk somewhere. We can now use UserCSVLoader to process this CSV dataset.

```python
>>> import tempfile
>>> import deepchem as dc

```python
>>> featurizer = dc.feat.UserDefinedFeaturizer(['desc1', 'desc2'])
```python
>>> with dc.utils.UniversalNamedTemporaryFile(mode='w') as tmpfile:
... df.to_csv(tmpfile.name)
... loader = dc.data.UserCSVLoader(['task1'], id_field='id',
... featurizer=featurizer)
... dataset = loader.create_dataset(tmpfile.name)

```python
>>> len(dataset)
2
>>> dataset.X[0, 0]
1
```

The difference between UserCSVLoader and CSVLoader is that our descriptors (our features) have already been computed for us, but are spread across multiple columns of the CSV file.

Of course in practice you should already have your data in a CSV file if you’re using UserCSVLoader. If your data is already in memory, use InMemoryLoader instead.

__init__ (tasks: List[str], featurizer: deepchem.feat.base_classes.Featurizer, feature_field: Optional[str] = None, id_field: Optional[str] = None, smiles_field: Optional[str] = None, log_every_n: int = 1000)

Initializes CSVLoader.

Parameters

- **tasks** (List[str]) – List of task names
• **featurizer** *(Featurizer)* – Featurizer to use to process data.

• **feature_field** *(str, optional (default None))* – Field with data to be featurized.

• **id_field** *(str, optional, (default None))* – CSV column that holds sample identifier

• **smiles_field** *(str, optional (default None) (DEPRECATED))* – Name of field that holds smiles string.

• **log_every_n** *(int, optional (default 1000))* – Writes a logging statement this often.

Creates and returns a Dataset object by featurizing provided files.

Reads in inputs and uses self.featurizer to featurize the data in these inputs. For large files, automatically shards into smaller chunks of shard_size datapoints for convenience. Returns a Dataset object that contains the featurized dataset.

This implementation assumes that the helper methods _get_shards and _featurize_shard are implemented and that each shard returned by _get_shards is a pandas dataframe. You may choose to reuse or override this method in your subclass implementations.

Parameters

• **inputs** *(List)* – List of inputs to process. Entries can be filenames or arbitrary objects.

• **data_dir** *(str, optional (default None))* – Directory to store featurized dataset.

• **shard_size** *(int, optional (default 8192))* – Number of examples stored in each shard.

Returns A DiskDataset object containing a featurized representation of data from inputs.

Return type DiskDataset

ImageLoader

class ImageLoader(tasks: Optional[List[str]] = None)

Handles loading of image files.

This class allows for loading of images in various formats. For user convenience, also accepts zip-files and directories of images and uses some limited intelligence to attempt to traverse subdirectories which contain images.

__init__(tasks: Optional[List[str]] = None)

Initialize image loader.

At present, custom image featurizers aren’t supported by this loader class.

Parameters tasks *(List[str], optional (default None))* – List of task names for image labels.

Creates and returns a Dataset object by featurizing provided image files and labels/weights.

Parameters
• **inputs** *(Union[OneOrMany[str], Tuple[Any]])* – The inputs provided should be one of the following
 - filename
 - list of filenames
 - Tuple (list of filenames, labels)
 - Tuple (list of filenames, labels, weights)

Each file in a given list of filenames should either be of a supported image format (.png, .tif only for now) or of a compressed folder of image files (only .zip for now). If labels or weights are provided, they must correspond to the sorted order of all filenames provided, with one label/weight per file.

• **data_dir** *(str, optional (default None))* – Directory to store featurized dataset.

• **shard_size** *(int, optional (default 8192))* – Shard size when loading data.

• **in_memory** *(bool, optional (default False))* – If true, return in-memory Numpy-Dataset. Else return ImageDataset.

Returns

- if `in_memory == False`, the return value is ImageDataset.
- if `in_memory == True` and `data_dir` is None, the return value is NumpyDataset.
- if `in_memory == True` and `data_dir` is not None, the return value is DiskDataset.

Return type *ImageDataset or NumpyDataset or DiskDataset*

JsonLoader

JSON is a flexible file format that is human-readable, lightweight, and more compact than other open standard formats like XML. JSON files are similar to python dictionaries of key-value pairs. All keys must be strings, but values can be any of (string, number, object, array, boolean, or null), so the format is more flexible than CSV. JSON is used for describing structured data and to serialize objects. It is conveniently used to read/write Pandas dataframes with the pandas.read_json and pandas.write_json methods.

```python
```

Creates Dataset objects from input json files.

This class provides conveniences to load data from json files. It’s possible to directly featurize data from json files using pandas, but this class may prove useful if you’re processing large json files that you don’t want to manipulate directly in memory.

It is meant to load JSON files formatted as “records” in line delimited format, which allows for sharding. list like [{column -> value}, ... , {column -> value}].
Examples

Let’s create the sample dataframe.

```python
>>> composition = ['LiCoO2', 'MnO2']
>>> labels = [1.5, 2.3]
>>> import pandas as pd
>>> df = pd.DataFrame(list(zip(composition, labels)), columns=['composition', 'task'])
```

Dump the dataframe to the JSON file formatted as “records” in line delimited format and load the json file by JsonLoader.

```python
>>> import tempfile
>>> import deepchem as dc
>>> with dc.utils.UniversalNamedTemporaryFile(mode='w') as tmpfile:
...     df.to_json(tmpfile.name, orient='records', lines=True)
...     featurizer = dc.feat.ElementPropertyFingerprint()
...     loader = dc.data.JsonLoader(['task'], feature_field='composition',
...                                   featurizer=featurizer)
...     dataset = loader.create_dataset(tmpfile.name)
>>> len(dataset)
2
```


Initializes JsonLoader.

Parameters

- **tasks** (List[str]) – List of task names
- **feature_field** (str) – JSON field with data to be featurized.
- **featurizer** (Featurizer) – Featurizer to use to process data
- **label_field** (str, optional (default None)) – Field with target variables.
- **weight_field** (str, optional (default None)) – Field with weights.
- **id_field** (str, optional (default None)) – Field for identifying samples.
- **log_every_n** (int, optional (default 1000)) – Writes a logging statement this often.

Creates a Dataset from input JSON files.

Parameters

- **input_files** (OneOrMany[str]) – List of JSON filenames.
- **data_dir** (Optional[str], default None) – Name of directory where featurized data is stored.
- **shard_size** (int, optional (default 8192)) – Shard size when loading data.

Returns A DiskDataset object containing a featurized representation of data from input_files.
Return type *DiskDataset*

SDFLoader

class **SDFLoader**(*tasks*: List[str], *featurizer*: deepchem.feat.base_classes.Featurizer, *sanitize*: bool = False,
log_every_n: int = 1000)

Creates a *Dataset* object from SDF input files.

This class provides conveniences to load and featurize data from Structure Data Files (SDFs). SDF is a standard format for structural information (3D coordinates of atoms and bonds) of molecular compounds.

Examples

```python
>>> import deepchem as dc
>>> import os
>>> current_dir = os.path.dirname(os.path.realpath(__file__))
>>> featurizer = dc.feat.CircularFingerprint(size=16)
>>> loader = dc.data.SDFLoader(['LogP(RRCK)'], featurizer=featurizer, sanitize=True)
>>> dataset = loader.create_dataset(os.path.join(current_dir, "membrane_permeability.sdf"))
>>> len(dataset)
2
```

__init__ (*tasks*: List[str], *featurizer*: deepchem.feat.base_classes.Featurizer, *sanitize*: bool = False,
log_every_n: int = 1000)

Initialize SDF Loader

Parameters

- **tasks** (List[str]) – List of tasknames. These will be loaded from the SDF file.
- **featurizer** (Featurizer) – Featurizer to use to process data
- **sanitize** (bool, optional (default False)) – Whether to sanitize molecules.
- **log_every_n** (int, optional (default 1000)) – Writes a logging statement this often.

Creates and returns a *Dataset* object by featurizing provided sdf files.

Parameters

- **inputs** (List) – List of inputs to process. Entries can be filenames or arbitrary objects. Each file should be supported format (.sdf) or compressed folder of .sdf files
- **data_dir** (str, optional (default None)) – Directory to store featurized dataset.
- **shard_size** (int, optional (default 8192)) – Number of examples stored in each shard.

Returns

A *DiskDataset* object containing a featurized representation of data from *inputs*.

Return type *DiskDataset*
FASTALoader

class FASTALoader(featurizer: Optional[deepchem.feat.base_classes.Featurizer] = None, auto_add_annotations: bool = False, legacy: bool = True):

Handles loading of FASTA files.

FASTA files are commonly used to hold sequence data. This class provides convenience files to lead FASTA data and one-hot encode the genomic sequences for use in downstream learning tasks.

__init__(featurizer: Optional[deepchem.feat.base_classes.Featurizer] = None, auto_add_annotations: bool = False, legacy: bool = True)

Initialize FASTALoader.

Parameters

• **featurizer** *(Featurizer (default: None)) –* The Featurizer to be used for the loaded FASTA data.

If featurizer is None and legacy is True, the original featurization logic is used, creating a one hot encoding of all included FASTA strings of shape (number of FASTA sequences, number of channels + 1, sequence length, 1).

If featurizer is None and legacy is False, the featurizer is initialized as a OneHotFeaturizer object with charset (“A”, “C”, “T”, “G”) and max_length = None.

• **auto_add_annotations** *(bool (default False)) –* Whether create_dataset will automatically add [CLS] and [SEP] annotations to the sequences it reads in order to assist tokenization. Keep False if your FASTA file already includes [CLS] and [SEP] annotations.

• **legacy** *(bool (default True)) –* Whether to use legacy logic for featurization. Legacy mode will create a one hot encoding of the FASTA content of shape (number of FASTA sequences, number of channels + 1, max length, 1).

Legacy mode is only tested for ACTGN charsets, and will be deprecated.

Creates a Dataset from input FASTA files.

At present, FASTA support is limited and doesn’t allow for sharding.

Parameters

• **input_files** *(List[str]) –* List of fasta files.

• **data_dir** *(str, optional (default None)) –* Name of directory where featurized data is stored.

• **shard_size** *(int, optional (default None)) –* For now, this argument is ignored and each FASTA file gets its own shard.

Returns A DiskDataset object containing a featurized representation of data from input_files.

Return type DiskDataset
FASTQLoader

InMemoryLoader

The `dc.data.InMemoryLoader` is designed to facilitate the processing of large datasets where you already hold the raw data in-memory (say in a pandas dataframe).

```python
class InMemoryLoader(tasks: List[str], featurizer: deepchem.feat.base_classes.Featurizer, id_field: Optional[str] = None, log_every_n: int = 1000)
```

Facilitate Featurization of In-memory objects.

When featurizing a dataset, it’s often the case that the initial set of data (pre-featurization) fits handily within memory. (For example, perhaps it fits within a column of a pandas DataFrame.) In this case, it would be convenient to directly be able to featurize this column of data. However, the process of featurization often generates large arrays which quickly eat up available memory. This class provides convenient capabilities to process such in-memory data by checkpointing generated features periodically to disk.

Example

Here’s an example with only datapoints and no labels or weights.

```python
>>> import deepchem as dc
>>> smiles = ["C", "CC", "CCC", "CCCC"]
>>> featurizer = dc.feat.CircularFingerprint()
>>> loader = dc.data.InMemoryLoader(tasks=["task1"], featurizer=featurizer)
>>> dataset = loader.create_dataset(smiles, shard_size=2)
>>> len(dataset)
4
```

Here’s an example with both datapoints and labels

```python
>>> import deepchem as dc
>>> smiles = ["C", "CC", "CCC", "CCCC"]
>>> labels = [1, 0, 1, 0]
>>> featurizer = dc.feat.CircularFingerprint()
>>> loader = dc.data.InMemoryLoader(tasks=["task1"], featurizer=featurizer)
>>> dataset = loader.create_dataset(zip(smiles, labels), shard_size=2)
>>> len(dataset)
4
```

Here’s an example with datapoints, labels, weights and ids all provided.

```python
>>> import deepchem as dc
>>> smiles = ["C", "CC", "CCC", "CCCC"]
>>> labels = [1, 0, 1, 0]
>>> weights = [1.5, 0, 1.5, 0]
>>> ids = ["C", "CC", "CCC", "CCCC"]
>>> featurizer = dc.feat.CircularFingerprint()
>>> loader = dc.data.InMemoryLoader(tasks=["task1"], featurizer=featurizer)
>>> dataset = loader.create_dataset(zip(smiles, labels, weights, ids), shard_size=2)
>>> len(dataset)
4
```
create_dataset(inputs: Sequence[Any], data_dir: Optional[str] = None, shard_size: Optional[int] = 8192) → deepchem.data.datasets.DiskDataset

Creates and returns a Dataset object by featurizing provided files.

Reads in inputs and uses self.featurizer to featurize the data in these input files. For large files, automatically shards into smaller chunks of shard_size datapoints for convenience. Returns a Dataset object that contains the featurized dataset.

This implementation assumes that the helper methods _get_shards and _featurize_shard are implemented and that each shard returned by _get_shards is a pandas dataframe. You may choose to reuse or override this method in your subclass implementations.

Parameters

- **inputs** (Sequence[Any]) – List of inputs to process. Entries can be arbitrary objects so long as they are understood by self.featurizer
- **data_dir** (str, optional (default None)) – Directory to store featurized dataset.
- **shard_size** (int, optional (default 8192)) – Number of examples stored in each shard.

Returns A DiskDataset object containing a featurized representation of data from inputs.

Return type DiskDataset

__init__ (tasks: List[str], featurizer: deepchem.feat.base_classes.Featurizer, id_field: Optional[str] = None, log_every_n: int = 1000)

Construct a DataLoader object.

This constructor is provided as a template mainly. You shouldn’t ever call this constructor directly as a user.

Parameters

- **tasks** (List[str]) – List of task names
- **featurizer** (Featurizer) – Featurizer to use to process data.
- **id_field** (str, optional (default None)) – Name of field that holds sample identifier. Note that the meaning of “field” depends on the input data type and can have a different meaning in different subclasses. For example, a CSV file could have a field as a column, and an SDF file could have a field as molecular property.
- **log_every_n** (int, optional (default 1000)) – Writes a logging statement this often.

Density Functional Theory YAML Loader
class DFTYamlLoader

Creates a Dataset object from YAML input files.

This class provides methods to load and featurize data from a YAML file. Although, in this class, we only focus on a specific input format that can be used to perform Density Functional Theory calculations.
Examples

```python
>>> from deepchem.data.data_loader import DFTYamlLoader
>>> import deepchem as dc
>>> import pytest

>>> inputs = 'deepchem/data/tests/dftdata.yaml'
>>> data = DFTYamlLoader()
>>> output = data.create_dataset(inputs)
```

Notes

Format (and example) for the YAML file:

- `e_type` : ‘ae’
- `true_val` : ‘0.09194410469’
- `systems` : [{
 – `moldesc` : ‘Li 1.5070 0 0; H -1.5070 0 0’,
 – `basis` : ‘6-311++G(3df,3pd)’
}]

Each entry in the YAML file must contain the three parameters : `e_type`, `true_val` and `systems` in this particular order. One entry object may contain one or more systems. This data class does not support/require an additional featurizer, since the datapoints are featurized within the methods. To read more about the parameters and their possible values please refer to deepchem.feat.dft_data.

__init__

Initialize DFTYAML loader

create_dataset

```python
```

Creates and returns a Dataset object by featurizing provided YAML files.

Parameters

- `input_files` *(OneOrMany[str]*) – List of YAML filenames.
- `data_dir` *(Optional[str], default None)* – Name of directory where featurized data is stored.
- `shard_size` *(int, optional (default 1))* – Shard size when loading data.

Returns A DiskDataset object containing a featurized representation of data from inputs.

Return type DiskDataset

3.7.3 Data Classes

DeepChem featurizers often transform members into “data classes”. These are classes that hold all the information needed to train a model on that data point. Models then transform these into the tensors for training in their default_generator methods.
Graph Data

These classes document the data classes for graph convolutions. We plan to simplify these classes (`ConvMol`, `MultiConvMol`, `WeaveMol`) into a joint data representation (`GraphData`) for all graph convolutions in a future version of DeepChem, so these APIs may not remain stable.

The graph convolution models which inherit `KerasModel` depend on `ConvMol`, `MultiConvMol`, or `WeaveMol`. On the other hand, the graph convolution models which inherit `TorchModel` depend on `GraphData`.

```python
class ConvMol(
    atom_features, adj_list, max_deg=10, min_deg=0
):
    Holds information about a molecule.
    Resorts order of atoms internally to be in order of increasing degree. Note that only heavy atoms (hydrogens excluded) are considered here.

    __init__(
        atom_features, adj_list, max_deg=10, min_deg=0
    )
    
    Parameters
    • atom_features (np.ndarray) – Has shape (n_atoms, n_feat)
    • adj_list (list) – List of length n_atoms, with neighbor indices of each atom.
    • max_deg (int, optional) – Maximum degree of any atom.
    • min_deg (int, optional) – Minimum degree of any atom.

    get_atoms_with_deg(deg)
    Retrieves atom_features with the specific degree

    get_num_atoms_with_deg(deg)
    Returns the number of atoms with the given degree

    get_atom_features()
    Returns canonicalized version of atom features.
    Features are sorted by atom degree, with original order maintained when degrees are same.

    get_adjacency_list()
    Returns a canonicalized adjacency list.
    Canonicalized means that the atoms are re-ordered by degree.

    Returns  Canonicalized form of adjacency list.
    Return type  list

    get_deg_adjacency_lists()
    Returns adjacency lists grouped by atom degree.

    Returns  Has length (max_deg+1-min_deg). The element at position deg is itself a list of the neighbor-lists for atoms with degree deg.
    Return type  list

    get_deg_slice()
    Returns degree-slice tensor.
    The deg_slice tensor allows indexing into a flattened version of the molecule’s atoms. Assume atoms are sorted in order of degree. Then deg_slice[deg][0] is the starting position for atoms of degree deg in flattened list, and deg_slice[deg][1] is the number of atoms with degree deg.

    Note deg_slice has shape (max_deg+1-min_deg, 2).```
Returns deg_slice – Shape (max_deg+1-min_deg, 2)

Return type np.ndarray

class MultiConvMol(nodes, deg_adj_lists, deg_slice, membership, num_mols)

Holds information about multiple molecules, for use in feeding information into tensorflow. Generated using the agglomerate_mols function

__init__(nodes, deg_adj_lists, deg_slice, membership, num_mols)

class WeaveMol(nodes, pairs, pair_edges)

Molecular featurization object for weave convolutions.

These objects are produced by WeaveFeaturizer, and feed into WeaveModel. The underlying implementation is inspired by

References

__init__(nodes, pairs, pair_edges)

class WeaveMol(n_feat, max_deg=10, min_deg=0)

Constructs a null molecules

Parameters n_feat (int) – number of features for the nodes in the null molecule

static get_null_mol(n_feat, max_deg=10, min_deg=0)

Get one molecule with one atom of each degree, with all the atoms connected to themselves, and containing n_feat features.

static agglomerate_mols(mols, max_deg=10, min_deg=0)

Concatenates list of ConvMol’s into one mol object that can be used to feed into tensorflow placeholders. The indexing of the molecules are preseved during the combination, but the indexing of the atoms are greatly changed.

Parameters mols (list) – ConvMol objects to be combined into one molecule.

References

class GraphData:
    __module__ = 'deepchem.feat.mol_graphs'

    def __init__(self, node_features: numpy.ndarray, edge_index: numpy.ndarray, edge_features: Optional[numpy.ndarray] = None, node_pos_features: Optional[numpy.ndarray] = None, **kwargs):
        self.node_features = node_features
        self.edge_index = edge_index
        self.edge_features = edge_features
        self.node_pos_features = node_pos_features

GraphData class

This data class is almost same as torch_geometric.data.Data.

**node_features**
- Node feature matrix with shape [num_nodes, num_node_features]
- Type: numpy.ndarray

**edge_index**
- Graph connectivity in COO format with shape [2, num_edges]
- Type: numpy.ndarray, dtype int

**edge_features**
- Edge feature matrix with shape [num_edges, num_edge_features]
- Type: numpy.ndarray, optional (default None)

**node_pos_features**
- Node position matrix with shape [num_nodes, num_dimensions]
- Type: numpy.ndarray, optional (default None)

**num_nodes**
- The number of nodes in the graph
- Type: int

**num_node_features**
- The number of features per node in the graph
- Type: int

**num_edges**
- The number of edges in the graph
- Type: int

**num_edges_features**
- The number of features per edge in the graph
- Type: int, optional (default None)

Examples

```python
>>> import numpy as np
>>> node_features = np.random.rand(5, 10)
>>> edge_index = np.array([[0, 1, 2, 3, 4], [1, 2, 3, 4, 0]], dtype=np.int64)
>>> edge_features = np.random.rand(5, 5)
>>> global_features = np.random.rand(5)
>>> graph = GraphData(node_features, edge_index, edge_features, z=global_features)
>>> graph
GraphData(node_features=[5, 10], edge_index=[2, 5], edge_features=[5, 5], z=[5])
```
__init__ (node_features: numpy.ndarray, edge_index: numpy.ndarray, edge_features: Optional[numpy.ndarray] = None, node_pos_features: Optional[numpy.ndarray] = None, **kwargs)

Parameters

- **node_features** (np.ndarray) – Node feature matrix with shape [num_nodes, num_node_features]
- **edge_index** (np.ndarray, dtype int) – Graph connectivity in COO format with shape [2, num_edges]
- **edge_features** (np.ndarray, optional (default None)) – Edge feature matrix with shape [num_edges, num_edge_features]
- **node_pos_features** (np.ndarray, optional (default None)) – Node position matrix with shape [num_nodes, num_dimensions].
- **kwargs** (optional) – Additional attributes and their values

__to_pyg_graph__()

Convert to PyTorch Geometric graph data instance

Returns

Graph data for PyTorch Geometric

Return type

torch_geometric.data.Data

Note: This method requires PyTorch Geometric to be installed.

__to_dgl_graph__(self_loop: bool = False)

Convert to DGL graph data instance

Returns

- **dgl.DGLGraph** – Graph data for DGL
- **self_loop** (bool) – Whether to add self loops for the nodes, i.e. edges from nodes to themselves. Default to False.

Note: This method requires DGL to be installed.

__numpy_to_torch__(device: str = 'cpu')

Convert numpy arrays to torch tensors. This may be useful when you are using PyTorch Geometric with GraphData objects.

Parameters

**device** (str) – Device to store the tensors. Default to ‘cpu’.

Example

```python
>>> num_nodes, num_node_features = 5, 32
>>> num_edges, num_edge_features = 6, 32
>>> node_features = np.random.random_sample((num_nodes, num_node_features))
>>> edge_features = np.random.random_sample((num_edges, num_edge_features))
>>> edge_index = np.random.randint(0, num_nodes, (2, num_edges))
>>> graph_data = GraphData(node_features, edge_index, edge_features)
>>> graph_data = graph_data.numpy_to_torch()
```
>>> print(type(graph_data.node_features))
<class 'torch.Tensor'>

subgraph(nodes)
Returns a subgraph of nodes indicies.

Parameters
nodes (list, iterable) – A list of node indices to be included in the subgraph.

Returns subgraph_data – A new GraphData object containing the subgraph induced on nodes.

Return type
GraphData

Example

>>> import numpy as np
>>> from deepchem.feat.graph_data import GraphData

node_features = np.random.rand(5, 10)
edge_index = np.array([[0, 1, 2, 3, 4], [1, 2, 3, 4, 0]], dtype=np.int64)
edge_features = np.random.rand(5, 3)

graph_data = GraphData(node_features, edge_index, edge_features)

nodes = [0, 2, 4]

subgraph_data, node_mapping = graph_data.subgraph(nodes)

Density Functional Theory Data

These Data classes are used to create entry objects for DFT calculations.

class DFTSystem(system: Dict)
The DFTSystem class creates and returns the various systems in an entry object as dictionaries.

Examples

>>> from deepchem.feat.dft_data import DFTSystem

systems = {'moldesc': 'Li 1.5070 0 0; H -1.5070 0 0',
            'basis': '6-311++G(3df,3pd)'}

output = DFTSystem(systems)

Return type
DFTSystem object for all the individual atoms/ions/molecules in an entry object.

References


https://github.com/diffqc/dqc/blob/0fe821fc92cb3457fb14f6dff0c223641c514ddb/dqc/system/base_system.py

__init__(system: Dict)
get_dqc_mol(pos_reqgrad: bool = False) → dqc.system.base_system.BaseSystem

This method converts the system dictionary to a DQC system and returns it. :param pos_reqgrad: decides if the atomic position require gradient calculation. :type pos_reqgrad: bool

Returns DQC mol object

Return type mol

class DFTEntry(e_type: str, true_val: Optional[str], systems: List[Dict], weight: Optional[int] = 1)

Handles creating and initialising DFTEntry objects from the dataset. This object contains information about the various systems in the datapoint (atoms, molecules and ions) along with the ground truth values. .. rubric:: Notes

Entry class should not be initialized directly, but created through Entry.create

Example

```python
>>> from deepchem.feat.dft_data import DFTEntry
>>> e_type = 'dm'
>>> true_val = 'deepchem/data/tests/dftHF_output.npy'
>>> systems = [{"moldesc": 'H 0.86625 0 0; F -0.86625 0 0', 'basis': '6-311++G(3df, ->3pd)'}]
>>> dm_entry_for_HF = DFTEntry.create(e_type, true_val, systems)
```

classmethod create(e_type: str, true_val: Optional[str], systems: List[Dict], weight: Optional[int] = 1)

This method is used to initialise the DFTEntry class. The entry objects are created based on their entry type.

Parameters

- **e_type** (str) – Determines the type of calculation to be carried out on the entry object. Accepts the following values: “ae”, “ie”, “dm”, “dens”, that stand for atomization energy, ionization energy, density matrix and density profile respectively.

- **true_val** (str) – Ground state energy values for the entry object as a string (for ae and ie), or a .npy file containing a matrix ( for dm and dens).

- **systems** (List[Dict]) – List of dictionaries contains “moldesc”, “basis” and “spin” of all the atoms/molecules. These values are to be entered in the DQC or PYSCF format. The systems needs to be entered in a specific order, i.e ; the main atom/molecule needs to be the first element. (This is for objects containing equations, such as ae and ie entry objects). Spin and charge of the system are optional parameters and are considered ‘0’ if not specified. The system number refers to the number of times the systems is present in the molecule - this is for polyatomic molecules and the default value is 1. For example ; system number of Hydrogen in water is 2.

- **weight** (int) – Weight of the entry object.

Return type DFTEntry object based on entry type

__init__(e_type: str, true_val: Optional[str], systems: List[Dict], weight: Optional[int] = 1)

get_systems() → List[deepchem.feat.dft_data.DFTSystem]

Parameters systems (List[DFTSystem]) –

Return type List of systems in the entry
abstract property entry_type: str

get_true_val() → numpy.ndarray
Get the true value of the DFTEntry. For the AE and IP entry types, the experimental values are collected from the NIST CCCDB/ASD databases. The true values of density profiles are calculated using PYSCF-CCSD calculations. This method simply loads the value, no calculation is performed.

abstract get_val(qcs: List[deepchem.utils.dftutils.KSCalc]) → numpy.ndarray
Return the energy value of the entry, using a DQC-DFT calculation, where the XC has been replaced by the trained neural network. This method does not carry out any calculations, it is an interface to the KSCalc utility.

get_weight()
Return type Weight of the entry object

3.7.4 Base Classes (for develop)

Dataset

The dc.data.Dataset class is the abstract parent class for all datasets. This class should never be directly initialized, but contains a number of useful method implementations.

class Dataset
Abstract base class for datasets defined by X, y, w elements.

Dataset objects are used to store representations of a dataset as used in a machine learning task. Datasets contain features X, labels y, weights w and identifiers ids. Different subclasses of Dataset may choose to hold X, y, w, ids in memory or on disk.

The Dataset class attempts to provide for strong interoperability with other machine learning representations for datasets. Interconversion methods allow for Dataset objects to be converted to and from numpy arrays, pandas dataframes, tensorflow datasets, and pytorch datasets (only to and not from for pytorch at present).

Note that you can never instantiate a Dataset object directly. Instead you will need to instantiate one of the concrete subclasses.

__init__() → None

__len__() → int
Get the number of elements in the dataset.

Returns The number of elements in the dataset.

Return type int

get_shape() → Tuple[Tuple[int, ...], Tuple[int, ...], Tuple[int, ...], Tuple[int, ...]]
Get the shape of the dataset.

Returns four tuples, giving the shape of the X, y, w, and ids arrays.

Return type Tuple

get_task_names() → numpy.ndarray
Get the names of the tasks associated with this dataset.
**property X: numpy.ndarray**

Get the X vector for this dataset as a single numpy array.

- **Returns**: A numpy array of identifiers X.
- **Return type**: np.ndarray

**Note**: If data is stored on disk, accessing this field may involve loading data from disk and could potentially be slow. Using `iterbatches()` or `itersamples()` may be more efficient for larger datasets.

**property y: numpy.ndarray**

Get the y vector for this dataset as a single numpy array.

- **Returns**: A numpy array of identifiers y.
- **Return type**: np.ndarray

**Note**: If data is stored on disk, accessing this field may involve loading data from disk and could potentially be slow. Using `iterbatches()` or `itersamples()` may be more efficient for larger datasets.

**property ids: numpy.ndarray**

Get the ids vector for this dataset as a single numpy array.

- **Returns**: A numpy array of identifiers ids.
- **Return type**: np.ndarray

**Note**: If data is stored on disk, accessing this field may involve loading data from disk and could potentially be slow. Using `iterbatches()` or `itersamples()` may be more efficient for larger datasets.

**property w: numpy.ndarray**

Get the weight vector for this dataset as a single numpy array.

- **Returns**: A numpy array of weights w.
- **Return type**: np.ndarray

**Note**: If data is stored on disk, accessing this field may involve loading data from disk and could potentially be slow. Using `iterbatches()` or `itersamples()` may be more efficient for larger datasets.

**iterbatches**(batch_size: Optional[int] = None, epochs: int = 1, deterministic: bool = False, pad_batches: bool = False) \(\rightarrow\) Iterator[Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]]

Get an object that iterates over minibatches from the dataset.

Each minibatch is returned as a tuple of four numpy arrays: (X, y, w, ids).

**Parameters**

- **batch_size**: Number of elements in each batch.
- **epochs**: Number of epochs to walk over dataset.
- **deterministic**: If True, follow deterministic order.
• **pad_batches** *(bool, optional (default False)) –* If True, pad each batch to `batch_size`.

Returns Generator which yields tuples of four numpy arrays `(X, y, w, ids)`.

Return type Iterator[Batch]

**itersamples** () → Iterator[Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]]

Get an object that iterates over the samples in the dataset.

### Examples

```python
>>> dataset = NumpyDataset(np.ones((2,2)))
>>> for x, y, w, id in dataset.itersamples():
... print(x.tolist(), y.tolist(), w.tolist(), id)
[1.0, 1.0] [0.0] [0.0] 0
[1.0, 1.0] [0.0] [0.0] 1
```

**transform**(transformer: transformers.Transformer, **args) → deepchem.data.datasets.Dataset

Construct a new dataset by applying a transformation to every sample in this dataset.

The argument is a function that can be called as follows: `>> newx, newy, neww = fn(x, y, w)`

It might be called only once with the whole dataset, or multiple times with different subsets of the data. Each time it is called, it should transform the samples and return the transformed data.

Parameters transformer *(dc.trans.Transformer)* – The transformation to apply to each sample in the dataset.

Returns A newly constructed Dataset object.

Return type Dataset

**select**(indices: Union[Sequence[int], numpy.ndarray], select_dir: Optional[str] = None) → deepchem.data.datasets.Dataset

Creates a new dataset from a selection of indices from self.

Parameters

• **indices** *(Sequence)* – List of indices to select.

• **select_dir** *(str, optional (default None)) –* Path to new directory that the selected indices will be copied to.

**get_statistics**(X_stats: bool = True, y_stats: bool = True) → Tuple[numpy.ndarray, ...]

Compute and return statistics of this dataset.

Uses `self.itersamples()` to compute means and standard deviations of the dataset. Can compute on large datasets that don’t fit in memory.

Parameters

• **X_stats** *(bool, optional (default True)) –* If True, compute feature-level mean and standard deviations.

• **y_stats** *(bool, optional (default True)) –* If True, compute label-level mean and standard deviations.

Returns

• If `X_stats == True`, returns `(X_means, X_stds)`. 
• If \( y_{\text{stats}} = \text{True} \), returns \((y_{\text{means}}, y_{\text{stds}})\).
• If both are true, returns \((X_{\text{means}}, X_{\text{stds}}, y_{\text{means}}, y_{\text{stds}})\).

Return type Tuple

\text{make_tf_dataset}(\text{batch_size: int = 100}, \text{epochs: int = 1}, \text{deterministic: bool = False}, \text{pad_batches: bool = False})

Create a tf.data.Dataset that iterates over the data in this Dataset.
Each value returned by the Dataset’s iterator is a tuple of \((X, y, w)\) for one batch.

Parameters

• \text{batch_size} (int, \text{default 100}) – The number of samples to include in each batch.
• \text{epochs} (int, \text{default 1}) – The number of times to iterate over the Dataset.
• \text{deterministic} (bool, \text{default False}) – If True, the data is produced in order. If False, a different random permutation of the data is used for each epoch.
• \text{pad_batches} (bool, \text{default False}) – If True, batches are padded as necessary to make the size of each batch exactly equal \text{batch_size}.

Returns TensorFlow Dataset that iterates over the same data.

Return type tf.data.Dataset

Note: This class requires TensorFlow to be installed.

\text{make_pytorch_dataset}(\text{epochs: int = 1}, \text{deterministic: bool = False}, \text{batch_size: Optional[int] = None})

Create a torch.utils.data.IterableDataset that iterates over the data in this Dataset.
Each value returned by the Dataset’s iterator is a tuple of \((X, y, w, id)\) containing the data for one batch, or for a single sample if \text{batch_size} is None.

Parameters

• \text{epochs} (int, \text{default 1}) – The number of times to iterate over the Dataset.
• \text{deterministic} (bool, \text{default False}) – If True, the data is produced in order. If False, a different random permutation of the data is used for each epoch.
• \text{batch_size} (int, \text{optional (default None)}) – The number of samples to return in each batch. If None, each returned value is a single sample.

Returns torch.utils.data.IterableDataset that iterates over the data in this dataset.

Return type torch.utils.data.IterableDataset

Note: This class requires PyTorch to be installed.

to_dataframe() \rightarrow\text{pandas.core.frame.DataFrame}

Construct a pandas DataFrame containing the data from this Dataset.

Returns Pandas dataframe. If there is only a single feature per datapoint, will have column “X” else will have columns “X1,X2,…” for features. If there is only a single label per datapoint, will have column “y” else will have columns “y1,y2,…” for labels. If there is only a single weight per datapoint will have column “w” else will have columns “w1,w2,…”. Will have column “ids” for identifiers.
Return type  pd.DataFrame

static from_dataframe(df: pandas.core.frame.DataFrame, X: Optional[Union[str, Sequence[str]]] = None, y: Optional[Union[str, Sequence[str]]] = None, w: Optional[Union[str, Sequence[str]]] = None, ids: Optional[str] = None)

Construct a Dataset from the contents of a pandas DataFrame.

Parameters

• **df (pd.DataFrame)** – The pandas DataFrame

• **X (str or List[str], optional (default None))** – The name of the column or columns containing the X array. If this is None, it will look for default column names that match those produced by to_dataframe().

• **y (str or List[str], optional (default None))** – The name of the column or columns containing the y array. If this is None, it will look for default column names that match those produced by to_dataframe().

• **w (str or List[str], optional (default None))** – The name of the column or columns containing the w array. If this is None, it will look for default column names that match those produced by to_dataframe().

• **ids (str, optional (default None))** – The name of the column containing the ids. If this is None, it will look for default column names that match those produced by to_dataframe().

to_csv(path: str) → None

Write object to a comma-separated values (CSV) file

Example

```python
>>> import numpy as np
>>> X = np.random.rand(10, 10)
>>> dataset = dc.data.DiskDataset.from_numpy(X)
>>> dataset.to_csv('out.csv')
```

Parameters **path (str)** – File path or object

Return type  None

DataLoader

The `dc.data.DataLoader` class is the abstract parent class for all dataloaders. This class should never be directly initialized, but contains a number of useful method implementations.

class DataLoader(tasks: List[str], featurizer: deepchem.feat.base_classes.Featurizer, id_field: Optional[str] = None, log_every_n: int = 1000)

Handles loading/featurizing of data from disk.

The main use of `DataLoader` and its child classes is to make it easier to load large datasets into `Dataset` objects. `DataLoader` is an abstract superclass that provides a general framework for loading data into DeepChem. This class should never be instantiated directly. To load your own type of data, make a subclass of `DataLoader` and provide your own implementation for the `create_dataset()` method.
To construct a Dataset from input data, first instantiate a concrete data loader (that is, an object which is an instance of a subclass of DataLoader) with a given Featurizer object. Then call the data loader’s create_dataset() method on a list of input files that hold the source data to process. Note that each subclass of DataLoader is specialized to handle one type of input data so you will have to pick the loader class suitable for your input data type.

Note that it isn’t necessary to use a data loader to process input data. You can directly use Featurizer objects to featurize provided input into numpy arrays, but note that this calculation will be performed in memory, so you will have to write generators that walk the source files and write featurized data to disk yourself. DataLoader and its subclasses make this process easier for you by performing this work under the hood.

```
__init__(tasks: List[str], featurizer: deepchem.feat.base_classes.Featurizer, id_field: Optional[str] = None, log_every_n: int = 1000)
```

Construct a DataLoader object.

This constructor is provided as a template mainly. You shouldn’t ever call this constructor directly as a user.

Parameters

- **tasks** (List[str]) – List of task names
- **featurizer** (Featurizer) – Featurizer to use to process data.
- **id_field** (str, optional (default None)) – Name of field that holds sample identifier. Note that the meaning of “field” depends on the input data type and can have a different meaning in different subclasses. For example, a CSV file could have a field as a column, and an SDF file could have a field as molecular property.
- **log_every_n** (int, optional (default 1000)) – Writes a logging statement this often.

```
```

Featurize provided files and write to specified location.

DEPRECATED: This method is now a wrapper for create_dataset() and calls that method under the hood.

For large datasets, automatically shards into smaller chunks for convenience. This implementation assumes that the helper methods _get_shards and _featurize_shard are implemented and that each shard returned by _get_shards is a pandas dataframe. You may choose to reuse or override this method in your subclass implementations.

Parameters

- **inputs** (List) – List of inputs to process. Entries can be filenames or arbitrary objects.
- **data_dir** (str, default None) – Directory to store featurized dataset.
- **shard_size** (int, optional (default 8192)) – Number of examples stored in each shard.

Returns A Dataset object containing a featurized representation of data from inputs.

Return type Dataset

```
```

Creates and returns a Dataset object by featurizing provided files.

Reads in inputs and uses self.featurizer to featurize the data in these inputs. For large files, automatically shards into smaller chunks of shard_size datapoints for convenience. Returns a Dataset object that contains the featurized dataset.
This implementation assumes that the helper methods `_get_shards` and `_featurize_shard` are implemented and that each shard returned by `_get_shards` is a pandas dataframe. You may choose to reuse or override this method in your subclass implementations.

Parameters

- **inputs** (*List*) – List of inputs to process. Entries can be filenames or arbitrary objects.
- **data_dir** (*str, optional (default None*)) – Directory to store featurized dataset.
- **shard_size** (*int, optional (default 8192)*) – Number of examples stored in each shard.

Returns A `DiskDataset` object containing a featurized representation of data from `inputs`.

Return type `DiskDataset`

### 3.8 MoleculeNet

The DeepChem library is packaged alongside the MoleculeNet suite of datasets. One of the most important parts of machine learning applications is finding a suitable dataset. The MoleculeNet suite has curated a whole range of datasets and loaded them into DeepChem `dc.data.Dataset` objects for convenience.

#### 3.8.1 MoleculeNet Cheatsheet

When training a model or performing a benchmark, the user needs specific datasets. However, at the beginning, this search can be exhaustive and confusing. The following cheatsheet is aimed at helping DeepChem users identify more easily which dataset to use depending on their purposes.

Each row represents a dataset where a brief description is given. Also, the columns represent the type of the data; depending on molecule properties, images or materials and how many data points they have. Each dataset is referenced with a link of the paper. Finally, there are some entries that need further information.

Cheatsheet

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BACE (Regression)</td>
<td>Provides bindings results for a set of inhibitors of human beta-secretase (BACE-1)</td>
</tr>
<tr>
<td>BACE (Classification)</td>
<td>Provides bindings results for a set of inhibitors of human beta-secretase (BACE-1)</td>
</tr>
<tr>
<td>BBBC (BBBC001)</td>
<td>Images of HT29 colon cancer cells</td>
</tr>
<tr>
<td>BBBC (BBBC002)</td>
<td>Images of Drosophila Kc167 cells</td>
</tr>
<tr>
<td>BBBP</td>
<td>Blood-Brain Barrier Penetration designed for the modeling and prediction of barrier permeability</td>
</tr>
<tr>
<td>Cell Counting</td>
<td>Synthetic emulations of fluorescence microscopic images of bacterial cells</td>
</tr>
<tr>
<td>ChEMBL (set = ‘sparse’)</td>
<td>A sparse subset of ChEMBL with activity data for one target</td>
</tr>
<tr>
<td>ChEMBL (set = ‘5thresh’)</td>
<td>A subset of ChEMBL with activity data for at least five targets</td>
</tr>
<tr>
<td>ChEMBL25</td>
<td></td>
</tr>
<tr>
<td>Clearance</td>
<td></td>
</tr>
<tr>
<td>Clintox</td>
<td>Compares drugs approved by the FDA and drugs that have failed clinical trials for toxicity reasons.</td>
</tr>
<tr>
<td>Delaney</td>
<td>A regression dataset containing structures and water solubility data</td>
</tr>
<tr>
<td>Factors</td>
<td>Merck in-house compounds that were measured for IC50 of inhibition on 12 serine proteases</td>
</tr>
<tr>
<td>Freesolv</td>
<td>A collection of experimental and calculated hydration free energies for small molecules in water</td>
</tr>
<tr>
<td>HIV</td>
<td>A dataset which tested the ability to inhibit HIV replication</td>
</tr>
<tr>
<td>HOPV</td>
<td>Harvard Organic Photovoltaic dataset utilized as p-type materials</td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>HPPB</td>
<td>Thermodynamic solubility datasets</td>
</tr>
<tr>
<td>KAGGLE</td>
<td>in-house compounds that were measured on 15 enzyme inhibition and ADME/TOX datasets.</td>
</tr>
<tr>
<td>KINASE</td>
<td>In-house compounds that were measured for IC50 of inhibition on 99 protein kinases</td>
</tr>
<tr>
<td>LIPO</td>
<td>Experimental results of octanol/water distribution coefficient (logD at pH 7.4)</td>
</tr>
<tr>
<td>Band Gap</td>
<td>Experimentally measured band gaps for inorganic crystal structure</td>
</tr>
<tr>
<td>Perovskite</td>
<td>Contains Perovskite structures and their formation energies</td>
</tr>
<tr>
<td>MP Formation Energy</td>
<td>Contains calculated formation energies and inorganic crystal structures from the Materials Project database</td>
</tr>
<tr>
<td>MP Metallicity</td>
<td>Contains inorganic crystal structures from the Materials Project database labeled as metals or nonmetals</td>
</tr>
<tr>
<td>MUV</td>
<td>Benchmark dataset selected from PubChem BioAssay by applying a refined nearest neighbor analysis</td>
</tr>
<tr>
<td>NCI</td>
<td>Database consisting of biological activities of small molecules generated by high-throughput screening</td>
</tr>
<tr>
<td>PCBA</td>
<td>Database consisting of biological activities of small molecules generated by high-throughput screening</td>
</tr>
<tr>
<td>PDBBIND</td>
<td>Experimental binding affinity data and structures of protein-ligand complexes</td>
</tr>
<tr>
<td>QM7</td>
<td>Subset of GDB-13 containing up to 7 heavy atoms CNOS</td>
</tr>
<tr>
<td>QM8</td>
<td>Dataset used in a study on modeling quantum mechanical calculations of electronic spectra and excited states</td>
</tr>
<tr>
<td>QM9</td>
<td>Dataset that provides geometric/energetic/electronic and thermodynamic properties for a subset of GDB-15</td>
</tr>
<tr>
<td>SAMPL</td>
<td>Similar to FreeSolv dataset which provides experimental and calculated hydration free energy of small molecules</td>
</tr>
<tr>
<td>SIDER</td>
<td>The Side Effect Resource (SIDER) is a database of marketed drugs and adverse drug reactions (ADR)</td>
</tr>
<tr>
<td>Thermosol</td>
<td>Thermodynamic solubility datasets</td>
</tr>
<tr>
<td>Tox21</td>
<td>The “Toxicology in the 21st Century” (Tox21) initiative created a public database measuring the toxicity of small molecules</td>
</tr>
<tr>
<td>Toxcast</td>
<td>Toxicology data for an extensive library of compounds based on in vitro high-throughput screening</td>
</tr>
<tr>
<td>USPTO</td>
<td>Subsets of USPTO dataset of organic chemical reactions extracted from US patents and patent applications</td>
</tr>
<tr>
<td>UV</td>
<td>The UV dataset tests Merck’s internal compounds on 190 absorption wavelengths between 210 and 400 nm</td>
</tr>
<tr>
<td>ZINC15</td>
<td>Purchasable compounds for virtual screening of small molecules to identify structures that are likely to bind</td>
</tr>
<tr>
<td>Platinum Adsorption</td>
<td>Different configurations of Adsorbates (i.e N and NO) on Platinum surface represented as Lattice and the...</td>
</tr>
</tbody>
</table>

### 3.8.2 Contributing a new dataset to MoleculeNet

If you are proposing a new dataset to be included in the MoleculeNet benchmarking suite, please follow the instructions below. Please review the datasets already available in MolNet before contributing.

1. **Read the Contribution guidelines.**

2. **Open an issue** to discuss the dataset you want to add to MolNet.

3. **Write a DatasetLoader class** that inherits from `deepchem.molnet.load_function.molnet_loader._MolnetLoader` and implements a `create_dataset` method. See the `_QM9Loader` for a simple example.

4. **Write a load_dataset function** that documents the dataset and add your load function to `deepchem.molnet.__init__.py` for easy importing.

5. **Prepare your dataset as a .tar.gz or .zip file.** Accepted filetypes include CSV, JSON, and SDF.

6. **Ask a member of the technical steering committee to add your .tar.gz or .zip file to the DeepChem AWS bucket.** Modify your load function to pull down the dataset from AWS.

7. **Add documentation for your loader to the MoleculeNet docs.**

8. **Submit a [WIP] PR (Work in progress pull request) following the PR template.**
3.8.3 Example Usage

Below is an example of how to load a MoleculeNet dataset and featurizer. This approach will work for any dataset in MoleculeNet by changing the load function and featurizer. For more details on the featurizers, see the Featurizers section.

```python
import deepchem as dc
from deepchem.feat.molecule_featurizers import MolGraphConvFeaturizer

featurizer = MolGraphConvFeaturizer(use_edges=True)
dataset_dc = dc.molnet.load_qm9(featurizer=featurizer)
tasks, dataset, transformers = dataset_dc
train, valid, test = dataset
x,y,w,ids = train.X, train.y, train.w, train.ids
```

Note that the “w” matrix represents the weight of each sample. Some assays may have missing values, in which case the weight is 0. Otherwise, the weight is 1.

Additionally, the environment variable DEEPCHEM_DATA_DIR can be set like `os.environ['DEEPCHEM_DATA_DIR'] = path/to/store/featurized/dataset`. When the DEEPCHEM_DATA_DIR environment variable is set, molnet loader stores the featurized dataset in the specified directory and when the dataset has to be reloaded the next time, it will be fetched from the data directory directly rather than featurizing the raw dataset from scratch.

3.8.4 BACE Dataset


Load BACE dataset, classification labels

BACE dataset with classification labels (“class”).

Parameters

- **featurizer** *(Featurizer or str)* – the featurizer to use for processing the data. Alternatively you can pass one of the names from dc.molnet.feature as a shortcut.

- **splitter** *(Splitter or str)* – the splitter to use for splitting the data into training, validation, and test sets. Alternatively you can pass one of the names from dc.molnet.split as a shortcut. If this is None, all the data will be included in a single dataset.

- **transformers** *(list of TransformerGenerators or strings)* – the Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one of the names from dc.molnet.transformers.

- **reload** *(bool)* – if True, the first call for a particular featurizer and splitter will cache the datasets to disk, and subsequent calls will reload the cached datasets.

- **data_dir** *(str)* – a directory to save the raw data in

- **save_dir** *(str)* – a directory to save the dataset in
load_bace_regression

Load BACE dataset, regression labels

The BACE dataset provides quantitative IC50 and qualitative (binary label) binding results for a set of inhibitors of human beta-secretase 1 (BACE-1).

All data are experimental values reported in scientific literature over the past decade, some with detailed crystal structures available. A collection of 1522 compounds is provided, along with the regression labels of IC50.

Scaffold splitting is recommended for this dataset.

The raw data csv file contains columns below:

• “mol” - SMILES representation of the molecular structure
• “pIC50” - Negative log of the IC50 binding affinity
• “class” - Binary labels for inhibitor

Parameters

• featurizer (Featurizer or str) – the featurizer to use for processing the data. Alternatively you can pass one of the names from dc.molnet.featurizers as a shortcut.
• splitter (Splitter or str) – the splitter to use for splitting the data into training, validation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single dataset.
• transformers (list of TransformerGenerators or strings) – the Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one of the names from dc.molnet.transformers.
• reload (bool) – if True, the first call for a particular featurizer and splitter will cache the datasets to disk, and subsequent calls will reload the cached datasets.
• data_dir (str) – a directory to save the raw data in
• save_dir (str) – a directory to save the dataset in

References

3.8.5 BBBC Datasets

load_bbbc001

Load BBBC001 dataset

This dataset contains 6 images of human HT29 colon cancer cells. The task is to learn to predict the cell counts in these images. This dataset is too small to serve to train algorithms, but might serve as a good test dataset.

https://data.broadinstitute.org/bbbc/BBBC001/

Parameters
• **splitter** (*Splitter or str*) – the splitter to use for splitting the data into training, validation, and test sets. Alternatively you can pass one of the names from `dc.molnet.splitters` as a shortcut. If this is None, all the data will be included in a single dataset.

• **transformers** (*list of TransformerGenerators or strings*) – the Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one of the names from `dc.molnet.transformers`.

• **reload** (*bool*) – if True, the first call for a particular featurizer and splitter will cache the datasets to disk, and subsequent calls will reload the cached datasets.

• **data_dir** (*str*) – a directory to save the raw data in

• **save_dir** (*str*) – a directory to save the dataset in

### load_bbbc002

```python
```

Load BBBC002 dataset

This dataset contains data corresponding to 5 samples of Drosophila Kc167 cells. There are 10 fields of view for each sample, each an image of size 512x512. Ground truth labels contain cell counts for this dataset. Full details about this dataset are present at [https://data.broadinstitute.org/bbbc/BBBC002/](https://data.broadinstitute.org/bbbc/BBBC002/).

**Parameters**

• **splitter** (*Splitter or str*) – the splitter to use for splitting the data into training, validation, and test sets. Alternatively you can pass one of the names from `dc.molnet.splitters` as a shortcut. If this is None, all the data will be included in a single dataset.

• **transformers** (*list of TransformerGenerators or strings*) – the Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one of the names from `dc.molnet.transformers`.

• **reload** (*bool*) – if True, the first call for a particular featurizer and splitter will cache the datasets to disk, and subsequent calls will reload the cached datasets.

• **data_dir** (*str*) – a directory to save the raw data in

• **save_dir** (*str*) – a directory to save the dataset in

### 3.8.6 BBBP Datasets

BBBP stands for Blood-Brain-Barrier Penetration

```python
```

Load BBBP dataset

The blood-brain barrier penetration (BBBP) dataset is designed for the modeling and prediction of barrier permeability. As a membrane separating circulating blood and brain extracellular fluid, the blood-brain barrier blocks most drugs, hormones and neurotransmitters. Thus penetration of the barrier forms a long-standing issue in development of drugs targeting central nervous system.

This dataset includes binary labels for over 2000 compounds on their permeability properties.
Scaffold splitting is recommended for this dataset.

The raw data csv file contains columns below:

- “name” - Name of the compound
- “smiles” - SMILES representation of the molecular structure
- “p_np” - Binary labels for penetration/non-penetration

**Parameters**

- **featurizer** (Featurizer or str) – the featurizer to use for processing the data. Alternatively you can pass one of the names from dc.molnet.featurizers as a shortcut.
- **splitter** (Splitter or str) – the splitter to use for splitting the data into training, validation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single dataset.
- **transformers** (list of TransformerGenerators or strings) – the Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one of the names from dc.molnet.transformers.
- **reload** (bool) – if True, the first call for a particular featurizer and splitter will cache the datasets to disk, and subsequent calls will reload the cached datasets.
- **data_dir** (str) – a directory to save the raw data in
- **save_dir** (str) – a directory to save the dataset in

**References**

### 3.8.7 Cell Counting Datasets

**load_cell_counting**

```python
```

Load Cell Counting dataset.

Loads the cell counting dataset from [http://www.robots.ox.ac.uk/~vgg/research/counting/index_org.html](http://www.robots.ox.ac.uk/~vgg/research/counting/index_org.html).

**Parameters**

- **splitter** (Splitter or str) – the splitter to use for splitting the data into training, validation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single dataset.
- **transformers** (list of TransformerGenerators or strings) – the Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one of the names from dc.molnet.transformers.
- **reload** (bool) – if True, the first call for a particular featurizer and splitter will cache the datasets to disk, and subsequent calls will reload the cached datasets.
- **data_dir** (str) – a directory to save the raw data in
- **save_dir** (str) – a directory to save the dataset in

---

3.8. MoleculeNet 73
3.8.8 Chembl Datasets

**load_chembl**

```py
load_chembl([featurizer: Union[deepchem.feat.base_classes.Featurizer, str] = 'ECFP', splitter:
 Optional[Union[deepchem.splits.splitters.Splitter, str]] = 'scaffold', transformers:
 List[Union[deepchem.molnet.load_function.molnet_loader.TransformerGenerator, str]] =
 ['normalization'], set: str = '5thresh', reload: bool = True, data_dir: Optional[str] = None, save_dir:
 Optional[str] = None, **kwargs) → Tuple[List[str], Tuple[
 deepchem.data.datasets.Dataset, ...],
 List[transformers.Transformer]]
```

Load the ChEMBL dataset.

This dataset is based on release 22.1 of the data from https://www.ebi.ac.uk/chembl/. Two subsets of the data are available, depending on the “set” argument. “sparse” is a large dataset with 244,245 compounds. As the name suggests, the data is extremely sparse, with most compounds having activity data for only one target. “5thresh” is a much smaller set (23,871 compounds) that includes only compounds with activity data for at least five targets.

**Parameters**

- **featurizer (Featurizer or str)** – the featurizer to use for processing the data. Alternatively you can pass one of the names from dc.molnet.feature as a shortcut.
- **splitter (Splitter or str)** – the splitter to use for splitting the data into training, validation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single dataset.
- **transformers (list of TransformerGenerators or strings)** – the Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one of the names from dc.molnet.transformers.
- **set (str)** – the subset to load, either “sparse” or “5thresh”
- **reload (bool)** – if True, the first call for a particular featurizer and splitter will cache the datasets to disk, and subsequent calls will reload the cached datasets.
- **data_dir (str)** – a directory to save the raw data in
- **save_dir (str)** – a directory to save the dataset in

3.8.9 Chembl25 Datasets

**load_chembl25**

```py
load_chembl25([featurizer: Union[deepchem.feat.base_classes.Featurizer, str] = 'ECFP', splitter:
 Optional[Union[deepchem.splits.splitters.Splitter, str]] = 'scaffold', transformers:
 List[Union[deepchem.molnet.load_function.molnet_loader.TransformerGenerator, str]] =
 ['normalization'], reload: bool = True, data_dir: Optional[str] = None, save_dir:
 Optional[str] = None, **kwargs) → Tuple[List[str], Tuple[
 deepchem.data.datasets.Dataset, ...],
 List[transformers.Transformer]]
```

Loads the ChEMBL25 dataset, featurizes it, and does a split.

**Parameters**

- **featurizer (Featurizer or str)** – the featurizer to use for processing the data. Alternatively you can pass one of the names from dc.molnet.feature as a shortcut.
- **splitter (Splitter or str)** – the splitter to use for splitting the data into training, validation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single dataset.
- **transformers (list of TransformerGenerators or strings)** – the Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one of the names from dc.molnet.transformers.
3.8.10 Clearance Datasets


Load clearance datasets.

Parameters

- **featurizer** (*Featurizer or str*) – the featurizer to use for processing the data. Alternatively you can pass one of the names from dc.molnet.featurizers as a shortcut.

- **splitter** (*Splitter or str*) – the splitter to use for splitting the data into training, validation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single dataset.

- **transformers** (*list of TransformerGenerators or strings*) – the Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one of the names from dc.molnet.transformers.

- **reload** (*bool*) – if True, the first call for a particular featurizer and splitter will cache the datasets to disk, and subsequent calls will reload the cached datasets.

- **data_dir** (*str*) – a directory to save the raw data in

- **save_dir** (*str*) – a directory to save the dataset in

3.8.11 ClinTox Datasets


Load ClinTox dataset

The ClinTox dataset compares drugs approved by the FDA and drugs that have failed clinical trials for toxicity reasons. The dataset includes two classification tasks for 1491 drug compounds with known chemical structures:

1. clinical trial toxicity (or absence of toxicity)
2. FDA approval status.

List of FDA-approved drugs are compiled from the SWEETLEAD database, and list of drugs that failed clinical trials for toxicity reasons are compiled from the Aggregate Analysis of ClinicalTrials.gov(AACT) database.

Random splitting is recommended for this dataset.

The raw data csv file contains columns below:
• “smiles” - SMILES representation of the molecular structure
• “FDA_APPROVED” - FDA approval status
• “CT_TOX” - Clinical trial results

Parameters

- **featurizer** *(Featurizer or str)* – the featurizer to use for processing the data. Alternatively you can pass one of the names from dc.molnet.featureizers as a shortcut.
- **splitter** *(Splitter or str)* – the splitter to use for splitting the data into training, validation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single dataset.
- **transformers** *(list of TransformerGenerators or strings)* – the Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one of the names from dc.molnet.transformers.
- **reload** *(bool)* – if True, the first call for a particular featurizer and splitter will cache the datasets to disk, and subsequent calls will reload the cached datasets.
- **data_dir** *(str)* – a directory to save the raw data in
- **save_dir** *(str)* – a directory to save the dataset in

References

3.8.12 Delaney Datasets


Load Delaney dataset

The Delaney (ESOL) dataset a regression dataset containing structures and water solubility data for 1128 compounds. The dataset is widely used to validate machine learning models on estimating solubility directly from molecular structures (as encoded in SMILES strings).

Scaffold splitting is recommended for this dataset.

The raw data csv file contains columns below:
• “Compound ID” - Name of the compound
• “smiles” - SMILES representation of the molecular structure
• “measured log solubility in mols per litre” - Log-scale water solubility of the compound, used as label

Parameters

- **featurizer** *(Featurizer or str)* – the featurizer to use for processing the data. Alternatively you can pass one of the names from dc.molnet.featureizers as a shortcut.
- **splitter** *(Splitter or str)* – the splitter to use for splitting the data into training, validation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single dataset.
• **transformers** (*list of TransformerGenerators or strings*) – the Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one of the names from dc.molnet.transformers.

• **reload** (*bool*) – if True, the first call for a particular featurizer and splitter will cache the datasets to disk, and subsequent calls will reload the cached datasets.

• **data_dir** (*str*) – a directory to save the raw data in

• **save_dir** (*str*) – a directory to save the dataset in

---

### 3.8.13 Factors Datasets

**load_factors** *(shard_size=2000, featurizer=None, split=None, reload=True)*

Loads FACTOR dataset; does not do train/test split

The Factors dataset is an in-house dataset from Merck that was first introduced in the following paper: Ramsundar, Bharath, et al. “Is multitask deep learning practical for pharma?.” Journal of chemical information and modeling 57.8 (2017): 2068-2076.

It contains 1500 Merck in-house compounds that were measured for IC50 of inhibition on 12 serine proteases. Unlike most of the other datasets featured in MoleculeNet, the Factors collection does not have structures for the compounds tested since they were proprietary Merck compounds. However, the collection does feature pre-computed descriptors for these compounds.

Note that the original train/valid/test split from the source data was preserved here, so this function doesn’t allow for alternate modes of splitting. Similarly, since the source data came pre-featurized, it is not possible to apply alternative featurizations.

**Parameters**

• **shard_size** (*int, optional*) – Size of the DiskDataset shards to write on disk

• **featurizer** (*optional*) – Ignored since featurization pre-computed

• **split** (*optional*) – Ignored since split pre-computed

• **reload** (*bool, optional*) – Whether to automatically re-load from disk

---

### 3.8.14 Freesolv Dataset


Load Freesolv dataset

The FreeSolv dataset is a collection of experimental and calculated hydration free energies for small molecules in water, along with their experimental values. Here, we are using a modified version of the dataset with the molecule smile string and the corresponding experimental hydration free energies.

Random splitting is recommended for this dataset.

The raw data csv file contains columns below:
• “mol” - SMILES representation of the molecular structure
• “y” - Experimental hydration free energy

Parameters

• **featurizer** (**Featurizer** or **str**) – the featurizer to use for processing the data. Alternatively you can pass one of the names from dc.molnet.featurizers as a shortcut.

• **splitter** (**Splitter** or **str**) – the splitter to use for splitting the data into training, validation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single dataset.

• **transformers** (**list of TransformerGenerators** or **strings**) – the Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one of the names from dc.molnet.transformers.

• **reload** (**bool**) – if True, the first call for a particular featurizer and splitter will cache the datasets to disk, and subsequent calls will reload the cached datasets.

• **data_dir** (**str**) – a directory to save the raw data in

• **save_dir** (**str**) – a directory to save the dataset in

References

### 3.8.15 HIV Datasets

**load_hiv**(**featurizer**: Union[deepchem.feat.base_classes.Featurizer, str] = 'ECFP', **splitter**: Optional[Union[deepchem.splits.splitters.Splitter, str]] = 'scaffold', **transformers**: List[Union[deepchem.molnet.load_function.molnet_loader.TransformerGenerator, str]] = ['balancing'], **reload**: bool = True, **data_dir**: Optional[str] = None, **save_dir**: Optional[str] = None, **kwargs**) → Tuple[List[str], Tuple[deepchem.data.datasets.Dataset, ...], List[transformers.Transformer]]

Load HIV dataset

The HIV dataset was introduced by the Drug Therapeutics Program (DTP) AIDS Antiviral Screen, which tested the ability to inhibit HIV replication for over 40,000 compounds. Screening results were evaluated and placed into three categories: confirmed inactive (CI), confirmed active (CA) and confirmed moderately active (CM). We further combine the latter two labels, making it a classification task between inactive (CI) and active (CA and CM).

Scaffold splitting is recommended for this dataset.

The raw data csv file contains columns below:

• “smiles”: SMILES representation of the molecular structure
• “activity”: Three-class labels for screening results: CI/CM/CA
• “HIV_active”: Binary labels for screening results: 1 (CA/CM) and 0 (CI)

Parameters

• **featurizer** (**Featurizer** or **str**) – the featurizer to use for processing the data. Alternatively you can pass one of the names from dc.molnet.featurizers as a shortcut.

• **splitter** (**Splitter** or **str**) – the splitter to use for splitting the data into training, validation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single dataset.
• **transformers** *(list of TransformerGenerators or strings)* – the Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one of the names from dc.molnet.transformers.

• **reload** *(bool)* – if True, the first call for a particular featurizer and splitter will cache the datasets to disk, and subsequent calls will reload the cached datasets.

• **data_dir** *(str)* – a directory to save the raw data in

• **save_dir** *(str)* – a directory to save the dataset in

**References**

### 3.8.16 HOPV Datasets

HOPV stands for the Harvard Organic Photovoltaic Dataset.


Load HOPV datasets. Does not do train/test split

The HOPV datasets consist of the “Harvard Organic Photovoltaic Dataset. This dataset includes 350 small molecules and polymers that were utilized as p-type materials in OPVs. Experimental properties include: HOMO [a.u.], LUMO [a.u.], Electrochemical gap [a.u.], Optical gap [a.u.], Power conversion efficiency [%], Open circuit potential [V], Short circuit current density [mA/cm^2], and fill factor [%]. Theoretical calculations in the original dataset have been removed (for now).


**Parameters**

• **featurizer** *(Featurizer or str)* – the featurizer to use for processing the data. Alternatively you can pass one of the names from dc.molnet.featureizers as a shortcut.

• **splitter** *(Splitter or str)* – the splitter to use for splitting the data into training, validation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single dataset.

• **transformers** *(list of TransformerGenerators or strings)* – the Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one of the names from dc.molnet.transformers.

• **reload** *(bool)* – if True, the first call for a particular featurizer and splitter will cache the datasets to disk, and subsequent calls will reload the cached datasets.

• **data_dir** *(str)* – a directory to save the raw data in

• **save_dir** *(str)* – a directory to save the dataset in
3.8.17 HPPB Datasets


Downloads the thermodynamic solubility datasets.

Parameters

- **featurizer** (Featurizer or str) – the featurizer to use for processing the data. Alternatively you can pass one of the names from dc.molnet.featureizers as a shortcut.
- **splitter** (Splitter or str) – the splitter to use for splitting the data into training, validation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single dataset.
- **transformers** (list of TransformerGenerators or strings) – the Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one of the names from dc.molnet.transformers.
- **reload** (bool) – if True, the first call for a particular featurizer and splitter will cache the datasets to disk, and subsequent calls will reload the cached datasets.
- **data_dir** (str) – a directory to save the raw data in
- **save_dir** (str) – a directory to save the dataset in

3.8.18 KAGGLE Datasets

load_kaggle(shard_size=2000, featurizer=None, split=None, reload=True)

Downloads kaggle datasets. Generates if not stored already.

The Kaggle dataset is an in-house dataset from Merck that was first introduced in the following paper:


It contains 100,000 unique Merck in-house compounds that were measured on 15 enzyme inhibition and ADME/TOX datasets. Unlike most of the other datasets featured in MoleculeNet, the Kaggle collection does not have structures for the compounds tested since they were proprietary Merck compounds. However, the collection does feature pre-computed descriptors for these compounds.

Note that the original train/valid/test split from the source data was preserved here, so this function doesn’t allow for alternate modes of splitting. Similarly, since the source data came pre-featurized, it is not possible to apply alternative featurizations.

Parameters

- **shard_size** (int, optional) – Size of the DiskDataset shards to write on disk
- **featurizer** (optional) – Ignored since featurization pre-computed
- **split** (optional) – Ignored since split pre-computed
- **reload** (optional) – Whether to automatically re-load from disk
3.8.19 Kinase Datasets

`load_kinase(shard_size=2000, featurizer=None, split=None, reload=True)`

Loads Kinase datasets, does not do train/test split

The Kinase dataset is an in-house dataset from Merck that was first introduced in the following paper: Ramsundar, Bharath, et al. “Is multitask deep learning practical for pharma?.” Journal of chemical information and modeling 57.8 (2017): 2068-2076.

It contains 2500 Merck in-house compounds that were measured for IC50 of inhibition on 99 protein kinases. Unlike most of the other datasets featured in MoleculeNet, the Kinase collection does not have structures for the compounds tested since they were proprietary Merck compounds. However, the collection does feature pre-computed descriptors for these compounds.

Note that the original train/valid/test split from the source data was preserved here, so this function doesn’t allow for alternate modes of splitting. Similarly, since the source data came pre-featurized, it is not possible to apply alternative featurizations.

**Parameters**

- `shard_size (int, optional)` – Size of the DiskDataset shards to write on disk
- `featurizer (optional)` – Ignored since featurization pre-computed
- `split (optional)` – Ignored since split pre-computed
- `reload (bool, optional)` – Whether to automatically re-load from disk

3.8.20 Lipo Datasets


Load Lipophilicity dataset

Lipophilicity is an important feature of drug molecules that affects both membrane permeability and solubility. The lipophilicity dataset, curated from ChEMBL database, provides experimental results of octanol/water distribution coefficient (logD at pH 7.4) of 4200 compounds.

Scaffold splitting is recommended for this dataset.

The raw data csv file contains columns below:

- “smiles” - SMILES representation of the molecular structure
- “exp” - Measured octanol/water distribution coefficient (logD) of the compound, used as label

**Parameters**

- `featurizer (Featurizer or str)` – the featurizer to use for processing the data. Alternatively you can pass one of the names from dc.molnet.featurizers as a shortcut.
- `splitter (Splitter or str)` – the splitter to use for splitting the data into training, validation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single dataset.
• **transformers** (*list of TransformerGenerators or strings*) – the Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one of the names from dc.molnet.transformers.

• **reload** (*bool*) – if True, the first call for a particular featurizer and splitter will cache the datasets to disk, and subsequent calls will reload the cached datasets.

• **data_dir** (*str*) – a directory to save the raw data in

• **save_dir** (*str*) – a directory to save the dataset in

### References

#### 3.8.21 Materials Datasets

Materials datasets include inorganic crystal structures, chemical compositions, and target properties like formation energies and band gaps. Machine learning problems in materials science commonly include predicting the value of a continuous (regression) or categorical (classification) property of a material based on its chemical composition or crystal structure. “Inverse design” is also of great interest, in which ML methods generate crystal structures that have a desired property. Other areas where ML is applicable in materials include: discovering new or modified phenomenological models that describe material behavior.

```python
load_bandgap(featurizer: typing.Union[deepchem.feat.base_classes.Featurizer, str] =
ElementPropertyFingerprint[data_source='matminer'], splitter:
typing.Optional[typing.Union[deepchem.splits.splitters.Splitter, str]] = 'random', transformers:
typing.List[typing.Union[deepchem.molnet.load_function.molnet_loader.TransformerGenerator,
str]] = ['normalization'], reload: bool = True, data_dir: typing.Optional[str] = None, save_dir:
typing.Optional[str] = None, **kwargs) → Tuple[List[str], Tuple[...
```

Load band gap dataset.

Contains 4604 experimentally measured band gaps for inorganic crystal structure compositions. In benchmark studies, random forest models achieved a mean average error of 0.45 eV during five-fold nested cross validation on this dataset.

For more details on the dataset see [1]_. For more details on previous benchmarks for this dataset, see [2]_.

**Parameters**

• **featurizer** (*Featurizer or str*) – the featurizer to use for processing the data. Alternatively you can pass one of the names from dc.molnet.featurizers as a shortcut.

• **splitter** (*Splitter or str*) – the splitter to use for splitting the data into training, validation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single dataset.

• **transformers** (*list of TransformerGenerators or strings*) – the Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one of the names from dc.molnet.transformers.

• **reload** (*bool*) – if True, the first call for a particular featurizer and splitter will cache the datasets to disk, and subsequent calls will reload the cached datasets.

• **data_dir** (*str*) – a directory to save the raw data in

• **save_dir** (*str*) – a directory to save the dataset in

**Returns**

tasks, datasets, transformers –
tasks [list] Column names corresponding to machine learning target variables.

datasets [tuple] train, validation, test splits of data as deepchem.data.datasets.Dataset instances.

transformers [list] deepchem.trans.transformers.Transformer instances applied to dataset.

Return type tuple

References

Examples

```python
>>> import deepchem as dc
>>> tasks, datasets, transformers = dc.molnet.load_bandgap()
>>> train_dataset, val_dataset, test_dataset = datasets
>>> n_tasks = len(tasks)
>>> n_features = train_dataset.get_data_shape()[0]
>>> model = dc.models.MultitaskRegressor(n_tasks, n_features)
```

load_perovskite(features: typing.Union[deepchem.featurizers.Featurizer, str] = DummyFeaturizer(),
transformers:
    typing.List[typing.Union[deepchem.molnet.load_function.molnet_loader.TransformerGenerator, str]] = ['normalization'],

Load perovskite dataset.

Contains 18928 perovskite structures and their formation energies. In benchmark studies, random forest models and crystal graph neural networks achieved mean average error of 0.23 and 0.05 eV/atom, respectively, during five-fold nested cross validation on this dataset.

For more details on the dataset see [1]. For more details on previous benchmarks for this dataset, see [2].

Parameters

- **featurizer** (Featurizer or str) – the featurizer to use for processing the data. Alternatively you can pass one of the names from dc.molnet.featurizers as a shortcut.
- **splitter** (Splitter or str) – the splitter to use for splitting the data into training, validation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single dataset.
- **transformers** (list of TransformerGenerators or strings) – the Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one of the names from dc.molnet.transformers.
- **reload** (bool) – if True, the first call for a particular featurizer and splitter will cache the datasets to disk, and subsequent calls will reload the cached datasets.
- **data_dir** (str) – a directory to save the raw data in
- **save_dir** (str) – a directory to save the dataset in

Returns

tasks, datasets, transformers –

3.8. MoleculeNet 83
tasks [list] Column names corresponding to machine learning target variables.

datasets [tuple] train, validation, test splits of data as deepchem.data.datasets.Dataset instances.

transformers [list] deepchem.trans.transformers.Transformer instances applied to dataset.

Return type tuple

References

Examples

```python
>>> import deepchem as dc
>>> tasks, datasets, transformers = dc.molnet.load_perovskite()
>>> train_dataset, val_dataset, test_dataset = datasets
>>> model = dc.models.CGNNModel(mode='regression', batch_size=32, learning_rate=0.001)
```


Load mp formation energy dataset.

Contains 132752 calculated formation energies and inorganic crystal structures from the Materials Project database. In benchmark studies, random forest models achieved a mean average error of 0.116 eV/atom during five-folded nested cross validation on this dataset.

For more details on the dataset see [1]. For more details on previous benchmarks for this dataset, see [2].

Parameters

- **featurizer** (Featurizer or str) – the featurizer to use for processing the data. Alternatively you can pass one of the names from dc.molnet.featureizers as a shortcut.

- **splitter** (Splitter or str) – the splitter to use for splitting the data into training, validation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single dataset.

- **transformers** (list of TransformerGenerators or strings) – the Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one of the names from dc.molnet.transformers.

- **reload** (bool) – if True, the first call for a particular featurizer and splitter will cache the datasets to disk, and subsequent calls will reload the cached datasets.

- **data_dir** (str) – a directory to save the raw data in

- **save_dir** (str) – a directory to save the dataset in

Returns

tasks, datasets, transformers –
tasks [list] Column names corresponding to machine learning target variables.

datasets [tuple] train, validation, test splits of data as deepchem.data.datasets.Dataset instances.

transformers [list] deepchem.trans.transformers.Transformer instances applied to dataset.

Return type tuple

References

Examples

```python
>>> import deepchem as dc
>>> tasks, datasets, transformers = dc.molnet.load_mp_formation_energy()
>>> train_dataset, val_dataset, test_dataset = datasets
>>> n_tasks = len(tasks)
>>> n_features = train_dataset.get_data_shape()[0]
>>> model = dc.models.MultitaskRegressor(n_tasks, n_features)
```


Load mp formation energy dataset.

Contains 106113 inorganic crystal structures from the Materials Project database labeled as metals or nonmetals. In benchmark studies, random forest models achieved a mean ROC-AUC of 0.9 during five-folded nested cross validation on this dataset.

For more details on the dataset see [1]. For more details on previous benchmarks for this dataset, see [2].

Parameters

- **featurizer** (Featurizer or str) – the featurizer to use for processing the data. Alternatively you can pass one of the names from dc.molnet.featureizers as a shortcut.

- **splitter** (Splitter or str) – the splitter to use for splitting the data into training, validation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single dataset.

- **transformers** (list of TransformerGenerators or strings) – the Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one of the names from dc.molnet.transformers.

- **reload** (bool) – if True, the first call for a particular featurizer and splitter will cache the datasets to disk, and subsequent calls will reload the cached datasets.

- **data_dir** (str) – a directory to save the raw data in

- **save_dir** (str) – a directory to save the dataset in
Returns

tasks, datasets, transformers –

tasks [list] Column names corresponding to machine learning target variables.

datasets [tuple] train, validation, test splits of data as deepchem.data.datasets.Dataset
instances.

transformers [list] deepchem.trans.transformers.Transformer instances applied to
dataset.

Return type tuple

References

Examples

```python
>>> import deepchem as dc
>>> tasks, datasets, transformers = dc.molnet.load_mp_metallicity()
>>> train_dataset, val_dataset, test_dataset = datasets
>>> n_tasks = len(tasks)
>>> n_features = train_dataset.get_data_shape()[0]
>>> model = dc.models.MultitaskRegressor(n_tasks, n_features)
```

3.8.22 MUV Datasets

load_muv(  
featurizer: Union[deepchem.feat.base_classes.Featurizer, str] = 'ECFP',
splitter: Optional[Union[deepchem.splits.splitters.Splitter, str]] = 'scaffold',
transformers: List[Union[deepchem.molnet.load_function.molnet_loader.TransformerGenerator, str]] = ['balancing'],
reload: bool = True, data_dir: Optional[str] = None, save_dir: Optional[str] = None, **kwargs) →
Tuple[List[str], Tuple[deepchem.data.datasets.Dataset, ...], List[transformers.Transformer]]

Load MUV dataset

The Maximum Unbiased Validation (MUV) group is a benchmark dataset selected from PubChem BioAssay by
applying a refined nearest neighbor analysis.

The MUV dataset contains 17 challenging tasks for around 90 thousand compounds and is specifically designed
for validation of virtual screening techniques.

Scaffold splitting is recommended for this dataset.

The raw data csv file contains columns below:

- “mol_id” - PubChem CID of the compound
- “smiles” - SMILES representation of the molecular structure
- “MUV-XXX” - Measured results (Active/Inactive) for bioassays

Parameters

- **featurizer** (Featurizer or str) – the featurizer to use for processing the data. Alter-
natively you can pass one of the names from dc.molnet.featureizers as a shortcut.
• **splitter** (`Splitter or str`) – the splitter to use for splitting the data into training, validation, and test sets. Alternatively you can pass one of the names from `dc.molnet.splitters` as a shortcut. If this is None, all the data will be included in a single dataset.

• **transformers** (`list of TransformerGenerators or strings`) – the Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one of the names from `dc.molnet.transformers`.

• **reload** (`bool`) – if True, the first call for a particular featurizer and splitter will cache the datasets to disk, and subsequent calls will reload the cached datasets.

• **data_dir** (`str`) – a directory to save the raw data in

• **save_dir** (`str`) – a directory to save the dataset in

**References**

3.8.23 NCI Datasets

```python
load_nci(featurizer: Union[deepchem.feat.base_classes.Featurizer, str] = 'ECFP', splitter:
Optional[Union[deepchem.splits.splitters.Splitter, str]] = 'random', transformers:
List[Union[deepchem.molnet.load_function.molnet_loader.TransformerGenerator, str]] =
['normalization'], reload: bool = True, data_dir: Optional[str] = None, save_dir: Optional[str] = None,
**kwargs) → Tuple[List[str], Tuple[deepchem.data.datasets.Dataset, ...], List[transformers.Transformer]]
```

Load NCI dataset.

**Parameters**

• **featurizer** (`Featurizer or str`) – the featurizer to use for processing the data. Alternatively you can pass one of the names from `dc.molnet.featurizers` as a shortcut.

• **splitter** (`Splitter or str`) – the splitter to use for splitting the data into training, validation, and test sets. Alternatively you can pass one of the names from `dc.molnet.splitters` as a shortcut. If this is None, all the data will be included in a single dataset.

• **transformers** (`list of TransformerGenerators or strings`) – the Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one of the names from `dc.molnet.transformers`.

• **reload** (`bool`) – if True, the first call for a particular featurizer and splitter will cache the datasets to disk, and subsequent calls will reload the cached datasets.

• **data_dir** (`str`) – a directory to save the raw data in

• **save_dir** (`str`) – a directory to save the dataset in

3.8.24 PCBA Datasets

```python
load_pcba(featurizer: Union[deepchem.feat.base_classes.Featurizer, str] = 'ECFP', splitter:
Optional[Union[deepchem.splits.splitters.Splitter, str]] = 'scaffold', transformers:
List[Union[deepchem.molnet.load_function.molnet_loader.TransformerGenerator, str]] =
```

Load PCBA dataset

3.8. MoleculeNet
PubChem BioAssay (PCBA) is a database consisting of biological activities of small molecules generated by high-throughput screening. We use a subset of PCBA, containing 128 bioassays measured over 400 thousand compounds, used by previous work to benchmark machine learning methods.

Random splitting is recommended for this dataset.

The raw data csv file contains columns below:

- “mol_id” - PubChem CID of the compound
- “smiles” - SMILES representation of the molecular structure

Parameters

- **featurizer** (Featurizer or str) – the featurizer to use for processing the data. Alternatively you can pass one of the names from dc.molnet.featurizers as a shortcut.
- **splitter** (Splitter or str) – the splitter to use for splitting the data into training, validation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single dataset.
- **transformers** (list of TransformerGenerators or strings) – the Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one of the names from dc.molnet.transformers.
- **reload** (bool) – if True, the first call for a particular featurizer and splitter will cache the datasets to disk, and subsequent calls will reload the cached datasets.
- **data_dir** (str) – a directory to save the raw data in
- **save_dir** (str) – a directory to save the dataset in

References

3.8.25 PDBBIND Datasets


Load PDBBind dataset.

The PDBBind dataset includes experimental binding affinity data and structures for 4852 protein-ligand complexes from the “refined set” and 12800 complexes from the “general set” in PDBBind v2019 and 193 complexes from the “core set” in PDBBind v2013. The refined set removes data with obvious problems in 3D structure, binding data, or other aspects and should therefore be a better starting point for docking/scoring studies. Details on the criteria used to construct the refined set can be found in [4]. The general set does not include the refined set. The core set is a subset of the refined set that is not updated annually.

Random splitting is recommended for this dataset.

The raw dataset contains the columns below:

- “ligand” - SDF of the molecular structure
- “protein” - PDB of the protein structure
**CT_TOX** - Clinical trial results

**Parameters**

- **featurizer** *(ComplexFeaturizer or str)* – the complex featurizer to use for processing the data. Alternatively you can pass one of the names from dc.molnet.featurizers as a shortcut.

- **splitter** *(Splitter or str)* – the splitter to use for splitting the data into training, validation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single dataset.

- **transformers** *(list of TransformerGenerators or strings)* – the Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one of the names from dc.molnet.transformers.

- **reload** *(bool)* – if True, the first call for a particular featurizer and splitter will cache the datasets to disk, and subsequent calls will reload the cached datasets.

- **data_dir** *(str)* – a directory to save the raw data in

- **save_dir** *(str)* – a directory to save the dataset in

- **pocket** *(bool (default True))* – If true, use only the binding pocket for featurization.

- **set_name** *(str (default 'core'))* – Name of dataset to download. ‘refined’, ‘general’, and ‘core’ are supported.

**Returns**

- **tasks, datasets, transformers** –
  - **tasks**: list Column names corresponding to machine learning target variables.
  - **datasets**: tuple train, validation, test splits of data as deepchem.data.datasets.Dataset instances.
  - **transformers**: list deepchem.trans.transformers.Transformer instances applied to dataset.

**Return type** tuple

**References**

3.8.26 PPB Datasets


Load PPB datasets.

**Parameters**

- **featurizer** *(Featurizer or str)* – the featurizer to use for processing the data. Alternatively you can pass one of the names from dc.molnet.featurizers as a shortcut.
• **splitter** ([Splitter or str]) – the splitter to use for splitting the data into training, validation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single dataset.

• **transformers** ([list of TransformerGenerators or strings]) – the Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one of the names from dc.molnet.transformers.

• **reload** ([bool]) – if True, the first call for a particular featurizer and splitter will cache the datasets to disk, and subsequent calls will reload the cached datasets.

• **data_dir** ([str]) – a directory to save the raw data in

• **save_dir** ([str]) – a directory to save the dataset in

### 3.8.27 QM7 Datasets


Load QM7 dataset

QM7 is a subset of GDB-13 (a database of nearly 1 billion stable and synthetically accessible organic molecules) containing up to 7 heavy atoms C, N, O, and S. The 3D Cartesian coordinates of the most stable conformations and their atomization energies were determined using ab-initio density functional theory (PBE0/tier2 basis set). This dataset also provided Coulomb matrices as calculated in [Rupp et al. PRL, 2012]:

Stratified splitting is recommended for this dataset.

The data file (.mat format, we recommend using `scipy.io.loadmat` for python users to load this original data) contains five arrays:

- **“X”** - (7165 x 23 x 23), Coulomb matrices
- **“T”** - (7165), atomization energies (unit: kcal/mol)
- **“P”** - (5 x 1433), cross-validation splits as used in [Montavon et al. NIPS, 2012]
- **“Z”** - (7165 x 23), atomic charges
- **“R”** - (7165 x 23 x 3), cartesian coordinate (unit: Bohr) of each atom in the molecules

**Parameters**

- **featurizer** ([Featurizer or str]) – the featurizer to use for processing the data. Alternatively you can pass one of the names from dc.molnet.featurizers as a shortcut.

- **splitter** ([Splitter or str]) – the splitter to use for splitting the data into training, validation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single dataset.

- **transformers** ([list of TransformerGenerators or strings]) – the Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one of the names from dc.molnet.transformers.

- **reload** ([bool]) – if True, the first call for a particular featurizer and splitter will cache the datasets to disk, and subsequent calls will reload the cached datasets.
• **data_dir** *(str)* – a directory to save the raw data in

• **save_dir** *(str)* – a directory to save the dataset in

---

**Note:** DeepChem 2.4.0 has turned on sanitization for this dataset by default. For the QM7 dataset, this means that calling this function will return 6838 compounds instead of 7160 in the source dataset file. This appears to be due to valence specification mismatches in the dataset that weren’t caught in earlier more lax versions of RDKit. Note that this may subtly affect benchmarking results on this dataset.

---

**References**

### 3.8.28 QM8 Datasets


Load QM8 dataset

QM8 is the dataset used in a study on modeling quantum mechanical calculations of electronic spectra and excited state energy of small molecules. Multiple methods, including time-dependent density functional theories (TDDFT) and second-order approximate coupled-cluster (CC2), are applied to a collection of molecules that include up to eight heavy atoms (also a subset of the GDB-17 database). In our collection, there are four excited state properties calculated by four different methods on 22 thousand samples:

- S0 -> S1 transition energy $E_1$ and the corresponding oscillator strength $f_1$
- S0 -> S2 transition energy $E_2$ and the corresponding oscillator strength $f_2$

$E_1, E_2, f_1, f_2$ are in atomic units. $f_1, f_2$ are in length representation

Random splitting is recommended for this dataset.

The source data contain:

- qm8.sdf: molecular structures
- qm8.sdf.csv: tables for molecular properties
- Column 1: Molecule ID (gdb9 index) mapping to the .sdf file
- Columns 2-5: RI-CC2/def2TZVP
- Columns 6-9: LR-TDPBE0/def2SVP
- Columns 10-13: LR-TDCAM-B3LYP/def2TZVP
- Columns 14-17: LR-TDCAM-B3LYP/def2TZVP

**Parameters**

- **featurizer** *(Featurizer or str)* – the featurizer to use for processing the data. Alternatively you can pass one of the names from dc.molnet.featureizers as a shortcut.
• **spleiter** (Splitter or str) – the splitter to use for splitting the data into training, validation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single dataset.

• **transformers** (list of TransformerGenerators or strings) – the Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one of the names from dc.molnet.transformers.

• **reload** (bool) – if True, the first call for a particular featurizer and splitter will cache the datasets to disk, and subsequent calls will reload the cached datasets.

• **data_dir** (str) – a directory to save the raw data in

• **save_dir** (str) – a directory to save the dataset in

**Note:** DeepChem 2.4.0 has turned on sanitization for this dataset by default. For the QM8 dataset, this means that calling this function will return 21747 compounds instead of 21786 in the source dataset file. This appears to be due to valence specification mismatches in the dataset that weren’t caught in earlier more lax versions of RDKit. Note that this may subtly affect benchmarking results on this dataset.

**References**

### 3.8.29 QM9 Datasets


Load QM9 dataset

QM9 is a comprehensive dataset that provides geometric, energetic, electronic and thermodynamic properties for a subset of GDB-17 database, comprising 134 thousand stable organic molecules with up to 9 heavy atoms. All molecules are modeled using density functional theory (B3LYP/6-31G(2df,p) based DFT).

Random splitting is recommended for this dataset.

The source data contain:

• qm9.sdf: molecular structures
• qm9.sdf.csv: tables for molecular properties
• “mol_id” - Molecule ID (gdb9 index) mapping to the .sdf file
• “A” - Rotational constant (unit: GHz)
• “B” - Rotational constant (unit: GHz)
• “C” - Rotational constant (unit: GHz)
• “mu” - Dipole moment (unit: D)
• “alpha” - Isotropic polarizability (unit: Bohr^3)
• “homo” - Highest occupied molecular orbital energy (unit: Hartree)
• “lumo” - Lowest unoccupied molecular orbital energy (unit: Hartree)
• “gap” - Gap between HOMO and LUMO (unit: Hartree)
• “r2” - Electronic spatial extent (unit: Bohr^2)
• “zpve” - Zero point vibrational energy (unit: Hartree)
• “u0” - Internal energy at 0K (unit: Hartree)
• “u298” - Internal energy at 298.15K (unit: Hartree)
• “h298” - Enthalpy at 298.15K (unit: Hartree)
• “g298” - Free energy at 298.15K (unit: Hartree)
• “cv” - Heat capacity at 298.15K (unit: cal/(mol*K))
• “u0_atom” - Atomization energy at 0K (unit: kcal/mol)
• “u298_atom” - Atomization energy at 298.15K (unit: kcal/mol)
• “h298_atom” - Atomization enthalpy at 298.15K (unit: kcal/mol)
• “g298_atom” - Atomization free energy at 298.15K (unit: kcal/mol)

“u0_atom” ~ “g298_atom” (used in MoleculeNet) are calculated from the differences between “u0” ~ “g298” and sum of reference energies of all atoms in the molecules, as given in https://figshare.com/articles/Atomref%3A_Reference_thermochemical_energies_of_H%2C_C%2C_N%2C_O%2C_F_atoms./1057643

Parameters

- **featurizer** (Featurizer or str) – the featurizer to use for processing the data. Alternatively you can pass one of the names from dc.molnet.featurizers as a shortcut.
- **splitter** (Splitter or str) – the splitter to use for splitting the data into training, validation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single dataset.
- **transformers** (list of TransformerGenerators or strings) – the Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one of the names from dc.molnet.transformers.
- **reload** (bool) – if True, the first call for a particular featurizer and splitter will cache the datasets to disk, and subsequent calls will reload the cached datasets.
- **data_dir** (str) – a directory to save the raw data in
- **save_dir** (str) – a directory to save the dataset in

Note: DeepChem 2.4.0 has turned on sanitization for this dataset by default. For the QM9 dataset, this means that calling this function will return 132480 compounds instead of 133885 in the source dataset file. This appears to be due to valence specification mismatches in the dataset that weren’t caught in earlier more lax versions of RDKit. Note that this may subtly affect benchmarking results on this dataset.
3.8.30 SAMPL Datasets

Load SAMPL (FreeSolv) dataset

The Free Solvation Database, FreeSolv (SAMPL), provides experimental and calculated hydration free energy of small molecules in water. The calculated values are derived from alchemical free energy calculations using molecular dynamics simulations. The experimental values are included in the benchmark collection.

Random splitting is recommended for this dataset.

The raw data csv file contains columns below:

- “iupac” - IUPAC name of the compound
- “smiles” - SMILES representation of the molecular structure
- “expt” - Measured solvation energy (unit: kcal/mol) of the compound, used as label
- “calc” - Calculated solvation energy (unit: kcal/mol) of the compound

Parameters

- **featurizer** (Featurizer or str) – the featurizer to use for processing the data. Alternatively you can pass one of the names from dc.molnet.featureizers as a shortcut.
- **splitter** (Splitter or str) – the splitter to use for splitting the data into training, validation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single dataset.
- **transformers** (list of TransformerGenerators or strings) – the Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one of the names from dc.molnet.transformers.
- **reload** (bool) – if True, the first call for a particular featurizer and splitter will cache the datasets to disk, and subsequent calls will reload the cached datasets.
- **data_dir** (str) – a directory to save the raw data in
- **save_dir** (str) – a directory to save the dataset in

References
Load SIDER dataset

The Side Effect Resource (SIDER) is a database of marketed drugs and adverse drug reactions (ADR). The version of the SIDER dataset in DeepChem has grouped drug side effects into 27 system organ classes following MedDRA classifications measured for 1427 approved drugs.

Random splitting is recommended for this dataset.

The raw data csv file contains columns below:

- **“smiles”:** SMILES representation of the molecular structure
- **“Hepatobiliary disorders” ~ “Injury, poisoning and procedural complications”:** Recorded side effects for the drug. Please refer to http://sideeffects.embl.de/se/?page=98 for details on ADRs.

**Parameters**

- **featurizer** (*Featurizer* or *str*) – the featurizer to use for processing the data. Alternatively you can pass one of the names from `dc.molnet.featurizers` as a shortcut.
- **splitter** (*Splitter* or *str*) – the splitter to use for splitting the data into training, validation, and test sets. Alternatively you can pass one of the names from `dc.molnet.splitters` as a shortcut. If this is None, all the data will be included in a single dataset.
- **transformers** (*list of TransformerGenerators* or *strings*) – the Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one of the names from `dc.molnet.transformers`.
- **reload** (*bool*) – if True, the first call for a particular featurizer and splitter will cache the datasets to disk, and subsequent calls will reload the cached datasets.
- **data_dir** (*str*) – a directory to save the raw data in
- **save_dir** (*str*) – a directory to save the dataset in

**References**

3.8.32 Thermosol Datasets


→ Tuple[List[str], Tuple[deepchem.data.datasets.Dataset, ...], List[transformers.Transformer]]

Loads the thermodynamic solubility datasets.

**Parameters**

- **featurizer** (*Featurizer* or *str*) – the featurizer to use for processing the data. Alternatively you can pass one of the names from `dc.molnet.featurizers` as a shortcut.
- **splitter** (*Splitter* or *str*) – the splitter to use for splitting the data into training, validation, and test sets. Alternatively you can pass one of the names from `dc.molnet.splitters` as a shortcut. If this is None, all the data will be included in a single dataset.
- **transformers** (*list of TransformerGenerators* or *strings*) – the Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one of the names from `dc.molnet.transformers`.
3.8.33 Tox21 Datasets

Load Tox21 dataset

The “Toxicology in the 21st Century” (Tox21) initiative created a public database measuring toxicity of compounds, which has been used in the 2014 Tox21 Data Challenge. This dataset contains qualitative toxicity measurements for 8k compounds on 12 different targets, including nuclear receptors and stress response pathways. Random splitting is recommended for this dataset.

The raw data csv file contains columns below:

- “smiles” - SMILES representation of the molecular structure
- “NR-XXX” - Nuclear receptor signaling bioassays results
- “SR-XXX” - Stress response bioassays results

please refer to https://tripod.nih.gov/tox21/challenge/data.jsp for details.

Parameters

- **featurizer** (Featurizer or str) – the featurizer to use for processing the data. Alternatively you can pass one of the names from dc.molnet.featurizers as a shortcut.

- **splitter** (Splitter or str) – the splitter to use for splitting the data into training, validation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single dataset.

- **transformers** (list of TransformerGenerators or strings) – the Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one of the names from dc.molnet.transformers.

- **reload** (bool) – if True, the first call for a particular featurizer and splitter will cache the datasets to disk, and subsequent calls will reload the cached datasets.

- **data_dir** (str) – a directory to save the raw data in

- **save_dir** (str) – a directory to save the dataset in
Load Toxcast dataset

ToxCast is an extended data collection from the same initiative as Tox21, providing toxicology data for a large library of compounds based on in vitro high-throughput screening. The processed collection includes qualitative results of over 600 experiments on 8k compounds.

Random splitting is recommended for this dataset.

The raw data csv file contains columns below:

- “smiles”: SMILES representation of the molecular structure
- “ACEA_T47D_80hr_Negative” ~ “Tanguay_ZF_120hpf_YSE_up”: Bioassays results. Please refer to the section “high-throughput assay information” at https://www.epa.gov/chemical-research/toxicity-forecaster-toxcasttm-data for details.

**Parameters**

- **featurizer** (*Featurizer or str*) – the featurizer to use for processing the data. Alternatively you can pass one of the names from dc.molnet.featureizers as a shortcut.

- **splitter** (*Splitter or str*) – the splitter to use for splitting the data into training, validation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single dataset.

- **transformers** (*list of TransformerGenerators or strings*) – the Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one of the names from dc.molnet.transformers.

- **reload** (*bool*) – if True, the first call for a particular featurizer and splitter will cache the datasets to disk, and subsequent calls will reload the cached datasets.

- **data_dir** (*str*) – a directory to save the raw data in

- **save_dir** (*str*) – a directory to save the dataset in

References
Load USPTO Datasets.

The USPTO dataset consists of over 1.8 Million organic chemical reactions extracted from US patents and patent applications. The dataset contains the reactions in the form of reaction SMILES, which have the general format: reactant>reagent>product.

Molnet provides ability to load subsets of the USPTO dataset namely MIT, STEREO and 50K. The MIT dataset contains around 479K reactions, curated by jin et al. The STEREO dataset contains around 1 Million Reactions, it does not have duplicates and the reactions include stereochemical information. The 50K dataset contains 50,000 reactions and is the benchmark for retrosynthesis predictions. The reactions are additionally classified into 10 reaction classes. The canonicalized version of the dataset used by the loader is the same as that used by Somnath et. al.

The loader uses the SpecifiedSplitter to use the same splits as specified by Schwaller et. al and Dai et. al. Custom splitters could also be used. There is a toggle in the loader to skip the source/target transformation needed for seq2seq tasks. There is an additional toggle to load the dataset with the reagents and reactants separated or mixed. This alters the entries in source by replacing the ‘>’ with ‘.’, effectively loading them as an unified SMILES string.

Parameters

- **featurizer (Featurizer or str)** – the featurizer to use for processing the data. Alternatively you can pass one of the names from dc.molnet.featurizers as a shortcut.
- **splitter (Splitter or str)** – the splitter to use for splitting the data into training, validation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single dataset.
- **transformers (list of TransformerGenerators or strings)** – the Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one of the names from dc.molnet.transformers.
- **reload (bool)** – if True, the first call for a particular featurizer and splitter will cache the datasets to disk, and subsequent calls will reload the cached datasets.
- **data_dir (str)** – a directory to save the raw data in
- **save_dir (str)** – a directory to save the dataset in
- **subset (str (default 'MIT'))** – Subset of dataset to download. ‘FULL’, ‘MIT’, ‘STEREO’, and ‘50K’ are supported.
- **sep_reagent (bool (default True))** – Toggle to load dataset with reactants and reagents either separated or mixed.
- **skip_transform (bool (default True))** – Toggle to skip the source/target transformation.

Returns

- **tasks, datasets, transformers** –
  - **tasks** [list] Column names corresponding to machine learning target variables.
  - **datasets** [tuple] train, validation, test splits of data as deepchem.data.datasets.Dataset instances.
  - **transformers** [list] deepchem.trans.transformers.Transformer instances applied to dataset.

Return type tuple
3.8.36 UV Datasets

load_uv(shard_size=2000, featurizer=None, split=None, reload=True)

Load UV dataset; does not do train/test split

The UV dataset is an in-house dataset from Merck that was first introduced in the following paper: Ramsundar, Bharath, et al. “Is multitask deep learning practical for pharma?.” Journal of chemical information and modeling 57.8 (2017): 2068-2076.

The UV dataset tests 10,000 of Merck’s internal compounds on 190 absorption wavelengths between 210 and 400 nm. Unlike most of the other datasets featured in MoleculeNet, the UV collection does not have structures for the compounds tested since they were proprietary Merck compounds. However, the collection does feature pre-computed descriptors for these compounds.

Note that the original train/valid/test split from the source data was preserved here, so this function doesn’t allow for alternate modes of splitting. Similarly, since the source data came pre-featurized, it is not possible to apply alternative featurizations.

Parameters

- **shard_size**: int, optional – Size of the DiskDataset shards to write on disk
- **featurizer**: optional – Ignored since featurization pre-computed
- **split**: optional – Ignored since split pre-computed
- **reload**: bool, optional – Whether to automatically re-load from disk

3.8.37 ZINC15 Datasets


Load zinc15.

ZINC15 is a dataset of over 230 million purchasable compounds for virtual screening of small molecules to identify structures that are likely to bind to drug targets. ZINC15 data is currently available in 2D (SMILES string) format.

MolNet provides subsets of 250K, 1M, and 10M “lead-like” compounds from ZINC15. The full dataset of 270M “goldilocks” compounds is also available. Compounds in ZINC15 are labeled by their molecular weight and LogP (solubility) values. Each compound also has information about how readily available (purchasable) it is and its reactivity. Lead-like compounds have molecular weight between 300 and 350 Daltons and LogP between -1 and 3.5. Goldilocks compounds are lead-like compounds with LogP values further restricted to between 2 and 3.

If **reload** = True and **data_dir** (save_dir) is specified, the loader will attempt to load the raw dataset (featurized dataset) from disk. Otherwise, the dataset will be downloaded from the DeepChem AWS bucket.

For more information on ZINC15, please see [1] and https://zinc15.docking.org/.

Parameters
• **featurizer** *(Featurizer or str)* – the featurizer to use for processing the data. Alternatively you can pass one of the names from dc.molnet.featurizers as a shortcut.

• **splitter** *(Splitter or str)* – the splitter to use for splitting the data into training, validation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single dataset.

• **transformers** *(list of TransformerGenerators or strings)* – the Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one of the names from dc.molnet.transformers.

• **reload** *(bool)* – if True, the first call for a particular featurizer and splitter will cache the datasets to disk, and subsequent calls will reload the cached datasets.

• **data_dir** *(str)* – a directory to save the raw data in

• **save_dir** *(str)* – a directory to save the dataset in

• **size** *(str (default '250K'))* – Size of dataset to download. ‘250K’, ‘1M’, ‘10M’, and ‘270M’ are supported.

• **format** *(str (default ‘2D’))* – Format of data to download. 2D SMILES strings or 3D SDF files.

• **tasks** *(List[str], (optional) default: ['molwt', 'logp', 'reactive'])* – Specify the set of tasks to load. If no task is specified, then it loads

• **molwt** *(the default set of tasks which are)* –

• **logp** –

• **reactive.** –

**Returns**

(tasks, datasets, transformers) –

• **tasks** [list] Column names corresponding to machine learning target variables.

• **datasets** [tuple] train, validation, test splits of data as deepchem.data.datasets.Dataset instances.

• **transformers** [list] deepchem.trans.transformers.Transformer instances applied to dataset.

**Return type** tuple

**Notes**

The total ZINC dataset with SMILES strings contains hundreds of millions of compounds and is over 100GB! ZINC250K is recommended for experimentation. The full set of 270M goldilocks compounds is 23GB.
References

3.8.38 Platinum Adsorption Dataset

```
load_Platinum_Adsorption(featurizer: typing.Union[deepchem.feat.base_classes.Featurizer, str] =
 SineCoulombMatrix[max_atoms=100, flatten=True], splitter:
 typing.Optional[typing.Union[deepchem.splits.splitters.Splitter, str]] = 'random',
 transformers: typing.List[typing.Union[deepchem.molnet.load_function.molnet_loader.TransformerGenerator,
 str]] = [], reload: bool = True, data_dir: typing.Optional[str] = None, save_dir:
 typing.Optional[st] = None, **kwargs) →
 Tuple[List[str], Tuple[deepchem.data.datasets.Dataset, ...], List[deepchem.molnet.load_function.molnet_loader.Transformer]]
```

Load Platinum Adsorption Dataset

The dataset consist of different configurations of Adsorbates (i.e N and NO) on Platinum surface represented as Lattice and their formation energy. There are 648 different adsorbate configuration in this datasets represented as Pymatgen Structure objects.

1. **Pymatgen structure object with site_properties with following key value.**

   - “SiteTypes”, mentioning if it is a active site “A1” or spectator site “S1”.
   - “oss”, different occupational sites. For spectator sites make it -1.

Parameters

- **featurizer** *(Featurizer (default LCNNFeaturizer))— the featurizer to use for processing the data. Recommended to use the LCNNFeaturiser.*
- **splitter** *(Splitter (default RandomSplitter))— the splitter to use for splitting the data into training, validation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single dataset.*
- **transformers** *(list of TransformerGenerators or strings. the Transformers to) — apply to the data and appropriate featuriser. Doesn’t require any transformation for LCNN_featuriser*
- **reload** *(bool) — if True, the first call for a particular featurizer and splitter will cache the datasets to disk, and subsequent calls will reload the cached datasets.*
- **data_dir** *(str) — a directory to save the raw data in*
- **save_dir** *(str, optional (default None)) — a directory to save the dataset in*

References

Examples

```python
>>> import deepchem as dc
>>> tasks, datasets, transformers = load_Platinum_Adsorption(
 reload=True,
 data_dir=data_path,
 save_dir=save_dir,
 featurizer_kwargs=feat_args)
>>> train_dataset, val_dataset, test_dataset = datasets
```

3.8. MoleculeNet
3.9 Featurizers

DeepChem contains an extensive collection of featurizers. If you haven’t run into this terminology before, a “featurizer” is chunk of code which transforms raw input data into a processed form suitable for machine learning. Machine learning methods often need data to be pre-chewed for them to process. Think of this like a mama penguin chewing up food so the baby penguin can digest it easily.

Now if you’ve watched a few introductory deep learning lectures, you might ask, why do we need something like a featurizer? Isn’t part of the promise of deep learning that we can learn patterns directly from raw data?

Unfortunately it turns out that deep learning techniques need featurizers just like normal machine learning methods do. Arguably, they are less dependent on sophisticated featurizers and more capable of learning sophisticated patterns from simpler data. But nevertheless, deep learning systems can’t simply chew up raw files. For this reason, deepchem provides an extensive collection of featurization methods which we will review on this page.

Contents

- Molecule Featurizers
  - Graph Convolution Featurizers
    * ConvMolFeaturizer
    * WeaveFeaturizer
    * MolGanFeaturizer
    * MolGraphConvFeaturizer
    * PagnMolGraphFeaturizer
    * DMPNNFeaturizer
    * GroverFeaturizer
    * RDKitConformerFeaturizer
    * MXMNetFeaturizer
  - Utilities
    * MACCSKeysFingerprint
    * MATFeaturizer
    * CircularFingerprint
    * PubChemFingerprint
    * Mol2VecFingerprint
    * RDKitDescriptors
    * MordredDescriptors
    * CoulombMatrix
    * CoulombMatrixEig
    * AtomCoordinates
    * BPSymmetryFunctionInput
    * SmilesToSeq
- `SmilesToImage`
- `OneHotFeaturizer`
- `SparseMatrixOneHotFeaturizer`
- `RawFeaturizer`
- `SNAPFeaturizer`

- **Molecular Complex Featurizers**
  - `RdkitGridFeaturizer`
  - `AtomicConvFeaturizer`

- **Inorganic Crystal Featurizers**
  - `MaterialCompositionFeaturizer`
    - `ElementPropertyFingerprint`
    - `ElemNetFeaturizer`
  - `MaterialStructureFeaturizer`
    - `SineCoulombMatrix`
    - `CGCNNFeaturizer`
  - `LCNNFeaturizer`

- **Molecule Tokenizers**
  - `SmilesTokenizer`
  - `BasicSmilesTokenizer`
  - `HuggingFaceFeaturizer`
  - `GroverAtomVocabTokenizer`
  - `GroverBondVocabTokenizer`

- **Vocabulary Builders**

- **Sequence Featurizers**
  - `PFMFeaturizer`

- **Other Featurizers**
  - `BertFeaturizer`
  - `RobertaFeaturizer`
  - `RxnFeaturizer`
  - `BindingPocketFeaturizer`
  - `UserDefinedFeaturizer`
  - `DummyFeaturizer`

- **Base Featurizers (for develop)**
  - `Featurizer`
  - `MolecularFeaturizer`
Material Composition Featurizer
- Material Structure Featurizer
- Complex Featurizer
- Vocabulary Builder
- Hugging Face Vocabulary Builder

3.9.1 Molecule Featurizers

These featurizers work with datasets of molecules.

Graph Convolution Featurizers

We are simplifying our graph convolution models by a joint data representation (GraphData) in a future version of DeepChem, so we provide several featurizers.

ConvMolFeaturizer and WeaveFeaturizer are used with graph convolution models which inherited KerasModel. ConvMolFeaturizer is used with graph convolution models except WeaveModel. WeaveFeaturizer are only used with WeaveModel. On the other hand, MolGraphConvFeaturizer is used with graph convolution models which inherited TorchModel. MolGanFeaturizer will be used with MolGAN model, a GAN model for generation of small molecules.

ConvMolFeaturizer

```python
class ConvMolFeaturizer(
 master_atom: bool = False,
 use_chirality: bool = False,
 atom_properties: Iterable[str] = [],
 per_atom_fragmentation: bool = False)
```

This class implements the featurization to implement Duvenaud graph convolutions.

Duvenaud graph convolutions [1] construct a vector of descriptors for each atom in a molecule. The featurizer computes that vector of local descriptors.

Examples

```python
>>> import deepchem as dc
>>> smiles = ["C", "CCC"]
>>> featurizer=dc.feat.ConvMolFeaturizer(per_atom_fragmentation=False)
>>> f = featurizer.featurize(smiles)
>>> len(f)
2
```

See also:
Detailed

References

Note: This class requires RDKit to be installed.

```python
```

**Parameters**

- **master_atom** *(Boolean)* – if true create a fake atom with bonds to every other atom. the initialization is the mean of the other atom features in the molecule. This technique is briefly discussed in Neural Message Passing for Quantum Chemistry [https://arxiv.org/pdf/1704.01212.pdf](https://arxiv.org/pdf/1704.01212.pdf)
- **use_chirality** *(Boolean)* – if true then make the resulting atom features aware of the chirality of the molecules in question
- **atom_properties** *(list of string or None)* – properties in the RDKit Mol object to use as additional atom-level features in the larger molecular feature. If None, then no atom-level properties are used. Properties should be in the RDKit mol object should be in the form atomXXXXXXXX NAME where XXXXXXXX is a zero-padded 8 digit number corresponding to the zero-indexed atom index of each atom and NAME is the name of the property provided in atom_properties. So “atom00000000 sasa” would be the name of the molecule level property in mol where the solvent accessible surface area of atom 0 would be stored.
- **per_atom_fragmentation** *(Boolean)* – If True, then multiple “atom-depleted” versions of each molecule will be created (using featurize() method). For each molecule, atoms are removed one at a time and the resulting molecule is featurized. The result is a list of ConvMol objects, one with each heavy atom removed. This is useful for subsequent model interpretation: finding atoms favorable/unfavorable for (modelled) activity. This option is typically used in combination with a FlatteningTransformer to split the lists into separate samples.

Since ConvMol is an object and not a numpy array, need to set dtype to object.

```python
featurize(datapoints: Union[Any, str, Iterable[Any], Iterable[str]], log_every_n: int = 1000, **kwargs) \rightarrow numpy.ndarray
```

**Override parent**: aim is to add handling atom-depleted molecules featurization

**Parameters**

- **datapoints** *(rdkit.Chem.rdchem.Mol / SMILES string / iterable)* – RDKit Mol, or SMILES string or iterable sequence of RDKit mols/SMILES strings.
- **log_every_n** *(int, default 1000)* – Logging messages reported every log_every_n samples.

**Returns** features – A numpy array containing a featurized representation of datapoints.

**Return type** np.ndarray
WeaveFeaturizer

class WeaveFeaturizer:
    __init__ (graph_distance: bool = True, explicit_H: bool = False, use_chirality: bool = False, max_pair_distance: Optional[int] = None)

This class implements the featurization to implement Weave convolutions.

Weave convolutions were introduced in [1]. Unlike Duvenaud graph convolutions, weave convolutions require a quadratic matrix of interaction descriptors for each pair of atoms. These extra descriptors may provide for additional descriptive power but at the cost of a larger featurized dataset.

Examples

```python
>>> import deepchem as dc
>>> mols = ['CCC']
>>> featurizer = dc.feat.WeaveFeaturizer()
>>> features = featurizer.featurize(mols)
>>> type(features[0])
<class 'deepchem.feat.mol_graphs.WeaveMol'>
>>> features[0].get_num_atoms() # 3 atoms in compound
3
>>> features[0].get_num_features() # feature size
75
>>> type(features[0].get_atom_features())
<class 'numpy.ndarray'>
>>> features[0].get_atom_features().shape
(3, 75)
>>> type(features[0].get_pair_features())
<class 'numpy.ndarray'>
>>> features[0].get_pair_features().shape
(9, 14)
```

References

Note: This class requires RDKit to be installed.

featurize (datapoints, log_every_n=1000, **kwargs) → numpy.ndarray

Calculate features for molecules.

Parameters

- **datapoints** (rdkit.Chem.rdchem.Mol / SMILES string / iterable) – RDKit Mol, or SMILES string or iterable sequence of RDKit mols/SMILES strings.
- **log_every_n** (int, default 1000) – Logging messages reported every log_every_n samples.

Returns **features** – A numpy array containing a featurized representation of datapoints.

Return type np.ndarray
Parameters

- **graph_distance** (bool, *(default True*)) – If True, use graph distance for distance features. Otherwise, use Euclidean distance. Note that this means that molecules that this featurizer is invoked on must have valid conformer information if this option is set.

- **explicit_H** (bool, *(default False*)) – If true, model hydrogens in the molecule.

- **use_chirality** (bool, *(default False*)) – If true, use chiral information in the featurization

- **max_pair_distance** *(Optional[int], *(default None*)) – This value can be a positive integer or None. This parameter determines the maximum graph distance at which pair features are computed. For example, if **max_pair_distance==2**, then pair features are computed only for atoms at most graph distance 2 apart. If **max_pair_distance** is **None**, all pairs are considered (effectively infinite **max_pair_distance**)

MolGanFeaturizer

class MolGanFeaturizer(*max_atom_count: int = 9, kekulize: bool = True, bond_labels: Optional[List[Any]] = None, atom_labels: Optional[List[int]] = None*)

Featurizer for MolGAN de-novo molecular generation [1]. The default representation is in form of GraphMatrix object. It is wrapper for two matrices containing atom and bond type information. The class also provides reverse capabilities.

Examples

```python
>>> import deepchem as dc
>>> from rdkit import Chem
>>> rdkit_mol, smiles_mol = Chem.MolFromSmiles('CCC'), 'C1=CC=CC=C1'
>>> molecules = [rdkit_mol, smiles_mol]
>>> featurizer = dc.feat.MolGanFeaturizer()
>>> features = featurizer.featurize(molecules)
>>> len(features) # 2 molecules
2
>>> type(features[0])<class 'deepchem.feat.molecule_featurizers.molgan_featurizer.GraphMatrix'>
>>> molecules = featurizer.defeataturize(features) # defeataturization
>>> type(molecules[0])<class 'rdkit.Chem.rdchem.Mol'>
```

__init__ *(max_atom_count: int = 9, kekulize: bool = True, bond_labels: Optional[List[Any]] = None, atom_labels: Optional[List[int]] = None*)

Parameters

- **max_atom_count** *(int, default 9*) – Maximum number of atoms used for creation of adjacency matrix. Molecules cannot have more atoms than this number Implicit hydrogens do not count.

- **kekulize** *(bool, default True*) – Should molecules be kekulized. Solves number of issues with defeataturization when used.

- **bond_labels** *(List[RDKitBond]*) – List of types of bond used for generation of adjacency matrix
• **atom_labels** (*List*[int]) – List of atomic numbers used for generation of node features

**References**

`featurize(data points, log_every_n=1000, **kwargs) → numpy.ndarray`

Calculate features for molecules.

**Parameters**

• **data points** (*rdkit.Chem.rdchem.Mol / SMILES string / iterable*) – RDKit Mol, or SMILES string or iterable sequence of RDKit mols/SMILES strings.

• **log_every_n** (*int, default 1000*) – Logging messages reported every *log_every_n* samples.

**Returns** features – A numpy array containing a featurized representation of *data points*.

**Return type** np.ndarray

`defeat urize(graphs: Union[deepchem.feat.molecule_featurizers.molgan_featurizer.GraphMatrix,Sequence[deepchem.feat.molecule_featurizers.molgan_featurizer.GraphMatrix]], log_every_n: int = 1000) → numpy.ndarray`

Calculates molecules from corresponding GraphMatrix objects.

**Parameters**

• **graphs** (*GraphMatrix / iterable*) – GraphMatrix object or corresponding iterable

• **log_every_n** (*int, default 1000*) – Logging messages reported every *log_every_n* samples.

**Returns** features – A numpy array containing RDKitMol objext.

**Return type** np.ndarray

**MolGraphConvFeaturizer**

**class MolGraphConvFeaturizer**(use_edges: *bool = False*, use_chirality: *bool = False*, use_partial_charge: *bool = False*)

This class is a featurizer of general graph convolution networks for molecules.

The default node(atom) and edge(bond) representations are based on WeaveNet paper. If you want to use your own representations, you could use this class as a guide to define your original Featurizer. In many cases, it’s enough to modify return values of `construct_atom_feature` or `construct_bond_feature`.

The default node representation are constructed by concatenating the following values, and the feature length is 30.


• Formal charge: Integer electronic charge.

• Hybridization: A one-hot vector of “sp”, “sp2”, “sp3”.

• Hydrogen bonding: A one-hot vector of whether this atom is a hydrogen bond donor or acceptor.

• Aromatic: A one-hot vector of whether the atom belongs to an aromatic ring.

• Degree: A one-hot vector of the degree (0-5) of this atom.

• Number of Hydrogens: A one-hot vector of the number of hydrogens (0-4) that this atom connected.
• Chirality: A one-hot vector of the chirality, “R” or “S”. (Optional)
• Partial charge: Calculated partial charge. (Optional)

The default edge representation are constructed by concatenating the following values, and the feature length is 11.
• Bond type: A one-hot vector of the bond type, “single”, “double”, “triple”, or “aromatic”.
• Same ring: A one-hot vector of whether the atoms in the pair are in the same ring.
• Conjugated: A one-hot vector of whether this bond is conjugated or not.
• Stereo: A one-hot vector of the stereo configuration of a bond.

If you want to know more details about features, please check the paper [1] and utilities in deepchem.utils.molecule_feature_utils.py.

Examples

```python
>>> smiles = ["C1CCC1", "C1=CC=CN=C1"]
>>> featurizer = MolGraphConvFeaturizer(use_edges=True)
>>> out = featurizer.featurize(smiles)
>>> type(out[0])
<class 'deepchem.feat.graph_data.GraphData'>
>>> out[0].num_node_features
30
>>> out[0].num_edge_features
11
```

References

Note: This class requires RDKit to be installed.

```
__init__(use_edges: bool = False, use_chirality: bool = False, use_partial_charge: bool = False)

Parameters
• use_edges (bool, default False) – Whether to use edge features or not.
• use_chirality (bool, default False) – Whether to use chirality information or not. If True, featurization becomes slow.
• use_partial_charge (bool, default False) – Whether to use partial charge data or not. If True, this featurizer computes gasteiger charges. Therefore, there is a possibility to fail to featurize for some molecules and featurization becomes slow.

featurize(datapoints, log_every_n=1000, **kwargs) → numpy.ndarray

Calculate features for molecules.

Parameters
• datapoints (rdkit.Chem.rdchem.Mol / SMILES string / iterable) – RDKit Mol, or SMILES string or iterable sequence of RDKit mols/SMILES strings.
• log_every_n (int, default 1000) – Logging messages reported every log_every_n samples.
```

3.9. Featurizers
Returns features – A numpy array containing a featurized representation of datapoints.

Return type np.ndarray

PagtnMolGraphFeaturizer

class PagtnMolGraphFeaturizer(max_length=5)

This class is a featuriser of PAGTN graph networks for molecules. The featurization is based on PAGTN model. It is slightly more computationally intensive than default Graph Convolution Featuriser, but it builds a Molecular Graph connecting all atom pairs accounting for interactions of an atom with every other atom in the Molecule. According to the paper, interactions between two pairs of atom are dependent on the relative distance between them and and hence, the function needs to calculate the shortest path between them.

The default node representation is constructed by concatenating the following values, and the feature length is 94.

* Atom type: One hot encoding of the atom type. It consists of the most possible elements in a chemical compound.
* Formal charge: One hot encoding of formal charge of the atom.
* Degree: One hot encoding of the atom degree
* **Explicit Valence**: One hot encoding of explicit valence of an atom. The supported possibilities include 0 – 6.
* **Implicit Valence**: One hot encoding of implicit valence of an atom. The supported possibilities include 0 – 5.
* Aromaticity: Boolean representing if an atom is aromatic.

The default edge representation is constructed by concatenating the following values, and the feature length is 42. It builds a complete graph where each node is connected to every other node. The edge representations are calculated based on the shortest path between two nodes (choose any one if multiple exist). Each bond encountered in the shortest path is used to calculate edge features.

* Bond type: A one-hot vector of the bond type, “single”, “double”, “triple”, or “aromatic”.
* Conjugated: A one-hot vector of whether this bond is conjugated or not.
* Same ring: A one-hot vector of whether the atoms in the pair are in the same ring.
* Ring Size and Aromaticity: One hot encoding of atoms in pair based on ring size and aromaticity.
* Distance: One hot encoding of the distance between pair of atoms.

Examples

```python
>>> from deepchem.feat import PagtnMolGraphFeaturizer
>>> smiles = ['C1CCC1', 'C1=CC=CN=C1']
>>> featurizer = PagtnMolGraphFeaturizer(max_length=5)
>>> out = featurizer.featurize(smiles)
>>> type(out[0])
<class 'deepchem.feat.graph_data.GraphData'>
>>> out[0].num_node_features
94
```
>>> out[0].num_edge_features
42

References

Note: This class requires RDKit to be installed.

```python
__init__(max_length=5)

Parameters

- max_length (int) – Maximum distance up to which shortest paths must be considered. Paths shorter than max_length will be padded and longer will be truncated, default to 5.

featurize(datapoints, log_every_n=1000, **kwargs) → numpy.ndarray

Calculate features for molecules.

Parameters

- datapoints (rdkit.Chem.rdchem.Mol / SMILES string / iterable) – RDKit Mol, or SMILES string or iterable sequence of RDKit mols/SMILES strings.
- log_every_n (int, default 1000) – Logging messages reported every log_every_n samples.

Returns

- features – A numpy array containing a featurized representation of datapoints.

Return type

np.ndarray
```

DMPNNFeaturizer

```python
class DMPNNFeaturizer(features_generators: Optional[List[str]] = None, is_adding_hs: bool = False,
use_original_atom_ranks: bool = False)

This class is a featurizer for Directed Message Passing Neural Network (D-MPNN) implementation

The default node(atom) and edge(bond) representations are based on Analyzing Learned Molecular Representations for Property Prediction paper.

The default node representation are constructed by concatenating the following values, and the feature length is 133.

- Atomic num: A one-hot vector of this atom, in a range of first 100 atoms.
- Degree: A one-hot vector of the degree (0-5) of this atom.
- Formal charge: Integer electronic charge, -1, -2, 1, 2, 0.
- Chirality: A one-hot vector of the chirality tag (0-3) of this atom.
- Number of Hydrogens: A one-hot vector of the number of hydrogens (0-4) that this atom connected.
- Hybridization: A one-hot vector of “SP”, “SP2”, “SP3”, “SP3D”, “SP3D2”.
- Aromatic: A one-hot vector of whether the atom belongs to an aromatic ring.
- Mass: Atomic mass * 0.01
```
The default edge representation are constructed by concatenating the following values, and the feature length is 14.

- Bond type: A one-hot vector of the bond type, “single”, “double”, “triple”, or “aromatic”.
- Same ring: A one-hot vector of whether the atoms in the pair are in the same ring.
- Conjugated: A one-hot vector of whether this bond is conjugated or not.
- Stereo: A one-hot vector of the stereo configuration (0-5) of a bond.

If you want to know more details about features, please check the paper [1]_ and utilities in deepchem.utils.molecule_feature_utils.py.

Examples

```python
>>> smiles = ["C1=CC=CN=C1", "C1CCC1"]
>>> featurizer = DMPNNFeaturizer()
>>> out = featurizer.featurize(smiles)
>>> type(out[0])
<class 'deepchem.feat.graph_data.GraphData'>
>>> out[0].num_nodes
6
>>> out[0].num_node_features
133
>>> out[0].node_features.shape
(6, 133)
>>> out[0].num_edge_features
14
>>> out[0].num_edges
12
>>> out[0].edge_features.shape
(12, 14)
```

References

Note: This class requires RDKit to be installed.

___init___(features_generators: Optional[List[str]] = None, is_adding_hs: bool = False,
use_original_atom_ranks: bool = False)

Parameters

- **features_generator**(List[str], default None) – List of global feature generators to be used.
- **is_adding_hs**(bool, default False) – Whether to add Hs or not.
- **use_original_atom_ranks**(bool, default False) – Whether to use original atom mapping or canonical atom mapping

featurize(datapoints, log_every_n=1000, **kwargs) → numpy.ndarray

Calculate features for molecules.
• **datapoints** (*rdkit.Chem.rdchem.Mol / SMILES string / iterable*) – RDKit Mol, or SMILES string or iterable sequence of RDKit mols/SMILES strings.

• **log_every_n** (*int, default 1000*) – Logging messages reported every *log_every_n* samples.

**Returns** features – A numpy array containing a featurized representation of *datapoints*.

**Return type** np.ndarray

**GroverFeaturizer**

class GroverFeaturizer(features_generator: Optional[deepchem.feat.base_classes.MolecularFeaturizer] = None, bond_drop_rate: float = 0.0)

Featurizer for GROVER Model

The Grover Featurizer is used to compute features suitable for grover model. It accepts an rdkit molecule of type *rdkit.Chem.rdchem.Mol* or a SMILES string as input and computes the following sets of features:

1. a molecular graph from the input molecule
2. functional groups which are used **only** during pretraining
3. additional features which can **only** be used during finetuning

**Parameters**

• **additional_featurizer** (*dc.feat.Featurizer*) – Given a molecular dataset, it is possible to extract additional molecular features in order

• **can** (to **train and finetune from the existing pretrained model**. The **additional_featurizer** –

• **molecule**. (be used to generate additional features for the) –

**References**

**Examples**

```python
>>> import deepchem as dc
>>> from deepchem.feat import GroverFeaturizer
>>> feat = GroverFeaturizer(features_generator = dc.feat.CircularFingerprint())
>>> out = feat.featurize('CCC')
```

**Note:** This class requires RDKit to be installed.

```python
__init__(features_generator: Optional[deepchem.feat.base_classes.MolecularFeaturizer] = None, bond_drop_rate: float = 0.0)

Parameters use_original_atoms_order (bool, default **False**) – Whether to use original atom ordering or canonical ordering (default)

3.9. Featurizers
class RDKitConformerFeaturizer(num_conformers: int = 1, rmsd_cutoff: float = 2)
A featurizer that featurizes an RDKit mol object as a GraphData object with 3D coordinates. The 3D coordinates are represented in the node_pos_features attribute of the GraphData object of shape [num_atoms * num_conformers, 3].

The ETKDGv2 algorithm is used to generate 3D coordinates for the molecule. The RDKit source for this algorithm can be found in RDkit/Code/GraphMol/DistGeomHelpers/Embedder.cpp. The documentation can be found here: https://rdkit.org/docs/source/rdkit.Chem.rdDistGeom.html#rdkit.Chem.rdDistGeom.ETKDGv2

This featurization requires RDKit.

Examples

```python
cpy from deepchem.feat.molecule_featurizers.conformer_featurizer import RDKitConformerFeaturizer
from deepchem.feat.graph_data import BatchGraphData
import numpy as np

featurizer = RDKitConformerFeaturizer(num_conformers=2)
molecule = "CCO"
features_list = featurizer.featurize([molecule])
batched_feats = BatchGraphData(np.concatenate(features_list).ravel())
print(batched_feats.node_pos_features.shape)
(18, 3)
```

__init__(num_conformers: int = 1, rmsd_cutoff: float = 2)
Initialize the RDKitConformerFeaturizer with the given parameters.

Parameters

- **num_conformers** (int, optional, default=1) – The number of conformers to generate for each molecule.
- **rmsd_cutoff** (float, optional, default=2) – The root-mean-square deviation (RMSD) cutoff value. Conformers with an RMSD greater than this value will be discarded.

atom_to_feature_vector(atom)
Converts an RDKit atom object to a feature list of indices.

Parameters

- **atom** (Chem.rdchem.Atom) – RDKit atom object.

Returns

List of feature indices for the given atom.

Return type

List[int]

bond_to_feature_vector(bond)
Converts an RDKit bond object to a feature list of indices.

Parameters

- **bond** (Chem.rdchem.Bond) – RDKit bond object.

Returns

List of feature indices for the given bond.

Return type

List[int]
MXMNetFeaturizer

class MXMNetFeaturizer(is_adding_hs: bool = False)

This class is a featurizer for Multiplex Molecular Graph Neural Network (MXMNet) implementation.

The atomic numbers(indices) of atoms will be used later to generate randomly initialized trainable embeddings
to be the input node embeddings.

This featurizer is based on Molecular Mechanics-Driven Graph Neural Network with Multiplex Graph for Molecular Structures.

Examples

```python
>>> smiles = ['C1=CC=CN=C1', 'C1CCC1']
>>> featurizer = MXMNetFeaturizer()
>>> out = featurizer.featurize(smiles)
>>> type(out[0])
<class 'deepchem.feat.graph_data.GraphData'>
>>> out[0].num_nodes
6
>>> out[0].num_node_features
1
>>> out[0].node_features.shape
(6, 1)
>>> out[0].num_edges
12
```

Note: We are not explicitly handling hydrogen atoms for now. We only support ‘H’, ‘C’, ‘N’, ‘O’ and ‘F’ atoms
to be present in the smiles at this point for MXMNet Model.

__init__(is_adding_hs: bool = False)

Parameters

* is_adding_hs (bool, default False) – Whether to add Hs or not.

featurize(datapoints, log_every_n=1000, **kwargs) → numpy.ndarray

Calculate features for molecules.

Parameters

* datapoints (rdkit.Chem.rdchem.Mol / SMILES string / iterable) – RDKit Mol, or SMILES string or iterable sequence of RDKit mols/SMILES strings.

* log_every_n (int, default 1000) – Logging messages reported every log_every_n samples.

Returns

* features – A numpy array containing a featurized representation of datapoints.

Return type

np.ndarray
Utilities

Here are some constants that are used by the graph convolutional featurizers for molecules.

class GraphConvConstants

This class defines a collection of constants which are useful for graph convolutions on molecules.

possible_atom_list = ['C', 'N', 'O', 'S', 'F', 'P', 'Cl', 'Mg', 'Na', 'Br', 'Fe', 'Ca', 'Cu', 'Mc', 'Pd', 'Pb', 'K', 'I', 'Al', 'Ni', 'Mn']

Allowed Numbers of Hydrogens

possible_numH_list = [0, 1, 2, 3, 4]

Allowed Valences for Atoms

possible_valence_list = [0, 1, 2, 3, 4, 5, 6]

Allowed Formal Charges for Atoms

possible_formal_charge_list = [-3, -2, -1, 0, 1, 2, 3]

This is a placeholder for documentation. These will be replaced with corresponding values of the rdkit HybridizationType

possible_hybridization_list = ['SP', 'SP2', 'SP3', 'SP3D', 'SP3D2']

Allowed number of radical electrons.

possible_number_radical_e_list = [0, 1, 2]

Allowed types of Chirality

possible_chirality_list = ['R', 'S']

The set of all values allowed.

reference_lists = [['C', 'N', 'O', 'S', 'F', 'P', 'Cl', 'Mg', 'Na', 'Br', 'Fe', 'Ca', 'Cu', 'Mc', 'Pd', 'Pb', 'K', 'I', 'Al', 'Ni', 'Mn'], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4, 5, 6], [-3, -2, -1, 0, 1, 2, 3], [0, 1, 2], ['SP', 'SP2', 'SP3', 'SP3D', 'SP3D2'], ['R', 'S']]

The number of different values that can be taken. See get_intervals()

intervals = [1, 6, 48, 384, 1536, 9216, 27648]

Possible stereochemistry. We use E-Z notation for stereochemistry https://en.wikipedia.org/wiki/E%E2%80%93Z_notation

possible_bond_stereo = ['STEREONONE', 'STereoANY', 'STEREOD2', 'STEREOE']

Number of different bond types not counting stereochemistry.

bond_fdim_base = 6

__module__ = 'deepchem.feat.graph_features'

There are a number of helper methods used by the graph convolutional classes which we document here.

one_of_k_encoding(x, allowable_set)

Encodes elements of a provided set as integers.

Parameters

• x (object) – Must be present in allowable_set.

• allowable_set (list) – List of allowable quantities.
Example

```python
>>> import deepchem as dc
dc.feat.graph_features.one_of_k_encoding("a", ["a", "b", "c"])
[True, False, False]
```

Raises `ValueError` –

```python
dc.feat.graph_features.one_of_k_encoding_unk(x, allowable_set)
Maps inputs not in the allowable set to the last element.
Unlike `one_of_k_encoding`, if x is not in `allowable_set`, this method pretends that x is the last element of `allowable_set`.
```

Parameters

- • `x (object)` – Must be present in `allowable_set`.
- • `allowable_set (list)` – List of allowable quantities.

Examples

```python
dc.feat.graph_features.one_of_k_encoding_unk("s", ["a", "b", "c"])
[False, False, True]
```

```python
dc.feat.graph_features.get_intervals([[1], [1, 2], [1, 2, 3]])
[1, 3, 12]
```

```python
dc.feat.graph_features.get_intervals([[1], [], [1, 2], [1, 2, 3]])
[1, 1, 3, 12]
```

```python
dc.feat.graph_features.safe_index(l, e)
Gets the index of e in l, providing an index of len(l) if not found
```

Parameters

- • `l (list)` – List of values
- • `e (object)` – Object to check whether e is in l
Examples

```python
>>> dc.feat.graph_features.safe_index([1, 2, 3], 1)
0
>>> dc.feat.graph_features.safe_index([1, 2, 3], 7)
3
```

get_feature_list(<atom>)

Returns a list of possible features for this atom.

Parameters

- **atom** (*RDKit.Chem.rdchem.Atom*) – Atom to get features for

Examples

```python
>>> from rdkit import Chem
>>>
>>> mol = Chem.MolFromSmiles("C")
>>> atom = mol.GetAtoms()[0]
>>> features = dc.feat.graph_features.get_feature_list(atom)
>>> type(features)
<class 'list'>
>>> len(features)
6
```

Note: This method requires RDKit to be installed.

Returns **features** – List of length 6. The i-th value in this list provides the index of the atom in the corresponding feature value list. The 6 feature values lists for this function are [GraphConvConstants.possible_atom_list, GraphConvConstants.possible_numH_list, GraphConvConstants.possible_valence_list, GraphConvConstants.possible_formal_charge_list, GraphConvConstants.possible_num_radical_e_list].

Return type **list**

features_to_id(features, intervals)

Convert list of features into index using spacings provided in intervals

Parameters

- **features** (*list*) – List of features as returned by get_feature_list()
- **intervals** (*list*) – List of intervals as returned by get_intervals()

Returns **id** – The index in a feature vector given by the given set of features.

Return type **int**

id_to_features(id, intervals)

Given an index in a feature vector, return the original set of features.

Parameters

- **id** (*int*) – The index in a feature vector given by the given set of features.
- **intervals** (*list*) – List of intervals as returned by get_intervals()

Returns **features** – List of features as returned by get_feature_list()
Return type: list

atom_to_id(atom)

Return a unique id corresponding to the atom type

Parameters
atom (RDKit.Chem.rdchem.Atom) – Atom to convert to ids.

Returns
id – The index in a feature vector given by the given set of features.

Return type: int

This function helps compute distances between atoms from a given base atom.

find_distance(a1: Any, num_atoms: int, bond_adj_list, max_distance=7) → numpy.ndarray

Computes distances from provided atom.

Parameters

• a1 (RDKit atom) – The source atom to compute distances from.
• num_atoms (int) – The total number of atoms.
• bond_adj_list (list of lists) – bond_adj_list[i] is a list of the atom indices that atom i shares a bond with. This list is symmetrical so if j in bond_adj_list[i] then i in bond_adj_list[j].
• max_distance (int, optional (default 7)) – The max distance to search.

Returns
distances – Of shape (num_atoms, max_distance). Provides a one-hot encoding of the distances. That is, distances[i] is a one-hot encoding of the distance from a1 to atom i.

Return type: np.ndarray

This function is important and computes per-atom feature vectors used by graph convolutional featurizers.

atom_features(atom, bool_id_feat=False, explicit_H=False, use_chirality=False)

Helper method used to compute per-atom feature vectors.

Many different featurization methods compute per-atom features such as ConvMolFeaturizer, WeaveFeaturizer. This method computes such features.

Parameters

• atom (RDKit.Chem.rdchem.Atom) – Atom to compute features on.
• bool_id_feat (bool, optional) – Return an array of unique identifiers corresponding to atom type.
• explicit_H (bool, optional) – If true, model hydrogens explicitly
• use_chirality (bool, optional) – If true, use chirality information.

Returns
features – An array of per-atom features.

Return type: np.ndarray
Examples

```python
>>> from rdkit import Chem
>>> mol = Chem.MolFromSmiles('CCC')
>>> atom = mol.GetAtoms()[0]
>>> features = dc.feat.graph_features.atom_features(atom)
>>> type(features)
<class 'numpy.ndarray'>
>>> features.shape
(75,)
```

This function computes the bond features used by graph convolutional featurizers.

bond_features *(bond, use_chirality=False, use_extended_chirality=False)*

Helper method used to compute bond feature vectors.

Many different featurization methods compute bond features such as WeaveFeaturizer. This method computes such features.

Parameters

- **bond** *(rdkit.Chem.rdchem.Bond)* – Bond to compute features on.
- **use_chirality** *(bool, optional)* – If true, use chirality information.
- **use_extended_chirality** *(bool, optional)* – If true, use chirality information with upto 6 different types.

Note: This method requires RDKit to be installed.

Returns

- **bond_feats** *(np.ndarray)* – Array of bond features. This is a 1-D array of length 6 if `use_chirality` is `False` else of length 10 with chirality encoded.
- **bond_feats** *(Sequence[Union[bool, int, float]])* – List of bond features returned if `use_extended_chirality` is `True`.

Examples

```python
>>> from rdkit import Chem
>>> mol = Chem.MolFromSmiles('CCC')
>>> bond = mol.GetBonds()[0]
>>> bond_features = dc.feat.graph_features.bond_features(bond)
>>> type(bond_features)
<class 'numpy.ndarray'>
>>> bond_features.shape
(6,)
```

Note: This method requires RDKit to be installed.

This function computes atom-atom features (for atom pairs which may not have bonds between them.)

Helper method used to compute atom pair feature vectors.

Many different featurization methods compute atom pair features such as WeaveFeaturizer. Note that atom pair features could be for pairs of atoms which aren’t necessarily bonded to one another.

Parameters

- **mol** (*RDKit Mol*) – Molecule to compute features on.
- **bond_features_map** (*dict*) – Dictionary that maps pairs of atom ids (say (2, 3)) for a bond between atoms 2 and 3) to the features for the bond between them.
- **bond_adj_list** (*list of lists*) – bond_adj_list[i] is a list of the atom indices that atom i shares a bond with. This list is symmetrical so if j in bond_adj_list[i] then i in bond_adj_list[j].
- **bt_len** (*int*, *optional* (*default* 6)) – The number of different bond types to consider.
- **graph_distance** (*bool*, *optional* (*default* True)) – If true, use graph distance between molecules. Else use euclidean distance. The specified mol must have a conformer. Atomic positions will be retrieved by calling mol.getConformer(0).
- **max_pair_distance** (*Optional*[int], (*default* None)) – This value can be a positive integer or None. This parameter determines the maximum graph distance at which pair features are computed. For example, if max_pair_distance==2, then pair features are computed only for atoms at most graph distance 2 apart. If max_pair_distance is None, all pairs are considered (effectively infinite max_pair_distance)

Note: This method requires RDKit to be installed.

Returns

- **features** (*np.ndarray*) – Of shape (N_edges, bt_len + max_distance + 1). This is the array of pairwise features for all atom pairs, where N_edges is the number of edges within max_pair_distance of one another in this molecules.
- **pair_edges** (*np.ndarray*) – Of shape (2, num_pairs) where num_pairs is the total number of pairs within max_pair_distance of one another.

MACCSKeysFingerprint

class MACCSKeysFingerprint

MACCS Keys Fingerprint.

The MACCS (Molecular ACCess System) keys are one of the most commonly used structural keys. Please confirm the details in [1]_, [2]_.

3.9. Featurizers
Examples

```python
>>> import deepchem as dc
>>> smiles = 'CC(=O)OC1=CC=CC=C1C(=O)O'
>>> featurizer = dc.feat.MACCSKeysFingerprint()
>>> features = featurizer.featurize([smiles])
>>> type(features[0])
<class 'numpy.ndarray'>
>>> features[0].shape
(167,)
```

References

Note: This class requires RDKit to be installed.

```python
__init__()

Initialize this featurizer.
```

MATFeaturizer

class MATFeaturizer

This class is a featurizer for the Molecule Attention Transformer [1]. The returned value is a numpy array which consists of molecular graph descriptions:

- Node Features
- Adjacency Matrix
- Distance Matrix

References

Examples

```python
>>> import deepchem as dc
>>> feat = dc.feat.MATFeaturizer()
>>> out = feat.featurize("CCC")
```

Note: This class requires RDKit to be installed.

`__init__()`

Parameters `use_original_atoms_order (bool, default False)` – Whether to use original atom ordering or canonical ordering (default)

`construct_mol (mol: Any) → Any`

Processes an input RDKitMol further to be able to extract id-specific Conformers from it using mol.GetConformer().

Parameters `mol (RDKitMol)` – RDKit Mol object.
Returns `mol` – A processed RDKitMol object which is embedded, UFF Optimized and has Hydrogen atoms removed. If the former conditions are not met and there is a value error, then 2D Coordinates are computed instead.

Return type RDKitMol

`atom_features(atom: Any) → numpy.ndarray`

Deepchem already contains an atom_features function, however we are defining a new one here due to the need to handle features specific to MAT. Since we need new features like Atom GetNeighbors and IsInRing, and the number of features required for MAT is a fraction of what the Deepchem atom_features function computes, we can speed up computation by defining a custom function.

Parameters `atom (RDKitAtom)` – RDKit Atom object.

Returns Numpy array containing atom features.

Return type ndarray

`construct_node_features_matrix(mol: Any) → numpy.ndarray`

This function constructs a matrix of atom features for all atoms in a given molecule using the atom_features function.

Parameters `mol (RDKitMol)` – RDKit Mol object.

Returns Atom_features – Numpy array containing atom features.

Return type ndarray

`featurize(datapoints, log_every_n=1000, **kwargs) → numpy.ndarray`

Calculate features for molecules.

Parameters

- `datapoints (rdkit.Chem.rdchem.Mol / SMILES string / iterable)` – RDKit Mol, or SMILES string or iterable sequence of RDKit mols/SMILES strings.

- `log_every_n (int, default 1000)` – Logging messages reported every log_every_n samples.

Returns features – A numpy array containing a featurized representation of datapoints.

Return type np.ndarray

CircularFingerprint

class CircularFingerprint(radius: int = 2, size: int = 2048, chiral: bool = False, bonds: bool = True,

features: bool = False, sparse: bool = False, smiles: bool = False,
is_counts_based: bool = False)

Circular (Morgan) fingerprints.

Extended Connectivity Circular Fingerprints compute a bag-of-words style representation of a molecule by breaking it into local neighborhoods and hashing into a bit vector of the specified size. It is used specifically for structure-activity modelling. See [1] for more details.
References

Note: This class requires RDKit to be installed.

Examples

```python
>>> import deepchem as dc
>>> from rdkit import Chem
>>> smiles = ['C1=CC=CC=C1']
>>> # Example 1: (size = 2048, radius = 4)
>>> featurizer = dc.feat.CircularFingerprint(size=2048, radius=4)
>>> features = featurizer.featurize(smiles)
>>> type(features[0])
<class 'numpy.ndarray'>
>>> features[0].shape
(2048,)

>>> # Example 2: (size = 2048, radius = 4, sparse = True, smiles = True)
>>> featurizer = dc.feat.CircularFingerprint(size=2048, radius=8, ... sparse=True, smiles=True)
>>> features = featurizer.featurize(smiles)
>>> type(features[0])  # dict containing fingerprints
<class 'dict'>
```


Parameters

- `radius` (int, optional (default 2)) – Fingerprint radius.
- `size` (int, optional (default 2048)) – Length of generated bit vector.
- `chiral` (bool, optional (default False)) – Whether to consider chirality in fingerprint generation.
- `bonds` (bool, optional (default True)) – Whether to consider bond order in fingerprint generation.
- `features` (bool, optional (default False)) – Whether to use feature information instead of atom information; see RDKit docs for more info.
- `sparse` (bool, optional (default False)) – Whether to return a dict for each molecule containing the sparse fingerprint.
- `smiles` (bool, optional (default False)) – Whether to calculate SMILES strings for fragment IDs (only applicable when calculating sparse fingerprints).
- `is_counts_based` (bool, optional (default False)) – Whether to generates a counts-based fingerprint.

`featurize`(datapoints, log_every_n=1000, **kwargs) → numpy.ndarray

Calculate features for molecules.

Parameters
• **datapoints** (*rdkit.Chem.rdchem.Mol / SMILES string / iterable*) – RDKit Mol, or SMILES string or iterable sequence of RDKit mols/SMILES strings.

• **log_every_n** *(int, default 1000)* – Logging messages reported every `log_every_n` samples.

Returns **features** – A numpy array containing a featurized representation of *datapoints*.

Return type np.ndarray

PubChemFingerprint

class PubChemFingerprint

PubChem Fingerprint. The PubChem fingerprint is a 881 bit structural key, which is used by PubChem for similarity searching. Please confirm the details in [1].

References

Note: This class requires RDKit and PubChemPy to be installed. PubChemPy use REST API to get the fingerprint, so you need the internet access.

Examples

```python
>>> import deepchem as dc
>>> smiles = ['CCC']
>>> featurizer = dc.feat.PubChemFingerprint()
>>> features = featurizer.featurize(smiles)
>>> type(features[0])
<class 'numpy.ndarray'>
>>> features[0].shape
(881,)
```

__init__()

Initialize this featurizer.

Mol2VecFingerprint

class Mol2VecFingerprint(*pretrain_model_path: Optional[str] = None, radius: int = 1, unseen: str = 'UNK')

Mol2Vec fingerprints. This class convert molecules to vector representations by using Mol2Vec. Mol2Vec is an unsupervised machine learning approach to learn vector representations of molecular substructures and the algorithm is based on Word2Vec, which is one of the most popular technique to learn word embeddings using neural network in NLP. Please see the details from [1].

The Mol2Vec requires the pretrained model, so we use the model which is put on the mol2vec github repository [2]. The default model was trained on 20 million compounds downloaded from ZINC using the following parameters.

- radius 1

3.9. Featurizers
deepchem, Release 2.7.2.dev

- UNK to replace all identifiers that appear less than 4 times
- skip-gram and window size of 10
- embeddings size 300

References

Note: This class requires mol2vec to be installed.

Examples

```python
def featurizer(smiles):
    featurizer = dc.feat.Mol2VecFingerprint()
    features = featurizer.featurize(smiles)
    return features
```

```
>>> import deepchem as dc
>>> from rdkit import Chem
>>> smiles = ['CCC']
>>> featurizer = dc.feat.Mol2VecFingerprint()
>>> features = featurizer.featurize(smiles)
>>> type(features)
<class 'numpy.ndarray'>
>>> features[0].shape
(300,)
```

```
__init__(pretrain_model_path: Optional[str] = None, radius: int = 1, unseen: str = 'UNK')

Parameters

- pretrain_file (str, optional) – The path for pretrained model. If this value is None, we use the model which is put on github repository (https://github.com/samoturk/mol2vec/tree/master/examples/models). The model is trained on 20 million compounds downloaded from ZINC.
- radius (int, optional (default 1)) – The fingerprint radius. The default value was used to train the model which is put on github repository.
- unseen (str, optional (default 'UNK')) – The string to used to replace uncommon words/identifiers while training.

sentences2vec(sentences: list, model, unseen=None) → numpy.ndarray

Generate vectors for each sentence (list) in a list of sentences. Vector is simply a sum of vectors for individual words.

Parameters

- sentences (list, array) – List with sentences
- model (word2vec.Word2Vec) – Gensim word2vec model
- unseen (None, str) – Keyword for unseen words. If None, those words are skipped. https://stats.stackexchange.com/questions/163005/how-to-set-the-dictionary-for-text-analysis-using-neural-networks/163032#163032

Return type

numpy.ndarray

featurize(datapoints, log_every_n=1000, **kwargs) → numpy.ndarray

Calculate features for molecules.

Parameters

- datapoints (list) – List with molecules
• **datapoints** *(rdkit.Chem.rdchem.Mol / SMILES string / iterable)* – RDKit Mol, or SMILES string or iterable sequence of RDKit mols/SMILES strings.

• **log_every_n** *(int, default 1000)* – Logging messages reported every *log_every_n* samples.

**Returns** features – A numpy array containing a featurized representation of *datapoints*.

**Return type** np.ndarray

---

**RDKitDescriptors**

```python
class RDKitDescriptors:
 Initialize this featurizer.
 Parameters
 • **descriptors_list** *(List[str] (default None))* – List of RDKit descriptors to compute properties. When None, computes values
 • **arguments.** (for descriptors which are chosen based on options set in other) –
```

**Note:** This class requires RDKit to be installed.

---

**Examples**

```python
>>> import deepchem as dc
>>> smiles = ['CC(=O)OC1=CC=CC=C1C(=O)O']
>>> featurizer = dc.feat.RDKitDescriptors()
>>> features = featurizer.featurize(smiles)
>>> type(features[0])
<class 'numpy.ndarray'>
>>> features[0].shape
(208,)
```
• `use_fragment` (bool, optional (default True)) – If True, the return value includes the fragment binary descriptors like ‘fr_XXX’.

• `ipc_avg` (bool, optional (default True)) – If True, the IPC descriptor calculates with avg=True option. Please see this issue: https://github.com/rdkit/rdkit/issues/1527.

• `is_normalized` (bool, optional (default False)) – If True, the return value contains normalized features.

• `use_bcut2d` (bool, optional (default True)) – If True, the return value includes the descriptors like ‘BCUT2D_XXX’.

• `labels_only` (bool, optional (default False)) – Returns only the presence or absence of a group.

**Notes**

• If both `labels_only` and `is_normalized` are True, then `is_normalized` takes precedence and `labels_only` will not be applied.

```
featurize(datapoints, log_every_n=1000, **kwargs) → numpy.ndarray
```
Calculate features for molecules.

**Parameters**

• `datapoints` (rdkit.Chem.rdchem.Mol / SMILES string / iterable) – RDKit Mol, or SMILES string or iterable sequence of RDKit mols/SMILES strings.

• `log_every_n` (int, default 1000) – Logging messages reported every `log_every_n` samples.

**Returns** features – A numpy array containing a featurized representation of `datapoints`.

**Return type** numpy.ndarray

**MordredDescriptors**

```
class MordredDescriptors(ignore_3D: bool = True)
```
Mordred descriptors.

This class computes a list of chemical descriptors using Mordred. Please see the details about all descriptors from [1]_, [2]_.

**descriptors**

List of Mordred descriptor names used in this class.

**Type** List[str]
References

Note: This class requires Mordred to be installed.

Examples

```python
group >>> import deepchem as dc
>>> smiles = ['CC(=O)OC1=CC=CC=C1C(=O)O']
>>> featurizer = dc.feat.MordredDescriptors(ignore_3D=True)
>>> features = featurizer.featurize(smiles)
>>> type(features[0])
<class 'numpy.ndarray'>
>>> features[0].shape
(1613,)
```

__init__ (ignore_3D: bool = True)

- **Parameters**
  - `ignore_3D` (bool, optional (default True)) – Whether to use 3D information or not.

featurize (datapoints, log_every_n=1000, **kwargs) → numpy.ndarray

Calculate features for molecules.

- **Parameters**
  - `datapoints` (rdkit.Chem.rdchem.Mol / SMILES string / iterable) – RDKit Mol, or SMILES string or iterable sequence of RDKit mols/SMILES strings.
  - `log_every_n` (int, default 1000) – Logging messages reported every `log_every_n` samples.

- **Returns**
  - `features` – A numpy array containing a featurized representation of `datapoints`.
  - `type` np.ndarray

CoulombMatrix
class CoulombMatrix (max_atoms: int, remove_hydrogens: bool = False, randomize: bool = False, upper_tri: bool = False, n_samples: int = 1, seed: Optional[int] = None)

Calculate Coulomb matrices for molecules.

Coulomb matrices provide a representation of the electronic structure of a molecule. For a molecule with \( N \) atoms, the Coulomb matrix is a \( N \times N \) matrix where each element gives the strength of the electrostatic interaction between two atoms. The method is described in more detail in [1].
Examples

```python
>>> import deepchem as dc

>>> featurizers = dc.feat.CoulombMatrix(max_atoms=23)

>>> input_file = 'deepchem/feat/tests/data/water.sdf' # really backed by water.sdf.

>>> tasks = ['atomization_energy']

>>> loader = dc.data.SDFLoader(tasks, featurizer=featurizers)

>>> dataset = loader.create_dataset(input_file)
```

References

Note: This class requires RDKit to be installed.

```python
__init__(max_atoms: int, remove_hydrogens: bool = False, randomize: bool = False, upper_tri: bool = False, n_samples: int = 1, seed: Optional[int] = None)
```

Initialize this featurizer.

Parameters

- **maxAtoms** (int) – The maximum number of atoms expected for molecules this featurizer will process.
- **remove_hydrogens** (bool, optional (default False)) – If True, remove hydrogens before processing them.
- **randomize** (bool, optional (default False)) – If True, use method `randomize_coulomb_matrix` to randomize Coulomb matrices.
- **upper_tri** (bool, optional (default False)) – Generate only upper triangle part of Coulomb matrices.
- **n_samples** (int, optional (default 1)) – If `randomize` is set to True, the number of random samples to draw.
- **seed** (int, optional (default None)) – Random seed to use.

```python
coulomb_matrix(mol: Any) → numpy.ndarray
```

Generate Coulomb matrices for each conformer of the given molecule.

Parameters mol (rdkit.Chem.rdchem.Mol) – RDKit Mol object

Returns The coulomb matrices of the given molecule

Return type np.ndarray

```python
randomize_coulomb_matrix(m: numpy.ndarray) → List[numpy.ndarray]
```

Randomize a Coulomb matrix as described in [1]:

1. Compute row norms for M in a vector `row_norms`.
2. Sample a zero-mean unit-variance noise vector `e` with dimension equal to `row_norms`.
3. Permute the rows and columns of M with the permutation that sorts `row_norms + e`.

Parameters m (np.ndarray) – Coulomb matrix.

Returns List of the random coulomb matrix
Return type  List[np.ndarray]

References

static get_interatomic_distances(conf: Any) → numpy.ndarray
Get interatomic distances for atoms in a molecular conformer.

Parameters

conf (rdkit.Chem.rdchem.Conformer) – Molecule conformer.

Returns

The distances matrix for all atoms in a molecule

Return type  np.ndarray

featurize(datapoints, log_every_n=1000, **kwargs) → numpy.ndarray
Calculate features for molecules.

Parameters

• datapoints (rdkit.Chem.rdchem.Mol / SMILES string / iterable) – RDKit Mol, or SMILES string or iterable sequence of RDKit mols/SMILES strings.

• log_every_n (int, default 1000) – Logging messages reported every log_every_n samples.

Returns

features – A numpy array containing a featurized representation of datapoints.

Return type  np.ndarray

CoulombMatrixEig

class CoulombMatrixEig(max_atoms: int, remove_hydrogens: bool = False, randomize: bool = False, n_samples: int = 1, seed: Optional[int] = None)
Calculate the eigenvalues of Coulomb matrices for molecules.

This featurizer computes the eigenvalues of the Coulomb matrices for provided molecules. Coulomb matrices are described in [1].

Examples

```python
>>> import deepchem as dc
>>> featurizers = dc.feat.CoulombMatrixEig(max_atoms=23)
>>> input_file = 'deepchem/feat/tests/data/water.sdf' # really backed by water.sdf.
>>> csv
>>> tasks = ['atomization_energy']
>>> loader = dc.data.SDFLoader(tasks, featurizer=featurizers)
>>> dataset = loader.create_dataset(input_file)
```
__init__ (max_atoms: int, remove_hydrogens: bool = False, randomize: bool = False, n_samples: int = 1, seed: Optional[int] = None)

Initialize this featurizer.

Parameters

- **max_atoms** (int) – The maximum number of atoms expected for molecules this featurizer will process.
- **remove_hydrogens** (bool, optional (default False)) – If True, remove hydrogens before processing them.
- **randomize** (bool, optional (default False)) – If True, use method `randomize_coulomb_matrices` to randomize Coulomb matrices.
- **n_samples** (int, optional (default 1)) – If `randomize` is set to True, the number of random samples to draw.
- **seed** (int, optional (default None)) – Random seed to use.

coulomb_matrix (mol: Any) → numpy.ndarray

Generate Coulomb matrices for each conformer of the given molecule.

Parameters mol (rdkit.Chem.rdchem.Mol) – RDKit Mol object

Returns The coulomb matrices of the given molecule

Return type np.ndarray

featurize (datapoints, log_every_n=1000, **kwargs) → numpy.ndarray

Calculate features for molecules.

Parameters

- **datapoints** (rdkit.Chem.rdchem.Mol / SMILES string / iterable) – RDKit Mol, or SMILES string or iterable sequence of RDKit mols/SMILES strings.
- **log_every_n** (int, default 1000) – Logging messages reported every `log_every_n` samples.

Returns features – A numpy array containing a featurized representation of datapoints.

Return type np.ndarray

static get_interatomic_distances (conf: Any) → numpy.ndarray

Get interatomic distances for atoms in a molecular conformer.


Returns The distances matrix for all atoms in a molecule

Return type np.ndarray

randomize_coulomb_matrix (m: numpy.ndarray) → List[numpy.ndarray]

Randomize a Coulomb matrix as described in [1]:

1. Compute row norms for M in a vector row_norms.
2. Sample a zero-mean unit-variance noise vector e with dimension equal to row_norms.
3. Permute the rows and columns of M with the permutation that sorts row_norms + e.

Parameters m (np.ndarray) – Coulomb matrix.
Returns List of the random coulomb matrix

Return type List[np.ndarray]

References

AtomCoordinates

class AtomicCoordinates(use_bohr: bool = False)

Calculate atomic coordinates.

Examples

```python
>>> import deepchem as dc
>>> from rdkit import Chem
>>> mol = Chem.MolFromSmiles('C1C=CC=CC=1')
>>> n_atoms = len(mol.GetAtoms())
>>> n_atoms
6
>>> featurizer = dc.feat.AtomicCoordinates(use_bohr=False)
>>> features = featurizer.featurize([mol])
>>> type(features[0])
<class 'numpy.ndarray'>
>>> features[0].shape # (n_atoms, 3)
(6, 3)
```

Note: This class requires RDKit to be installed.

__init__(use_bohr: bool = False)

Parameters use_bohr (bool, optional (default False)) – Whether to use bohr or angstrom as a coordinate unit.

featurize(datapoints, log_every_n=1000, **kwargs) → numpy.ndarray

Calculate features for molecules.

Parameters

- datapoints (rdkit.Chem.rdchem.Mol / SMILES string / iterable) – RDKit Mol, or SMILES string or iterable sequence of RDKit mols/SMILES strings.
- log_every_n (int, default 1000) – Logging messages reported every log_every_n samples.

Returns features – A numpy array containing a featurized representation of datapoints.

Return type np.ndarray

3.9. Featurizers
BPSymmetryFunctionInput

```python
class BPSymmetryFunctionInput(max_atoms: int)
 Calculate symmetry function for each atom in the molecules
 This method is described in [1].
```

**Examples**

```python
>>> import deepchem as dc
>>> smiles = ['C1C=CC=CC=1']
>>> featurizer = dc.feat.BPSymmetryFunctionInput(max_atoms=10)
>>> features = featurizer.featurize(smiles)
>>> type(features[0])
<class 'numpy.ndarray'>
>>> features[0].shape # (max_atoms, 4)
(10, 4)
```

**References**

Note: This class requires RDKit to be installed.

```python
__init__(max_atoms: int)
 Initialize this featurizer.
 Parameters max_atoms (int) – The maximum number of atoms expected for molecules this
 featurizer will process.

featurize(datapoints, log_every_n=1000, **kwargs) → numpy.ndarray
 Calculate features for molecules.
 Parameters
 • datapoints (rdkit.Chem.rdchem.Mol / SMILES string / iterable) – RDKit
 Mol, or SMILES string or iterable sequence of RDKit mols/SMILES strings.
 • log_every_n (int, default 1000) – Logging messages reported every log_every_n
 samples.
 Returns features – A numpy array containing a featurized representation of datapoints.
 Return type np.ndarray
```

SmilesToSeq

```python
class SmilesToSeq(char_to_idx: Dict[str, int], max_len: int = 250, pad_len: int = 10)
 SmilesToSeq Featurizer takes a SMILES string, and turns it into a sequence. Details taken from
 [1].
 SMILES strings smaller than a specified max length (max_len) are padded using the PAD token while those
 larger than the max length are not considered. Based on the paper, there is also the option to add extra padding
 (pad_len) on both sides of the string after length normalization. Using a character to index (char_to_idx) map-
 ping, the SMILES characters are turned into indices and the resulting sequence of indices serves as the input for
 an embedding layer.
```
References

Note: This class requires RDKit to be installed.

---

```python
__init__(char_to_idx: Dict[str, int], max_len: int = 250, pad_len: int = 10)
```
Initialize this class.

**Parameters**

- **char_to_idx** (`Dict[str, int]`) – Dictionary containing character to index mappings for unique characters.
- **max_len** (`int`, default `250`) – Maximum allowed length of the SMILES string.
- **pad_len** (`int`, default `10`) – Amount of padding to add on either side of the SMILES seq.

```python
to_seq(smiles: List[str]) → numpy.ndarray
```
Turns list of smiles characters into array of indices.

```python
remove_pad(characters: List[str]) → List[str]
```
Removes PAD_TOKEN from the character list.

```python
smiles_from_seq(seq: List[int]) → str
```
Reconstructs SMILES string from sequence.

```python
featurize(datapoints, log_every_n=1000, **kwargs) → numpy.ndarray
```
Calculate features for molecules.

**Parameters**

- **datapoints** (`rdkit.Chem.rdchem.Mol / SMILES string / iterable`) – RDKit Mol, or SMILES string or iterable sequence of RDKit mols/SMILES strings.
- **log_every_n** (`int`, default `1000`) – Logging messages reported every `log_every_n` samples.

**Returns** features – A numpy array containing a featurized representation of `datapoints`.

**Return type** np.ndarray

---

### SmilesToImage

```python
class SmilesToImage(img_size: int = 80, res: float = 0.5, max_len: int = 250, img_spec: str = 'std')
```
Convert SMILES string to an image.

SmilesToImage Featurizer takes a SMILES string, and turns it into an image. Details taken from [1].

The default size of for the image is 80 x 80. Two image modes are currently supported - std & engd. std is the gray scale specification, with atomic numbers as pixel values for atom positions and a constant value of 2 for bond positions. engd is a 4-channel specification, which uses atom properties like hybridization, valency, charges in addition to atomic number. Bond type is also used for the bonds.

The coordinates of all atoms are computed, and lines are drawn between atoms to indicate bonds. For the respective channels, the atom and bond positions are set to the property values as mentioned in the paper.

---

3.9. Featurizers 135
Examples

```python
>>> import deepchem as dc

``` CC(=O)OC1=CC=CC=C1C(=O)O `featurizer = dc.feat.SmilesToImage(img_size=80, img_spec='std')` `images = featurizer.featurize(smiles)` `type (images[0])` `<class 'numpy.ndarray'>` `images[0].shape` # (img_size, img_size, 1) (80, 80, 1)

References

**Note:** This class requires RDKit to be installed.

```python
__init__(img_size: int = 80, res: float = 0.5, max_len: int = 250, img_spec: str = 'std')

Parameters

- **img_size** (int, default 80) – Size of the image tensor
- **res** (float, default 0.5) – Displays the resolution of each pixel in Angstrom
- **max_len** (int, default 250) – Maximum allowed length of SMILES string
- **img_spec** (str, default std) – Indicates the channel organization of the image tensor

```python
featurize(datapoints, log_every_n=1000, **kwargs) → numpy.ndarray

Calculate features for molecules.

Parameters

- **datapoints** (rdkit.Chem.rdchem.Mol / SMILES string / iterable) – RDKit Mol, or SMILES string or iterable sequence of RDKit mols/SMILES strings.
- **log_every_n** (int, default 1000) – Logging messages reported every log_every_n samples.

Returns features – A numpy array containing a featurized representation of datapoints.

Return type np.ndarray

OneHotFeaturizer

```python

Encodes any arbitrary string or molecule as a one-hot array.

This featurizer encodes the characters within any given string as a one-hot array. It also works with RDKit molecules: it can convert RDKit molecules to SMILES strings and then one-hot encode the characters in said strings.

Standalone Usage:
>>> import deepchem as dc
defualt ZINC_CHARSET) – A list of strings, where each string is length 1 and unique.
 - max_length (Optional[int], optional (default 100)) – The max length for string. If the length of string is shorter than max_length, the string is padded using space.
 - None (If max_length is)
 - length (no padding is performed and arbitrary)
 - allowed. (strings are)

 parameter:

 datapoints: Iterable[Any], log_every_n: int = 1000, **kwargs) → numpy.ndarray

 Featurize strings or mols.

 Parameters

 - datapoints (list) – A list of either strings (str or numpy.str) or RDKit molecules.

 - log_every_n (int, optional (default 1000)) – How many elements are featurized every time a featurization is logged.

 pad_smile (smiles: str) → str

 Pad SMILES string to self.pad_length

 Parameters smiles (str) – The SMILES string to be padded.

 Returns SMILES string space padded to self.pad_length

 Return type str

 pad_string (string: str) → str

 Pad string to self.pad_length

 Parameters string (str) – The string to be padded.

 Returns String space padded to self.pad_length

 Return type str
untransform\((one_hot_vectors: numpy.ndarray) \rightarrow str\)
Convert from one hot representation back to original string

Parameters one_hot_vectors (np.ndarray) – An array of one hot encoded features.

Returns Original string for an one hot encoded array.

Return type str

SparseMatrixOneHotFeaturizer

Encodes any arbitrary string as a one-hot array.
This featurizer uses the sklearn OneHotEncoder to create sparse matrix representation of a one-hot array of any string. It is expected to be used in large datasets that produces memory overload using standard featurizer such as OneHotFeaturizer. For example: SwissprotDataset

Examples

```python
>>> import deepchem as dc
>>> featurizer = dc.feat.SparseMatrixOneHotFeaturizer()
>>> sequence = "MMMMQLA"
>>> encodings = featurizer.featurize([sequence])
>>> encodings[0].shape
(6, 25)
```

Initialize featurizer.

Parameters charset (List[str] (default code)) – A list of strings, where each string is length 1 and unique.

featureize\((datapoints: Iterable[Any], log_every_n: int = 1000, **kwargs) \rightarrow numpy.ndarray\)
Featureize strings.

Parameters

- datapoints (list) – A list of either strings (str or numpy.str_)
- log_every_n (int, optional (default 1000)) – How many elements are featurized every time a featurization is logged.

untransform\((one_hot_vectors: scipy.sparse._base.spmatrix) \rightarrow str\)
Convert from one hot representation back to original string

Parameters one_hot_vectors (np.ndarray) – An array of one hot encoded features.

Returns Original string for an one hot encoded array.

Return type str
RawFeaturizer

```python
class RawFeaturizer(smiles: bool = False)
    Encodes a molecule as a SMILES string or RDKit mol.
    This featurizer can be useful when you’re trying to transform a large collection of RDKit mol objects as Smiles strings, or alternatively as a “no-op” featurizer in your molecular pipeline.
```

Note: This class requires RDKit to be installed.

```python
__init__(smiles: bool = False)
    Initialize this featurizer.

Parameters
smiles (bool, optional (default False)) – If True, encode this molecule as a SMILES string. Else as a RDKit mol.
```

```python
featurize(datapoints, log_every_n=1000, **kwargs) → numpy.ndarray
    Calculate features for molecules.

Parameters
datapoints (rdkit.Chem.rdchem.Mol / SMILES string / iterable) – RDKit Mol, or SMILES string or iterable sequence of RDKit mols/SMILES strings.
log_every_n (int, default 1000) – Logging messages reported every log_every_n samples.
```

Returns features – A numpy array containing a featurized representation of datapoints.

Return type np.ndarray

SNAPFeaturizer

```python
class SNAPFeaturizer(use_original_atoms_order=False)
    This featurizer is based on the SNAP featurizer used in the paper [1].
```

Example

```python
>>> smiles = ["CC(=O)C"]
>>> featurizer = SNAPFeaturizer()
>>> print(featurizer.featurize(smiles))
[GraphData(node_features=[4, 2], edge_index=[2, 6], edge_features=[6, 2])]
```

References

```python
__init__(use_original_atoms_order=False)
    Parameters use_original_atoms_order (bool, default False) – Whether to use original atom ordering or canonical ordering (default)
```

```python
featurize(datapoints, log_every_n=1000, **kwargs) → numpy.ndarray
    Calculate features for molecules.
```

Parameters
• **datapoints** *(rdkit.Chem.rdchem.Mol / SMILES string / iterable)* – RDKit Mol, or SMILES string or iterable sequence of RDKit mols/SMILES strings.

• **log_every_n** *(int, default 1000)* – Logging messages reported every *log_every_n* samples.

Returns **features** – A numpy array containing a featurized representation of *datapoints*.

Return type **np.ndarray**

3.9.2 Molecular Complex Featurizers

These featurizers work with three dimensional molecular complexes.

RdkitGridFeaturizer

```python
class RdkitGridFeaturizer(nb_rotations=0, feature_types=None, ecfp_degree=2, ecfp_power=3, splif_power=3, box_width=16.0, voxel_width=1.0, flatten=False, verbose=True, sanitize=False, **kwargs)
```

Featurizes protein-ligand complex using flat features or a 3D grid (in which each voxel is described with a vector of features).

Parameters

- **nb_rotations** *(int, optional (default 0))* – Number of additional random rotations of a complex to generate.

- **feature_types** *(list, optional (default ['ecfp'])*) –

There are also 3 predefined sets of features: ‘flat_combined’, ‘voxel_combined’, and ‘all_combined’.

Calculated features are concatenated and their order is preserved (features in predefined sets are in alphabetical order).

- **ecfp_degree** *(int, optional (default 2))* – ECFP radius.

- **ecfp_power** *(int, optional (default 3))* – Number of bits to store ECFP features (resulting vector will be 2^{ecfp_power} long)

- **splif_power** *(int, optional (default 3))* – Number of bits to store SPLIF features (resulting vector will be 2^{splif_power} long)

- **box_width** *(float, optional (default 16.0))* – Size of a box in which voxel features are calculated. Box is centered on a ligand centroid.

- **voxel_width** *(float, optional (default 1.0))* – Size of a 3D voxel in a grid.

- **flatten** *(bool, optional (default False))* – Indicate whether calculated features should be flattened. Output is always flattened if flat features are specified in feature_types.

- **verbose** *(bool, optional (default True))* – Verbosity for logging
• **sanitize**(bool, optional (default False)) – If set to True, molecules will be sanitized. Note that calculating some features (e.g. aromatic interactions) require sanitized molecules.

• **kwargs**(dict, optional) – Keyword arguments can be used to specify custom cut-offs and bins (see default values below).

• **bins**(Default cutoffs and) –

• **hbond_dist_bins**([(2.2, 2.5), (2.5, 3.2), (3.2, 4.0)]) –

• **hbond_angle_cutoffs**([5, 50, 90]) –

• **splif_contact_bins**([(0, 2.0), (2.0, 3.0), (3.0, 4.5)]) –

• **ecfp_cutoff**(4.5) –

• **sybyl_cutoff**(7.0) –

• **salt_bridges_cutoff**(5.0) –

• **pi_stack_dist_cutoff**(4.4) –

• **pi_stack_angle_cutoff**(30.0) –

• **cation_pi_dist_cutoff**(6.5) –

• **cation_pi_angle_cutoff**(30.0) –

featurize(datapoints: Optional[Iterable[Tuple[str, str]]] = None, log_every_n: int = 100, **kwargs) → numpy.ndarray

Calculate features for mol/protein complexes. :param datapoints: List of filenames (PDB, SDF, etc.) for ligand molecules and proteins.

Each element should be a tuple of the form (ligand_filename, protein_filename).

Returns features – Array of features

Return type np.ndarray

AtomicConvFeaturizer

class **AtomicConvFeaturizer**

(frag1_num_atoms, frag2_num_atoms, complex_num_atoms, max_num_neighbors, neighbor_cutoff, strip_hydrogens=True)

This class computes the featurization that corresponds to AtomicConvModel.

This class computes featurizations needed for AtomicConvModel. Given two molecular structures, it computes a number of useful geometric features. In particular, for each molecule and the global complex, it computes a coordinates matrix of size (N_atoms, 3) where N_atoms is the number of atoms. It also computes a neighbor-list, a dictionary with N_atoms elements where neighbor-list[i] is a list of the atoms the i-th atom has as neighbors. In addition, it computes a z-matrix for the molecule which is an array of shape (N_atoms,) that contains the atomic number of that atom.

Since the featurization computes these three quantities for each of the two molecules and the complex, a total of 9 quantities are returned for each complex. Note that for efficiency, fragments of the molecules can be provided rather than the full molecules themselves.
__init__(frag1_num_atoms, frag2_num_atoms, complex_num_atoms, max_num_neighbors, neighbor_cutoff, strip_hydrogens=True)

Parameters

- **frag1_num_atoms** (int) – Maximum number of atoms in fragment 1.
- **frag2_num_atoms** (int) – Maximum number of atoms in fragment 2.
- **complex_num_atoms** (int) – Maximum number of atoms in complex of frag1/frag2 together.
- **max_num_neighbors** (int) – Maximum number of atoms considered as neighbors.
- **neighbor_cutoff** (float) – Maximum distance (angstroms) for two atoms to be considered as neighbors. If more than max_num_neighbors atoms fall within this cutoff, the closest max_num_neighbors will be used.
- **strip_hydrogens** (bool (default True)) – Remove hydrogens before computing featurization.

featurize(datapoints: Optional[Iterable[Tuple[str, str]]] = None, log_every_n: int = 100, **kwargs) → numpy.ndarray

Calculate features for mol/protein complexes. :param datapoints: List of filenames (PDB, SDF, etc.) for ligand molecules and proteins.

Each element should be a tuple of the form (ligand_filename, protein_filename).

Returns features – Array of features

Return type np.ndarray

3.9.3 Inorganic Crystal Featurizers

These featurizers work with datasets of inorganic crystals.

MaterialCompositionFeaturizer

Material Composition Featurizers are those that work with datasets of crystal compositions with periodic boundary conditions. For inorganic crystal structures, these featurizers operate on chemical compositions (e.g. “MoS2”). They should be applied on systems that have periodic boundary conditions. Composition featurizers are not designed to work with molecules.

ElementPropertyFingerprint

class ElementPropertyFingerprint(data_source: str = 'matminer')

Fingerprint of elemental properties from composition.

Based on the data source chosen, returns properties and statistics (min, max, range, mean, standard deviation, mode) for a compound based on elemental stoichiometry. E.g., the average electronegativity of atoms in a crystal structure. The chemical fingerprint is a vector of these statistics. For a full list of properties and statistics, see matminer.featurizers.composition.ElementProperty(data_source).feature_labels().

This featurizer requires the optional dependencies pymatgen and matminer. It may be useful when only crystal compositions are available (and not 3D coordinates).
See references [1], [2], [3], [4] for more details.

References

Examples

```python
>>> import deepchem as dc
>>> import pymatgen as mg
>>> comp = mg.core.Composition("Fe2O3")
>>> featurizer = dc.feat.ElementPropertyFingerprint()
>>> features = featurizer.featurize([comp])
>>> type(features[0])
<class 'numpy.ndarray'>
>>> features[0].shape
(65,)
```

Note: This class requires matminer and Pymatgen to be installed. NaN feature values are automatically converted to 0 by this featurizer.

```
__init__(data_source: str = 'matminer')

Parameters

- **data_source** *(str of "matminer", "magpie" or "deml" (default "matminer"))* – Source for element property data.

featurize(datapoints: Optional[Iterable[str]] = None, log_every_n: int = 1000, **kwargs) →

numpy.ndarray

Calculate features for crystal compositions.

Parameters

- **datapoints**: Iterable[str] – Iterable sequence of composition strings, e.g. "MoS2".
- **log_every_n**: int, default 1000 – Logging messages reported every log_every_n samples.

Returns

- **features**: A numpy array containing a featurized representation of compositions.

Return type

numpy.ndarray

```

ElemNetFeaturizer

class ElemNetFeaturizer

Fixed size vector of length 86 containing raw fractional elemental compositions in the compound. The 86 chosen elements are based on the original implementation at https://github.com/NU-CUCIS/ElemNet.

Returns a vector containing fractional compositions of each element in the compound.

>>> import deepchem as dc
>>> comp = "Fe2O3"
>>> featurizer = dc.feat.ElemNetFeaturizer()
>>> features = featurizer.featurize([comp])
>>> type(features[0])
<class 'numpy.ndarray'>
>>> features[0].shape
(86,)
>>> round(sum(features[0]))
1

Note: This class requires Pymatgen to be installed.

get_vector(comp: DefaultDict) → Optional[numpy.ndarray]
Converts a dictionary containing element names and corresponding compositional fractions into a vector of fractions.

Parameters comp (collections.defaultdict object) – Dictionary mapping element names to fractional compositions.

Returns fractions – Vector of fractional compositions of each element.

Return type np.ndarray

MaterialStructureFeaturizer

Material Structure Featurizers are those that work with datasets of crystals with periodic boundary conditions. For inorganic crystal structures, these featurizers operate on pymatgen.Structure objects, which include a lattice and 3D coordinates that specify a periodic crystal structure. They should be applied on systems that have periodic boundary conditions. Structure featurizers are not designed to work with molecules.

SineCoulombMatrix

class SineCoulombMatrix(max_atoms: int = 100, flatten: bool = True)
Calculate sine Coulomb matrix for crystals.

A variant of Coulomb matrix for periodic crystals.

The sine Coulomb matrix is identical to the Coulomb matrix, except that the inverse distance function is replaced by the inverse of sin**2 of the vector between sites which are periodic in the dimensions of the crystal lattice.

Features are flattened into a vector of matrix eigenvalues by default for ML-readiness. To ensure that all feature vectors are equal length, the maximum number of atoms (eigenvalues) in the input dataset must be specified.

This featurizer requires the optional dependencies pymatgen and matminer. It may be useful when crystal structures with 3D coordinates are available.

See [1] for more details.
References

Examples

```python
>>> import deepchem as dc
>>> import pymatgen as mg
>>> lattice = mg.core.Lattice.cubic(4.2)
>>> structure = mg.core.Structure(lattice, ["Cs", "Cl"], [[0, 0, 0], [0.5, 0.5, 0.5]])
>>> featurizer = dc.feat.SineCoulombMatrix(max_atoms=2)
>>> features = featurizer.featurize([structure])
>>> type(features[0])
<class 'numpy.ndarray'>
>>> features[0].shape  # (max_atoms,)
(2,)
```

Note: This class requires matminer and Pymatgen to be installed.

```python
___init___(max_atoms: int = 100, flatten: bool = True)

Parameters

- **max_atoms** (int (default 100)) – Maximum number of atoms for any crystal in the dataset. Used to pad the Coulomb matrix.

- **flatten** (bool (default True)) – Return flattened vector of matrix eigenvalues.

`featurize` (datapoints: Optional[Iterable[Union[Dict[str, Any], Any]]] = None, log_every_n: int = 1000, **kwargs) → numpy.ndarray

Calculate features for crystal structures.

Parameters


- **log_every_n** (int, default 1000) – Logging messages reported every log_every_n samples.

Returns features – A numpy array containing a featurized representation of datapoints.

Return type np.ndarray

CGCNNFeaturizer

```python
class CGCNNFeaturizer(radius: float = 8.0, max_neighbors: float = 12, step: float = 0.2)
```

Calculate structure graph features for crystals.

Based on the implementation in Crystal Graph Convolutional Neural Networks (CGCNN). The method constructs a crystal graph representation including atom features and bond features (neighbor distances). Neighbors are determined by searching in a sphere around atoms in the unit cell. A Gaussian filter is applied to neighbor distances. All units are in angstrom.

3.9. Featurizers
This featurizer requires the optional dependency pymatgen. It may be useful when 3D coordinates are available and when using graph network models and crystal graph convolutional networks.

See [1] for more details.

References

Examples

```python
>>> import deepchem as dc
>>> import pymatgen as mg
>>> featurizer = dc.feat.CGCNNFeaturizer()
>>> lattice = mg.core.Lattice.cubic(4.2)
>>> structure = mg.core.Structure(lattice, ["Cs", "Cl"], [[0, 0, 0], [0.5, 0.5, 0.5]])
>>> features = featurizer.featurize([structure])
>>> feature = features[0]
>>> print(type(feature))
<class 'deepchem.feat.graph_data.GraphData'>
```

Note: This class requires Pymatgen to be installed.

```python
__init__(radius: float = 8.0, max_neighbors: float = 12, step: float = 0.2)
```

**Parameters**

- **radius** (float (default 8.0)) – Radius of sphere for finding neighbors of atoms in unit cell.
- **max_neighbors** (int (default 12)) – Maximum number of neighbors to consider when constructing graph.
- **step** (float (default 0.2)) – Step size for Gaussian filter. This value is used when building edge features.

```python
featurize(datapoints: Optional[Iterable[Union[Dict[str, Any], Any]]] = None, log_every_n: int = 1000, **kwargs) -> numpy.ndarray
```

Calculate features for crystal structures.

**Parameters**

- **log_every_n** (int, default 1000) – Logging messages reported every log_every_n samples.

**Returns** features – A numpy array containing a featurized representation of datapoints.

**Return type** np.ndarray
**LCNNFeaturizer**

```python
class LCNNFeaturizer(structure: Any, aos: List[str], pbc: List[bool], ns: int = 1, na: int = 1, cutoff: float = 6.0):
 Calculates the 2-D Surface graph features in 6 different permutations-

 Based on the implementation of Lattice Graph Convolution Neural Network (LCNN). This method produces
 the Atom wise features (One Hot Encoding) and Adjacent neighbour in the specified order of permutations.
 Neighbors are determined by first extracting a site local environment from the primitive cell, and perform graph
 matching and distance matching to find neighbors. First, the template of the Primitive cell needs to be defined
 along with periodic boundary conditions and active and spectator site details. structure(Data Point i.e different
 configuration of adsorbate atoms) is passed for featurization.

 This particular featurization produces a regular-graph (equal number of Neighbors) along with its permutation in
 6 symmetric axis. This transformation can be applied when ordering of neighboring of nodes around a site play
 an important role in the property predictions. Due to consideration of local neighbor environment, this current
 implementation would be fruitful in finding neighbors for calculating formation energy of adsorption tasks
 where the local. Adsorption turns out to be important in many applications such as catalyst and semiconductor
 design.

 The permuted neighbors are calculated using the Primitive cells i.e periodic cells in all the data points are built
 via lattice transformation of the primitive cell.

 Primitive cell Format:
 1. **Pymatgen structure object with site_properties key value**
 - “SiteTypes” mentioning if it is a active site “A1” or spectator site “S1”.
 2. ns , the number of spectator types elements. For “S1” its 1.
 3. na , the number of active types elements. For “A1” its 1.
 4. aos, the different species of active elements “A1”.
 5. pbc, the periodic boundary conditions.

 Data point Structure Format(Configuration of Atoms):
 1. **Pymatgen structure object with site_properties with following key value.**
 - “SiteTypes”, mentioning if it is a active site “A1” or spectator site “S1”.
 - “oss”, different occupational sites. For spectator sites make it -1.

 It is highly recommended that cells of data are directly redefined from the primitive cell, specifically, the relative
 coordinates between sites are consistent so that the lattice is non-deviated.

 References

 Examples

    ```python
    >>> import deepchem as dc
    >>> from pymatgen.core import Structure
    >>> import numpy as np
    >>> PRIMITIVE_CELL = {
    ...     "lattice": [[2.818528, 0.0, 0.0],
    ...                 [-1.409264, 2.440917, 0.0],
    ...                 [0.0, 0.0, 25.508255]],
    ...     "coords": [[0.66667, 0.33333, 0.090221],
    ...                [0.66667, 0.33333, 0.090221],
    ...                [0.66667, 0.33333, 0.090221],
    ...                [0.66667, 0.33333, 0.090221]],
    ```
 (continues on next page)
```
>>>
PRIMITIVE_CELL_INFO = {
    "cutoff": np.around(6.00),
    "structure": Structure(**PRIMITIVE_CELL),
    "aos": [1, 0, 2],
    "pbc": [True, True, False],
    "ns": 1,
    "na": 1
}

>>>
DATA_POINT = {
    "lattice": [[1.409264, -2.440917, 0.0],
                 [4.227792, 2.440917, 0.0],
                 [0.0, 0.0, 23.17559]],
    "coords": [[0.0, 0.0, 0.099299],
                [0.0, 0.33333, 0.198598],
                [0.5, 0.16667, 0.297897],
                [0.0, 0.0, 0.397196],
                [0.0, 0.33333, 0.496495],
                [0.5, 0.5, 0.099299],
                [0.5, 0.83333, 0.198598],
                [0.0, 0.66667, 0.297897],
                [0.5, 0.5, 0.397196],
                [0.5, 0.83333, 0.496495],
                [0.0, 0.66667, 0.54654766],
                [0.5, 0.16667, 0.54654766]],
    "species": ['H', 'H', 'H', 'H', 'H', 'H',
                 'H', 'H', 'H', 'He', 'He'],
    "site_properties": {
        "SiteTypes": ['S1', 'S1', 'S1', 'S1',
                       'S1', 'S1'],
        "oss": [-1, -1, -1, -1, -1, -1],
    }
}

>>> featuriser = dc.feat.LCNNFeaturizer(**PRIMITIVE_CELL_INFO)
>>> print(type(featuriser._featurize(Structure(**DATA_POINT))))
<class 'deepchem.feat.graph_data.GraphData'>
**Notes**

This Class requires pymatgen, networkx, scipy installed.

```python
__init__(structure: Any, aos: List[str], pbc: List[bool], ns: int = 1, na: int = 1, cutoff: float = 6.0)
```

**Parameters**

- **structure** (:py:class:`PymatgenStructure`) – Pymatgen Structure object of the primitive cell used for calculating neighbors from lattice transformations. It also requires site_properties attribute with “Sitetypes” (Active or spectator site).
- **aos** (List[str]) – A list of all the active site species. For the Pt, N, NO configuration set it as ['0', '1', '2']
- **pbc** (List[bool]) – Periodic Boundary Condition
- **ns** (int (default 1)) – The number of spectator types elements. For “S1” its 1.
- **na** (int (default 1)) – the number of active types elements. For “A1” its 1.
- **cutoff** (float (default 6.0)) – Cutoff of radius for getting local environment. Only used down to 2 digits.

```python
featurize(datapoints: Optional[Iterable[Union[Dict[str, Any], Any]]] = None, log_every_n: int = 1000, **kwargs) → numpy.ndarray
```

Calculate features for crystal structures.

**Parameters**

- **log_every_n** (int, default 1000) – Logging messages reported every log_every_n samples.

**Returns** features – A numpy array containing a featurized representation of datapoints.

**Return type** np.ndarray

### 3.9.4 Molecule Tokenizers

A tokenizer is in charge of preparing the inputs for a natural language processing model. For many scientific applications, it is possible to treat inputs as “words”/“sentences” and use NLP methods to make meaningful predictions. For example, SMILES strings or DNA sequences have grammatical structure and can be usefully modeled with NLP techniques. DeepChem provides some scientifically relevant tokenizers for use in different applications. These tokenizers are based on those from the Huggingface transformers library (which DeepChem tokenizers inherit from).

The base classes PreTrainedTokenizer and PreTrainedTokenizerFast implements the common methods for encoding string inputs in model inputs and instantiating/saving python tokenizers either from a local file or directory or from a pretrained tokenizer provided by the library (downloaded from HuggingFace’s AWS S3 repository).

PreTrainedTokenizer (transformers.PreTrainedTokenizer) thus implements the main methods for using all the tokenizers:

- Tokenizing (spliting strings in sub-word token strings), converting tokens strings to ids and back, and encoding/decoding (i.e. tokenizing + convert to integers)
- Adding new tokens to the vocabulary in a way that is independent of the underlying structure (BPE, SentencePiece…)

### 3.9. Featurizers
• Managing special tokens like mask, beginning-of-sentence, etc tokens (adding them, assigning them to attributes in the tokenizer for easy access and making sure they are not split during tokenization)

BatchEncoding holds the output of the tokenizer’s encoding methods (__call__, encode_plus and batch_encode_plus) and is derived from a Python dictionary. When the tokenizer is a pure python tokenizer, this class behave just like a standard python dictionary and hold the various model inputs computed by these methods (input_ids, attention_mask...). For more details on the base tokenizers which the DeepChem tokenizers inherit from, please refer to the following: HuggingFace tokenizers docs

Tokenization methods on string-based corpuses in the life sciences are becoming increasingly popular for NLP-based applications to chemistry and biology. One such example is ChemBERTa, a transformer for molecular property prediction. DeepChem offers a tutorial for utilizing ChemBERTa using an alternate tokenizer, a Byte-Piece Encoder, which can be found here.

**SmilesTokenizer**

The `dc.feat.SmilesTokenizer` module inherits from the BertTokenizer class in transformers. It runs a WordPiece tokenization algorithm over SMILES strings using the tokenisation SMILES regex developed by Schwaller et. al.

The SmilesTokenizer employs an atom-wise tokenization strategy using the following Regex expression:

```regex
SMILES_REGEX_PATTERN = "((\[[^\]]+]|Br?|Cl?|N|O|S|P|F|I|b|c|n|o|s|p|\(|\)|\.|=|#||\+|\\\→|:||@|\?|>|*|\$|\%[0–9]{2}|[0–9])"
```

To use, please install the transformers package using the following pip command:

```
pip install transformers
```

References:

• RXN Mapper: Unsupervised Attention-Guided Atom-Mapping
• Molecular Transformer: Unsupervised Attention-Guided Atom-Mapping

```python
class SmilesTokenizer(vocab_file: str = '', **kwargs)
 Creates the SmilesTokenizer class. The tokenizer heavily inherits from the BertTokenizer implementation found in Huggingface’s transformers library. It runs a WordPiece tokenization algorithm over SMILES strings using the tokenisation SMILES regex developed by Schwaller et. al.

 Please see https://github.com/huggingface/transformers and https://github.com/rxn4chemistry/rxnfp for more details.
```
References

**Note:** This class requires huggingface’s transformers and tokenizers libraries to be installed.

```python
__init__(vocab_file: str = "", **kwargs)

Constructs a SmilesTokenizer.

Parameters

- **vocab_file** (str) – Path to a SMILES character per line vocabulary file. Default vocab file is found in deepchem/feat/tests/data/vocab.txt

property vocab_size

Size of the base vocabulary (without the added tokens).

Type int

```convert_tokens_to_string(tokens: List[str])

Converts a sequence of tokens (string) in a single string.

**Parameters**

- **tokens** (List[str]) – List of tokens for a given string sequence.

**Returns**

- **out_string** – Single string from combined tokens.

**Return type** str

```add_special_tokens_single_sequence(tokens: List[str])

Addsspecialtokenstotheasequenceforsequenceclassificationtasks. A BERT sequence has the following format: [CLS] X [SEP]

Parameters

- **tokens** (List[str]) – List of tokens for a given string sequence.

```add_special_tokens_sequence_pair(token_ids_0: List[Optional[int]],
                                            token_ids_1: List[Optional[int]])

→ List[Optional[int]]

Addsspecialtokenstoasequencepairforsequenceclassificationtasks. A BERT sequence pair has the following format: [CLS] A [SEP] B [SEP]

**Parameters**

- **token_ids_0** (List[int]) – List of ids for the first string sequence in the sequence pair (A).
- **token_ids_1** (List[int]) – List of tokens for the second string sequence in the sequence pair (B).

```add_padding_tokens(token_ids: List[Optional[int]],
 length: int, right: bool = True)

→ List[Optional[int]]

Addspaddingtokenstoreturnasequenceoflength max_length. By default padding tokens are added to the right of the sequence.

Parameters

- **token_ids** (list[optional[int]]) – list of tokenized input ids. Can be obtained using the encode or encode_plus methods.
- **length** (int) – TODO

3.9. Featurizers
• `right (bool, default True) – TODO`

Returns TODO

Return type List[int]

`save_vocabulary (save_directory: str, filename_prefix: Optional[str] = None)`

Save the tokenizer vocabulary to a file.

Parameters vocab_path (obj: str) – The directory in which to save the SMILES character per line vocabulary file. Default vocab file is found in deepchem/feat/tests/data/vocab.txt

Returns vocab_file – Paths to the files saved. tuple with string to a SMILES character per line vocabulary file. Default vocab file is found in deepchem/feat/tests/data/vocab.txt

Return type Tuple

BasicSmilesTokenizer

The `dc.feat.BasicSmilesTokenizer` module uses a regex tokenization pattern to tokenise SMILES strings. The regex is developed by Schwaller et. al. The tokenizer is to be used on SMILES in cases where the user wishes to not rely on the transformers API.

References:

• Molecular Transformer: Unsupervised Attention-Guided Atom-Mapping

class BasicSmilesTokenizer (regex_pattern: str = r'\\[\[\[^\\]\\]+]|Br?|Cl?|N|O|S|P|F|I|b|c|n|o|s|p|\(|\)|\.|=|#|-|\+|\\|\/|:|~|@|\?|>>?|*|\$|\%[0-9]{2}|[0-9]')

Run basic SMILES tokenization using a regex pattern developed by Schwaller et. al. This tokenizer is to be used when a tokenizer that does not require the transformers library by HuggingFace is required.

Examples

```python
>>> from deepchem.feat.smiles_tokenizer import BasicSmilesTokenizer
>>> tokenizer = BasicSmilesTokenizer()
>>> print(tokenizer.tokenize("CC(=O)OC1=CC=CC=C1C(=O)O"))
['C', 'C', '(', '='='', 'O', ')', 'O', 'C', '1', '='='', 'C', 'C', '='='', 'C', 'C', '→', '1', 'C', '(', '='='', 'O', ')', 'O']
```

References

__init__ (regex_pattern: str = r'\\[\[\[^\\]\\]+]|Br?|Cl?|N|O|S|P|F|I|b|c|n|o|s|p|\(|\)|\.|=|#|-|\+|\\|\/|:|~|@|\?|>>?|*|\$|\%[0-9]{2}|[0-9]')

Constructs a BasicSMILESTokenizer.

Parameters regex (str) – SMILES token regex

tokenize (text)

Basic Tokenization of a SMILES.
HuggingFaceFeaturizer

class HuggingFaceFeaturizer(tokenizer: transformers.tokenization_utils_fast.PreTrainedTokenizerFast)

Wrapper class that wraps HuggingFace tokenizers as DeepChem featurizers

The HuggingFaceFeaturizer wrapper provides a wrapper around Hugging Face tokenizers allowing them to be used as DeepChem featurizers. This might be useful in scenarios where user needs to use a hugging face tokenizer when loading a dataset.

Example

```python
>>> from deepchem.feat import HuggingFaceFeaturizer
>>> from transformers import RobertaTokenizerFast

>>> hf_tokenizer = RobertaTokenizerFast.from_pretrained("seyonec/PubChem10M_SMILES_BPE_60k")
>>> featurizer = HuggingFaceFeaturizer(tokenizer=hf_tokenizer)
>>> result = featurizer.featurize(['CC(=O)C'])
```

__init__(tokenizer: transformers.tokenization_utils_fast.PreTrainedTokenizerFast)

Initializes a tokenizer wrapper

Parameters

tokenizer (transformers.tokenization_utils_fast.PreTrainedTokenizerFast) – The tokenizer to use for featurization

featurize(datapoints: Iterable[Any], log_every_n: int = 1000, **kwargs) → numpy.ndarray

Calculate features for datapoints.

Parameters

• datapoints (Iterable[Any]) – A sequence of objects that you’d like to featurize. Subclasses of Featurizer should instantiate the _featurize method that featurizes objects in the sequence.

• log_every_n (int, default 1000) – Logs featurization progress every log_every_n steps.

Returns A numpy array containing a featurized representation of datapoints.

Return type np.ndarray

GroverAtomVocabTokenizer

class GroverAtomVocabTokenizer(fname: str)

Grover Atom Vocabulary Tokenizer

The Grover Atom vocab tokenizer is used for tokenizing an atom using a vocabulary generated by GroverAtomVocabularyBuilder.
Example

```python
>>> import tempfile
>>> import deepchem as dc
>>> from deepchem.feat.vocabulary_builders.grover_vocab import GroverAtomVocabularyBuilder
>>> file = tempfile.NamedTemporaryFile()
>>> dataset = dc.data.NumpyDataset(X=[["CC(=O)C", 'CCC']])
>>> vocab = GroverAtomVocabularyBuilder()
>>> vocab.build(dataset)
>>> vocab.save(file.name)  # build and save the vocabulary
>>> atom_tokenizer = GroverAtomVocabTokenizer(file.name)
>>> mol = Chem.MolFromSmiles('CC(=O)C')
>>> atom_tokenizer.featurize([(mol, mol.GetAtomWithIdx(0))])[0]
2
```

Parameters

- **fname** *(str)* – Filename of vocabulary generated by GroverAtomVocabularyBuilder

__init__ *(fname: str)*

Grover Bond Vocabulary Tokenizer

class GroverBondVocabTokenizer *(fname: str)*

Grover Bond Vocabulary Tokenizer

The Grover Bond vocab tokenizer is used for tokenizing a bond using a vocabulary generated by GroverBondVocabularyBuilder.

Example

```python
>>> import tempfile
>>> import deepchem as dc
>>> from deepchem.feat.vocabulary_builders.grover_vocab import GroverBondVocabularyBuilder
>>> file = tempfile.NamedTemporaryFile()
>>> dataset = dc.data.NumpyDataset(X=[["CC(=O)C", 'CCC']])
>>> vocab = GroverBondVocabularyBuilder()
>>> vocab.build(dataset)
>>> vocab.save(file.name)  # build and save the vocabulary
>>> bond_tokenizer = GroverBondVocabTokenizer(file.name)
>>> mol = Chem.MolFromSmiles('CC(=O)C')
>>> bond_tokenizer.featurize([(mol, mol.GetBondWithIdx(0))])[0]
2
```

Parameters

- **fname** *(str)* – Filename of vocabulary generated by GroverAtomVocabularyBuilder

__init__ *(fname: str)*
3.9.5 Vocabulary Builders

Tokenizers uses a vocabulary to tokenize the datapoint. To build a vocabulary, an algorithm which generates vocabulary from a corpus is required. A corpus is usually a collection of molecules, DNA sequences etc. DeepChem provides the following algorithms to build vocabulary from a corpus. A vocabulary builder is not a featurizer. It is an utility which helps the tokenizers to featurize datapoints.

```python
class GroverAtomVocabularyBuilder(max_size: Optional[int] = None):
    Atom Vocabulary Builder for Grover

    This module can be used to generate atom vocabulary from SMILES strings for the GROVER pretraining task. For each atom in a molecule, the vocabulary context is the node-edge-count of the atom where node is the neighboring atom, edge is the type of bond (single bond or double bound) and count is the number of such node-edge pairs for the atom in its neighborhood. For example, for the molecule ‘CC(=O)C’, the context of the first carbon atom is C-SINGLE1 because its neighbor is C atom, the type of bond is SINGLE bond and the count of such bonds is 1. The context of the second carbon atom is C-SINGLE2 and O-DOUBLE1 because it is connected to two carbon atoms by a single bond and 1 O atom by a double bond. The vocabulary of an atom is then computed as the atom-symbol-contexts where the contexts are sorted in alphabetical order when there are multiple contexts. For example, the vocabulary of second C is C_C-SINGLE2_O-DOUBLE1. The algorithm enumerates vocabulary of all atoms in the dataset and makes a vocabulary to index mapping by sorting the vocabulary by frequency and then alphabetically.

    The algorithm enumerates vocabulary of all atoms in the dataset and makes a vocabulary to index mapping by sorting the vocabulary by frequency and then alphabetically. The max_size parameter can be used for setting the size of the vocabulary. When this parameter is set, the algorithm stops adding new words to the index when the vocabulary size reaches max_size.

    Parameters
    ----------
    max_size (int (optional)) – Maximum size of vocabulary

Example
=======

```python
grover_atom_vocab = GroverAtomVocabularyBuilder()
grover_atom_vocab.build(prev_dataset)
grover_atom_vocab.stoi
{'<pad>': 0, '<other>': 1, 'C_C-SINGLE1': 2, 'C_C-SINGLE2': 3, 'C_C-SINGLE2_O-DOUBLE1': 4, 'O_C-DOUBLE1': 5}
grover_atom_vocab.save(file.name)
loaded_vocab = GroverAtomVocabularyBuilder.load(file.name)
mol = Chem.MolFromSmiles('CC(=O)C')
loaded_vocab.encode(mol, mol.GetAtomWithIdx(1))
4
```

**__init__** (max_size: Optional[int] = None)

**build**(dataset: deepchem.data.datasets.Dataset, log_every_n: int = 1000) → None

Builds vocabulary

Parameters
----------
- **dataset** (dc.data.Dataset) – A dataset object with SMILEs strings in X attribute.
• **log_every_n** *(int, default 1000)* – Logs vocabulary building progress every log_every_n steps.

```python
save(fname: str) → None
```

Saves a vocabulary in json format

- **fname**: str  Filename to save vocabulary

```python
classmethod load(fname: str) → deepchem.feat.vocabulary_builders.grover_vocab.GroverAtomVocabularyBuilder
```

Loads vocabulary from the specified json file

- **fname**: str (str) – JSON file containing vocabulary

```python
static atom_to_vocab(mol: Any, atom: Any) → str
```

Convert atom to vocabulary.

- **mol**: RDKitMol – an molecule object
- **atom**: RDKitAtom – the target atom.

```python
Returns vocab – The generated atom vocabulary with its contexts.
```

- **Return type**: str

```python
Example
```

```python
>>> from rdkit import Chem
>>> mol = Chem.MolFromSmiles('[C@@H](C)C(=O)O')
>>> GroverAtomVocabularyBuilder.atom_to_vocab(mol, mol.GetAtomWithIdx(0))
'C_C-SINGLE2'
>>> GroverAtomVocabularyBuilder.atom_to_vocab(mol, mol.GetAtomWithIdx(3))
'O_C-DOUBLE1'
```

```python
encode(mol: Any, atom: Any) → str
```

Encodes an atom in a molecule

- **mol**: RDKitMol An RDKitMol object
- **atom**: RDKitAtom An atom in the molecule

```python
Returns vocab – The vocabulary of the atom in the molecule.
```

- **Return type**: str

```python
class GroverAtomVocabularyBuilder(max_size: Optional[int] = None)
```

Atom Vocabulary Builder for Grover

This module can be used to generate atom vocabulary from SMILES strings for the GROVER pretraining task. For each atom in a molecule, the vocabulary context is the node-edge-count of the atom where node is the neighboring atom, edge is the type of bond (single bond or double bound) and count is the number of such node-edge pairs for the atom in its neighborhood. For example, for the molecule ‘CC(=O)C’, the context of the first carbon atom is C-SINGLE1 because its neighbor is C atom, the type of bond is SINGLE bond and the count of such bonds is 1. The context of the second carbon atom is C-SINGLE2 and O-DOUBLE1 because it
is connected to two carbon atoms by a single bond and 1 O atom by a double bond. The vocabulary of an atom is then computed as the atom-symbol_contexts where the contexts are sorted in alphabetical order when there are multiple contexts. For example, the vocabulary of second C is C-C-SINGLE2_O-DOUBLE1. The algorithm enumerates vocabulary of all atoms in the dataset and makes a vocabulary to index mapping by sorting the vocabulary by frequency and then alphabetically.

The algorithm enumerates vocabulary of all atoms in the dataset and makes a vocabulary to index mapping by sorting the vocabulary by frequency and then alphabetically. The max_size parameter can be used for setting the size of the vocabulary. When this parameter is set, the algorithm stops adding new words to the index when the vocabulary size reaches max_size.

Parameters max_size (int (optional)) – Maximum size of vocabulary

Example

```python
>>> import tempfile
>>> import deepchem as dc
>>> from rdkit import Chem
>>> file = tempfile.NamedTemporaryFile()
>>> dataset = dc.data.NumpyDataset(X=[[\'CCC\'], [\'CC(=O)C\']])
>>> vocab = GroverAtomVocabularyBuilder()
>>> vocab.build(dataset)
>>> {\'<pad>\': 0, \'<other>\': 1, \'C_C-SINGLE1\': 2, \'C_C-SINGLE2\': 3, \'C_C-SINGLE2_O-\n\rightarrow DOUBLE1\': 4, \'O_C-DOUBLE1\': 5}
>>> vocab.save(file.name)
>>> loaded_vocab = GroverAtomVocabularyBuilder.load(file.name)
>>> mol = Chem.MolFromSmiles(\'CC(=O)C\')
>>> loaded_vocab.encode(mol, mol.GetAtomWithIdx(1))
4
```

__init__(max_size: Optional[int] = None)

build(dataset: deepchem.data.datasets.Dataset, log_every_n: int = 1000) → None

Builds vocabulary

Parameters

- dataset (dc.data.Dataset) – A dataset object with SMILEs strings in X attribute.
- log_every_n (int, default 1000) – Logs vocabulary building progress every log_every_n steps.

save(fname: str) → None

Saves a vocabulary in json format

fname: str Filename to save vocabulary

classmethod load(fname: str) →

depthchem.feat.vocabulary_builders.grover_vocab.GroverAtomVocabularyBuilder

Loads vocabulary from the specified json file

Parameters fname (str) – JSON file containing vocabulary

Returns vocab – A grover atom vocabulary builder which can be used for encoding

Return type GroverAtomVocabularyBuilder

3.9. Featurizers 157
**static atom_to_vocab** *(mol: Any, atom: Any) → str*

Convert atom to vocabulary.

**Parameters**

- `mol` *(RDKitMol)* – an molecule object
- `atom` *(RDKitAtom)* – the target atom.

**Returns** `vocab` – The generated atom vocabulary with its contexts.

**Return type** str

**Example**

```python
>>> from rdkit import Chem
>>> mol = Chem.MolFromSmiles('[C@@H](C)C(=O)O')
>>> GroverAtomVocabularyBuilder.atom_to_vocab(mol, mol.GetAtomWithIdx(0))
'C_C-SINGLE2'
>>> GroverAtomVocabularyBuilder.atom_to_vocab(mol, mol.GetAtomWithIdx(3))
'O_C-DOUBLE1'
```

**encode** *(mol: Any, atom: Any) → str*

Encodes an atom in a molecule

- `mol` *(RDKitMol)* An RDKitMol object
- `atom` *(RDKitAtom)* An atom in the molecule

**Returns** `vocab` – The vocabulary of the atom in the molecule.

**Return type** str

### 3.9.6 Sequence Featurizers

**PFMFeaturizer**

The `dc.feat.PFMFeaturizer` module implements a featurizer for position frequency matrices. This takes in a list of multisequence alignments and returns a list of position frequency matrices.


Encodes a list position frequency matrices for a given list of multiple sequence alignments

The default character set is 25 amino acids. If you want to use a different character set, such as nucleotides, simply pass in a list of character strings in the featurizer constructor.

The `max_length` parameter is the maximum length of the sequences to be featurized. If you want to featurize longer sequences, modify the `max_length` parameter in the featurizer constructor.

The final row in the position frequency matrix is the unknown set, if there are any characters which are not included in the charset.
Examples

```python
>>> from deepchem.feat.sequence_featurizers import PFMFeaturizer
>>> from deepchem.data import NumpyDataset

msa = NumpyDataset(X=[[['ABC', 'BCD'], ['AAA', 'AAB']], [['seq01', 'seq02'], ['seq11', 'seq12']])

seqs = msa.X

featurizer = PFMFeaturizer()

pfm = featurizer.featurize(seqs)

pfm.shape
(2, 26, 100)
```


Initialize featurizer.

Parameters

- **charset** (List[str] (default CHARSET)) – A list of strings, where each string is length 1 and unique.
- **max_length** (int, optional (default 25)) – Maximum length of sequences to be featurized.

3.9.7 Other Featurizers

BertFeaturizer

class BertFeaturizer(tokenizer: transformers.models.bert.tokenization_bert_fast.BertTokenizerFast)

Bert Featurizer.

Bert Featurizer is a wrapper class for HuggingFace's BertTokenizerFast. This class intends to allow users to use the BertTokenizer API while remaining inside the DeepChem ecosystem.

Examples

```python
>>> from deepchem.feat import BertFeaturizer
>>> from transformers import BertTokenizerFast

tokenizer = BertTokenizerFast.from_pretrained("Rostlab/prot_bert", do_lower_case=False)

featurizer = BertFeaturizer(tokenizer)

feats = featurizer.featurize('D L I P [MASK] L V T')
```
Notes

Examples are based on RostLab’s ProtBert documentation.

```python
__init__(tokenizer: transformers.models.bert.tokenization_bert_fast.BertTokenizerFast)
```

```python
featurize(datapoints: Iterable[Any], log_every_n: int = 1000, **kwargs) → numpy.ndarray
```

Calculate features for datapoints.

Parameters

- **datapoints** (Iterable[Any]) – A sequence of objects that you’d like to featurize. Subclasses of Featurizer should instantiate the `_featurize` method that featurizes objects in the sequence.

- **log_every_n** (int, default 1000) – Logs featurization progress every `log_every_n` steps.

Returns

A numpy array containing a featurized representation of `datapoints`.

Return type

np.ndarray

RobertafFeaturizer

class RobertaFeaturizer(**kwargs)

Roberta Featurizer.

The Roberta Featurizer is a wrapper class of the Roberta Tokenizer, which is used by Huggingface’s transformers library for tokenizing large corpuses for Roberta Models. Please confirm the details in [1].


Examples

```python
>>> from deepchem.feat import RobertaFeaturizer

>>> smiles = ["Cn1c(=O)c2c(ncn2C)n(C)c1=O", "CC(=O)N1CN(C(C)=O)C(O)C1O"]

>>> featurizer = RobertaFeaturizer.from_pretrained("seyonec/SMILES_tokenized__PubChem_shard00_160k")

>>> out = featurizer.featurize(smiles, add_special_tokens=True, truncation=True)
```

References

Note: This class requires transformers to be installed. RobertaFeaturizer uses dual inheritance with RobertaTokenizerFast in Huggingface for rapid tokenization, as well as DeepChem’s MolecularFeaturizer class.

```python
__init__(**kwargs)

__len__() → int

Size of the full vocabulary with the added tokens.
```
add_special_tokens(special_tokens_dict: Dict[str, Union[str, tokenizers.AddedToken]], replace_additional_special_tokens=True) → int

Add a dictionary of special tokens (eos, pad, cls, etc.) to the encoder and link them to class attributes. If special tokens are NOT in the vocabulary, they are added to it (indexed starting from the last index of the current vocabulary).

Note, None When adding new tokens to the vocabulary, you should make sure to also resize the token embedding matrix of the model so that its embedding matrix matches the tokenizer.

In order to do that, please use the [~PreTrainedModel.resize_token_embeddings] method.

Using add_special_tokens will ensure your special tokens can be used in several ways:

- Special tokens are carefully handled by the tokenizer (they are never split).
- You can easily refer to special tokens using tokenizer class attributes like tokenizer.cls_token. This makes it easy to develop model-agnostic training and fine-tuning scripts.

When possible, special tokens are already registered for provided pretrained models (for instance [BertTokenizer] cls_token is already registered to be :obj*:"[CLS]"* and XLM’s one is also registered to be ‘</s>‘).

Parameters

- special_tokens_dict (dictionary str to str or tokenizers.AddedToken) – Keys should be in the list of predefined special attributes: [bos_token, eos_token, unk_token, sep_token, pad_token, cls_token, mask_token, additional_special_tokens].

  Tokens are only added if they are not already in the vocabulary (tested by checking if the tokenizer assign the index of the unk_token to them).

- replace_additional_special_tokens (bool, optional, defaults to True) – If True, the existing list of additional special tokens will be replaced by the one specified in special_tokens_dict. Otherwise, self._additional_special_tokens is updated. In the former case, the tokens will NOT be removed from the tokenizer’s full vocabulary - they are only being flagged as non-special tokens.

Returns Number of tokens added to the vocabulary.

Return type int

Examples:

```python
Let’s see how to add a new classification token to GPT-2 tokenizer = GPT2Tokenizer.from_pretrained(“gpt2”) model = GPT2Model.from_pretrained(“gpt2”) special_tokens_dict = {“cls_token”: “<CLS>”}
num_added_toks = tokenizer.add_special_tokens(special_tokens_dict) print(“We have added”, num_added_toks, “tokens”) # Notice: resize_token_embeddings expect to receive the full size of the new vocabulary, i.e., the length of the tokenizer. model.resize_token_embeddings(len(tokenizer))
assert tokenizer.cls_token == “<CLS>”
```


Add a list of new tokens to the tokenizer class. If the new tokens are not in the vocabulary, they are added to it with indices starting from length of the current vocabulary and and will be isolated before the tokenization algorithm is applied. Added tokens and tokens from the vocabulary of the tokenization algorithm are therefore not treated in the same way.

Note, when adding new tokens to the vocabulary, you should make sure to also resize the token embedding matrix of the model so that its embedding matrix matches the tokenizer.
In order to do that, please use the `~PreTrainedModel.resize_token_embeddings` method.

**Parameters**

- **new_tokens** *(str, tokenizers.AddedToken or a list of str or tokenizers.AddedToken)* – Tokens are only added if they are not already in the vocabulary. `tokenizers.AddedToken` wraps a string token to let you personalize its behavior: whether this token should only match against a single word, whether this token should strip all potential whitespaces on the left side, whether this token should strip all potential whitespaces on the right side, etc.

- **special_tokens** *(bool, optional, defaults to False)* – Can be used to specify if the token is a special token. This mostly change the normalization behavior (special tokens like CLS or `[MASK]` are usually not lower-cased for instance).

See details for `tokenizers.AddedToken` in HuggingFace tokenizers library.

**Returns**

Number of tokens added to the vocabulary.

**Return type**

`int`

**Examples:**

```python
Let's see how to increase the vocabulary of Bert model and tokenizer tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased") model = BertModel.from_pretrained("bert-base-uncased")

num_added_toks = tokenizer.add_tokens(['new_tok1', 'my_new-tok2'])
print("We have added", num_added_toks, "tokens")

Notice: resize_token_embeddings expect to receive the full size of the new vocabulary, i.e., the length of the tokenizer. model.resize_token_embeddings(len(tokenizer))
```

**property additional_special_tokens: List[str]**

All the additional special tokens you may want to use. Log an error if used while not having been set.

**Type**

`List[str]`

**property additional_special_tokens_ids: List[int]**

Ids of all the additional special tokens in the vocabulary. Log an error if used while not having been set.

**Type**

`List[int]`

**property all_special_ids: List[int]**

List the ids of the special tokens(`<unk>`, `<cls>`, etc.) mapped to class attributes.

**Type**

`List[int]`

**property all_special_tokens: List[str]**

All the special tokens (`<unk>`, `<cls>`, etc.) mapped to class attributes.

Convert tokens of `tokenizers.AddedToken` type to string.

**Type**

`List[str]`

**property all_special_tokens_extended: List[Union[str, tokenizers.AddedToken]]**

All the special tokens (`<unk>`, `<cls>`, etc.) mapped to class attributes.

Don’t convert tokens of `tokenizers.AddedToken` type to string so they can be used to control more finely how special tokens are tokenized.

**Type**

`List[Union[str, tokenizers.AddedToken]]`

**as_target_tokenizer()**

Temporarily sets the tokenizer for encoding the targets. Useful for tokenizer associated to sequence-to-sequence models that need a slightly different processing for the labels.
property backend_tokenizer: tokenizers.Tokenizer

The Rust tokenizer used as a backend.

Type tokenizers.implementations.BaseTokenizer

batch_decode(sequences: Union[List[int], List[List[int]], np.ndarray, torch.Tensor, tf.Tensor],
              skip_special_tokens: bool = False, clean_up_tokenization_spaces: bool = None, **kwargs)

→ List[str]

Convert a list of lists of token ids into a list of strings by calling decode.

Parameters

- **sequences**  (Union[List[int], List[List[int]], np.ndarray, torch.Tensor, tf.Tensor]) – List of tokenized input ids. Can be obtained using the __call__ method.

- **skip_special_tokens**  (bool, optional, defaults to False) – Whether or not to remove special tokens in the decoding.

- **clean_up_tokenization_spaces**  (bool, optional) – Whether or not to clean up the tokenization spaces. If None, will default to self.clean_up_tokenization_spaces.

- **kwargs**  (additional keyword arguments, optional) – Will be passed to the underlying model specific decode method.

Returns The list of decoded sentences.

Return type List[str]

batch_encode_plus(batch_text_or_text_pairs: Union[List[str], List[Tuple[str, str]], List[List[str]], List[Tuple[List[str], List[str]]], List[List[int]]],

→ transformers.tokenization_utils_base.BatchEncoding

Tokenize and prepare for the model a list of sequences or a list of pairs of sequences.

<Tip warning={true}>
This method is deprecated, __call__ should be used instead.
</Tip>

Parameters

- **batch_text_or_text_pairs**  (List[str], List[Tuple[str, str]], List[List[str]], List[Tuple[List[str], List[str]]], and for not-fast tokenizers, also List[List[int]], List[Tuple[List[int], List[int]]] – Batch of sequences or pair of sequences to be encoded. This can be a list of string/string-sequences/int-sequences or a list of pair of string/string-sequences/int-sequence (see details in encode_plus).

- **add_special_tokens**  (bool, optional, defaults to True) – Whether or not to encode the sequences with the special tokens relative to their model.

- **padding**  (bool, str or ~utils.PaddingStrategy, optional, defaults to False) – Activates and controls padding. Accepts the following values:
- True or 'longest': Pad to the longest sequence in the batch (or no padding if only a single sequence if provided).
- 'max_length': Pad to a maximum length specified with the argument max_length or to the maximum acceptable input length for the model if that argument is not provided.
- False or 'do_not_pad' (default): No padding (i.e., can output a batch with sequences of different lengths).

- **truncation** (bool, str or [-tokenization_utils_base.TruncationStrategy], optional, defaults to False) – Activates and controls truncation. Accepts the following values:
  - True or 'longest_first': Truncate to a maximum length specified with the argument max_length or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided.
  - 'only_first': Truncate to a maximum length specified with the argument max_length or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
  - 'only_second': Truncate to a maximum length specified with the argument max_length or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
  - False or 'do_not_truncate' (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size).

- **max_length** (int, optional) – Controls the maximum length to use by one of the truncation/padding parameters.
  If left unset or set to None, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated.

- **stride** (int, optional, defaults to 0) – If set to a number along with max_length, the overflowing tokens returned when return_overflowing_tokens=True will contain some tokens from the end of the truncated sequence returned to provide some overlap between truncated and overflowing sequences. The value of this argument defines the number of overlapping tokens.

- **is_split_into_words** (bool, optional, defaults to False) – Whether or not the input is already pre-tokenized (e.g., split into words). If set to True, the tokenizer assumes the input is already split into words (for instance, by splitting it on whitespace) which it will tokenize. This is useful for NER or token classification.

- **pad_to_multiple_of** (int, optional) – If set will pad the sequence to a multiple of the provided value. Requires padding to be activated. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta).

- **return_tensors** (str or [-utils.TensorType], optional) – If set, will return tensors instead of list of python integers. Acceptable values are:
  - 'tf': Return TensorFlow tf.constant objects.
  - 'np': Return Numpy np.ndarray objects.
• **return_token_type_ids** *(bool, optional)* – Whether to return token type IDs. If left to the default, will return the token type IDs according to the specific tokenizer’s default, defined by the `return_outputs` attribute.

[What are token type IDs?](../glossary#token-type-ids)

• **return_attention_mask** *(bool, optional)* – Whether to return the attention mask. If left to the default, will return the attention mask according to the specific tokenizer’s default, defined by the `return_outputs` attribute.

[What are attention masks?](../glossary#attention-mask)

• **return_overfloaing_tokens** *(bool, optional, defaults to False)* – Whether or not to return overflowing token sequences. If a pair of sequences of input ids (or a batch of pairs) is provided with `truncation_strategy = longest_first` or `True`, an error is raised instead of returning overflowing tokens.

• **return_special_tokens_mask** *(bool, optional, defaults to False)* – Whether or not to return special tokens mask information.

• **return_offsets_mapping** *(bool, optional, defaults to False)* – Whether or not to return *(char_start, char_end)* for each token.

This is only available on fast tokenizers inheriting from `[PreTrainedTokenizerFast]`, if using Python’s tokenizer, this method will raise `NotImplementedError`.

• **return_length** *(bool, optional, defaults to False)* – Whether or not to return the lengths of the encoded inputs.

• **verbose** *(bool, optional, defaults to True)* – Whether or not to print more information and warnings.

• ****kwargs** – passed to the `self.tokenize()` method

**Returns**

A `[BatchEncoding]` with the following fields:

• **input_ids** – List of token ids to be fed to a model.

[What are input IDs?](../glossary#input-ids)

• **token_type_ids** – List of token type ids to be fed to a model (when `return_token_type_ids=True` or if “token_type_ids” is in `self.model_input_names`).

[What are token type IDs?](../glossary#token-type-ids)

• **attention_mask** – List of indices specifying which tokens should be attended to by the model (when `return_attention_mask=True` or if “attention_mask” is in `self.model_input_names`).

[What are attention masks?](../glossary#attention-mask)

• **overflowing_tokens** – List of overflowing tokens sequences (when a `max_length` is specified and `return_overfloaing_tokens=True`).

• **num_truncated_tokens** – Number of tokens truncated (when a `max_length` is specified and `return_overfloaing_tokens=True`).

• **special_tokens_mask** – List of 0s and 1s, with 1 specifying added special tokens and 0 specifying regular sequence tokens (when `add_special_tokens=True` and `return_special_tokens_mask=True`).

• **length** – The length of the inputs (when `return_length=True`)
Return type [BatchEncoding]

property bos_token: str
    Beginning of sentence token. Log an error if used while not having been set.
    Type str

property bos_token_id: Optional[int]
    Id of the beginning of sentence token in the vocabulary. Returns None if the token has not been set.
    Type Optional[int]

build_inputs_with_special_tokens(token_ids_0, token_ids_1=None)
    Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating
    and adding special tokens.
    This implementation does not add special tokens and this method should be overridden in a subclass.

    Parameters
    • token_ids_0 (List[int]) – The first tokenized sequence.
    • token_ids_1 (List[int], optional) – The second tokenized sequence.

    Returns The model input with special tokens.
    Return type List[int]

static clean_up_tokenization(out_string: str) → str
    Clean up a list of simple English tokenization artifacts like spaces before punctuations and abbreviated
    forms.

    Parameters out_string (str) – The text to clean up.

    Returns The cleaned-up string.
    Return type str

property cls_token: str
    Classification token, to extract a summary of an input sequence leveraging self-attention along the full depth
    of the model. Log an error if used while not having been set.
    Type str

property cls_token_id: Optional[int]
    Id of the classification token in the vocabulary, to extract a summary of an input sequence leveraging self-
    attention along the full depth of the model.
    Returns None if the token has not been set.
    Type Optional[int]

convert_ids_to_tokens(ids: Union[int, List[int]], skip_special_tokens: bool = False) → Union[str,
    List[str]]
    Converts a single index or a sequence of indices in a token or a sequence of tokens, using the vocabulary
    and added tokens.

    Parameters
    • ids (int or List[int]) – The token id (or token ids) to convert to tokens.
    • skip_special_tokens (bool, optional, defaults to False) – Whether or not to remove
        special tokens in the decoding.

    Returns The decoded token(s).
Return type  str or List[str]

\text{convert\_tokens\_to\_ids}(\text{tokens}: \text{Union}[\text{str}, \text{List}[\text{str}]] \rightarrow \text{Union}[\text{int}, \text{List}[\text{int}]]

Converts a token string (or a sequence of tokens) in a single integer id (or a sequence of ids), using the vocabulary.

\textbf{Parameters}  \text{tokens} (\text{str} or \text{List}[\text{str}]) – One or several token(s) to convert to token id(s).

\textbf{Returns}  The token id or list of token ids.

Return type  int or List[int]

\text{convert\_tokens\_to\_string}(\text{tokens}: \text{List}[\text{str}] \rightarrow \text{str}

Converts a sequence of tokens in a single string. The most simple way to do it is ” \text{.join(tokens)}” but we often want to remove sub-word tokenization artifacts at the same time.

\textbf{Parameters}  \text{tokens} (\text{List}[\text{str}]) – The token to join in a string.

\textbf{Returns}  The joined tokens.

Return type  str

\text{create\_token\_type\_ids\_from\_sequences}(\text{token\_ids\_0}: \text{List}[\text{int}], \text{token\_ids\_1}: \text{Optional}[\text{List}[\text{int}]] = \text{None}) \rightarrow \text{List}[\text{int}]

Create a mask from the two sequences passed to be used in a sequence-pair classification task. RoBERTa does not make use of token type ids, therefore a list of zeros is returned.

\textbf{Parameters}

• \text{token\_ids\_0} (\text{List}[\text{int}]) – List of IDs.

• \text{token\_ids\_1} (\text{List}[\text{int}], \text{optional}) – Optional second list of IDs for sequence pairs.

\textbf{Returns}  List of zeros.

Return type  \text{List}[\text{int}]

\text{decode}(\text{token\_ids}: \text{Union}[\text{int}, \text{List}[\text{int}], \text{np.ndarray}, \text{torch.Tensor}, \text{tf.Tensor}], \text{skip\_special\_tokens}: \text{bool} = \text{False}, \text{clean\_up\_tokenization\_spaces}: \text{bool} = \text{None}, **\text{kwargs}) \rightarrow \text{str}

Converts a sequence of ids in a string, using the tokenizer and vocabulary with options to remove special tokens and clean up tokenization spaces.

Similar to doing \text{self.convert\_tokens\_to\_string(self.convert\_ids\_to\_tokens(token\_ids))}.

\textbf{Parameters}

• \text{token\_ids} (\text{Union}[\text{int}, \text{List}[\text{int}], \text{np.ndarray}, \text{torch.Tensor}, \text{tf.Tensor}]) – List of tokenized input ids. Can be obtained using the \_\_call\_\_ method.

• \text{skip\_special\_tokens} (\text{bool}, \text{optional}, \text{defaults} to \text{False}) – Whether or not to remove special tokens in the decoding.

• \text{clean\_up\_tokenization\_spaces} (\text{bool}, \text{optional}) – Whether or not to clean up the tokenization spaces. If \text{None}, will default to \text{self.clean\_up\_tokenization\_spaces}.

• \text{kwargs} (\text{additional} keyword arguments, \text{optional}) – Will be passed to the underlying model specific decode method.

\textbf{Returns}  The decoded sentence.

Return type  str
property decoder: `tokenizers.decoders.Decoder`

The Rust decoder for this tokenizer.

**Type** `tokenizers.decoders.Decoder`

**encode**

```python
def encode(
 text: Union[str, List[str], List[int]],
 text_pair: Optional[Union[str, List[str], List[int]]] = None,
 add_special_tokens: bool = True,
 padding: Union[bool, str, transformers.utils.generic.PaddingStrategy] = False,
 truncation: Optional[Union[bool, str, transformers.tokenization_utils_base.TruncationStrategy]] = None,
 max_length: Optional[int] = None,
 stride: int = 0,
 return_tensors: Optional[Union[str, transformers.utils.generic.TensorType]] = None,
 **kwargs)
 -> List[int]
```

Converts a string to a sequence of ids (integer), using the tokenizer and vocabulary.

Same as doing `self.convert_tokens_to_ids(self.tokenize(text))`.

**Parameters**

- **text** (`str`, `List[str]` or `List[int]`) – The first sequence to be encoded. This can be a string, a list of strings (tokenized string using the `tokenize` method) or a list of integers (tokenized string ids using the `convert_tokens_to_ids` method).
- **text_pair** (`str`, `List[str]` or `List[int]`, optional) – Optional second sequence to be encoded. This can be a string, a list of strings (tokenized string using the `tokenize` method) or a list of integers (tokenized string ids using the `convert_tokens_to_ids` method).
- **add_special_tokens** (`bool`, optional, defaults to `True`) – Whether or not to encode the sequences with the special tokens relative to their model.
- **padding** (`bool`, `str` or `~utils.PaddingStrategy`, optional, defaults to `False`) – Activates and controls padding. Accepts the following values:
  - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided).
  - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided.
  - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths).
- **truncation** (`bool`, `str` or `~tokenization_utils_base.TruncationStrategy`, optional, defaults to `False`) – Activates and controls truncation. Accepts the following values:
  - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided.
  - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
  - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
  - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size).
The tokenized ids of the text.

Return type  List[int], torch.Tensor or tf.Tensor or np.ndarray

3.9. Featurizers 169
**text_pair** *(str, List[str] or List[int], optional)* – Optional second sequence to be encoded. This can be a string, a list of strings (tokenized string using the `tokenize` method) or a list of integers (tokenized string ids using the `convert_tokens_to_ids` method).

**add_special_tokens** *(bool, optional, defaults to True)* – Whether or not to encode the sequences with the special tokens relative to their model.

**padding** *(bool, str or ~utils.PaddingStrategy, optional, defaults to False)* – Activates and controls padding. Accepts the following values:
- **True** or **‘longest’**: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided).
- **‘max_length’**: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided.
- **False** or **‘do_not_pad’** (default): No padding (i.e., can output a batch with sequences of different lengths).

**truncation** *(bool, str or ~tokenization_utils_base.TruncationStrategy, optional, defaults to False)* – Activates and controls truncation. Accepts the following values:
- **True** or **‘longest_first’**: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided.
- **‘only_first’**: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- **‘only_second’**: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- **False** or **‘do_not_truncate’** (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size).

**max_length** *(int, optional)* – Controls the maximum length to use by one of the truncation/padding parameters.

If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated.

**stride** *(int, optional, defaults to 0)* – If set to a number along with `max_length`, the overflowing tokens returned when `return_overlapping_tokens=True` will contain some tokens from the end of the truncated sequence returned to provide some overlap between truncated and overflowing sequences. The value of this argument defines the number of overlapping tokens.

**is_split_into_words** *(bool, optional, defaults to False)* – Whether or not the input is already pre-tokenized (e.g., split into words). If set to True, the tokenizer assumes the input is already split into words (for instance, by splitting it on whitespace) which it will tokenize. This is useful for NER or token classification.

**pad_to_multiple_of** *(int, optional)* – If set will pad the sequence to a multiple of the provided value. Requires `padding` to be activated. This is especially useful to enable the
use of Tensor Cores on NVIDIA hardware with compute capability $\geq 7.5$ (Volta).

- **return_tensors** *(str or [-utils.TensorType], optional)* – If set, will return tensors instead of list of python integers. Acceptable values are:
  - ‘tf’: Return TensorFlow *tf.constant* objects.
  - ‘np’: Return Numpy *np.ndarray* objects.

- **return_token_type_ids** *(bool, optional)* – Whether to return token type IDs. If left to the default, will return the token type IDs according to the specific tokenizer’s default, defined by the *return_outputs* attribute.

  [What are token type IDs?](../glossary#token-type-ids)

- **return_attention_mask** *(bool, optional)* – Whether to return the attention mask. If left to the default, will return the attention mask according to the specific tokenizer’s default, defined by the *return_outputs* attribute.

  [What are attention masks?](../glossary#attention-mask)

- **return_overlapping_tokens** *(bool, optional, defaults to False)* – Whether or not to return overflowing token sequences. If a pair of sequences of input ids (or a batch of pairs) is provided with *truncation_strategy = longest_first* or *True*, an error is raised instead of returning overflowing tokens.

- **return_special_tokens_mask** *(bool, optional, defaults to False)* – Whether or not to return special tokens mask information.

- **return_offsets_mapping** *(bool, optional, defaults to False)* – Whether or not to return *(char_start, char_end)* for each token.

  This is only available on fast tokenizers inheriting from [PreTrainedTokenizerFast], if using Python’s tokenizer, this method will raise *NotImplementedError*.

- **return_length** *(bool, optional, defaults to False)* – Whether or not to return the lengths of the encoded inputs.

- **verbose** *(bool, optional, defaults to True)* – Whether or not to print more information and warnings.

- ****kwargs** – passed to the *self.tokenize()* method

**Returns**

A [BatchEncoding] with the following fields:

- **input_ids** – List of token ids to be fed to a model.

  [What are input IDs?](../glossary#input-ids)

- **token_type_ids** – List of token type ids to be fed to a model (when *return_token_type_ids=True* or if “token_type_ids” is in *self.model_input_names*).

  [What are token type IDs?](../glossary#token-type-ids)

- **attention_mask** – List of indices specifying which tokens should be attended to by the model (when *return_attention_mask=True* or if “attention_mask” is in *self.model_input_names*).

  [What are attention masks?](../glossary#attention-mask)

- **overflowing_tokens** – List of overflowing tokens sequences (when a *max_length* is specified and *return_overlapping_tokens=True*).

3.9. Featurizers
- num_truncated_tokens – Number of tokens truncated (when a max_length is specified and return Overflowing_tokens=True).

- special_tokens_mask – List of 0s and 1s, with 1 specifying added special tokens and 0 specifying regular sequence tokens (when add_special_tokens=True and return_special_tokens_mask=True).

- length – The length of the inputs (when return_length=True)

Return type [BatchEncoding]

property eos_token: str
End of sentence token. Log an error if used while not having been set.

Type str

property eos_token_id: Optional[int]
Id of the end of sentence token in the vocabulary. Returns None if the token has not been set.

Type Optional[int]

featurize(datapoints: Iterable[Any], log_every_n: int = 1000, **kwargs) → numpy.ndarray
Calculate features for datapoints.

Parameters

- datapoints (Iterable[Any]) – A sequence of objects that you'd like to featurize. Subclasses of Featurizer should instantiate the _featurize method that featurizes objects in the sequence.

- log_every_n (int, default 1000) – Logs featurization progress every log_every_n steps.

Returns A numpy array containing a featurized representation of datapoints.

Return type np.ndarray

classmethod from_pretrained(pretrained_model_name_or_path: Union[str, os.PathLike], *init_inputs, cache_dir: Optional[Union[str, os.PathLike]] = None, force_download: bool = False, local_files_only: bool = False, token: Optional[Union[bool, str]] = None, revision: str = 'main', **kwargs)
Instantiates a [~tokenization_utils_base.PreTrainedTokenizerBase](PreTrainedTokenizerBase) (or a derived class) from a predefined tokenizer.

Parameters

- pretrained_model_name_or_path (str or os.PathLike) – Can be either:
  - A string, the model id of a predefined tokenizer hosted inside a model repo on huggingface.co. Valid model ids can be located at the root-level, like bert-base-uncased, or namespaced under a user or organization name, like dbmdz/bert-base-german-cased.
  - A path to a directory containing vocabulary files required by the tokenizer, for instance saved using the [~tokenization_utils_base.PreTrainedTokenizerBase.save_pretrained] method, e.g., /my_model_directory/.
  - (Deprecated, not applicable to all derived classes) A path or url to a single saved vocabulary file (if and only if the tokenizer only requires a single vocabulary file like Bert or XLNet), e.g., /my_model_directory/vocab.txt.

- cache_dir (str or os.PathLike, optional) – Path to a directory in which a downloaded predefined tokenizer vocabulary files should be cached if the standard cache should not be used.
• **force_download** (bool, optional, defaults to False) – Whether or not to force the (re-)download the vocabulary files and override the cached versions if they exist.

• **resume_download** (bool, optional, defaults to False) – Whether or not to delete incompletely received files. Attempt to resume the download if such a file exists.

• **proxies** (Dict[str, str], optional) – A dictionary of proxy servers to use by protocol or endpoint, e.g., {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request.

• **token** (str or bool, optional) – The token to use as HTTP bearer authorization for remote files. If True, will use the token generated when running huggingface-cli login (stored in ~/.huggingface).

• **local_files_only** (bool, optional, defaults to False) – Whether or not to only rely on local files and not to attempt to download any files.

• **revision** (str, optional, defaults to “main”) – The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, so revision can be any identifier allowed by git.

• **subfolder** (str, optional) – In case the relevant files are located inside a subfolder of the model repo on huggingface.co (e.g. for facebook/rag-token-base), specify it here.

• **inputs** (additional positional arguments, optional) – Will be passed along to the Tokenizer __init__ method.

• **kwargs** (additional keyword arguments, optional) – Will be passed to the Tokenizer __init__ method. Can be used to set special tokens like bos_token, eos_token, unk_token, sep_token, pad_token, cls_token, mask_token, additional_special_tokens. See parameters in the __init__ for more details.

<Tip>
Passing use_auth_token=True is required when you want to use a private model.
</Tip>

Examples:

```python
We can’t instantiate directly the base class PreTrainedTokenizerBase so let’s show our examples on a derived class: BertTokenizer

Download vocabulary from huggingface.co and cache. tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")

Download vocabulary from huggingface.co (user-uploaded) and cache. tokenizer = BertTokenizer.from_pretrained("dbmdz/bert-base-german-cased")

If vocabulary files are in a directory (e.g. the tokenizer was saved using save_pretrained(’/test/saved_model/')) tokenizer = BertTokenizer.from_pretrained("/test/saved_model/")

If the tokenizer uses a single vocabulary file, you can point directly to this file tokenizer = BertTokenizer.from_pretrained("/test/saved_model/my_vocab.txt")

You can link tokens to special vocabulary when instantiating tokenizer = BertTokenizer.from_pretrained("bert-base-uncased", unk_token="<unk>") # You should be sure ‘<unk>’ is in the vocabulary when doing that. # Otherwise use tokenizer.add_special_tokens({'unk_token': ‘<unk>‘}) instead) assert tokenizer.unk_token == “<unk>”

get_added_vocab() → Dict[str, int]

Returns the added tokens in the vocabulary as a dictionary of token to index.

Returns The added tokens.

3.9. Featurizers
Get special tokens mask

```python
def get_special_tokens_mask(token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False) -> List[int]
```

Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods.

Parameters

- `token_ids_0` (List[int]) – List of ids of the first sequence.
- `token_ids_1` (List[int], optional) – List of ids of the second sequence.
- `already_has_special_tokens` (bool, optional, defaults to False) – Whether or not the token list is already formatted with special tokens for the model.

Returns

1 for a special token, 0 for a sequence token.

Return type

A list of integers in the range [0, 1]

Get vocab

```python
def get_vocab() -> Dict[str, int]
```

Returns the vocabulary as a dictionary of token to index.

`tokenizer.get_vocab()[token]` is equivalent to `tokenizer.convert_tokens_to_ids(token)` when `token` is in the vocab.

Returns

The vocabulary.

Return type

`Dict[str, int]`

Property mask token

```python
property mask_token: str
```

Mask token, to use when training a model with masked-language modeling. Log an error if used while not having been set.

Roberta tokenizer has a special mask token to be usable in the fill-mask pipeline. The mask token will greedily comprise the space before the `<mask>`.

Type

str

Property mask token id

```python
property mask_token_id: Optional[int]
```

Id of the mask token in the vocabulary, used when training a model with masked-language modeling. Returns `None` if the token has not been set.

Type

Optional[int]

Property max len sentences pair

```python
property max_len_sentences_pair: int
```

The maximum combined length of a pair of sentences that can be fed to the model.

Type

int

Property max len single sentence

```python
property max_len_single_sentence: int
```

The maximum length of a sentence that can be fed to the model.

Type

int

Num special tokens to add

```python
def num_special_tokens_to_add(pair: bool = False) -> int
```

Returns the number of added tokens when encoding a sequence with special tokens.

<Tip>

This encodes a dummy input and checks the number of added tokens, and is therefore not efficient. Do not put this inside your training loop.

</Tip>
Parameters **pair** *(bool, optional, defaults to False)* – Whether the number of added tokens should be computed in the case of a sequence pair or a single sequence.

Returns Number of special tokens added to sequences.

Return type *int*

Pad a single encoded input or a batch of encoded inputs up to predefined length or to the max sequence length in the batch.

Padding side (left/right) padding token ids are defined at the tokenizer level (with `self.padding_side`, `self.pad_token_id` and `self.pad_token_type_id`).

Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the text followed by a call to the `pad` method to get a padded encoding.

<Tip>
If the `encoded_inputs` passed are dictionary of numpy arrays, PyTorch tensors or TensorFlow tensors, the result will use the same type unless you provide a different tensor type with `return_tensors`. In the case of PyTorch tensors, you will lose the specific device of your tensors however.

</Tip>

Parameters

- **encoded_inputs** *(BatchEncoding, list of BatchEncoding, Dict[str, List[int]], Dict[str, List[List[int]]] or List[Dict[str, List[int]]]) – Tokenized inputs. Can represent one input ([BatchEncoding] or Dict[str, List[int]]) or a batch of tokenized inputs (list of [BatchEncoding], Dict[str, List[List[int]]]) so you can use this method during preprocessing as well as in a PyTorch Dataloader collate function.

Instead of List[int] you can have tensors (numpy arrays, PyTorch tensors or TensorFlow tensors), see the note above for the return type.

- **padding** *(bool, str or ~utils.PaddingStrategy), optional, defaults to True)* –

Select a strategy to pad the returned sequences (according to the model’s padding side and padding index) among:

- **True** or **‘longest’**: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided).

- **‘max_length’**: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided.

- **False** or **‘do_not_pad’** (default): No padding (i.e., can output a batch with sequences of different lengths).

- **max_length** *(int, optional)* – Maximum length of the returned list and optionally padding length (see above).

- **pad_to_multiple_of** *(int, optional)* – If set will pad the sequence to a multiple of the provided value.
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability \(\geq 7.5 \) (Volta).

- **return_attention_mask** (bool, optional) – Whether to return the attention mask. If left to the default, will return the attention mask according to the specific tokenizer’s default, defined by the `return_outputs` attribute.

 [What are attention masks?](../glossary#attention-mask)

- **return_tensors** (str or \[-utils.TensorType\], optional) – If set, will return tensors instead of list of python integers. Acceptable values are:
 - ‘tf’: Return TensorFlow `tf.constant` objects.
 - ‘np’: Return Numpy `np.ndarray` objects.

- **verbose** (bool, optional, defaults to `True`) – Whether or not to print more information and warnings.

property pad_token: str

Padding token. Log an error if used while not having been set.

 Type str

property pad_token_id: Optional[int]

Id of the padding token in the vocabulary. Returns `None` if the token has not been set.

 Type Optional[int]

property pad_token_type_id: int

Id of the padding token type in the vocabulary.

 Type int

Prepares a sequence of input id, or a pair of sequences of inputs ids so that it can be used by the model. It adds special tokens, truncates sequences if overflowing while taking into account the special tokens and manages a moving window (with user defined stride) for overflowing tokens. Please Note, for `pair_ids` different than `None` and `truncation_strategy = longest_first or True`, it is not possible to return overflowing tokens. Such a combination of arguments will raise an error.

Parameters

- **ids** (List[int]) – Tokenized input ids of the first sequence. Can be obtained from a string by chaining the `tokenize` and `convert_tokens_to_ids` methods.

- **pair_ids** (List[int], optional) – Tokenized input ids of the second sequence. Can be obtained from a string by chaining the `tokenize` and `convert_tokens_to_ids` methods.
• **add_special_tokens** (bool, optional, defaults to True) – Whether or not to encode the sequences with the special tokens relative to their model.

• **padding** (bool, str or [-utils.PaddingStrategy], optional, defaults to False) – Activates and controls padding. Accepts the following values:
 - True or ‘longest’: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided).
 - ‘max_length’: Pad to a maximum length specified with the argument max_length or to the maximum acceptable input length for the model if that argument is not provided.
 - False or ‘do_not_pad’ (default): No padding (i.e., can output a batch with sequences of different lengths).

• **truncation** (bool, str or [-tokenization_utils_base.TruncationStrategy], optional, defaults to False) – Activates and controls truncation. Accepts the following values:
 - True or ‘longest_first’: Truncate to a maximum length specified with the argument max_length or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided.
 - ‘only_first’: Truncate to a maximum length specified with the argument max_length or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
 - ‘only_second’: Truncate to a maximum length specified with the argument max_length or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
 - False or ‘do_not_truncate’ (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size).

• **max_length** (int, optional) – Controls the maximum length to use by one of the truncation/padding parameters.

 If left unset or set to None, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated.

• **stride** (int, optional, defaults to 0) – If set to a number along with max_length, the overflowing tokens returned when return_overlapping_tokens=True will contain some tokens from the end of the truncated sequence returned to provide some overlap between truncated and overflowing sequences. The value of this argument defines the number of overlapping tokens.

• **is_split_into_words** (bool, optional, defaults to False) – Whether or not the input is already pre-tokenized (e.g., split into words). If set to True, the tokenizer assumes the input is already split into words (for instance, by splitting it on whitespace) which it will tokenize. This is useful for NER or token classification.

• **pad_to_multiple_of** (int, optional) – If set will pad the sequence to a multiple of the provided value. Requires padding to be activated. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta).

• **return_tensors** (str or [-utils.TensorType], optional) – If set, will return tensors instead of list of python integers. Acceptable values are:
- `tf`: Return TensorFlow `tf.constant` objects.
- `np`: Return Numpy `np.ndarray` objects.

- **return_token_type_ids** (bool, optional) – Whether to return token type IDs. If left to the default, will return the token type IDs according to the specific tokenizer’s default, defined by the `return_outputs` attribute.

[What are token type IDs?](../glossary#token-type-ids)

- **return_attention_mask** (bool, optional) – Whether to return the attention mask. If left to the default, will return the attention mask according to the specific tokenizer’s default, defined by the `return_outputs` attribute.

[What are attention masks?](../glossary#attention-mask)

- **return_overlapping_tokens** (bool, optional, defaults to False) – Whether or not to return overlapping token sequences. If a pair of sequences of input ids (or a batch of pairs) is provided with `truncation_strategy = longest_first` or `True`, an error is raised instead of returning overlapping tokens.

- **return_special_tokens_mask** (bool, optional, defaults to False) – Whether or not to return special tokens mask information.

- **return_offsets_mapping** (bool, optional, defaults to False) – Whether or not to return `(char_start, char_end)` for each token.

 This is only available on fast tokenizers inheriting from `PreTrainedTokenizerFast`, if using Python’s tokenizer, this method will raise `NotImplementedError`.

- **return_length** (bool, optional, defaults to False) – Whether or not to return the lengths of the encoded inputs.

- **verbose** (bool, optional, defaults to True) – Whether or not to print more information and warnings.

 - **kwargs** – passed to the `self.tokenize()` method

Returns

A `BatchEncoding` with the following fields:

- **input_ids** – List of token ids to be fed to a model.

 [What are input IDs?](../glossary#input-ids)

- **token_type_ids** – List of token ids to be fed to a model (when `return_token_type_ids=True` or if “token_type_ids” is in `self.model_input_names`).

 [What are token type IDs?](../glossary#token-type-ids)

- **attention_mask** – List of indices specifying which tokens should be attended to by the model (when `return_attention_mask=True` or if “attention_mask” is in `self.model_input_names`).

 [What are attention masks?](../glossary#attention-mask)

- **overlapping_tokens** – List of overlapping token sequences (when a `max_length` is specified and `return_overlapping_tokens=True`).

- **num_truncated_tokens** – Number of tokens truncated (when a `max_length` is specified and `return_overlapping_tokens=True`).
• **special_tokens_mask** – List of 0s and 1s, with 1 specifying added special tokens and 0 specifying regular sequence tokens (when `add_special_tokens=True` and `return_special_tokens_mask=True`).

• **length** – The length of the inputs (when `return_length=True`)

Return type [BatchEncoding]

```python

Prepare model inputs for translation. For best performance, translate one sentence at a time.

**Parameters**

• **src_texts** (List[str]) – List of documents to summarize or source language texts.

• **tgt_texts** (list, optional) – List of summaries or target language texts.

• **max_length** (int, optional) – Controls the maximum length for encoder inputs (documents to summarize or source language texts) If left unset or set to `None`, this will use the pre-defined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated.

• **max_target_length** (int, optional) – Controls the maximum length of decoder inputs (target language texts or summaries) If left unset or set to `None`, this will use the `max_length` value.

• **padding** (bool, str or [~utils.PaddingStrategy], optional, defaults to False) – Activates and controls padding. Accepts the following values:
  - True or ‘longest’: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided).
  - ‘max_length’: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided.
  - False or ‘do_not_pad’ (default): No padding (i.e., can output a batch with sequences of different lengths).

• **return_tensors** (str or [~utils.TensorType], optional) – If set, will return tensors instead of list of python integers. Acceptable values are:
  - ‘tf’: Return TensorFlow `tf.constant` objects.
  - ‘np’: Return Numpy `np.ndarray` objects.

• **truncation** (bool, str or [~tokenization_utils_base.TruncationStrategy], optional, defaults to True) – Activates and controls truncation. Accepts the following values:
  - True or ‘longest_first’: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided.
  - ‘only_first’: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided.

- 'only_second': Truncate to a maximum length specified with the argument max_length or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- False or 'do_not_truncate' (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size).

- **kwargs – Additional keyword arguments passed along to self.__call__.

Returns

A [BatchEncoding] with the following fields:

- input_ids – List of token ids to be fed to the encoder.
- attention_mask – List of indices specifying which tokens should be attended to by the model.
- labels – List of token ids for tgt_texts.

The full set of keys [input_ids, attention_mask, labels], will only be returned if tgt_texts is passed. Otherwise, input_ids, attention_mask will be the only keys.

Return type [BatchEncoding]


Upload the tokenizer files to the Model Hub while synchronizing a local clone of the repo in repo_path_or_name.

Parameters

- repo_id (str) – The name of the repository you want to push your tokenizer to. It should contain your organization name when pushing to a given organization.
- use_temp_dir (bool, optional) – Whether or not to use a temporary directory to store the files saved before they are pushed to the Hub. Will default to True if there is no directory named like repo_id, False otherwise.
- commit_message (str, optional) – Message to commit while pushing. Will default to “Upload tokenizer”.
- private (bool, optional) – Whether or not the repository created should be private.
- use_auth_token (bool or str, optional) – The token to use as HTTP bearer authorization for remote files. If True, will use the token generated when running huggingface-cli login (stored in ~/.huggingface). Will default to True if repo_url is not specified.
- max_shard_size (int or str, optional, defaults to “10GB”) – Only applicable for models. The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size lower than this size. If expressed as a string, needs to be digits followed by a unit (like “5MB”).
- create_pr (bool, optional, defaults to False) – Whether or not to create a PR with the uploaded files or directly commit.
- safe_serialization (bool, optional, defaults to False) – Whether or not to convert the model weights in safetensors format for safer serialization.
Examples:
```python
from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")

Push the tokenizer to your namespace with the name “my-finetuned-bert”. tokenizer.push_to_hub("my-finetuned-bert")

Push the tokenizer to an organization with the name “my-finetuned-bert”. tokenizer.push_to_hub("huggingface/my-finetuned-bert")
```

```python
classmethod register_for_auto_class(auto_class=AutoTokenizer)
```

Register this class with a given auto class. This should only be used for custom tokenizers as the ones in the library are already mapped with `AutoTokenizer`.

```Tip warning={true}>
This API is experimental and may have some slight breaking changes in the next releases.
</Tip>
```

### Parameters

- **auto_class** *(str or type, optional, defaults to “AutoTokenizer”) – The auto class to register this new tokenizer with.*

```python
sanitize_special_tokens() → int
```

Make sure that all the special tokens attributes of the tokenizer (tokenizer.mask_token, tokenizer.cls_token, etc.) are in the vocabulary.

Add the missing ones to the vocabulary if needed.

**Returns** The number of tokens added to the vocabulary during the operation.

**Return type** int

```python
save_pretrained(save_directory: Union[str, os.PathLike], legacy_format: Optional[bool] = None,
filename_prefix: Optional[str] = None, push_to_hub: bool = False, **kwargs) → Tuple[str]
```

Save the full tokenizer state.

This method make sure the full tokenizer can then be re-loaded using the `~tokenization_utils_base.PreTrainedTokenizer.from_pretrained` class method.

**Warning:** None This won’t save modifications you may have applied to the tokenizer after the instantiation (for instance, modifying `tokenizer.do_lower_case` after creation).

### Parameters

- **save_directory** *(str or os.PathLike) – The path to a directory where the tokenizer will be saved.*

- **legacy_format** *(bool, optional) – Only applicable for a fast tokenizer. If unset (default), will save the tokenizer in the unified JSON format as well as in legacy format if it exists, i.e. with tokenizer specific vocabulary and a separate added_tokens files.

  If `False`, will only save the tokenizer in the unified JSON format. This format is incompatible with “slow” tokenizers (not powered by the `tokenizers` library), so the tokenizer will not be able to be loaded in the corresponding “slow” tokenizer.

  If `True`, will save the tokenizer in legacy format. If the “slow” tokenizer doesn’t exits, a value error is raised.

- **filename_prefix** *(str, optional) – A prefix to add to the names of the files saved by the tokenizer.*
• **push_to_hub** *(bool, optional, defaults to False)* – Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the repository you want to push to with repo_id (will default to the name of save_directory in your namespace).

• **kwargs** *(Dict[str, Any], optional)* – Additional key word arguments passed along to the [~utils.PushToHubMixin.push_to_hub] method.

**Returns**  The files saved.

**Return type**  A tuple of *str*

**save_vocabulary** *(save_directory: str, filename_prefix: Optional[str] = None) → Tuple[str]*

Save only the vocabulary of the tokenizer (vocabulary + added tokens).

This method won’t save the configuration and special token mappings of the tokenizer. Use [~PreTrainedTokenizerFast._save_pretrained] to save the whole state of the tokenizer.

**Parameters**

• **save_directory** *(str)* – The directory in which to save the vocabulary.

• **filename_prefix** *(str, optional)* – An optional prefix to add to the named of the saved files.

**Returns**  Paths to the files saved.

**Return type**  Tuple(*str*)

**property sep_token:** *str*

Separation token, to separate context and query in an input sequence. Log an error if used while not having been set.

**Type**  *str*

**property sep_token_id:**  Optional[*int*]

Id of the separation token in the vocabulary, to separate context and query in an input sequence. Returns None if the token has not been set.

**Type**  Optional[*int*]


Define the truncation and the padding strategies for fast tokenizers (provided by HuggingFace tokenizers library) and restore the tokenizer settings afterwards.

The provided tokenizer has no padding / truncation strategy before the managed section. If your tokenizer set a padding / truncation strategy before, then it will be reset to no padding / truncation when exiting the managed section.

**Parameters**

• **padding_strategy** *(~/utils.PaddingStrategy)* – The kind of padding that will be applied to the input

• **truncation_strategy** *(~/tokenization_utils_base.TruncationStrategy)* – The kind of truncation that will be applied to the input

• **max_length** *(int)* – The maximum size of a sequence.

• **stride** *(int)* – The stride to use when handling overflow.
• **pad_to_multiple_of** *(int, optional)* – If set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta).

**slow_tokenizer_class**
alias of transformers.models.roberta.tokenization_roberta.RobertaTokenizer

**property special_tokens_map:** `Dict[str, Union[str, List[str]]]`
A dictionary mapping special token class attributes (*cls_token*, *unk_token*, etc.) to their values (*’<unk>’, ‘<cls>’*, etc.).
Convert potential tokens of tokenizers.AddedToken type to string.

**Type** `Dict[str, Union[str, List[str]]]`

**property special_tokens_map_extended:** `Dict[str, Union[str, tokenizers.AddedToken, List[Union[str, tokenizers.AddedToken]]]]`
A dictionary mapping special token class attributes (*cls_token*, *unk_token*, etc.) to their values (*’<unk>’, ‘<cls>’*, etc.).

Don’t convert tokens of tokenizers.AddedToken type to string so they can be used to control more finely how special tokens are tokenized.

**Type** `Dict[str, Union[str, tokenizers.AddedToken, List[Union[str, tokenizers.AddedToken]]]]`

**tokenize** *(text: str, pair: Optional[str] = None, add_special_tokens: bool = False, **kwargs) → List[str]*
Converts a string in a sequence of tokens, replacing unknown tokens with the *unk_token*.

**Parameters**

• **text** *(str)* – The sequence to be encoded.

• **pair** *(str, optional)* – A second sequence to be encoded with the first.

• **add_special_tokens** *(bool, optional, defaults to False)* – Whether or not to add the special tokens associated with the corresponding model.

• **kwargs** *(additional keyword arguments, optional)* – Will be passed to the underlying model specific encode method. See details in [*~PreTrainedTokenizerBase.__call__*](#)

**Returns** The list of tokens.

**Return type** `List[str]`

**train_new_from_iterator** *(text_iterator, vocab_size=None, new_special_tokens=None, special_tokens_map=None, **kwargs)*
Trains a tokenizer on a new corpus with the same defaults (in terms of special tokens or tokenization pipeline) as the current one.

**Parameters**

• **text_iterator** *(generator of List[str])* – The training corpus. Should be a generator of batches of texts, for instance a list of lists of texts if you have everything in memory.

• **vocab_size** *(int)* – The size of the vocabulary you want for your tokenizer.

• **length** *(int, optional)* – The total number of sequences in the iterator. This is used to provide meaningful progress tracking

• **new_special_tokens** *(list of str or AddedToken, optional)* – A list of new special tokens to add to the tokenizer you are training.
• **special_tokens_map** *(Dict[str, str], optional)* – If you want to rename some of the special tokens this tokenizer uses, pass along a mapping old special token name to new special token name in this argument.

• **kwargs** *(Dict[str, Any], optional)* – Additional keyword arguments passed along to the trainer from the Tokenizers library.

**Returns** A new tokenizer of the same type as the original one, trained on *text_iterator*.

**Return type** *[PreTrainedTokenizerFast]*

```python
truncate_sequences(ids: List[int], pair_ids: Optional[List[int]] = None, num_tokens_to_remove: int = 0, truncation_strategy: Union[str, transformers.tokenization_utils_base.TruncationStrategy] = 'longest_first', stride: int = 0) → Tuple[List[int], List[int], List[int]]
```

Truncates a sequence pair in-place following the strategy.

**Parameters**

• **ids** *(List[int]*) – Tokenized input ids of the first sequence. Can be obtained from a string by chaining the `tokenize` and `convert_tokens_to_ids` methods.

• **pair_ids** *(List[int], optional)* – Tokenized input ids of the second sequence. Can be obtained from a string by chaining the `tokenize` and `convert_tokens_to_ids` methods.

• **num_tokens_to_remove** *(int, optional, defaults to 0)* – Number of tokens to remove using the truncation strategy.

• **truncation_strategy** *(str or [~tokenization_utils_base.TruncationStrategy], optional, defaults to False)* – The strategy to follow for truncation. Can be:
  
  - `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided.
  
  - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
  
  - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
  
  - `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size).

• **stride** *(int, optional, defaults to 0)* – If set to a positive number, the overflowing tokens returned will contain some tokens from the main sequence returned. The value of this argument defines the number of additional tokens.

**Returns** The truncated *ids*, the truncated *pair_ids* and the list of overflowing tokens. Note: The `longest_first` strategy returns empty list of overflowing tokens if a pair of sequences (or a batch of pairs) is provided.

**Return type** *Tuple[List[int], List[int], List[int]]*

**property unk_token**: *str*

Unknown token. Log an error if used while not having been set.
Type  `str`

**property unk_token_id:**  `Optional[int]`

Id of the unknown token in the vocabulary. Returns `None` if the token has not been set.

**Type**  `Optional[int]`

**property vocab_size:**  `int`

Size of the base vocabulary (without the added tokens).

**Type**  `int`

---

**RxnFeaturizer**

**class RxnFeaturizer**(tokenizer: `transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast`, sep_reagent: `bool`)

Reaction Featurizer.

RxnFeaturizer is a wrapper class for HuggingFace’s RobertaTokenizerFast, that is intended for featurizing chemical reaction datasets. The featurizer computes the source and target required for a seq2seq task and applies the RobertaTokenizer on them separately. Additionally, it can also separate or mix the reactants and reagents before tokenizing.

**Examples**

```python
>>> from deepchem.feat import RxnFeaturizer
>>> from transformers import RobertaTokenizerFast

>>> tokenizer = RobertaTokenizerFast.from_pretrained("seyonec/PubChem10M_SMILES_BPE_\n\n→450k")

>>> featurizer = RxnFeaturizer(tokenizer, sep_reagent=True)

>>> feats = featurizer.featurize(['CCS(=O)(=O)Cl.OCCBr>CCN(CC)CC.CCOCC→CCS(=O)(=O)OCCBr'])
```

**Notes**

- The featurize method expects a List of reactions.
- **Use the sep_reagent toggle to enable/disable reagent separation.**
  - True - Separate the reactants and reagents
  - False - Mix the reactants and reagents

**__init__**(tokenizer: `transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast`, sep_reagent: `bool`)

Initialize a ReactionFeaturizer object.

**Parameters**

- **tokenizer** (`RobertaTokenizerFast`) – HuggingFace Tokenizer to be used for featurization.
- **sep_reagent** (`bool`) – Toggle to separate or mix the reactants and reagents.
featurize

Calculate features for datapoints.

Parameters

- **datapoints** (*Iterable[Union[RandomSample, Atom3D, Atoms, NumpyArray, List]]*) – A sequence of objects that you'd like to featurize. Subclasses of Featurizer should instantiate the _featurize method that featurizes objects in the sequence.

- **log_every_n** (*int*, *default 1000*) – Logs featurization progress every log_every_n steps.

Returns A numpy array containing a featurized representation of datapoints.

Return type : np.ndarray

**BindingPocketFeaturizer**

Featurizes binding pockets with information about chemical environments.

In many applications, it's desirable to look at binding pockets on macromolecules which may be good targets for potential ligands or other molecules to interact with. A BindingPocketFeaturizer expects to be given a macromolecule, and a list of pockets to featurize on that macromolecule. These pockets should be of the form produced by a dc.dock.BindingPocketFinder, that is as a list of dc.utils.CoordinateBox objects.

The base featurization in this class's featurization is currently very simple and counts the number of residues of each type present in the pocket. It's likely that you'll want to overwrite this implementation for more sophisticated downstream usecases. Note that this class’s implementation will only work for proteins and not for other macromolecules

**Note:** This class requires mdtraj to be installed.

featurize

Calculate atomic coordinates.

Parameters

- **protein_file** (*str*) – Location of PDB file. Will be loaded by MDTraj

- **pockets** (*List[deepchem.utils.coordinate_box_utils.CoordinateBox]*) – List of dc.utils.CoordinateBox objects.

Returns A numpy array of shape (len(pockets), n_residues)

Return type : np.ndarray

**UserDefinedFeaturizer**

Directs usage of user-computed featurizations.

UserDefinedFeaturizer

- **feature_fields**

__init__(feature_fields)

Creates user-defined-featurizer.
featurize\(\text{datapoints: Iterable[\text{Any}], log\_every\_n: int = 1000, **kwargs} \rightarrow \text{numpy.ndarray}\)

Calculate features for datapoints.

**Parameters**

- **datapoints** (*Iterable[\text{Any}]*) – A sequence of objects that you’d like to featurize. Subclasses of \text{Featurizer} should instantiate the \_featurize method that featurizes objects in the sequence.

- **log\_every\_n** (*int, default 1000*) – Logs featurization progress every \(\log\_every\_n\) steps.

**Returns** A numpy array containing a featurized representation of \text{datapoints}.

**Return type** \text{np.ndarray}

### DummyFeaturizer

**class DummyFeaturizer**

Class that implements a no-op featurization. This is useful when the raw dataset has to be used without featurizing the examples. The Molnet loader requires a featurizer input and such datasets can be used in their original form by passing the raw featurizer.

**Examples**

```python
>>> import deepchem as dc

>>> smi_map = ["N#C[S-].O=C(CBr)c1ccc(C(F)(F)F)cc1>CCO.[K+]", "N
˓→#CSCC(=O)c1ccc(C(F)(F)F)cc1"]

>>> Featurizer = dc.feat.DummyFeaturizer()

>>> smi_feat = Featurizer.featurize(smi_map)

>>> smi_feat
array([["N#C[S-].O=C(CBr)c1ccc(C(F)(F)F)cc1>CCO.[K+]",
˓→"N#CSCC(=O)c1ccc(C(F)(F)F)cc1"],
["ClCOCNC.CCC(=O)c1ccc(C(F)(F)F)cc1>CCCN(C(C)(C)(C)(C).C.CN=C=O.O",
˓→"FCC(c1ccc(C(F)(F)F)cc1)N1CCOCC1’"]])
```

featurize\(\text{datapoints: Iterable[\text{Any}], log\_every\_n: int = 1000, **kwargs} \rightarrow \text{numpy.ndarray}\)

Passes through dataset, and returns the datapoint.

**Parameters** **datapoints** (*Iterable[\text{Any}]*) – A sequence of objects that you’d like to featurize.

**Returns** **datapoints** – A numpy array containing a featurized representation of the datapoints.

**Return type** \text{np.ndarray}
3.9.8 Base Featurizers (for develop)

**Featurizer**

The `dc.feat.Featurizer` class is the abstract parent class for all featurizers.

```python
class Featurizer
 Abstract class for calculating a set of features for a datapoint.

 This class is abstract and cannot be invoked directly. You'll likely only interact with this class if you're a developer. In that case, you might want to make a child class which implements the `_featurize` method for calculating features for a single datapoint if you'd like to make a featurizer for a new datatype.

 featurize

 Calculate features for datapoints.

 Parameters

 - `datapoints` *(Iterable[Any]) – A sequence of objects that you'd like to featurize. Subclasses of Featurizer should instantiate the `_featurize` method that featurizes objects in the sequence.*

 - `log_every_n` *(int, default 1000) – Logs featurization progress every `log_every_n` steps.*

 Returns A numpy array containing a featurized representation of `datapoints`.

 Return type np.ndarray
```

**MolecularFeaturizer**

If you're creating a new featurizer that featurizes molecules, you will want to inherit from the abstract `MolecularFeaturizer` base class. This feature can take RDKit mol objects or SMILES as inputs.

```python
class MolecularFeaturizer
 Abstract class for calculating a set of features for a molecule.

 The defining feature of a MolecularFeaturizer is that it uses SMILES strings and RDKit molecule objects to represent small molecules. All other featurizers which are subclasses of this class should plan to process input which comes as smiles strings or RDKit molecules.

 Child classes need to implement the `_featurize` method for calculating features for a single molecule.

 The subclasses of this class require RDKit to be installed.

 __init__ *(use_original_atoms_order=False)*

 Parameters

 - `use_original_atoms_order` *(bool, default False) – Whether to use original atom ordering or canonical ordering (default).*

 featurize *(datapoints, log_every_n=1000, **kwargs) → numpy.ndarray)*

 Calculate features for molecules.

 Parameters

 - `datapoints` *(rdkit.Chem.rdchem.Mol / SMILES string / iterable) – RDKit Mol, or SMILES string or iterable sequence of RDKit mols/SMILES strings.*

 - `log_every_n` *(int, default 1000) – Logging messages reported every `log_every_n` samples.*
Returns features – A numpy array containing a featurized representation of datapoints.

Return type np.ndarray

MaterialCompositionFeaturizer

If you’re creating a new featurizer that featurizes compositional formulas, you will want to inherit from the abstract MaterialCompositionFeaturizer base class.

class MaterialCompositionFeaturizer

Abstract class for calculating a set of features for an inorganic crystal composition.

The defining feature of a MaterialCompositionFeaturizer is that it operates on 3D crystal chemical compositions. Inorganic crystal compositions are represented by Pymatgen composition objects. Featurizers for inorganic crystal compositions that are subclasses of this class should plan to process input which comes as Pymatgen composition objects.

This class is abstract and cannot be invoked directly. You’ll likely only interact with this class if you’re a developer. Child classes need to implement the _featurize method for calculating features for a single crystal composition.

Note: Some subclasses of this class will require pymatgen and matminer to be installed.

featurize(datapoints: Optional[Iterable[str]] = None, log_every_n: int = 1000, **kwargs) → numpy.ndarray

Calculate features for crystal compositions.

Parameters

- **datapoints** (Iterable[str]) – Iterable sequence of composition strings, e.g. “MoS2”.
- **log_every_n** (int, default 1000) – Logging messages reported every log_every_n samples.

Returns features – A numpy array containing a featurized representation of compositions.

Return type np.ndarray

MaterialStructureFeaturizer

If you’re creating a new featurizer that featurizes inorganic crystal structure, you will want to inherit from the abstract MaterialCompositionFeaturizer base class. This featurizer can take pymatgen structure objects or dictionaries as inputs.

class MaterialStructureFeaturizer

Abstract class for calculating a set of features for an inorganic crystal structure.

The defining feature of a MaterialStructureFeaturizer is that it operates on 3D crystal structures with periodic boundary conditions. Inorganic crystal structures are represented by Pymatgen structure objects. Featurizers for inorganic crystal structures that are subclasses of this class should plan to process input which comes as pymatgen structure objects.

This class is abstract and cannot be invoked directly. You’ll likely only interact with this class if you’re a developer. Child classes need to implement the _featurize method for calculating features for a single crystal structure.

Note: Some subclasses of this class will require pymatgen and matminer to be installed.
featurize(datapoints: Optional[Iterable[Union[Dict[str, Any], Any]]] = None, log_every_n: int = 1000, **kwargs) → numpy.ndarray

Calculate features for crystal structures.

Parameters

- **log_every_n** (int, default 1000) – Logging messages reported every log_every_n samples.

Returns features – A numpy array containing a featurized representation of datapoints.

Return type np.ndarray

ComplexFeaturizer

If you’re creating a new featurizer that featurizes a pair of ligand molecules and proteins, you will want to inherit from the abstract ComplexFeaturizer base class. This featurizer can take a pair of PDB or SDF files which contain ligand molecules and proteins.

class ComplexFeaturizer

 " Abstract class for calculating features for mol/protein complexes.

 featurize(datapoints: Optional[Iterable[Tuple[str, str]]] = None, log_every_n: int = 100, **kwargs) → numpy.ndarray

 Calculate features for mol/protein complexes. :param datapoints: List of filenames (PDB, SDF, etc.) for ligand molecules and proteins.

 Each element should be a tuple of the form (ligand_filename, protein_filename).

 Returns features – Array of features

 Return type np.ndarray

VocabularyBuilder

If you’re creating a vocabulary builder for generating vocabulary from a corpus or input data, the vocabulary builder must inherit from VocabularyBuilder base class.

HuggingFaceVocabularyBuilder

A wrapper class for building vocabulary from algorithms implemented in tokenizers library.

hf_vocab

 alias of <module ‘deepchem.feat.vocabulary_builders.hf vocab’ from ‘/home/docs/checkouts/readthedocs.org/user_builds/deepchem/checkouts/latest/deepchem/feat/vocabulary_builders/hf_vocab.py’>
3.10 Splitters

DeepChem dc.splits.Splitter objects are a tool to meaningfully split DeepChem datasets for machine learning testing. The core idea is that when evaluating a machine learning model, it’s useful to creating training, validation and test splits of your source data. The training split is used to train models, the validation is used to benchmark different model architectures. The test is ideally held out till the very end when it’s used to gauge a final estimate of the model’s performance.

The dc.splits module contains a collection of scientifically aware splitters. In many cases, we want to evaluate scientific deep learning models more rigorously than standard deep models since we’re looking for the ability to generalize to new domains. Some of the implemented splitters here may help.

Contents

- General Splitters
 - RandomSplitter
 - RandomGroupSplitter
 - RandomStratifiedSplitter
 - SingletaskStratifiedSplitter
 - IndexSplitter
 - SpecifiedSplitter
 - TaskSplitter
- Molecule Splitters
 - ScaffoldSplitter
 - MolecularWeightSplitter
 - MaxMinSplitter
 - ButinaSplitter
 - FingerprintSplitter
- Base Splitter (for develop)

3.10.1 General Splitters

RandomSplitter

class RandomSplitter

 Class for doing random data splits.
Examples

```python
>>> import numpy as np
>>> import deepchem as dc
>>> # Creating a dummy NumPy dataset
>>> X, y = np.random.randn(5), np.random.randn(5)
>>> dataset = dc.data.NumpyDataset(X, y)
>>> # Creating a RandomSplitter object
>>> splitter = dc.splits.RandomSplitter()
>>> # Splitting dataset into train and test datasets
>>> train_dataset, test_dataset = splitter.train_test_split(dataset)
```

split

```python
dc.splits.RandomSplitter()
```

Splits internal compounds randomly into train/validation/test.

Parameters

- **dataset** (*Dataset*) – Dataset to be split.
- **seed** (*int*, *optional* (default *None*)) – Random seed to use.
- **frac_train** (*float*, *optional* (default *0.8*)) – The fraction of data to be used for the training split.
- **frac_valid** (*float*, *optional* (default *0.1*)) – The fraction of data to be used for the validation split.
- **frac_test** (*float*, *optional* (default *0.1*)) – The fraction of data to be used for the test split.
- **log_every_n** (*int*, *optional* (default *None*)) – Log every n examples (not currently used).

Returns

A tuple of train indices, valid indices, and test indices. Each indices is a numpy array.

Return type

Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray]

__repr__

```python
__repr__() → str
```

Convert self to repr representation.

Returns

The string represents the class.

Return type

str

Examples

```python
>>> import deepchem as dc
dc.splits.RandomSplitter()
RandomSplitter[]
```

__str__

```python
__str__() → str
```

Convert self to str representation.

Returns

The string represents the class.
Return type: `str`

Examples

```python
>>> import deepchem as dc
>>> str(dc.splits.RandomSplitter())
'RandomSplitter'
```

__weakref__

list of weak references to the object (if defined)

k_fold_split

```python
k_fold_split(dataset: deepchem.data.datasets.Dataset, k: int, directories: Optional[List[str]] = None, **kwargs) \n\n→ List[Tuple[deepchem.data.datasets.Dataset, deepchem.data.datasets.Dataset]]
```

Parameters

- `dataset` (Dataset) – Dataset to do a k-fold split
- `k` (int) – Number of folds to split `dataset` into.
- `directories` (List[str], optional (default None)) – List of length 2*k filepaths to save the result disk-datasets.

Returns List of length k tuples of (train, cv) where train and cv are both Dataset.

Return type List[Tuple[Dataset, Dataset]]

train_test_split

```python
train_test_split(dataset: deepchem.data.datasets.Dataset, train_dir: Optional[str] = None, test_dir: Optional[str] = None, frac_train: float = 0.8, seed: Optional[int] = None, **kwargs) \n\n→ Tuple[deepchem.data.datasets.Dataset, deepchem.data.datasets.Dataset]
```

Splits self into train/test sets.

Returns Dataset objects for train/test.

Parameters

- `dataset` (data like object) – Dataset to be split.
- `train_dir` (str, optional (default None)) – If specified, the directory in which the generated training dataset should be stored. This is only considered if `instance(dataset, dc.data.DiskDataset)` is True.
- `test_dir` (str, optional (default None)) – If specified, the directory in which the generated test dataset should be stored. This is only considered if `instance(dataset, dc.data.DiskDataset)` is True.
- `frac_train` (float, optional (default 0.8)) – The fraction of data to be used for the training split.
- `seed` (int, optional (default None)) – Random seed to use.

Returns A tuple of train and test datasets as dc.data.Dataset objects.

Return type Tuple[Dataset, Dataset]

train_valid_test_split

```python
train_valid_test_split(dataset: deepchem.data.datasets.Dataset, train_dir: Optional[str] = None, valid_dir: Optional[str] = None, test_dir: Optional[str] = None, frac_train: float = 0.8, frac_valid: float = 0.1, frac_test: float = 0.1, seed: Optional[int] = None, log_every_n: int = 1000, **kwargs) \n\n→ Tuple[deepchem.data.datasets.Dataset, deepchem.data.datasets.Dataset, deepchem.data.datasets.Dataset]
```

3.10. Splitters
Splits self into train/validation/test sets.
Returns Dataset objects for train, valid, test.

Parameters

- **dataset** *(Dataset)* – Dataset to be split.

- **train_dir** *(str, optional (default None))* – If specified, the directory in which the generated training dataset should be stored. This is only considered if `instance(dataset, dc.data.Dataset)` is True.

- **valid_dir** *(str, optional (default None))* – If specified, the directory in which the generated valid dataset should be stored. This is only considered if `instance(dataset, dc.data.DiskDataset)` is True.

- **test_dir** *(str, optional (default None))* – If specified, the directory in which the generated test dataset should be stored. This is only considered if `instance(dataset, dc.data.DiskDataset)` is True.

- **frac_train** *(float, optional (default 0.8))* – The fraction of data to be used for the training split.

- **frac_valid** *(float, optional (default 0.1))* – The fraction of data to be used for the validation split.

- **frac_test** *(float, optional (default 0.1))* – The fraction of data to be used for the test split.

- **seed** *(int, optional (default None))* – Random seed to use.

- **log_every_n** *(int, optional (default 1000))* – Controls the logger by dictating how often logger outputs will be produced.

Returns A tuple of train, valid and test datasets as dc.data.Dataset objects.

Return type *Tuple*[Dataset, Optional[Dataset], Dataset]*

RandomGroupSplitter

class RandomGroupSplitter*(groups: Sequence)*

Random split based on groupings.

A splitter class that splits on groupings. An example use case is when there are multiple conformations of the same molecule that share the same topology. This splitter subsequently guarantees that resulting splits preserve groupings.

Note that it doesn’t do any dynamic programming or something fancy to try to maximize the choice such that frac_train, frac_valid, or frac_test is maximized. It simply permutes the groups themselves. As such, use with caution if the number of elements per group varies significantly.
Examples

```python
>>> import deepchem as dc
>>> import numpy as np

>>> X=np.arange(12)

>>> groups = [0, 0, 0, 1, 1, 2, 2, 2, 3, 3, 3]

>>> splitter = dc.splits.RandomGroupSplitter(groups=groups)

>>> dataset = dc.data.NumpyDataset(X)  # 12 elements

>>> train, test = splitter.train_test_split(dataset, frac_train=0.75, seed=0)

>>> print (train.ids)
[6 7 8 9 10 11 3 4 5]

__init__(groups: Sequence)

Initialize this object.

Parameters

- **groups** (Sequence) – An array indicating the group of each item. The length is equal to len(dataset.X)

Note: The examples of groups is the following.

groups : 3 2 2 0 1 1 2 4 3
dataset.X : 0 1 2 3 4 5 6 7 8

groups : a b e q x a a r
dataset.X : 0 1 2 3 4 5 6 7 8

split(dataset: deepchem.data.datasets.Dataset, frac_train: float = 0.8, frac_valid: float = 0.1, frac_test: float = 0.1, seed: Optional[int] = None, log_every_n: Optional[int] = None) → Tuple[List[int], List[int], List[int]]

Return indices for specified split

Parameters

- **dataset** (Dataset) – Dataset to be split.
- **frac_train** (float, optional (default 0.8)) – The fraction of data to be used for the training split.
- **frac_valid** (float, optional (default 0.1)) – The fraction of data to be used for the validation split.
- **frac_test** (float, optional (default 0.1)) – The fraction of data to be used for the test split.
- **seed** (int, optional (default None)) – Random seed to use.
- **log_every_n** (int, optional (default None)) – Log every n examples (not currently used).

Returns A tuple (train_inds, valid_inds, test inds) of the indices (integers) for the various splits.

Return type Tuple[List[int], List[int], List[int]]
k_fold_split(dataset: deepchem.data.datasets.Dataset, k: int, directories: Optional[List[str]] = None, **kwargs) → List[Tuple[deepchem.data.datasets.Dataset, deepchem.data.datasets.Dataset]]

Parameters

- **dataset** (Dataset) – Dataset to do a k-fold split
- **k** (int) – Number of folds to split dataset into.
- **directories** (List[str], optional (default None)) – List of length 2*k filepaths to save the result disk-datasets.

Returns List of length k tuples of (train, cv) where train and cv are both Dataset.

Return type List[Tuple[Dataset, Dataset]]


Splits self into train/test sets.

Returns Dataset objects for train/test.

Parameters

- **dataset** (data like object) – Dataset to be split.
- **train_dir** (str, optional (default None)) – If specified, the directory in which the generated training dataset should be stored. This is only considered if isinstance(dataset, dc.data.DiskDataset) is True.
- **test_dir** (str, optional (default None)) – If specified, the directory in which the generated test dataset should be stored. This is only considered if isinstance(dataset, dc.data.DiskDataset) is True.
- **frac_train** (float, optional (default 0.8)) – The fraction of data to be used for the training split.
- **seed** (int, optional (default None)) – Random seed to use.

Returns A tuple of train and test datasets as dc.data.Dataset objects.

Return type Tuple[Dataset, Dataset]


Splits self into train/validation/test sets.

Returns Dataset objects for train, valid, test.

Parameters

- **dataset** (Dataset) – Dataset to be split.
- **train_dir** (str, optional (default None)) – If specified, the directory in which the generated training dataset should be stored. This is only considered if isinstance(dataset, dc.data.DiskDataset)
 RandomStratifiedSplitter

class RandomStratifiedSplitter

RandomStratified Splitter class.

For sparse multitask datasets, a standard split offers no guarantees that the splits will have any active compounds. This class tries to arrange that each split has a proportional number of the actives for each task. This is strictly guaranteed only for single-task datasets, but for sparse multitask datasets it usually manages to produces a fairly accurate division of the actives for each task.

Note: This splitter is primarily designed for boolean labeled data. It considers only whether a label is zero or non-zero. When labels can take on multiple non-zero values, it does not try to give each split a proportional fraction of the samples with each value.

Examples

```python
>>> import deepchem as dc
>>> import numpy as np
>>> from typing import Sequence
>>> # creation of demo data set with some smiles strings
>>> smiles = ['C', 'CC', 'CCC', 'CCCC', 'CCCCC']
>>> Xs = np.zeros(len(smiles))
>>> # creation of a deepchem dataset with the smile codes in the ids field
>>> dataset = dc.data.DiskDataset.from_numpy(X=Xs, ids=smiles)
>>> randomstratifiedsplitter = dc.splits.RandomStratifiedSplitter()
>>> train_dataset, test_dataset = randomstratifiedsplitter.train_test_split(dataset)
```
```python
split(dataset: deepchem.data.datasets.Dataset, frac_train: float = 0.8, frac_valid: float = 0.1, frac_test: float = 0.1, seed: Optional[int] = None, log_every_n: Optional[int] = None) → Tuple

Return indices for specified split

Parameters

• dataset (dc.data.Dataset) – Dataset to be split.

• seed (int, optional (default None)) – Random seed to use.

• frac_train (float, optional (default 0.8)) – The fraction of data to be used for the training split.

• frac_valid (float, optional (default 0.1)) – The fraction of data to be used for the validation split.

• frac_test (float, optional (default 0.1)) – The fraction of data to be used for the test split.

• log_every_n (int, optional (default None)) – Controls the logger by dictating how often logger outputs will be produced.

Returns

A tuple (train_inds, valid_inds, test_inds) of the indices (integers) for the various splits.

Return type

Tuple

__repr__() → str

Convert self to repr representation.

Returns

The string represents the class.

Return type

str

Examples

```python
>>> import deepchem as dc

```
>>> dc.splits.RandomSplitter()

RandomSplitter[

```

__str__() → str

Convert self to str representation.

Returns

The string represents the class.

Return type

str

Examples

```python
>>> import deepchem as dc

```
>>> str(dc.splits.RandomSplitter())

'RandomSplitter'

__weakref__

list of weak references to the object (if defined)
k_fold_split(dataset: deepchem.data.datasets.Dataset, k: int, directories: Optional[List[str]] = None, **kwargs) → List[Tuple[deepchem.data.datasets.Dataset, deepchem.data.datasets.Dataset]]

Parameters

- **dataset** (Dataset) – Dataset to do a k-fold split
- **k** (int) – Number of folds to split dataset into.
- **directories** (List[str], optional (default None)) – List of length 2*k filepaths to save the result disk-datasets.

Returns List of length k tuples of (train, cv) where train and cv are both Dataset.

Return type List[Tuple[Dataset, Dataset]]


Splits self into train/test sets. Returns Dataset objects for train/test.

Parameters

- **dataset** (data like object) – Dataset to be split.
- **train_dir** (str, optional (default None)) – If specified, the directory in which the generated training dataset should be stored. This is only considered if isinstance(dataset, dc.data.DiskDataset) is True.
- **test_dir** (str, optional (default None)) – If specified, the directory in which the generated test dataset should be stored. This is only considered if isinstance(dataset, dc.data.DiskDataset) is True.
- **frac_train** (float, optional (default 0.8)) – The fraction of data to be used for the training split.
- **seed** (int, optional (default None)) – Random seed to use.

Returns A tuple of train and test datasets as dc.data.Dataset objects.

Return type Tuple[Dataset, Dataset]


Splits self into train/validation/test sets. Returns Dataset objects for train, valid, test.

Parameters

- **dataset** (Dataset) – Dataset to be split.
- **train_dir** (str, optional (default None)) – If specified, the directory in which the generated training dataset should be stored. This is only considered if isinstance(dataset, dc.data.DiskDataset)
• **valid_dir** *(str, optional (default None))* – If specified, the directory in which the generated valid dataset should be stored. This is only considered if `isinstance(dataset, dc.data.DiskDataset)` is True.

• **test_dir** *(str, optional (default None))* – If specified, the directory in which the generated test dataset should be stored. This is only considered if `isinstance(dataset, dc.data.DiskDataset)` is True.

• **frac_train** *(float, optional (default 0.8))* – The fraction of data to be used for the training split.

• **frac_valid** *(float, optional (default 0.1))* – The fraction of data to be used for the validation split.

• **frac_test** *(float, optional (default 0.1))* – The fraction of data to be used for the test split.

• **seed** *(int, optional (default None))* – Random seed to use.

• **log_every_n** *(int, optional (default 1000))* – Controls the logger by dictating how often logger outputs will be produced.

**Returns** A tuple of train, valid and test datasets as `dc.data.Dataset` objects.

**Return type** `Tuple[Dataset, Optional[Dataset], Dataset]`

---

### SingletaskStratifiedSplitter

**class SingletaskStratifiedSplitter**(task_number: int = 0)

Class for doing data splits by stratification on a single task.

**Examples**

```python
>>> n_samples = 100
>>> n_features = 10
>>> n_tasks = 10
>>> X = np.random.rand(n_samples, n_features)
>>> y = np.random.rand(n_samples, n_tasks)
>>> w = np.ones_like(y)
>>> dataset = DiskDataset.from_numpy(np.ones((100,n_tasks)), np.ones((100,n_tasks)))
>>> splitter = SingletaskStratifiedSplitter(task_number=5)
>>> train_dataset, test_dataset = splitter.train_test_split(dataset)
```

**__init__**(task_number: int = 0)

Creates splitter object.

**Parameters**

- **task_number** *(int, optional (default 0))* – Task number for stratification.

**k_fold_split**(dataset: deepchem.data.datasets.Dataset, k: int, directories: Optional[List[str]] = None, seed: Optional[int] = None, log_every_n: Optional[int] = None, **kwargs)

Splits compounds into k-folds using stratified sampling. Overriding base class k_fold_split.

**Parameters**

- **dataset** *(Dataset)* – Dataset to be split.

- **k** *(int)* – Number of folds to split `dataset` into.
• **directories** *(List[str], optional (default None)) – List of length k filepaths to save the result disk-datasets.*
• **seed** *(int, optional (default None)) – Random seed to use.*
• **log_every_n** *(int, optional (default None)) – Log every n examples (not currently used).*

**Returns** fold_datasets – List of dc.data.Dataset objects

**Return type** List[Dataset]

**split** *(dataset: deepchem.data.datasets.Dataset, frac_train: float = 0.8, frac_valid: float = 0.1, frac_test: float = 0.1, seed: Optional[int] = None, log_every_n: Optional[int] = None) → Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray]*

Splits compounds into train/validation/test using stratified sampling.

**Parameters**

• **dataset** *(Dataset) – Dataset to be split.*
• **frac_train** *(float, optional (default 0.8)) – Fraction of dataset put into training data.*
• **frac_valid** *(float, optional (default 0.1)) – Fraction of dataset put into validation data.*
• **frac_test** *(float, optional (default 0.1)) – Fraction of dataset put into test data.*
• **seed** *(int, optional (default None)) – Random seed to use.*
• **log_every_n** *(int, optional (default None)) – Log every n examples (not currently used).*

**Returns** A tuple of train indices, valid indices, and test indices. Each indices is a numpy array.

**Return type** Tuple[np.ndarray, np.ndarray, np.ndarray]


Splits self into train/test sets.

**Returns** Dataset objects for train/test.

**Parameters**

• **dataset** *(data like object) – Dataset to be split.*
• **train_dir** *(str, optional (default None)) – If specified, the directory in which the generated training dataset should be stored. This is only considered if isinstance(dataset, dc.data.DiskDataset) is True.
• **test_dir** *(str, optional (default None)) – If specified, the directory in which the generated test dataset should be stored. This is only considered if isinstance(dataset, dc.data.DiskDataset) is True.
• **frac_train** *(float, optional (default 0.8)) – The fraction of data to be used for the training split.
• **seed** *(int, optional (default None)) – Random seed to use.*

**Returns** A tuple of train and test datasets as dc.data.Dataset objects.
Return type: \texttt{Tuple[Dataset, Dataset]}

\texttt{train_valid_test_split}\hspace{1em}(\texttt{dataset: deepchem.data.datasets.Dataset, train_dir: Optional[str] = None, valid_dir: Optional[str] = None, test_dir: Optional[str] = None, frac_train: float = 0.8, frac_valid: float = 0.1, frac_test: float = 0.1, seed: Optional[int] = None, log_every_n: int = 1000, **kwargs} \rightarrow \texttt{Tuple[deepchem.data.datasets.Dataset, deepchem.data.datasets.Dataset, deepchem.data.datasets.Dataset]}

Splits self into train/validation/test sets.

Returns Dataset objects for train, valid, test.

Parameters

- \texttt{dataset (Dataset)} – Dataset to be split.
- \texttt{train_dir (str, optional (default None))} – If specified, the directory in which the generated training dataset should be stored. This is only considered if \texttt{isinstance(dataset, dc.data.DiskDataset)}
- \texttt{valid_dir (str, optional (default None))} – If specified, the directory in which the generated valid dataset should be stored. This is only considered if \texttt{isinstance(dataset, dc.data.DiskDataset)} is True.
- \texttt{test_dir (str, optional (default None))} – If specified, the directory in which the generated test dataset should be stored. This is only considered if \texttt{isinstance(dataset, dc.data.DiskDataset)} is True.
- \texttt{frac_train (float, optional (default 0.8))} – The fraction of data to be used for the training split.
- \texttt{frac_valid (float, optional (default 0.1))} – The fraction of data to be used for the validation split.
- \texttt{frac_test (float, optional (default 0.1))} – The fraction of data to be used for the test split.
- \texttt{seed (int, optional (default None))} – Random seed to use.
- \texttt{log_every_n (int, optional (default 1000))} – Controls the logger by dictating how often logger outputs will be produced.

Returns: A tuple of train, valid and test datasets as dc.data.Dataset objects.

Return type: \texttt{Tuple[Dataset, Optional[Dataset], Dataset]}

\texttt{IndexSplitter}

\texttt{class IndexSplitter}

Class for simple order based splits.

Use this class when the \texttt{Dataset} you have is already ordered so you would like it to be processed. Then the first \texttt{frac_train} proportion is used for training, the next \texttt{frac_valid} for validation, and the final \texttt{frac_test} for testing. This class may make sense to use your \texttt{Dataset} is already time ordered (for example).
Examples

```python
>>> import deepchem as dc
>>> import numpy as np

>>> n_samples = 5
>>> n_features = 2
>>> X = np.random.rand(n_samples, n_features)
>>> y = np.random.rand(n_samples)
>>> indexsplitter = dc.splits.IndexSplitter()
>>> dataset = dc.data.NumpyDataset(X, y)
>>> train_dataset, test_dataset = indexsplitter.train_test_split(dataset)

>>> print(train_dataset.ids)
[0 1 2 3]

>>> print(test_dataset.ids)
[4]
```

**split**

```python
split(dataset: deepchem.data.datasets.Dataset, frac_train: float = 0.8, frac_valid: float = 0.1, frac_test: float = 0.1, seed: Optional[int] = None, log_every_n: Optional[int] = None) → Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray]
```

Splits internal compounds into train/validation/test in provided order.

**Parameters**

- **dataset** *(Dataset)* – Dataset to be split.
- **frac_train** *(float, optional (default 0.8))* – The fraction of data to be used for the training split.
- **frac_valid** *(float, optional (default 0.1))* – The fraction of data to be used for the validation split.
- **frac_test** *(float, optional (default 0.1))* – The fraction of data to be used for the test split.
- **seed** *(int, optional (default None))* – Random seed to use.
- **log_every_n** *(int, optional)* – Log every n examples (not currently used).

**Returns** A tuple of train indices, valid indices, and test indices. Each indices is a numpy array.

**Return type** *Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray]*

**__repr__** *(self) → str*

Convert self to repr representation.

**Returns** The string represents the class.

**Return type** *str*
Examples

```python
>>> import deepchem as dc
>>> dc.splits.RandomSplitter()
RandomSplitter[]
```

__str__() → str
Convert self to str representation.

Returns: The string represents the class.

Return type: str

Examples

```python
>>> import deepchem as dc
>>> str(dc.splits.RandomSplitter())
'RandomSplitter'
```

__weakref__
list of weak references to the object (if defined)

k_fold_split(dataset: deepchem.data.datasets.Dataset, k: int, directories: Optional[List[str]] = None, **kwargs) → List[Tuple[deepchem.data.datasets.Dataset, deepchem.data.datasets.Dataset]]

Parameters

- **dataset** (Dataset) – Dataset to do a k-fold split
- **k** (int) – Number of folds to split dataset into.
- **directories** (List[str], optional (default None)) – List of length 2*k filepaths to save the result disk-datasets.

Returns: List of length k tuples of (train, cv) where train and cv are both Dataset.

Return type: List[Tuple[Dataset, Dataset]]


Splits self into train/test sets.

Returns: Dataset objects for train/test.

Parameters

- **dataset** (data like object) – Dataset to be split.
- **train_dir** (str, optional (default None)) – If specified, the directory in which the generated training dataset should be stored. This is only considered if isinstance(dataset, dc.data.DiskDataset) is True.
- **test_dir** (str, optional (default None)) – If specified, the directory in which the generated test dataset should be stored. This is only considered if isinstance(dataset, dc.data.DiskDataset) is True.
- **frac_train** (float, optional (default 0.8)) – The fraction of data to be used for the training split.
- **seed** (*int, optional (default None)) -- Random seed to use.

**Returns** A tuple of train and test datasets as dc.data.Dataset objects.

**Return type** Tuple[Dataset, Dataset]

### train_valid_test_split

```
```

Splits self into train/validation/test sets.

**Parameters**

- **dataset** (Dataset) -- Dataset to be split.
- **train_dir** (str, optional (default None)) -- If specified, the directory in which the generated training dataset should be stored. This is only considered if isinstance(dataset, dc.data.DiskDataset)
- **valid_dir** (str, optional (default None)) -- If specified, the directory in which the generated valid dataset should be stored. This is only considered if isinstance(dataset, dc.data.DiskDataset) is True.
- **test_dir** (str, optional (default None)) -- If specified, the directory in which the generated test dataset should be stored. This is only considered if isinstance(dataset, dc.data.DiskDataset) is True.
- **frac_train** (float, optional (default 0.8)) -- The fraction of data to be used for the training split.
- **frac_valid** (float, optional (default 0.1)) -- The fraction of data to be used for the validation split.
- **frac_test** (float, optional (default 0.1)) -- The fraction of data to be used for the test split.
- **seed** (int, optional (default None)) -- Random seed to use.
- **log_every_n** (int, optional (default 1000)) -- Controls the logger by dictating how often logger outputs will be produced.

**Returns** A tuple of train, valid and test datasets as dc.data.Dataset objects.

**Return type** Tuple[Dataset, Optional[Dataset], Dataset]

### SpecifiedSplitter

**class SpecifiedSplitter(valid_indices: Optional[List[int]] = None, test_indices: Optional[List[int]] = None)**

Split data in the fashion specified by user.

For some applications, you will already know how you’d like to split the dataset. In this splitter, you simplify specify valid_indices and test_indices and the datapoints at those indices are pulled out of the dataset. Note that this is different from IndexSplitter which only splits based on the existing dataset ordering, while this SpecifiedSplitter can split on any specified ordering.
Examples

```python
>>> import deepchem as dc
>>> import numpy as np

>>> n_samples = 10
>>> n_features = 3
>>> n_tasks = 1
>>> X = np.random.rand(n_samples, n_features)
>>> y = np.random.rand(n_samples, n_tasks)
>>> splitter = dc.splits.SpecifiedSplitter(valid_indices=[1, 3, 5], test_indices=[0, 2, 7, 9])
>>> dataset = dc.data.NumpyDataset(X, y)
>>> train_dataset, valid_dataset, test_dataset = splitter.train_valid_test_split(dataset)
>>> print(train_dataset.ids)
[4 6 8]
>>> print(valid_dataset.ids)
[1 3 5]
>>> print(test_dataset.ids)
[0 2 7 9]
```

__init__ (```valid_indices: Optional[List[int]] = None, test_indices: Optional[List[int]] = None```

**Parameters**

- `valid_indices` (`List[int]`) – List of indices of samples in the valid set
- `test_indices` (`List[int]`) – List of indices of samples in the test set

**split** (`dataset: deepchem.data.datasets.Dataset, frac_train: float = 0.8, frac_valid: float = 0.1, frac_test: float = 0.1, seed: Optional[int] = None, log_every_n: Optional[int] = None`) → Tuple[```numpy.ndarray, numpy.ndarray, numpy.ndarray```]

Splits internal compounds into train/validation/test in designated order.

**Parameters**

- `dataset` (`Dataset`) – Dataset to be split.
- `frac_train` (`float`, optional (default ```0.8```)) – Fraction of dataset put into training data.
- `frac_valid` (`float`, optional (default ```0.1```)) – Fraction of dataset put into validation data.
- `frac_test` (`float`, optional (default ```0.1```)) – Fraction of dataset put into test data.
- `seed` (`int`, optional (default ```None```)) – Random seed to use.
- `log_every_n` (`int`, optional (default ```None```)) – Log every n examples (not currently used).

**Returns** A tuple of train indices, valid indices, and test indices. Each indices is a numpy array.

**Return type** Tuple[```numpy.ndarray, numpy.ndarray, numpy.ndarray```]

**k_fold_split** (`dataset: deepchem.data.datasets.Dataset, k: int, directories: Optional[List[str]] = None, **kwargs`) → List[Tuple[```deepchem.data.datasets.Dataset, deepchem.data.datasets.DatasetDataset```]]

**Parameters**

- `dataset` (`Dataset`) – Dataset to be split.
- `k` (`int`) – Number of folds.
- `directories` (`List[str]`, optional (default `None`) – Directories for storing k-fold splits.
- `**kwargs` – Additional keyword arguments.

Splits dataset into k-folds for cross-validation.

**Parameters**

- `dataset` (`Dataset`) – Dataset to be split.
- `k` (`int`) – Number of folds.
- `directories` (`List[str]`, optional (default `None`) – Directories for storing k-fold splits.
- `**kwargs` – Additional keyword arguments.

Splits dataset into k-folds for cross-validation.

**Parameters**

- `dataset` (`Dataset`) – Dataset to be split.
- `k` (`int`) – Number of folds.
- `directories` (`List[str]`, optional (default `None`) – Directories for storing k-fold splits.
- `**kwargs` – Additional keyword arguments.
- **dataset** ([Dataset]) – Dataset to do a k-fold split
- **k** (int) – Number of folds to split dataset into.
- **directories** (List[str], optional (default None)) – List of length 2*k filepaths to save the result disk-datasets.

**Returns** List of length k tuples of (train, cv) where train and cv are both Dataset.

**Return type** List[ Tuple[ Dataset, Dataset ] ]

### train_test_split

```python
def train_test_split(dataset: deepchem.data.datasets.Dataset, train_dir: Optional[str] = None, test_dir: Optional[str] = None, frac_train: float = 0.8, seed: Optional[int] = None, **kwargs)
```

Splits self into train/test sets.

**Returns** Dataset objects for train/test.

**Parameters**

- **dataset** (data like object) – Dataset to be split.
- **train_dir** (str, optional (default None)) – If specified, the directory in which the generated training dataset should be stored. This is only considered if isinstance(dataset, deepchem.data.DiskDataset) is True.
- **test_dir** (str, optional (default None)) – If specified, the directory in which the generated test dataset should be stored. This is only considered if isinstance(dataset, deepchem.data.DiskDataset) is True.
- **frac_train** (float, optional (default 0.8)) – The fraction of data to be used for the training split.
- **seed** (int, optional (default None)) – Random seed to use.

**Returns** A tuple of train and test datasets as deepchem.Dataset objects.

**Return type** Tuple[ Dataset, Dataset ]

### train_valid_test_split

```python
def train_valid_test_split(dataset: deepchem.data.datasets.Dataset, train_dir: Optional[str] = None, valid_dir: Optional[str] = None, test_dir: Optional[str] = None, frac_train: float = 0.8, frac_valid: float = 0.1, frac_test: float = 0.1, seed: Optional[int] = None, log_every_n: int = 1000, **kwargs)
```

Splits self into train/validation/test sets.

**Returns** Dataset objects for train, valid, test.

**Parameters**

- **dataset** (Dataset) – Dataset to be split.
- **train_dir** (str, optional (default None)) – If specified, the directory in which the generated training dataset should be stored. This is only considered if isinstance(dataset, deepchem.data.DiskDataset) is True.
- **valid_dir** (str, optional (default None)) – If specified, the directory in which the generated valid dataset should be stored. This is only considered if isinstance(dataset, deepchem.data.DiskDataset) is True.
- **test_dir** (str, optional (default None)) – If specified, the directory in which the generated test dataset should be stored. This is only considered if isinstance(dataset, deepchem.data.DiskDataset) is True.

3.10. Splitters
• **frac_train** (*float*, *optional* *(default 0.8)*) – The fraction of data to be used for the training split.

• **frac_valid** (*float*, *optional* *(default 0.1)*) – The fraction of data to be used for the validation split.

• **frac_test** (*float*, *optional* *(default 0.1)*) – The fraction of data to be used for the test split.

• **seed** (*int*, *optional* *(default None)*) – Random seed to use.

• **log_every_n** (*int*, *optional* *(default 1000)*) – Controls the logger by dictating how often logger outputs will be produced.

**Returns** A tuple of train, valid and test datasets as `dc.data.Dataset` objects.

**Return type** `Tuple[Dataset, Optional[Dataset], Dataset]`

### TaskSplitter

class **TaskSplitter**

Provides a simple interface for splitting datasets task-wise.

For some learning problems, the training and test datasets should have different tasks entirely. This is a different paradigm from the usual Splitter, which ensures that split datasets have different datapoints, not different tasks.

__init__()

Creates Task Splitter object.

**train_valid_test_split**(*dataset*, **frac_train=0.8**, **frac_valid=0.1**, **frac_test=0.1**)

Performs a train/valid/test split of the tasks for dataset.

If split is uneven, spillover goes to test.

**Parameters**

• **dataset** (*dc.data.Dataset*) – Dataset to be split

• **frac_train** (*float*, *optional*) – Proportion of tasks to be put into train. Rounded to nearest int.

• **frac_valid** (*float*, *optional*) – Proportion of tasks to be put into valid. Rounded to nearest int.

• **frac_test** (*float*, *optional*) – Proportion of tasks to be put into test. Rounded to nearest int.

**k_fold_split**(*dataset*, **K**)

Performs a K-fold split of the tasks for dataset.

If split is uneven, spillover goes to last fold.

**Parameters**

• **dataset** (*dc.data.Dataset*) – Dataset to be split

• **K** (*int*) – Number of splits to be made

**split**(*dataset: deepchem.data.datasets.Dataset, frac_train: float = 0.8, frac_valid: float = 0.1, frac_test: float = 0.1, seed: Optional[int] = None, log_every_n: Optional[int] = None*) → Tuple

Return indices for specified split

**Parameters**
• **dataset** (`dc.data.Dataset`) – Dataset to be split.
• **seed** (`int`, `optional (default None)`) – Random seed to use.
• **frac_train** (`float`, `optional (default 0.8)`) – The fraction of data to be used for the training split.
• **frac_valid** (`float`, `optional (default 0.1)`) – The fraction of data to be used for the validation split.
• **frac_test** (`float`, `optional (default 0.1)`) – The fraction of data to be used for the test split.
• **log_every_n** (`int`, `optional (default None)`) – Controls the logger by dictating how often logger outputs will be produced.

**Returns** A tuple (`train_inds`, `valid_inds`, `test_inds`) of the indices (integers) for the various splits.

**Return type** Tuple

```
def train_test_split(dataset: deepchem.data.datasets.Dataset, train_dir: Optional[str] = None, test_dir: Optional[str] = None, frac_train: float = 0.8, seed: Optional[int] = None, **kwargs)
 → Tuple[deepchem.data.datasets.Dataset, deepchem.data.datasets.Dataset]
```

Splits self into train/test sets.

**Returns** Dataset objects for train/test.

**Parameters**

• **dataset** (`data like object`) – Dataset to be split.
• **train_dir** (`str`, `optional (default None)`) – If specified, the directory in which the generated training dataset should be stored. This is only considered if `isinstance(dataset, dc.data.DiskDataset)` is True.
• **test_dir** (`str`, `optional (default None)`) – If specified, the directory in which the generated test dataset should be stored. This is only considered if `isinstance(dataset, dc.data.DiskDataset)` is True.
• **frac_train** (`float`, `optional (default 0.8)`) – The fraction of data to be used for the training split.
• **seed** (`int`, `optional (default None)`) – Random seed to use.

**Returns** A tuple of train and test datasets as dc.data.Dataset objects.

**Return type** Tuple[Dataset, Dataset]

### 3.10.2 Molecule Splitters

**ScaffoldSplitter**

```
class ScaffoldSplitter
```

Class for doing data splits based on the scaffold of small molecules.

Group molecules based on the Bemis-Murcko scaffold representation, which identifies rings, linkers, frameworks (combinations between linkers and rings) and atomic properties such as atom type, hybridization and bond order in a dataset of molecules. Then split the groups by the number of molecules in each group in decreasing order.

It is necessary to add the smiles representation in the ids field during the DiskDataset creation.
Examples

```python
>>> import deepchem as dc
>>> # creation of demo data set with some smiles strings
... data_test= ['"CC(C)Cl"', '"CCC(C)CO"', '"CCCCCCO"', '"CCCCCCCC(-O)OC"',
... '"c3cccc2nc1ccccccc1cc2c3"', '"Nc2cccc3nc1ccccccc1cc23"', '"C1CCCCC1"']
>>> Xs = np.zeros(len(data_test))
>>> Ys = np.ones(len(data_test))
>>> # creation of a deepchem dataset with the smile codes in the ids field
... dataset = dc.data.DiskDataset.from_numpy(X=Xs,y=Ys,w=np.zeros(len(data_test)),
 ids=data_test)
>>> scaffoldsplitter = dc.splits.ScaffoldSplitter()
>>> train, test = scaffoldsplitter.train_test_split(dataset)
>>> train
<DiskDataset X.shape: (5,), y.shape: (5,), w.shape: (5,), ids: ['CC(C)Cl' 'CCC(C)CO' 'CCCCCCO' 'CCCCCCCC(-O)OC' 'C1CCCCC1'], task_names: [0]>
```

References

Note: This class requires RDKit to be installed.

**split** *(dataset: deepchem.data.datasets.Dataset, frac_train: float = 0.8, frac_valid: float = 0.1, frac_test: float = 0.1, seed: Optional[int] = None, log_every_n: Optional[int] = 1000) → Tuple[List[int], List[int], List[int]]*

Splits internal compounds into train/validation/test by scaffold.

**Parameters**

- **dataset** *(Dataset)* – Dataset to be split.
- **frac_train** *(float, optional (default 0.8))* – The fraction of data to be used for the training split.
- **frac_valid** *(float, optional (default 0.1))* – The fraction of data to be used for the validation split.
- **frac_test** *(float, optional (default 0.1))* – The fraction of data to be used for the test split.
- **seed** *(int, optional (default None))* – Random seed to use.
- **log_every_n** *(int, optional (default 1000))* – Controls the logger by dictating how often logger outputs will be produced.

**Returns** A tuple of train indices, valid indices, and test indices. Each indices is a list of integers.

**Return type** Tuple[List[int], List[int], List[int]]

**generate_scaffolds** *(dataset: deepchem.data.datasets.Dataset, log_every_n: int = 1000) → List[List[int]]*

Returns all scaffolds from the dataset.

**Parameters**

- **dataset** *(Dataset)* – Dataset to be split.
- **log_every_n** *(int, optional (default 1000))* – Controls the logger by dictating how often logger outputs will be produced.
Returns scaffold_sets – List of indices of each scaffold in the dataset.

Return type List[List[int]]

__repr__() → str
Convert self to repr representation.

Returns The string represents the class.

Return type str

Examples

```python
>>> import deepchem as dc
>>> dc.splits.RandomSplitter()
RandomSplitter[
```

__str__() → str
Convert self to str representation.

Returns The string represents the class.

Return type str

Examples

```python
>>> import deepchem as dc
>>> str(dc.splits.RandomSplitter())
'RandomSplitter'
```

__weakref__
list of weak references to the object (if defined)

k_fold_split(dataset: deepchem.data.datasets.Dataset, k: int, directories: Optional[List[str]] = None, **kwargs) → List[Tuple[deepchem.data.datasets.Dataset, deepchem.data.datasets.Dataset]]

Parameters

- **dataset** (Dataset) – Dataset to do a k-fold split
- **k** (int) – Number of folds to split dataset into.
- **directories** (List[str], optional (default None)) – List of length 2*k filepaths to save the result disk-datasets.

Returns List of length k tuples of (train, cv) where train and cv are both Dataset.

Return type List[Tuple[Dataset, Dataset]]


Splits self into train/test sets.

Returns Dataset objects for train/test.

Parameters

- **dataset** (data like object) – Dataset to be split.
train_dir (str, optional (default None)) – If specified, the directory in which the generated training dataset should be stored. This is only considered if isinstance(dataset, dc.data.DiskDataset) is True.

test_dir (str, optional (default None)) – If specified, the directory in which the generated test dataset should be stored. This is only considered if isinstance(dataset, dc.data.DiskDataset) is True.

frac_train (float, optional (default 0.8)) – The fraction of data to be used for the training split.

seed (int, optional (default None)) – Random seed to use.

Returns A tuple of train and test datasets as dc.data.Dataset objects.

Return type Tuple[Dataset, Dataset]


Splits self into train/validation/test sets.

Returns Dataset objects for train, valid, test.

Parameters

• dataset (Dataset) – Dataset to be split.

• train_dir (str, optional (default None)) – If specified, the directory in which the generated training dataset should be stored. This is only considered if isinstance(dataset, dc.data.DiskDataset)

• valid_dir (str, optional (default None)) – If specified, the directory in which the generated valid dataset should be stored. This is only considered if isinstance(dataset, dc.data.DiskDataset) is True.

• test_dir (str, optional (default None)) – If specified, the directory in which the generated test dataset should be stored. This is only considered if isinstance(dataset, dc.data.DiskDataset) is True.

• frac_train (float, optional (default 0.8)) – The fraction of data to be used for the training split.

• frac_valid (float, optional (default 0.1)) – The fraction of data to be used for the validation split.

• frac_test (float, optional (default 0.1)) – The fraction of data to be used for the test split.

• seed (int, optional (default None)) – Random seed to use.

• log_every_n (int, optional (default 1000)) – Controls the logger by dictating how often logger outputs will be produced.

Returns A tuple of train, valid and test datasets as dc.data.Dataset objects.

Return type Tuple[Dataset, Optional[Dataset], Dataset]
MolecularWeightSplitter

class MolecularWeightSplitter
Class for doing data splits by molecular weight.

Note: This class requires RDKit to be installed.

Examples

```python
>>> import deepchem as dc
>>> import numpy as np

creation of demo data set with some smiles strings
>>> smiles = ['C', 'CC', 'CCC', 'CCCC', 'CCCCC']
>>> Xs = np.zeros(len(smiles))

creation of a deepchem dataset with the smile codes in the ids field
>>> dataset = dc.data.DiskDataset.from_numpy(X=Xs, ids=smiles)
>>> molecularweightsplitter = dc.splits.MolecularWeightSplitter()
>>> train_dataset, test_dataset = molecularweightsplitter.train_test_split(dataset)
>>> print(train_dataset.ids)
['C' 'CC' 'CCC' 'CCCC']
>>> print(test_dataset.ids)
['CCCCC']
```

split(dataset: deepchem.data.datasets.Dataset, frac_train: float = 0.8, frac_valid: float = 0.1, frac_test: float = 0.1, seed: Optional[int] = None, log_every_n: Optional[int] = None) → Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray]

Splits on molecular weight.

Splits internal compounds into train/validation/test using the MW calculated by SMILES string.

Parameters

- dataset (Dataset) – Dataset to be split.
- frac_train (float, optional (default 0.8)) – The fraction of data to be used for the training split.
- frac_valid (float, optional (default 0.1)) – The fraction of data to be used for the validation split.
- frac_test (float, optional (default 0.1)) – The fraction of data to be used for the test split.
- seed (int, optional (default None)) – Random seed to use.
- log_every_n (int, optional (default None)) – Log every n examples (not currently used).

Returns A tuple of train indices, valid indices, and test indices. Each indices is a numpy array.

Return type Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray]

__repr__() → str

Convert self to repr representation.

Returns The string represents the class.
Return type  str

Examples

```python
>>> import deepchem as dc
>>> dc.splits.RandomSplitter()
RandomSplitter[]
```

```python
__str__(self) → str
Convert self to str representation.

Returns The string represents the class.

Return type str

Examples

```python
>>> import deepchem as dc
>>> str(dc.splits.RandomSplitter())
'RandomSplitter'
```

__weakref__
list of weak references to the object (if defined)

k_fold_split(dataset: deepchem.data.datasets.Dataset, k: int, directories: Optional[List[str]] = None, **kwargs) → List[Tuple[deepchem.data.datasets.Dataset, deepchem.data.datasets.Dataset]]

Parameters

- **dataset** (Dataset) – Dataset to do a k-fold split
- **k** (int) – Number of folds to split dataset into.
- **directories** (List[str], optional (default None)) – List of length 2*k filepaths to save the result disk-datasets.

Returns List of length k tuples of (train, cv) where train and cv are both Dataset.

Return type List[Tuple[Dataset, Dataset]]

Splits self into train/test sets.

Returns Dataset objects for train/test.

Parameters

- **dataset** (data like object) – Dataset to be split.
- **train_dir** (str, optional (default None)) – If specified, the directory in which the generated training dataset should be stored. This is only considered if instance(dataset, dc.data.DiskDataset) is True.
- **test_dir** (str, optional (default None)) – If specified, the directory in which the generated test dataset should be stored. This is only considered if instance(dataset, dc.data.DiskDataset) is True.
• **frac_train** *(float, optional (default 0.8))* – The fraction of data to be used for the training split.
• **seed** *(int, optional (default None))* – Random seed to use.

Returns A tuple of train and test datasets as dc.data.Dataset objects.

Return type Tuple*[Dataset, Dataset]*

depthchem, Release 2.7.2.dev

3.10. Splitters

```
train_valid_test_split(*dataset: deepchem.data.datasets.Dataset, train_dir: Optional[str] = None, valid_dir: Optional[str] = None, test_dir: Optional[str] = None, frac_train: float = 0.8, frac_valid: float = 0.1, frac_test: float = 0.1, seed: Optional[int] = None, log_every_n: int = 1000, **kwargs) →
Tuple[deepchem.data.datasets.Dataset, deepchem.data.datasets.Dataset, deepchem.data.datasets.Dataset]
```

Splits self into train/validation/test sets.

Returns Dataset objects for train, valid, test.

Parameters

• **dataset** *(Dataset)* – Dataset to be split.
• **train_dir** *(str, optional (default None))* – If specified, the directory in which the generated training dataset should be stored. This is only considered if `isinstance(dataset, dc.data.DiskDataset)` is True.
• **valid_dir** *(str, optional (default None))* – If specified, the directory in which the generated valid dataset should be stored. This is only considered if `isinstance(dataset, dc.data.DiskDataset)` is True.
• **test_dir** *(str, optional (default None))* – If specified, the directory in which the generated test dataset should be stored. This is only considered if `isinstance(dataset, dc.data.DiskDataset)` is True.
• **frac_train** *(float, optional (default 0.8))* – The fraction of data to be used for the training split.
• **frac_valid** *(float, optional (default 0.1))* – The fraction of data to be used for the validation split.
• **frac_test** *(float, optional (default 0.1))* – The fraction of data to be used for the test split.
• **seed** *(int, optional (default None))* – Random seed to use.
• **log_every_n** *(int, optional (default 1000))* – Controls the logger by dictating how often logger outputs will be produced.

Returns A tuple of train, valid and test datasets as dc.data.Dataset objects.

Return type Tuple*[Dataset, Optional[Dataset], Dataset]*
MaxMinSplitter

class MaxMinSplitter

Chemical diversity splitter.

Class for doing splits based on the MaxMin diversity algorithm. Intuitively, the test set is comprised of the most diverse compounds of the entire dataset. Furthermore, the validation set is comprised of diverse compounds under the test set.

Note: This class requires RDKit to be installed.

Examples

```python
>>> import deepchem as dc
>>> import numpy as np

>>> # creation of demo data set with some smiles strings
>>> smiles = ['C', 'CC', 'CCC', 'CCCC', 'CCCCCC']
>>> Xs = np.zeros(len(smiles))
>>> # creation of a deepchem dataset with the smile codes in the ids field
>>> dataset = dc.data.DiskDataset.from_numpy(X=Xs, ids=smiles)
>>> maxmnsplitter = dc.splits.MaxMinSplitter()
>>> train_dataset, test_dataset = maxmnsplitter.train_test_split(dataset)
```

split

```python
split(dataset: deepchem.data.datasets.Dataset, frac_train: float = 0.8, frac_valid: float = 0.1, frac_test: float = 0.1, seed: Optional[int] = None, log_every_n: Optional[int] = None) -> Tuple[List[int], List[int], List[int]]
```

Splits internal compounds into train/validation/test using the MaxMin diversity algorithm.

Parameters

- **dataset** (*Dataset*) – Dataset to be split.
- **frac_train** (*float, optional (default 0.8)) – The fraction of data to be used for the training split.
- **frac_valid** (*float, optional (default 0.1)) – The fraction of data to be used for the validation split.
- **frac_test** (*float, optional (default 0.1)) – The fraction of data to be used for the test split.
- **seed** (*int, optional (default None)) – Random seed to use.
- **log_every_n** (*int, optional (default None)) – Log every n examples (not currently used).

Returns A tuple of train indices, valid indices, and test indices. Each indices is a list of integers.

Return type *Tuple[List[int], List[int], List[int]]*

__repr__

```python
__repr__() -> str
```

Convert self to repr representation.

Returns The string represents the class.

Return type *str*
Examples

```python
>>> import deepchem as dc
>>> dc.splits.RandomSplitter()
RandomSplitter[]
```

___str__(self) → str

Convert self to str representation.

Returns The string represents the class.

Return type str

Examples

```python
>>> import deepchem as dc
>>> str(dc.splits.RandomSplitter())
'RandomSplitter'
```

___weakref__

list of weak references to the object (if defined)

k_fold_split(dataset: deepchem.data.datasets.Dataset, k: int, directories: Optional[List[str]] = None, **kwargs) → List[Tuple[deepchem.data.datasets.Dataset, deepchem.data.datasets.Dataset]]

Parameters

- **dataset** (Dataset) – Dataset to do a k-fold split
- **k** (int) – Number of folds to split dataset into.
- **directories** (List[str], optional (default None)) – List of length 2*k filepaths to save the result disk-datasets.

Returns List of length k tuples of (train, cv) where train and cv are both Dataset.

Return type List[Tuple[Dataset, Dataset]]

Splits self into train/test sets.

Returns Dataset objects for train/test.

Parameters

- **dataset** (data like object) – Dataset to be split.
- **train_dir** (str, optional (default None)) – If specified, the directory in which the generated training dataset should be stored. This is only considered if isinstance(dataset, dc.data.DiskDataset) is True.
- **test_dir** (str, optional (default None)) – If specified, the directory in which the generated test dataset should be stored. This is only considered if isinstance(dataset, dc.data.DiskDataset) is True.
- **frac_train** (float, optional (default 0.8)) – The fraction of data to be used for the training split.
• **seed**: (*int, optional (default None)) – Random seed to use.

Returns A tuple of train and test datasets as dc.data.Dataset objects.

Return type Tuple[Dataset, Dataset]

train_valid_test_split

```python
```

Splits self into train/validation/test sets.

Returns Dataset objects for train, valid, test.

Parameters

- **dataset** (*Dataset*) – Dataset to be split.
- **train_dir** (*str, optional (default None*)) – If specified, the directory in which the generated training dataset should be stored. This is only considered if isinstance(dataset, dc.data.DiskDataset)
- **valid_dir** (*str, optional (default None*)) – If specified, the directory in which the generated valid dataset should be stored. This is only considered if isinstance(dataset, dc.data.DiskDataset) is True.
- **test_dir** (*str, optional (default None*)) – If specified, the directory in which the generated test dataset should be stored. This is only considered if isinstance(dataset, dc.data.DiskDataset) is True.
- **frac_train** (*float, optional (default 0.8)*) – The fraction of data to be used for the training split.
- **frac_valid** (*float, optional (default 0.1)*) – The fraction of data to be used for the validation split.
- **frac_test** (*float, optional (default 0.1)*) – The fraction of data to be used for the test split.
- **seed** (*int, optional (default None)*) – Random seed to use.
- **log_every_n** (*int, optional (default 1000)*) – Controls the logger by dictating how often logger outputs will be produced.

Returns A tuple of train, valid and test datasets as dc.data.Dataset objects.

Return type Tuple[Dataset, Optional[Dataset], Dataset]

ButinaSplitter

class ButinaSplitter(cutoff: float = 0.6)

Class for doing data splits based on the butina clustering of a bulk tanimoto fingerprint matrix.

Note: This class requires RDKit to be installed.
Examples

```python
>>> import deepchem as dc
>>> import numpy as np

>>> # creation of demo data set with some smiles strings
>>> smiles = ['C', 'CC', 'CCC', 'CCCC', 'CCCCC']
>>> Xs = np.zeros(len(smiles))

>>> # creation of a deepchem dataset with the smile codes in the ids field
>>> dataset = dc.data.DiskDataset.from_numpy(X=Xs, ids=smiles)

>>> butinasplitter = dc.splits.ButinaSplitter()
>>> train_dataset, test_dataset = butinasplitter.train_test_split(dataset)

>>> print(train_dataset.ids)
['CCCC', 'CCC', 'CCCCC', 'CC']

>>> print(test_dataset.ids)
['C']
```

__init__(cutoff: float = 0.6)

Create a ButinaSplitter.

Parameters

- **cutoff (float, default 0.6)** – The cutoff value for tanimoto similarity. Molecules that are more similar than this will tend to be put in the same dataset.

split(dataset: deepchem.data.datasets.Dataset, frac_train: float = 0.8, frac_valid: float = 0.1, frac_test: float = 0.1, seed: Optional[int] = None, log_every_n: Optional[int] = None) → Tuple[List[int], List[int], List[int]]

Splits internal compounds into train and validation based on the butina clustering algorithm. This splitting algorithm has an O(N^2) run time, where N is the number of elements in the dataset. The dataset is expected to be a classification dataset.

This algorithm is designed to generate validation data that are novel chemotypes. Setting a small cutoff value will generate smaller, finer clusters of high similarity, whereas setting a large cutoff value will generate larger, coarser clusters of low similarity.

Parameters

- **dataset (Dataset)** – Dataset to be split.
- **frac_train (float, optional (default 0.8))** – The fraction of data to be used for the training split.
- **frac_valid (float, optional (default 0.1))** – The fraction of data to be used for the validation split.
- **frac_test (float, optional (default 0.1))** – The fraction of data to be used for the test split.
- **seed (int, optional (default None))** – Random seed to use.
- **log_every_n (int, optional (default None))** – Log every n examples (not currently used).

Returns

A tuple of train indices, valid indices, and test indices.

Return type

Tuple[List[int], List[int], List[int]]

k_fold_split(dataset: deepchem.data.datasets.Dataset, k: int, directories: Optional[List[str]] = None, **kwargs) → List[Tuple[deepchem.data.datasets.Dataset, deepchem.data.datasets.Dataset]]

Parameters
- **dataset** (*Dataset*) – Dataset to do a k-fold split
- **k** (*int*) – Number of folds to split dataset into.
- **directories** (*List*[str], *optional (default None]*) – List of length 2*k
 filepaths to save the result disk-datasets.

Returns List of length k tuples of (train, cv) where train and cv are both Dataset.

Return type List[Tuple[Dataset, Dataset]]

train_test_split

```
```

Splits self into train/test sets.

Returns Dataset objects for train/test.

Parameters

- **dataset** (*data like object*) – Dataset to be split.
- **train_dir** (*str*, *optional (default None]*) – If specified, the directory in which the generated training dataset should be stored. This is only considered if isinstance(dataset, dc.data.DiskDataset) is True.
- **test_dir** (*str*, *optional (default None]*) – If specified, the directory in which the generated test dataset should be stored. This is only considered if isinstance(dataset, dc.data.DiskDataset) is True.
- **frac_train** (*float*, *optional (default 0.8]*) – The fraction of data to be used for the training split.
- **seed** (*int*, *optional (default None]*) – Random seed to use.

Returns A tuple of train and test datasets as dc.data.Dataset objects.

Return type Tuple[Dataset, Dataset]

train_valid_test_split

```
```

Splits self into train/validation/test sets.

Returns Dataset objects for train, valid, test.

Parameters

- **dataset** (*Dataset*) – Dataset to be split.
- **train_dir** (*str*, *optional (default None]*) – If specified, the directory in which the generated training dataset should be stored. This is only considered if isinstance(dataset, dc.data.DiskDataset)
- **valid_dir** (*str*, *optional (default None]*) – If specified, the directory in which the generated valid dataset should be stored. This is only considered if isinstance(dataset, dc.data.DiskDataset) is True.
- **test_dir** (*str*, *optional (default None]*) – If specified, the directory in which the generated test dataset should be stored. This is only considered if isinstance(dataset, dc.data.DiskDataset) is True.
deepchem, Release 2.7.2.dev

- **frac_train** *(float, optional (default 0.8))* – The fraction of data to be used for the training split.

- **frac_valid** *(float, optional (default 0.1))* – The fraction of data to be used for the validation split.

- **frac_test** *(float, optional (default 0.1))* – The fraction of data to be used for the test split.

- **seed** *(int, optional (default None))* – Random seed to use.

- **log_every_n** *(int, optional (default 1000))* – Controls the logger by dictating how often logger outputs will be produced.

Returns A tuple of train, valid and test datasets as dc.data.Dataset objects.

Return type Tuple[Dataset, Optional[Dataset], Dataset]

FingerprintSplitter

class FingerprintSplitter

Class for doing data splits based on the Tanimoto similarity between ECFP4 fingerprints.

This class tries to split the data such that the molecules in each dataset are as different as possible from the ones in the other datasets. This makes it a very stringent test of models. Predicting the test and validation sets may require extrapolating far outside the training data.

The running time for this splitter scales as $O(n^2)$ in the number of samples. Splitting large datasets can take a long time.

Note: This class requires RDKit to be installed.

Examples

```python
>>> import deepchem as dc
>>> import numpy as np
>>> # creation of demo data set with some smiles strings
>>> smiles = ['C', 'CC', 'CCC', 'CCCC', 'CCCCCC']
>>> Xs = np.zeros(len(smiles))
>>> # creation of a deepchem dataset with the smile codes in the ids field
>>> dataset = dc.data.DiskDataset.from_numpy(X=Xs, ids=smiles)
>>> fingerprintsplitter = dc.splits.FingerprintSplitter()
>>> train_dataset, test_dataset = fingerprintsplitter.train_test_split(dataset)
>>> print(train_dataset.ids)
['C' 'CCCCC' 'CCCC' 'CCC']
>>> print(test_dataset.ids)
['CC']
```

split *(dataset: deepchem.data.datasets.Dataset, frac_train: float = 0.8, frac_valid: float = 0.1, frac_test: float = 0.1, seed: Optional[int] = None, log_every_n: Optional[int] = None) → Tuple[List[int], List[int], List[int]]*

Splits compounds into training, validation, and test sets based on the Tanimoto similarity of their ECFP4 fingerprints. This splitting algorithm has an $O(N^2)$ run time, where N is the number of elements in the dataset.

3.10. Splitters 221
Parameters

- **dataset** *(Dataset)* – Dataset to be split.
- **frac_train** *(float, optional (default 0.8))* – The fraction of data to be used for the training split.
- **frac_valid** *(float, optional (default 0.1))* – The fraction of data to be used for the validation split.
- **frac_test** *(float, optional (default 0.1))* – The fraction of data to be used for the test split.
- **seed** *(int, optional (default None))* – Random seed to use (ignored since this algorithm is deterministic).
- **log_every_n** *(int, optional (default None))* – Log every n examples (not currently used).

Returns A tuple of train indices, valid indices, and test indices.

Return type Tuple[List[int], List[int], List[int]]

__repr__ () → str

Convert self to repr representation.

Returns The string represents the class.

Return type str

Examples

```python
>>> import deepchem as dc
>>> dc.splits.RandomSplitter()
RandomSplitter()
```

__str__ () → str

Convert self to str representation.

Returns The string represents the class.

Return type str

Examples

```python
>>> import deepchem as dc
>>> str(dc.splits.RandomSplitter())
'RandomSplitter'
```

__weakref__

list of weak references to the object (if defined)

k_fold_split(dataset: deepchem.data.datasets.Dataset, k: int, directories: Optional[List[str]] = None, **kwargs) → List[Tuple[deepchem.data.datasets.Dataset, deepchem.data.datasets.Dataset]]

Parameters

- **dataset** *(Dataset)* – Dataset to do a k-fold split
k (int) – Number of folds to split dataset into.

directories (List[str], optional (default None)) – List of length 2*k filepaths to save the result disk-datasets.

Returns List of length k tuples of (train, cv) where train and cv are both Dataset.

Return type List[Tuple[Dataset, Dataset]]

```python
```

Splits self into train/test sets.

Returns Dataset objects for train/test.

Parameters

- **dataset (data like object)** – Dataset to be split.

- **train_dir (str, optional (default None))** – If specified, the directory in which the generated training dataset should be stored. This is only considered if isinstance(dataset, dc.data.DiskDataset) is True.

- **test_dir (str, optional (default None))** – If specified, the directory in which the generated test dataset should be stored. This is only considered if isinstance(dataset, dc.data.DiskDataset) is True.

- **frac_train (float, optional (default 0.8))** – The fraction of data to be used for the training split.

- **seed (int, optional (default None))** – Random seed to use.

Returns A tuple of train and test datasets as dc.data.Dataset objects.

Return type Tuple[Dataset, Dataset]

```python
```

Splits self into train/validation/test sets.

Returns Dataset objects for train, valid, test.

Parameters

- **dataset (Dataset)** – Dataset to be split.

- **train_dir (str, optional (default None))** – If specified, the directory in which the generated training dataset should be stored. This is only considered if isinstance(dataset, dc.data.DiskDataset)

- **valid_dir (str, optional (default None))** – If specified, the directory in which the generated valid dataset should be stored. This is only considered if isinstance(dataset, dc.data.DiskDataset) is True.

- **test_dir (str, optional (default None))** – If specified, the directory in which the generated test dataset should be stored. This is only considered if isinstance(dataset, dc.data.DiskDataset) is True.
• **frac_train** *(float, optional (default 0.8)) – The fraction of data to be used for the training split."

• **frac_valid** *(float, optional (default 0.1)) – The fraction of data to be used for the validation split."

• **frac_test** *(float, optional (default 0.1)) – The fraction of data to be used for the test split."

• **seed** *(int, optional (default None)) – Random seed to use.

• **log_every_n** *(int, optional (default 1000)) – Controls the logger by dictating how often logger outputs will be produced.

Returns A tuple of train, valid and test datasets as dc.data.Dataset objects.

Return type Tuple[Dataset, Optional[Dataset], Dataset]

3.10.3 Base Splitter (for develop)

The `dc.splits.Splitter` class is the abstract parent class for all splitters. This class should never be directly instantiated.

class Splitter

Splitters split up Datasets into pieces for training/validation/testing.

In machine learning applications, it’s often necessary to split up a dataset into training/validation/test sets. Or to k-fold split a dataset (that is, divide into k equal subsets) for cross-validation. The `Splitter` class is an abstract superclass for all splitters that captures the common API across splitter classes.

Note that `Splitter` is an abstract superclass. You won’t want to instantiate this class directly. Rather you will want to use a concrete subclass for your application.

k_fold_split *(dataset: deepchem.data.datasets.Dataset, k: int, directories: Optional[List[str]] = None, **kwargs) → List[Tuple[deepchem.data.datasets.Dataset, deepchem.data.datasets.Dataset]]*

Parameters

• **dataset** *(Dataset)* – Dataset to do a k-fold split

• **k** *(int)* – Number of folds to split dataset into.

• **directories** *(List[str], optional (default None)) – List of length 2*k filepaths to save the result disk-datasets.

Returns List of length k tuples of (train, cv) where train and cv are both Dataset.

Return type List[Tuple[Dataset, Dataset]]

Splits self into train/validation/test sets.

Returns Dataset objects for train, valid, test.

Parameters

• **dataset** *(Dataset)* – Dataset to be split.
• **train_dir** *(str, optional (default None))* – If specified, the directory in which the generated training dataset should be stored. This is only considered if `isinstance(dataset, dc.data.DiskDataset)`.

• **valid_dir** *(str, optional (default None))* – If specified, the directory in which the generated valid dataset should be stored. This is only considered if `isinstance(dataset, dc.data.DiskDataset)` is True.

• **test_dir** *(str, optional (default None))* – If specified, the directory in which the generated test dataset should be stored. This is only considered if `isinstance(dataset, dc.data.DiskDataset)` is True.

• **frac_train** *(float, optional (default 0.8))* – The fraction of data to be used for the training split.

• **frac_valid** *(float, optional (default 0.1))* – The fraction of data to be used for the validation split.

• **frac_test** *(float, optional (default 0.1))* – The fraction of data to be used for the test split.

• **seed** *(int, optional (default None))* – Random seed to use.

• **log_every_n** *(int, optional (default 1000))* – Controls the logger by dictating how often logger outputs will be produced.

Returns A tuple of train, valid and test datasets as dc.data.Dataset objects.

Return type Tuple[Dataset, Optional[Dataset], Dataset]

train_test_split

```python
dataset: deepchem.data.datasets.Dataset, train_dir: Optional[str] = None, test_dir: Optional[str] = None, frac_train: float = 0.8, seed: Optional[int] = None, **kwargs)
```

Splits self into train/test sets.

Returns Dataset objects for train/test.

Parameters

• **dataset** *(data like object)* – Dataset to be split.

• **train_dir** *(str, optional (default None))* – If specified, the directory in which the generated training dataset should be stored. This is only considered if `isinstance(dataset, dc.data.DiskDataset)` is True.

• **test_dir** *(str, optional (default None))* – If specified, the directory in which the generated test dataset should be stored. This is only considered if `isinstance(dataset, dc.data.DiskDataset)` is True.

• **frac_train** *(float, optional (default 0.8))* – The fraction of data to be used for the training split.

• **seed** *(int, optional (default None))* – Random seed to use.

Returns A tuple of train and test datasets as dc.data.Dataset objects.

Return type Tuple[Dataset, Dataset]

split

```python
dataset: deepchem.data.datasets.Dataset, frac_train: float = 0.8, frac_valid: float = 0.1, frac_test: float = 0.1, seed: Optional[int] = None, log_every_n: Optional[int] = None)
```

Return indices for specified split

Parameters
• **dataset** *(dc.data.Dataset)* – Dataset to be split.
• **seed** *(int, optional (default None))* – Random seed to use.
• **frac_train** *(float, optional (default 0.8))* – The fraction of data to be used for the training split.
• **frac_valid** *(float, optional (default 0.1))* – The fraction of data to be used for the validation split.
• **frac_test** *(float, optional (default 0.1))* – The fraction of data to be used for the test split.
• **log_every_n** *(int, optional (default None))* – Controls the logger by dictating how often logger outputs will be produced.

Returns A tuple *(train_inds, valid_inds, test_inds)* of the indices (integers) for the various splits.

Return type Tuple

3.11 Transformers

DeepChem `dc.trans.Transformer` objects are another core building block of DeepChem programs. Often times, machine learning systems are very delicate. They need their inputs and outputs to fit within a pre-specified range or follow a clean mathematical distribution. Real data of course is wild and hard to control. What do you do if you have a crazy dataset and need to bring its statistics to heel? Fear not for you have Transformer objects.

<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>• General Transformers</td>
</tr>
<tr>
<td>– NormalizationTransformer</td>
</tr>
<tr>
<td>– MinMaxTransformer</td>
</tr>
<tr>
<td>– ClippingTransformer</td>
</tr>
<tr>
<td>– LogTransformer</td>
</tr>
<tr>
<td>– CDFTransformer</td>
</tr>
<tr>
<td>– PowerTransformer</td>
</tr>
<tr>
<td>– BalancingTransformer</td>
</tr>
<tr>
<td>– DuplicateBalancingTransformer</td>
</tr>
<tr>
<td>– ImageTransformer</td>
</tr>
<tr>
<td>– FeaturizationTransformer</td>
</tr>
<tr>
<td>• Specified Usecase Transformers</td>
</tr>
<tr>
<td>– CoulombFitTransformer</td>
</tr>
<tr>
<td>– IRVTransformer</td>
</tr>
<tr>
<td>– DAGTransformer</td>
</tr>
<tr>
<td>– RxnSplitTransformer</td>
</tr>
<tr>
<td>• Base Transformer (for develop)</td>
</tr>
</tbody>
</table>
3.11.1 General Transformers

NormalizationTransformer

Normalizes dataset to have zero mean and unit standard deviation
This transformer transforms datasets to have zero mean and unit standard deviation.

Examples

```python
>>> n_samples = 10
>>> n_features = 3
>>> n_tasks = 1
>>> ids = np.arange(n_samples)
>>> X = np.random.rand(n_samples, n_features)
>>> y = np.random.rand(n_samples, n_tasks)
>>> w = np.ones((n_samples, n_tasks))
>>> dataset = dc.data.NumpyDataset(X, y, w, ids)
>>> transformer = dc.trans.NormalizationTransformer(transform_y=True, ...
... dataset=dataset)
>>> dataset = transformer.transform(dataset)
```

Note: This class can only transform X or y and not w. So only one of transform_X or transform_y can be set.

Raises ValueError – if transform_X and transform_y are both set.

Initialize normalization transformation.

Parameters

* transform_X (bool, optional (default False)) – Whether to transform X
* transform_y (bool, optional (default False)) – Whether to transform y
* transform_w (bool, optional (default False)) – Whether to transform w
* dataset (dc.data.Dataset object, optional (default None)) – Dataset to be transformed

transform_array(X: numpy.ndarray, y: numpy.ndarray, w: numpy.ndarray, ids: numpy.ndarray) → Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]

Transform the data in a set of (X, y, w) arrays.

Parameters

* X (np.ndarray) – Array of features
* y (np.ndarray) – Array of labels
- \(w (np.ndarray) \) – Array of weights.
- \(ids (np.ndarray) \) – Array of ids.

Returns

- \(Xtrans (np.ndarray) \) – Transformed array of features
- \(ytrans (np.ndarray) \) – Transformed array of labels
- \(wtrans (np.ndarray) \) – Transformed array of weights
- \(idstrans (np.ndarray) \) – Transformed array of ids

untransform

\(z: numpy.ndarray \rightarrow numpy.ndarray \)

Undo transformation on provided data.

Parameters

- \(z (np.ndarray) \) – Array to transform back

Returns

- \(z_out \) – Array with normalization undone.

Return type

\(np.ndarray \)

untransform_grad

\(\text{grad}, \text{tasks} \)

DEPRECATED. DO NOT USE.

transform

\(\text{dataset: deepchem.data.datasets.Dataset, parallel: bool = False, out_dir: Optional[str] = None, **kwargs} \rightarrow \text{deepchem.data.datasets.Dataset} \)

Transforms all internally stored data in dataset.

This method transforms all internal data in the provided dataset by using the \(\text{Dataset.transform} \) method. Note that this method adds X-transform, y-transform columns to metadata. Specified keyword arguments are passed on to \(\text{Dataset.transform} \).

Parameters

- \(\text{dataset (dc.data.Dataset)} \) – Dataset object to be transformed.
- \(\text{parallel (bool, optional (default False))} \) – if True, use multiple processes to transform the dataset in parallel. For large datasets, this might be faster.
- \(\text{out_dir (str, optional)} \) – If \(out_dir \) is specified in \(kwargs \) and \(dataset \) is a Disk-\(\text{Dataset} \), the output dataset will be written to the specified directory.

Returns

A newly transformed Dataset object

Return type

\(\text{Dataset} \)

transform_on_array

\(X: \text{numpy.ndarray, y: \text{numpy.ndarray, w: \text{numpy.ndarray, ids: \text{numpy.ndarray}})} \rightarrow \text{Tuple[\text{numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]}} \)

Transforms numpy arrays \(X \), \(y \), and \(w \)

DEPRECATED. Use \(\text{transform_array} \) instead.

Parameters

- \(X (np.ndarray) \) – Array of features
- \(y (np.ndarray) \) – Array of labels
- \(w (np.ndarray) \) – Array of weights.
- \(ids (np.ndarray) \) – Array of identifiers.

Returns

- \(Xtrans (np.ndarray) \) – Transformed array of features
• `ytrans (np.ndarray)` – Transformed array of labels
• `wtrans (np.ndarray)` – Transformed array of weights
• `idstrans (np.ndarray)` – Transformed array of ids

MinMaxTransformer

class **MinMaxTransformer**(transform_X: bool = False, transform_y: bool = False, dataset: Optional[deepchem.data.datasets.Dataset] = None):

Ensure each value rests between 0 and 1 by using the min and max.

MinMaxTransformer transforms the dataset by shifting each axis of X or y (depending on whether transform_X or transform_y is True), except the first one by the minimum value along the axis and dividing the result by the range (maximum value - minimum value) along the axis. This ensures each axis is between 0 and 1. In case of multi-task learning, it ensures each task is given equal importance.

Given original array A, the transformed array can be written as:

```python
>>> import numpy as np
>>> A = np.random.rand(10, 10)
>>> A_min = np.min(A, axis=0)
>>> A_max = np.max(A, axis=0)
>>> A_t = np.nan_to_num((A - A_min)/(A_max - A_min))
```

Examples

```python
>>> n_samples = 10
>>> n_features = 3
>>> n_tasks = 1
>>> ids = np.arange(n_samples)
>>> X = np.random.rand(n_samples, n_features)
>>> y = np.random.rand(n_samples, n_tasks)
>>> w = np.ones((n_samples, n_tasks))
>>> dataset = dc.data.NumpyDataset(X, y, w, ids)
>>> transformer = dc.trans.MinMaxTransformer(transform_y=True, dataset=dataset)
>>> dataset = transformer.transform(dataset)
```

Note: This class can only transform X or y and not w. So only one of `transform_X` or `transform_y` can be set.

Raises **ValueError** – if `transform_X` and `transform_y` are both set.

Initialization of MinMax transformer.

Parameters

- `transform_X` (bool, optional (default False)) – Whether to transform X
- `transform_y` (bool, optional (default False)) – Whether to transform y
• **dataset** *(dc.data.Dataset object, optional (default None)) – Dataset to be transformed*

transform_array(X: numpy.ndarray, y: numpy.ndarray, w: numpy.ndarray, ids: numpy.ndarray) → Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]

Transform the data in a set of (X, y, w, ids) arrays.

Parameters

- X *(np.ndarray) – Array of features*
- y *(np.ndarray) – Array of labels*
- w *(np.ndarray) – Array of weights.*
- ids *(np.ndarray) – Array of ids.*

Returns

- Xtrans *(np.ndarray) – Transformed array of features*
- ytrans *(np.ndarray) – Transformed array of labels*
- wtrans *(np.ndarray) – Transformed array of weights*
- idstrans *(np.ndarray) – Transformed array of ids*

untransform(z: numpy.ndarray) → numpy.ndarray

Undo transformation on provided data.

Parameters

z *(np.ndarray) – Transformed X or y array*

Returns

Array with min-max scaling undone.

Return type np.ndarray

transform(dataset: deepchem.data.datasets.Dataset, parallel: bool = False, out_dir: Optional[str] = None, **kwargs) → deepchem.data.datasets.Dataset

Transforms all internally stored data in dataset.

This method transforms all internal data in the provided dataset by using the Dataset.transform method. Note that this method adds X-transform, y-transform columns to metadata. Specified keyword arguments are passed on to Dataset.transform.

Parameters

- dataset *(dc.data.Dataset) – Dataset object to be transformed.*
- parallel *(bool, optional (default False)) – if True, use multiple processes to transform the dataset in parallel. For large datasets, this might be faster.*
- out_dir *(str, optional) – If out_dir is specified in kwargs and dataset is a DiskDataset, the output dataset will be written to the specified directory.*

Returns

A newly transformed Dataset object

Return type Dataset

transform_on_array(X: numpy.ndarray, y: numpy.ndarray, w: numpy.ndarray, ids: numpy.ndarray) → Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]

Transforms numpy arrays X, y, and w

DEPRECATED. Use transform_array instead.

Parameters
• \texttt{X (np.ndarray)} – Array of features
• \texttt{y (np.ndarray)} – Array of labels
• \texttt{w (np.ndarray)} – Array of weights.
• \texttt{ids (np.ndarray)} – Array of identifiers.

Returns
• \texttt{Xtrans (np.ndarray)} – Transformed array of features
• \texttt{ytrans (np.ndarray)} – Transformed array of labels
• \texttt{wtrans (np.ndarray)} – Transformed array of weights
• \texttt{idstrans (np.ndarray)} – Transformed array of ids

ClippingTransformer

class ClippingTransformer(
 transform_X: bool = False, transform_y: bool = False, dataset:
 Optional[deepchem.data.datasets.Dataset] = None, x_max: float = 5.0, y_max:
 float = 500.0)

Clip large values in datasets.

Examples

Let’s clip values from a synthetic dataset

```python
>>> n_samples = 10
>>> n_features = 3
>>> n_tasks = 1
>>> ids = np.arange(n_samples)
>>> X = np.random.rand(n_samples, n_features)
>>> y = np.zeros((n_samples, n_tasks))
>>> w = np.ones((n_samples, n_tasks))
>>> dataset = dc.data.NumpyDataset(X, y, w, ids)
>>> transformer = dc.trans.ClippingTransformer(transform\_X=True)
>>> dataset = transformer.transform(dataset)
```

__init__ (transform_X: bool = False, transform_y: bool = False, dataset:
 Optional[deepchem.data.datasets.Dataset] = None, x_max: float = 5.0, y_max:
 float = 500.0)

Initialize clipping transformation.

Parameters

• \texttt{transform_X (bool, optional (default False))} – Whether to transform X
• \texttt{transform_y (bool, optional (default False))} – Whether to transform y
• \texttt{dataset (dc.data.Dataset object, optional)} – Dataset to be transformed
• \texttt{x_max (float, optional)} – Maximum absolute value for X
• \texttt{y_max (float, optional)} – Maximum absolute value for y

Note: This transformer can transform \texttt{X} and \texttt{y} jointly, but does not transform \texttt{w}.
Raises `ValueError` – if `transform_w` is set.

`transform_array`:

```python
X: numpy.ndarray, y: numpy.ndarray, w: numpy.ndarray, ids: numpy.ndarray) →
Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]
```

Transform the data in a set of (X, y, w) arrays.

Parameters

- **X** (`np.ndarray`) – Array of Features
- **y** (`np.ndarray`) – Array of labels
- **w** (`np.ndarray`) – Array of weights
- **ids** (`np.ndarray`) – Array of ids.

Returns

- **X** (`np.ndarray`) – Transformed features
- **y** (`np.ndarray`) – Transformed tasks
- **w** (`np.ndarray`) – Transformed weights
- **idstrans** (`np.ndarray`) – Transformed array of ids

`untransform(z: numpy.ndarray) → numpy.ndarray`

Not implemented.

`transform`:

```python
dataset: deepchem.data.datasets.Dataset, parallel: bool = False, out_dir: Optional[str] = None,
**kwargs) → deepchem.data.datasets.Dataset
```

Transforms all internally stored data in dataset.

This method transforms all internal data in the provided dataset by using the `Dataset.transform` method. Note that this method adds X-transform, y-transform columns to metadata. Specified keyword arguments are passed on to `Dataset.transform`.

Parameters

- **dataset** (`dc.data.Dataset`) – Dataset object to be transformed.
- **parallel** (bool, optional (default False)) – if True, use multiple processes to transform the dataset in parallel. For large datasets, this might be faster.
- **out_dir** (str, optional) – If `out_dir` is specified in `kwargs` and `dataset` is a `DiskDataset`, the output dataset will be written to the specified directory.

Returns A newly transformed Dataset object

Return type `Dataset`

`transform_on_array`:

```python
X: numpy.ndarray, y: numpy.ndarray, w: numpy.ndarray, ids: numpy.ndarray) →
Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]
```

Transforms numpy arrays X, y, and w

DEPRECATED. Use `transform_array` instead.

Parameters

- **X** (`np.ndarray`) – Array of features
- **y** (`np.ndarray`) – Array of labels
- **w** (`np.ndarray`) – Array of weights.
- **ids** (`np.ndarray`) – Array of identifiers.
Returns

- \textbf{Xtrans} (np.ndarray) – Transformed array of features
- \textbf{ytrans} (np.ndarray) – Transformed array of labels
- \textbf{wtrans} (np.ndarray) – Transformed array of weights
- \textbf{idstrans} (np.ndarray) – Transformed array of ids

\textbf{LogTransformer}

Computes a logarithmic transformation

This transformer computes the transformation given by

\begin{verbatim}
>>> import numpy as np
>>> A = np.random.rand(10, 10)
>>> A = np.log(A + 1)
\end{verbatim}

Assuming that tasks/features are not specified. If specified, then transformations are only performed on specified tasks/features.

\textbf{Examples}

\begin{verbatim}
>>> n_samples = 10
>>> n_features = 3
>>> n_tasks = 1
>>> ids = np.arange(n_samples)
>>> X = np.random.rand(n_samples, n_features)
>>> y = np.zeros((n_samples, n_tasks))
>>> w = np.ones((n_samples, n_tasks))
>>> dataset = dc.data.NumpyDataset(X, y, w, ids)
>>> transformer = dc.trans.LogTransformer(transform_X=True)
>>> dataset = transformer.transform(dataset)
\end{verbatim}

\textbf{Note:} This class can only transform \textbf{X} or \textbf{y} and not \textbf{w}. So only one of \textbf{transform_X} or \textbf{transform_y} can be set.

\textbf{Raises} \textbf{ValueError} – if \textbf{transform_w} is set or \textbf{transform_X} and \textbf{transform_y} are both set.

Initialize log transformer.

\textbf{Parameters}

- \textbf{transform_X} (bool, optional (default False)) – Whether to transform \textbf{X}
- \textbf{transform_y} (bool, optional (default False)) – Whether to transform \textbf{y}
- \textbf{features} (list[Int]) – List of features indices to transform
tasks (list[str]) – List of task names to transform.

dataset (dc.data.Dataset object, optional (default None)) – Dataset to be transformed

transform_array (X: numpy.ndarray, y: numpy.ndarray, w: numpy.ndarray, ids: numpy.ndarray) →
Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]

Transform the data in a set of (X, y, w) arrays.

Parameters

- X (np.ndarray) – Array of features
- y (np.ndarray) – Array of labels
- w (np.ndarray) – Array of weights.
- ids (np.ndarray) – Array of weights.

Returns

- Xtrans (np.ndarray) – Transformed array of features
- ytrans (np.ndarray) – Transformed array of labels
- wtrans (np.ndarray) – Transformed array of weights
- idstrans (np.ndarray) – Transformed array of ids

untransform (z: numpy.ndarray) → numpy.ndarray

Undo transformation on provided data.

Parameters

- z (np.ndarray,) – Transformed X or y array

Returns

Array with a logarithmic transformation undone.

Return type

np.ndarray

transform (dataset: deepchem.data.datasets.Dataset, parallel: bool = False, out_dir: Optional[str] = None, **kwargs) → deepchem.data.datasets.Dataset

Transforms all internally stored data in dataset.

This method transforms all internal data in the provided dataset by using the Dataset.transform method. Note that this method adds X-transform, y-transform columns to metadata. Specified keyword arguments are passed on to Dataset.transform.

Parameters

- dataset (dc.data.Dataset) – Dataset object to be transformed.
- parallel (bool, optional (default False)) – if True, use multiple processes to transform the dataset in parallel. For large datasets, this might be faster.
- out_dir (str, optional) – If out_dir is specified in kwargs and dataset is a DiskDataset, the output dataset will be written to the specified directory.

Returns

A newly transformed Dataset object

Return type

Dataset

transform_on_array (X: numpy.ndarray, y: numpy.ndarray, w: numpy.ndarray, ids: numpy.ndarray) →
Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]

Transforms numpy arrays X, y, and w

DEPRECATED. Use transform_array instead.
Parameters

- **X** (np.ndarray) – Array of features
- **y** (np.ndarray) – Array of labels
- **w** (np.ndarray) – Array of weights.
- **ids** (np.ndarray) – Array of identifiers.

Returns

- **Xtrans** (np.ndarray) – Transformed array of features
- **ytrans** (np.ndarray) – Transformed array of labels
- **wtrans** (np.ndarray) – Transformed array of weights
- **idstrans** (np.ndarray) – Transformed array of ids

CDFTransformer

class CDFTransformer(transform_X: bool = False, transform_y: bool = False, dataset: Optional[deepchem.data.datasets.Dataset] = None, bins: int = 2)

Histograms the data and assigns values based on sorted list.

Acts like a Cumulative Distribution Function (CDF). If given a dataset of samples from a continuous distribution computes the CDF of this dataset and replaces values with their corresponding CDF values.

Examples

Let’s look at an example where we transform only features.

```python
>>> N = 10
>>> n_feat = 5
>>> n_bins = 100
```

Note that we’re using 100 bins for our CDF histogram

```python
>>> import numpy as np
>>> X = np.random.normal(size=(N, n_feat))
>>> y = np.random.randint(2, size=(N,))
>>> dataset = dc.data.NumpyDataset(X, y)
>>> cdftrans = dc.trans.CDFTransformer(transform_X=True, dataset=dataset, bins=n_bins)
>>> dataset = cdftrans.transform(dataset)
```

Note that you can apply this transformation to y as well

```python
>>> X = np.random.normal(size=(N, n_feat))
>>> y = np.random.normal(size=(N,))
>>> dataset = dc.data.NumpyDataset(X, y)
>>> cdftrans = dc.trans.CDFTransformer(transform_y=True, dataset=dataset, bins=n_bins)
>>> dataset = cdftrans.transform(dataset)
```

Initialize this transformer.

Parameters

• **transform_X** (bool, optional (default False)) – Whether to transform X
• **transform_y** (bool, optional (default False)) – Whether to transform y
• **dataset** (dc.data.Dataset object, optional (default None)) – Dataset to be transformed
• **bins** (int, optional (default 2)) – Number of bins to use when computing histogram.

transform_array(X: numpy.ndarray, y: numpy.ndarray, w: numpy.ndarray, ids: numpy.ndarray) →

TUPLE[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]

Performs CDF transform on data.

Parameters

• **X** (np.ndarray) – Array of features
• **y** (np.ndarray) – Array of labels
• **w** (np.ndarray) – Array of weights.
• **ids** (np.ndarray) – Array of identifiers

Returns

• **Xtrans** (np.ndarray) – Transformed array of features
• **ytrans** (np.ndarray) – Transformed array of labels
• **wtrans** (np.ndarray) – Transformed array of weights
• **idstrans** (np.ndarray) – Transformed array of ids

untransform(z: numpy.ndarray) → numpy.ndarray

Undo transformation on provided data.

Note that this transformation is only undone for y.

Parameters **z** (np.ndarray) – Transformed y array

Returns Array with the transformation undone.

Return type np.ndarray

transform(dataset: deepchem.data.datasets.Dataset, parallel: bool = False, out_dir: Optional[str] = None, **kwargs) → deepchem.data.datasets.Dataset

Transforms all internally stored data in dataset.

This method transforms all internal data in the provided dataset by using the Dataset.transform method. Note that this method adds X-transform, y-transform columns to metadata. Specified keyword arguments are passed on to Dataset.transform.

Parameters

• **dataset** (dc.data.Dataset) – Dataset object to be transformed.
• **parallel** (bool, optional (default False)) – if True, use multiple processes to transform the dataset in parallel. For large datasets, this might be faster.
- **out_dir** *(str, optional)* – If `out_dir` is specified in `kwargs` and `dataset` is a `DiskDataset`, the output dataset will be written to the specified directory.

Returns A newly transformed Dataset object

Return type `Dataset`

transform_on_array *(X: numpy.ndarray, y: numpy.ndarray, w: numpy.ndarray, ids: numpy.ndarray) → Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]*)

Transforms numpy arrays X, y, and w

DEPRECATED. Use `transform_array` instead.

Parameters

- **X** *(np.ndarray)* – Array of features
- **y** *(np.ndarray)* – Array of labels
- **w** *(np.ndarray)* – Array of weights.
- **ids** *(np.ndarray)* – Array of identifiers.

Returns

- **Xtrans** *(np.ndarray)* – Transformed array of features
- **ytrans** *(np.ndarray)* – Transformed array of labels
- **wtrans** *(np.ndarray)* – Transformed array of weights
- **idstrans** *(np.ndarray)* – Transformed array of ids

PowerTransformer

class PowerTransformer(transform_X: bool = False, transform_y: bool = False, dataset: Optional[deepchem.data.datasets.Dataset] = None, powers: List[int] = [1])

Takes power n transforms of the data based on an input vector.

Computes the specified powers of the dataset. This can be useful if you’re looking to add higher order features of the form \(x_i^2\), \(x_i^3\) etc. to your dataset.

Examples

Let’s look at an example where we transform only X.

```
>>> N = 10
>>> n_feat = 5
>>> powers = [1, 2, 0.5]
```

So in this example, we’re taking the identity, squares, and square roots. Now let’s construct our matrices

```
>>> import numpy as np
>>> X = np.random.rand(N, n_feat)
>>> y = np.random.normal(size=(N,))
>>> dataset = dc.data.NumpyDataset(X, y)
>>> trans = dc.trans.PowerTransformer(transform_X=True, dataset=dataset,␣
         powers=powers)
>>> dataset = trans.transform(dataset)
```
Let’s now look at an example where we transform y. Note that the y transform expands out the feature dimensions of y the same way it does for X so this transform is only well defined for singletask datasets.

```python
>>> import numpy as np
>>> X = np.random.rand(N, n_feat)
>>> y = np.random.rand(N)
>>> dataset = dc.data.NumpyDataset(X, y)
>>> trans = dc.trans.PowerTransformer(transform_y=True, dataset=dataset,
                                           powers=powers)
>>> dataset = trans.transform(dataset)
```

__init__

(\(transform_X: bool = False, transform_y: bool = False, dataset: Optional[deepchem.data.datasets.Dataset] = None, powers: List[int] = [1]\))

Initialize this transformer

Parameters

- \(transform_X (bool, optional (default False))\) – Whether to transform X
- \(transform_y (bool, optional (default False))\) – Whether to transform y
- \(dataset (dc.data.Dataset object, optional (default None))\) – Dataset to be transformed. Note that this argument is ignored since \(PowerTransformer\) doesn’t require it to be specified. (\(PowerTransformer\) doesn’t require it to be)
- \(powers: list[int], optional (default [1])\) The list of powers of features/labels to compute.

transform_array

(\(X: numpy.ndarray, y: numpy.ndarray, w: numpy.ndarray, ids: numpy.ndarray) \(\rightarrow\) Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray])

Performs power transform on data.

Parameters

- \(X (np.ndarray)\) – Array of features
- \(y (np.ndarray)\) – Array of labels
- \(w (np.ndarray)\) – Array of weights.
- \(ids (np.ndarray)\) – Array of identifiers.

Returns

- \(Xtrans (np.ndarray)\) – Transformed array of features
- \(ytrans (np.ndarray)\) – Transformed array of labels
- \(wtrans (np.ndarray)\) – Transformed array of weights
- \(idstrans (np.ndarray)\) – Transformed array of ids

untransform

(\(z: numpy.ndarray) \(\rightarrow\) numpy.ndarray)

Undo transformation on provided data.

Parameters \(z (np.ndarray)\) – Transformed y array

Returns Array with the power transformation undone.

Return type np.ndarray

transform

(\(dataset: deepchem.data.datasets.Dataset, parallel: bool = False, out_dir: Optional[str] = None,
\(**kwargs) \(\rightarrow\) deepchem.data.datasets.Dataset\))
Transforms all internally stored data in dataset.

This method transforms all internal data in the provided dataset by using the `Dataset.transform` method. Note that this method adds X-transform, y-transform columns to metadata. Specified keyword arguments are passed on to `Dataset.transform`.

Parameters

- **dataset** (`dc.data.Dataset`) – Dataset object to be transformed.
- **parallel** (`bool`, optional (default False)) – if True, use multiple processes to transform the dataset in parallel. For large datasets, this might be faster.
- **out_dir** (`str`, optional) – If `out_dir` is specified in `kwargs` and `dataset` is a `DiskDataset`, the output dataset will be written to the specified directory.

Returns A newly transformed Dataset object

Return type `Dataset`

```python
transform_on_array(X: numpy.ndarray, y: numpy.ndarray, w: numpy.ndarray, ids: numpy.ndarray) →
Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]
```

Transforms numpy arrays X, y, and w

DEPRECATED. Use `transform_array` instead.

Parameters

- **X** (`np.ndarray`) – Array of features
- **y** (`np.ndarray`) – Array of labels
- **w** (`np.ndarray`) – Array of weights.
- **ids** (`np.ndarray`) – Array of identifiers.

Returns

- **Xtrans** (`np.ndarray`) – Transformed array of features
- **ytrans** (`np.ndarray`) – Transformed array of labels
- **wtrans** (`np.ndarray`) – Transformed array of weights
- **idstrans** (`np.ndarray`) – Transformed array of ids

BalancingTransformer

class BalancingTransformer(dataset: deepchem.data.datasets.Dataset)

Balance positive and negative (or multiclass) example weights.

This class balances the sample weights so that the sum of all example weights from all classes is the same. This can be useful when you’re working on an imbalanced dataset where there are far fewer examples of some classes than others.
Examples

Here’s an example for a binary dataset.

```python
>>> n_samples = 10
>>> n_features = 3
>>> n_tasks = 1
>>> n_classes = 2
>>> ids = np.arange(n_samples)
>>> X = np.random.rand(n_samples, n_features)
>>> y = np.random.randint(n_classes, size=(n_samples, n_tasks))
>>> w = np.ones((n_samples, n_tasks))
>>> dataset = dc.data.NumpyDataset(X, y, w, ids)
>>> transformer = dc.trans.BalancingTransformer(dataset=dataset)
>>> dataset = transformer.transform(dataset)
```

And here’s a multiclass dataset example.

```python
>>> n_samples = 50
>>> n_features = 3
>>> n_tasks = 1
>>> n_classes = 5
>>> ids = np.arange(n_samples)
>>> X = np.random.rand(n_samples, n_features)
>>> y = np.random.randint(n_classes, size=(n_samples, n_tasks))
>>> w = np.ones((n_samples, n_tasks))
>>> dataset = dc.data.NumpyDataset(X, y, w, ids)
>>> transformer = dc.trans.BalancingTransformer(dataset=dataset)
>>> dataset = transformer.transform(dataset)
```

See also:

`deepchem.trans.DuplicateBalancingTransformer` Balance by duplicating samples.

Note: This transformer is only meaningful for classification datasets where y takes on a limited set of values. This class can only transform w and does not transform X or y.

Raises `ValueError` – if `transform_X` or `transform_y` are set. Also raises or if y or w aren’t of shape \((N,\) or \((N, n_tasks)\).

__init__ *(dataset: deepchem.data.datasets.Dataset)*

Initializes transformation based on dataset statistics.

Parameters

- `transform_X` *(bool, optional (default False))* – Whether to transform X
- `transform_y` *(bool, optional (default False))* – Whether to transform y
- `transform_w` *(bool, optional (default False))* – Whether to transform w
- `transform_ids` *(bool, optional (default False))* – Whether to transform ids
- `dataset` *(dc.data.Dataset object, optional (default None))* – Dataset to be transformed
transform_array *(X: numpy.ndarray, y: numpy.ndarray, w: numpy.ndarray, ids: numpy.ndarray) → Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]*

Transform the data in a set of (X, y, w) arrays.

Parameters
- **X** *(np.ndarray)* – Array of features
- **y** *(np.ndarray)* – Array of labels
- **w** *(np.ndarray)* – Array of weights.
- **ids** *(np.ndarray)* – Array of weights.

Returns
- **Xtrans** *(np.ndarray)* – Transformed array of features
- **ytrans** *(np.ndarray)* – Transformed array of labels
- **wtrans** *(np.ndarray)* – Transformed array of weights
- **idstrans** *(np.ndarray)* – Transformed array of ids

transform *(dataset: deepchem.data.datasets.Dataset, parallel: bool = False, out_dir: Optional[str] = None, **kwargs) → deepchem.data.datasets.Dataset*

Transforms all internally stored data in dataset.

This method transforms all internal data in the provided dataset by using the `Dataset.transform` method. Note that this method adds X-transform, y-transform columns to metadata. Specified keyword arguments are passed on to `Dataset.transform`.

Parameters
- **dataset** *(dc.data.Dataset)* – Dataset object to be transformed.
- **parallel** *(bool, optional (default False))* – if True, use multiple processes to transform the dataset in parallel. For large datasets, this might be faster.
- **out_dir** *(str, optional)* – If `out_dir` is specified in `kwargs` and `dataset` is a `DiskDataset`, the output dataset will be written to the specified directory.

Returns A newly transformed Dataset object

Return type Dataset

transform_on_array *(X: numpy.ndarray, y: numpy.ndarray, w: numpy.ndarray, ids: numpy.ndarray) → Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]*

Transforms numpy arrays X, y, and w

DEPRECATED. Use `transform_array` instead.

Parameters
- **X** *(np.ndarray)* – Array of features
- **y** *(np.ndarray)* – Array of labels
- **w** *(np.ndarray)* – Array of weights.
- **ids** *(np.ndarray)* – Array of identifiers.

Returns
- **Xtrans** *(np.ndarray)* – Transformed array of features
- **ytrans** *(np.ndarray)* – Transformed array of labels
• **wtrans** (*np.ndarray*) – Transformed array of weights
• **idstrans** (*np.ndarray*) – Transformed array of ids

untransform (*transformed: numpy.ndarray*) → *numpy.ndarray*
Reverses stored transformation on provided data.
Depending on whether *transform_X* or *transform_y* or *transform_w* was set, this will perform different un-transformations. Note that this method may not always be defined since some transformations aren’t 1-1.

Parameters
transformed (*np.ndarray*) – Array which was previously transformed by this class.

DuplicateBalancingTransformer

class **DuplicateBalancingTransformer**(*dataset: deepchem.data.datasets.Dataset*)
Balance binary or multiclass datasets by duplicating rarer class samples.

This class balances a dataset by duplicating samples of the rarer class so that the sum of all example weights from all classes is the same. (Up to integer rounding of course). This can be useful when you’re working on an imbalanced dataset where there are far fewer examples of some classes than others.

This class differs from **BalancingTransformer** in that it actually duplicates rarer class samples rather than just increasing their sample weights. This may be more friendly for models that are numerically fragile and can’t handle imbalanced example weights.

Examples

Here’s an example for a binary dataset.

```python
>>> n_samples = 10
>>> n_features = 3
>>> n_tasks = 1
>>> n_classes = 2
>>> import deepchem as dc
>>> import numpy as np
>>> ids = np.arange(n_samples)
>>> X = np.random.rand(n_samples, n_features)
>>> y = np.random.randint(n_classes, size=(n_samples, n_tasks))
>>> w = np.ones((n_samples, n_tasks))
>>> dataset = dc.data.NumpyDataset(X, y, w, ids)
>>> transformer = dc.trans.DuplicateBalancingTransformer(dataset=dataset)
>>> dataset = transformer.transform(dataset)
```

And here’s a multiclass dataset example.

```python
>>> n_samples = 50
>>> n_features = 3
>>> n_tasks = 1
>>> n_classes = 5
>>> ids = np.arange(n_samples)
>>> X = np.random.rand(n_samples, n_features)
>>> y = np.random.randint(n_classes, size=(n_samples, n_tasks))
>>> w = np.ones((n_samples, n_tasks))
```

(continues on next page)


```python
>>> dataset = dc.data.NumpyDataset(X, y, w, ids)
>>> transformer = dc.trans.DuplicateBalancingTransformer(dataset=dataset)
>>> dataset = transformer.transform(dataset)
```

See also:

Note: This transformer is only well-defined for singletask datasets. (Since examples are actually duplicated, there’s no meaningful way to duplicate across multiple tasks in a way that preserves the balance.)

This transformer is only meaningful for classification datasets where y takes on a limited set of values. This class transforms all of X, y, w, ids.

Raises **ValueError**

```python
__init__(dataset: deepchem.data.datasets.Dataset)
```

Initializes transformation based on dataset statistics.

Parameters

- `transform_X` *(bool, optional (default False))* – Whether to transform X
- `transform_y` *(bool, optional (default False))* – Whether to transform y
- `transform_w` *(bool, optional (default False))* – Whether to transform w
- `transform_ids` *(bool, optional (default False))* – Whether to transform ids
- `dataset` *(dc.data.Dataset object, optional (default None))* – Dataset to be transformed

transform_array *(X: numpy.ndarray, y: numpy.ndarray, w: numpy.ndarray, ids: numpy.ndarray) → Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]*)

Transform the data in a set of (X, y, w, id) arrays.

Parameters

- `X` *(np.ndarray)* – Array of features
- `y` *(np.ndarray)* – Array of labels
- `w` *(np.ndarray)* – Array of weights.
- `ids` *(np.ndarray)* – Array of identifiers

Returns

- `Xtrans` *(np.ndarray)* – Transformed array of features
- `ytrans` *(np.ndarray)* – Transformed array of labels
- `wtrans` *(np.ndarray)* – Transformed array of weights
- `idtrans` *(np.ndarray)* – Transformed array of identifiers
transform *(dataset: deepchem.data.datasets.Dataset, parallel: bool = False, out_dir: Optional[str] = None, **kwargs) → deepchem.data.datasets.Dataset*

Transforms all internally stored data in dataset.

This method transforms all internal data in the provided dataset by using the Dataset.transform method. Note that this method adds X-transform, y-transform columns to metadata. Specified keyword arguments are passed on to Dataset.transform.

Parameters

- **dataset** (*dc.data.Dataset*) - Dataset object to be transformed.
- **parallel** (*bool, optional (default False)*) - if True, use multiple processes to transform the dataset in parallel. For large datasets, this might be faster.
- **out_dir** (*str, optional*) - If out_dir is specified in kwargs and dataset is a DiskDataset, the output dataset will be written to the specified directory.

Returns A newly transformed Dataset object

Return type *Dataset*

transform_on_array *(X: numpy.ndarray, y: numpy.ndarray, w: numpy.ndarray, ids: numpy.ndarray) → Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]*

Transforms numpy arrays X, y, and w

DEPRECATED. Use transform_array instead.

Parameters

- **X** (*np.ndarray*) - Array of features
- **y** (*np.ndarray*) - Array of labels
- **w** (*np.ndarray*) - Array of weights.
- **ids** (*np.ndarray*) - Array of identifiers.

Returns

- **Xtrans** (*np.ndarray*) - Transformed array of features
- **ytrans** (*np.ndarray*) - Transformed array of labels
- **wtrans** (*np.ndarray*) - Transformed array of weights
- **idstrans** (*np.ndarray*) - Transformed array of ids

untransform *(transformed: numpy.ndarray) → numpy.ndarray*

Reverses stored transformation on provided data.

Depending on whether transform_X or transform_y or transform_w was set, this will perform different un-transformations. Note that this method may not always be defined since some transformations aren’t 1-1.

Parameters **transformed** (*np.ndarray*) - Array which was previously transformed by this class.
ImageTransformer

class ImageTransformer(size: Tuple[int, int])
Convert an image into width, height, channel

Note: This class require Pillow to be installed.

__init__(size: Tuple[int, int])
Initializes ImageTransformer.
Parameters size (Tuple[int, int]) – The image size, a tuple of (width, height).

transform_array(X, y, w)
Transform the data in a set of (X, y, w, ids) arrays.
Parameters
• X (np.ndarray) – Array of features
• y (np.ndarray) – Array of labels
• w (np.ndarray) – Array of weights.
• ids (np.ndarray) – Array of identifiers.

Returns
• Xtrans (np.ndarray) – Transformed array of features
• ytrans (np.ndarray) – Transformed array of labels
• wtrans (np.ndarray) – Transformed array of weights
• idstrans (np.ndarray) – Transformed array of ids

transform(dataset: deepchem.data.datasets.Dataset, parallel: bool = False, out_dir: Optional[str] = None, **kwargs) → deepchem.data.datasets.Dataset
Transforms all internally stored data in dataset.
This method transforms all internal data in the provided dataset by using the Dataset.transform method. Note that this method adds X-transform, y-transform columns to metadata. Specified keyword arguments are passed on to Dataset.transform.

Parameters
• dataset (dc.data.Dataset) – Dataset object to be transformed.
• parallel (bool, optional (default False)) – if True, use multiple processes to transform the dataset in parallel. For large datasets, this might be faster.
• out_dir (str, optional) – If out_dir is specified in kwargs and dataset is a DiskDataset, the output dataset will be written to the specified directory.

Returns A newly transformed Dataset object
Return type Dataset

transform_on_array(X: numpy.ndarray, y: numpy.ndarray, w: numpy.ndarray, ids: numpy.ndarray) → Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]
Transforms numpy arrays X, y, and w
DEPRECATED. Use transform_array instead.
Parameters

• X (np.ndarray) – Array of features
• y (np.ndarray) – Array of labels
• w (np.ndarray) – Array of weights.
• ids (np.ndarray) – Array of identifiers.

Returns

• Xtrans (np.ndarray) – Transformed array of features
• ytrans (np.ndarray) – Transformed array of labels
• wtrans (np.ndarray) – Transformed array of weights
• idstrans (np.ndarray) – Transformed array of ids

untransform (transformed: numpy.ndarray) → numpy.ndarray

Reverses stored transformation on provided data.

Depending on whether transform_X or transform_y or transform_w was set, this will perform different
un-transformations. Note that this method may not always be defined since some transformations aren’t
1-1.

Parameters

transformed (np.ndarray) – Array which was previously transformed by this
class.

FeaturizationTransformer
class FeaturizationTransformer (dataset: Optional[deepchem.data.datasets.Dataset] = None, featurizer:
Optional[deepchem.feat.base_classes.Featurizer] = None)

A transformer which runs a featurizer over the X values of a dataset.

Datasets used by this transformer must be compatible with the internal featurizer. The idea of this transformer
is that it allows for the application of a featurizer to an existing dataset.

Examples

```python
>>> smiles = ["C", "CC"]
>>> X = np.array(smiles)
>>> y = np.array([1, 0])
>>> dataset = dc.data.NumpyDataset(X, y)
>>> trans = dc.trans.FeaturizationTransformer(dataset, dc.feat.
˓→CircularFingerprint())
>>> dataset = trans.transform(dataset)
```

__init__ (dataset: Optional[deepchem.data.datasets.Dataset] = None, featurizer:
Optional[deepchem.feat.base_classes.Featurizer] = None)

Initialization of FeaturizationTransformer

Parameters

• dataset (dc.data.Dataset object, optional (default None)) – Dataset to be transformed
• **featurizer** (*dc.feat.Featurizer object, optional (default None)) – Featurizer applied to perform transformations.

transform_array(*X: numpy.ndarray, y: numpy.ndarray, w: numpy.ndarray, ids: numpy.ndarray*) → Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]

Transforms arrays of rdkit mols using internal featurizer.

Parameters

- **X** (*np.ndarray*) – Array of features
- **y** (*np.ndarray*) – Array of labels
- **w** (*np.ndarray*) – Array of weights.
- **ids** (*np.ndarray*) – Array of identifiers.

Returns

- **Xtrans** (*np.ndarray*) – Transformed array of features
- **ytrans** (*np.ndarray*) – Transformed array of labels
- **wtrans** (*np.ndarray*) – Transformed array of weights
- **idstrans** (*np.ndarray*) – Transformed array of ids

transform(*dataset: deepchem.data.datasets.Dataset, parallel: bool = False, out_dir: Optional[str] = None, **kwargs*) → *deepchem.data.datasets.Dataset*

Transforms all internally stored data in dataset.

This method transforms all internal data in the provided dataset by using the Dataset.transform method. Note that this method adds X-transform, y-transform columns to metadata. Specified keyword arguments are passed on to Dataset.transform.

Parameters

- **dataset** (*dc.data.Dataset*) – Dataset object to be transformed.
- **parallel** (*bool, optional (default False)*) – if True, use multiple processes to transform the dataset in parallel. For large datasets, this might be faster.
- **out_dir** (*str, optional*) – If out_dir is specified in kwargs and dataset is a DiskDataset, the output dataset will be written to the specified directory.

Returns A newly transformed Dataset object

Return type *Dataset*

transform_on_array(*X: numpy.ndarray, y: numpy.ndarray, w: numpy.ndarray, ids: numpy.ndarray*) → Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]

Transforms numpy arrays X, y, and w

DEPRECATED. Use transform_array instead.

Parameters

- **X** (*np.ndarray*) – Array of features
- **y** (*np.ndarray*) – Array of labels
- **w** (*np.ndarray*) – Array of weights.
- **ids** (*np.ndarray*) – Array of identifiers.

Returns
• Xtrans (np.ndarray) – Transformed array of features
• ytrans (np.ndarray) – Transformed array of labels
• wtrans (np.ndarray) – Transformed array of weights
• idstrans (np.ndarray) – Transformed array of ids

untransform
(transformed: numpy.ndarray) → numpy.ndarray
Reverses stored transformation on provided data.
Depending on whether transform_X or transform_y or transform_w was set, this will perform different un-transformations. Note that this method may not always be defined since some transformations aren’t 1-1.

Parameters transformed (np.ndarray) – Array which was previously transformed by this class.

3.11.2 Specified Usecase Transformers

CoulombFitTransformer

class CoulombFitTransformer(dataset: deepchem.data.datasets.Dataset)
Performs randomization and binarization operations on batches of Coulomb Matrix features during fit.

Examples

```python
>>> n_samples = 10
>>> n_features = 3
>>> n_tasks = 1
>>> ids = np.arange(n_samples)
>>> X = np.random.rand(n_samples, n_features, n_features)
>>> y = np.zeros((n_samples, n_tasks))
>>> w = np.ones((n_samples, n_tasks))
>>> dataset = dc.data.NumpyDataset(X, y, w, ids)
>>> fit_transformers = [dc.trans.CoulombFitTransformer(dataset)]
>>> model = dc.models.MultitaskFitTransformRegressor(n_tasks,...
... [n_features, n_features], batch_size=n_samples, fit_transformers=fit_ ...
... transformers, n_evals=1)
>>> print(model.n_features)
12
```

__init__
(dataset: deepchem.data.datasets.Dataset)
Initializes CoulombFitTransformer.

Parameters dataset (dc.data.Dataset) – Dataset object to be transformed.

realize
(X: numpy.ndarray) → numpy.ndarray
Randomize features.

Parameters X (np.ndarray) – Features

Returns X – Randomized features

Return type np.ndarray
normalize($X: \text{numpy.ndarray}$) \rightarrow numpy.ndarray

Normalize features.

Parameters
- X (np.ndarray) – Features

Returns
- X – Normalized features

Return type
- np.ndarray

expand($X: \text{numpy.ndarray}$) \rightarrow numpy.ndarray

Binarize features.

Parameters
- X (np.ndarray) – Features

Returns
- X – Binarized features

Return type
- np.ndarray

X-transform($X: \text{numpy.ndarray}$) \rightarrow numpy.ndarray

Perform Coulomb Fit transform on features.

Parameters
- X (np.ndarray) – Features

Returns
- X – Transformed features

Return type
- np.ndarray

transform_array($X: \text{numpy.ndarray}$, $y: \text{numpy.ndarray}$, $w: \text{numpy.ndarray}$, $ids: \text{numpy.ndarray}$) \rightarrow

Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]

Performs randomization and binarization operations on data.

Parameters
- X (np.ndarray) – Array of features
- y (np.ndarray) – Array of labels
- w (np.ndarray) – Array of weights.
- ids (np.ndarray) – Array of identifiers.

Returns
- X-trans (np.ndarray) – Transformed array of features
- y-trans (np.ndarray) – Transformed array of labels
- w-trans (np.ndarray) – Transformed array of weights
- $idstrans$ (np.ndarray) – Transformed array of ids

untransform($z: \text{numpy.ndarray}$) \rightarrow numpy.ndarray

Not implemented.

transform($\text{dataset: deepchem.data.datasets.Dataset}$, $\text{parallel: bool = False}$, $\text{out_dir: Optional[str] = None}$, **kwargs) \rightarrow deepchem.data.datasets.Dataset

Transforms all internally stored data in dataset.

This method transforms all internal data in the provided dataset by using the Dataset.transform method. Note that this method adds X-transform, y-transform columns to metadata. Specified keyword arguments are passed on to Dataset.transform.

Parameters
- dataset (dc.data.Dataset) – Dataset object to be transformed.
transform_on_array

Parameters

- `X` (np.ndarray) – Array of features
- `y` (np.ndarray) – Array of labels
- `w` (np.ndarray) – Array of weights.
- `ids` (np.ndarray) – Array of identifiers.

Returns

- `Xtrans` (np.ndarray) – Transformed array of features
- `ytrans` (np.ndarray) – Transformed array of labels
- `wtrans` (np.ndarray) – Transformed array of weights
- `idstrans` (np.ndarray) – Transformed array of ids

IRVTransformer

class IRVTransformer(K: int, n_tasks: int, dataset: deepchem.data.datasets.Dataset)

Performs transform from ECFP to IRV features (K nearest neighbors).

This transformer is required by MultitaskIRVClassifier as a preprocessing step before training.

Examples

Let’s start by defining the parameters of the dataset we’re about to transform.

```python
>>> n_feat = 128
>>> N = 20
>>> n_tasks = 2
```

Let’s now make our dataset object

```python
>>> import numpy as np
>>> import deepchem as dc
>>> X = np.random.randint(2, size=(N, n_feat))
>>> y = np.zeros((N, n_tasks))
>>> w = np.ones((N, n_tasks))
>>> dataset = dc.data.NumpyDataset(X, y, w)
```
And let's apply our transformer with 10 nearest neighbors.

```python
>>> K = 10
>>> trans = dc.trans.IRVTransformer(K, n_tasks, dataset)
>>> dataset = trans.transform(dataset)
```

Note: This class requires TensorFlow to be installed.

__init__

Declaration:

```python
__init__(K: int, n_tasks: int, dataset: deepchem.data.datasets.Dataset)
```

Initializes IRVTransformer.

Parameters

- **K** *(int)* – number of nearest neighbours being count
- **n_tasks** *(int)* – number of tasks
- **dataset** *(dc.data.Dataset object)* – train_dataset

realize

Declaration:

```python
realize(similarity: numpy.ndarray, y: numpy.ndarray, w: numpy.ndarray) → List
```

find samples with top ten similarity values in the reference dataset

Parameters

- **similarity** *(np.ndarray)* – similarity value between target dataset and reference dataset should have size of (n_samples_in_target, n_samples_in_reference)
- **y** *(np.array)* – labels for a single task
- **w** *(np.array)* – weights for a single task

Returns

- **features** – n_samples * np.array of size (2*K,) each array includes K similarity values and corresponding labels

Return type *list*

X_transform

Declaration:

```python
X_transform(X_target: numpy.ndarray) → numpy.ndarray
```

Calculate similarity between target dataset(X_target) and reference dataset(X): #(1 in intersection)/#(1 in union)

similarity = (X_target intersect X)/(X_target union X)

Parameters

- **X_target** *(np.ndarray)* – fingerprints of target dataset should have same length with X in the second axis

Returns

- **X_target** – features of size(batch_size, 2*K*n_tasks)

Return type *np.ndarray*

static matrix_mul

Declaration:

```python
static matrix_mul(X1, X2, shard_size=5000)
```

Calculate matrix multiplication for big matrix, X1 and X2 are sliced into pieces with shard_size rows(columns) then multiplied together and concatenated to the proper size

Transforms a given dataset

Parameters

- **dataset** *(Dataset)* – Dataset to transform
• **parallel** *(bool, optional, (default False))* – Whether to parallelize this transformation. Currently ignored.

• **out_dir** *(str, optional (default None))* – Directory to write resulting dataset.

Returns

• DiskDataset or NumpyDataset

• Dataset object that is transformed.

untransform *(z: numpy.ndarray) → numpy.ndarray**

Not implemented.

transform_array *(X: numpy.ndarray, y: numpy.ndarray, w: numpy.ndarray, ids: numpy.ndarray) →*

Transform the data in a set of (X, y, w, ids) arrays.

Parameters

• **X** *(np.ndarray)* – Array of features

• **y** *(np.ndarray)* – Array of labels

• **w** *(np.ndarray)* – Array of weights.

• **ids** *(np.ndarray)* – Array of identifiers.

Returns

• **Xtrans** *(np.ndarray)* – Transformed array of features

• **ytrans** *(np.ndarray)* – Transformed array of labels

• **wtrans** *(np.ndarray)* – Transformed array of weights

• **idstrans** *(np.ndarray)* – Transformed array of ids

transform_on_array *(X: numpy.ndarray, y: numpy.ndarray, w: numpy.ndarray, ids: numpy.ndarray) →*

Transforms numpy arrays X, y, and w

DEPRECATED. Use transform_array instead.

Parameters

• **X** *(np.ndarray)* – Array of features

• **y** *(np.ndarray)* – Array of labels

• **w** *(np.ndarray)* – Array of weights.

• **ids** *(np.ndarray)* – Array of identifiers.

Returns

• **Xtrans** *(np.ndarray)* – Transformed array of features

• **ytrans** *(np.ndarray)* – Transformed array of labels

• **wtrans** *(np.ndarray)* – Transformed array of weights

• **idstrans** *(np.ndarray)* – Transformed array of ids
DAGTransformer

class DAGTransformer(max_atoms: int = 50)
 Performs transform from ConvMol adjacency lists to DAG calculation orders
 This transformer is used by DAGModel before training to transform its inputs to the correct shape. This expansion
 turns a molecule with \(n \) atoms into \(n \) DAGs, each with root at a different atom in the molecule.

Examples

Let’s transform a small dataset of molecules.

```python
>>> N = 10
>>> n_feat = 5
>>> import numpy as np
>>> feat = dc.feat.ConvMolFeaturizer()
>>> X = feat(["C", "CC"])
>>> y = np.random.rand(N)
>>> dataset = dc.data.NumpyDataset(X, y)
>>> trans = dc.trans.DAGTransformer(max_atoms=5)
>>> dataset = trans.transform(dataset)
```

__init__ (max_atoms: int = 50)
 Initializes DAGTransformer.
 Parameters max_atoms (int, optional (Default 50)) – Maximum number of atoms to allow

transform_array(X: numpy.ndarray, y: numpy.ndarray, w: numpy.ndarray, ids: numpy.ndarray) →
 Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]
 Transform the data in a set of (X, y, w, ids) arrays.
 Parameters
 • X (np.ndarray) – Array of features
 • y (np.ndarray) – Array of labels
 • w (np.ndarray) – Array of weights.
 • ids (np.ndarray) – Array of identifiers.
 Returns
 • Xtrans (np.ndarray) – Transformed array of features
 • ytrans (np.ndarray) – Transformed array of labels
 • wtrans (np.ndarray) – Transformed array of weights
 • idstrans (np.ndarray) – Transformed array of ids

untransform(z: numpy.ndarray) → numpy.ndarray
 Not implemented.

UG_to_DAG(sample: deepchem.feat.mol_graphs.ConvMol) → List
 This function generates the DAGs for a molecule
 Parameters sample (ConvMol) – Molecule to transform
 Returns List of parent adjacency matrices
Return type List

transform(dataset: deepchem.data.datasets.Dataset, parallel: bool = False, out_dir: Optional[str] = None, **kwargs) → deepchem.data.datasets.Dataset

Transforms all internally stored data in dataset.

This method transforms all internal data in the provided dataset by using the Dataset.transform method. Note that this method adds X-transform, y-transform columns to metadata. Specified keyword arguments are passed on to Dataset.transform.

Parameters

• dataset (dc.data.Dataset) – Dataset object to be transformed.

• parallel (bool, optional (default False)) – if True, use multiple processes to transform the dataset in parallel. For large datasets, this might be faster.

• out_dir (str, optional) – If out_dir is specified in kwargs and dataset is a DiskDataset, the output dataset will be written to the specified directory.

Returns A newly transformed Dataset object

Return type Dataset

transform_on_array(X: numpy.ndarray, y: numpy.ndarray, w: numpy.ndarray, ids: numpy.ndarray) → Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]

Transforms numpy arrays X, y, and w

DEPRECATED. Use transform_array instead.

Parameters

• X (np.ndarray) – Array of features

• y (np.ndarray) – Array of labels

• w (np.ndarray) – Array of weights.

• ids (np.ndarray) – Array of identifiers.

Returns

• Xtrans (np.ndarray) – Transformed array of features

• ytrans (np.ndarray) – Transformed array of labels

• wtrans (np.ndarray) – Transformed array of weights

• idstrans (np.ndarray) – Transformed array of ids

RxnSplitTransformer

class RxnSplitTransformer(sep_reagent: bool = True, dataset: Optional[deepchem.data.datasets.Dataset] = None)

Splits the reaction SMILES input into the source and target strings required for machine translation tasks.

The input is expected to be in the form reactant>reagent>product. The source string would be reactants>reagents and the target string would be the products.

The transformer can also separate the reagents from the reactants for a mixed training mode. During mixed training, the source string is transformed from reactants>reagent to reactants.reagent> . This can be toggled (default True) by setting the value of sep_reagent while calling the transformer.
Examples

```python
>>> # When mixed training is toggled.
>>> import numpy as np
>>> from deepchem.trans.transformers import RxnSplitTransformer

reactions = np.array("CC(C)C[\text{Mg\text{\textdagger}}].CON(C)C(=O)c1ccc(O)nc1>C1CCOC1.[\text{Cl\text{-}}]\n\rightarrow CC(C)C(=O)c1ccc(O)nc1",
                 "CCn1cc(C(=O)O)c(=O)c2cc(F)c(-c3ccc(N)c3)cc21.0=O>\n\rightarrow CCn1cc(C(=O)O)c(=O)c2cc(F)c(-c3ccc(NC=O)c3)cc21'"], dtype=object)

trans = RxnSplitTransformer(sep_reagent=True)

split_reactions = trans.transform_array(X=reactions, y=np.array([]), w=np.array([]), ids=np.array([]))

(split_reactions
  array([["CC(C)C[\text{Mg\text{\textdagger}}].CON(C)C(=O)c1ccc(O)nc1>C1CCOC1.[\text{Cl\text{-}}]",
            "CC(C)C(=O)c1ccc(O)nc1'],
            ['CCn1cc(C(=O)O)c(=O)c2cc(F)c(-c3ccc(N)c3)cc21.0=O>','
            'CCn1cc(C(=O)O)c(=O)c2cc(F)c(-c3ccc(NC=O)c3)cc21']], dtype=<U51),
  array([], dtype=float64), array([], dtype=float64), array([], dtype=float64))
```

When mixed training is disabled, you get the following outputs:

```python
>>> trans_disable = RxnSplitTransformer(sep_reagent=False)

split_reactions = trans_disable.transform_array(X=reactions, y=np.array([]),
  w=np.array([]), ids=np.array([]))

(split_reactions
  array([["CC(C)C[\text{Mg\text{\textdagger}}].CON(C)C(=O)c1ccc(O)nc1>C1CCOC1.[\text{Cl\text{-}}]",
            "CC(C)C(=O)c1ccc(O)nc1'],
            ['CCn1cc(C(=O)O)c(=O)c2cc(F)c(-c3ccc(N)c3)cc21.0=O>','
            'CCn1cc(C(=O)O)c(=O)c2cc(F)c(-c3ccc(NC=O)c3)cc21']], dtype=<U51),
  array([], dtype=float64), array([], dtype=float64), array([], dtype=float64))
```

Note: This class only transforms the feature field of a reaction dataset like USPTO.

```
__init__(sep_reagent: bool = True, dataset: Optional[deepchem.data.datasets.Dataset] = None)

Initializes the Reaction split Transformer.

Parameters

- **sep_reagent** (bool, optional (default True)) – To separate the reagent and reactants for training.
- **dataset** (deepchem.data.Dataset object, optional (default None)) – Dataset to be transformed.

transform_array(X: numpy.ndarray, y: numpy.ndarray, w: numpy.ndarray, ids: numpy.ndarray) → Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray]

Transform the data in a set of (X, y, w, ids) arrays.

Parameters

- **X** (numpy.ndarray) – Array of features (the reactions)
- **y** (numpy.ndarray) – Array of labels
- **w** (numpy.ndarray) – Array of weights.
- **ids** (numpy.ndarray) – Array of weights.

3.11. Transformers
Returns

- **Xtrans** (*np.ndarray*) – Transformed array of features
- **ytrans** (*np.ndarray*) – Transformed array of labels
- **wtrans** (*np.ndarray*) – Transformed array of weights
- **idstrans** (*np.ndarray*) – Transformed array of ids

**transform**

```python
transform(dataset: deepchem.data.datasets.Dataset, parallel: bool = False, out_dir: Optional[str] = None, **kwargs) -> deepchem.data.datasets.Dataset
```

Transforms all internally stored data in dataset.

This method transforms all internal data in the provided dataset by using the `Dataset.transform` method. Note that this method adds X-transform, y-transform columns to metadata. Specified keyword arguments are passed on to `Dataset.transform`.

**Parameters**

- **dataset** (*dc.data.Dataset*) – Dataset object to be transformed.
- **parallel** (*bool, optional (default False)*) – if True, use multiple processes to transform the dataset in parallel. For large datasets, this might be faster.
- **out_dir** (*str, optional*) – If `out_dir` is specified in `kwargs` and `dataset` is a `DiskDataset`, the output dataset will be written to the specified directory.

**Returns** A newly transformed Dataset object

**Return type** *Dataset*

**transform_on_array**

```python
transform_on_array(X: numpy.ndarray, y: numpy.ndarray, w: numpy.ndarray, ids: numpy.ndarray) -> Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]
```

Transforms numpy arrays X, y, and w

DEPRECATED. Use `transform_array` instead.

**Parameters**

- **X** (*np.ndarray*) – Array of features
- **y** (*np.ndarray*) – Array of labels
- **w** (*np.ndarray*) – Array of weights.
- **ids** (*np.ndarray*) – Array of identifiers.

**Returns**

- **Xtrans** (*np.ndarray*) – Transformed array of features
- **ytrans** (*np.ndarray*) – Transformed array of labels
- **wtrans** (*np.ndarray*) – Transformed array of weights
- **idstrans** (*np.ndarray*) – Transformed array of ids

**untransform**

Not Implemented.
3.11.3 Base Transformer (for develop)

The `dc.trans.Transformer` class is the abstract parent class for all transformers. This class should never be directly initialized, but contains a number of useful method implementations.

```python
class Transformer(transform_X: bool = False, transform_y: bool = False, transform_w: bool = False,
 transform_ids: bool = False, dataset: Optional[deepchem.data.datasets.Dataset] = None)
```

Abstract base class for different data transformation techniques.

A transformer is an object that applies a transformation to a given dataset. Think of a transformation as a mathematical operation which makes the source dataset more amenable to learning. For example, one transformer could normalize the features for a dataset (ensuring they have zero mean and unit standard deviation). Another transformer could for example threshold values in a dataset so that values outside a given range are truncated. Yet another transformer could act as a data augmentation routine, generating multiple different images from each source datapoint (a transformation need not necessarily be one to one).

Transformers are designed to be chained, since data pipelines often chain multiple different transformations to a dataset. Transformers are also designed to be scalable and can be applied to large `dc.data.Dataset` objects. Not that Transformers are not usually thread-safe so you will have to be careful in processing very large datasets.

This class is an abstract superclass that isn’t meant to be directly instantiated. Instead, you will want to instantiate one of the subclasses of this class inorder to perform concrete transformations.

```python
```

Initializes transformation based on dataset statistics.

Parameters

- `transform_X` (bool, optional (default False)) – Whether to transform X
- `transform_y` (bool, optional (default False)) – Whether to transform y
- `transform_w` (bool, optional (default False)) – Whether to transform w
- `transform_ids` (bool, optional (default False)) – Whether to transform ids
- `dataset` (dc.data.Dataset object, optional (default None)) – Dataset to be transformed

```python
transform(dataset: deepchem.data.datasets.Dataset, parallel: bool = False, out_dir: Optional[str] = None, **kwargs) → deepchem.data.datasets.Dataset
```

Transforms all internally stored data in dataset.

This method transforms all internal data in the provided dataset by using the `Dataset.transform` method. Note that this method adds X-transform, y-transform columns to metadata. Specified keyword arguments are passed on to `Dataset.transform`.

Parameters

- `dataset` (dc.data.Dataset) – Dataset object to be transformed.
- `parallel` (bool, optional (default False)) – if True, use multiple processes to transform the dataset in parallel. For large datasets, this might be faster.
- `out_dir` (str, optional) – If `out_dir` is specified in `kwargs` and `dataset` is a `Disk-Dataset`, the output dataset will be written to the specified directory.

Returns A newly transformed Dataset object

Return type `Dataset`
transform_array\( (X: \text{numpy.ndarray}, y: \text{numpy.ndarray}, w: \text{numpy.ndarray}, ids: \text{numpy.ndarray}) \rightarrow \) \[\text{Tuple[\text{numpy.ndarray}, \text{numpy.ndarray}, \text{numpy.ndarray}, \text{numpy.ndarray}]}\]

Transform the data in a set of \((X, y, w, ids)\) arrays.

Parameters

- \(X\) (\text{np.ndarray}) – Array of features
- \(y\) (\text{np.ndarray}) – Array of labels
- \(w\) (\text{np.ndarray}) – Array of weights.
- \(ids\) (\text{np.ndarray}) – Array of identifiers.

Returns

- \(Xtrans\) (\text{np.ndarray}) – Transformed array of features
- \(ytrans\) (\text{np.ndarray}) – Transformed array of labels
- \(wtrans\) (\text{np.ndarray}) – Transformed array of weights
- \(idstrans\) (\text{np.ndarray}) – Transformed array of ids

transform_on_array\( (X: \text{numpy.ndarray}, y: \text{numpy.ndarray}, w: \text{numpy.ndarray}, ids: \text{numpy.ndarray}) \rightarrow \) \[\text{Tuple[\text{numpy.ndarray}, \text{numpy.ndarray}, \text{numpy.ndarray}, \text{numpy.ndarray}]}\]

Transforms numpy arrays \(X\), \(y\), and \(w\)

DEPRECATED. Use \textit{transform_array} instead.

Parameters

- \(X\) (\text{np.ndarray}) – Array of features
- \(y\) (\text{np.ndarray}) – Array of labels
- \(w\) (\text{np.ndarray}) – Array of weights.
- \(ids\) (\text{np.ndarray}) – Array of identifiers.

Returns

- \(Xtrans\) (\text{np.ndarray}) – Transformed array of features
- \(ytrans\) (\text{np.ndarray}) – Transformed array of labels
- \(wtrans\) (\text{np.ndarray}) – Transformed array of weights
- \(idstrans\) (\text{np.ndarray}) – Transformed array of ids

untransform\( (\text{transformed: \text{numpy.ndarray}}) \rightarrow \text{numpy.ndarray} \)

Reverses stored transformation on provided data.

Depending on whether \textit{transform}\_X or \textit{transform}\_y or \textit{transform}\_w was set, this will perform different un-transformations. Note that this method may not always be defined since some transformations aren’t 1-1.

Parameters \textit{transformed} (\text{np.ndarray}) – Array which was previously transformed by this class.
3.12 Model Classes

DeepChem maintains an extensive collection of models for scientific applications. DeepChem’s focus is on facilitating scientific applications, so we support a broad range of different machine learning frameworks (currently scikit-learn, xgboost, TensorFlow, and PyTorch) since different frameworks are more and less suited for different scientific applications.

3.12.1 Model Cheatsheet

If you’re just getting started with DeepChem, you’re probably interested in the basics. The place to get started is this “model cheatsheet” that lists various types of custom DeepChem models. Note that some wrappers like SklearnModel and GBDTModel which wrap external machine learning libraries are excluded, but this table should otherwise be complete.

As a note about how to read these tables: Each row describes what’s needed to invoke a given model. Some models must be applied with given Transformer or Featurizer objects. Most models can be trained calling model.fit, otherwise the name of the fit_method is given in the Comment column. In order to run the models, make sure that the backend (Keras and tensorflow or Pytorch or Jax) is installed. You can thus read off what’s needed to train the model from the table below.

**General purpose**
Table 2: General purpose models

<table>
<thead>
<tr>
<th>Model</th>
<th>Reference</th>
<th>Classifier/Regressor</th>
<th>Acceptable Featurizers</th>
<th>Backend</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNN</td>
<td></td>
<td>Classifier/Regressor</td>
<td>CircularFingerprint, RDKitDescriptors, CoulombMatrixEig, RdkitGridFeaturizer, BindingPocketFeaturizer, ElementPropertyFingerprint</td>
<td>Keras</td>
<td></td>
</tr>
<tr>
<td>MultitaskClassifier</td>
<td></td>
<td>Classifier</td>
<td>CircularFingerprint, RDKitDescriptors, CoulombMatrixEig, RdkitGridFeaturizer, BindingPocketFeaturizer, ElementPropertyFingerprint</td>
<td>PyTorch</td>
<td>any Transformer can be used</td>
</tr>
<tr>
<td>MultitaskFit-Transform-Regressor</td>
<td></td>
<td>Regressor</td>
<td>CircularFingerprint, RDKitDescriptors, CoulombMatrixEig, RdkitGridFeaturizer, BindingPocketFeaturizer, ElementPropertyFingerprint</td>
<td>PyTorch</td>
<td></td>
</tr>
<tr>
<td>Multi-taskIRVClassifier</td>
<td></td>
<td>Classifier</td>
<td>CircularFingerprint, RDKitDescriptors, CoulombMatrixEig, RdkitGridFeaturizer, BindingPocketFeaturizer, ElementPropertyFingerprint</td>
<td>Keras</td>
<td>use IRVTransformer</td>
</tr>
<tr>
<td>MultitaskRegressor</td>
<td></td>
<td>Regressor</td>
<td>CircularFingerprint, RDKitDescriptors, CoulombMatrixEig, RdkitGridFeaturizer, BindingPocketFeaturizer, ElementPropertyFingerprint</td>
<td>Torch</td>
<td></td>
</tr>
<tr>
<td>Progressive-MultitaskClassifier</td>
<td>ref</td>
<td>Classifier</td>
<td>CircularFingerprint, RDKitDescriptors, CoulombMatrixEig, RdkitGridFeaturizer, BindingPocketFeaturizer, ElementPropertyFingerprint</td>
<td>Keras</td>
<td></td>
</tr>
<tr>
<td>Progressive-MultitaskRegressor</td>
<td>ref</td>
<td>Regressor</td>
<td>CircularFingerprint, RDKitDescriptors, CoulombMatrixEig, RdkitGridFeaturizer, BindingPocketFeaturizer, ElementPropertyFingerprint</td>
<td>Keras</td>
<td></td>
</tr>
<tr>
<td>Robust-MultitaskClassifier</td>
<td>ref</td>
<td>Classifier</td>
<td>CircularFingerprint, RDKitDescriptors, CoulombMatrixEig, RdkitGridFeaturizer, BindingPocketFeaturizer, ElementPropertyFingerprint</td>
<td>Keras</td>
<td></td>
</tr>
<tr>
<td>Robust-MultitaskRegressor</td>
<td>ref</td>
<td>Regressor</td>
<td>CircularFingerprint, RDKitDescriptors, CoulombMatrixEig, RdkitGridFeaturizer, BindingPocketFeaturizer, ElementPropertyFingerprint</td>
<td>Keras</td>
<td></td>
</tr>
<tr>
<td>SeqToSeq</td>
<td>ref</td>
<td>Adversarial</td>
<td></td>
<td>Keras</td>
<td>fit method: fit_sequences</td>
</tr>
<tr>
<td>WGAN</td>
<td>ref</td>
<td></td>
<td></td>
<td>Keras</td>
<td>fit method: fit_gan</td>
</tr>
</tbody>
</table>

**Molecules**

Many models implemented in DeepChem were designed for small to medium-sized organic molecules, most often drug-like compounds. If your data is very different (e.g., molecules contain ‘exotic’ elements not present in the original dataset) or cannot be represented well using SMILES (e.g., metal complexes, crystals), some adaptations to the featurization and/or model might be needed to get reasonable results.
### Table 3: Molecular models

<table>
<thead>
<tr>
<th>Model</th>
<th>Reference</th>
<th>Type</th>
<th>Acceptable Featurizers</th>
<th>Backend</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>ScScore-Model</td>
<td>ref</td>
<td>Classifier</td>
<td>CircularFingerprint</td>
<td>Keras</td>
<td></td>
</tr>
<tr>
<td>Atomic-ConvModel</td>
<td>ref</td>
<td>Classifier/Regressor</td>
<td>ComplexNeighborListFragmentAtomicCoordinates</td>
<td>Keras</td>
<td></td>
</tr>
<tr>
<td>AttentiveFP-Model</td>
<td>ref</td>
<td>Classifier/Regressor</td>
<td>MolGraphConvFeaturizer</td>
<td>PyTorch</td>
<td></td>
</tr>
<tr>
<td>ChemCep-</td>
<td>ref</td>
<td>Classifier/Regressor</td>
<td>SmilesToImage</td>
<td>Keras</td>
<td></td>
</tr>
<tr>
<td>DAGModel</td>
<td>ref</td>
<td>Classifier/Regressor</td>
<td>ConvMolFeaturizer</td>
<td>Keras</td>
<td>use DAG-Transformer</td>
</tr>
<tr>
<td>GATModel</td>
<td>ref</td>
<td>Classifier/Regressor</td>
<td>MolGraphConvFeaturizer</td>
<td>DGL/PyTorch</td>
<td></td>
</tr>
<tr>
<td>GCNModel</td>
<td>ref</td>
<td>Classifier/Regressor</td>
<td>MolGraphConvFeaturizer</td>
<td>DGL/PyTorch</td>
<td></td>
</tr>
<tr>
<td>GraphConv-Model</td>
<td>ref</td>
<td>Classifier/Regressor</td>
<td>ConvMolFeaturizer</td>
<td>Keras</td>
<td></td>
</tr>
<tr>
<td>MEGNet-Model</td>
<td>ref</td>
<td>Classifier/Regressor</td>
<td></td>
<td>PyTorch/PyTorch Geometric</td>
<td></td>
</tr>
<tr>
<td>MPNN-Model</td>
<td>ref</td>
<td>Classifier/Regressor</td>
<td>MolGraphConvFeaturizer</td>
<td>DGL/PyTorch</td>
<td></td>
</tr>
<tr>
<td>PagtnModel</td>
<td>ref</td>
<td>Classifier/Regressor</td>
<td>PagtnMolGraphFeaturizer MolGraphConvFeaturizer</td>
<td>DGL/PyTorch</td>
<td></td>
</tr>
<tr>
<td>Smiles2Vec</td>
<td>ref</td>
<td>Classifier/Regressor</td>
<td>SmilesToSeq</td>
<td>Keras</td>
<td></td>
</tr>
<tr>
<td>TextCNN-Model</td>
<td>ref</td>
<td>Classifier/Regressor</td>
<td></td>
<td>Keras</td>
<td></td>
</tr>
<tr>
<td>DTNN-Model</td>
<td>ref</td>
<td>Regressor</td>
<td>CoulombMatrix</td>
<td>Keras</td>
<td></td>
</tr>
<tr>
<td>MATModel</td>
<td>ref</td>
<td>Regressor</td>
<td>MATFeaturizer</td>
<td>PyTorch</td>
<td></td>
</tr>
<tr>
<td>WeaveModel</td>
<td>ref</td>
<td>Regressor</td>
<td>WeaveFeaturizer</td>
<td>Keras</td>
<td></td>
</tr>
<tr>
<td>BasicMol-GANModel</td>
<td>ref</td>
<td>Generator</td>
<td>MolGanFeaturizer</td>
<td>Keras</td>
<td>fit method: fit_gan</td>
</tr>
<tr>
<td>DMPNN-Model</td>
<td>ref</td>
<td>Classifier/Regressor</td>
<td>DMPNNFeaturizer</td>
<td>PyTorch</td>
<td></td>
</tr>
<tr>
<td>InfoGraph</td>
<td>ref</td>
<td>Classifier/Regressor</td>
<td>MolGraphConvFeaturizer</td>
<td>PyTorch</td>
<td></td>
</tr>
<tr>
<td>InfoGraph-Star</td>
<td>ref</td>
<td>Classifier/Regressor</td>
<td>MolGraphConvFeaturizer</td>
<td>PyTorch</td>
<td></td>
</tr>
<tr>
<td>GNNModular</td>
<td>ref</td>
<td>Classifier/Regressor</td>
<td>SNAPFeaturizer</td>
<td>PyTorch</td>
<td></td>
</tr>
<tr>
<td>InfoMax3DModular</td>
<td>ref</td>
<td>Unsupervised</td>
<td>RDKitConformerFeaturizer</td>
<td>PyTorch</td>
<td></td>
</tr>
<tr>
<td>Chemberta</td>
<td>ref</td>
<td>Classifier/Regressor</td>
<td>RobertaTokenizer</td>
<td>PyTorch</td>
<td></td>
</tr>
</tbody>
</table>

**Materials**

The following models were designed specifically for (inorganic) materials.
### 3.12.2 Model

```python
class Model(model=None, model_dir: Optional[str] = None, **kwargs)
 Abstract base class for DeepChem models.

 __init__(model=None, model_dir: Optional[str] = None, **kwargs) -> None
 Abstract class for all models.
 This is intended only for convenience of subclass implementations and should not be invoked directly.

 Parameters
 • **model**(object) – Wrapper around ScikitLearn/Keras/Tensorflow model object.
 • **model_dir**(str, optional (default None)) – Path to directory where model will be stored. If not specified, model will be stored in a temporary directory.

 fit_on_batch(X: Sequence, y: Sequence, w: Sequence)
 Perform a single step of training.

 Parameters
 • **X**(np.ndarray) – the inputs for the batch
 • **y**(np.ndarray) – the labels for the batch
 • **w**(np.ndarray) – the weights for the batch

 predict_on_batch(X: Union[numpy._typing._array_like._SupportsArray[numpy.dtype],
 numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype],
 bool, int, float, complex, str, bytes,]
 numpy._typing._nested_sequence._NestedSequence[Union[bool, int, float, complex, str, bytes],])
 Makes predictions on given batch of new data.

 Parameters **X**(np.ndarray) – Features

 reload() -> None
 Reload trained model from disk.

 static get_model_filename(model_dir: str) -> str
 Given model directory, obtain filename for the model itself.

 static get_params_filename(model_dir: str) -> str
 Given model directory, obtain filename for the model itself.
```

---

**Table 4: Material models**

<table>
<thead>
<tr>
<th>Model</th>
<th>Reference</th>
<th>Type</th>
<th>Acceptable Featurizers</th>
<th>Backend</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>CGCNN-Model</td>
<td>ref</td>
<td>Classifier/Regressor</td>
<td>CGCNNFeaturizer</td>
<td>DGL/PTorch</td>
<td>crystal graph CNN</td>
</tr>
<tr>
<td>MEGNet-Model</td>
<td>ref</td>
<td>Classifier/Regressor</td>
<td></td>
<td>PyTorch/PyTorch Geometric</td>
<td></td>
</tr>
<tr>
<td>LCNN-Model</td>
<td>ref</td>
<td>Regressor</td>
<td>LCNNFeaturizer</td>
<td>PyTorch</td>
<td>lattice CNN</td>
</tr>
</tbody>
</table>
save() → None
Dispatcher function for saving.
Each subclass is responsible for overriding this method.

fit(dataset: deepchem.data.datasets.Dataset)
Fits a model on data in a Dataset object.

Parameters
dataset (Dataset) – the Dataset to train on

Uses self to make predictions on provided Dataset object.

Parameters
• dataset (Dataset) – Dataset to make prediction on
• transformers (List[Transformer]) – Transformers that the input data has been transformed by. The output is passed through these transformers to undo the transformations.

Returns A numpy array of predictions the model produces.

Return type np.ndarray

Evaluates the performance of this model on specified dataset.

This function uses Evaluator under the hood to perform model evaluation. As a result, it inherits the same limitations of Evaluator. Namely, that only regression and classification models can be evaluated in this fashion. For generator models, you will need to overwrite this method to perform a custom evaluation.

Keyword arguments specified here will be passed to Evaluator.compute_model_performance.

Parameters
• dataset (Dataset) – Dataset object.
• metrics (Metric / List[Metric] / function) – The set of metrics provided. This class attempts to do some intelligent handling of input. If a single dc.metrics.Metric object is provided or a list is provided, it will evaluate self.model on these metrics. If a function is provided, it is assumed to be a metric function that this method will attempt to wrap in a dc.metrics.Metric object. A metric function must accept two arguments, y_true, y_pred both of which are np.ndarray objects and return a floating point score. The metric function may also accept a keyword argument sample_weight to account for per-sample weights.
• transformers (List[Transformer]) – List of dc.trans.Transformer objects. These transformations must have been applied to dataset previously. The dataset will be untransformed for metric evaluation.
• per_task_metrics (bool, optional (default False)) – If true, return computed metric for each task on multitask dataset.
• use_sample_weights (bool, optional (default False)) – If set, use per-sample weights w.
• n_classes (int, optional (default None)) – If specified, will use n_classes as the number of unique classes in self.dataset. Note that this argument will be ignored for regression metrics.

Returns
• **multitask_scores** (*dict*) – Dictionary mapping names of metrics to metric scores.

• **all_task_scores** (*dict, optional*) – If `per_task_metrics == True` is passed as a keyword argument, then returns a second dictionary of scores for each task separately.

```python
def get_task_type() -> str
 """"""
 Currently models can only be classifiers or regressors.
```

```python
def get_num_tasks() -> int
 """"""
 Get number of tasks.
```

## 3.13 Scikit-Learn Models

Scikit-learn's models can be wrapped so that they can interact conveniently with DeepChem. Oftentimes scikit-learn models are more robust and easier to train and are a nice first model to train.

### 3.13.1 SklearnModel

```python
class SklearnModel(model: sklearn.base.BaseEstimator, model_dir: Optional[str] = None, **kwargs)
```

Wrapper class that wraps scikit-learn models as DeepChem models.

When you're working with scikit-learn and DeepChem, at times it can be useful to wrap a scikit-learn model as a DeepChem model. The reason for this might be that you want to do an apples-to-apples comparison of a scikit-learn model to another DeepChem model, or perhaps you want to use the hyperparameter tuning capabilities in `dc.hyper`. The `SklearnModel` class provides a wrapper around scikit-learn models that allows scikit-learn models to be trained on `Dataset` objects and evaluated with the same metrics as other DeepChem models.

**Example**

```python
>>> import deepchem as dc
>>> import numpy as np
>>> from sklearn.linear_model import LinearRegression

>>> # Generating a random data and creating a dataset
>>> X, y = np.random.randn(5, 1), np.random.randn(5)
>>> dataset = dc.data.NumpyDataset(X, y)

>>> # Wrapping a Sklearn Linear Regression model using DeepChem models API
>>> sklearn_model = LinearRegression()
>>> dc_model = dc.models.SklearnModel(sklearn_model)

>>> dc_model.fit(dataset) # fitting dataset
```

**Notes**

All `SklearnModel` perform learning solely in memory. This means that it may not be possible to train `SklearnModel` on large `<Dataset>`s.

```python
__init__(model: sklearn.base.BaseEstimator, model_dir: Optional[str] = None, **kwargs)
```

**Parameters**

- **model** (*BaseEstimator*) – The model instance which inherits a scikit-learn `BaseEstimator` Class.
- **model_dir** *(str, optional (default None)) – If specified the model will be stored in this directory. Else, a temporary directory will be used.*

- **model_instance** *(BaseEstimator (DEPRECATED)) – The model instance which inherits a scikit-learn BaseEstimator Class.*

- **kwarg** *(dict) – kwarg[‘use_weights’] is a bool which determines if we pass weights into self.model.fit().*

```python
fit(dataset: deepchem.data.datasets.Dataset) → None
```

Fits scikit-learn model to data.

**Parameters**

- **dataset** *(Dataset) – The Dataset to train this model on.*

```python
predict_on_batch(X: Union[numpy._typing._array_like._SupportsArray[numpy.dtype],
 numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype],
 bool, int, float, complex, str, bytes],
 numpy._typing._nested_sequence._NestedSequence[Union[bool, int, float, complex, str, bytes]]) → numpy.ndarray
```

Makes predictions on batch of data.

**Parameters**

- **X** *(np.ndarray) – A numpy array of features.*

**Returns**

The value is a return value of predict_proba or predict method of the scikit-learn model. If the scikit-learn model has both methods, the value is always a return value of predict_proba.

**Return type**

np.ndarray

```python
predict(X: deepchem.data.datasets.Dataset, transformers: List[transformers.Transformer] = []) →
Union[numpy.ndarray, Sequence[numpy.ndarray]]
```

Makes predictions on dataset.

**Parameters**

- **dataset** *(Dataset) – Dataset to make prediction on.*

- **transformers** *(List[Transformer]) – Transformers that the input data has been transformed by. The output is passed through these transformers to undo the transformations.*

```python
save() →
```

Saves scikit-learn model to disk using joblib.

```python
reload() →
```

Loads scikit-learn model from joblib file on disk.

### 3.14 Gradient Boosting Models

Gradient Boosting Models (LightGBM and XGBoost) can be wrapped so they can interact with DeepChem.
3.14.1 GBDTModel

class GBDTModel(model: sklearn.base.BaseEstimator, model_dir: Optional[str] = None, early_stopping_rounds: int = 50, eval_metric: Optional[Union[Callable, str]] = None, **kwargs)

Wrapper class that wraps GBDT models as DeepChem models.
This class supports LightGBM/XGBoost models.

__init__(model: sklearn.base.BaseEstimator, model_dir: Optional[str] = None, early_stopping_rounds: int = 50, eval_metric: Optional[Union[Callable, str]] = None, **kwargs)

Parameters

• model (BaseEstimator) – The model instance of scikit-learn wrapper LightGBM/XGBoost models.

• model_dir (str, optional (default None)) – Path to directory where model will be stored.

• early_stopping_rounds (int, optional (default 50)) – Activates early stopping. Validation metric needs to improve at least once in every early_stopping_rounds round(s) to continue training.

• eval_metric (Union[str, Callable]) – If string, it should be a built-in evaluation metric to use. If callable, it should be a custom evaluation metric, see official note for more details.

fit(dataset: deepchem.data.datasets.Dataset)

Fits GDBT model with all data.

First, this function splits all data into train and valid data (8:2), and finds the best n_estimators. And then, we retrain all data using best n_estimators * 1.25.

Parameters dataset (Dataset) – The Dataset to train this model on.

fit_with_eval(train_dataset: deepchem.data.datasets.Dataset, valid_dataset: deepchem.data.datasets.Dataset)

Fits GDBT model with valid data.

Parameters

• train_dataset (Dataset) – The Dataset to train this model on.

• valid_dataset (Dataset) – The Dataset to validate this model on.

3.15 Deep Learning Infrastructure

DeepChem maintains a lightweight layer of common deep learning model infrastructure that can be used for models built with different underlying frameworks. The losses and optimizers can be used for both TensorFlow and PyTorch models.
3.15.1 Losses

class Loss
A loss function for use in training models.

class L1Loss
The absolute difference between the true and predicted values.

class HuberLoss
Modified version of L1 Loss, also known as Smooth L1 loss. Less sensitive to small errors, linear for larger errors. Huber loss is generally better for cases where are are both large outliers as well as small, as compared to the L1 loss. By default, Delta = 1.0 and reduction = ‘none’.

class L2Loss
The squared difference between the true and predicted values.

class HingeLoss
The hinge loss function.
The ‘output’ argument should contain logits, and all elements of ‘labels’ should equal 0 or 1.

class SquaredHingeLoss
The Squared Hinge loss function.
Defined as the square of the hinge loss between y_true and y_pred. The Squared Hinge Loss is differentiable.

class PoissonLoss
The Poisson loss function is defined as the mean of the elements of y_pred - (y_true * log(y_pred) for an input of (y_true, y_pred). Poisson loss is generally used for regression tasks where the data follows the poisson

class BinaryCrossEntropy
The cross entropy between pairs of probabilities.
The arguments should each have shape (batch_size) or (batch_size, tasks) and contain probabilities.

class CategoricalCrossEntropy
The cross entropy between two probability distributions.
The arguments should each have shape (batch_size, classes) or (batch_size, tasks, classes), and represent a probability distribution over classes.

class SigmoidCrossEntropy
The cross entropy between pairs of probabilities.
The arguments should each have shape (batch_size) or (batch_size, tasks). The labels should be probabilities, while the outputs should be logits that are converted to probabilities using a sigmoid function.

class SoftmaxCrossEntropy
The cross entropy between two probability distributions.
The arguments should each have shape (batch_size, classes) or (batch_size, tasks, classes). The labels should be probabilities, while the outputs should be logits that are converted to probabilities using a softmax function.

class SparseSoftmaxCrossEntropy
The cross entropy between two probability distributions.
The labels should have shape (batch_size) or (batch_size, tasks), and be integer class labels. The outputs have shape (batch_size, classes) or (batch_size, tasks, classes) and be logits that are converted to probabilities using a softmax function.
class VAE_ELBO

The Variational AutoEncoder loss, KL Divergence Regularize + marginal log-likelihood.

This losses based on [1]. ELBO(Evidence lower bound) lexically replaced Variational lower bound. BCE means marginal log-likelihood, and KLD means KL divergence with normal distribution. Added hyper parameter ‘kl_scale’ for KLD.

The logvar and mu should have shape (batch_size, hidden_space). The x and reconstruction_x should have (batch_size, attribute). The kl_scale should be float.

Examples

Examples for calculating loss using constant tensor.

batch_size = 2, hidden_space = 2, num of original attribute = 3 >>> import numpy as np >>> import torch >>> import tensorflow as tf >>> logvar = np.array([[1.0, 1.3], [0.6, 1.2]]) >>> mu = np.array([[0.2, 0.7], [1.2, 0.4]]) >>> x = np.array([[0.9, 0.4, 0.8], [0.3, 0, 1]]) >>> reconstruction_x = np.array([[0.8, 0.3, 0.7], [0.2, 0, 0.9]])

Case tensorflow >>> VAE_ELBO()._compute_tf_loss(tf.constant(logvar), tf.constant(mu), tf.constant(x), tf.constant(reconstruction_x))<tf.Tensor: shape=(2,), dtype=float64, numpy=array([0.70165154, 0.76238271])>

Case pytorch >>> (VAE_ELBO()._create_pytorch_loss())(torch.tensor(logvar), torch.tensor(mu), torch.tensor(x), torch.tensor(reconstruction_x)) tensor([0.7017, 0.7624], dtype=torch.float64)

References

class VAE_KLDivergence

The KL divergence between hidden distribution and normal distribution.

This loss represents KL divergence losses between normal distribution(using parameter of distribution) based on [1].

The logvar should have shape (batch_size, hidden_space) and each term represents standard deviation of hidden distribution. The mean should have (batch_size, hidden_space) and each term represents mean of hidden distribution.

Examples

Examples for calculating loss using constant tensor.

batch_size = 2, hidden_space = 2, >>> import numpy as np >>> import torch >>> import tensorflow as tf >>> logvar = np.array([[1.0, 1.3], [0.6, 1.2]]) >>> mu = np.array([[0.2, 0.7], [1.2, 0.4]])

Case tensorflow >>> VAE_KLDivergence()._compute_tf_loss(tf.constant(logvar), tf.constant(mu))<tf.Tensor: shape=(2,), dtype=float64, numpy=array([0.17381787, 0.51425203])>

Case pytorch >>> (VAE_KLDivergence()._create_pytorch_loss())(torch.tensor(logvar), torch.tensor(mu)) tensor([0.1738, 0.5143], dtype=torch.float64)
References

class ShannonEntropy

The ShannonEntropy of discrete-distribution.

This loss represents shannon entropy based on \[1\].

The inputs should have shape (batch size, num of variable) and represents probabilities distribution.

Examples

Examples for calculating loss using constant tensor.

```python
>>> import numpy as np
>>> import torch
>>> import tensorflow as tf
>>> inputs = np.array([[0.7, 0.3], [0.9, 0.1]])
```

Case tensorflow

```python
>>> ShannonEntropy()._compute_tf_loss(tf.constant(inputs))
tf.Tensor: shape=(2,), dtype=float64, numpy=array([0.30543215, 0.16254149])
```

Case pytorch

```python
>>> (ShannonEntropy()._create_pytorch_loss())(torch.tensor(inputs))
tensor([0.3054, 0.1625], dtype=torch.float64)
```

References

class GlobalMutualInformationLoss

Global-global encoding loss (comparing two full graphs).

Compares the encodings of two molecular graphs and returns the loss between them based on the measure specified. The encodings are generated by two separate encoders in order to maximize the mutual information between the two encodings.

global_enc: torch.Tensor Features from a graph convolutional encoder.

global_enc2: torch.Tensor Another set of features from a graph convolutional encoder.


average_loss: bool Whether to average the loss over the batch

loss: torch.Tensor Measure of mutual information between the encodings of the two graphs.

References

Examples

```python
>>> import numpy as np
>>> import deepchem.models.losses as losses
>>> from deepchem.feat.graph_data import BatchGraphData, GraphData
>>> from deepchem.models.torch_models.infograph import InfoGraphEncoder
>>> from deepchem.models.torch_models.layers import MultilayerPerceptron

>>> graph_list = []
>>> for i in range(3):
... node_features = np.random.randn(5, 10)
... edge_index = np.array([[0, 1, 2, 3, 4], [1, 2, 3, 4, 0]], dtype=np.int64)
```
... edge_features = np.random.rand(5, 5)
... graph_list.append(GraphData(node_features, edge_index, edge_features))
>>> batch = BatchGraphData(graph_list).numpy_to_torch()
>>> num_feat = 10
>>> edge_dim = 5
>>> dim = 4
>>> encoder = InfoGraphEncoder(num_feat, edge_dim, dim)
>>> encoding, feature_map = encoder(batch)
>>> g_enc = MultilayerPerceptron(2 * dim, dim)(encoding)
>>> g_enc2 = MultilayerPerceptron(2 * dim, dim)(encoding)
>>> globalloss = losses.GlobalMutualInformationLoss()
>>> loss = globalloss._create_pytorch_loss()(g_enc, g_enc2).detach().numpy()

class LocalMutualInformationLoss
Local-global encoding loss (comparing a subgraph to the full graph).

Compares the encodings of two molecular graphs and returns the loss between them based on the measure specified. The encodings are generated by two separate encoders in order to maximize the mutual information between the two encodings.

local_enc: torch.Tensor  Features from a graph convolutional encoder.

global_enc: torch.Tensor  Another set of features from a graph convolutional encoder.

batch_graph_index: graph_index: np.ndarray or torch.tensor, dtype int  This vector indicates which graph the node belongs with shape [num_nodes,]. Only present in BatchGraphData, not in GraphData objects.


average_loss: bool  Whether to average the loss over the batch

loss: torch.Tensor  Measure of mutual information between the encodings of the two graphs.

References

Example

>>> import numpy as np
>>> import deepchem.models.losses as losses
>>> from deepchem.feat.graph_data import BatchGraphData, GraphData
>>> from deepchem.models.torch_models.infograph import InfoGraphEncoder
>>> from deepchem.models.torch_models.layers import MultilayerPerceptron

... for i in range(3):
...     node_features = np.random.rand(5, 10)
...     edge_index = np.array([[0, 1, 2, 3, 4], [1, 2, 3, 4, 0]], dtype=np.int64)
...     edge_features = np.random.rand(5, 5)
...     graph_list.append(GraphData(node_features, edge_index, edge_features))

>>> batch = BatchGraphData(graph_list).numpy_to_torch()
>>> num_feat = 10
>>> edge_dim = 5

(continues on next page)
class GroverPretrainLoss

The Grover Pretraining consists learning of atom embeddings and bond embeddings for a molecule. To this end, the learning consists of three tasks:

1. Learning of atom vocabulary from atom embeddings and bond embeddings
2. Learning of bond vocabulary from atom embeddings and bond embeddings
3. Learning to predict functional groups from atom embeddings readout and bond embeddings readout

The loss function accepts atom vocabulary labels, bond vocabulary labels and functional group predictions produced by Grover model during pretraining as a dictionary and applies negative log-likelihood loss for atom vocabulary and bond vocabulary predictions and Binary Cross Entropy loss for functional group prediction and sums these to get overall loss.

Example

```python
>>> import torch
>>> from deepchem.models.losses import GroverPretrainLoss
>>> loss = GroverPretrainLoss()
>>> loss_fn = loss._create_pytorch_loss()
>>> batch_size = 3
>>> output_dim = 10
>>> fg_size = 8
>>> atom_vocab_task_target = torch.ones(batch_size).type(torch.int64)
>>> bond_vocab_task_target = torch.ones(batch_size).type(torch.int64)
>>> fg_task_target = torch.ones(batch_size, fg_size)
>>> atom_vocab_task_atom_pred = torch.zeros(batch_size, output_dim)
>>> bond_vocab_task_atom_pred = torch.zeros(batch_size, output_dim)
>>> atom_vocab_task_bond_pred = torch.zeros(batch_size, output_dim)
>>> bond_vocab_task_bond_pred = torch.zeros(batch_size, output_dim)
>>> fg_task_atom_from_atom = torch.zeros(batch_size, fg_size)
>>> fg_task_atom_from_bond = torch.zeros(batch_size, fg_size)
>>> fg_task_bond_from_atom = torch.zeros(batch_size, fg_size)
>>> fg_task_bond_from_bond = torch.zeros(batch_size, fg_size)
>>> result = loss_fn(atom_vocab_task_atom_pred, atom_vocab_task_bond_pred,
... bond_vocab_task_atom_pred, bond_vocab_task_bond_pred, fg_task_atom_from_...
... atom,
... fg_task_atom_from_bond, fg_task_bond_from_atom, fg_task_bond_from_bond,
... atom_vocab_task_target, bond_vocab_task_target, fg_task_target)
```
similarity between node embeddings for positive and negative edge pairs. This loss function is designed for graph neural networks and is particularly useful for pre-training tasks.

This loss function encourages the model to learn node embeddings that can effectively distinguish between true edges (positive samples) and false edges (negative samples) in the graph.

The loss is computed by comparing the similarity scores (dot product) of node embeddings for positive and negative edge pairs. The goal is to maximize the similarity for positive pairs and minimize it for negative pairs.

To use this loss function, the input must be a BatchGraphData object transformed by the negative_edge_sampler. The loss function takes the node embeddings and the input graph data (with positive and negative edge pairs) as inputs and returns the edge prediction loss.

Examples

```python
>>> from deepchem.models.losses import EdgePredictionLoss
>>> from deepchem.feat.graph_data import BatchGraphData, GraphData
>>> from deepchem.models.torch_models.gnn import negative_edge_sampler
>>> import torch
>>> import numpy as np

>>> emb_dim = 8
>>> num_nodes_list, num_edge_list = [3, 4, 5], [2, 4, 5]
>>> num_node_features, num_edge_features = 32, 32
>>> edge_index_list = [
... np.array([[0, 1], [1, 2]]),
... np.array([[0, 1, 2, 3], [1, 2, 0, 2]]),
... np.array([[0, 1, 2, 3, 4], [1, 2, 3, 4, 0]]),
...]

>>> graph_list = [
... GraphData(node_features=np.random.random_sample((
... num_nodes_list[i], num_node_features)),
... edge_index=edge_index_list[i],
... edge_features=np.random.random_sample((
... num_edge_list[i], num_edge_features)),
... node_pos_features=None) for i in range(len(num_edge_list))
...]

>>> batched_graph = BatchGraphData(graph_list)
>>> batched_graph = batched_graph.numpy_to_torch()
>>> neg_sampled = negative_edge_sampler(batched_graph)
>>> embedding = np.random.random((sum(num_nodes_list), emb_dim))
>>> embedding = torch.from_numpy(embedding)
>>> loss_func = EdgePredictionLoss()._create_pytorch_loss()
>>> loss = loss_func(embedding, neg_sampled)
```
class GraphNodeMaskingLoss

GraphNodeMaskingLoss is an unsupervised graph node masking loss function that calculates the loss based on the predicted node labels and true node labels. This loss function is designed for graph neural networks and is particularly useful for pre-training tasks.

This loss function encourages the model to learn node embeddings that can effectively predict the masked node labels in the graph.

The loss is computed using the CrossEntropyLoss between the predicted node labels and the true node labels.

To use this loss function, the input must be a BatchGraphData object transformed by the mask_nodes function. The loss function takes the predicted node labels, predicted edge labels, and the input graph data (with masked node labels) as inputs and returns the node masking loss.

Parameters

- **pred_node** (torch.Tensor) – Predicted node labels
- **pred_edge** (Optional(torch.Tensor)) – Predicted edge labels
- **inputs** (BatchGraphData) – Input graph data with masked node and edge labels

Examples

```python
>>> from deepchem.models.losses import GraphNodeMaskingLoss
>>> from deepchem.feat.graph_data import BatchGraphData, GraphData
>>> from deepchem.models.torch_models.gnn import mask_nodes
>>> import torch
>>> import numpy as np
>>> num_nodes_list, num_edge_list = [3, 4, 5], [2, 4, 5]
>>> num_node_features, num_edge_features = 32, 32
>>> edge_index_list = [...
... np.array([[0, 1], [1, 2]]),
... np.array([[0, 1, 2, 3], [1, 2, 0, 2]]),
... np.array([[0, 1, 2, 3, 4], [1, 2, 3, 4, 0]]),
...]
>>> graph_list = [...
... GraphData(node_features=np.random.random_sample(
... (num_nodes_list[i], num_node_features)),
... edge_index=edge_index_list[i],
... edge_features=np.random.random_sample(
... (num_edge_list[i], num_edge_features)),
... node_pos_features=None) for i in range(len(num_edge_list))
...]
>>> batched_graph = BatchGraphData(graph_list)
>>> batched_graph = batched_graph.numpy_to_torch()
>>> masked_graph = mask_nodes(batched_graph, 0.1)
>>> pred_node = torch.randn((sum(num_nodes_list), num_node_features))
>>> pred_edge = torch.randn((sum(num_edge_list), num_edge_features))
>>> loss_func = GraphNodeMaskingLoss()._create_pytorch_loss()
>>> loss = loss_func(pred_node[masked_graph.masked_node_indices],
... pred_edge[masked_graph.connected_edge_indices], masked_graph)
```
class GraphEdgeMaskingLoss

GraphEdgeMaskingLoss is an unsupervised graph edge masking loss function that calculates the loss based on the predicted edge labels and true edge labels. This loss function is designed for graph neural networks and is particularly useful for pre-training tasks.

This loss function encourages the model to learn node embeddings that can effectively predict the masked edge labels in the graph.

The loss is computed using the CrossEntropyLoss between the predicted edge labels and the true edge labels. To use this loss function, the input must be a BatchGraphData object transformed by the mask_edges function. The loss function takes the predicted edge labels and the true edge labels as inputs and returns the edge masking loss.

Parameters

- **pred_edge** (torch.Tensor) – Predicted edge labels.
- **inputs** (BatchGraphData) – Input graph data (with masked edge labels).

Examples

```python
>>> from deepchem.models.losses import GraphEdgeMaskingLoss
>>> from deepchem.feat.graph_data import BatchGraphData, GraphData
>>> from deepchem.models.torch_models.gnn import mask_edges
>>> import torch
>>> import numpy as np

>>> num_nodes_list, num_edge_list = [3, 4, 5], [2, 4, 5]
>>> num_node_features, num_edge_features = 32, 32
>>> edge_index_list = [...
... np.array([[0, 1], [1, 2]]),
... np.array([[0, 1, 2, 3], [1, 2, 0, 2]]),
... np.array([[0, 1, 2, 3, 4], [1, 2, 3, 4, 0]]),
...
]
>>> graph_list = [...
... GraphData(node_features=np.random.random_sample(...
... (num_nodes_list[i], num_node_features)),
... edge_index=edge_index_list[i],
... edge_features=np.random.random_sample(...
... (num_edge_list[i], num_edge_features)),
... node_pos_features=None for i in range(len(num_edge_list))
...]
>>> batched_graph = BatchGraphData(graph_list)
>>> batched_graph = batched_graph.numpy_to_torch()
>>> masked_graph = mask_edges(batched_graph, .1)
>>> pred_edge = torch.randn((sum(num_edge_list), num_edge_features))
>>> loss_func = GraphEdgeMaskingLoss()._create_pytorch_loss()
>>> loss = loss_func(pred_edge[masked_graph.masked_edge_idx], masked_graph)
```
class DeepGraphInfomaxLoss

Loss that maximizes mutual information between local node representations and a pooled global graph representation. This is to encourage nearby nodes to have similar embeddings.

Parameters

- **positive_score** (*torch.Tensor*) – Positive score. This score measures the similarity between the local node embeddings (*node_emb*) and the global graph representation (*positive_expanded_summary_emb*) derived from the same graph. The goal is to maximize this score, as it indicates that the local node embeddings and the global graph representation are highly correlated, capturing the mutual information between them.

- **negative_score** (*torch.Tensor*) – Negative score. This score measures the similarity between the local node embeddings (*node_emb*) and the global graph representation (*negative_expanded_summary_emb*) derived from a different graph (shifted by one position in this case). The goal is to minimize this score, as it indicates that the local node embeddings and the global graph representation from different graphs are not correlated, ensuring that the model learns meaningful representations that are specific to each graph.

Examples

```python
>>> import torch
>>> import numpy as np
>>> from deepchem.feat.graph_data import GraphData
>>> from torch_geometric.nn import global_mean_pool
>>> from deepchem.models.losses import DeepGraphInfomaxLoss

>>> x = np.array([[1, 0], [0, 1], [1, 1], [0, 0]])
>>> edge_index = np.array([[0, 1, 2, 0, 3], [1, 0, 1, 3, 2]])
>>> graph_index = np.array([0, 0, 1, 1])
>>> data = GraphData(node_features=x, edge_index=edge_index, graph_index=graph_index).numpy_to_torch()

>>> graph_infomax_loss = DeepGraphInfomaxLoss()._create_pytorch_loss()

>>> # Initialize node_emb randomly
>>> num_nodes = data.num_nodes
>>> embedding_dim = 8
>>> node_emb = torch.randn(num_nodes, embedding_dim)

>>> # Compute the global graph representation
>>> summary_emb = global_mean_pool(node_emb, data.graph_index)

>>> # Compute positive and negative scores
>>> positive_score = torch.matmul(node_emb, summary_emb.t())
>>> negative_score = torch.matmul(node_emb, summary_emb.roll(1, dims=0).t())

>>> loss = graph_infomax_loss(positive_score, negative_score)
```
References

class GraphContextPredLoss

GraphContextPredLoss is a loss function designed for graph neural networks that aims to predict the context of
a node given its substructure. The context of a node is essentially the ring of nodes around it outside of an inner
k1-hop diameter and inside an outer k2-hop diameter.

This loss compares the representation of a node’s neighborhood with the representation of the node’s context. It
then uses negative sampling to compare the representation of the node’s neighborhood with the representation
of a random node’s context.

Parameters

- mode (str) – The mode of the model. It can be either “cbow” (continuous bag of words) or
  “skipgram”.
- neg_samples (int) – The number of negative samples to use for negative sampling.

Examples

```python
def create_model():
 model = GraphContextPredLoss()
 model.add_loss(GraphContextPredLoss(mode='cbow', neg_samples=2))
 return model

>>> from deepchem.models.losses import GraphContextPredLoss
>>> substruct_rep = torch.randn(4, 8)
>>> overlapped_node_rep = torch.randn(8, 8)
>>> context_rep = torch.randn(4, 8)
>>> neg_context_rep = torch.randn(2 * 4, 8)
>>> overlapped_context_size = torch.tensor([2, 2, 2, 2])
>>> mode = "cbow"
>>> neg_samples = 2
>>> graph_context_pred_loss = GraphContextPredLoss()._create_pytorch_loss(mode, neg_samples)
>>> loss = graph_context_pred_loss(substruct_rep, overlapped_node_rep, context_rep, neg_context_rep, overlapped_context_size)
```

class DensityProfileLoss

Loss for the density profile entry type for Quantum Chemistry calculations. It is an integration of the squared
difference between ground truth and calculated values, at all spaces in the integration grid.

Examples

```python
def create_model():
 model = DensityProfileLoss()
 model.add_loss(DensityProfileLoss(volume=torch.Tensor([2.0]), output=torch.Tensor([3.0]), labels=torch.Tensor([4.0])))
 return model

>>> from deepchem.models.losses import DensityProfileLoss
>>> volume = torch.Tensor([2.0])
>>> output = torch.Tensor([3.0])
>>> labels = torch.Tensor([4.0])
>>> loss = (DensityProfileLoss()._create_pytorch_loss(volume))(output, labels)
>>> # Generating volume tensor for an entry object:
>>> from deepchem.feat.dft_data import DFTEntry
>>> e_type = 'dens'
>>> true_val = 0
>>> systems = [{'moldesc': 'H 0.86625 0 0; F -0.86625 0 0', 'basis': '6-311++G(3df,3pd)'}]
>>> dens_entry_for_HF = DFTEntry.create(e_type, true_val, systems)
```

(continues on next page)
```python
grid = (dens_entry_for_HF).get_integration_grid()
volume = grid.get_dvolume()
```

References


class NTXentMultiplePositives(
    norm: bool = True,
    tau: float = 0.5,
    uniformity_reg=0,
    variance_reg=0,
    covariance_reg=0,
    conformer_variance_reg=0
)

This is a modification of the NTXent loss function from Chen [1]. This loss is designed for contrastive learning of molecular representations, comparing the similarity of a molecule’s latent representation to positive and negative samples.

The modifications proposed in [2] enable multiple conformers to be used as positive samples.

This loss function is designed for graph neural networks and is particularly useful for unsupervised pre-training tasks.

Parameters

- **norm** (bool, optional (default=True)) – Whether to normalize the similarity matrix.
- **tau** (float, optional (default=0.5)) – Temperature parameter for the similarity matrix.
- **uniformity_reg** (float, optional (default=0)) – Regularization weight for the uniformity loss.
- **variance_reg** (float, optional (default=0)) – Regularization weight for the variance loss.
- **covariance_reg** (float, optional (default=0)) – Regularization weight for the covariance loss.
- **conformer_variance_reg** (float, optional (default=0)) – Regularization weight for the conformer variance loss.

Examples

```python
>>> import torch
>>> from deepchem.models.losses import NTXentMultiplePositives
>>> z1 = torch.randn(4, 8)
>>> z2 = torch.randn(4 * 3, 8)
>>> ntxent_loss = NTXentMultiplePositives(norm=True, tau=0.5)
>>> loss_fn = ntxent_loss._create_pytorch_loss()
>>> loss = loss_fn(z1, z2)
```
References

```
__init__(norm: bool = True, tau: float = 0.5, uniformity_reg=0, variance_reg=0, covariance_reg=0, conformer_variance_reg=0) → None
```

3.15.2 Optimizers

class Optimizer(learning_rate: Union[float, deepchem.models.optimizers.LearningRateSchedule])

An algorithm for optimizing a model.

This is an abstract class. Subclasses represent specific optimization algorithms.

```
__init__(learning_rate: Union[float, deepchem.models.optimizers.LearningRateSchedule])

This constructor should only be called by subclasses.

Parameters

learning_rate (float or LearningRateSchedule) – the learning rate to use for optimization
```

class LearningRateSchedule

A schedule for changing the learning rate over the course of optimization.

This is an abstract class. Subclasses represent specific schedules.

class AdaGrad(learning_rate: Union[float, deepchem.models.optimizers.LearningRateSchedule] = 0.001, initial_accumulator_value: float = 0.1, epsilon: float = 1e-07)

The AdaGrad optimization algorithm.

Adagrad is an optimizer with parameter-specific learning rates, which are adapted relative to how frequently a parameter gets updated during training. The more updates a parameter receives, the smaller the updates. See [1] for a full reference for the algorithm.

References

```
__init__(learning_rate: Union[float, deepchem.models.optimizers.LearningRateSchedule] = 0.001, initial_accumulator_value: float = 0.1, epsilon: float = 1e-07)

```

class Adam(learning_rate: Union[float, deepchem.models.optimizers.LearningRateSchedule] = 0.001, beta1: float = 0.9, beta2: float = 0.999, epsilon: float = 1e-08)

The Adam optimization algorithm.

```
__init__(learning_rate: Union[float, deepchem.models.optimizers.LearningRateSchedule] = 0.001, beta1: float = 0.9, beta2: float = 0.999, epsilon: float = 1e-08)

Construct an Adam optimizer.
```

Parameters

- **learning_rate** (float or LearningRateSchedule) – the learning rate to use for optimization
- **beta1** (float) – a parameter of the Adam algorithm
- **beta2** (float) – a parameter of the Adam algorithm
• **epsilon** (*float*) – a parameter of the Adam algorithm

```python
class AdamW(learning_rate: Union[float, deepchem.models.optimizers.LearningRateSchedule] = 0.001, weight_decay: Union[float, deepchem.models.optimizers.LearningRateSchedule] = 0.01, beta1: float = 0.9, beta2: float = 0.999, epsilon: float = 1e-08, amsgrad: bool = False)
```

The AdamW optimization algorithm. AdamW is a variant of Adam, with improved weight decay. In Adam, weight decay is implemented as: weight_decay (float, optional) – weight decay (L2 penalty) (default: 0). In AdamW, weight decay is implemented as: weight_decay (float, optional) – weight decay coefficient (default: 1e-2)

```python
def __init__(learning_rate: Union[float, deepchem.models.optimizers.LearningRateSchedule] = 0.001, weight_decay: Union[float, deepchem.models.optimizers.LearningRateSchedule] = 0.01, beta1: float = 0.9, beta2: float = 0.999, epsilon: float = 1e-08, amsgrad: bool = False)
```

Construct an AdamW optimizer.

```python
def __init__(learning_rate: Union[float, deepchem.models.optimizers.LearningRateSchedule] = 0.001, beta1: float = 0.9, beta2: float = 0.999, epsilon: float = 1e-08)
```

Construct an Adam optimizer.

**Parameters**

- **learning_rate** (*float or LearningRateSchedule*) – the learning rate used for optimization
- **beta1** (*float*) – a parameter of the SparseAdam algorithm
- **beta2** (*float*) – a parameter of the SparseAdam algorithm
- **epsilon** (*float*) – a parameter of the SparseAdam algorithm

```python
class SparseAdam(learning_rate: Union[float, deepchem.models.optimizers.LearningRateSchedule] = 0.001, beta1: float = 0.9, beta2: float = 0.999, epsilon: float = 1e-08)
```

The Sparse Adam optimization algorithm, also known as Lazy Adam. Sparse Adam is suitable for sparse tensors. It handles sparse updates more efficiently. It only updates moving-average accumulators for sparse variable indices that appear in the current batch, rather than updating the accumulators for all indices.

```python
def __init__(learning_rate: Union[float, deepchem.models.optimizers.LearningRateSchedule] = 0.001, beta1: float = 0.9, beta2: float = 0.999, epsilon: float = 1e-08)
```

Construct an SparseAdam optimizer.

**Parameters**

- **learning_rate** (*float or LearningRateSchedule*) – the learning rate used for optimization
- **momentum** (*float, default 0.0*) – a parameter of the RMSProp algorithm
- **decay** (*float, default 0.9*) – a parameter of the RMSProp algorithm
- **epsilon** (*float, default 1e-10*) – a parameter of the RMSProp algorithm

```python
class RMSProp(learning_rate: Union[float, deepchem.models.optimizers.LearningRateSchedule] = 0.001, momentum: float = 0.0, decay: float = 0.9, epsilon: float = 1e-10)
```

RMSProp Optimization algorithm.

```python
def __init__(learning_rate: Union[float, deepchem.models.optimizers.LearningRateSchedule] = 0.001, momentum: float = 0.0, decay: float = 0.9, epsilon: float = 1e-10)
```

Construct an RMSProp Optimizer.

**Parameters**

- **learning_rate** (*float or LearningRateSchedule*) – the learning rate used for optimization
- **momentum** (*float, default 0.0*) – a parameter of the RMSProp algorithm
- **decay** (*float, default 0.9*) – a parameter of the RMSProp algorithm
- **epsilon** (*float, default 1e-10*) – a parameter of the RMSProp algorithm
class GradientDescent(learning_rate: Union[float, deepchem.models.optimizers.LearningRateSchedule] = 0.001)

The gradient descent optimization algorithm.

__init__(learning_rate: Union[float, deepchem.models.optimizers.LearningRateSchedule] = 0.001)

Construct a gradient descent optimizer.

Parameters

learning_rate (float or LearningRateSchedule) – the learning rate to use for optimization

class ExponentialDecay(initial_rate: float, decay_rate: float, decay_steps: int, staircase: bool = True)

A learning rate that decreases exponentially with the number of training steps.

__init__(initial_rate: float, decay_rate: float, decay_steps: int, staircase: bool = True)

Create an exponentially decaying learning rate.

The learning rate starts as initial_rate. Every decay_steps training steps, it is multiplied by decay_rate.

Parameters

• initial_rate (float) – the initial learning rate
• decay_rate (float) – the base of the exponential
• decay_steps (int) – the number of training steps over which the rate decreases by decay_rate
• staircase (bool) – if True, the learning rate decreases by discrete jumps every decay_steps. if False, the learning rate decreases smoothly every step

class PolynomialDecay(initial_rate: float, final_rate: float, decay_steps: int, power: float = 1.0)

A learning rate that decreases from an initial value to a final value over a fixed number of training steps.

__init__(initial_rate: float, final_rate: float, decay_steps: int, power: float = 1.0)

Create a smoothly decaying learning rate.

The learning rate starts as initial_rate. It smoothly decreases to final_rate over decay_steps training steps. It decays as a function of (1-step/decay_steps)**power. Once the final rate is reached, it remains there for the rest of optimization.

Parameters

• initial_rate (float) – the initial learning rate
• final_rate (float) – the final learning rate
• decay_steps (int) – the number of training steps over which the rate decreases from initial_rate to final_rate
• power (float) – the exponent controlling the shape of the decay

class LinearCosineDecay(initial_rate: float, decay_steps: int, alpha: float = 0.0, beta: float = 0.001, num_periods: float = 0.5)

Applies linear cosine decay to the learning rate

__init__(initial_rate: float, decay_steps: int, alpha: float = 0.0, beta: float = 0.001, num_periods: float = 0.5)

Parameters

• learning_rate (float) –
• rate (initial learning) –
3.16 Keras Models

DeepChem extensively uses Keras to build deep learning models.

3.16.1 KerasModel

Training loss and validation metrics can be automatically logged to Weights & Biases with the following commands:

```python
Install wandb in shell
pip install wandb

Login in shell (required only once)
wandb login
Login in notebook (required only once)
import wandb
wandb.login()

Initialize a WandbLogger
logger = WandbLogger(...)

Set `wandb_logger` when creating `KerasModel`
import deepchem as dc
model = dc.models.KerasModel(..., wandb_logger=logger)
model.fit(...)

Log validation metrics to wandb using ValidationCallback
import deepchem as dc
vc = dc.models.ValidationCallback(...)
model = KerasModel(..., wandb_logger=logger)
model.fit(..., callbacks=[vc])
logger.finish()
```


This is a DeepChem model implemented by a Keras model.

This class provides several advantages over using the Keras model’s fitting and prediction methods directly.

1. It provides better integration with the rest of DeepChem, such as direct support for Datasets and Transformers.
2. It defines the loss in a more flexible way. In particular, Keras does not support multidimensional weight matrices, which makes it impossible to implement most multitask models with Keras.

3. It provides various additional features not found in the Keras model class, such as uncertainty prediction and saliency mapping.

Here is a simple example of code that uses KerasModel to train a Keras model on a DeepChem dataset.

```python
>>> keras_model = tf.keras.Sequential([>> tf.keras.layers.Dense(1000, activation='tanh'), >> tf.keras.layers.Dense(1) >>]) >> model = KerasModel(keras_model, loss=dc.models.losses.L2Loss()) >> model.fit(dataset)
```

The loss function for a model can be defined in two different ways. For models that have only a single output and use a standard loss function, you can simply provide a dc.models.losses.Loss object. This defines the loss for each sample or sample/task pair. The result is automatically multiplied by the weights and averaged over the batch. Any additional losses computed by model layers, such as weight decay penalties, are also added.

For more complicated cases, you can instead provide a function that directly computes the total loss. It must be of the form f(outputs, labels, weights), taking the list of outputs from the model, the expected values, and any weight matrices. It should return a scalar equal to the value of the loss function for the batch. No additional processing is done to the result; it is up to you to do any weighting, averaging, adding of penalty terms, etc.

You can optionally provide an output_types argument, which describes how to interpret the model’s outputs. This should be a list of strings, one for each output. You can use an arbitrary output_type for an output, but some output_types are special and will undergo extra processing:

- **`prediction`**: This is a normal output, and will be returned by predict(). If output types are not specified, all outputs are assumed to be of this type.

- **`loss`**: This output will be used in place of the normal outputs for computing the loss function. For example, models that output probability distributions usually do it by computing unbounded numbers (the logits), then passing them through a softmax function to turn them into probabilities. When computing the cross entropy, it is more numerically stable to use the logits directly rather than the probabilities. You can do this by having the model produce both probabilities and logits as outputs, then specifying output_types=[`prediction`, `loss`]. When predict() is called, only the first output (the probabilities) will be returned. But during training, it is the second output (the logits) that will be passed to the loss function.

- **`variance`**: This output is used for estimating the uncertainty in another output. To create a model that can estimate uncertainty, there must be the same number of `prediction` and `variance` outputs. Each variance output must have the same shape as the corresponding prediction output, and each element is an estimate of the variance in the corresponding prediction. Also be aware that if a model supports uncertainty, it MUST use dropout on every layer, and dropout must be enabled during uncertainty prediction. Otherwise, the uncertainties it computes will be inaccurate.

- **other**: Arbitrary output_types can be used to extract outputs produced by the model, but will have no additional processing performed.

```python
```

Create a new KerasModel.

**Parameters**

- **model** *(tf.keras.Model)* – the Keras model implementing the calculation
• **loss** *(dc.models.losses.Loss or function)* – a Loss or function defining how to compute the training loss for each batch, as described above

• **output_types** *(list of strings)* – the type of each output from the model, as described above

• **batch_size** *(int)* – default batch size for training and evaluating

• **model_dir** *(str)* – the directory on disk where the model will be stored. If this is None, a temporary directory is created.

• **learning_rate** *(float or LearningRateSchedule)* – the learning rate to use for fitting. If optimizer is specified, this is ignored.

• **optimizer** *(Optimizer)* – the optimizer to use for fitting. If this is specified, learning_rate is ignored.

• **tensorboard** *(bool)* – whether to log progress to TensorBoard during training

• **wandb** *(bool)* – whether to log progress to Weights & Biases during training (deprecated)

• **log_frequency** *(int)* – The frequency at which to log data. Data is logged using logging by default. If tensorboard is set, data is also logged to TensorBoard. If wandb is set, data is also logged to Weights & Biases. Logging happens at global steps. Roughly, a global step corresponds to one batch of training. If you’d like a printout every 10 batch steps, you’d set log_frequency=10 for example.

• **wandb_logger** *(WandbLogger)* – the Weights & Biases logger object used to log data and metrics

```python
```

Train this model on a dataset.

**Parameters**

• **dataset** *(Dataset)* – the Dataset to train on

• **nb_epoch** *(int)* – the number of epochs to train for

• **max_checkpoints_to_keep** *(int)* – the maximum number of checkpoints to keep. Older checkpoints are discarded.

• **checkpoint_interval** *(int)* – the frequency at which to write checkpoints, measured in training steps. Set this to 0 to disable automatic checkpointing.

• **deterministic** *(bool)* – if True, the samples are processed in order. If False, a different random order is used for each epoch.

• **restore** *(bool)* – if True, restore the model from the most recent checkpoint and continue training from there. If False, retrain the model from scratch.

• **variables** *(list of tf.Variable)* – the variables to train. If None (the default), all trainable variables in the model are used.

• **loss** *(function)* – a function of the form f(outputs, labels, weights) that computes the loss for each batch. If None (the default), the model’s standard loss function is used.

• **callbacks** *(function or list of functions)* – one or more functions of the form f(model, step) that will be invoked after every step. This can be used to perform validation, logging, etc.
all_losses (Optional[List[float]], optional (default None)) – If specified, all logged losses are appended into this list. Note that you can call fit() repeatedly with the same list and losses will continue to be appended.

Return type The average loss over the most recent checkpoint interval


Train this model on data from a generator.

Parameters

- generator (generator) – this should generate batches, each represented as a tuple of the form (inputs, labels, weights).
- max_checkpoints_to_keep (int) – the maximum number of checkpoints to keep. Older checkpoints are discarded.
- checkpoint_interval (int) – the frequency at which to write checkpoints, measured in training steps. Set this to 0 to disable automatic checkpointing.
- restore (bool) – if True, restore the model from the most recent checkpoint and continue training from there. If False, retrain the model from scratch.
- variables (list of tf.Variable) – the variables to train. If None (the default), all trainable variables in the model are used.
- loss (function) – a function of the form f(outputs, labels, weights) that computes the loss for each batch. If None (the default), the model’s standard loss function is used.
- callbacks (function or list of functions) – one or more functions of the form f(model, step) that will be invoked after every step. This can be used to perform validation, logging, etc.
- all_losses (Optional[List[float]], optional (default None)) – If specified, all logged losses are appended into this list. Note that you can call fit() repeatedly with the same list and losses will continue to be appended.

Return type The average loss over the most recent checkpoint interval

fit_on_batch(X: Sequence, y: Sequence, w: Sequence, variables: Optional[List[tf.python.ops.variables.Variable]] = None, loss: Optional[Callable[[List, List, List], Any]] = None, callbacks: Union[Callable, List[Callable]] = [], checkpoint: bool = True, max_checkpoints_to_keep: int = 5) → float

Perform a single step of training.

Parameters

- X (ndarray) – the inputs for the batch
- y (ndarray) – the labels for the batch
- w (ndarray) – the weights for the batch
- variables (list of tf.Variable) – the variables to train. If None (the default), all trainable variables in the model are used.
- loss (function) – a function of the form f(outputs, labels, weights) that computes the loss for each batch. If None (the default), the model’s standard loss function is used.
• **callbacks** *(function or list of functions)* – one or more functions of the form \( f(model, \text{step}) \) that will be invoked after every step. This can be used to perform validation, logging, etc.

• **checkpoint** *(bool)* – if true, save a checkpoint after performing the training step

• **max_checkpoints_to_keep** *(int)* – the maximum number of checkpoints to keep. Older checkpoints are discarded.

**Return type** the loss on the batch

**predict_on_generator** *(generator: Iterable[Tuple[All, All, All]], transformers: List[Transformers] = [], outputs: Optional[Union[tensorflow.python.framework.ops.Tensor, Sequence[tensorflow.python.framework.ops.Tensor]]] = None, output_types: Optional[Union[Str, Sequence[Str]]] = None) \rightarrow \text{Union[numpy.ndarray, Sequence[numpy.ndarray]]}

**Parameters**

• **generator** *(generator)* – this should generate batches, each represented as a tuple of the form (inputs, labels, weights).

• **transformers** *(list of dc.trans.Transformers)* – Transformers that the input data has been transformed by. The output is passed through these transformers to undo the transformations.

• **outputs** *(Tensor or list of Tensors)* – The outputs to return. If this is None, the model’s standard prediction outputs will be returned. Alternatively one or more Tensors within the model may be specified, in which case the output of those Tensors will be returned. If outputs is specified, output_types must be None.

• **output_types** *(String or list of Strings)* – If specified, all outputs of this type will be retrieved from the model. If output_types is specified, outputs must be None.

• **Returns** – a NumPy array of the model produces a single output, or a list of arrays if it produces multiple outputs

**predict_on_batch** *(X: Union[numpy._typing._array_like._SupportsArray[numpy.dtype],
numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype],
bool, int, float, complex, str, bytes],
numpy._typing._nested_sequence._NestedSequence[Union[bool, int, float, complex, str, bytes]],
transformers: List[transformers.Transformer] = [], outputs:
Optional[Union[tensorflow.python.framework.ops.Tensor,
Sequence[tensorflow.python.framework.ops.Tensor]]] = None) \rightarrow \text{Union[numpy.ndarray, Sequence[numpy.ndarray]]}

Generates predictions for input samples, processing samples in a batch.

**Parameters**

• **X** *(ndarray)* – the input data, as a Numpy array.

• **transformers** *(list of dc.trans.Transformers)* – Transformers that the input data has been transformed by. The output is passed through these transformers to undo the transformations.

• **outputs** *(Tensor or list of Tensors)* – The outputs to return. If this is None, the model’s standard prediction outputs will be returned. Alternatively one or more Tensors within the model may be specified, in which case the output of those Tensors will be returned.
Returns

- a NumPy array of the model produces a single output, or a list of arrays
- if it produces multiple outputs

predict_uncertainty_on_batch(X: Sequence, masks: int = 50) \rightarrow \text{Union}[\text{Tuple}[\text{numpy.ndarray}, \text{numpy.ndarray}], \text{Sequence}[\text{Tuple}[\text{numpy.ndarray}, \text{numpy.ndarray}], \text{numpy.ndarray}]]

Predict the model’s outputs, along with the uncertainty in each one.

The uncertainty is computed as described in https://arxiv.org/abs/1703.04977. It involves repeating the prediction many times with different dropout masks. The prediction is computed as the average over all the predictions. The uncertainty includes both the variation among the predicted values (epistemic uncertainty) and the model’s own estimates for how well it fits the data (aleatoric uncertainty). Not all models support uncertainty prediction.

Parameters

- \textbf{X} (ndarray) – the input data, as a Numpy array.
- \textbf{masks} (int) – the number of dropout masks to average over

Returns

- for each output, a tuple (y_pred, y_std) where y_pred is the predicted
- value of the output, and each element of y_std estimates the standard
- deviation of the corresponding element of y_pred


Uses self to make predictions on provided Dataset object.

Parameters

- \textbf{dataset} (dc.data.Dataset) – Dataset to make prediction on
- \textbf{transformers} (list of dc.trans.Transformers) – Transformers that the input data has been transformed by. The output is passed through these transformers to undo the transformations.
- \textbf{outputs} (Tensor or list of Tensors) – The outputs to return. If this is None, the model’s standard prediction outputs will be returned. Alternatively one or more Tensors within the model may be specified, in which case the output of those Tensors will be returned.
- \textbf{output_types} (String or list of Strings) – If specified, all outputs of this type will be retrieved from the model. If output_types is specified, outputs must be None.

Returns

- a NumPy array of the model produces a single output, or a list of arrays
- if it produces multiple outputs

predict_embedding(dataset: deepchem.data.datasets.Dataset) \rightarrow \text{Union}[\text{numpy.ndarray}, \text{Sequence}[\text{numpy.ndarray}]]

Predicts embeddings created by underlying model if any exist. An embedding must be specified to have \textit{output_type} of ‘embedding’ in the model definition.

Parameters \textbf{dataset} (dc.data.Dataset) – Dataset to make prediction on
Returns

- a NumPy array of the embeddings model produces, or a list
- of arrays if it produces multiple embeddings

`predict_uncertainty` (**dataset**: deepchem.data.datasets.Dataset, **masks**: int = 50) → Union[Tuple[numpy.ndarray, numpy.ndarray], Sequence[Tuple[numpy.ndarray, numpy.ndarray]]]

Predict the model’s outputs, along with the uncertainty in each one.

The uncertainty is computed as described in https://arxiv.org/abs/1703.04977. It involves repeating the prediction many times with different dropout masks. The prediction is computed as the average over all the predictions. The uncertainty includes both the variation among the predicted values (epistemic uncertainty) and the model’s own estimates for how well it fits the data (aleatoric uncertainty). Not all models support uncertainty prediction.

**Parameters**

- **dataset** (dc.data.Dataset) – Dataset to make prediction on
- **masks** (int) – the number of dropout masks to average over

**Returns**

- for each output, a tuple (y_pred, y_std) where y_pred is the predicted
- value of the output, and each element of y_std estimates the standard
deviation of the corresponding element of y_pred

`evaluate_generator` (**generator**: Iterable[Tuple[Any, Any, Any]], **metrics**: List[deepchem.metrics.metric.Metric], **transformers**: List[transformers.Transformer] = [], **per_task_metrics**: bool = False)

Evaluate the performance of this model on the data produced by a generator.

**Parameters**

- **generator** (generator) – this should generate batches, each represented as a tuple of the form (inputs, labels, weights).
- **metric** (list of deepchem.metrics.Metric) – Evaluation metric
- **transformers** (list of dc.trans.Transformer) – Transformers that the input data has been transformed by. The output is passed through these transformers to undo the transformations.
- **per_task_metrics** (bool) – If True, return per-task scores.

**Returns** Maps tasks to scores under metric.

**Return type** dict

`compute_saliency` (**X**: numpy.ndarray) → Union[numpy.ndarray, Sequence[numpy.ndarray]]

Compute the saliency map for an input sample.

This computes the Jacobian matrix with the derivative of each output element with respect to each input element. More precisely,

- If this model has a single output, it returns a matrix of shape (output_shape, input_shape) with the derivatives.
- If this model has multiple outputs, it returns a list of matrices, one for each output.

This method cannot be used on models that take multiple inputs.
Parameters `X` *(ndarray)* – the input data for a single sample

Return type the Jacobian matrix, or a list of matrices


Create a generator that iterates batches for a dataset.

Subclasses may override this method to customize how model inputs are generated from the data.

Parameters

- `dataset` *(Dataset)* – the data to iterate
- `epochs` *(int)* – the number of times to iterate over the full dataset
- `mode` *(str)* – allowed values are ‘fit’ (called during training), ‘predict’ (called during prediction), and ‘uncertainty’ (called during uncertainty prediction)
- `deterministic` *(bool)* – whether to iterate over the dataset in order, or randomly shuffle the data for each epoch
- `pad_batches` *(bool)* – whether to pad each batch up to this model’s preferred batch size

Returns

- a generator that iterates batches, each represented as a tuple of lists
- `[(inputs), (outputs), (weights)]`

save_checkpoint(*max_checkpoints_to_keep: int = 5, model_dir: Optional[str] = None*) → None

Save a checkpoint to disk.

Usually you do not need to call this method, since fit() saves checkpoints automatically. If you have disabled automatic checkpointing during fitting, this can be called to manually write checkpoints.

Parameters

- `max_checkpoints_to_keep` *(int)* – the maximum number of checkpoints to keep. Older checkpoints are discarded.
- `model_dir` *(str, default None)* – Model directory to save checkpoint to. If None, revert to self.model_dir

get_checkpoints(*model_dir: Optional[str] = None*)

Get a list of all available checkpoint files.

Parameters `model_dir` *(str, default None)* – Directory to get list of checkpoints from. Reverts to self.model_dir if None

restore(*checkpoint: Optional[str] = None, model_dir: Optional[str] = None*) → None

Reload the values of all variables from a checkpoint file.

Parameters

- `checkpoint` *(str)* – the path to the checkpoint file to load. If this is None, the most recent checkpoint will be chosen automatically. Call get_checkpoints() to get a list of all available checkpoints.
- `model_dir` *(str, default None)* – Directory to restore checkpoint from. If None, use self.model_dir.
**get_global_step() → int**

Get the number of steps of fitting that have been performed.

**load_from_pretrained(source_model: deepchem.models.keras_model.KerasModel, assignment_map: Optional[Dict[Any, Any]] = None, value_map: Optional[Dict[Any, Any]] = None, checkpoint: Optional[str] = None, model_dir: Optional[str] = None, include_top: bool = True, inputs: Optional[Sequence[Any]] = None, **kwargs) → None**

Copies variable values from a pretrained model. source_model can either be a pretrained model or a model with the same architecture. value_map is a variable-value dictionary. If no value_map is provided, the variable values are restored to the source_model from a checkpoint and a default value_map is created. assignment_map is a dictionary mapping variables from the source_model to the current model. If no assignment_map is provided, one is made from scratch and assumes the model is composed of several different layers, with the final one being a dense layer. include_top is used to control whether or not the final dense layer is used. The default assignment map is useful in cases where the type of task is different (classification vs regression) and/or number of tasks in the setting.

**Parameters**

- **source_model** *(dc.KerasModel, required)* — source_model can either be the pretrained model or a dc.KerasModel with the same architecture as the pretrained model. It is used to restore from a checkpoint, if value_map is None and to create a default assignment map if assignment_map is None
- **assignment_map** *(Dict, default None)* — Dictionary mapping the source_model variables and current model variables
- **value_map** *(Dict, default None)* — Dictionary containing source_model trainable variables mapped to numpy arrays. If value_map is None, the values are restored and a default variable map is created using the restored values
- **checkpoint** *(str, default None)* — the path to the checkpoint file to load. If this is None, the most recent checkpoint will be chosen automatically. Call get_checkpoints() to get a list of all available checkpoints
- **model_dir** *(str, default None)* — Restore model from custom model directory if needed
- **include_top** *(bool, default True)* — if True, copies the weights and bias associated with the final dense layer. Used only when assignment_map is None
- **inputs** *(List, input tensors for model)* — if not None, then the weights are built for both the source and self. This option is useful only for models that are built by subclassing tf.keras.Model, and not using the functional API by tf.keras

### 3.16.2 TensorflowMultitaskIRVClassifier

**class TensorflowMultitaskIRVClassifier(*args, **kwargs)**

**__init__(*args, **kwargs)**

Initialize MultitaskIRVClassifier

**Parameters**

- **n_tasks** *(int)* — Number of tasks
- **K** *(int)* — Number of nearest neighbours used in classification
- **penalty** *(float)* — Amount of penalty (l2 or l1 applied)
3.16.3 RobustMultitaskClassifier

class RobustMultitaskClassifier(n_tasks, n_features, layer_sizes=[1000], weight_init_stddevs=0.02, bias_init_consts=1.0, weight_decay_penalty=0.0, weight_decay_penalty_type='l2', dropouts=0.5, activation_fns=<function relu>, n_classes=2, bypass_layer_sizes=[100], bypass_weight_init_stddevs=0.02, bypass_bias_init_consts=1.0, bypass_dropouts=0.5, **kwargs)

Implements a neural network for robust multitasking.

The key idea of this model is to have bypass layers that feed directly from features to task output. This might provide some flexibility to route around challenges in multitasking with destructive interference.

References

This technique was introduced in [1].

__init__(n_tasks, n_features, layer_sizes=[1000], weight_init_stddevs=0.02, bias_init_consts=1.0, weight_decay_penalty=0.0, weight_decay_penalty_type='l2', dropouts=0.5, activation_fns=<function relu>, n_classes=2, bypass_layer_sizes=[100], bypass_weight_init_stddevs=0.02, bypass_bias_init_consts=1.0, bypass_dropouts=0.5, **kwargs)

Create a RobustMultitaskClassifier.

Parameters

- n_tasks (int) – number of tasks
- n_features (int) – number of features
- layer_sizes (list) – the size of each dense layer in the network. The length of this list determines the number of layers.
- weight_init_stddevs (list or float) – the standard deviation of the distribution to use for weight initialization of each layer. The length of this list should equal len(layer_sizes). Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.
- bias_init_consts (list or float) – the value to initialize the biases in each layer to. The length of this list should equal len(layer_sizes). Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.
- weight_decay_penalty (float) – the magnitude of the weight decay penalty to use
- weight_decay_penalty_type (str) – the type of penalty to use for weight decay, either ‘l1’ or ‘l2’
- dropouts (list or float) – the dropout probability to use for each layer. The length of this list should equal len(layer_sizes). Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.
- activation_fns (list or object) – the Tensorflow activation function to apply to each layer. The length of this list should equal len(layer_sizes). Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.
- n_classes (int) – the number of classes
- bypass_layer_sizes (list) – the size of each dense layer in the bypass network. The length of this list determines the number of bypass layers.
• **bypass_weight_init_stddevs** *(list or float)* – the standard deviation of the distribution to use for weight initialization of bypass layers. same requirements as weight_init_stddevs

• **bypass_bias_init_consts** *(list or float)* – the value to initialize the biases in bypass layers same requirements as bias_init_consts

• **bypass_dropouts** *(list or float)* – the dropout probability to use for bypass layers. same requirements as dropouts

default_generator*(dataset, epochs=1, mode='fit', deterministic=True, pad_batches=True)*

Create a generator that iterates batches for a dataset.

Subclasses may override this method to customize how model inputs are generated from the data.

**Parameters**

• **dataset** *(Dataset)* – the data to iterate

• **epochs** *(int)* – the number of times to iterate over the full dataset

• **mode** *(str)* – allowed values are ‘fit’ (called during training), ‘predict’ (called during prediction), and ‘uncertainty’ (called during uncertainty prediction)

• **deterministic** *(bool)* – whether to iterate over the dataset in order, or randomly shuffle the data for each epoch

• **pad_batches** *(bool)* – whether to pad each batch up to this model’s preferred batch size

**Returns**

• a generator that iterates batches, each represented as a tuple of lists

• *([inputs], [outputs], [weights])*

### 3.16.4 RobustMultitaskRegressor

**class RobustMultitaskRegressor**(n_tasks, n_features, layer_sizes=[1000], weight_init_stddevs=0.02, bias_init_consts=1.0, weight_decay_penalty=0.0, weight_decay_penalty_type='l2', dropouts=0.5, activation_fns=<function relu>, bypass_layer_sizes=[100], bypass_weight_init_stddevs=[0.02], bypass_bias_init_consts=[1.0], bypass_dropouts=[0.5], **kwargs)

Implements a neural network for robust multitasking.

The key idea of this model is to have bypass layers that feed directly from features to task output. This might provide some flexibility to route around challenges in multitasking with destructive interference.

**References**

**__init__**(n_tasks, n_features, layer_sizes=[1000], weight_init_stddevs=0.02, bias_init_consts=1.0, weight_decay_penalty=0.0, weight_decay_penalty_type='l2', dropouts=0.5, activation_fns=<function relu>, bypass_layer_sizes=[100], bypass_weight_init_stddevs=[0.02], bypass_bias_init_consts=[1.0], bypass_dropouts=[0.5], **kwargs)

Create a RobustMultitaskRegressor.

**Parameters**

• **n_tasks** *(int)* – number of tasks

• **n_features** *(int)* – number of features
• **layer_sizes** (list) – the size of each dense layer in the network. The length of this list determines the number of layers.

• **weight_init_stddevs** (list or float) – the standard deviation of the distribution to use for weight initialization of each layer. The length of this list should equal \( \text{len(layer\_sizes)} \). Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.

• **bias_init_consts** (list or float) – the value to initialize the biases in each layer to. The length of this list should equal \( \text{len(layer\_sizes)} \). Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.

• **weight_decay_penalty** (float) – the magnitude of the weight decay penalty to use

• **weight_decay_penalty_type** (str) – the type of penalty to use for weight decay, either ‘l1’ or ‘l2’

• **dropouts** (list or float) – the dropout probability to use for each layer. The length of this list should equal \( \text{len(layer\_sizes)} \). Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.

• **activation_fns** (list or object) – the Tensorflow activation function to apply to each layer. The length of this list should equal \( \text{len(layer\_sizes)} \). Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.

• **bypass_layer_sizes** (list) – the size of each dense layer in the bypass network. The length of this list determines the number of bypass layers.

• **bypass_weight_init_stddevs** (list or float) – the standard deviation of the distribution to use for weight initialization of bypass layers. same requirements as weight_init_stddevs

• **bypass_bias_init_consts** (list or float) – the value to initialize the biases in bypass layers same requirements as bias_initconsts

• **bypass_dropouts** (list or float) – the dropout probability to use for bypass layers. same requirements as dropouts

```python
```

Create a generator that iterates batches for a dataset.

Subclasses may override this method to customize how model inputs are generated from the data.

**Parameters**

• **dataset** (Dataset) – the data to iterate

• **epochs** (int) – the number of times to iterate over the full dataset

• **mode** (str) – allowed values are ‘fit’ (called during training), ‘predict’ (called during prediction), and ‘uncertainty’ (called during uncertainty prediction)

• **deterministic** (bool) – whether to iterate over the dataset in order, or randomly shuffle the data for each epoch

• **pad_batches** (bool) – whether to pad each batch up to this model’s preferred batch size

**Returns**

• a generator that iterates batches, each represented as a tuple of lists

• ([inputs], [outputs], [weights])
3.16.5 ProgressiveMultitaskClassifier

```python
class ProgressiveMultitaskClassifier(n_tasks, n_features, alpha_init_stddevs=0.02, layer_sizes=[1000], weight_init_stddevs=0.02, bias_init_consts=1.0, weight_decay_penalty=0.0, weight_decay_penalty_type='l2', dropouts=0.5, activation_fns=<function relu>, **kwargs)
```

Implements a progressive multitask neural network for classification.


Progressive networks allow for multitask learning where each task gets a new column of weights. As a result, there is no exponential forgetting where previous tasks are ignored.

```python
__init__(n_tasks, n_features, alpha_init_stddevs=0.02, layer_sizes=[1000], weight_init_stddevs=0.02, bias_init_consts=1.0, weight_decay_penalty=0.0, weight_decay_penalty_type='l2', dropouts=0.5, activation_fns=<function relu>, **kwargs)
```

Creates a progressive network.

Only listing parameters specific to progressive networks here.

**Parameters**

- `n_tasks (int)` – Number of tasks
- `n_features (int)` – Number of input features
- `alpha_init_stddevs (list)` – List of standard-deviations for alpha in adapter layers.
- `layer_sizes (list)` – the size of each dense layer in the network. The length of this list determines the number of layers.
- `weight_init_stddevs (list or float)` – the standard deviation of the distribution to use for weight initialization of each layer. The length of this list should equal len(layer_sizes)+1. The final element corresponds to the output layer. Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.
- `bias_init_consts (list or float)` – the value to initialize the biases in each layer to. The length of this list should equal len(layer_sizes)+1. The final element corresponds to the output layer. Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.
- `weight_decay_penalty (float)` – the magnitude of the weight decay penalty to use
- `weight_decay_penalty_type (str)` – the type of penalty to use for weight decay, either ‘l1’ or ‘l2’
- `dropouts (list or float)` – the dropout probability to use for each layer. The length of this list should equal len(layer_sizes). Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.
- `activation_fns (list or object)` – the Tensorflow activation function to apply to each layer. The length of this list should equal len(layer_sizes). Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.
3.16.6 ProgressiveMultitaskRegressor

class ProgressiveMultitaskRegressor(n_tasks, n_features, alpha_init_stddevs=0.02, layer_sizes=[1000],
weight_init_stddevs=0.02, bias_init_consts=1.0,
weight_decay_penalty=0.0, weight_decay_penalty_type='l2',
dropouts=0.5, activation_fns=<function relu>, n_outputs=1,
**kwargs)

Implements a progressive multitask neural network for regression.

Progressive networks allow for multitask learning where each task gets a new column of weights. As a result, there is no exponential forgetting where previous tasks are ignored.

References

See [1] for a full description of the progressive architecture

__init__ (n_tasks, n_features, alpha_init_stddevs=0.02, layer_sizes=[1000], weight_init_stddevs=0.02,
bias_init_consts=1.0, weight_decay_penalty=0.0, weight_decay_penalty_type='l2', dropouts=0.5,
activation_fns=<function relu>, n_outputs=1, **kwargs)

Creates a progressive network.

Only listing parameters specific to progressive networks here.

Parameters

- **n_tasks** (int) – Number of tasks
- **n_features** (int) – Number of input features
- **alpha_init_stddevs** (list) – List of standard-deviations for alpha in adapter layers.
- **layer_sizes** (list) – the size of each dense layer in the network. The length of this list determines the number of layers.
- **weight_init_stddevs** (list or float) – the standard deviation of the distribution to use for weight initialization of each layer. The length of this list should equal len(layer_sizes)+1. The final element corresponds to the output layer. Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.
- **bias_init_consts** (list or float) – the value to initialize the biases in each layer to. The length of this list should equal len(layer_sizes)+1. The final element corresponds to the output layer. Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.
- **weight_decay_penalty** (float) – the magnitude of the weight decay penalty to use
- **weight_decay_penalty_type** (str) – the type of penalty to use for weight decay, either ‘l1’ or ‘l2’
- **dropouts** (list or float) – the dropout probability to use for each layer. The length of this list should equal len(layer_sizes). Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.
- **activation_fns** (list or object) – the Tensorflow activation function to apply to each layer. The length of this list should equal len(layer_sizes). Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.

add_adapter (all_layers, task, layer_num)

Add an adapter connection for given task/layer combo
**fit**(*dataset*, *nb_epoch=10*, *max_checkpoints_to_keep=5*, *checkpoint_interval=1000*, *deterministic=False*, *restore=False*, **kwargs*)

Train this model on a dataset.

**Parameters**

- **dataset** ([Dataset]) – the Dataset to train on
- **nb_epoch** (int) – the number of epochs to train for
- **max_checkpoints_to_keep** (int) – the maximum number of checkpoints to keep. Older checkpoints are discarded.
- **checkpoint_interval** (int) – the frequency at which to write checkpoints, measured in training steps. Set this to 0 to disable automatic checkpointing.
- **deterministic** (bool) – if True, the samples are processed in order. If False, a different random order is used for each epoch.
- **restore** (bool) – if True, restore the model from the most recent checkpoint and continue training from there. If False, retrain the model from scratch.
- **variables** (list of tf.Variable) – the variables to train. If None (the default), all trainable variables in the model are used.
- **loss** (function) – a function of the form f(outputs, labels, weights) that computes the loss for each batch. If None (the default), the model’s standard loss function is used.
- **callbacks** (function or list of functions) – one or more functions of the form f(model, step) that will be invoked after every step. This can be used to perform validation, logging, etc.
- **all_losses** (Optional[List[float]], optional (default None)) – If specified, all logged losses are appended into this list. Note that you can call fit() repeatedly with the same list and losses will continue to be appended.

**Return type** The average loss over the most recent checkpoint interval

**fit_task**(*dataset*, *task*, *nb_epoch=10*, *max_checkpoints_to_keep=5*, *checkpoint_interval=1000*, *deterministic=False*, *restore=False*, **kwargs*)

Fit one task.

### 3.16.7 WeaveModel


Implements Google-style Weave Graph Convolutions
This model implements the Weave style graph convolutions from [1].

The biggest difference between WeaveModel style convolutions and GraphConvModel style convolutions is that Weave convolutions model bond features explicitly. This has the side effect that it needs to construct a NxN matrix explicitly to model bond interactions. This may cause scaling issues, but may possibly allow for better modeling of subtle bond effects.

Note that [1] introduces a whole variety of different architectures for Weave models. The default settings in this class correspond to the W2N2 variant from [1], which is the most commonly used variant.

Examples

Here’s an example of how to fit a WeaveModel on a tiny sample dataset.

```python
>>> import numpy as np
>>> import deepchem as dc
>>> featurizer = dc.feat.WeaveFeaturizer()
>>> X = featurizer(["C", "CC"])
>>> y = np.array([1, 0])
>>> dataset = dc.data.NumpyDataset(X, y)
>>> model = dc.models.WeaveModel(n_tasks=1, n_weave=2, fully_connected_layer_sizes=[2000, 1000], mode="classification")
>>> loss = model.fit(dataset)
```

Note: In general, the use of batch normalization can cause issues with NaNs. If you’re having trouble with NaNs while using this model, consider setting `batch_normalize_kwargs={"trainable": False}` or turning off batch normalization entirely with `batch_normalize=False`.

References


Parameters

• **n_tasks** (int) – Number of tasks
• **n_atom_feat** (int, optional (default 75)) – Number of features per atom. Note this is 75 by default and should be 78 if chirality is used by WeaveFeaturizer.
• **n_pair_feat** (int, optional (default 14)) – Number of features per pair of atoms.
- **n_hidden** (*int, optional (default 50)*) – Number of units (convolution depths) in corresponding hidden layer

- **n_graph_feat** (*int, optional (default 128)*) – Number of output features for each molecule (graph)

- **n_weave** (*int, optional (default 2)*) – The number of weave layers in this model.

- **fully_connected_layer_sizes** (*list (default [2000, 100])* ) – The size of each dense layer in the network. The length of this list determines the number of layers.

- **conv_weight_init_stddevs** (*list or float (default 0.03)* ) – The standard deviation of the distribution to use for weight initialization of each convolutional layer. The length of this list should equal n_weave. Alternatively, this may be a single value instead of a list, in which case the same value is used for each layer.

- **weight_init_stddevs** (*list or float (default 0.01)* ) – The standard deviation of the distribution to use for weight initialization of each fully connected layer. The length of this list should equal len(layer_sizes). Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.

- **bias_init_consts** (*list or float (default 0.0)* ) – The value to initialize the biases in each fully connected layer. The length of this list should equal len(layer_sizes). Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.

- **weight_decay_penalty** (*float (default 0.0)* ) – The magnitude of the weight decay penalty to use

- **weight_decay_penalty_type** (*str (default “l2”)* ) – The type of penalty to use for weight decay, either ‘l1’ or ‘l2’

- **dropouts** (*list or float (default 0.25)* ) – The dropout probability to use for each fully connected layer. The length of this list should equal len(layer_sizes). Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.

- **final_conv_activation_fn** (*Optional[ActivationFn] (default tf.nn.tanh)* ) – The Tensorflow activation function to apply to the final convolution at the end of the weave convolutions. If None, then no activate is applied (hence linear).

- **activation_fns** (*list or object (default tf.nn.relu)* ) – The Tensorflow activation function to apply to each fully connected layer. The length of this list should equal len(layer_sizes). Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.

- **batch_normalize** (*bool, optional (default True)* ) – If this is turned on, apply batch normalization before applying activation functions on convolutional and fully connected layers.

- **batch_normalize_kkwargs** (*Dict, optional (default {“renorm”:True, “fused”:False})* ) – Batch normalization is a complex layer which has many potential arguments which change behavior. This layer accepts user-defined parameters which are passed to all BatchNormalization layers in WeaveModel, WeaveLayer, and WeaveGather.

- **gaussian_expand** (*boolean, optional (default True)* ) – Whether to expand each dimension of atomic features by gaussian histogram

- **compress_post_gaussian_expansion** (*bool, optional (default False)* ) – If True, compress the results of the Gaussian expansion back to the original dimensions of the input.
• **mode** *(str (default "classification")) – Either “classification” or “regression” for type of model.*

• **n_classes** *(int (default 2)) – Number of classes to predict (only used in classification mode)*

• **batch_size** *(int (default 100)) – Batch size used by this model for training.*

**compute_features_on_batch(X_b)**

Compute tensors that will be input into the model from featurized representation.

The featurized input to *WeaveModel* is instances of *WeaveMol* created by *WeaveFeaturizer*. This method converts input *WeaveMol* objects into tensors used by the Keras implementation to compute *WeaveModel* outputs.

**Parameters**

- **X_b** *(np.ndarray) – A numpy array with dtype=object where elements are *WeaveMol* objects.*

**Returns**

- **atom_feat** *(np.ndarray) – Of shape \((N_{atoms}, N_{atom_feat})\).*

- **pair_feat** *(np.ndarray) – Of shape \((N_{pairs}, N_{pair_feat})\). Note that \(N_{pairs}\) will depend on the number of pairs being considered. If *max_pair_distance* is *None*, then this will be \(N_{atoms}^2\). Else it will be the number of pairs within the specified graph distance.*

- **pair_split** *(np.ndarray) – Of shape \((N_{pairs},)\). The i-th entry in this array will tell you the originating atom for this pair (the “source”). Note that pairs are symmetric so for a pair \((a, b)\), both \(a\) and \(b\) will separately be sources at different points in this array.*

- **atom_split** *(np.ndarray) – Of shape \((N_{atoms},)\). The i-th entry in this array will be the molecule with the i-th atom belongs to.*

- **atom_to_pair** *(np.ndarray) – Of shape \((N_{pairs}, 2)\). The i-th row in this array will be the array \([a, b]\) if \((a, b)\) is a pair to be considered. (Note by symmetry, this implies some other row will contain \([b, a]\).)*

**default_generator** *(dataset: deepchem.data.datasets.Dataset, epochs: int = 1, mode: str = 'fit', deterministic: bool = True, pad_batches: bool = True) → Iterable[Tuple[List, List, List]]*

Convert a dataset into the tensors needed for learning.

**Parameters**

- **dataset** *(dc.data.Dataset) – Dataset to convert.*

- **epochs** *(int, optional (Default 1)) – Number of times to walk over dataset.*

- **mode** *(str, optional (Default 'fit')) – Ignored in this implementation.*

- **deterministic** *(bool, optional (Default True)) – Whether the dataset should be walked in a deterministic fashion.*

- **pad_batches** *(bool, optional (Default True)) – If true, each returned batch will have size self.batch_size.*

**Return type** Iterator which walks over the batches.
3.16.8 DTNNModel

class DTNNModel(n_tasks, n_embedding=30, n_hidden=100, distance_min=-1, distance_max=18, output_activation=True, mode='regression', dropout=0.0, **kwargs)

Deep Tensor Neural Networks
This class implements deep tensor neural networks as first defined in [1].

References

__init__(n_tasks, n_embedding=30, n_hidden=100, distance_min=-1, distance_max=18, output_activation=True, mode='regression', dropout=0.0, **kwargs)

Parameters

• n_tasks (int) – Number of tasks
• n_embedding (int, optional) – Number of features per atom.
• n_hidden (int, optional) – Number of features for each molecule after DTNNStep
• n_distance (int, optional) – granularity of distance matrix step size will be (distance_max-distance_min)/n_distance
• distance_min (float, optional) – minimum distance of atom pairs, default = -1 Angstrom
• distance_max (float, optional) – maximum distance of atom pairs, default = 18 Angstrom
• mode (str) – Only “regression” is currently supported.
• dropout (float) – the dropout probability to use.

compute_features_on_batch(X_b)
Computes the values for different Feature Layers on given batch
A tf.py_func wrapper is written around this when creating the input_fn for tf.Estimator
default_generator(dataset, epochs=1, mode='fit', deterministic=True, pad_batches=True)
Create a generator that iterates batches for a dataset.
Subclasses may override this method to customize how model inputs are generated from the data.

Parameters

• dataset (Dataset) – the data to iterate
• epochs (int) – the number of times to iterate over the full dataset
• mode (str) – allowed values are ‘fit’ (called during training), ‘predict’ (called during prediction), and ‘uncertainty’ (called during uncertainty prediction)
• deterministic (bool) – whether to iterate over the dataset in order, or randomly shuffle the data for each epoch
• pad_batches (bool) – whether to pad each batch up to this model’s preferred batch size

Returns

• a generator that iterates batches, each represented as a tuple of lists
• ([inputs], [outputs], [weights])
3.16.9 DAGModel

class DAGModel(n_tasks, max_atoms=50, n_atom_feat=75, n_graph_feat=30, n_outputs=30, layer_sizes=[100],
layer_sizes_gather=[100], dropout=None, mode='classification', n_classes=2,
uncertainty=False, batch_size=100, **kwargs)

Directed Acyclic Graph models for molecular property prediction.

This model is based on the following paper:

Lusci, Alessandro, Gianluca Pollastri, and Pierre Baldi. “Deep architectures and deep learning in chemoin-
formatics: the prediction of aqueous solubility for drug-like molecules.” Journal of chemical information and
modeling 53.7 (2013): 1563-1575.

The basic idea for this paper is that a molecule is usually viewed as an undirected graph. However, you
can convert it to a series of directed graphs. The idea is that for each atom, you make a DAG using that
atom as the vertex of the DAG and edges pointing “inwards” to it. This transformation is implemented in
dc.trans.transformers.DAGTransformer.UG_to_DAG.

This model accepts ConvMols as input, just as GraphConvModel does, but these ConvMol objects must be
transformed by dc.trans.DAGTransformer.

As a note, performance of this model can be a little sensitive to initialization. It might be worth training a few
different instantiations to get a stable set of parameters.

__init__ (n_tasks, max_atoms=50, n_atom_feat=75, n_graph_feat=30, n_outputs=30, layer_sizes=[100],
layer_sizes_gather=[100], dropout=None, mode='classification', n_classes=2, uncertainty=False,
batch_size=100, **kwargs)

Parameters

• n_tasks (int) – Number of tasks.
• max_atoms (int, optional) – Maximum number of atoms in a molecule, should be
defined based on dataset.
• n_atom_feat (int, optional) – Number of features per atom.
• n_graph_feat (int, optional) – Number of features for atom in the graph.
• n_outputs (int, optional) – Number of features for each molecule.
• layer_sizes (list of int, optional) – List of hidden layer size(s) in the propaga-
tion step: length of this list represents the number of hidden layers, and each element is the
width of corresponding hidden layer.
• layer_sizes_gather (list of int, optional) – List of hidden layer size(s) in the
gather step.
• dropout (None or float, optional) – Dropout probability, applied after each prop-
agation step and gather step.
• mode (str, optional) – Either “classification” or “regression” for type of model.
• n_classes (int) – the number of classes to predict (only used in classification mode)
• uncertainty (bool) – if True, include extra outputs and loss terms to enable the uncer-
tainty in outputs to be predicted

default_generator (dataset, epochs=1, mode='fit', deterministic=True, pad_batches=True)

Convert a dataset into the tensors needed for learning
3.16.10 GraphConvModel

```python
class GraphConvModel(n_tasks: int, graph_conv_layers: List[int] = [64, 64], dense_layer_size: int = 128, dropout: float = 0.0, mode: str = 'classification', number_atom_features: int = 75, n_classes: int = 2, batch_size: int = 100, batch_normalize: bool = True, uncertainty: bool = False, **kwargs)
```

Graph Convolutional Models.

This class implements the graph convolutional model from the following paper [1]. These graph convolutions start with a per-atom set of descriptors for each atom in a molecule, then combine and recombine these descriptors over convolutional layers. following [1].

References

```python
__init__(n_tasks: int, graph_conv_layers: List[int] = [64, 64], dense_layer_size: int = 128, dropout: float = 0.0, mode: str = 'classification', number_atom_features: int = 75, n_classes: int = 2, batch_size: int = 100, batch_normalize: bool = True, uncertainty: bool = False, **kwargs)
```

The wrapper class for graph convolutions.

Note that since the underlying _GraphConvKerasModel class is specified using imperative subclassing style, this model cannot make predictions for arbitrary outputs.

Parameters

- **n_tasks** (*int*) – Number of tasks
- **graph_conv_layers** (*list of int*) – Width of channels for the Graph Convolution Layers
- **dense_layer_size** (*int*) – Width of channels for Atom Level Dense Layer after Graph-Pool
- **dropout** (*list or float*) – the dropout probability to use for each layer. The length of this list should equal len(graph_conv_layers)+1 (one value for each convolution layer, and one for the dense layer). Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.
- **mode** (*str*) – Either “classification” or “regression”
- **number_atom_features** (*int*) – 75 is the default number of atom features created, but this can vary if various options are passed to the function atom_features in graph_features
- **n_classes** (*int*) – the number of classes to predict (only used in classification mode)
- **batch_normalize** (*True*) – if True, apply batch normalization to model
- **uncertainty** (*bool*) – if True, include extra outputs and loss terms to enable the uncertainty in outputs to be predicted

**default_generator** (*dataset, epochs=1, mode='fit', deterministic=True, pad_batches=True*)

Create a generator that iterates batches for a dataset.

Subclasses may override this method to customize how model inputs are generated from the data.

Parameters

- **dataset** (*Dataset*) – the data to iterate
- **epochs** (*int*) – the number of times to iterate over the full dataset
• **mode** (*str*) – allowed values are ‘fit’ (called during training), ‘predict’ (called during prediction), and ‘uncertainty’ (called during uncertainty prediction)

• **deterministic** (*bool*) – whether to iterate over the dataset in order, or randomly shuffle the data for each epoch

• **pad_batches** (*bool*) – whether to pad each batch up to this model’s preferred batch size

**Returns**

• *a generator that iterates batches, each represented as a tuple of lists*

• (*[inputs], [outputs], [weights]*)

### 3.16.11 MPNNModel

**class** **MPNNModel**(n_tasks, n_atom_feat=70, n_pair_feat=8, n_hidden=100, T=5, M=10, mode='regression', dropout=0.0, n_classes=2, uncertainty=False, batch_size=100, **kwargs)

Message Passing Neural Network,

Message Passing Neural Networks [1]_ treat graph convolutional operations as an instantiation of a more general message passing scheme. Recall that message passing in a graph is when nodes in a graph send each other “messages” and update their internal state as a consequence of these messages.

Ordering structures in this model are built according to [2]_

**References**

**__init__**(n_tasks, n_atom_feat=70, n_pair_feat=8, n_hidden=100, T=5, M=10, mode='regression', dropout=0.0, n_classes=2, uncertainty=False, batch_size=100, **kwargs)

**Parameters**

• **n_tasks** (*int*) – Number of tasks

• **n_atom_feat** (*int, optional*) – Number of features per atom.

• **n_pair_feat** (*int, optional*) – Number of features per pair of atoms.

• **n_hidden** (*int, optional*) – Number of units(activation depths) in corresponding hidden layer

• **n_graph_feat** (*int, optional*) – Number of output features for each molecule(graph)

• **dropout** (*float*) – the dropout probablity to use.

• **n_classes** (*int*) – the number of classes to predict (only used in classification mode)

• **uncertainty** (*bool*) – if True, include extra outputs and loss terms to enable the uncertainty in outputs to be predicted

**default_generator**(dataset, epochs=1, mode='fit', deterministic=True, pad_batches=True)

Create a generator that iterates batches for a dataset.

Subclasses may override this method to customize how model inputs are generated from the data.

**Parameters**

• **dataset** (*Dataset*) – the data to iterate

• **epochs** (*int*) – the number of times to iterate over the full dataset
• **mode** *(str)* – allowed values are ‘fit’ (called during training), ‘predict’ (called during prediction), and ‘uncertainty’ (called during uncertainty prediction)

• **deterministic** *(bool)* – whether to iterate over the dataset in order, or randomly shuffle the data for each epoch

• **pad_batches** *(bool)* – whether to pad each batch up to this model’s preferred batch size

Returns

• a generator that iterates batches, each represented as a tuple of lists

• *(inputs, outputs, weights)*

### 3.16.12 BasicMolGANModel

**class BasicMolGANModel** *(edges: int = 5, vertices: int = 9, nodes: int = 5, embedding_dim: int = 10, dropout_rate: float = 0.0, **kwargs)*

Model for de-novo generation of small molecules based on work of Nicola De Cao et al. [1]. It uses a GAN directly on graph data and a reinforcement learning objective to induce the network to generate molecules with certain chemical properties. Utilizes WGAN infrastructure; uses adjacency matrix and node features as inputs. Inputs need to be one-hot representation.

**Examples**

```python
>>> import deepchem as dc
>>> from deepchem.models import BasicMolGANModel as MolGAN
>>> from deepchem.models.optimizers import ExponentialDecay
>>> from tensorflow import one_hot
>>> smiles = ['CCC', 'C1=CC=CC=C1', 'CNC']
>>> # create featurizer
>>> feat = dc.feat.MolGanFeaturizer()
>>> # featurize molecules
>>> features = feat.featurize(smiles)
>>> # Remove empty objects
>>> features = list(filter(lambda x: x is not None, features))
>>> # create model
>>> gan = MolGAN(learning_rate=ExponentialDecay(0.001, 0.9, 5000))
>>> dataset = dc.data.NumpyDataset([x.adjacency_matrix for x in features], [x.node_features for x in features])
>>> def iterbatches(epochs):
>>> for i in range(epochs):
>>> for batch in dataset.iterbatches(batch_size=gan.batch_size, pad_batches=True):
>>> adjacency_tensor = one_hot(batch[0], gan.edges)
>>> node_tensor = one_hot(batch[1], gan.nodes)
>>> yield {gan.data_inputs[0]: adjacency_tensor, gan.data_inputs[1]: node_tensor}
>>> gan.fit_gan(iterbatches(8), generator_steps=0.2, checkpoint_interval=5000)
>>> generated_data = gan.predict_gan_generator(1000)
>>> # convert graphs to RDKit molecules
>>> nmols = feat.defeatrizize(generated_data)
```

(continues on next page)
```python
>> print("{} molecules generated".format(len(nmols)))
>> # remove invalid moles
>> nmols = list(filter(lambda x: x is not None, nmols))
>> # currently training is unstable so 0 is a common outcome
>> print("{} valid molecules".format(len(nmols)))
```

### References

```
__init__(edges: int = 5, vertices: int = 9, nodes: int = 5, embedding_dim: int = 10, dropout_rate: float = 0.0, **kwargs)
```

Initialize the model

**Parameters**

- **edges** (int, default 5) – Number of bond types includes BondType.Zero
- **vertices** (int, default 9) – Max number of atoms in adjacency and node features matrices
- **nodes** (int, default 5) – Number of atom types in node features matrix
- **embedding_dim** (int, default 10) – Size of noise input array
- **dropout_rate** (float, default = 0.) – Rate of dropout used across whole model
- **name** (str, default '') – Name of the model

```
get_noise_input_shape() \rightarrow Tuple[int]
```

Return shape of the noise input used in generator

**Returns** Shape of the noise input

**Return type** Tuple

```
get_data_input_shapes() \rightarrow List
```

Return input shape of the discriminator

**Returns** List of shapes used as an input for discriminator.

**Return type** List

```
create_generator() \rightarrow keras.engine.training.Model
```

Create generator model. Take noise data as an input and processes it through number of dense and dropout layers. Then data is converted into two forms one used for training and other for generation of compounds. The model has two outputs:

1. edges
2. nodes

The format differs depending on intended use (training or sample generation). For sample generation use flag, sample_generation=True while calling generator i.e. `gan.generators[0](noise_input, training=False, sample_generation=True)`. For training the model, set `sample_generation=False`

```
create_discriminator() \rightarrow keras.engine.training.Model
```

Create discriminator model based on MolGAN layers. Takes two inputs:

1. adjacency tensor, containing bond information
2. nodes tensor, containing atom information
The input vectors need to be in one-hot encoding format. Use MolGAN featurizer for that purpose. It will be simplified in the future release.

```python
predict_gan_generator(batch_size: int = 1, noise_input: Optional[List] = None, conditional_inputs: List = [], generator_index: int = 0) → List[deepchem.feat.molecule_featurizers.molgan_featurizer.GraphMatrix]
```

Use the GAN to generate a batch of samples.

**Parameters**

- `batch_size (int)` – the number of samples to generate. If either `noise_input` or `conditional_inputs` is specified, this argument is ignored since the batch size is then determined by the size of that argument.
- `noise_input (array)` – the value to use for the generator’s noise input. If None (the default), get_noise_batch() is called to generate a random input, so each call will produce a new set of samples.
- `conditional_inputs (list of arrays)` – NOT USED. the values to use for all conditional inputs. This must be specified if the GAN has any conditional inputs.
- `generator_index (int)` – NOT USED. the index of the generator (between 0 and `n_generators-1`) to use for generating the samples.

**Returns** Returns a list of GraphMatrix object that can be converted into RDKit molecules using MolGANFeaturizer defeaturize function.

**Return type** List[GraphMatrix]

### 3.16.13 ScScoreModel

```python
class ScScoreModel(n_features, layer_sizes=[300, 300, 300], dropouts=0.0, **kwargs)
```

Our model here actually uses hingeloss instead of the shifted relu loss in https://github.com/connorcoley/scscore. This could cause issues differentiation issues with compounds that are “close” to each other in “complexity”

```python
__init__(n_features, layer_sizes=[300, 300, 300], dropouts=0.0, **kwargs)
```

**Parameters**

- `n_features (int)` – number of features per molecule
- `layer_sizes (list of int)` – size of each hidden layer
- `dropouts (int)` – dropout to apply to each hidden layer
- `kwargs` – This takes all kwards as TensorGraph
default_generator\( (\text{dataset}, \text{epochs}=1, \text{mode}='fit', \text{deterministic}=\text{True}, \text{pad\_batches}=\text{True}) \)

Create a generator that iterates batches for a dataset.

Subclasses may override this method to customize how model inputs are generated from the data.

**Parameters**

- **dataset** ([Dataset]) – the data to iterate
- **epochs** (int) – the number of times to iterate over the full dataset
- **mode** (str) – allowed values are ‘fit’ (called during training), ‘predict’ (called during prediction), and ‘uncertainty’ (called during uncertainty prediction)
- **deterministic** (bool) – whether to iterate over the dataset in order, or randomly shuffle the data for each epoch
- **pad\_batches** (bool) – whether to pad each batch up to this model’s preferred batch size

**Returns**

- a generator that iterates batches, each represented as a tuple of lists
- \([\text{inputs}, \text{outputs}, \text{weights}]\)

### 3.16.14 SeqToSeq

class SeqToSeq(input\_tokens, output\_tokens, max\_output\_length, encoder\_layers=4, decoder\_layers=4, embedding\_dimension=512, dropout=0.0, reverse\_input=True, variational=False, annealing\_start\_step=5000, annealing\_final\_step=10000, **kwargs)

Implements sequence to sequence translation models.

The model is based on the description in Sutskever et al., “Sequence to Sequence Learning with Neural Networks” ([https://arxiv.org/abs/1409.3215](https://arxiv.org/abs/1409.3215)), although this implementation uses GRUs instead of LSTMs. The goal is to take sequences of tokens as input, and translate each one into a different output sequence. The input and output sequences can both be of variable length, and an output sequence need not have the same length as the input sequence it was generated from. For example, these models were originally developed for use in natural language processing. In that context, the input might be a sequence of English words, and the output might be a sequence of French words. The goal would be to train the model to translate sentences from English to French.

The model consists of two parts called the “encoder” and “decoder”. Each one consists of a stack of recurrent layers. The job of the encoder is to transform the input sequence into a single, fixed length vector called the “embedding”. That vector contains all relevant information from the input sequence. The decoder then transforms the embedding vector into the output sequence.

These models can be used for various purposes. First and most obviously, they can be used for sequence to sequence translation. In any case where you have sequences of tokens, and you want to translate each one into a different sequence, a SeqToSeq model can be trained to perform the translation.

Another possible use case is transforming variable length sequences into fixed length vectors. Many types of models require their inputs to have a fixed shape, which makes it difficult to use them with variable sized inputs (for example, when the input is a molecule, and different molecules have different numbers of atoms). In that case, you can train a SeqToSeq model as an autoencoder, so that it tries to make the output sequence identical to the input one. That forces the embedding vector to contain all information from the original sequence. You can then use the encoder for transforming sequences into fixed length embedding vectors, suitable to use as inputs to other types of models.

Another use case is to train the decoder for use as a generative model. Here again you begin by training the SeqToSeq model as an autoencoder. Once training is complete, you can supply arbitrary embedding vectors, and transform each one into an output sequence. When used in this way, you typically train it as a variational
autoencoder. This adds random noise to the encoder, and also adds a constraint term to the loss that forces
the embedding vector to have a unit Gaussian distribution. You can then pick random vectors from a Gaussian
distribution, and the output sequences should follow the same distribution as the training data.

When training as a variational autoencoder, it is best to use KL cost annealing, as described in https://arxiv.
org/abs/1511.06349. The constraint term in the loss is initially set to 0, so the optimizer just tries to minimize
the reconstruction loss. Once it has made reasonable progress toward that, the constraint term can be gradually
turned back on. The range of steps over which this happens is configurable.

```
__init__(input_tokens, output_tokens, max_output_length, encoder_layers=4, decoder_layers=4,
 embedding_dimension=512, dropout=0.0, reverse_input=True, variational=False,
 annealing_start_step=5000, annealing_final_step=10000, **kwargs)
```

Construct a SeqToSeq model.

In addition to the following arguments, this class also accepts all the keyword arguments from TensorGraph.

**Parameters**

- `input_tokens (list)` – a list of all tokens that may appear in input sequences
- `output_tokens (list)` – a list of all tokens that may appear in output sequences
- `max_output_length (int)` – the maximum length of output sequence that may be generated
- `encoder_layers (int)` – the number of recurrent layers in the encoder
- `decoder_layers (int)` – the number of recurrent layers in the decoder
- `embedding_dimension (int)` – the width of the embedding vector. This also is the width of all recurrent layers.
- `dropout (float)` – the dropout probability to use during training
- `reverse_input (bool)` – if True, reverse the order of input sequences before sending them into the encoder. This can improve performance when working with long sequences.
- `variational (bool)` – if True, train the model as a variational autoencoder. This adds random noise to the encoder, and also constrains the embedding to follow a unit Gaussian distribution.
- `annealing_start_step (int)` – the step (that is, batch) at which to begin turning on the constraint term for KL cost annealing
- `annealing_final_step (int)` – the step (that is, batch) at which to finish turning on the constraint term for KL cost annealing

```
fit_sequences(sequences, max_checkpoints_to_keep=5, checkpoint_interval=1000, restore=False)
```

Train this model on a set of sequences

**Parameters**

- `sequences (iterable)` – the training samples to fit to. Each sample should be represented as a tuple of the form (input_sequence, output_sequence).
- `max_checkpoints_to_keep (int)` – the maximum number of checkpoints to keep. Older checkpoints are discarded.
- `checkpoint_interval (int)` – the frequency at which to write checkpoints, measured in training steps.
- `restore (bool)` – if True, restore the model from the most recent checkpoint and continue training from there. If False, retrain the model from scratch.
**predict_from_sequences**(*sequences, beam_width=5*)

Given a set of input sequences, predict the output sequences.

The prediction is done using a beam search with length normalization.

**Parameters**

- **sequences** (*iterable*) – the input sequences to generate a prediction for
- **beam_width** (*int*) – the beam width to use for searching. Set to 1 to use a simple greedy search.

**predict_from_embeddings**(*embeddings, beam_width=5*)

Given a set of embedding vectors, predict the output sequences.

The prediction is done using a beam search with length normalization.

**Parameters**

- **embeddings** (*iterable*) – the embedding vectors to generate predictions for
- **beam_width** (*int*) – the beam width to use for searching. Set to 1 to use a simple greedy search.

**predict_embeddings**(*sequences*)

Given a set of input sequences, compute the embedding vectors.

**Parameters**

- **sequences** (*iterable*) – the input sequences to generate an embedding vector for

---

### 3.16.15 GAN

**class GAN**(n_generators=1, n_discriminators=1, **kwargs)

Implements Generative Adversarial Networks.

A Generative Adversarial Network (GAN) is a type of generative model. It consists of two parts called the “generator” and the “discriminator”. The generator takes random noise as input and transforms it into an output that (hopefully) resembles the training data. The discriminator takes a set of samples as input and tries to distinguish the real training samples from the ones created by the generator. Both of them are trained together. The discriminator tries to get better and better at telling real from false data, while the generator tries to get better and better at fooling the discriminator.

In many cases there also are additional inputs to the generator and discriminator. In that case it is known as a Conditional GAN (CGAN), since it learns a distribution that is conditional on the values of those inputs. They are referred to as “conditional inputs”.

Many variations on this idea have been proposed, and new varieties of GANs are constantly being proposed. This class tries to make it very easy to implement straightforward GANs of the most conventional types. At the same time, it tries to be flexible enough that it can be used to implement many (but certainly not all) variations on the concept.

To define a GAN, you must create a subclass that provides implementations of the following methods:

- **get_noise_input_shape()**
- **get_data_input_shapes()**
- **create_generator()**
- **create_discriminator()**

If you want your GAN to have any conditional inputs you must also implement:

- **get_conditional_input_shapes()**

The following methods have default implementations that are suitable for most conventional GANs. You can override them if you want to customize their behavior:

- **create_generator_loss()**
- **create_discriminator_loss()**
- **get_noise_batch()**
This class allows a GAN to have multiple generators and discriminators, a model known as MIX+GAN. It is described in Arora et al., “Generalization and Equilibrium in Generative Adversarial Nets (GANs)” (https://arxiv.org/abs/1703.00573). This can lead to better models, and is especially useful for reducing mode collapse, since different generators can learn different parts of the distribution. To use this technique, simply specify the number of generators and discriminators when calling the constructor. You can then tell predict_gan_generator() which generator to use for predicting samples.

__init__(n_generators=1, n_discriminators=1, **kwargs)

Construct a GAN.

In addition to the parameters listed below, this class accepts all the keyword arguments from KerasModel.

Parameters

- n_generators (int) – the number of generators to include
- n_discriminators (int) – the number of discriminators to include

get_noise_input_shape()

Get the shape of the generator’s noise input layer.

Subclasses must override this to return a tuple giving the shape of the noise input. The actual Input layer will be created automatically. The dimension corresponding to the batch size should be omitted.

generate_data_input_shapes()

Get the shapes of the inputs for training data.

Subclasses must override this to return a list of tuples, each giving the shape of one of the inputs. The actual Input layers will be created automatically. This list of shapes must also match the shapes of the generator’s outputs. The dimension corresponding to the batch size should be omitted.

generate_conditional_input_shapes()

Get the shapes of any conditional inputs.

Subclasses may override this to return a list of tuples, each giving the shape of one of the conditional inputs. The actual Input layers will be created automatically. The dimension corresponding to the batch size should be omitted.

The default implementation returns an empty list, meaning there are no conditional inputs.

generate_noise_batch(batch_size)

Get a batch of random noise to pass to the generator.

This should return a NumPy array whose shape matches the one returned by get_noise_input_shape(). The default implementation returns normally distributed values. Subclasses can override this to implement a different distribution.

create_generator()

Create and return a generator.

Subclasses must override this to construct the generator. The returned value should be a tf.keras.Model whose inputs are a batch of noise, followed by any conditional inputs. The number and shapes of its outputs must match the return value from generate_data_input_shapes(), since generated data must have the same form as training data.

create_discriminator()

Create and return a discriminator.

Subclasses must override this to construct the discriminator. The returned value should be a tf.keras.Model whose inputs are all data inputs, followed by any conditional inputs. Its output should be a one-dimensional tensor containing the probability of each sample being a training sample.
**create_generator_loss**(*discrim_output*)

Create the loss function for the generator.

The default implementation is appropriate for most cases. Subclasses can override this if the need to customize it.

**Parameters**
- `discrim_output` *(Tensor)* – the output from the discriminator on a batch of generated data. This is its estimate of the probability that each sample is training data.

**Return type** A Tensor equal to the loss function to use for optimizing the generator.

**create_discriminator_loss**(*discrim_output_train*, *discrim_output_gen*)

Create the loss function for the discriminator.

The default implementation is appropriate for most cases. Subclasses can override this if the need to customize it.

**Parameters**
- `discrim_output_train` *(Tensor)* – the output from the discriminator on a batch of training data. This is its estimate of the probability that each sample is training data.
- `discrim_output_gen` *(Tensor)* – the output from the discriminator on a batch of generated data. This is its estimate of the probability that each sample is training data.

**Return type** A Tensor equal to the loss function to use for optimizing the discriminator.

**fit_gan**(*batches*, *generator_steps=1.0*, *max_checkpoints_to_keep=5*, *checkpoint_interval=1000*, *restore=False*)

Train this model on data.

**Parameters**
- `batches` *(iterable)* – batches of data to train the discriminator on, each represented as a dict that maps Inputs to values. It should specify values for all members of data_inputs and conditional_inputs.
- `generator_steps` *(float)* – the number of training steps to perform for the generator for each batch. This can be used to adjust the ratio of training steps for the generator and discriminator. For example, 2.0 will perform two training steps for every batch, while 0.5 will only perform one training step for every two batches.
- `max_checkpoints_to_keep` *(int)* – the maximum number of checkpoints to keep. Older checkpoints are discarded.
- `checkpoint_interval` *(int)* – the frequency at which to write checkpoints, measured in batches. Set this to 0 to disable automatic checkpointing.
- `restore` *(bool)* – if True, restore the model from the most recent checkpoint before training it.

**predict_gan_generator**(*batch_size=1, noise_input=None, conditional_inputs=[], generator_index=0*)

Use the GAN to generate a batch of samples.

**Parameters**
- `batch_size` *(int)* – the number of samples to generate. If either noise_input or conditional_inputs is specified, this argument is ignored since the batch size is then determined by the size of that argument.
- `noise_input` *(array)* – the value to use for the generator’s noise input. If None (the default), get_noise_batch() is called to generate a random input, so each call will produce a new set of samples.
• **conditional_inputs** *(list of arrays)* – the values to use for all conditional inputs.
  This must be specified if the GAN has any conditional inputs.

• **generator_index** *(int)* – the index of the generator (between 0 and n_generators-1) to
  use for generating the samples.

**Returns**

• An array (if the generator has only one output) or list of arrays (if it has
  multiple outputs) containing the generated samples.

---

**WGAN**

```python
class WGAN(gradient_penalty=10.0, **kwargs)
```

Implements Wasserstein Generative Adversarial Networks.

This class implements Wasserstein Generative Adversarial Networks (WGANs) as described in Arjovsky et al.,
“Wasserstein GAN” *(https://arxiv.org/abs/1701.07875)*. A WGAN is conceptually rather different from a con-
ventional GAN, but in practical terms very similar. It reinterprets the discriminator (often called the “critic”
in this context) as learning an approximation to the Earth Mover distance between the training and generated
distributions. The generator is then trained to minimize that distance. In practice, this just means using slightly
different loss functions for training the generator and discriminator.

WGANs have theoretical advantages over conventional GANs, and they often work better in practice. In addition,
the discriminator’s loss function can be directly interpreted as a measure of the quality of the model. That is an
advantage over conventional GANs, where the loss does not directly convey information about the quality of the
model.

The theory WGANs are based on requires the discriminator’s gradient to be bounded. The original paper achieved
this by clipping its weights. This class instead does it by adding a penalty term to the discriminator’s loss, as
described in *(https://arxiv.org/abs/1704.00028)*. This is sometimes found to produce better results.

There are a few other practical differences between GANs and WGANs. In a conventional GAN, the discrimi-
nator’s output must be between 0 and 1 so it can be interpreted as a probability. In a WGAN, it should produce
an unbounded output that can be interpreted as a distance.

When training a WGAN, you also should usually use a smaller value for generator_steps. Conventional GANs
rely on keeping the generator and discriminator “in balance” with each other. If the discriminator ever gets too
good, it becomes impossible for the generator to fool it and training stalls. WGANs do not have this problem,
and in fact the better the discriminator is, the easier it is for the generator to improve. It therefore usually works
best to perform several training steps on the discriminator for each training step on the generator.

```python
__init__(gradient_penalty=10.0, **kwargs)
```

Construct a WGAN.

In addition to the following, this class accepts all the keyword arguments from GAN and KerasModel.

**Parameters**

**gradient_penalty** *(float)* – the magnitude of the gradient penalty loss

```python
create_generator_loss(discrim_output)
```

Create the loss function for the generator.

The default implementation is appropriate for most cases. Subclasses can override this if the need to cus-
tomize it.

**Parameters**

**discrim_output** *(Tensor)* – the output from the discriminator on a batch of gen-
erated data. This is its estimate of the probability that each sample is training data.

**Return type** A Tensor equal to the loss function to use for optimizing the generator.
create_discriminator_loss(discrim_output_train, discrim_output_gen)

Create the loss function for the discriminator.

The default implementation is appropriate for most cases. Subclasses can override this if the need to customize it.

**Parameters**

- **discrim_output_train** (Tensor) – the output from the discriminator on a batch of training data. This is its estimate of the probability that each sample is training data.
- **discrim_output_gen** (Tensor) – the output from the discriminator on a batch of generated data. This is its estimate of the probability that each sample is training data.

**Return type** A Tensor equal to the loss function to use for optimizing the discriminator.

### 3.16.16 TextCNNModel

class TextCNNModel(n_tasks, char_dict, seq_length, n_embedding=75, kernel_sizes=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20], num_filters=[100, 200, 200, 200, 200, 100, 100, 100, 100, 100, 160, 160], dropout=0.25, mode='classification', **kwargs)

A Convolutional neural network on smiles strings

Reimplementation of the discriminator module in ORGAN [1]_. Originated from [2]_.

This model applies multiple 1D convolutional filters to the padded strings, then max-over-time pooling is applied on all filters, extracting one feature per filter. All features are concatenated and transformed through several hidden layers to form predictions.

This model is initially developed for sentence-level classification tasks, with words represented as vectors. In this implementation, SMILES strings are dissected into characters and transformed to one-hot vectors in a similar way. The model can be used for general molecular-level classification or regression tasks. It is also used in the ORGAN model as discriminator.

Training of the model only requires SMILES strings input, all featurized datasets that include SMILES in the **ids** attribute are accepted. PDBbind, QM7 and QM7b are not supported. To use the model, build_char_dict should be called first before defining the model to build character dict of input dataset, example can be found in examples/delaney/delaney_textcnn.py

**References**

__init__(n_tasks, char_dict, seq_length, n_embedding=75, kernel_sizes=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20], num_filters=[100, 200, 200, 200, 200, 100, 100, 100, 100, 100, 160, 160], dropout=0.25, mode='classification', **kwargs)

**Parameters**

- **n_tasks** (int) – Number of tasks
- **char_dict** (dict) – Mapping from characters in smiles to integers
- **seq_length** (int) – Length of sequences(after padding)
- **n_embedding** (int, optional) – Length of embedding vector
- **filter_sizes** (list of int, optional) – Properties of filters used in the conv net
- **num_filters** (list of int, optional) – Properties of filters used in the conv net
- **dropout** (float, optional) – Dropout rate
• **mode** (str) – Either “classification” or “regression” for type of model.

```python
def __init__(self, n_tasks: int, frag1_num_atoms: int = 70, frag2_num_atoms: int = 634, complex_num_atoms: int = 701, max_num_neighbors: int = 12, batch_size: int = 24, atom_types: typing.Sequence[float] = [6, 7.0, 8.0, 9.0, 11.0, 12.0, 15.0, 16.0, 17.0, 20.0, 25.0, 30.0, 35.0, 53.0, -1.0], radial: typing.Sequence[typing.Sequence[float]] = [[1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0, 10.5, 11.0, 11.5, 12.0], [0.0, 4.0, 8.0], [0.4]], layer_sizes=[100], weight_init_stdevs: typing.Union[typing.Sequence[float]] = [0.02, bias_init_consts: typing.Union[typing.Sequence[float]], weight_decay_penalty: float = 0.0, weight_decay_penalty_type: str = 'l2', dropouts: typing.Sequence[float] = 0.5, activation_fns: typing.Union[typing.Sequence[typing.Callable]], **kwargs) = <function relu>, residual: bool = False, learning_rate=0.001, **kwargs)
```

Collect all unique characters (in smiles) from the dataset. This method should be called before defining the model to build appropriate char_dict

```python
smiles_to_seq_batch(ids_b)
```

Converts SMILES strings to np.array sequence.

A tf.py_func wrapper is written around this when creating the input_fn for make_estimator

```python
default_generator(dataset, epochs=1, mode='fit', deterministic=True, pad_batches=True)
```

Transfer smiles strings to fixed length integer vectors

```python
smiles_to_seq(smiles)
```

Tokenize characters in smiles to integers

### 3.16.17 AtomicConvModel

```python
class AtomicConvModel(n_tasks: int, frag1_num_atoms: int = 70, frag2_num_atoms: int = 634, complex_num_atoms: int = 701, max_num_neighbors: int = 12, batch_size: int = 24, atom_types: typing.Sequence[float] = [6, 7.0, 8.0, 9.0, 11.0, 12.0, 15.0, 16.0, 17.0, 20.0, 25.0, 30.0, 35.0, 53.0, -1.0], radial: typing.Sequence[typing.Sequence[float]] = [[1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0, 10.5, 11.0, 11.5, 12.0], [0.0, 4.0, 8.0], [0.4]], layer_sizes=[100], weight_init_stdevs: typing.Union[typing.Sequence[float]] = [0.02, bias_init_consts: typing.Union[typing.Sequence[float]], weight_decay_penalty: float = 0.0, weight_decay_penalty_type: str = 'l2', dropouts: typing.Sequence[float] = 0.5, activation_fns: typing.Union[typing.Sequence[typing.Callable]], **kwargs) = <function relu>, residual: bool = False, learning_rate=0.001, **kwargs)
```

Implements an Atomic Convolution Model.

Implements the atomic convolutional networks as introduced in


The atomic convolutional networks function as a variant of graph convolutions. The difference is that the “graph” here is the nearest neighbors graph in 3D space. The AtomicConvModel leverages these connections in 3D space to train models that learn to predict energetic state starting from the spatial geometry of the model.

```python
__init__(self, n_tasks: int, frag1_num_atoms: int = 70, frag2_num_atoms: int = 634, complex_num_atoms: int = 701, max_num_neighbors: int = 12, batch_size: int = 24, atom_types: typing.Sequence[float] = [6, 7.0, 8.0, 9.0, 11.0, 12.0, 15.0, 16.0, 17.0, 20.0, 25.0, 30.0, 35.0, 53.0, -1.0], radial: typing.Sequence[typing.Sequence[float]] = [[1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0, 10.5, 11.0, 11.5, 12.0], [0.0, 4.0, 8.0], [0.4]], layer_sizes=[100], weight_init_stdevs: typing.Union[typing.Sequence[float]] = [0.02, bias_init_consts: typing.Union[typing.Sequence[float]], weight_decay_penalty: float = 0.0, weight_decay_penalty_type: str = 'l2', dropouts: typing.Sequence[float] = 0.5, activation_fns: typing.Union[typing.Sequence[typing.Callable]], **kwargs) = <function relu>, residual: bool = False, learning_rate=0.001, **kwargs) → None
```

3.16. Keras Models

313
Parameters

- **n_tasks** (*int*) – number of tasks
- **frag1_num_atoms** (*int*) – Number of atoms in first fragment
- **frag2_num_atoms** (*int*) – Number of atoms in second fragment
- **max_num_neighbors** (*int*) – Maximum number of neighbors possible for an atom. Recall neighbors are spatial neighbors.
- **atom_types** (*list*) – List of atoms recognized by the model. Atoms are indicated by their nuclear numbers.
- **radial** (*list*) – Radial parameters used in the atomic convolution transformation.
- **layer_sizes** (*list*) – the size of each dense layer in the network. The length of this list determines the number of layers.
- **weight_init_stddevs** (*list or float*) – the standard deviation of the distribution to use for weight initialization of each layer. The length of this list should equal len(layer_sizes). Alternatively this may be a single value instead of a list, in which case the same value is used for each layer.
- **bias_init_consts** (*list or float*) – the value to initialize the biases in each layer to. The length of this list should equal len(layer_sizes). Alternatively this may be a single value instead of a list, in which case the same value is used for each layer.
- **weight_decay_penalty** (*float*) – the magnitude of the weight decay penalty to use
- **weight_decay_penalty_type** (*str*) – the type of penalty to use for weight decay, either ‘l1’ or ‘l2’
- **dropouts** (*list or float*) – the dropout probability to use for each layer. The length of this list should equal len(layer_sizes). Alternatively this may be a single value instead of a list, in which case the same value is used for each layer.
- **activation_fns** (*list or object*) – the Tensorflow activation function to apply to each layer. The length of this list should equal len(layer_sizes). Alternatively this may be a single value instead of a list, in which case the same value is used for each layer.
- **residual** (*bool*) – if True, the model will be composed of pre-activation residual blocks instead of a simple stack of dense layers.
- **learning_rate** (*float*) – Learning rate for the model.

**default_generator**(*dataset, epochs=1, mode='fit', deterministic=True, pad_batches=True*)

Create a generator that iterates batches for a dataset.

Subclasses may override this method to customize how model inputs are generated from the data.

Parameters

- **dataset** (*Dataset*) – the data to iterate
- **epochs** (*int*) – the number of times to iterate over the full dataset
- **mode** (*str*) – allowed values are ‘fit’ (called during training), ‘predict’ (called during prediction), and ‘uncertainty’ (called during uncertainty prediction)
- **deterministic** (*bool*) – whether to iterate over the dataset in order, or randomly shuffle the data for each epoch
- **pad_batches** (*bool*) – whether to pad each batch up to this model’s preferred batch size

Returns
• a generator that iterates batches, each represented as a tuple of lists
  • ([inputs], [outputs], [weights])

save()
Saves model to disk using joblib.
reload()
Loads model from joblib file on disk.

3.16.18 Smiles2Vec

class Smiles2Vec(char_to_idx, n_tasks=10, max_seq_len=270, embedding_dim=50, n_classes=2,
                 use_bidir=True, use_conv=True, filters=192, kernel_size=3, strides=1, rnn_sizes=[224, 384],
                 rnn_types=['GRU', 'GRU'], mode='regression', **kwargs)

Implements the Smiles2Vec model, that learns neural representations of SMILES strings which can be used for
downstream tasks.

The model is based on the description in Goh et al., “SMILES2vec: An Interpretable General-Purpose Deep
Neural Network for Predicting Chemical Properties” (https://arxiv.org/pdf/1712.02034.pdf). The goal here is
to take SMILES strings as inputs, turn them into vector representations which can then be used in predicting
molecular properties.

The model consists of an Embedding layer that retrieves embeddings for each character in the SMILES string.
These embeddings are learnt jointly with the rest of the model. The output from the embedding layer is a tensor
of shape (batch_size, seq_len, embedding_dim). This tensor can optionally be fed through a 1D convolutional
layer, before being passed to a series of RNN cells (optionally bidirectional). The final output from the RNN
cells aims to have learnt the temporal dependencies in the SMILES string, and in turn information about the
structure of the molecule, which is then used for molecular property prediction.

In the paper, the authors also train an explanation mask to endow the model with interpretability and gain insights
into its decision making. This segment is currently not a part of this implementation as this was developed for
the purpose of investigating a transfer learning protocol, ChemNet (which can be found at https://arxiv.org/abs/
1712.02734).

__init__(char_to_idx, n_tasks=10, max_seq_len=270, embedding_dim=50, n_classes=2, use_bidir=True,
         use_conv=True, filters=192, kernel_size=3, strides=1, rnn_sizes=[224, 384],
         rnn_types=['GRU', 'GRU'], mode='regression', **kwargs)

Parameters

• char_to_idx (dict) – char_to_idx contains character to index mapping for SMILES
  characters

• embedding_dim (int, default 50) – Size of character embeddings used.

• use_bidir (bool, default True) – Whether to use BiDirectional RNN Cells

• use_conv (bool, default True) – Whether to use a conv-layer

• kernel_size (int, default 3) – Kernel size for convolutions

• filters (int, default 192) – Number of filters

• strides (int, default 1) – Strides used in convolution

• rnn_sizes(list[int], default [224, 384]) – Number of hidden units in the RNN
  cells

3.16. Keras Models
mode (str, default regression) – Whether to use model for regression or classification

default_generator (dataset, epochs=1, mode='fit', deterministic=True, pad_batches=True)

Create a generator that iterates batches for a dataset.

Subclasses may override this method to customize how model inputs are generated from the data.

Parameters

- dataset (Dataset) – the data to iterate
- epochs (int) – the number of times to iterate over the full dataset
- mode (str) – allowed values are ‘fit’ (called during training), ‘predict’ (called during prediction), and ‘uncertainty’ (called during uncertainty prediction)
- deterministic (bool) – whether to iterate over the dataset in order, or randomly shuffle the data for each epoch
- pad_batches (bool) – whether to pad each batch up to this model’s preferred batch size

Returns

- a generator that iterates batches, each represented as a tuple of lists
- ([inputs], [outputs], [weights])

3.16.19 ChemCeption


Implements the ChemCeption model that leverages the representational capacities of convolutional neural networks (CNNs) to predict molecular properties.

The model is based on the description in Goh et al., “Chemception: A Deep Neural Network with Minimal Chemistry Knowledge Matches the Performance of Expert-developed QSAR/QSPR Models” (https://arxiv.org/pdf/1706.06689.pdf). The authors use an image-based representation of the molecule, where pixels encode different atomic and bond properties. More details on the image representations can be found at https://arxiv.org/abs/1710.02238

The model consists of a Stem Layer that reduces the image resolution for the layers to follow. The output of the Stem Layer is followed by a series of Inception-Resnet blocks & a Reduction layer. Layers in the Inception-Resnet blocks process image tensors at multiple resolutions and use a ResNet style skip-connection, combining features from different resolutions. The Reduction layers reduce the spatial extent of the image by max-pooling and 2-strided convolutions. More details on these layers can be found in the ChemCeption paper referenced above. The output of the final Reduction layer is subject to a Global Average Pooling, and a fully-connected layer maps the features to downstream outputs.

In the ChemCeption paper, the authors perform real-time image augmentation by rotating images between 0 to 180 degrees. This can be done during model training by setting the augment argument to True.


Parameters

- img_spec (str, default std) – Image specification used
• **img_size** *(int, default 80)* – Image size used

• **base_filters** *(int, default 16)* – Base filters used for the different inception and reduction layers

• **inception_blocks** *(dict,)* – Dictionary containing number of blocks for every inception layer

• **n_tasks** *(int, default 10)* – Number of classification or regression tasks

• **n_classes** *(int, default 2)* – Number of classes (used only for classification)

• **augment** *(bool, default False)* – Whether to augment images

• **mode** *(str, default regression)* – Whether the model is used for regression or classification

`build_inception_module(inputs, type='A')`

Inception module is a series of inception layers of similar type. This function builds that.

`default_generator(dataset, epochs=1, mode='fit', deterministic=True, pad_batches=True)`

Create a generator that iterates batches for a dataset.

Subclasses may override this method to customize how model inputs are generated from the data.

**Parameters**

• **dataset** *(Dataset)* – the data to iterate

• **epochs** *(int)* – the number of times to iterate over the full dataset

• **mode** *(str)* – allowed values are ‘fit’ (called during training), ‘predict’ (called during prediction), and ‘uncertainty’ (called during uncertainty prediction)

• **deterministic** *(bool)* – whether to iterate over the dataset in order, or randomly shuffle the data for each epoch

• **pad_batches** *(bool)* – whether to pad each batch up to this model’s preferred batch size

**Returns**

• *a generator that iterates batches, each represented as a tuple of lists*

• *[inputs], [outputs], [weights]*

### 3.16.20 NormalizingFlowModel

The purpose of a normalizing flow is to map a simple distribution (that is easy to sample from and evaluate probability densities for) to a more complex distribution that is learned from data. Normalizing flows combine the advantages of autoregressive models (which provide likelihood estimation but do not learn features) and variational autoencoders (which learn feature representations but do not provide marginal likelihoods). They are effective for any application requiring a probabilistic model with these capabilities, e.g. generative modeling, unsupervised learning, or probabilistic inference.

**class** *NormalizingFlowModel*(model: deepchem.models.normalizing_flows.NormalizingFlow, **kwargs)

A base distribution and normalizing flow for applying transformations.

Normalizing flows are effective for any application requiring a probabilistic model that can both sample from a distribution and compute marginal likelihoods, e.g. generative modeling, unsupervised learning, or probabilistic inference. For a thorough review of normalizing flows, see [1].

A distribution implements two main operations:
1. Sampling from the transformed distribution
2. Calculating log probabilities

**A normalizing flow implements three main operations:**
1. Forward transformation
2. Inverse transformation
3. Calculating the Jacobian

Deep Normalizing Flow models require normalizing flow layers where input and output dimensions are the same, the transformation is invertible, and the determinant of the Jacobian is efficient to compute and differentiable. The determinant of the Jacobian of the transformation gives a factor that preserves the probability volume to 1 when transforming between probability densities of different random variables.

**References**

```python
__init__(model: deepchem.models.normalizing_flows.NormalizingFlow, **kwargs) → None
```

Creates a new NormalizingFlowModel.

In addition to the following arguments, this class also accepts all the keyword arguments from KerasModel.

**Parameters**


**Examples**

```python
>> import tensorflow_probability as tfp >> tfd = tfp.distributions >> tfb = tfp.bijectors >> flow_layers = [.. tfb.RealNVP(.. num_masked=2, .. shift_and_log_scale_fn=tfb.real_nvp_default_template(.. hidden_layers=[8, 8])) ..] >> base_distribution = tfd.MultivariateNormalDiag(loc=[0., 0., 0.]) >> nf = NormalizingFlow(base_distribution, flow_layers) >> nfm = NormalizingFlowModel(nf) >> dataset = NumpyDataset(.. X=np.random.rand(5, 3).astype(np.float32), .. y=np.random.rand(5,), .. ids=np.arange(5)) >> nfm.fit(dataset)
```

```python
create_nll(input: Union[tensorflow.python.framework.ops.Tensor, Sequence[tensorflow.python.framework.ops.Tensor]]) → tensorflow.python.framework.ops.Tensor
```

Create the negative log likelihood loss function.

The default implementation is appropriate for most cases. Subclasses can override this if there is a need to customize it.

**Parameters**

- `input` *(OneOrMany tf.Tensor)* – A batch of data.

**Return type**  A Tensor equal to the loss function to use for optimization.

```
save()
```

Saves model to disk using joblib.

```
reload()
```

Loads model from joblib file on disk.
3.17 PyTorch Models

DeepChem supports the use of PyTorch to build deep learning models.

3.17.1 TorchModel

You can wrap an arbitrary torch.nn.Module in a TorchModel object.

```python
```

This is a DeepChem model implemented by a PyTorch model.

Here is a simple example of code that uses TorchModel to train a PyTorch model on a DeepChem dataset.

```python
>>> import torch
>>> import deepchem as dc
>>> import numpy as np

>>> X, y = np.random.random((10, 100)), np.random.random((10, 1))

>>> dataset = dc.data.NumpyDataset(X=X, y=y)

>>> pytorch_model = torch.nn.Sequential(...
... torch.nn.Linear(100, 1000),
... torch.nn.Tanh(),
... torch.nn.Linear(1000, 1))

>>> model = dc.models.TorchModel(pytorch_model, loss=dc.models.losses.L2Loss())

>>> loss = model.fit(dataset, nb_epoch=5)
```

The loss function for a model can be defined in two different ways. For models that have only a single output and use a standard loss function, you can simply provide a dc.models.losses.Loss object. This defines the loss for each sample or sample/task pair. The result is automatically multiplied by the weights and averaged over the batch.

For more complicated cases, you can instead provide a function that directly computes the total loss. It must be of the form f(outputs, labels, weights), taking the list of outputs from the model, the expected values, and any weight matrices. It should return a scalar equal to the value of the loss function for the batch. No additional processing is done to the result; it is up to you to do any weighting, averaging, adding of penalty terms, etc.

You can optionally provide an output_types argument, which describes how to interpret the model’s outputs. This should be a list of strings, one for each output. You can use an arbitrary output_type for a output, but some output_types are special and will undergo extra processing:

- **‘prediction’**: This is a normal output, and will be returned by predict(). If output types are not specified, all outputs are assumed to be of this type.

- **‘loss’**: This output will be used in place of the normal outputs for computing the loss function. For example, models that output probability distributions usually do it by computing unbounded numbers (the logits), then passing them through a softmax function to turn them into probabilities. When computing the cross entropy, it is more numerically stable to use the logits directly rather than the probabilities. You can do this by having the model produce both probabilities and logits as outputs, then specifying output_types=['prediction', 'loss']. When predict() is called, only the first output (the probabilities)
will be returned. But during training, it is the second output (the logits) that will be passed to the loss function.

• ‘variance’: **This output is used for estimating the uncertainty** in another output. To create a model that can estimate uncertainty, there must be the same number of ‘prediction’ and ‘variance’ outputs. Each variance output must have the same shape as the corresponding prediction output, and each element is an estimate of the variance in the corresponding prediction. Also be aware that if a model supports uncertainty, it MUST use dropout on every layer, and dropout must be enabled during uncertainty prediction. Otherwise, the uncertainties it computes will be inaccurate.

• other: **Arbitrary output_types can be used to extract outputs** produced by the model, but will have no additional processing performed.

```
```

Create a new TorchModel.

**Parameters**

- **model** (*torch.nn.Module*) – the PyTorch model implementing the calculation
- **loss** (*dc.models.losses.Loss or function*) – a Loss or function defining how to compute the training loss for each batch, as described above
- **output_types** (*list of strings, optional (default None]*) – the type of each output from the model, as described above
- **batch_size** (*int, optional (default 100]*) – default batch size for training and evaluating
- **model_dir** (*str, optional (default None]*) – the directory on disk where the model will be stored. If this is None, a temporary directory is created.
- **learning_rate** (*float or LearningRateSchedule, optional (default 0.001]*) – the learning rate to use for fitting. If optimizer is specified, this is ignored.
- **optimizer** (*Optimizer, optional (default None]*) – the optimizer to use for fitting. If this is specified, learning_rate is ignored.
- **tensorboard** (*bool, optional (default False]*) – whether to log progress to TensorBoard during training
- **wandb** (*bool, optional (default False]*) – whether to log progress to Weights & Biases during training
- **log_frequency** (*int, optional (default 100]*) – The frequency at which to log data. Data is logged using logging by default. If tensorboard is set, data is also logged to TensorBoard. If wandb is set, data is also logged to Weights & Biases. Logging happens at global steps. Roughly, a global step corresponds to one batch of training. If you’d like a printout every 10 batch steps, you’d set log_frequency=10 for example.
- **device** (*torch.device, optional (default None]*) – the device on which to run computations. If None, a device is chosen automatically.
- **regularization_loss** (*Callable, optional*) – a function that takes no arguments, and returns an extra contribution to add to the loss function
- **wandb_logger** (*WandbLogger*) – the Weights & Biases logger object used to log data and metrics

```python
```

Train this model on a dataset.

**Parameters**

- **dataset** (*Dataset*) – the Dataset to train on
- **nb_epoch** (*int*) – the number of epochs to train for
- **max_checkpoints_to_keep** (*int*) – the maximum number of checkpoints to keep. Older checkpoints are discarded.
- **checkpoint_interval** (*int*) – the frequency at which to write checkpoints, measured in training steps. Set this to 0 to disable automatic checkpointing.
- **deterministic** (*bool*) – if True, the samples are processed in order. If False, a different random order is used for each epoch.
- **restore** (*bool*) – if True, restore the model from the most recent checkpoint and continue training from there. If False, retrain the model from scratch.
- **variables** (*list of torch.nn.Parameter*) – the variables to train. If None (the default), all trainable variables in the model are used.
- **loss** (*function*) – a function of the form f(outputs, labels, weights) that computes the loss for each batch. If None (the default), the model’s standard loss function is used.
- **callbacks** (*function or list of functions*) – one or more functions of the form f(model, step) that will be invoked after every step. This can be used to perform validation, logging, etc.
- **all_losses** (*Optional[List[float]]*, optional (default None)) – If specified, all logged losses are appended into this list. Note that you can call `fit()` repeatedly with the same list and losses will continue to be appended.

**Return type** The average loss over the most recent checkpoint interval

```python
```

Train this model on data from a generator.

**Parameters**

- **generator** (*generator*) – this should generate batches, each represented as a tuple of the form (inputs, labels, weights).
- **max_checkpoints_to_keep** (*int*) – the maximum number of checkpoints to keep. Older checkpoints are discarded.
- **checkpoint_interval** (*int*) – the frequency at which to write checkpoints, measured in training steps. Set this to 0 to disable automatic checkpointing.
- **restore** (*bool*) – if True, restore the model from the most recent checkpoint and continue training from there. If False, retrain the model from scratch.
• **variables** *(list of torch.nn.Parameter)* – the variables to train. If None (the default), all trainable variables in the model are used.

• **loss** *(function)* – a function of the form $f(outputs, labels, weights)$ that computes the loss for each batch. If None (the default), the model’s standard loss function is used.

• **callbacks** *(function or list of functions)* – one or more functions of the form $f(model, step)$ that will be invoked after every step. This can be used to perform validation, logging, etc.

• **all_losses** *(Optional[List[float]], optional (default None))* – If specified, all logged losses are appended into this list. Note that you can call fit() repeatedly with the same list and losses will continue to be appended.

**Return type** The average loss over the most recent checkpoint interval

### fit_on_batch

**Parameters**

- **X** *(ndarray)* – the inputs for the batch
- **y** *(ndarray)* – the labels for the batch
- **w** *(ndarray)* – the weights for the batch
- **variables** *(list of torch.nn.Parameter)* – the variables to train. If None (the default), all trainable variables in the model are used.
- **loss** *(function)* – a function of the form $f(outputs, labels, weights)$ that computes the loss for each batch. If None (the default), the model’s standard loss function is used.
- **callbacks** *(function or list of functions)* – one or more functions of the form $f(model, step)$ that will be invoked after every step. This can be used to perform validation, logging, etc.
- **checkpoint** *(bool)* – if true, save a checkpoint after performing the training step
- **max_checkpoints_to_keep** *(int)* – the maximum number of checkpoints to keep. Older checkpoints are discarded.

**Return type** the loss on the batch

### predict_on_generator

**Parameters**

- **generator** *(generator)* – this should generate batches, each represented as a tuple of the form (inputs, labels, weights).
- **transformers** *(list of dc.trans.Transformer)* – Transformers that the input data has been transformed by. The output is passed through these transformers to undo the transformations.
- **output_types** *(String or list of Strings)* – If specified, all outputs of this type will be retrieved from the model. If output_types is specified, outputs must be None.
• **Returns** – a NumPy array of the model produces a single output, or a list of arrays if it produces multiple outputs

**predict_on_batch**

```python
predict_on_batch(X: Union[numpy._typing._array_like._SupportsArray[numpy.dtype],
 numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype],
 bool, int, float, complex, str, bytes],
 numpy._typing._nested_sequence._NestedSequence[Union[bool, int, float, complex, str, bytes]],
 transformers: List[transformers.Transformer] = []]) → Union[numpy.ndarray,
 Sequence[numpy.ndarray]]
```

Generates predictions for input samples, processing samples in a batch.

**Parameters**

- **X (ndarray)** – the input data, as a Numpy array.
- **transformers (list of dc.trans.Transformers)** – Transformers that the input data has been transformed by. The output is passed through these transformers to undo the transformations.

**Returns**

- a NumPy array of the model produces a single output, or a list of arrays
- if it produces multiple outputs

**predict_uncertainty_on_batch**

```python
predict_uncertainty_on_batch(X: Sequence, masks: int = 50) → Union[Tuple[numpy.ndarray,
 numpy.ndarray], Sequence[Tuple[numpy.ndarray, numpy.ndarray]]]
```

Predict the model’s outputs, along with the uncertainty in each one.

The uncertainty is computed as described in https://arxiv.org/abs/1703.04977. It involves repeating the prediction many times with different dropout masks. The prediction is computed as the average over all the predictions. The uncertainty includes both the variation among the predicted values (epistemic uncertainty) and the model’s own estimates for how well it fits the data (aleatoric uncertainty). Not all models support uncertainty prediction.

**Parameters**

- **X (ndarray)** – the input data, as a Numpy array.
- **masks (int)** – the number of dropout masks to average over

**Returns**

- for each output, a tuple (y_pred, y_std) where y_pred is the predicted
- value of the output, and each element of y_std estimates the standard
- deviation of the corresponding element of y_pred

**predict**

```python
 output_types: Optional[List[str]] = None) → Union[numpy.ndarray, Sequence[numpy.ndarray]]
```

Uses self to make predictions on provided Dataset object.

**Parameters**

- **dataset (dc.data.Dataset)** – Dataset to make prediction on
- **transformers (list of dc.trans.Transformers)** – Transformers that the input data has been transformed by. The output is passed through these transformers to undo the transformations.
- **output_types (String or list of Strings)** – If specified, all outputs of this type will be retrieved from the model. If output_types is specified, outputs must be None.
Returns

- a NumPy array of the model produces a single output, or a list of arrays
- if it produces multiple outputs

`predict_embedding(dataset: deepchem.data.datasets.Dataset) → Union[numpy.ndarray, Sequence[numpy.ndarray]]`

Predicts embeddings created by underlying model if any exist. An embedding must be specified to have `output_type` of `embedding` in the model definition.

Parameters **dataset** (dc.data.Dataset) – Dataset to make prediction on

Returns

- a NumPy array of the embeddings model produces, or a list of arrays if it produces multiple embeddings

`predict_uncertainty(dataset: deepchem.data.datasets.Dataset, masks: int = 50) → Union[Tuple[numpy.ndarray, numpy.ndarray], Sequence[Tuple[numpy.ndarray, numpy.ndarray]]]`

Predict the model’s outputs, along with the uncertainty in each one.

The uncertainty is computed as described in https://arxiv.org/abs/1703.04977. It involves repeating the prediction many times with different dropout masks. The prediction is computed as the average over all the predictions. The uncertainty includes both the variation among the predicted values (epistemic uncertainty) and the model’s own estimates for how well it fits the data (aleatoric uncertainty). Not all models support uncertainty prediction.

Parameters

- **dataset** (dc.data.Dataset) – Dataset to make prediction on
- **masks** (int) – the number of dropout masks to average over

Returns

- for each output, a tuple (y_pred, y_std) where y_pred is the predicted value of the output, and each element of y_std estimates the standard deviation of the corresponding element of y_pred


Evaluate the performance of this model on the data produced by a generator.

Parameters

- **generator** (generator) – this should generate batches, each represented as a tuple of the form (inputs, labels, weights).
- **metric** (list of deepchem.metrics.Metric) – Evaluation metric
- **transformers** (list of dc.trans.Transformer) – Transformers that the input data has been transformed by. The output is passed through these transformers to undo the transformations.
- **per_task_metrics** (bool) – If True, return per-task scores.

Returns Maps tasks to scores under metric.

Return type dict
compute_saliency ($X: \text{numpy.ndarray}$) $\rightarrow$ Union[numpy.ndarray, Sequence[numpy.ndarray]]

Compute the saliency map for an input sample.

This computes the Jacobian matrix with the derivative of each output element with respect to each input element. More precisely,

- **If this model has a single output, it returns a matrix of shape** (output_shape, input_shape) with the derivatives.
- **If this model has multiple outputs, it returns a list of matrices, one** for each output.

This method cannot be used on models that take multiple inputs.

**Parameters**

- **$X$** (ndarray) – the input data for a single sample

**Return type**

the Jacobian matrix, or a list of matrices

default_generator ($dataset: \text{deepchem.data.datasets.Dataset}, epochs: \text{int} = 1, mode: \text{str} = \text{'fit'},
\text{deterministic: bool} = \text{True}, pad\_batches: \text{bool} = \text{True}$) $\rightarrow$ Iterable[Tuple[List, List, List]]

Create a generator that iterates batches for a dataset.

Subclasses may override this method to customize how model inputs are generated from the data.

**Parameters**

- **dataset** (Dataset) – the data to iterate
- **epochs** (int) – the number of times to iterate over the full dataset
- **mode** (str) – allowed values are ‘fit’ (called during training), ‘predict’ (called during prediction), and ‘uncertainty’ (called during uncertainty prediction)
- **deterministic** (bool) – whether to iterate over the dataset in order, or randomly shuffle the data for each epoch
- **pad_batches** (bool) – whether to pad each batch up to this model’s preferred batch size

**Returns**

- a generator that iterates batches, each represented as a tuple of lists
- ([inputs], [outputs], [weights])

save_checkpoint ($max\_checkpoints\_to\_keep: \text{int} = 5, model\_dir: \text{Optional[str]} = \text{None}$) $\rightarrow$ None

Save a checkpoint to disk.

Usually you do not need to call this method, since fit() saves checkpoints automatically. If you have disabled automatic checkpointing during fitting, this can be called to manually write checkpoints.

**Parameters**

- **max_checkpoints_to_keep** (int) – the maximum number of checkpoints to keep. Older checkpoints are discarded.
- **model_dir** (str, default None) – Model directory to save checkpoint to. If None, revert to self.model_dir

get_checkpoints ($model\_dir: \text{Optional[str]} = \text{None}$)

Get a list of all available checkpoint files.

**Parameters**

- **model_dir** (str, default None) – Directory to get list of checkpoints from. Reverts to self.model_dir if None
**restore***(checkpoint: Optional[str] = None, model_dir: Optional[str] = None) → None

Reload the values of all variables from a checkpoint file.

**Parameters**

- **checkpoint** *(str)* – the path to the checkpoint file to load. If this is None, the most recent checkpoint will be chosen automatically. Call `get_checkpoints()` to get a list of all available checkpoints.

- **model_dir** *(str, default None)* – Directory to restore checkpoint from. If None, use `self.model_dir`. If checkpoint is not None, this is ignored.

**get_global_step() → int**

Get the number of steps of fitting that have been performed.

**load_from_pretrained**(source_model: deepchem.models.torch_models.torch_model.TorchModel, assignment_map: Optional[Dict[Any, Any]] = None, value_map: Optional[Dict[Any, Any]] = None, checkpoint: Optional[str] = None, model_dir: Optional[str] = None, include_top: bool = True, inputs: Optional[Sequence[Any]] = None, **kwargs) → None

Copies parameter values from a pretrained model. `source_model` can either be a pretrained model or a model with the same architecture. `value_map` is a parameter-value dictionary. If no `value_map` is provided, the parameter values are restored to the `source_model` from a checkpoint and a default `value_map` is created. `assignment_map` is a dictionary mapping parameters from the `source_model` to the current model. If no `assignment_map` is provided, one is made from scratch and assumes the model is composed of several different layers, with the final one being a dense layer. `include_top` is used to control whether or not the final dense layer is used. The default assignment map is useful in cases where the type of task is different (classification vs regression) and/or number of tasks in the setting.

**Parameters**

- **source_model** *(dc.TorchModel, required)* – `source_model` can either be the pretrained model or a `dc.TorchModel` with the same architecture as the pretrained model. It is used to restore from a checkpoint, if `value_map` is None and to create a default assignment map if `assignment_map` is None

- **assignment_map** *(Dict, default None)* – Dictionary mapping the `source_model` parameters and current model parameters

- **value_map** *(Dict, default None)* – Dictionary containing `source_model` trainable parameters mapped to numpy arrays. If `value_map` is None, the values are restored and a default parameter map is created using the restored values

- **checkpoint** *(str, default None)* – the path to the checkpoint file to load. If this is None, the most recent checkpoint will be chosen automatically. Call `get_checkpoints()` to get a list of all available checkpoints

- **model_dir** *(str, default None)* – Restore source model from custom model directory if needed

- **include_top** *(bool, default True)* – if True, copies the weights and bias associated with the final dense layer. Used only when assignment map is None

- **inputs** *(List, input tensors for model)* – if not None, then the weights are built for both the source and self.
3.17.2 ModularTorchModel

You can modify networks for different tasks by using a `ModularTorchModel`.

```python
class ModularTorchModel(model: torch.nn.modules.module.Module, components: dict, **kwargs)

ModularTorchModel is a subclass of TorchModel that allows for components to be pretrained and then combined into a final model. It is designed to be subclassed for specific models and is not intended to be used directly.

There are 3 main differences between ModularTorchModel and TorchModel:

- The `build_components()` method is used to define the components of the model.
- The components are combined into a final model with the `build_model()` method.
- The loss function is defined with the `loss_func` method. This may access the components to compute the loss using intermediate values from the network, rather than just the full forward pass output.

Here is an example of how to use ModularTorchModel to pretrain a linear layer, load it into another network and then finetune that network:

```python
>>> import numpy as np
>>> import deepchem as dc
>>> import torch

>>> n_samples = 6
>>> n_feat = 3
>>> n_hidden = 2
>>> n_tasks = 6
>>> pt_tasks = 3

>>> X = np.random.randn(n_samples, n_feat)
>>> y_pretrain = np.zeros((n_samples, pt_tasks)).astype(np.float32)
>>> dataset_pt = dc.data.NumpyDataset(X, y_pretrain)
>>> y_finetune = np.zeros((n_samples, n_tasks)).astype(np.float32)
>>> dataset_ft = dc.data.NumpyDataset(X, y_finetune)

```

```python
>>> components = {'linear': torch.nn.Linear(n_feat, n_hidden),
...                'activation': torch.nn.ReLU(),
...                'head': torch.nn.Linear(n_hidden, n_tasks)}

>>> model = torch.nn.Sequential(components['linear'], components['activation'], components['head'])

>>> modular_model = dc.models.torch_models.modular.ModularTorchModel(model,
...                                                                   components)

>>> def example_loss_func(inputs, labels, weights):
...     return (torch.nn.functional.mse_loss(model(inputs), labels[0]) * weights[0]).mean()

>>> modular_model.loss_func = example_loss_func

>>> def example_model_build():
...     return torch.nn.Sequential(components['linear'], components['activation'], components['head'])

>>> modular_model.build_model = example_model_build

>>> pretrain_components = {'linear': torch.nn.Linear(n_feat, n_hidden),
...                        'activation': torch.nn.ReLU(),
...                        'head': torch.nn.Linear(n_hidden, pt_tasks)}

>>> pretrain_model = torch.nn.Sequential(pretrain_components['linear'],
...                                      pretrain_components['activation'],
...                                      pretrain_components['head'])

>>> pretrain_modular_model = dc.models.torch_models.modular.ModularTorchModel(pretrain_model,
...                                                                            components)

>>> def example_pt_loss_func(inputs, labels, weights):
...     return (torch.nn.functional.mse_loss(pretrain_model(inputs), labels[0]) * weights[0]).mean()

(continues on next page)
>>> pretrain_modular_model.loss_func = example_pt_loss_func
>>> pt_loss = pretrain_modular_model.fit(dataset_pt, nb_epoch=1)
>>> modular_model.load_from_pretrained(pretrain_modular_model, components=['linear →'])
>>> ft_loss = modular_model.fit(dataset_ft, nb_epoch=1)

__init__(model: torch.nn.modules.module.Module, components: dict, **kwargs)

Create a ModularTorchModel.

Parameters

- **model** (nn.Module) – The model to be trained.
- **components** (dict) – A dictionary of the components of the model. The keys are the names of the components and the values are the components themselves.

build_model() \(\rightarrow\) torch.nn.modules.module.Module

Builds the final model from the components.

build_components() \(\rightarrow\) dict

Creates the components dictionary, with the keys being the names of the components and the values being torch.nn.module objects.


Defines the loss function for the model which can access the components using self.components. The loss function should take the inputs, labels, and weights as arguments and return the loss.

freeze_components(components: List[str])

Freezes or unfreezes the parameters of the specified components.

Parameters **components** (List[str]) – The components to freeze.

unfreeze_components(components: List[str])

Unfreezes the parameters of the specified components.

Parameters **components** (List[str]) – The components to unfreeze.


Train this model on data from a generator. This method is similar to the TorchModel implementation, but it passes the inputs directly to the loss function, rather than passing them through the model first. This enables the loss to be calculated from intermediate steps of the model and not just the final output.

Parameters

- **generator** (generator) – this should generate batches, each represented as a tuple of the form (inputs, labels, weights).
- **max_checkpoints_to_keep** (int) – the maximum number of checkpoints to keep. Older checkpoints are discarded.
• **checkpoint_interval** *(int)* – the frequency at which to write checkpoints, measured in training steps. Set this to 0 to disable automatic checkpointing.

• **restore** *(bool)* – if True, restore the model from the most recent checkpoint and continue training from there. If False, retrain the model from scratch.

• **variables** *(list of torch.nn.Parameter)* – the variables to train. If None (the default), all trainable variables in the model are used.

• **loss** *(function)* – a function of the form \( f(outputs, labels, weights) \) that computes the loss for each batch. If None (the default), the model’s standard loss function is used.

• **callbacks** *(function or list of functions)* – one or more functions of the form \( f(model, step) \) that will be invoked after every step. This can be used to perform validation, logging, etc.

• **all_losses** *(Optional[List[float]], optional (default None))* – If specified, all logged losses are appended into this list. Note that you can call \( \text{fit()} \) repeatedly with the same list and losses will continue to be appended.

**Return type** The average loss over the most recent checkpoint interval

```python
load_from_pretrained(source_model:
 Optional[deepchem.models.torch_models.modular.ModularTorchModel] = None,
 components: Optional[List[str]] = None, checkpoint: Optional[str] = None,
 model_dir: Optional[str] = None, inputs: Optional[Sequence[typing.Any]] = None,
 **kwargs) ➞ None
```  

Copies parameter values from a pretrained model. The pretrained model can be loaded as a `source_model` (ModularTorchModel object), `checkpoint` (pytorch .ckpt file) or a `model_dir` (directory with .ckpt files). Specific components can be chosen by passing a list of strings with the desired component names. If both a `source_model` and a `checkpoint/model_dir` are loaded, the `source_model` weights will be loaded.

**Parameters**

• **source_model** *(dc.ModularTorchModel, required)* – `source_model` can either be the pretrained model or a dc.TorchModel with the same architecture as the pretrained model. It is used to restore from a checkpoint, if `value_map` is None and to create a default assignment map if `assignment_map` is None

• **checkpoint** *(str, default None)* – the path to the checkpoint file to load. If this is None, the most recent checkpoint will be chosen automatically. Call `get_checkpoints()` to get a list of all available checkpoints

• **model_dir** *(str, default None)* – Restore source model from custom model directory if needed

• **inputs** *(List, input tensors for model)* – if not None, then the weights are built for both the source and self.

```python
save_checkpoint(max_checkpoints_to_keep=5, model_dir=None)
```  

Saves the current state of the model and its components as a checkpoint file in the specified model directory. It maintains a maximum number of checkpoint files, deleting the oldest one when the limit is reached.

**Parameters**

• **max_checkpoints_to_keep** *(int, default 5)* – Maximum number of checkpoint files to keep.

• **model_dir** *(str, default None)* – The directory to save the checkpoint file in. If None, the `model_dir` specified in the constructor is used.
restore(components: Optional[List[str]] = None, checkpoint: Optional[str] = None, model_dir: Optional[str] = None) → None

Restores the state of a ModularTorchModel from a checkpoint file.

If no checkpoint file is provided, it will use the latest checkpoint found in the model directory. If a list of component names is provided, only the state of those components will be restored.

Parameters

- **components (Optional[List[str]])** – A list of component names to restore. If None, all components will be restored.
- **checkpoint (Optional[str])** – The path to the checkpoint file. If None, the latest checkpoint in the model directory will be used.
- **model_dir (Optional[str])** – The path to the model directory. If None, the model directory used to initialize the model will be used.

3.17.3 CNN

class CNN(n_tasks: int, n_features: int, dims: int, layer_filters: List[int] = [100], kernel_size: Union[int, Sequence[int]] = 5, strides: Union[int, Sequence[int]] = 1, weight_init_stddevs: Union[float, Sequence[float]] = 0.02, bias_init_consts: Union[float, Sequence[float]] = 1.0, weight_decay_penalty: float = 0.0, weight_decay_penalty_type: str = 'l2', dropouts: Union[float, Sequence[float]] = 0.5, activation_fns: Union[Callable, str, Sequence[Union[Callable, str]]] = 'relu', pool_type: str = 'max', mode: str = 'classification', n_classes: int = 2, uncertainty: bool = False, residual: bool = False, padding: Union[int, str] = 'valid', **kwargs)

A 1, 2, or 3 dimensional convolutional network for either regression or classification.

The network consists of the following sequence of layers:

- A configurable number of convolutional layers
- A global pooling layer (either max pool or average pool)
- A final fully connected layer to compute the output

It optionally can compose the model from pre-activation residual blocks, as described in https://arxiv.org/abs/1603.05027, rather than a simple stack of convolution layers. This often leads to easier training, especially when using a large number of layers. Note that residual blocks can only be used when successive layers have the same output shape. Wherever the output shape changes, a simple convolution layer will be used even if residual=True.

Examples

```python
g>>> n_samples = 10
g>>> n_features = 3
g>>> n_tasks = 1
g>>> np.random.seed(123)
g>>> X = np.random.rand(n_samples, 10, n_features)
g>>> y = np.random.randint(2, size=(n_samples, n_tasks)).astype(np.float32)
g>>> dataset: dc.data.Dataset = dc.data.NumpyDataset(X, y)
g>>> regression_metric = dc.metrics.Metric(dc.metrics.mean_squared_error)
g>>> model = CNN(n_tasks, n_features, dims=1, kernel_size=3, mode='regression')
g>>> avg_loss = model.fit(dataset, nb_epoch=10)
```
__init__(n_tasks: int, n_features: int, dims: int, layer_filters: List[int] = [100], kernel_size: Union[int, Sequence[int]] = 5, strides: Union[int, Sequence[int]] = 1, weight_init_stddevs: Union[float, Sequence[float]] = 0.02, bias_init_consts: Union[float, Sequence[float]] = 1.0, weight_decay_penalty: float = 0.0, weight_decay_penalty_type: str = 'l2', dropouts: Union[Sequence[float], float] = 0.5, activation_fns: Union[Callable, Sequence[Callable]] = 'relu', pool_type: str = 'max', mode: str = 'classification', n_classes: int = 2, uncertainty: bool = False, residual: bool = False, padding: Union[int, str] = 'valid', **kwargs) -> None

TorchModel wrapper for CNN

Parameters

- **n_tasks** (int) – number of tasks
- **n_features** (int) – number of features
- **dims** (int) – the number of dimensions to apply convolutions over (1, 2, or 3)
- **layer_filters** (list) – the number of output filters for each convolutional layer in the network. The length of this list determines the number of layers.
- **kernel_size** (int, tuple, or list) – a list giving the shape of the convolutional kernel for each layer. Each element may be either an int (use the same kernel width for every dimension) or a tuple (the kernel width along each dimension). Alternatively this may be a single int or tuple instead of a list, in which case the same kernel shape is used for every layer.
- **strides** (int, tuple, or list) – a list giving the stride between applications of the kernel for each layer. Each element may be either an int (use the same stride for every dimension) or a tuple (the stride along each dimension). Alternatively this may be a single int or tuple instead of a list, in which case the same stride is used for every layer.
- **weight_init_stddevs** (list or float) – the standard deviation of the distribution to use for weight initialization of each layer. The length of this list should equal len(layer_filters)+1, where the final element corresponds to the dense layer. Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.
- **bias_init_consts** (list or float) – the value to initialize the biases in each layer to. The length of this list should equal len(layer_filters)+1, where the final element corresponds to the dense layer. Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.
- **weight_decay_penalty** (float) – the magnitude of the weight decay penalty to use
- **weight_decay_penalty_type** (str) – the type of penalty to use for weight decay, either ‘l1’ or ‘l2’
- **dropouts** (list or float) – the dropout probability to use for each layer. The length of this list should equal len(layer_filters). Alternatively this may be a single value instead of a list, in which case the same value is used for every layer
- **activation_fns** (str or list) – the torch activation function to apply to each layer. The length of this list should equal len(layer_filters). Alternatively this may be a single value instead of a list, in which case the same value is used for every layer
- **pool_type** (str) – the type of pooling layer to use, either ‘max’ or ‘average’
- **mode** (str) – Either ‘classification’ or ‘regression’
- **n_classes** (int) – the number of classes to predict (only used in classification mode)
• **uncertainty** *(bool)* – if True, include extra outputs and loss terms to enable the uncertainty in outputs to be predicted

• **residual** *(bool)* – if True, the model will be composed of pre-activation residual blocks instead of a simple stack of convolutional layers.

• **padding** *(str, int or tuple)* – the padding to use for convolutional layers, either ‘valid’ or ‘same’

**default_generator**(dataset, epochs=1, mode='fit', deterministic=True, pad_batches=True)

Create a generator that iterates batches for a dataset.

Subclasses may override this method to customize how model inputs are generated from the data.

**Parameters**

• **dataset** *(Dataset)* – the data to iterate

• **epochs** *(int)* – the number of times to iterate over the full dataset

• **mode** *(str)* – allowed values are ‘fit’ (called during training), ‘predict’ (called during prediction), and ‘uncertainty’ (called during uncertainty prediction)

• **deterministic** *(bool)* – whether to iterate over the dataset in order, or randomly shuffle the data for each epoch

• **pad_batches** *(bool)* – whether to pad each batch up to this model’s preferred batch size

**Returns**

• a generator that iterates batches, each represented as a tuple of lists

• ([inputs], [outputs], [weights])

### 3.17.4 MultitaskRegressor

class MultitaskRegressor(n_tasks: int, n_features: int, layer_sizes: Sequence[int] = [1000],
weight_init_stdevs: Union[float, Sequence[float]] = 0.02, bias_init_consts:
Union[float, Sequence[float]] = 1.0, weight_decay_penalty: float = 0.0,
weight_decay_penalty_type: str = 'l2', dropouts: Union[float, Sequence[float]] = 0.5, activation_fns: Union[Callable, str, Sequence[Union[Callable, str]]] = 'relu',
uncertainty: bool = False, residual: bool = False, **kwargs)

A fully connected network for multitask regression.

This class provides lots of options for customizing aspects of the model: the number and widths of layers, the activation functions, regularization methods, etc.

It optionally can compose the model from pre-activation residual blocks, as described in https://arxiv.org/abs/1603.05027, rather than a simple stack of dense layers. This often leads to easier training, especially when using a large number of layers. Note that residual blocks can only be used when successive layers have the same width. Wherever the layer width changes, a simple dense layer will be used even if residual=True.

**__init__**(n_tasks: int, n_features: int, layer_sizes: Sequence[int] = [1000], weight_init_stdevs:
Union[float, Sequence[float]] = 0.02, bias_init_consts: Union[float, Sequence[float]] = 1.0,
weight_decay_penalty: float = 0.0, weight_decay_penalty_type: str = 'l2', dropouts: Union[float, Sequence[float]] = 0.5, activation_fns: Union[Callable, str, Sequence[Union[Callable, str]]] = 'relu', uncertainty: bool = False, residual: bool = False, **kwargs) → None

Create a MultitaskRegressor.

In addition to the following arguments, this class also accepts all the keyword arguments from TensorGraph.
Parameters

- **n_tasks** (*int*) – number of tasks
- **n_features** (*int*) – number of features
- **layer_sizes** (*list*) – the size of each dense layer in the network. The length of this list determines the number of layers.
- **weight_init_stddevs** (*list or float*) – the standard deviation of the distribution to use for weight initialization of each layer. The length of this list should equal len(layer_sizes)+1. The final element corresponds to the output layer. Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.
- **bias_init_consts** (*list or float*) – the value to initialize the biases in each layer to. The length of this list should equal len(layer_sizes)+1. The final element corresponds to the output layer. Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.
- **weight_decay_penalty** (*float*) – the magnitude of the weight decay penalty to use
- **weight_decay_penalty_type** (*str*) – the type of penalty to use for weight decay, either ‘l1’ or ‘l2’
- **dropouts** (*list or float*) – the dropout probability to use for each layer. The length of this list should equal len(layer_sizes). Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.
- **activation_fns** (*list or object*) – the PyTorch activation function to apply to each layer. The length of this list should equal len(layer_sizes). Alternatively this may be a single value instead of a list, in which case the same value is used for every layer. Standard activation functions from torch.nn.functional can be specified by name.
- **uncertainty** (*bool*) – if True, include extra outputs and loss terms to enable the uncertainty in outputs to be predicted
- **residual** (*bool*) – if True, the model will be composed of pre-activation residual blocks instead of a simple stack of dense layers.

**default_generator**

```python
default_generator(dataset: deepchem.data.datasets.Dataset, epochs: int = 1, mode: str = 'fit',
 deterministic: bool = True, pad_batches: bool = True) → Iterable[Tuple[List, List, List]]
```

Create a generator that iterates batches for a dataset.

Subclasses may override this method to customize how model inputs are generated from the data.

**Parameters**

- **dataset** (*Dataset*) – the data to iterate
- **epochs** (*int*) – the number of times to iterate over the full dataset
- **mode** (*str*) – allowed values are ‘fit’ (called during training), ‘predict’ (called during prediction), and ‘uncertainty’ (called during uncertainty prediction)
- **deterministic** (*bool*) – whether to iterate over the dataset in order, or randomly shuffle the data for each epoch
- **pad_batches** (*bool*) – whether to pad each batch up to this model’s preferred batch size

**Returns**

- *a generator that iterates batches, each represented as a tuple of lists*
  - ([inputs], [outputs], [weights])
3.17.5 MultitaskFitTransformRegressor

class MultitaskFitTransformRegressor(n_tasks: int, n_features: int, fit_transformers: Sequence[transformers.Transformer] = [], batch_size: int = 50, **kwargs)

Implements a MultitaskRegressor that performs on-the-fly transformation during fit/predict.

Examples

```python
>>> n_samples = 10
>>> n_features = 3
>>> n_tasks = 1
>>> ids = np.arange(n_samples)
>>> X = np.random.rand(n_samples, n_features, n_features)
>>> y = np.zeros((n_samples, n_tasks))
>>> w = np.ones((n_samples, n_tasks))
>>> dataset = dc.data.NumpyDataset(X, y, w, ids)
>>> fit_transformers = [dc.trans.CoulombFitTransformer(dataset)]
>>> model = dc.models.MultitaskFitTransformRegressor(n_tasks, [n_features, n_features],
... dropouts=[0.], learning_rate=0.003, weight_init_stddevs=[np.sqrt(6)/np.sqrt(1000)],
... batch_size=n_samples, fit_transformers=fit_transformers)
>>> model.n_features
12
```

__init__(n_tasks: int, n_features: int, fit_transformers: Sequence[transformers.Transformer] = [], batch_size: int = 50, **kwargs)

Create a MultitaskFitTransformRegressor.

In addition to the following arguments, this class also accepts all the keywork arguments from MultitaskRegressor.

Parameters

- **n_tasks** (int) – number of tasks
- **n_features** (list or int) – number of features
- **fit_transformers** (list) – List of dc.trans.FitTransformer objects

default_generator(dataset: deepchem.data.datasets.Dataset, epochs: int = 1, mode: str = 'fit',
... deterministic: bool = True, pad_batches: bool = True) → Iterable[Tuple[List, List, List]]

Create a generator that iterates batches for a dataset.

Subclasses may override this method to customize how model inputs are generated from the data.

Parameters

- **dataset** (Dataset) – the data to iterate
- **epochs** (int) – the number of times to iterate over the full dataset
- **mode** (str) – allowed values are ‘fit’ (called during training), ‘predict’ (called during prediction), and ‘uncertainty’ (called during uncertainty prediction)
- **deterministic** (bool) – whether to iterate over the dataset in order, or randomly shuffle the data for each epoch
- **pad_batches** (bool) – whether to pad each batch up to this model’s preferred batch size

**Returns**
- a generator that iterates batches, each represented as a tuple of lists
- ([inputs], [outputs], [weights])

**predict_on_generator**


**Parameters**
- **generator** (generator) – this should generate batches, each represented as a tuple of the form (inputs, labels, weights).
- **transformers** (list of transformers) – Transformers that the input data has been transformed by. The output is passed through these transformers to undo the transformations.
- **output_types** (String or list of Strings) – If specified, all outputs of this type will be retrieved from the model. If output_types is specified, outputs must be None.
- **Returns** – a NumPy array of the model produces a single output, or a list of arrays if it produces multiple outputs

### 3.17.6 MultitaskClassifier

**class MultitaskClassifier**

def __init__(n_tasks: int, n_features: int, layer_sizes: Sequence[int] = [1000],
            weight_init_stddevs: Union[float, Sequence[float]] = 0.02,
            bias_init_consts: Union[float, Sequence[float]] = 1.0,
            weight_decay_penalty: float = 0.0,
            weight_decay_penalty_type: str = 'l2',
            dropouts: Union[float, Sequence[float]] = 0.5,
            activation_fns: Union[Callable, str, Sequence[Union[Callable, str]]] = 'relu',
            n_classes: int = 2, residual: bool = False, **kwargs)

A fully connected network for multitask classification.

This class provides lots of options for customizing aspects of the model: the number and widths of layers, the activation functions, regularization methods, etc.

It optionally can compose the model from pre-activation residual blocks, as described in https://arxiv.org/abs/1603.05027, rather than a simple stack of dense layers. This often leads to easier training, especially when using a large number of layers. Note that residual blocks can only be used when successive layers have the same width. Wherever the layer width changes, a simple dense layer will be used even if residual=True.

Create a MultitaskClassifier.

In addition to the following arguments, this class also accepts all the keyword arguments from TensorGraph.

**Parameters**
- **n_tasks** (int) – number of tasks
• **n_features** (*int*) – number of features

• **layer_sizes** (*list*) – the size of each dense layer in the network. The length of this list determines the number of layers.

• **weight_init_stddevs** (*list or float*) – the standard deviation of the distribution to use for weight initialization of each layer. The length of this list should equal len(layer_sizes). Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.

• **bias_init_consts** (*list or float*) – the value to initialize the biases in each layer to. The length of this list should equal len(layer_sizes). Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.

• **weight_decay_penalty** (*float*) – the magnitude of the weight decay penalty to use

• **weight_decay_penalty_type** (*str*) – the type of penalty to use for weight decay, either ‘l1’ or ‘l2’

• **dropouts** (*list or float*) – the dropout probability to use for each layer. The length of this list should equal len(layer_sizes). Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.

• **activation_fns** (*list or object*) – the PyTorch activation function to apply to each layer. The length of this list should equal len(layer_sizes). Alternatively this may be a single value instead of a list, in which case the same value is used for every layer. Standard activation functions from torch.nn.functional can be specified by name.

• **n_classes** (*int*) – the number of classes

• **residual** (*bool*) – if True, the model will be composed of pre-activation residual blocks instead of a simple stack of dense layers.

**default_generator** (*dataset: deepchem.data.datasets.Dataset, epochs: int = 1, mode: str = 'fit', deterministic: bool = True, pad_batches: bool = True) \(\rightarrow\) Iterable[Tuple[List, List, List]]

Create a generator that iterates batches for a dataset.

Subclasses may override this method to customize how model inputs are generated from the data.

**Parameters**

• **dataset** (*Dataset*) – the data to iterate

• **epochs** (*int*) – the number of times to iterate over the full dataset

• **mode** (*str*) – allowed values are ‘fit’ (called during training), ‘predict’ (called during prediction), and ‘uncertainty’ (called during uncertainty prediction)

• **deterministic** (*bool*) – whether to iterate over the dataset in order, or randomly shuffle the data for each epoch

• **pad_batches** (*bool*) – whether to pad each batch up to this model’s preferred batch size

**Returns**

• *a generator that iterates batches, each represented as a tuple of lists*

• *([inputs], [outputs], [weights])*
3.17.7 CGCNNModel

class CGCNNModel(
    in_node_dim: int = 92, hidden_node_dim: int = 64, in_edge_dim: int = 41, num_conv: int = 3,
    predictor_hidden_feats: int = 128, n_tasks: int = 1, mode: str = 'regression', n_classes: int = 2,
    **kwargs)

Crystal Graph Convolutional Neural Network (CGCNN).

Here is a simple example of code that uses the CGCNNModel with materials dataset.

Examples

```python
>>> import deepchem as dc
>>> dataset_config = {"reload": False, "featurizer": dc.feat.CGCNNFeaturizer(),
 ...
 "transformers": []}
>>> tasks, datasets, transformers = dc.molnet.load_perovskite(**dataset_config)
>>> train, valid, test = datasets
>>> model = dc.models.CGCNNModel(mode='regression', batch_size=32, learning_rate=0.001)
>>> avg_loss = model.fit(train, nb_epoch=50)
```

This model takes arbitrary crystal structures as an input, and predict material properties using the element information and connection of atoms in the crystal. If you want to get some material properties which has a high computational cost like band gap in the case of DFT, this model may be useful. This model is one of variants of Graph Convolutional Networks. The main differences between other GCN models are how to construct graphs and how to update node representations. This model defines the crystal graph from structures using distances between atoms. The crystal graph is an undirected multigraph which is defined by nodes representing atom properties and edges representing connections between atoms in a crystal. And, this model updates the node representations using both neighbor node and edge representations. Please confirm the detail algorithms from [1].

References

Notes

This class requires DGL and PyTorch to be installed.

__init__ (in_node_dim: int = 92, hidden_node_dim: int = 64, in_edge_dim: int = 41, num_conv: int = 3,
    predictor_hidden_feats: int = 128, n_tasks: int = 1, mode: str = 'regression', n_classes: int = 2,
    **kwargs)

This class accepts all the keyword arguments from TorchModel.

Parameters

- **in_node_dim (int, default 92)** – The length of the initial node feature vectors. The 92 is based on length of vectors in the atom_init.json.
- **hidden_node_dim (int, default 64)** – The length of the hidden node feature vectors.
- **in_edge_dim (int, default 41)** – The length of the initial edge feature vectors. The 41 is based on default setting of CGCNNFeaturizer.
- **num_conv (int, default 3)** – The number of convolutional layers.
- **predictor_hidden_feats (int, default 128)** – The size for hidden representations in the output MLP predictor.
3.17.8 GATModel

class GATModel(n_tasks: int, graph_attention_layers: typing.Optional[typing.List] = None,
    n_attention_heads: int = 8,
    agg_modes: typing.Optional[typing.List] = None,
    activation=<function elu>,
    residual: bool = True,
    dropout: float = 0.0,
    alpha: float = 0.2,
    predictor_hidden_feats: int = 128,
    predictor_dropout: float = 0.0,
    mode: str = 'regression',
    number_atom_features: int = 30,
    n_classes: int = 2,
    self_loop: bool = True,
    **kwargs)

Model for Graph Property Prediction Based on Graph Attention Networks (GAT).

This model proceeds as follows:

• Update node representations in graphs with a variant of GAT

• For each graph, compute its representation by 1) a weighted sum of the node representations in the graph, where the weights are computed by applying a gating function to the node representations 2) a max pooling of the node representations 3) concatenating the output of 1) and 2)

• Perform the final prediction using an MLP

Examples

```python
>>> import deepchem as dc
>>> from deepchem.models import GATModel

>>> # preparing dataset
>>> smiles = ["C1CCC1", "C1=CC=CN=C1"]
>>> labels = [0., 1.]
>>> featurizer = dc.feat.MolGraphConvFeaturizer()
>>> X = featurizer.featurize(smiles)

```　

References

Notes

This class requires DGL (https://github.com/dmlc/dgl) and DGL-LifeSci (https://github.com/awslabs/dgl-lifesci) to be installed.

__init__(n_tasks: int, graph_attention_layers: typing.Optional[typing.List] = None,
    n_attention_heads: int = 8,
    agg_modes: typing.Optional[typing.List] = None,
    activation=<function elu>,
    residual: bool = True,
    dropout: float = 0.0,
    alpha: float = 0.2,
    predictor_hidden_feats: int = 128,
    predictor_dropout: float = 0.0,
    mode: str = 'regression',
    number_atom_features: int = 30,
    n_classes: int = 2,
    self_loop: bool = True, **kwargs)
Parameters

- **n_tasks** (*int*) – Number of tasks.

- **graph_attention_layers** (*list of int*) – Width of channels per attention head for GAT layers. \(\text{graph_attention_layers[i]}\) gives the width of channel for each attention head for the \(i\)-th GAT layer. If both \(\text{graph_attention_layers}\) and \(\text{agg_modes}\) are specified, they should have equal length. If not specified, the default value will be \([8, 8]\).

- **n_attention_heads** (*int*) – Number of attention heads in each GAT layer.

- **agg_modes** (*list of str*) – The way to aggregate multi-head attention results for each GAT layer, which can be either ‘flatten’ for concatenating all-head results or ‘mean’ for averaging all-head results. \(\text{agg_modes[i]}\) gives the way to aggregate multi-head attention results for the \(i\)-th GAT layer. If both \(\text{graph_attention_layers}\) and \(\text{agg_modes}\) are specified, they should have equal length. If not specified, the model will flatten multi-head results for intermediate GAT layers and compute mean of multi-head results for the last GAT layer.

- **activation** (*activation function or None*) – The activation function to apply to the aggregated multi-head results for each GAT layer. If not specified, the default value will be ELU.

- **residual** (*bool*) – Whether to add a residual connection within each GAT layer. Default to True.

- **dropout** (*float*) – The dropout probability within each GAT layer. Default to 0.

- **alpha** (*float*) – A hyperparameter in LeakyReLU, which is the slope for negative values. Default to 0.2.

- **predictor_hidden_feats** (*int*) – The size for hidden representations in the output MLP predictor. Default to 128.

- **predictor_dropout** (*float*) – The dropout probability in the output MLP predictor. Default to 0.

- **mode** (*str*) – The model type, ‘classification’ or ‘regression’. Default to ‘regression’.

- **number_atom_features** (*int*) – The length of the initial atom feature vectors. Default to 30.

- **n_classes** (*int*) – The number of classes to predict per task (only used when **mode** is ‘classification’). Default to 2.

- **self_loop** (*bool*) – Whether to add self loops for the nodes, i.e. edges from nodes to themselves. When input graphs have isolated nodes, self loops allow preserving the original feature of them in message passing. Default to True.

- **kwargs** – This can include any keyword argument of TorchModel.
3.17.9 GCNModel

class GCNModel(n_tasks: int, graph_conv_layers: Optional[list] = None, activation=None, residual: bool = True, batchnorm: bool = False, dropout: float = 0.0, predictor_hidden_feats: int = 128, predictor_dropout: float = 0.0, mode: str = 'regression', number_atom_features=30, n_classes: int = 2, self_loop: bool = True, **kwargs)

Model for Graph Property Prediction Based on Graph Convolution Networks (GCN).

This model proceeds as follows:

• Update node representations in graphs with a variant of GCN

• For each graph, compute its representation by (1) a weighted sum of the node representations in the graph, where the weights are computed by applying a gating function to the node representations (2) a max pooling of the node representations (3) concatenating the output of 1) and 2)

• Perform the final prediction using an MLP

Examples

```python
>>> import deepchem as dc
>>> from deepchem.models import GCNModel
>>> # preparing dataset
>>> smiles = ['C1CCC1', 'CCC']
>>> labels = [0., 1.]
>>> featurizer = dc.feat.MolGraphConvFeaturizer()
>>> X = featurizer.featurize(smiles)
>>> dataset = dc.data.NumpyDataset(X=X, y=labels)
>>> # training model
>>> model = GCNModel(mode='classification', n_tasks=1,
>>> ... batch_size=16, learning_rate=0.001)
>>> loss = model.fit(dataset, nb_epoch=5)
```

References

Notes

This class requires DGL (https://github.com/dmlc/dgl) and DGL-LifeSci (https://github.com/awslabs/dgl-lifesci) to be installed.

This model is different from deepchem.models.GraphConvModel as follows:

• For each graph convolution, the learnable weight in this model is shared across all nodes. GraphConvModel employs separate learnable weights for nodes of different degrees. A learnable weight is shared across all nodes of a particular degree.

• For GraphConvModel, there is an additional GraphPool operation after each graph convolution. The operation updates the representation of a node by applying an element-wise maximum over the representations of its neighbors and itself.

• For computing graph-level representations, this model computes a weighted sum and an element-wise maximum of the representations of all nodes in a graph and concatenates them. The node weights are obtained by using a linear/dense layer followed by a sigmoid function. For GraphConvModel, the sum over node representations is unweighted.

• There are various minor differences in using dropout, skip connection and batch normalization.
__init__(n_tasks: int, graph_conv_layers: Optional[list] = None, activation=None, residual: bool = True, batchnorm: bool = False, dropout: float = 0.0, predictor_hidden_feats: int = 128, predictor_dropout: float = 0.0, mode: str = 'regression', number_atom_features=30, n_classes: int = 2, self_loop: bool = True, **kwargs)

Parameters

• n_tasks (int) – Number of tasks.

• graph_conv_layers (list of int) – Width of channels for GCN layers. graph_conv_layers[i] gives the width of channel for the i-th GCN layer. If not specified, the default value will be [64, 64].

• activation (callable) – The activation function to apply to the output of each GCN layer. By default, no activation function will be applied.

• residual (bool) – Whether to add a residual connection within each GCN layer. Default to True.

• batchnorm (bool) – Whether to apply batch normalization to the output of each GCN layer. Default to False.

• dropout (float) – The dropout probability for the output of each GCN layer. Default to 0.

• predictor_hidden_feats (int) – The size for hidden representations in the output MLP predictor. Default to 128.

• predictor_dropout (float) – The dropout probability in the output MLP predictor. Default to 0.

• mode (str) – The model type, ‘classification’ or ‘regression’. Default to ‘regression’.

• number_atom_features (int) – The length of the initial atom feature vectors. Default to 30.

• n_classes (int) – The number of classes to predict per task (only used when mode is ‘classification’). Default to 2.

• self_loop (bool) – Whether to add self loops for the nodes, i.e. edges from nodes to themselves. When input graphs have isolated nodes, self loops allow preserving the original feature of them in message passing. Default to True.

• kwargs – This can include any keyword argument of TorchModel.

3.17.10 AttentiveFPModel

class AttentiveFPModel(n_tasks: int, num_layers: int = 2, num_timesteps: int = 2, graph_feat_size: int = 200, dropout: float = 0.0, mode: str = 'regression', number_atom_features: int = 30, number_bond_features: int = 11, n_classes: int = 2, self_loop: bool = True, **kwargs)

Model for Graph Property Prediction.

This model proceeds as follows:

• Combine node features and edge features for initializing node representations, which involves a round of message passing.

• Update node representations with multiple rounds of message passing.
For each graph, compute its representation by combining the representations of all nodes in it, which involves a gated recurrent unit (GRU).

Perform the final prediction using a linear layer

Examples

```python
>>> import deepchem as dc
>>> from deepchem.models import AttentiveFPModel

>>> # preparing dataset
>>> smiles = ['C1CCC1', 'C1=CC=CN=C1']
>>> labels = [0., 1.]
>>> featurizer = dc.feat.MolGraphConvFeaturizer(use_edges=True)
>>> X = featurizer.featurize(smiles)
>>> dataset = dc.data.NumpyDataset(X=X, y=labels)

>>> # training model
>>> model = AttentiveFPModel(mode='classification', n_tasks=1,
... batch_size=16, learning_rate=0.001)
>>> loss = model.fit(dataset, nb_epoch=5)
```

References

Notes

This class requires DGL (https://github.com/dmlc/dgl) and DGL-LifeSci (https://github.com/awslabs/dgl-lifesci) to be installed.

__init__ (n_tasks: int, num_layers: int = 2, num_timesteps: int = 2, graph_feat_size: int = 200, dropout: float = 0.0, mode: str = 'regression', number_atom_features: int = 30, number_bond_features: int = 11, n_classes: int = 2, self_loop: bool = True, **kwargs)

Parameters

- **n_tasks** (int) – Number of tasks.
- **num_layers** (int) – Number of graph neural network layers, i.e. number of rounds of message passing. Default to 2.
- **num_timesteps** (int) – Number of time steps for updating graph representations with a GRU. Default to 2.
- **graph_feat_size** (int) – Size for graph representations. Default to 200.
- **dropout** (float) – Dropout probability. Default to 0.
- **mode** (str) – The model type, ‘classification’ or ‘regression’. Default to ‘regression’.
- **number_atom_features** (int) – The length of the initial atom feature vectors. Default to 30.
- **number_bond_features** (int) – The length of the initial bond feature vectors. Default to 11.
- **n_classes** (int) – The number of classes to predict per task (only used when mode is ‘classification’). Default to 2.
• **self_loop** (bool) – Whether to add self loops for the nodes, i.e., edges from nodes to themselves. When input graphs have isolated nodes, self loops allow preserving the original feature of them in message passing. Default to True.

• **kwargs** – This can include any keyword argument of TorchModel.

### 3.17.11 PagtnModel

class PagtnModel:

```python
```

Model for Graph Property Prediction.

This model proceeds as follows:

- **Update node representations in graphs with a variant of GAT, where a linear additive form of attention is applied.** Attention Weights are derived by concatenating the node and edge features for each bond.

- Update node representations with multiple rounds of message passing.

- For each layer has, residual connections with its previous layer.

- **The final molecular representation is computed by combining the representations** of all nodes in the molecule.

- Perform the final prediction using a linear layer

#### Examples

```python
>>> import deepchem as dc
>>> from deepchem.models import PagtnModel
>>> # preparing dataset
>>> smiles = ['C1CCC1', 'CCC']
>>> labels = [0., 1.]
>>> featurizer = dc.feat.PagtnMolGraphFeaturizer(max_length=5)
>>> X = featurizer.featurize(smiles)
>>> dataset = dc.data.NumpyDataset(X=X, y=labels)
>>> # training model
>>> model = PagtnModel(mode='classification', n_tasks=1, ...
... batch_size=16, learning_rate=0.001)
>>> loss = model.fit(dataset, nb_epoch=5)
```

#### References

This class requires DGL (https://github.com/dmlc/dgl) and DGL-LifeSci (https://github.com/awslabs/dgl-lifesci) to be installed.

```python
```
Parameters

- `n_tasks (int)` – Number of tasks.
- `number_atom_features (int)` – Size for the input node features. Default to 94.
- `number_bond_features (int)` – Size for the input edge features. Default to 42.
- `mode (str)` – The model type, ‘classification’ or ‘regression’. Default to ‘regression’.
- `n_classes (int)` – The number of classes to predict per task (only used when `mode` is ‘classification’). Default to 2.
- `output_node_features (int)` – Size for the output node features in PAGTN layers. Default to 256.
- `hidden_features (int)` – Size for the hidden node features in PAGTN layers. Default to 32.
- `num_layers (int)` – Number of graph neural network layers, i.e. number of rounds of message passing. Default to 2.
- `num_heads (int)` – Number of attention heads. Default to 1.
- `dropout (float)` – Dropout probability. Default to 0.1
- `pool_mode (`max` or `mean` or `sum`)` – Whether to compute elementwise maximum, mean or sum of the node representations.
- `kwargs` – This can include any keyword argument of TorchModel.

3.17.12 MPNNModel

Note that this is an alternative implementation for MPNN and currently you can only import it from deepchem.models.torch_models.

```python
class MPNNModel:
 def __init__(self, n_tasks=1, node_out_feats=64, edge_hidden_feats=128, num_step_message_passing=3, num_step_set2set=6, num_layer_set2set=3, mode='regression', number_atom_features=30, number_bond_features=11, n_classes=2, self_loop=True, **kwargs):
 # Model for graph property prediction
 # This model proceeds as follows:
 # 1. Combine latest node representations and edge features in updating node representations, which involves multiple rounds of message passing
 # 2. For each graph, compute its representation by combining the representations of all nodes in it, which involves a Set2Set layer.
 # 3. Perform the final prediction using an MLP
```

344 Chapter 3. About Us
Examples

```python
>>> import deepchem as dc
>>> from deepchem.models.torch_models import MPNNModel
>>> # preparing dataset
>>> smiles = ['"C1CCC1", "CCC"']
>>> labels = [0., 1.]
>>> featurizer = dc.feat.MolGraphConvFeaturizer(use_edges=True)
>>> X = featurizer.featurize(smiles)
>>> dataset = dc.data.NumpyDataset(X=X, y=labels)
>>> # training model
>>> model = MPNNModel(mode='classification', n_tasks=1,
... batch_size=16, learning_rate=0.001)
>>> loss = model.fit(dataset, nb_epoch=5)
```

References

Notes

This class requires DGL (https://github.com/dmlc/dgl) and DGL-LifeSci (https://github.com/awslabs/dgl-lifesci) to be installed.

The featurizer used with MPNNModel must produce a GraphData object which should have both ‘edge’ and ‘node’ features.

```
```

Parameters

- `n_tasks` (int) – Number of tasks.
- `node_out_feats` (int) – The length of the final node representation vectors. Default to 64.
- `edge_hidden_feats` (int) – The length of the hidden edge representation vectors. Default to 128.
- `num_step_message_passing` (int) – The number of rounds of message passing. Default to 3.
- `num_layer_set2set` (int) – The number of set2set layers. Default to 3.
- `mode` (str) – The model type, ‘classification’ or ‘regression’. Default to ‘regression’.
- `number_atom_features` (int) – The length of the initial atom feature vectors. Default to 30.
- `number_bond_features` (int) – The length of the initial bond feature vectors. Default to 11.
- `n_classes` (int) – The number of classes to predict per task (only used when `mode` is ‘classification’). Default to 2.
• **self_loop** *(bool)* – Whether to add self loops for the nodes, i.e. edges from nodes to themselves. Generally, an MPNNModel does not require self loops. Default to False.

• **kwargs** – This can include any keyword argument of TorchModel.

### 3.17.13 InfoGraphModel

**class InfoGraphModel**(num_features, embedding_dim, num_gc_layers=5, prior=True, gamma=0.1, measure='JSD', average_loss=True, **kwargs)

InfoGraph is a graph convolutional model for unsupervised graph-level representation learning. The model aims to maximize the mutual information between the representations of entire graphs and the representations of substructures of different granularity.

The unsupervised training of InfoGraph involves two encoders: one that encodes the entire graph and another that encodes substructures of different sizes. The mutual information between the two encoder outputs is maximized using a contrastive loss function. The model randomly samples pairs of graphs and substructures, and then maximizes their mutual information by minimizing their distance in a learned embedding space.

This can be used for downstream tasks such as graph classification and molecular property prediction. It is implemented as a ModularTorchModel in order to facilitate transfer learning.

**References**


**Parameters**

- **num_features** *(int)* – Number of node features for each input
- **edge_features** *(int)* – Number of edge features for each input
- **embedding_dim** *(int)* – Dimension of the embedding
- **num_gc_layers** *(int)* – Number of graph convolutional layers
- **prior** *(bool)* – Whether to use a prior expectation in the loss term
- **gamma** *(float)* – Weight of the prior expectation in the loss term
- **average_loss** *(bool)* – Whether to average the loss over the batch

**Example**

```python
>>> from deepchem.models.torch_models.infograph import InfoGraphModel
>>> from deepchem.feat import MolGraphConvFeaturizer
>>> from deepchem.data import NumpyDataset
>>> import torch
>>> smiles = ['"C1CCC1", "Cl=CC=CN=Cl"']
>>> featurizer = MolGraphConvFeaturizer(use_edges=True)
>>> X = featurizer.featurize(smiles)
>>> y = torch.randint(0, 2, size=(2, 1)).float()
```

(continues on next page)
>>> w = torch.ones(size=(2, 1)).float()
>>> ds = NumpyDataset(X, y, w)
>>> num_feat = max([ds.X[i].num_node_features for i in range(len(ds))])
>>> edge_dim = max([ds.X[i].num_edge_features for i in range(len(ds))])
>>> model = InfoGraphModel(num_feat, edge_dim, 15)
>>> loss = model.fit(ds, nb_epoch=1)

__init__(num_features, embedding_dim, num_gc_layers=5, prior=True, gamma=0.1, measure='JSD',
average_loss=True, **kwargs)

Create a ModularTorchModel.

Parameters

• **model** (*nn.Module*) – The model to be trained.

• **components** (*dict*) – A dictionary of the components of the model. The keys are the
  names of the components and the values are the components themselves.

build_components() → dict

Build the components of the model. InfoGraph is an unsupervised molecular graph representation
learning model. It consists of an encoder, a local discriminator, a global discriminator, and a prior discriminator.

The unsupervised loss is calculated by the mutual information in embedding representations at all layers.

- encoder: GINEncoder, graph convolutional encoder
- local_d: MultilayerPerceptron, local discriminator
- global_d: MultilayerPerceptron, global discriminator
- prior_d: MultilayerPerceptron, prior discriminator

build_model() → torch.nn.modules.module.Module

Builds the final model from the components.

loss_func(inputs, labels, weights)

Defines the loss function for the model which can access the components using self.components. The loss
function should take the inputs, labels, and weights as arguments and return the loss.

3.17.14 InfoGraphStarModel

class InfoGraphStarModel(num_features, edge_features, embedding_dim, task='supervised',
mode='regression', num_classes=2, num_tasks=1, measure='JSD',
average_loss=True, num_gc_layers=5, **kwargs)

InfographStar is a semi-supervised graph convolutional network for predicting molecular properties. It aims to
maximize the mutual information between the graph-level representation and the representations of substructures
of different scales. It does this by producing graph-level encodings and substructure encodings, and then using
a discriminator to classify if they are from the same molecule or not.

Supervised training is done by using the graph-level encodings to predict the target property. Semi-supervised
training is done by adding a loss term that maximizes the mutual information between the graph-level encodings
and the substructure encodings to the supervised loss. These modes can be chosen by setting the training_mode
parameter.

To conduct training in unsupervised mode, use InfoGraphModel.
References

Parameters

- **num_features** (*int*) – Number of node features for each input
- **edge_features** (*int*) – Number of edge features for each input
- **embedding_dim** (*int*) – Dimension of the embedding
- **training_mode** (*str*) – The mode to use for training. Options are ‘supervised’, ‘semisupervised’. For unsupervised training, use InfoGraphModel.
- **average_loss** (*bool*) – Whether to average the loss over the batch

Examples

```python
>>> from deepchem.models.torch_models import InfoGraphStarModel
>>> from deepchem.feat import MolGraphConvFeaturizer
>>> from deepchem.data import NumpyDataset
>>> import torch

>>> smiles = ["C1CCC1", "C1=CC=CN=C1"]
>>> featurizer = MolGraphConvFeaturizer(use_edges=True)
>>> X = featurizer.featurize(smiles)
>>> y = torch.randint(0, 2, size=(2, 1)).float()
>>> w = torch.ones(size=(2, 1)).float()
>>> ds = NumpyDataset(X, y, w)
>>> num_feat = max([ds.X[i].num_node_features for i in range(len(ds))])
>>> edge_dim = max([ds.X[i].num_edge_features for i in range(len(ds))])
>>> model = InfoGraphStarModel(num_feat, edge_dim, 15, training_mode='semisupervised')
>>> loss = model.fit(ds, nb_epoch=1)
```

```
__init__(num_features, edge_features, embedding_dim, task='supervised', mode='regression', num_classes=2, num_tasks=1, measure='JSD', average_loss=True, num_gc_layers=5, **kwargs)

Create a ModularTorchModel.

Parameters

- **model** (*nn.Module*) – The model to be trained.
- **components** (*dict*) – A dictionary of the components of the model. The keys are the names of the components and the values are the components themselves.

build_components()

Builds the components of the InfoGraphStar model. InfoGraphStar works by maximizing the mutual information between the graph-level representation and the representations of substructures of different scales.

It does this by producing graph-level encodings and substructure encodings, and then using a discriminator to classify if they are from the same molecule or not.

The encoder is a graph convolutional network that produces the graph-level encodings and substructure encodings.
In a supervised training mode, only 1 encoder is used and the encodings are not compared, while in a semi-supervised training mode they are different in order to prevent negative transfer from the pretraining stage.

The local discriminator is a multilayer perceptron that classifies if the substructure encodings are from the same molecule or not while the global discriminator classifies if the graph-level encodings are from the same molecule or not.

coder: InfoGraphEncoder
unsup_encoder: InfoGraphEncoder for supervised or GINEncoder for unsupervised training
ff1: MultilayerPerceptron, feedforward network
ff2: MultilayerPerceptron, feedforward network
fc1: torch.nn.Linear, fully connected layer
fc2: torch.nn.Linear, fully connected layer
local_d: MultilayerPerceptron, local discriminator
global_d: MultilayerPerceptron, global discriminator

build_model()
Builds the InfoGraph model by unpacking the components dictionary and passing them to the InfoGraph nn.module.

loss_func(inputs, labels, weights)
Defines the loss function for the model which can access the components using self.components. The loss function should take the inputs, labels, and weights as arguments and return the loss.

default_generator(dataset: deepchem.data.datasets.Dataset, epochs: int = 1, mode: str = 'fit',
 deterministic: bool = True, pad_batches: bool = True) → Iterable[Tuple[List, List, List]]
Create a generator that iterates batches for a dataset.

Subclasses may override this method to customize how model inputs are generated from the data.

Parameters

- **dataset (Dataset)** – the data to iterate
- **epochs (int)** – the number of times to iterate over the full dataset
- **mode (str)** – allowed values are ‘fit’ (called during training), ‘predict’ (called during prediction), and ‘uncertainty’ (called during uncertainty prediction)
- **deterministic (bool)** – whether to iterate over the dataset in order, or randomly shuffle the data for each epoch
- **pad_batches (bool)** – whether to pad each batch up to this model’s preferred batch size

Returns

- a generator that iterates batches, each represented as a tuple of lists

- ([inputs], [outputs], [weights])
3.17.15 GNNModular

class GNNModular(gnn_type: str = 'gin', num_layer: int = 3, emb_dim: int = 64, num_tasks: int = 1,
num_classes: int = 2, graph_pooling: str = 'mean', dropout: int = 0, jump_knowledge: str = 'last', task: str = 'edge_pred', mask_rate: float = 0.1, mask_edge: bool = True, context_size: int = 1, neighborhood_size: int = 3, context_mode: str = 'cbow', neg_samples: int = 1,
**kwargs)

Modular GNN which allows for easy swapping of GNN layers.

Parameters

- **gnn_type** (str) – The type of GNN layer to use. Must be one of “gin”, “gcn”, “graphsage”, or “gat”.
- **num_layer** (int) – The number of GNN layers to use.
- **emb_dim** (int) – The dimensionality of the node embeddings.
- **num_tasks** (int) – The number of tasks.
- **graph_pooling** (str) – The type of graph pooling to use. Must be one of “sum”, “mean”, “max”, “attention” or “set2set”. “sum” may cause issues with positive prediction loss.
- **dropout** (float, optional (default 0)) – The dropout probability.
- **jump_knowledge** (str, optional (default “last”)) – The type of jump knowledge to use. Must be one of “last”, “sum”, “max”, or “concat”. “last”: Use the node representation from the last GNN layer. “concat”: Concatenate the node representations from all GNN layers. This will increase the dimensionality of the node representations by a factor of `num_layer`. “max”: Take the element-wise maximum of the node representations from all GNN layers. “sum”: Take the element-wise sum of the node representations from all GNN layers. This may cause issues with positive prediction loss.
- **task** (str, optional (default “regression”)) – The type of task. Unsupervised tasks: edge_pred: Edge prediction. Predicts whether an edge exists between two nodes. mask_nodes: Masking nodes. Predicts the masked node. mask_edges: Masking edges. Predicts the masked edge. infomax: Infomax. Maximizes mutual information between local node representations and a pooled global graph representation. context_pred: Context prediction. Predicts the surrounding context of a node. Supervised tasks: “regression” or “classification”.
- **mask_rate** (float, optional (default 0.1)) – The rate at which to mask nodes or edges for mask_nodes and mask_edges tasks.
- **mask_edge** (bool, optional (default True)) – Whether to also mask connecting edges for mask_nodes tasks.
- **context_size** (int, optional (default 1)) – The size of the context to use for context prediction tasks.
- **neighborhood_size** (int, optional (default 3)) – The size of the neighborhood to use for context prediction tasks.
- **context_mode** (str, optional (default “cbow”)) – The context mode to use for context prediction tasks. Must be one of “cbow” or “skipgram”.
- **neg_samples** (int, optional (default 1)) – The number of negative samples to use for context prediction.
Examples

```python
>>> import numpy as np
>>> import deepchem as dc
>>> from deepchem.feat.molecule_featurizers import SNAPFeaturizer
>>> from deepchem.models.torch_models.gnn import GNNModular

>>> featurizer = SNAPFeaturizer()

>>> smiles = ['C1=CC=CC=C1', 'C1=CC=CC=C1C=O', 'C1=CC=CC=C1C(=O)O']

>>> features = featurizer.featurize(smiles)

>>> dataset = dc.data.NumpyDataset(features, np.zeros(len(features)))

>>> model = GNNModular(task='edge_pred')

>>> loss = model.fit(dataset, nb_epoch=1)
```

References

__init__(gnn_type: str = 'gin', num_layer: int = 3, emb_dim: int = 64, num_tasks: int = 1, num_classes: int = 2, graph_pooling: str = 'mean', dropout: int = 0, jump_knowledge: str = 'last', task: str = 'edge_pred', mask_rate: float = 0.1, mask_edge: bool = True, context_size: int = 1, neighborhood_size: int = 1, context_mode: str = 'cbow', neg_samples: int = 1, **kwargs)

Create a ModularTorchModel.

Parameters

- **model** ([`nn.Module`](#nn-module)) – The model to be trained.

- **components** ([dict](#dict)) – A dictionary of the components of the model. The keys are the names of the components and the values are the components themselves.

build_components()

Builds the components of the GNNModular model. It initializes the encoders, batch normalization layers, pooling layers, and head layers based on the provided configuration. The method returns a dictionary containing the following components:

- **node_type_embedding**: [torch.nn.Embedding](#torch-nn-embedding), an embedding layer for node types.

- **chirality_embedding**: [torch.nn.Embedding](#torch-nn-embedding), an embedding layer for chirality tags.

- **gconv**: [torch_geometric.nn.conv.MessagePassing](#torch-geometric-nn-conv-messagepassing), a list of graph convolutional layers (encoders) based on the specified GNN type (GIN, GCN, or GAT).

- **batch_norms**: [torch.nn.BatchNorm1d](#torch-nn-batchnorm1d), a list of batch normalization layers corresponding to each GNN layer.

- **pool**: [Union[function,torch_geometric.nn.aggr.Aggregation]](#torch-geometric-nn-aggr-aggregation), a pooling layer based on the specified graph pooling type (sum, mean, max, attention, or set2set).

- **head**: [nn.Linear](#nn-linear), a linear layer for the head of the model.

These components are then used to construct the GNN and GNN_head modules for the GNNModular model.

build_gnn(num_layer)

Build graph neural network encoding layers by specifying the number of GNN layers.

Parameters **num_layer** (int) – The number of GNN layers to be created.

Returns A tuple containing two ModuleLists: 1. encoders: A ModuleList of GNN layers (currently only GIN is supported). 2. batch_norms: A ModuleList of batch normalization layers corresponding to each GNN layer.
Return type tuple of (torch.nn.ModuleList, torch.nn.ModuleList)

`build_model()`
Builds the appropriate model based on the specified task.

For the edge prediction task, the model is simply the GNN module because it is an unsupervised task and does not require a prediction head.

Supervised tasks such as node classification and graph regression require a prediction head, so the model is a sequential module consisting of the GNN module followed by the GNN_head module.

`loss_func(inputs, labels, weights)`
The loss function executed in the training loop, which is based on the specified task.

`masked_node_loss_loader(inputs)`
Produces the loss between the predicted node features and the true node features for masked nodes. Set mask_edge to True to also predict the edge types for masked edges.

`masked_edge_loss_loader(inputs)`
Produces the loss between the predicted edge types and the true edge types for masked edges.

`infomax_loss_loader(inputs)`
Loss that maximizes mutual information between local node representations and a pooled global graph representation. The positive and negative scores represent the similarity between local node representations and global graph representations of similar and dissimilar graphs, respectively.

Parameters
`inputs` (`BatchedGraphData`) – BatchedGraphData object containing the node features, edge indices, and graph indices for the batch of graphs.

`context_pred_loss_loader(inputs)`
Loads the context prediction loss for the given input by taking the batched subgraph and context graphs and computing the context prediction loss for each subgraph and context graph pair.

Parameters
`inputs` (`tuple`) – A tuple containing the following elements: - `substruct_batch` (`BatchedGraphData`): Batched subgraph, or neighborhood, graphs. - `s_overlap` (`List[int]`): List of overlapping subgraph node indices between the subgraph and context graphs. - `context_graphs` (`BatchedGraphData`): Batched context graphs. - `c_overlap` (`List[int]`): List of overlapping context node indices between the subgraph and context graphs. - `overlap_size` (`List[int]`): List of the number of overlapping nodes between the subgraph and context graphs.

Returns
`context_pred_loss` – The context prediction loss

Return type torch.Tensor

This default generator is modified from the default generator in dc.models.tensorgraph.tensor_graph.py to support multitask classification. If the task is classification, the labels `y_b` are converted to a one-hot encoding and reshaped according to the number of tasks and classes.
3.17.16 InfoMax3DModular

InfoMax3DModular is a modular torch model that uses a 2D PNA model and a 3D Net3D model to maximize the mutual information between their representations. The 2D model can then be used for downstream tasks without the need for 3D coordinates. This is based off the work in [1].

This class expects data in featurized by the RDKitConformerFeaturizer. This featurizer produces features of the type `Array[Array[List[GraphData]]]`. The outermost array is the dataset array, the second array is the molecule, the list contains the conformers for that molecule and the GraphData object is the featurized graph for that conformer with node_pos_features holding the 3D coordinates. If you are not using RDKitConformerFeaturizer, your input data features should look like this: `Dataset[Molecule[Conformers[GraphData]]]`.

Parameters

- **hidden_dim** (`int`) – The dimension of the hidden layers.
- **target_dim** (`int`) – The dimension of the output layer.
- **readout_aggregators** (`List[str]`) – A list of aggregator functions for the readout layer. Options are ‘sum’, ‘max’, ‘min’, ‘mean’.
- **scalers** (`List[str]`) – A list of scaler functions for the PNA model. Options are ‘identity’, ‘amplification’, ‘attenuation’.
- **residual** (`bool`, optional (default=True)) – Whether to use residual connections in the PNA model.
- **node_wise_output_layers** (`int`, optional (default=2)) – The number of output layers for each node in the Net3D model.
- **pairwise_distances** (`bool`, optional (default=False)) – Whether to use pairwise distances in the PNA model.
- **activation** (`Union[Callable, str]`, optional (default=”relu”) – The activation function to use in the PNA model.
- **reduce_func** (`str`, optional (default='sum') – The reduce function to use for aggregating messages in the Net3D model.
- **batch_norm** (`bool`, optional (default=True)) – Whether to use batch normalization in the PNA model.
- **batch_norm_momentum** (`float`, optional (default=0.1)) – The momentum for the batch normalization layers.
- **propagation_depth** (`int`, optional (default=5)) – The number of propagation layers in the PNA and Net3D models.
- **dropout** (`float`, optional (default=0.0)) – The dropout rate for the layers in the PNA and Net3D models.
• **readout_layers** (*int, optional (default=2)*) – The number of readout layers in the PNA and Net3D models.

• **readout_hidden_dim** (*int, optional (default=2)*) – The dimension of the hidden layers in the readout network.

• **fourier_encodings** (*int, optional (default=4)*) – The number of Fourier encodings to use in the Net3D model.

• **update_net_layers** (*int, optional (default=2)*) – The number of update network layers in the Net3D model.

• **message_net_layers** (*int, optional (default=2)*) – The number of message network layers in the Net3D model.

• **use_node_features** (*bool, optional (default=False)*) – Whether to use node features as input in the Net3D model.

• **posttrans_layers** (*int, optional (default=1)*) – The number of post-transformation layers in the PNA model.

• **pretrans_layers** (*int, optional (default=1)*) – The number of pre-transformation layers in the PNA model.

• **kwargs** (*dict*) – Additional keyword arguments.

References

Examples

```python
>>> from deepchem.feat.graph_data import BatchGraphData
>>> from deepchem.feat.molecule_featurizers.conformer_featurizer import RDKitConformerFeaturizer
>>> from deepchem.models.torch_models.gnn3d import InfoMax3DModular
>>> import numpy as np
>>> import deepchem as dc
>>> from deepchem.data.datasets import NumpyDataset

>>> smiles = ['C[C@H](F)Cl', 'C[C@@H](F)Cl']

>>> featurizer = RDKitConformerFeaturizer(num_conformers=2)

>>> data = featurizer.featurize(smiles)

>>> dataset = NumpyDataset(X=data)

>>> model = InfoMax3DModular(hidden_dim=64,
...                          target_dim=10,
...                          aggregators=['max'],
...                          readout_aggregators=['mean'],
...                          scalers=['identity'])

>>> loss = model.fit(dataset, nb_epoch=1)
```

```python
```

Create a ModularTorchModel.
Parameters

- **model** (`nn.Module`) – The model to be trained.
- **components** (`dict`) – A dictionary of the components of the model. The keys are the names of the components and the values are the components themselves.

build_components()

Build the components of the InfoMax3DModular model.

Returns A dictionary containing the ‘2d’ PNA model and the ‘3d’ Net3D model.

Return type `dict`

build_model()

Build the InfoMax3DModular model. This is the 2D network which is meant to be used for inference.

Returns The 2D PNA model component.

Return type `PNA`

loss_func(inputs, labels, weights)

Compute the loss function for the InfoMax3DModular model.

Parameters

- **inputs** (`dgl.DGLGraph`) – The input graph with node features stored under the key ‘x’ and edge distances stored under the key ‘d’.
- **labels** (`torch.Tensor`) – The ground truth labels.
- **weights** (`torch.Tensor`) – The weights for each sample.

Returns The computed loss value.

Return type `torch.Tensor`

3.17.17 LCNNModel

class LCNNModel

Lattice Convolutional Neural Network (LCNN). Here is a simple example of code that uses the LCNNModel with Platinum 2d Adsorption dataset.

This model takes arbitrary configurations of Molecules on an adsorbate and predicts their formation energy. These formation energies are found using DFT calculations and LCNNModel is to automate that process. This model defines a crystal graph using the distance between atoms. The crystal graph is an undirected regular graph (equal neighbours) and different permutations of the neighbours are pre-computed using the LCNNFeaturizer. On each node for each permutation, the neighbour nodes are concatenated which are further operated. This model has only a node representation. Please confirm the detail algorithms from [1].
Examples

```python
>>> import deepchem as dc
>>> from pymatgen.core import Structure
>>> import numpy as np
>>> from deepchem.feat import LCNNFeaturizer
>>> from deepchem.molnet import load_Platinum_Adsorption

PRIMITIVE_CELL = {
    "lattice": [[2.818528, 0.0, 0.0], [-1.409264, 2.440917, 0.0], [0.0, 0.0, 25.508255]],
    "coords": [[[0.66667, 0.33333, 0.090221], [0.33333, 0.66667, 0.18043936], [0.0, 0.0, 0.27065772], [0.66667, 0.33333, 0.36087608], [0.33333, 0.66667, 0.45109444], [0.0, 0.0, 0.49656991]],
    "species": ["H", "H", "H", "H", "He"],
    "site_properties": {"SiteTypes": ["S1", "S1", "S1", "S1", "S1", "A1"]}
}

PRIMITIVE_CELL_INF0 = {
    "cutoff": np.around(6.00),
    "structure": Structure(**PRIMITIVE_CELL),
    "aos": [1, 0, 2],
    "pbc": [True, True, False],
    "ns": 1,
    "na": 1
}

tasks, datasets, transformers = load_Platinum_Adsorption(
    featurizer=LCNNFeaturizer(**PRIMITIVE_CELL_INF0)
)

train, val, test = datasets

model = LCNNModel(mode='regression',
    batch_size=8,
    learning_rate=0.001)

model = LCNN()

out = model(lcnn_feat)

model.fit(train, nb_epoch=10)
```

References

Notes

This class requires DGL and PyTorch to be installed.

```
__init__ (n_occupancy: int = 3, n_neighbor_sites_list: int = 19, n_permutation_list: int = 6, n_task: int = 1,
    dropout_rate: float = 0.4, n_conv: int = 2, n_features: int = 44, sitewise_n_feature: int = 25,
    **kwargs)
```

This class accepts all the keyword arguments from TorchModel.

Parameters

- **n_occupancy** (int, default 3) – number of possible occupancy.
• **n_neighbor_sites_list** *(int, default 19)* – Number of neighbors of each site.

• **n_permutation** *(int, default 6)* – Diffrent permutations taken along different directions.

• **n_task** *(int, default 1)* – Number of tasks.

• **dropout_rate** *(float, default 0.4)* – p value for dropout between 0.0 to 1.0

• **nconv** *(int, default 2)* – number of convolutions performed.

• **n_feature** *(int, default 44)* – number of feature for each site.

• **sitewise_n_feature** *(int, default 25)* – number of features for atoms for site-wise activation.

• **kwargs** *(Dict)* – This class accepts all the keyword arguments from TorchModel.

3.17.18 MEGNetModel

class MEGNetModel(*n_node_features: int = 32, n_edge_features: int = 32, n_global_features: int = 32, n_blocks: int = 1, is_undirected: bool = True, residual_connection: bool = True, mode: str = 'regression', n_classes: int = 2, n_tasks: int = 1, **kwargs)*

MatErials Graph Network for Molecules and Crystals

MatErials Graph Network [1] are Graph Networks [2] which are used for property prediction in molecules and crystals. The model implements multiple layers of Graph Network as MEGNetBlocks and then combines the node properties and edge properties of all nodes and edges via a Set2Set layer. The combines information is used with the global features of the material/molecule for property prediction tasks.

Example

```python
>>> import deepchem as dc
>>> from deepchem.models import MEGNetModel
>>> from deepchem.utils.fake_data_generator import FakeGraphGenerator as FGG
>>> graphs = FGG(global_features=4, num_classes=10).sample(n_graphs=20)
>>> model = dc.models.MEGNetModel(n_node_features=5, n_edge_features=3, n_global_features=4, n_blocks=3, is_undirected=True, residual_connection=True, mode='classification', n_classes=10, batch_size=16)
>>> training_loss = model.fit(graphs)
```

References

Note: The model requires PyTorch-Geometric to be installed.

__init__(*n_node_features: int = 32, n_edge_features: int = 32, n_global_features: int = 32, n_blocks: int = 1, is_undirected: bool = True, residual_connection: bool = True, mode: str = 'regression', n_classes: int = 2, n_tasks: int = 1, **kwargs)

Parameters

• **n_node_features** *(int)* – Number of features in a node

• **n_edge_features** *(int)* – Number of features in a edge
• **n_global_features** (int) – Number of global features

• **n_blocks** (int) – Number of GraphNetworks block to use in update

• **is_undirected** (bool, optional (default True)) – True when the model is used on undirected graphs otherwise false

• **residual_connection** (bool, optional (default True)) – If True, the layer uses a residual connection during training

• **n_tasks** (int, default 1) – The number of tasks

• **mode** (str, default ‘regression’) – The model type - classification or regression

• **n_classes** (int, default 2) – The number of classes to predict (used only in classification mode).

• **kwargs** (Dict) – kwargs supported by TorchModel

3.17.19 MATModel

```python
class MATModel(dist_kernel: str = 'softmax', n_encoders=8, lambda_attention: float = 0.33, lambda_distance: float = 0.33, h: int = 16, sa_hsize: int = 1024, sa_dropout_p: float = 0.0, output_bias: bool = True, d_input: int = 1024, d_hidden: int = 1024, d_output: int = 1024, activation: str = 'leakyrelu', n_layers: int = 1, ff_dropout_p: float = 0.0, encoder_hsize: int = 1024, encoder_dropout_p: float = 0.0, embed_input_hsize: int = 36, embed_dropout_p: float = 0.0, gen_aggregation_type: str = 'mean', gen_dropout_p: float = 0.0, gen_n_layers: int = 1, gen_attn_hidden: int = 128, gen_attn_out: int = 4, gen_d_output: int = 1, **kwargs)
```

Molecular Attention Transformer.

This class implements the Molecular Attention Transformer [1]. The MATFeaturizer (deepchem.feat.MATFeaturizer) is intended to work with this class. The model takes a batch of MATEncodings (from MATFeaturizer) as input, and returns an array of size N x 1, where N is the number of molecules in the batch. Each molecule is broken down into its Node Features matrix, adjacency matrix and distance matrix. A mask tensor is calculated for the batch. All of this goes as input to the MATEmbedding, MATEncoder and MATEncoderGenerator layers, which are defined in deepchem.models.torch_models.layers.py

Currently, MATModel is intended to be a regression model for the freesolv dataset.

References

Examples

```python
>>> import deepchem as dc
>>> import pandas as pd
>>> smiles = ['CC', 'CCC', 'CCCC', 'CCCCC', 'CCCCCCC']
>>> vals = [1.35, 6.72, 5.67, 1.23, 1.76]
>>> df = pd.DataFrame(list(zip(smiles, vals)), columns = ['smiles', 'y'])
>>> loader = dc.data.CSVLoader(tasks=['y'], feature_field='smiles', featurizer=dc.feat.MATFeaturizer())
>>> df.to_csv('test.csv')
>>> dataset = loader.create_dataset('test.csv')
>>> model = dc.models.torch_models.MATModel(batch_size = 2)
>>> out = model.fit(dataset, nb_epoch = 1)
```
The wrapper class for the Molecular Attention Transformer.

Since we are using a custom data class as input (MATEncoding), we have overridden the default_generator function from DiskDataset and customized it to work with a batch of MATEncoding classes.

Parameters

- `dist_kernel (str)` – Kernel activation to be used. Can be either ‘softmax’ for softmax or ‘exp’ for exponential, for the self-attention layer.
- `n_encoders (int)` – Number of encoder layers in the encoder block.
- `lambda_attention (float)` – Constant to be multiplied with the attention matrix in the self-attention layer.
- `lambda_distance (float)` – Constant to be multiplied with the distance matrix in the self-attention layer.
- `h (int)` – Number of attention heads for the self-attention layer.
- `sa_hsize (int)` – Size of dense layer in the self-attention layer.
- `sa_dropout_p (float)` – Dropout probability for the self-attention layer.
- `output_bias (bool)` – If True, dense layers will use bias vectors in the self-attention layer.
- `d_input (int)` – Size of input layer in the feed-forward layer.
- `d_hidden (int)` – Size of hidden layer in the feed-forward layer. Will also be used as d_output for the MATEmbedding layer.
- `d_output (int)` – Size of output layer in the feed-forward layer.
- `activation (str)` – Activation function to be used in the feed-forward layer. Can choose between ‘relu’ for ReLU, ‘leakyrelu’ for LeakyReLU, ‘prelu’ for PReLU, ‘tanh’ for TanH, ‘elu’ for ELU and ‘linear’ for linear activation.
- `n_layers (int)` – Number of layers in the feed-forward layer.
- `ff_dropout_p (float)` – Dropout probability in the feed-forward layer.
- `encoder_hsize (int)` – Size of Dense layer for the encoder itself.
- `encoder_dropout_p (float)` – Dropout probability for connections in the encoder layer.
- `embed_input_hsize (int)` – Size of input layer for the MATEmbedding layer.
- `embed_dropout_p (float)` – Dropout probability for the MATEmbedding layer.
- `gen_aggregation_type (str)` – Type of aggregation to be used. Can be ‘grover’, ‘mean’ or ‘contextual’.
- `gen_dropout_p (float)` – Dropout probability for the MATGenerator layer.
- `gen_n_layers (int)` – Number of layers in MATGenerator.
- `gen_attn_hidden (int)` – Size of hidden attention layer in the MATGenerator layer.
- `gen_attn_out (int)` – Size of output attention layer in the MATGenerator layer.
- **gen_d_output** *(int)* – Size of output layer in the MATGenerator layer.

 pad_array*(array: numpy.ndarray, shape: Any)* → numpy.ndarray

 Pads an array to the desired shape.

 Parameters

 - **array** *(np.ndarray)* –
 - **padded** *(Array to be)* –
 - **shape** *(int or Tuple)* –
 - **to** *(Shape the array is padded)* –

 Returns

 - **array** *(np.ndarray)*
 - Array padded to input shape.

 pad_sequence*(sequence: numpy.ndarray)* → numpy.ndarray

 Pads a given sequence using the pad_array function.

 Parameters

 - **sequence** *(np.ndarray)* –
 - **sequence** *(Arrays in this sequence are padded to the largest shape in the)* –

 Returns

 - **array** *(np.ndarray)*
 - Sequence with padded arrays.

 default_generator*(dataset, epochs=1, mode='fit', deterministic=True, pad_batches=True, **kwargs)*

 Create a generator that iterates batches for a dataset.

 Subclasses may override this method to customize how model inputs are generated from the data.

 Parameters

 - **dataset** *(Dataset)* – the data to iterate
 - **epochs** *(int)* – the number of times to iterate over the full dataset
 - **mode** *(str)* – allowed values are ‘fit’ (called during training), ‘predict’ (called during prediction), and ‘uncertainty’ (called during uncertainty prediction)
 - **deterministic** *(bool)* – whether to iterate over the dataset in order, or randomly shuffle the data for each epoch
 - **pad_batches** *(bool)* – whether to pad each batch up to this model’s preferred batch size

 Returns

 - a generator that iterates batches, each represented as a tuple of lists
 - *((inputs), (outputs), (weights))*

3.17.20 NormalizingFlowModel

class NormalizingFlow(transform: Sequence, base_distribution, dim: int)

Normalizing flows are widely used to perform generative models. This algorithm gives advantages over variational autoencoders (VAE) because of ease in sampling by applying invertible transformations (Frey, Gadepally, & Ramsundar, 2022).

Example

```python
>>> import deepchem as dc
>>> from deepchem.models.torch_models.layers import Affine
>>> from deepchem.models.torch_models.normalizing_flows_pytorch import NormalizingFlow
>>> import torch
>>> from torch.distributions import MultivariateNormal

>>> # initialize the transformation layer's parameters
>>> dim = 2
>>> samples = 96
>>> transforms = [Affine(dim)]
>>> distribution = MultivariateNormal(torch.zeros(dim), torch.eye(dim))

>>> # initialize normalizing flow model
>>> model = NormalizingFlow(transforms, distribution, dim)

>>> # evaluate the log_prob when applying the transformation layers
>>> input = distribution.sample(torch.Size((samples, dim)))
>>> len(model.log_prob(input))
96

>>> # evaluates the the sampling method and its log_prob
>>> len(model.sample(samples))
2
```

3.17.21 DMPNNModel

class DMPNNModel(mode: str = 'regression', n_classes: int = 3, n_tasks: int = 1, batch_size: int = 1, global_features_size: int = 0, use_default_fdim: bool = True, atom_fdim: int = 133, bond_fdim: int = 14, enc_hidden: int = 300, depth: int = 3, bias: bool = False, enc_activation: str = 'relu', enc_dropout_p: float = 0.0, aggregation: str = 'mean', aggregation_norm: Union[int, float] = 100, ffn_hidden: int = 300, ffn_activation: str = 'relu', ffn_layers: int = 3, ffn_dropout_p: float = 0.0, ffn_dropout_at_input_no_act: bool = True, **kwargs)

Directed Message Passing Neural Network

This class implements the Directed Message Passing Neural Network (D-MPNN) [1].

The DMPNN model has 2 phases, message-passing phase and read-out phase.

- The goal of the message-passing phase is to generate ‘hidden states of all the atoms in the molecule’ using encoders.
- Next in read-out phase, the features are passed into feed-forward neural network to get the task-based prediction.

For additional information:

- Mapper class
• Encoder layer class
• Feed-Forward class

Example

```python
>>> import deepchem as dc
>>> import os

>>> model_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
>>> input_file = os.path.join(model_dir, 'tests/assets/freesolv_sample_5.csv')
>>> loader = dc.data.CSVLoader(tasks=['y'], feature_field='smiles', featurizer=dc.feat.DMPNNFeaturizer())
>>> dataset = loader.create_dataset(input_file)
>>> model = DMPNNModel()
>>> out = model.fit(dataset, nb_epoch=1)
```

References

```
__init__(mode: str = 'regression', n_classes: int = 3, n_tasks: int = 1, batch_size: int = 1,
global_features_size: int = 0, use_default_fdim: bool = True, atom_fdim: int = 133, bond_fdim:
int = 14, enc_hidden: int = 300, depth: int = 3, bias: bool = False, enc_activation: str = 'relu',
enc_dropout_p: float = 0.0, aggregation: str = 'mean', aggregation_norm: Union[int, float] = 100,
ffn_hidden: int = 300, ffn_activation: str = 'relu', ffn_layers: int = 3, ffn_dropout_p: float = 0.0,
ffn_dropout_at_input_no_act: bool = True, **kwargs)
```

Initialize the DMPNNModel class.

Parameters

• `mode` (str, default 'regression') – The model type - classification or regression.

• `n_classes` (int, default 3) – The number of classes to predict (used only in classification mode).

• `n_tasks` (int, default 1) – The number of tasks.

• `batch_size` (int, default 1) – The number of datapoints in a batch.

• `global_features_size` (int, default 0) – Size of the global features vector, based on the global featurizers used during featurization.

• `use_default_fdim` (bool) – If True, self.atom_fdim and self.bond_fdim are initialized using values from the GraphConvConstants class. If False, self.atom_fdim and self.bond_fdim are initialized from the values provided.

• `atom_fdim` (int) – Dimension of atom feature vector.

• `bond_fdim` (int) – Dimension of bond feature vector.

• `enc_hidden` (int) – Size of hidden layer in the encoder layer.

• `depth` (int) – No of message passing steps.

• `bias` (bool) – If True, dense layers will use bias vectors.

• `enc_activation` (str) – Activation function to be used in the encoder layer. Can choose between 'relu' for ReLU, 'leakyrelu' for LeakyReLU, 'prelu' for PReLU, 'tanh' for TanH, 'selu' for SELU, and 'elu' for ELU.

• `enc_dropout_p` (float) – Dropout probability for the encoder layer.
- **aggregation** *(str)* – Aggregation type to be used in the encoder layer. Can choose between ‘mean’, ‘sum’, and ‘norm’.
- **aggregation_norm** *(Union[int, float]*) – Value required if *aggregation* type is ‘norm’.
- **ffn_hidden** *(int)* – Size of hidden layer in the feed-forward network layer.
- **ffn_activation** *(str)* – Activation function to be used in feed-forward network layer. Can choose between ‘relu’ for ReLU, ‘leakyrelu’ for LeakyReLU, ‘prelu’ for PReLU, ‘tanh’ for TanH, ‘selu’ for SELU, and ‘elu’ for ELU.
- **ffn_layers** *(int)* – Number of layers in the feed-forward network layer.
- **ffn_dropout_p** *(float)* – Dropout probability for the feed-forward network layer.
- **ffn_dropout_at_input_no_act** *(bool)* – If true, dropout is applied on the input tensor. For single layer, it is not passed to an activation function.
- **kwargs** *(Dict)* – kwargs supported by TorchModel

default_generator *(dataset: deepchem.data.datasets.Dataset, epochs: int = 1, mode: str = 'fit', deterministic: bool = True, pad_batches: bool = False, **kwargs) → Iterable[Tuple[List, List, List]]*

Create a generator that iterates batches for a dataset.

Overrides the existing *default_generator* method to customize how model inputs are generated from the data.

Here, the _MapperDMPNN helper class is used, for each molecule in a batch, to get required input parameters:

- atom_features
- f_ini_atoms_bonds
- atom_to_incoming_bonds
- mapping
- global_features

Then data from each molecule is converted to a _ModData object and stored as list of graphs. The graphs are modified such that all tensors have same size in 0th dimension. (important requirement for batching)

Parameters

- **dataset** *(Dataset)* – the data to iterate
- **epochs** *(int)* – the number of times to iterate over the full dataset
- **mode** *(str)* – allowed values are ‘fit’ (called during training), ‘predict’ (called during prediction), and ‘uncertainty’ (called during uncertainty prediction)
- **deterministic** *(bool)* – whether to iterate over the dataset in order, or randomly shuffle the data for each epoch
- **pad_batches** *(bool)* – whether to pad each batch up to this model’s preferred batch size

Returns

- a generator that iterates batches, each represented as a tuple of lists
 - ([inputs], [outputs], [weights])
- Here, [inputs] is list of graphs.
3.17.22 GroverModel

class GroverModel
(node_fdim: int, edge_fdim: int, atom_vocab:
deepchem.feat.vocabulary_builders.grover_vocab.GroverAtomVocabularyBuilder,
bond_vocab:
deepchem.feat.vocabulary_builders.grover_vocab.GroverBondVocabularyBuilder,
hidden_size: int, self_attention=False, features_only=False, functional_group_size: int = 85,
features_dim=128, dropout=0.2, activation='relu', task='pretraining', ffn_num_layers=1,
mode: Optional[str] = None, model_dir=None, n_tasks: int = 1, n_classes: Optional[int] =
None, **kwargs)

GROVER model

The GROVER model employs a self-supervised message passing transformer architecture for learning molecular representation. The pretraining task can learn rich structural and semantic information of molecules from unlabelled molecular data, which can be leveraged by finetuning for downstream applications. To this end, GROVER integrates message passing networks into a transformer style architecture.

Parameters

- **node_fdim** (int) – the dimension of additional feature for node/atom.
- **edge_fdim** (int) – the dimension of additional feature for edge/bond.
- **atom_vocab** (GroverAtomVocabularyBuilder) – Grover atom vocabulary builder required during pretraining.
- **bond_vocab** (GroverBondVocabularyBuilder) – Grover bond vocabulary builder required during pretraining.
- **hidden_size** (int) – Size of hidden layers
- **features_only** (bool) – Uses only additional features in the feed-forward network, no graph network
- **self_attention** (bool, default False) – When set to True, a self-attention layer is used during graph readout operation.
- **functional_group_size** (int (default: 85)) – Size of functional group used in grover.
- **features_dim** (int) – Size of additional molecular features, like fingerprints.
- **ffn_num_layers** (int (default: 1)) – Number of linear layers to use for feature extraction from embeddings
- **task** (str (pretraining or finetuning)) – Pretraining or finetuning tasks.
- **mode** (str (classification or regression)) – Training mode (used only for finetuning)
- **n_tasks** (int, optional (default: 1)) – Number of tasks
- **n_classes** (int, optional (default: 2)) – Number of target classes in classification mode
- **model_dir** (str) – Directory to save model checkpoints
- **dropout** (float, optional (default: 0.2)) – dropout value
- **activation** (str, optional (default: 'relu') – supported activation function
Example

```python
>>> import deepchem as dc
>>> from deepchem.models.torch_models.grover import GroverModel
>>> from deepchem.feat.vocabulary_builders import (GroverAtomVocabularyBuilder,
   GroverBondVocabularyBuilder)
>>> import pandas as pd
>>> import os
>>> import tempfile

>>> tmpdir = tempfile.mkdtemp()
>>> df = pd.DataFrame(
    {'smiles': ['CC', 'CCC'], 'preds': [0, 0]})
>>> filepath = os.path.join(tmpdir, 'example.csv')
>>> df.to_csv(filepath, index=False)
>>> dataset_path = os.path.join(filepath)
>>> loader = dc.data.CSVLoader(tasks=['preds'], featurizer=dc.feat.DummyFeaturizer(),
   feature_field='smiles')
>>> dataset = loader.create_dataset(filepath)
>>> av = GroverAtomVocabularyBuilder()
>>> av.build(dataset)
>>> bv = GroverBondVocabularyBuilder()
>>> bv.build(dataset)
>>> fg = dc.feat.CircularFingerprint()
>>> loader2 = dc.data.CSVLoader(tasks=['preds'], featurizer=dc.feat.GroverFeaturizer(
   features_generator=fg), feature_field='smiles')
>>> graph_data = loader2.create_dataset(filepath)
>>> model = GroverModel(node_fdim=151, edge_fdim=165, atom_vocab=av, bond_vocab=bv,
   features_dim=2048, hidden_size=128, functional_group_size=85, mode='regression',
   task='finetuning', model_dir='gm')
>>> loss = model.fit(graph_data, nb_epoch=1)
```

```python
```

Create a ModularTorchModel.

Parameters

- `model (nn.Module)` – The model to be trained.
- `components (dict)` – A dictionary of the components of the model. The keys are the names of the components and the values are the components themselves.

build_components()

Builds components for grover pretraining and finetuning model.
Table 5: Components of pretraining model

<table>
<thead>
<tr>
<th>Component name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>embedding</td>
<td>Graph message passing network</td>
<td>A layer which accepts a molecular graph and produces an embedding for grover pretraining task</td>
</tr>
<tr>
<td>atom_vocab_task_atom</td>
<td>Feed forward layer</td>
<td>A layer which accepts an embedding generated from atom hidden states and predicts atom vocabulary for grover pretraining task</td>
</tr>
<tr>
<td>atom_vocab_task_bond</td>
<td>Feed forward layer</td>
<td>A layer which accepts an embedding generated from bond hidden states and predicts atom vocabulary for grover pretraining task</td>
</tr>
<tr>
<td>bond_vocab_task_atom</td>
<td>Feed forward layer</td>
<td>A layer which accepts an embedding generated from atom hidden states and predicts bond vocabulary for grover pretraining task</td>
</tr>
<tr>
<td>bond_vocab_task_bond</td>
<td>Feed forward layer</td>
<td>A layer which accepts an embedding generated from bond hidden states and predicts bond vocabulary for grover pretraining task</td>
</tr>
<tr>
<td>functional_group_predictor</td>
<td>Feed forward layer</td>
<td>A layer which accepts an embedding generated from a graph readout and predicts functional group for grover pretraining task</td>
</tr>
</tbody>
</table>

Table 6: Components of finetuning model

<table>
<thead>
<tr>
<th>Component name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>embedding</td>
<td>Graph message passing network</td>
<td>An embedding layer to generate embedding from input molecular graph</td>
</tr>
<tr>
<td>readout</td>
<td>Feed forward layer</td>
<td>A readout layer to perform readout atom and bond hidden states</td>
</tr>
<tr>
<td>mol_atom_from_atom_ffn</td>
<td>Feed forward layer</td>
<td>A feed forward network which learns representation from atom messages generated via atom hidden states of a molecular graph</td>
</tr>
<tr>
<td>mol_atom_from_bond_ffn</td>
<td>Feed forward layer</td>
<td>A feed forward network which learns representation from atom messages generated via bond hidden states of a molecular graph</td>
</tr>
</tbody>
</table>

build_model()

Builds grover pretrain or finetune model based on task

get_loss_func()

Returns loss function based on task

loss_func(inputs, labels, weights)

Returns loss function which performs forward iteration based on task type

static atom_vocab_random_mask(atom_vocab:
 deepchem.feat.vocabulary_builders.grover_vocab.GroverAtomVocabularyBuilder,
 smiles: List[str]) → List[int]

Random masking of atom labels from vocabulary

For every atom in the list of SMILES string, the algorithm fetches the atoms context (vocab label) from the vocabulary provided and returns the vocabulary labels with a random masking (probability of masking = 0.15).

Parameters

- atom_vocab (GroverAtomVocabularyBuilder) – atom vocabulary
- **smiles** (*List*[str]) – a list of smiles string

Returns
atom vocab label – atom vocab label with random masking

Return type
List[int]

Example

```python
>>> import deepchem as dc
>>> from deepchem.models.torch_models.grover import GroverModel
>>> from deepchem.feat.vocabulary_builders import GroverAtomVocabularyBuilder
>>> smiles = np.array(['CC', 'CCC'])
>>> dataset = dc.data.NumpyDataset(X=smiles)
>>> atom_vocab = GroverAtomVocabularyBuilder()
>>> atom_vocab.build(dataset)
>>> vocab_labels = GroverModel.atom_vocab_random_mask(atom_vocab, smiles)
```

static bond_vocab_random_mask

```python
```

Random masking of bond labels from bond vocabulary

For every bond in the list of SMILES string, the algorithm fetches the bond context (vocab label) from the vocabulary provided and returns the vocabulary labels with a random masking (probability of masking = 0.15).

Parameters

- **bond_vocab** (*GroverBondVocabularyBuilder*) – bond vocabulary
- **smiles** (*List*[str]) – a list of smiles string

Returns
atom vocab label – bond vocab label with random masking

Return type
List[int]

Example

```python
>>> import deepchem as dc
>>> from deepchem.models.torch_models.grover import GroverModel
>>> from deepchem.feat.vocabulary_builders import GroverBondVocabularyBuilder
>>> smiles = np.array(['CC', 'CCC'])
>>> dataset = dc.data.NumpyDataset(X=smiles)
>>> bond_vocab = GroverBondVocabularyBuilder()
>>> bond_vocab.build(dataset)
>>> vocab_labels = GroverModel.bond_vocab_random_mask(bond_vocab, smiles)
```

restore

```python
def restore(checkpoint: Optional[str] = None, model_dir: Optional[str] = None) -> None
```

Reload the values of all variables from a checkpoint file.

Parameters

- **checkpoint** (*str*) – the path to the checkpoint file to load. If this is None, the most recent checkpoint will be chosen automatically. Call get_checkpoints() to get a list of all available checkpoints.
• **model_dir** *(str, *default* *None*) – Directory to restore checkpoint from. If None, use self.model_dir. If checkpoint is not None, this is ignored.

3.17.23 Density Functional Theory Model - XCMModel

class **XCMModel** *(xcstr: str, nnmodel: Optional[torch.nn.modules.module.Module] = None, input_size: int = 2, hidden_size: int = 10, n_layers: int = 1, modeltype: int = 1, n_tasks: int = 0, log_frequency: int = 0, mode: str = 'classification', device: Optional[torch.device] = None, **kwargs)*

This class is used to initialize and run Differentiable Quantum Chemistry (i.e., DFT) calculations, using an exchange correlation functional that has been replaced by a neural network. This model is based on the paper “Learning the exchange-correlation functional from nature with fully differentiable density functional theory.” and is listed below for reference.

To read more about Density Functional Theory and the exchange correlation functional please check the references below.

Examples

```python
>>> from deepchem.models.dft.dftxc import XCMModel
>>> from deepchem.data.data_loader import DFTYamlLoader
>>> inputs = 'deepchem/models/tests/assets/test_dftxcdata.yaml'
>>> data = DFTYamlLoader()
>>> dataset = data.create_dataset(inputs)
>>> dataset.get_shape()
>>> model = XCMModel("lda_x", batch_size=1)
>>> loss = model.fit(dataset, nb_epoch=1, checkpoint_interval=1)
```

Notes

There are 4 types of DFT data object implementations that are used to determine the type of calculation to be carried out on the entry object. These types are: “ae”, “ie”, “dm”, “dens”, that stand for atomization energy, ionization energy, density matrix and density profile respectively. The entry type “Density Matrix” cannot be used on model.evaluate as of now. To run predictions on this data type, a dataset containing only “dm” entries must be used.

References

https://github.com/deepchem/deepchem/blob/3f06168a6c9c16fd90cde7f5246b94f484ea3890/deepchem/models/dft/nnxc.py


```
__init__ *(xcstr: str, nnmodel: Optional[torch.nn.modules.module.Module] = None, input_size: int = 2, hidden_size: int = 10, n_layers: int = 1, modeltype: int = 1, n_tasks: int = 0, log_frequency: int = 0, mode: str = 'classification', device: Optional[torch.device] = None, **kwargs)* → None
```

Parameters

- **xcstr** *(str)* – The choice of xc to use.
- **nnmodel** *(torch.nn.Module)* – the PyTorch model implementing the calculation
• **input_size** *(int)* – size of neural network input

• **hidden_size** *(int)* – size of the hidden layers; the number of hidden layers is fixed in the default method.

• **n_layers** *(int)* – number of layers in the neural network

• **modeltype** *(int)* – model type 2 includes an activation layer whereas type 1 does not.

3.18 PyTorch Lightning Models

DeepChem supports the use of PyTorch-Lightning to build PyTorch models.

3.18.1 DCLightningModule

You can wrap an arbitrary TorchModel in a DCLightningModule object.

```python
class DCLightningModule(dc_model)
    DeepChem Lightning Module to be used with Lightning trainer.
    
    TODO: Add dataloader, example code and fit, once datasetmodule is ready. The lightning module is a wrapper over deepchem's torch model. This module directly works with pytorch lightning trainer which runs training for multiple epochs and also is responsible for setting up and training models on multiple GPUs.  
```

Notes

This class requires PyTorch to be installed.

```python
__init__(dc_model)
Create a new DCLightningModule.
```

Parameters

- **dc_model** *(deepchem.models.torch_models.torch_model.TorchModel)* – TorchModel to be wrapped inside the lightning module.

```python
configure_optimizers()
Choose what optimizers and learning-rate schedulers to use in your optimization. Normally you’d need one. But in the case of GANs or similar you might have multiple.
```

Returns

Any of these 6 options.

- **Single optimizer**.

- **List or Tuple** of optimizers.

- **Two lists** - The first list has multiple optimizers, and the second has multiple LR schedulers (or multiple lr_scheduler_config).

- **Dictionary**, with an "optimizer" key, and (optionally) a "lr_scheduler" key whose value is a single LR scheduler or lr_scheduler_config.

- **Tuple of dictionaries** as described above, with an optional "frequency" key.

- **None** - Fit will run without any optimizer.
The `lr_scheduler_config` is a dictionary which contains the scheduler and its associated configuration. The default configuration is shown below.

```python
lr_scheduler_config = {
    # REQUIRED: The scheduler instance
    "scheduler": lr_scheduler,
    # The unit of the scheduler's step size, could also be 'step'.
    # 'epoch' updates the scheduler on epoch end whereas 'step' updates it after a optimizer update.
    "interval": "epoch",
    # How many epochs/steps should pass between calls to `scheduler.step()`. 1 corresponds to updating the learning rate after every epoch/step.
    "frequency": 1,
    # Metric to to monitor for schedulers like `ReduceLROnPlateau`
    "monitor": "val_loss",
    # If set to 'True', will enforce that the value specified 'monitor'
    # is available when the scheduler is updated, thus stopping training if not found. If set to 'False', it will only produce a warning
    "strict": True,
    # If using the `LearningRateMonitor` callback to monitor the
    # learning rate progress, this keyword can be used to specify
    # a custom logged name
    "name": None,
}
```

When there are schedulers in which the `.step()` method is conditioned on a value, such as the `torch.optim.lr_scheduler.ReduceLROnPlateau` scheduler, Lightning requires that the `lr_scheduler_config` contains the keyword "monitor" set to the metric name that the scheduler should be conditioned on.

```python
# The ReduceLROnPlateau scheduler requires a monitor
def configure_optimizers(self):
    optimizer = Adam(...)  
    return {
        "optimizer": optimizer,
        "lr_scheduler": {
            "scheduler": ReduceLROnPlateau(optimizer, ...),
            "monitor": "metric_to_track",
            "frequency": "indicates how often the metric is updated"
        },
    }

# In the case of two optimizers, only one using the ReduceLROnPlateau scheduler
def configure_optimizers(self):
    optimizer1 = Adam(...)  
    optimizer2 = SGD(...)  
    scheduler1 = ReduceLROnPlateau(optimizer1, ...)  
    scheduler2 = LambdaLR(optimizer2, ...)
    return (  
```

(continues on next page)
{
 "optimizer": optimizer1,
 "lr_scheduler": {
 "scheduler": scheduler1,
 "monitor": "metric_to_track",
 },
},
{"optimizer": optimizer2, "lr_scheduler": scheduler2},

Metrics can be made available to monitor by simply logging it using `self.log('metric_to_track', metric_val)` in your `LightningModule`.

Note: The `frequency` value specified in a dict along with the `optimizer` key is an int corresponding to the number of sequential batches optimized with the specific optimizer. It should be given to none or to all of the optimizers. There is a difference between passing multiple optimizers in a list, and passing multiple optimizers in dictionaries with a frequency of 1:

- In the former case, all optimizers will operate on the given batch in each optimization step.
- In the latter, only one optimizer will operate on the given batch at every step.

This is different from the `frequency` value specified in the `lr_scheduler_config` mentioned above.

```python
def configure_optimizers(self):
    optimizer_one = torch.optim.SGD(self.model.parameters(), lr=0.01)
    optimizer_two = torch.optim.SGD(self.model.parameters(), lr=0.01)
    return [
        {"optimizer": optimizer_one, "frequency": 5},
        {"optimizer": optimizer_two, "frequency": 10},
    ]
```

In this example, the first optimizer will be used for the first 5 steps, the second optimizer for the next 10 steps and that cycle will continue. If an LR scheduler is specified for an optimizer using the `lr_scheduler` key in the above dict, the scheduler will only be updated when its optimizer is being used.

Examples:

```python
# most cases. no learning rate scheduler
def configure_optimizers(self):
    return Adam(self.parameters(), lr=1e-3)

# multiple optimizer case (e.g.: GAN)
def configure_optimizers(self):
    gen_opt = Adam(self.model_gen.parameters(), lr=0.01)
    dis_opt = Adam(self.model_dis.parameters(), lr=0.02)
    return gen_opt, dis_opt

# example with learning rate schedulers
def configure_optimizers(self):
    gen_opt = Adam(self.model_gen.parameters(), lr=0.01)
    dis_opt = Adam(self.model_dis.parameters(), lr=0.02)
    dis_sch = CosineAnnealing(dis_opt, T_max=10)
```

(continues on next page)
def configure_optimizers(self):
 gen_opt = Adam(self.model_gen.parameters(), lr=0.01)
 dis_opt = Adam(self.model_dis.parameters(), lr=0.02)
 gen_sch = {
 'scheduler': ExponentialLR(gen_opt, 0.99),
 'interval': 'step' # called after each training step
 }
 dis_sch = CosineAnnealing(dis_opt, T_max=10) # called every epoch
 return [gen_opt, dis_opt], [gen_sch, dis_sch]

Note: Some things to know:

- Lightning calls .backward() and .step() on each optimizer and learning rate scheduler as needed.
- If you use 16-bit precision (precision=16), Lightning will automatically handle the optimizers.
- If you use multiple optimizers, training_step() will have an additional optimizer_idx parameter.
- If you use torch.optim.LBFGS, Lightning handles the closure function automatically for you.
- If you use multiple optimizers, gradients will be calculated only for the parameters of current optimizer at each training step.
- If you need to control how often those optimizers step or override the default .step() schedule, override the optimizer_step() hook.

training_step(batch, batch_idx)

Perform a training step.

Parameters

- batch (A tensor, tuple or list)–
- batch_idx (Integer displaying index of this batch)–
- optimizer_idx (When using multiple optimizers, this argument will also be present.)–

Returns loss_outputs

Return type outputs of losses.
3.19 Jax Models

DeepChem supports the use of Jax to build deep learning models.

3.19.1 JaxModel

This is a DeepChem model implemented by a Jax Model. Here is a simple example of that uses JaxModel to train a Haiku (JAX Neural Network Library) based model on deepchem dataset.

```python
>>> def forward_model(x):
>>>     net = hk.nets.MLP([512, 256, 128, 1])
>>>     return net(x)
>>> def rms_loss(pred, tar, w):
>>>     return jnp.mean(optax.l2_loss(pred, tar))
>>> params_init, forward_fn = hk.transform(forward_model)
>>> rng = jax.random.PRNGKey(500)
>>> inputs, _, _, _ = next(iter(dataset.iterbatches(batch_size=256)))
>>> params = params_init(rng, inputs)
>>> j_m = JaxModel(forward_fn, params, rms_loss, 256, 0.001, 100)
>>> j_m.fit(train_dataset)
```

All optimizations will be done using the optax library.

Create a new JaxModel

Parameters

- **model** *(hk.State or Function)* – Any Jax based model that has a apply method for computing the network. Currently only haiku models are supported.
- **params** *(hk.Params)* – The parameter of the Jax based networks
- **loss** *(dc.models.losses.Loss or function)* – A Loss or function defining how to compute the training loss for each batch, as described above
• **output_types** *(list of strings, optional (default None)) – the type of each output from the model, as described above*

• **batch_size** *(int, optional (default 100)) – default batch size for training and evaluating*

• **learning_rate** *(float or LearningRateSchedule, optional (default 0.001)) – the learning rate to use for fitting. If optimizer is specified, this is ignored.*

• **optimizer** *(optax object) – For the time being, it is optax object*

• **rng** *(jax.random.PRNGKey, optional (default 1)) – A default global PRNG key to use for drawing random numbers.*

• **log_frequency** *(int, optional (default 100)) – The frequency at which to log data. Data is logged using logging by default.*

model_dir: str, optional (default None) Will be added along with the save & load method

tensorboard: bool, optional (default False) whether to log progress to TensorBoard during training

wandb: bool, optional (default False) whether to log progress to Weights & Biases during training


```python
```

Train this model on a dataset. :param dataset: the Dataset to train on :type dataset: Dataset :param nb_epoch: thenumberofepochstotrainfor:typenb_epoch: int:paramdeterministic: if True, the samples are processed in order. If False, a different random order is used for each epoch.

Parameters

• **loss** *(function) – a function of the form f(outputs, labels, weights) that computes the loss for each batch. If None (the default), the model’s standard loss function is used.*

• **callbacks** *(function or list of functions) – one or more functions of the form f(model, step) that will be invoked after every step. This can be used to perform validation, logging, etc.*

• **all_losses** *(Optional[List[float]], optional (default None)) – If specified, all logged losses are appended into this list. Note that you can call fit() repeatedly with the same list and losses will continue to be appended.*

Returns

• The average loss over the most recent checkpoint interval

• Miscellaneous Parameters Yet To Add

• max_checkpoints_to_keep *(int) – the maximum number of checkpoints to keep. Older checkpoints are discarded.*

• checkpoint_interval *(int) – the frequency at which to write checkpoints, measured in training steps. Set this to 0 to disable automatic checkpointing.*
• **restore** *(bool)* – if True, restore the model from the most recent checkpoint and continue training from there. If False, retrain the model from scratch.

• **variables** *(list of hk.Variable)* – the variables to train. If None (the default), all trainable variables in the model are used.

• **Work in Progress**

• [1] Integrate the optax losses, optimizers, schedulers with Deepchem

• [2] Support for saving & loading the model.

• [3] Adding support for output types (choosing only self._loss_outputs)

predict_on_generator

```python
def predict_on_generator(generator: Generator[Iterable[Tuple[Any, Any, Any]], None, list], transformers: List[transformers.Transformer] = [], output_types: Optional[Union[str, Sequence[str]]] = None)
```

Parameters

- **generator** *(generator)* – this should generate batches, each represented as a tuple of the form (inputs, labels, weights).

- **transformers** *(List[dc.trans.Transformer]*) – Transformers that the input data has been transformed by. The output is passed through these transformers to undo the transformations.

- **output_types** *(String or list of Strings)* – If specified, all outputs of this type will be retrieved from the model. If output_types is specified, outputs must be None.

Returns

- a NumPy array of the model produces a single output, or a list of arrays

- if it produces multiple outputs

predict_on_batch

```python
def predict_on_batch(X: Union[numpy._typing._array_like._SupportsArray[numpy.dtype],
                        numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype],
                        bool, int, float, complex, str, bytes],
                        numpy._typing._nested_sequence._NestedSequence[Union[bool, int, float, complex, str, bytes]],
                        transformers: List[transformers.Transformer] = []))
```

Generates predictions for input samples, processing samples in a batch. :param X: the input data, as a Numpy array. :type X: ndarray :param transformers: Transformers that the input data has been transformed by. The output is passed through these transformers to undo the transformations.

Returns

- a NumPy array of the model produces a single output, or a list of arrays

- if it produces multiple outputs

predict

```python
            output_types: Optional[List[str]] = None)
```

Uses self to make predictions on provided Dataset object.

Parameters
• **dataset** (*dc.data.Dataset*) – Dataset to make prediction on

• **transformers** (*List[dc.trans.Transformer]*) – Transformers that the input data has been transformed by. The output is passed through these transformers to undo the transformations.

• **output_types** (*String or list of Strings*) – If specified, all outputs of this type will be retrieved from the model. If output_types is specified, outputs must be None.

Returns

• a NumPy array of the model produces a single output, or a list of arrays

• if it produces multiple outputs

get_global_step() → int

Get the number of steps of fitting that have been performed.

Evaluate the performance of this model on the data produced by a generator. :param generator: this should generate batches, each represented as a tuple of the form

(inputs, labels, weights).

Parameters

• **metric** (*list of deepchem.metrics.Metric*) – Evaluation metric

• **transformers** (*List[dc.trans.Transformer]*) – Transformers that the input data has been transformed by. The output is passed through these transformers to undo the transformations.

• **per_task_metrics** (*bool*) – If True, return per-task scores.

Returns Maps tasks to scores under metric.

Return type *dict*

Create a generator that iterates batches for a dataset. Subclasses may override this method to customize how model inputs are generated from the data. :param dataset: the data to iterate :type dataset: Dataset :param epochs: the number of times to iterate over the full dataset :type epochs: int :param mode: allowed values are ‘fit’ (called during training), ‘predict’ (called during prediction), and ‘uncertainty’ (called during uncertainty prediction)

Parameters

• **deterministic** (*bool*) – whether to iterate over the dataset in order, or randomly shuffle the data for each epoch

• **pad_batches** (*bool*) – whether to pad each batch up to this model’s preferred batch size

Returns

• a generator that iterates batches, each represented as a tuple of lists

• ([inputs], [outputs], [weights])
3.19.2 PinnModel

This is class is derived from the JaxModel class and methods are also very similar to JaxModel, but it has the option of passing multiple arguments(Done using *args) suitable for PINNs model. Ex - Approximating f(x, y, z, t) satisfying a Linear differential equation.

This model is recommended for linear partial differential equations but if you can accurately write the gradient function in Jax depending on your use case, then it will work as well.

This class requires two functions apart from the usual function definition and weights

[1] grad_fn: Each PINNs have a different strategy for calculating its final losses. This function tells the PINN-Model how to go about computing the derivatives for backpropagation. It should follow this format:

```python
>>> def gradient_fn(forward_fn, loss_outputs, initial_data):
...     def model_loss(params, target, weights, rng, ...):
...         # write code using the arguments.
...         # ... indicates the variable number of positional arguments.
...         return
...     return model_loss
```

“…” can be replaced with various arguments like (x, y, z, y) but should match with eval_fn

[2] eval_fn: Function for defining how the model needs to compute during inference. It should follow this format

```python
>>> def create_eval_fn(forward_fn, params):
...     def eval_model(..., rng=None):
...         # write code here using arguments
...     return
...     return eval_model
```

“…” can be replaced with various arguments like (x, y, z, y) but should match with grad_fn

[3] boundary_data: For a detailed example, check out - deepchem/models/jax_models/tests/test_pinn.py where we have solved f’(x) = -sin(x)
References

Notes

This class requires Jax, Haiku and Optax to be installed.

```python
```

Parameters

- **forward_fn** (*hk.State or Function*) – Any Jax based model that has a `apply` method for computing the network. Currently only haiku models are supported.

- **params** (*hk.Params*) – The parameter of the Jax based networks

- **initial_data** (*dict*) – This acts as a session variable which will be passed as a dictionary in `grad_fn`

- **output_types** (*list of strings, optional (default None]*) – the type of each output from the model, as described above

- **batch_size** (*int, optional (default 100]*) – default batch size for training and evaluating

- **learning_rate** (*float or LearningRateSchedule, optional (default 0.001]*) – the learning rate to use for fitting. If optimizer is specified, this is ignored.

- **optimizer** (*optax object*) – For the time being, it is optax object

- **grad_fn** (*Callable (default create_default_gradient_fn]*) – It defines how the loss function and gradients need to be calculated for the PINNs model

- **update_fn** (*Callable (default create_default_update_fn]*) – It defines how the weights need to be updated using backpropogation. We have used optax library for optimisation operations. Its recomended to leave this default.

- **eval_fn** (*Callable (default create_default_eval_fn]*) – Function for defining on how the model needs to compute during inference.

- **rng** (*jax.random.PRNGKey, optional (default 1]*) – A default global PRNG key to use for drawing random numbers.

- **log_frequency** (*int, optional (default 100]*) – The frequency at which to log data. Data is logged using `logging` by default.

```python
```

Create a generator that iterates batches for a dataset. Subclasses may override this method to customize how model inputs are generated from the data.

Parameters

- **dataset** (*Dataset*) – the data to iterate
• **epochs** (*int*) – the number of times to iterate over the full dataset

• **mode** (*str*) – allowed values are ‘fit’ (called during training), ‘predict’ (called during prediction), and ‘uncertainty’ (called during uncertainty prediction)

• **deterministic** (*bool*) – whether to iterate over the dataset in order, or randomly shuffle the data for each epoch

• **pad batches** (*bool*) – whether to pad each batch up to this model’s preferred batch size

Returns

• a generator that iterates batches, each represented as a tuple of lists

• ([inputs], [outputs], [weights])

3.20 Hugging Face Models

HuggingFace models from the transformers library can be wrapped using the wrapper HuggingFaceModel class:

```python
class HuggingFaceModel(model: PreTrainedModel, tokenizer: transformers.tokenization_utils.PreTrainedTokenizer, task: Optional[str] = None, **kwargs):
    # Wrapper class that wraps HuggingFace models as DeepChem models
    # The class provides a wrapper for wrapping models from HuggingFace ecosystem in DeepChem and training it via DeepChem’s api. The reason for this might be that you might want to do an apples-to-apples comparison between HuggingFace from the transformers library and DeepChem library.
    # The HuggingFaceModel has a Has-A relationship by wrapping models from transformers library. Once a model is wrapped, DeepChem’s API are used for training, prediction, evaluation and other downstream tasks.
    # A HuggingFaceModel wrapper also has a tokenizer which tokenizes raw SMILES strings into tokens to be used by downstream models. The SMILES strings are generally stored in the X attribute of deepchem.data.Dataset object. This differs from the DeepChem standard workflow as tokenization is done on the fly here. The approach allows us to leverage transformers library’s fast tokenization algorithms and other utilities like data collation, random masking of tokens for masked language model training etc.

Parameters

• **model** (*transformers.modeling_utils.PreTrainedModel*) – The HuggingFace model to wrap.

• **task** (*str*, *(optional, default None]*)

**The task defines the type of learning task in the model. The supported tasks are**

  - **mlm** - masked language modeling commonly used in pretraining
  - **mtr** - multitask regression - a task used for both pretraining base models and finetuning
  - **regression** - use it for regression tasks, like property prediction
  - **classification** - use it for classification tasks

When the task is not specified or None, the wrapper returns raw output of the HuggingFaceModel. In cases where the HuggingFaceModel is a model without a task specific head, this output will be the last hidden states.

• **tokenizer** (*transformers.tokenization_utils.PreTrainedTokenizer*) – Tokenizer

---

**3.20. Hugging Face Models**

379
Example

```python
>>> import os
>>> import tempfile
>>> tempdir = tempfile.mkdtemp()

>>> # preparing dataset
>>> smiles = ['CN(c1cccc1)c1cccc1c1(=O)NCC1(O)COC1',
 'CC[CH+]((CC)C1CCCC([NH2+]C2CC2)(C(-O)[0-])C)1',
 'COCC(CNC(-O)c1ccc2c(c1)NC(-O)C2)OC', 'CCn1cc(CNc2cc3ccccc3nc2)c(C=O)c1',
 'CCCCCCc1ccc(C#Cc2ccc(C#CC3=CC=CC(CCCC)CC3)c(C3CCCCC3)c2)c(F)c1',
 'nO=C(CNc1ccc(F)c1)N1CC=C(c2c[nH]3ccccc32)CC1']
>>> filepath = os.path.join(tempdir, 'smiles.txt')
>>> f = open(filepath, 'w')
>>> f.write(\n''.join(smiles))
253
>>> f.close()

>>> # preparing tokenizer
>>> from tokenizers import ByteLevelBPETokenizer
>>> from transformers.models.roberta import RobertaTokenizerFast

>>> tokenizer = ByteLevelBPETokenizer()
>>> tokenizer.train(files=filepath, vocab_size=1_000, min_frequency=2, special_tokens=['<s>', '<pad>', '</s>', '<unk>', '<mask>'])
>>> tokenizer_path = os.path.join(tempdir, 'tokenizer')
>>> os.makedirs(tokenizer_path)
>>> result = tokenizer.save_model(tokenizer_path)
>>> tokenizer = RobertaTokenizerFast.from_pretrained(tokenizer_path)

>>> # preparing dataset
>>> import pandas as pd
>>> import deepchem as dc

>>> smiles = ['CCN(CCSC)C(=O)N[c@2]([C@2]2(C)CCO2)O1',
 'CC(CN(C=O)Nc2cc3ccccc3nc2)c(C=O)c1',
 'CCCCCCc1ccc(C#Cc2ccc(C#CC3=CC=CC(CCCC)CC3)c(C3CCCCC3)c2)c(F)c1',
 'nO=C(CNc1ccc(F)c1)N1CC=C(c2c[nH]3ccccc32)CC1']
>>> labels = [3.112, 2.432]
>>> df = pd.DataFrame(list(zip(smiles, labels)), columns=['smiles', 'task1'])
>>> with dc.utils.UniversalNamedTemporaryFile(mode='w') as tmpfile:
... df.to_csv(tmpfile.name)
... loader = dc.data.CSVLoader(["task1"], feature_field="smiles", featurizer=dc.feat.DummyFeaturizer())
... dataset = loader.create_dataset(tmpfile.name)

>>> # pretraining
>>> from deepchem.models.torch_models.hf_models import HuggingFaceModel
>>> from transformers.models.roberta import RobertaForMaskedLM, RobertaModel,
... RobertaConfig
>>> config = RobertaConfig(vocab_size=tokenizer.vocab_size)
>>> model = RobertaForMaskedLM(config)
>>> hf_model = HuggingFaceModel(model=model, tokenizer=tokenizer, task='mlm', model_dir='model-dir')
>>> training_loss = hf_model.fit(dataset, nb_epoch=1)
```
```python
>>> # finetuning a regression model
>>> from transformers.models.roberta import RobertaForSequenceClassification
>>> config = RobertaConfig(vocab_size=tokenizer.vocab_size, problem_type='regression', num_labels=1)
>>> model = RobertaForSequenceClassification(config)
>>> hf_model = HuggingFaceModel(model=model, tokenizer=tokenizer, task='regression', model_dir='model-dir')
>>> hf_model.load_from_pretrained()
>>> training_loss = hf_model.fit(dataset, nb_epoch=1)
>>> prediction = hf_model.predict(dataset) # prediction
>>> eval_results = hf_model.evaluate(dataset, metrics=dc.metrics.Metric(dc.metrics.mae_score))
```

```python
>>> # finetune a classification model
>>> # making dataset suitable for classification
>>> import numpy as np
>>> y = np.random.choice([0, 1], size=dataset.y.shape)
>>> dataset = dc.data.NumpyDataset(X=dataset.X, y=y, w=dataset.w, ids=dataset.ids)
>>> from transformers import RobertaForSequenceClassification
>>> config = RobertaConfig(vocab_size=tokenizer.vocab_size)
>>> model = RobertaForSequenceClassification(config)
>>> hf_model = HuggingFaceModel(model=model, task='classification', tokenizer=tokenizer)
>>> training_loss = hf_model.fit(dataset, nb_epoch=1)
>>> predictions = hf_model.predict(dataset)
>>> eval_result = hf_model.evaluate(dataset, metrics=dc.metrics.Metric(dc.metrics.f1_score))
```

```python
__init__(model: PreTrainedModel, tokenizer: transformers.tokenization_utils.PreTrainedTokenizer, task: Optional[str] = None, **kwargs)
Create a new TorchModel.

Parameters

- **model** (torch.nn.Module) – the PyTorch model implementing the calculation
- **loss** (dc.models.losses.Loss or function) – a Loss or function defining how to compute the training loss for each batch, as described above
- **output_types** (list of strings, optional (default None)) – the type of each output from the model, as described above
- **batch_size** (int, optional (default 100)) – default batch size for training and evaluating
- **model_dir** (str, optional (default None)) – the directory on disk where the model will be stored. If this is None, a temporary directory is created.
- **learning_rate** (float or LearningRateSchedule, optional (default 0.001)) – the learning rate to use for fitting. If optimizer is specified, this is ignored.
- **optimizer** (Optimizer, optional (default None)) – the optimizer to use for fitting. If this is specified, learning_rate is ignored.
- **tensorboard** (bool, optional (default False)) – whether to log progress to TensorBoard during training
```

3.20. Hugging Face Models
• `wandb` *(bool, optional (default False)) – whether to log progress to Weights & Biases during training*

• `log_frequency` *(int, optional (default 100)) – The frequency at which to log data. Data is logged using logging by default. If `tensorboard` is set, data is also logged to TensorBoard. If `wandb` is set, data is also logged to Weights & Biases. Logging happens at global steps. Roughly, a global step corresponds to one batch of training. If you’d like a printout every 10 batch steps, you’d set `log_frequency=10` for example.*

• `device` *(torch.device, optional (default None)) – the device on which to run computations. If None, a device is chosen automatically.*

• `regularization_loss` *(Callable, optional) – a function that takes no arguments, and returns an extra contribution to add to the loss function*

• `wandb_logger` *(WandbLogger) – the Weights & Biases logger object used to log data and metrics*

`load_from_pretrained`(model_dir: Optional[str] = None, from_hf_checkpoint: bool = False)

Load HuggingFace model from a pretrained checkpoint.

The utility can be used for loading a model from a checkpoint. Given `model_dir`, it checks for existing checkpoint in the directory. If a checkpoint exists, the models state is loaded from the checkpoint.

If the option `from_hf_checkpoint` is set as True, then it loads a pretrained model using HuggingFace models `from_pretrained` method. This option interprets model_dir as a model id of a pretrained model hosted inside a model repo on huggingface.co or path to directory containing model weights saved using `save_pretrained` method of a HuggingFace model.

`model_dir`: str Directory containing model checkpoint

`from_hf_checkpoint`: bool, default False Loads a pretrained model from HuggingFace checkpoint.

**Example**

```python
>>> from transformers import RobertaTokenizerFast
>>> tokenizer = RobertaTokenizerFast.from_pretrained("seyonec/PubChem10M_SMILES_→BPE_60k")
```

```python
>>> from deepchem.models.torch_models.hf_models import HuggingFaceModel
>>> from transformers.models.roberta import RobertaForMaskedLM, RobertaModel,...
 RobertaConfig
>>> config = RobertaConfig(vocab_size=tokenizer.vocab_size)
>>> model = RobertaForMaskedLM(config)
>>> pretrain_model = HuggingFaceModel(model=model, tokenizer=tokenizer, task=...
 'mlm', model_dir='model-dir')
>>> pretrain_model.save_checkpoint()
```

```python
>>> from transformers import RobertaForSequenceClassification
>>> config = RobertaConfig(vocab_size=tokenizer.vocab_size)
>>> model = RobertaForSequenceClassification(config)
>>> finetune_model = HuggingFaceModel(model=model, task="classification",...
 tokenizer=tokenizer, model_dir='model-dir')
```

```python
>>> finetune_model.load_from_pretrained()
```
**fit_generator**(generator: Iterable[Tuple[Any, Any, Any]], max_checkpoints_to_keep: int = 5, checkpoint_interval: int = 1000, restore: bool = False, variables:
Optional[List[torch.nn.parameter.Parameter]] = None, loss: Optional[Callable[[List, List, Any]], None, callbacks: Union[Callable, List[Callable]] = [], all_losses:
Optional[List[float]] = None) → float

Train this model on data from a generator.

**Parameters**

- **generator** (generator) – this should generate batches, each represented as a tuple of the form (inputs, labels, weights).
- **max_checkpoints_to_keep** (int) – the maximum number of checkpoints to keep. Older checkpoints are discarded.
- **checkpoint_interval** (int) – the frequency at which to write checkpoints, measured in training steps. Set this to 0 to disable automatic checkpointing.
- **restore** (bool) – if True, restore the model from the most recent checkpoint and continue training from there. If False, retrain the model from scratch.
- **variables** (list of torch.nn.Parameter) – the variables to train. If None (the default), all trainable variables in the model are used.
- **loss** (function) – a function of the form f(outputs, labels, weights) that computes the loss for each batch. If None (the default), the model’s standard loss function is used.
- **callbacks** (function or list of functions) – one or more functions of the form f(model, step) that will be invoked after every step. This can be used to perform validation, logging, etc.
- **all_losses** (Optional[List[float]], optional (default None)) – If specified, all logged losses are appended into this list. Note that you can call fit() repeatedly with the same list and losses will continue to be appended.

**Return type** The average loss over the most recent checkpoint interval

---

**Note:** A HuggingFace model can return embeddings (last hidden state), attentions. Support must be added to return the embeddings to the user, so that it can be used for other downstream applications.

---

### 3.20.1 Chemberta

**class Chemberta**(task: str, tokenizer_path: str = 'seyonec/PubChem10M_SMILES_BPE_60k', n_tasks: int = 1, **kwargs)

Chemberta Model

Chemberta is a transformer style model for learning on SMILES strings. The model architecture is based on the RoBERTa architecture. The model has can be used for both pretraining an embedding and finetuning for downstream applications.

The model supports two types of pretraining tasks - pretraining via masked language modeling and pretraining via multi-task regression. To pretrain via masked language modeling task, use task = *mlm* and for pretraining via multitask regression task, use task = *mtr*. The model supports the regression, classification and multitask regression finetuning tasks and they can be specified using *regression*, *classification* and *mtr* as arguments to the task keyword during model initialisation.
The model uses a tokenizer to create input tokens for the models from the SMILES strings. The default tokenizer model is a byte-pair encoding tokenizer trained on PubChem10M dataset and loaded from huggingFace model hub (https://huggingface.co/seyonec/PubChem10M_SMILES_BPE_60k).

**Parameters**

- **task** *(str)*
  
The task defines the type of learning task in the model. The supported tasks are
  
  - *mlm* - masked language modeling commonly used in pretraining
  - *mtr* - multitask regression - a task used for both pretraining base models and finetuning
  - *regression* - use it for regression tasks, like property prediction
  - *classification* - use it for classification tasks

- **tokenizer_path** *(str)*
  
  Path containing pretrained tokenizer used to tokenize SMILES string for model inputs. The tokenizer path can either be a huggingFace tokenizer model or a path in the local machine containing the tokenizer.

- **n_tasks** *(int, default 1)*
  
  Number of prediction targets for a multitask learning model

**Example**

```python
>>> import os
>>> import tempfile
>>> tempdir = tempfile.mkdtemp()

>>> import pandas as pd
>>> import deepchem as dc

>>> smiles = ['"CCN(CCSC)C(=O)N[C@@](C)(CC)C(F)(F)F"', "CC1(C)CN(C(=O)Nc2cc3ccccc3nn2)C[C@@]2(COCC2)O1""]
>>> labels = [3.112, 2.432]
>>> df = pd.DataFrame(list(zip(smiles, labels)), columns=['smiles', 'task1'])
>>> with dc.utils.UniversalNamedTemporaryFile(mode='w') as tmpfile:
... df.to_csv(tmpfile.name)

>>> tokenizer_path = "seyonec/PubChem10M_SMILES_BPE_60k"

>>> pretrain_model_dir = os.path.join(tempdir, 'pretrain-model')
>>> pretrain_model = Chemberta(task='mlm', model_dir=pretrain_model_dir, tokenizer_path=tokenizer_path) # mlm pretraining
>>> pretraining_loss = pretrain_model.fit(dataset, nb_epoch=1)

>>> finetune_model_dir = os.path.join(tempdir, 'finetune-model')
>>> finetune_model = Chemberta(task='regression', model_dir=finetune_model_dir, tokenizer_path=tokenizer_path)
```

(continues on next page)
finetune_model.load_from_pretrained(pretrain_model_dir)

finetuning_loss = finetune_model.fit(dataset, nb_epoch=1)

# prediction and evaluation
result = finetune_model.predict(dataset)

eval_results = finetune_model.evaluate(dataset, metrics=dc.metrics.Metric(dc.metrics.mae_score))

__init__(task: str, tokenizer_path: str = 'seyonec/PubChem10M_SMILES_BPE_60k', n_tasks: int = 1, **kwargs)

Create a new TorchModel.

Parameters

- model (torch.nn.Module) – the PyTorch model implementing the calculation
- loss (dc.models.losses.Loss or function) – a Loss or function defining how to
  compute the training loss for each batch, as described above
- output_types (list of strings, optional (default None)) – the type of each
  output from the model, as described above
- batch_size (int, optional (default 100)) – default batch size for training and
  evaluating
- model_dir (str, optional (default None)) – the directory on disk where the
  model will be stored. If this is None, a temporary directory is created.
- learning_rate (float or LearningRateSchedule, optional (default 0.001)) – the learning rate to use for fitting. If optimizer is specified, this is ignored.
- optimizer (Optimizer, optional (default None)) – the optimizer to use for fit-
  ting. If this is specified, learning_rate is ignored.
- tensorboard (bool, optional (default False)) – whether to log progress to Ten-
  sorBoard during training
- wandb (bool, optional (default False)) – whether to log progress to Weights & Biases during training
- log_frequency (int, optional (default 100)) – The frequency at which to log
  data. Data is logged using logging by default. If tensorboard is set, data is also logged to
  TensorBoard. If wandb is set, data is also logged to Weights & Biases. Logging happens
  at global steps. Roughly, a global step corresponds to one batch of training. If you’d like a
  printout every 10 batch steps, you’d set log_frequency=10 for example.
- device (torch.device, optional (default None)) – the device on which to run
  computations. If None, a device is chosen automatically.
- regularization_loss (Callable, optional) – a function that takes no arguments,
  and returns an extra contribution to add to the loss function
- wandb_logger (WandbLogger) – the Weights & Biases logger object used to log data and
  metrics

3.20. Hugging Face Models
3.21 Layers

Deep learning models are often said to be made up of “layers”. Intuitively, a “layer” is a function which transforms some tensor into another tensor. DeepChem maintains an extensive collection of layers which perform various useful scientific transformations. For now, most layers are Keras only but over time we expect this support to expand to other types of models and layers.

3.21.1 Layers Cheatsheet

The “layers cheatsheet” lists various scientifically relevant differentiable layers implemented in DeepChem.

Note that some layers implemented for specific model architectures such as GROVER and Attention layers, this is indicated in the Model column of the table.

In order to use the layers, make sure that the backend (Keras and tensorflow, Pytorch or Jax) is installed.

Tensorflow Keras Layers

These layers are subclasses of the tensorflow.keras.layers.Layer class.

<table>
<thead>
<tr>
<th>Layer</th>
<th>Reference</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>InteratomicL2Distances</td>
<td></td>
<td>ref</td>
</tr>
<tr>
<td>GraphConv</td>
<td>ref</td>
<td></td>
</tr>
<tr>
<td>GraphPool</td>
<td>ref</td>
<td></td>
</tr>
<tr>
<td>GraphGather</td>
<td>ref</td>
<td></td>
</tr>
<tr>
<td>MolGANConvolutionLayer</td>
<td>ref</td>
<td>MolGan</td>
</tr>
<tr>
<td>MolGANAggregationLayer</td>
<td>ref</td>
<td>MolGan</td>
</tr>
<tr>
<td>MolGANMultiConvolutionLayer</td>
<td>ref</td>
<td>MolGan</td>
</tr>
<tr>
<td>MolGANEncoderLayer</td>
<td>ref</td>
<td>MolGan</td>
</tr>
<tr>
<td>LSTMStep</td>
<td></td>
<td>ref</td>
</tr>
<tr>
<td>AttnLSTMEmbedding</td>
<td>ref</td>
<td></td>
</tr>
<tr>
<td>IterRefLSTMEmbedding</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SwitchedDropout</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WeightedLinearCombo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CombineMeanSt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stack</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VinaFreeEnergy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NeighborList</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AtomicConvolution</td>
<td>ref</td>
<td></td>
</tr>
<tr>
<td>AlphaShareLayer</td>
<td></td>
<td>Sluice Network</td>
</tr>
<tr>
<td>SluiceLoss</td>
<td></td>
<td>Sluice Network</td>
</tr>
<tr>
<td>BetaShare</td>
<td></td>
<td>Sluice Network</td>
</tr>
<tr>
<td>ANIFeat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GraphEmbedPoolLayer</td>
<td>ref</td>
<td></td>
</tr>
<tr>
<td>Highway</td>
<td>ref</td>
<td></td>
</tr>
<tr>
<td>WeaveLayer</td>
<td>ref</td>
<td></td>
</tr>
<tr>
<td>WeaveGather</td>
<td>ref</td>
<td></td>
</tr>
<tr>
<td>DTNNEmbedding</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DTNNStep</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DTNNGather</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAGLayer</td>
<td>ref</td>
<td></td>
</tr>
</tbody>
</table>

continues on next page
### PyTorch

These layers are subclasses of the `torch.nn.Module` class.

<table>
<thead>
<tr>
<th>Layer</th>
<th>Reference</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>MultilayerPerceptron</td>
<td>ref</td>
<td>Molecular Attention Transformer</td>
</tr>
<tr>
<td>ScaleNorm</td>
<td>ref</td>
<td>Molecular Attention Transformer</td>
</tr>
<tr>
<td>MATEncoderLayer</td>
<td>ref</td>
<td>Molecular Attention Transformer</td>
</tr>
<tr>
<td>MultiHeadedMATAttention</td>
<td>ref</td>
<td>Molecular Attention Transformer</td>
</tr>
<tr>
<td>SublayerConnection</td>
<td>ref</td>
<td>Transformer</td>
</tr>
<tr>
<td>MATEmbedding</td>
<td>ref</td>
<td>Molecular Attention Transformer</td>
</tr>
<tr>
<td>MATGenerator</td>
<td>ref</td>
<td>Molecular Attention Transformer</td>
</tr>
<tr>
<td>Affine</td>
<td>ref</td>
<td>Normalizing Flow</td>
</tr>
<tr>
<td>RealNVPLayer</td>
<td>ref</td>
<td>Normalizing Flow</td>
</tr>
<tr>
<td>DMPNNEncoderLayer</td>
<td>ref</td>
<td>Normalizing Flow</td>
</tr>
<tr>
<td>PositionwiseFeedForward</td>
<td>ref</td>
<td>Molecular Attention Transformer</td>
</tr>
<tr>
<td>GraphPool</td>
<td>ref</td>
<td></td>
</tr>
<tr>
<td>GroverMPNEncoder</td>
<td>ref</td>
<td>Grover</td>
</tr>
<tr>
<td>GroverAttentionHead</td>
<td>ref</td>
<td>Grover</td>
</tr>
<tr>
<td>GroverMTBlock</td>
<td>ref</td>
<td>Grover</td>
</tr>
<tr>
<td>GroverTransEncoder</td>
<td>ref</td>
<td>Grover</td>
</tr>
<tr>
<td>GroverEmbedding</td>
<td>ref</td>
<td>Grover</td>
</tr>
<tr>
<td>GroverAtomVocabPredictor</td>
<td>ref</td>
<td>Grover</td>
</tr>
<tr>
<td>GroverBondVocabPredictor</td>
<td>ref</td>
<td>Grover</td>
</tr>
<tr>
<td>GroverFunctionalGroupPredictor</td>
<td>ref</td>
<td>Grover</td>
</tr>
<tr>
<td>ScaledDotProductAttention</td>
<td>ref</td>
<td>Transformer</td>
</tr>
<tr>
<td>SelfAttention</td>
<td>ref</td>
<td>Transformer</td>
</tr>
<tr>
<td>GroverReadout</td>
<td>ref</td>
<td>Grover</td>
</tr>
<tr>
<td>DFTXC</td>
<td>ref</td>
<td>XCMModel-DFT</td>
</tr>
<tr>
<td>NNLDA</td>
<td>ref</td>
<td>XCMModel-DFT</td>
</tr>
<tr>
<td>HybridXC</td>
<td>ref</td>
<td>XCMModel-DFT</td>
</tr>
<tr>
<td>XCNNSCF</td>
<td>ref</td>
<td>XCMModel-DFT</td>
</tr>
<tr>
<td>EdgeNetwork</td>
<td>ref</td>
<td>Message Passing Neural Network</td>
</tr>
<tr>
<td>WeaveLayer</td>
<td>ref</td>
<td>WeaveModel</td>
</tr>
<tr>
<td>WeaveGather</td>
<td>ref</td>
<td>WeaveModel</td>
</tr>
<tr>
<td>MolGANConvolutionLayer</td>
<td>ref</td>
<td>MolGan</td>
</tr>
</tbody>
</table>

continues on next page
### 3.21.2 Keras Layers

**class InteratomicL2Distances(*args, **kwargs)**

Compute (squared) L2 Distances between atoms given neighbors.

This class computes pairwise distances between its inputs.

**Examples**

```python
>>> import numpy as np
>>> import deepchem as dc
>>> atoms = 5
>>> neighbors = 2
>>> coords = np.random.rand(atoms, 3)
>>> neighbor_list = np.random.randint(0, atoms, size=(atoms, neighbors))
>>> layer = InteratomicL2Distances(atoms, neighbors, 3)
>>> result = np.array(layer([coords, neighbor_list]))
>>> result.shape
(5, 2)
```

**__init__(N_atoms: int, M_nbrs: int, ndim: int, **kwargs)**

Constructor for this layer.

**Parameters**

- **NAtoms** (`int`) – Number of atoms in the system total.
- **M_nbrs** (`int`) – Number of neighbors to consider when computing distances.
- **n_dim** (`int`) – Number of descriptors for each atom.

**get_config() → Dict**

Returns config dictionary for this layer.

**call(inputs: List)**

Invokes this layer.

**Parameters**

**inputs** (`List`) – Should be of form `inputs=[coords, nbr_list]` where `coords` is a tensor of shape `(None, N, 3)` and `nbr_list` is a list.

**Return type** Tensor of shape `(N_atoms, M_nbrs)` with interatomic distances.

**class GraphConv(*args, **kwargs)**

Graph Convolutional Layers
This layer implements the graph convolution introduced in [1]_. The graph convolution combines per-node feature vectors in a nonlinear fashion with the feature vectors for neighboring nodes. This “blends” information in local neighborhoods of a graph.

References

__init__(out_channel: int, min_deg: int = 0, max_deg: int = 10, activation_fn: Optional[Callable] = None, **kwargs)

Initialize a graph convolutional layer.

Parameters

- **out_channel** (int) – The number of output channels per graph node.
- **min_deg** (int, optional (default 0)) – The minimum allowed degree for each graph node.
- **max_deg** (int, optional (default 10)) – The maximum allowed degree for each graph node. Note that this is set to 10 to handle complex molecules (some organometallic compounds have strange structures). If you’re using this for non-molecular applications, you may need to set this much higher depending on your dataset.
- **activation_fn** (function) – A nonlinear activation function to apply. If you’re not sure, tf.nn.relu is probably a good default for your application.

build(input_shape)

Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-creation step in-between layer instantiation and layer call. It is invoked automatically before the first execution of call().

This is typically used to create the weights of Layer subclasses (at the discretion of the subclass implementer).

Parameters **input_shape** – Instance of TensorShape, or list of instances of TensorShape if the layer expects a list of inputs (one instance per input).

get_config()

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be reinitialized later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers should make a copy of the returned dict if they want to modify it.

Returns Python dictionary.

call(inputs)

This is where the layer’s logic lives.

The call() method may not create state (except in its first invocation, wrapping the creation of variables or other resources in tf.init_scope()). It is recommended to create state, including tf.Variable instances and nested Layer instances,

in __init__(), or in the build() method that is
called automatically before `call()` executes for the first time.

**Parameters**

- **inputs** – Input tensor, or dict/list/tuple of input tensors. The first positional `inputs` argument is subject to special rules: - `inputs` must be explicitly passed. A layer cannot have zero arguments, and `inputs` cannot be provided via the default value of a keyword argument.
  - NumPy array or Python scalar values in `inputs` get cast as tensors.
  - Keras mask metadata is only collected from `inputs`.
  - Layers are built (`build(input_shape)` method) using shape info from `inputs` only.
  - `input_spec` compatibility is only checked against `inputs`.
  - Mixed precision input casting is only applied to `inputs`. If a layer has tensor arguments in `*args` or `**kwargs`, their casting behavior in mixed precision should be handled manually.
  - The SavedModel input specification is generated using `inputs` only.
  - Integration with various ecosystem packages like TFMOT, TFLite, TF.js, etc is only supported for `inputs` and not for tensors in positional and keyword arguments.
- ***args** – Additional positional arguments. May contain tensors, although this is not recommended, for the reasons above.
- **kwargs** – Additional keyword arguments. May contain tensors, although this is not recommended, for the reasons above. The following optional keyword arguments are reserved:
  - `training`: Boolean scalar tensor of Python boolean indicating whether the `call` is meant for training or inference.
  - `mask`: Boolean input mask. If the layer’s `call()` method takes a `mask` argument, its default value will be set to the mask generated for `inputs` by the previous layer (if `input` did come from a layer that generated a corresponding mask, i.e. if it came from a Keras layer with masking support).

**Returns** A tensor or list/tuple of tensors.

```python
sum_neigh(atoms, deg_adj_lists)
```

Store the summed atoms by degree

```python
class GraphPool(*args, **kwargs)
```

A GraphPool gathers data from local neighborhoods of a graph.

This layer does a max-pooling over the feature vectors of atoms in a neighborhood. You can think of this layer as analogous to a max-pooling layer for 2D convolutions but which operates on graphs instead. This technique is described in [1].
deepchem, Release 2.7.2.dev

References

__init__(min_degree=0, max_degree=10, **kwargs)

Initialize this layer

Parameters

• **min_deg** (int, optional (default 0)) – The minimum allowed degree for each graph node.

• **max_deg** (int, optional (default 10)) – The maximum allowed degree for each graph node. Note that this is set to 10 to handle complex molecules (some organometallic compounds have strange structures). If you’re using this for non-molecular applications, you may need to set this much higher depending on your dataset.

get_config()

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be instantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers should make a copy of the returned dict if they want to modify it.

Returns Python dictionary.

call(inputs)

This is where the layer’s logic lives.

The call() method may not create state (except in its first invocation, wrapping the creation of variables or other resources in tf.init_scope()). It is recommended to create state, including tf.Variable instances and nested Layer instances,

in __init__(), or in the build() method that is called automatically before call() executes for the first time.

Parameters

• **inputs** – Input tensor, or dict/list/tuple of input tensors. The first positional inputs argument is subject to special rules: - inputs must be explicitly passed. A layer cannot have zero arguments, and inputs cannot be provided via the default value of a keyword argument.

– NumPy array or Python scalar values in inputs get cast as tensors.

– Keras mask metadata is only collected from inputs.

– Layers are built (build(input_shape) method) using shape info from inputs only.

– input_spec compatibility is only checked against inputs.

– Mixed precision input casting is only applied to inputs. If a layer has tensor arguments in *args or **kwargs, their casting behavior in mixed precision should be handled manually.

– The SavedModel input specification is generated using inputs only.

– Integration with various ecosystem packages like TFMOT, TFLite, TF.js, etc is only supported for inputs and not for tensors in positional and keyword arguments.
• *args – Additional positional arguments. May contain tensors, although this is not recommended, for the reasons above.

• **kwargs – Additional keyword arguments. May contain tensors, although this is not recommended, for the reasons above. The following optional keyword arguments are reserved:
  - training: Boolean scalar tensor of Python boolean indicating whether the call is meant for training or inference.
  - mask: Boolean input mask. If the layer’s call() method takes a mask argument, its default value will be set to the mask generated for inputs by the previous layer (if input did come from a layer that generated a corresponding mask, i.e. if it came from a Keras layer with masking support).

Returns A tensor or list/tuple of tensors.

class GraphGather(*args, **kwargs)

A GraphGather layer pools node-level feature vectors to create a graph feature vector.

Many graph convolutional networks manipulate feature vectors per graph-node. For a molecule for example, each node might represent an atom, and the network would manipulate atomic feature vectors that summarize the local chemistry of the atom. However, at the end of the application, we will likely want to work with a molecule level feature representation. The GraphGather layer creates a graph level feature vector by combining all the node-level feature vectors.

One subtlety about this layer is that it depends on the batch_size. This is done for internal implementation reasons. The GraphConv, and GraphPool layers pool all nodes from all graphs in a batch that’s being processed. The GraphGather reassembles these jumbled node feature vectors into per-graph feature vectors.

References

__init__(batch_size, activation_fn=None, **kwargs)

Initialize this layer.

Parameters

• batch_size (int) – The batch size for this layer. Note that the layer’s behavior changes depending on the batch size.

• activation_fn (function) – A nonlinear activation function to apply. If you’re not sure, tf.nn.relu is probably a good default for your application.

get_config()

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers should make a copy of the returned dict if they want to modify it.

Returns Python dictionary.

call(inputs)

Invoking this layer.
Parameters inputs (list) – This list should consist of inputs = [atom_features, deg_slice, membership, deg_adj_list placeholders...]. These are all tensors that are created/process by GraphConv and GraphPool

class MolGANConvolutionLayer(*args, **kwargs)

Graph convolution layer used in MolGAN model. MolGAN is a WGAN type model for generation of small molecules. Not used directly, higher level layers like MolGANMultiConvolutionLayer use it. This layer performs basic convolution on one-hot encoded matrices containing atom and bond information. This layer also accepts three inputs for the case when convolution is performed more than once and results of previous convolution need to used. It was done in such a way to avoid creating another layer that accepts three inputs rather than two. The last input layer is so-called hidden_layer and it hold results of the convolution while first two are unchanged input tensors.

Example

See: MolGANMultiConvolutionLayer for using in layers.

```python
>>> from tensorflow.keras import Model
>>> from tensorflow.keras.layers import Input

>>> vertices = 9
>>> nodes = 5
>>> edges = 5
>>> units = 128

>>> layer1 = MolGANConvolutionLayer(units=units, edges=edges, name='layer1')
>>> layer2 = MolGANConvolutionLayer(units=units, edges=edges, name='layer2')
>>> adjacency_tensor = Input(shape=(vertices, vertices, edges))
>>> node_tensor = Input(shape=(vertices, nodes))
>>> hidden1 = layer1([adjacency_tensor, node_tensor])
>>> output = layer2(hidden1)
>>> model = Model(inputs=[adjacency_tensor, node_tensor], outputs=[output])
```

References

__init__ (units: int, activation: typing.Callable = <function tanh>, dropout_rate: float = 0.0, edges: int = 5, name: str = '', **kwargs)

Initialize this layer.

Parameters

- units (int) – Dimesion of dense layers used for convolution
- activation (function, optional (default=Tanh)) – activation function used across model, default is Tanh
- dropout_rate (float, optional (default=0.0)) – Dropout rate used by dropout layer
- edges (int, optional (default=5)) – How many dense layers to use in convolution. Typically equal to number of bond types used in the model.
- name (string, optional (default='')) – Name of the layer

call(inputs, training=False)

Invoke this layer
Parameters

- **inputs** (list) – List of two input matrices, adjacency tensor and node features tensors in one-hot encoding format.

- **training** (bool) – Should this layer be run in training mode. Typically decided by main model, influences things like dropout.

**Returns** First and second are original input tensors Third is the result of convolution

**Return type** tuple(tf.Tensor,tf.Tensor,tf.Tensor)

```python
get_config() → Dict
```

Returns config dictionary for this layer.

class MolGANAggregationLayer(*args, **kwargs)

Graph Aggregation layer used in MolGAN model. MolGAN is a WGAN type model for generation of small molecules. Performs aggregation on tensor resulting from convolution layers. Given its simple nature it might be removed in future and moved to MolGANEncoderLayer.

**Example**

```python
>>> from tensorflow.keras import Model
>>> from tensorflow.keras.layers import Input

>>> vertices = 9
>>> nodes = 5
>>> edges = 5
>>> units = 128

>>> layer_1 = MolGANConvolutionLayer(units=units,edges=edges, name='layer1')
>>> layer_2 = MolGANConvolutionLayer(units=units,edges=edges, name='layer2')
>>> layer_3 = MolGANAggregationLayer(units=128, name='layer3')
>>> adjacency_tensor= Input(shape=(vertices, vertices, edges))
>>> node_tensor = Input(shape=(vertices,nodes))

>>> hidden_1 = layer_1([adjacency_tensor,node_tensor])
>>> hidden_2 = layer_2(hidden_1)
>>> output = layer_3(hidden_2[2])

>>> model = Model(inputs=[adjacency_tensor,node_tensor], outputs=[output])
```

**References**

```python
__init__(units: int = 128, activation: typing.Callable = <function tanh>, dropout_rate: float = 0.0, name: str = "", **kwargs)
```

Initialize the layer

**Parameters**

- **units** (int, optional (default=128)) – Dimesion of dense layers used for aggregation

- **activation** (function, optional (default=Tanh)) – activation function used across model, default is Tanh

- **dropout_rate** (float, optional (default=0.0)) – Used by dropout layer

- **name** (string, optional (default="")) – Name of the layer
call(inputs, training=False)

Invoke this layer

Parameters

- **inputs** (List) – Single tensor resulting from graph convolution layer
- **training** (bool) – Should this layer be run in training mode. Typically decided by main model, influences things like dropout.

Returns **aggregation tensor** – Result of aggregation function on input convolution tensor.

Return type tf.Tensor

get_config() → Dict

Returns config dictionary for this layer.

class MolGANMultiConvolutionLayer(*args, **kwargs)

Multiple pass convolution layer used in MolGAN model. MolGAN is a WGAN type model for generation of small molecules. It takes outputs of previous convolution layer and uses them as inputs for the next one. It simplifies the overall framework, but might be moved to MolGANEncoderLayer in the future in order to reduce number of layers.

Example

```python
>>> from tensorflow.keras import Model
>>> from tensorflow.keras.layers import Input

>>> vertices = 9
>>> nodes = 5
>>> edges = 5
>>> units = 128

>>> layer_1 = MolGANMultiConvolutionLayer(units=(128,64), name='layer1')
>>> layer_2 = MolGANAggregationLayer(units=128, name='layer2')
>>> adjacency_tensor= Input(shape=(vertices, vertices, edges))
>>> node_tensor = Input(shape=(vertices,nodes))

>>> hidden = layer_1([adjacency_tensor,node_tensor])
>>> output = layer_2(hidden)

>>> model = Model(inputs=[adjacency_tensor,node_tensor], outputs=[output])
```

References

__init__(units: typing.Tuple = (128, 64), activation: typing.Callable = <function tanh>, dropout_rate: float = 0.0, edges: int = 5, name: str = "", **kwargs)

Initialize the layer

Parameters

- **units** (Tuple, optional (default=(128,64)), min_length=2) – List of dimensions used by consecutive convolution layers. The more values the more convolution layers invoked.

- **activation** (function, optional (default=tanh)) – activation function used across model, default is ‘Tanh

- **dropout_rate** (float, optional (default=0.0)) – Used by dropout layer
• **edges** *(int, optional (default=0))* – Controls how many dense layers use for single convolution unit. Typically matches number of bond types used in the molecule.

• **name** *(string, optional (default=""))* – Name of the layer

**call** *(inputs, training=False)*

Invoke this layer

**Parameters**

• **inputs** *(list)* – List of two input matrices, adjacency tensor and node features tensors in one-hot encoding format.

• **training** *(bool)* – Should this layer be run in training mode. Typically decided by main model, influences things like dropout.

**Returns** convolution tensor – Result of input tensors going through convolution a number of times.

**Return type** tf.Tensor

**get_config**

Returns config dictionary for this layer.

**class** **MolGANEncoderLayer**( *args, **kwargs*)

Main learning layer used by MolGAN model. MolGAN is a WGAN type model for generation of small molecules. Its role is to further simplify model. This layer can be manually built by stacking graph convolution layers followed by graph aggregation.

**Example**

```python
>>> from tensorflow.keras import Model
>>> from tensorflow.keras.layers import Input, Dropout, Dense

>>> vertices = 9
>>> edges = 5
>>> nodes = 5
>>> dropout_rate = .0

>>> adjacency_tensor = Input(shape=(vertices, vertices, edges))
>>> node_tensor = Input(shape=(vertices, nodes))

>>> graph = MolGANEncoderLayer(units = [(128,64),128], dropout_rate=dropout_rate, edges=edges)([adjacency_tensor, node_tensor])

>>> dense = Dense(units=128, activation='tanh')(graph)
>>> dense = Dropout(dropout_rate)(dense)

>>> output = Dense(units=1)(dense)

>>> model = Model(inputs=[adjacency_tensor, node_tensor], outputs=[output])
```
__init__ (units: typing.List = [(128, 64), 128], activation: typing.Callable = <function tanh>, dropout_rate: float = 0.0, edges: int = 5, name: str = '', **kwargs)

Initialize the layer.

Parameters

- **units** (List, optional (default=[(128, 64), 128])) – List of units for MolGANMultiConvolutionLayer and GraphAggregationLayer i.e. [(128,64),128] means two convolution layers dims = [128,64] followed by aggregation layer dims=128
- **activation** (function, optional (default=Tanh)) – activation function used across model, default is Tanh
- **dropout_rate** (float, optional (default=0.0)) – Used by dropout layer
- **edges** (int, optional (default=0)) – Controls how many dense layers use for single convolution unit. Typically matches number of bond types used in the molecule.
- **name** (string, optional (default='')) – Name of the layer

call (inputs, training=False)

Invoke this layer

Parameters

- **inputs** (list) – List of two input matrices, adjacency tensor and node features tensors in one-hot encoding format.
- **training** (bool) – Should this layer be run in training mode. Typically decided by main model, influences things like dropout.

Returns encoder tensor – Tensor that been through number of convolutions followed by aggregation.

Return type tf.Tensor

get_config () → Dict

Returns config dictionary for this layer.

class LSTMStep (*args, **kwargs)

Layer that performs a single step LSTM update.

This layer performs a single step LSTM update. Note that it is not a full LSTM recurrent network. The LSTMStep layer is useful as a primitive for designing layers such as the AttnLSTMEmbedding or the IterRefLSTMEmbedding below.

__init__ (output_dim, input_dim, init_fn='glorot_uniform', inner_init_fn='orthogonal', activation_fn='tanh', inner_activation_fn='hard_sigmoid', **kwargs)

Parameters

- **output_dim** (int) – Dimensionality of output vectors.
- **input_dim** (int) – Dimensionality of input vectors.
- **init_fn** (str) – TensorFlow initialization to use for W.
- **inner_init_fn** (str) – TensorFlow initialization to use for U.
- **activation_fn** (str) – TensorFlow activation to use for output.
- **inner_activation_fn** (str) – TensorFlow activation to use for inner steps.
get_config()

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers should make a copy of the returned dict if they want to modify it.

Returns Python dictionary.

build(input_shape)

Constructs learnable weights for this layer.

call(inputs)

Execute this layer on input tensors.

Parameters

• inputs (list) – List of three tensors (x, h_tm1, c_tm1). h_tm1 means “h, t-1”.

Returns

Returns h, [h, c]

Return type

list

class AttnLSTMEmbedding(*args, **kwargs)

Implements AttnLSTM as in matching networks paper.

The AttnLSTM embedding adjusts two sets of vectors, the “test” and “support” sets. The “support” consists of a set of evidence vectors. Think of these as the small training set for low-data machine learning. The “test” consists of the queries we wish to answer with the small amounts of available data. The AttnLSTMEmbedding allows us to modify the embedding of the “test” set depending on the contents of the “support”. The AttnLSTMEmbedding is thus a type of learnable metric that allows a network to modify its internal notion of distance.

See references [1]_ [2]_ for more details.

References

__init__(n_test, n_support, n_feat, max_depth, **kwargs)

Parameters

• n_support (int) – Size of support set.

• n_test (int) – Size of test set.

• n_feat (int) – Number of features per atom

• max_depth (int) – Number of “processing steps” used by sequence-to-sequence for sets model.

get_config()

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers should make a copy of the returned dict if they want to modify it.
**Returns** Python dictionary.

**build** *(input_shape)*

Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-creation step in-between layer instantiation and layer call. It is invoked automatically before the first execution of `call()`.

This is typically used to create the weights of Layer subclasses (at the discretion of the subclass implementer).

**Parameters** `input_shape` – Instance of `TensorShape`, or list of instances of `TensorShape` if the layer expects a list of inputs (one instance per input).

**call** *(inputs)*

Execute this layer on input tensors.

**Parameters** `inputs` *(list)* – List of two tensors (X, Xp). X should be of shape (n_test, n_feat) and Xp should be of shape (n_support, n_feat) where n_test is the size of the test set, n_support that of the support set, and n_feat is the number of per-atom features.

**Returns** Returns two tensors of same shape as input. Namely the output shape will be [(n_test, n_feat), (n_support, n_feat)]

**Return type** list

class IterRefLSTMEmbedding(*args, **kwargs)*

Implements the Iterative Refinement LSTM.

Much like AttnLSTMEmbedding, the IterRefLSTMEmbedding is another type of learnable metric which adjusts “test” and “support.” Recall that “support” is the small amount of data available in a low data machine learning problem, and that “test” is the query. The AttnLSTMEmbedding only modifies the “test” based on the contents of the support. However, the IterRefLSTM modifies both the “support” and “test” based on each other. This allows the learnable metric to be more malleable than that from AttnLSTMEmbedding.

**__init__** *(n_test, n_support, n_feat, max_depth, **kwargs)*

Unlike the AttnLSTM model which only modifies the test vectors additively, this model allows for an additive update to be performed to both test and support using information from each other.

**Parameters**

- `n_support` *(int)* – Size of support set.
- `n_test` *(int)* – Size of test set.
- `n_feat` *(int)* – Number of input atom features
- `max_depth` *(int)* – Number of LSTM Embedding layers.

**get_config()**

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be re-instantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled by Network (one layer of abstraction above).

Note that `get_config()` does not guarantee to return a fresh copy of dict every time it is called. The callers should make a copy of the returned dict if they want to modify it.

**Returns** Python dictionary.
**build** *(input_shape)*

Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-creation step in-between layer instantiation and layer call. It is invoked automatically before the first execution of `call()`.

This is typically used to create the weights of Layer subclasses (at the discretion of the subclass implementer).

**Parameters**

- **input_shape** – Instance of `TensorShape`, or list of instances of `TensorShape` if the layer expects a list of inputs (one instance per input).

**call** *(inputs)*

Execute this layer on input tensors.

**Parameters**

- **inputs** *(list)* – List of two tensors (X, Xp). X should be of shape (n_test, n_feat) and Xp should be of shape (n_support, n_feat) where n_test is the size of the test set, n_support that of the support set, and n_feat is the number of per-atom features.

**Returns**

- Returns two tensors of same shape as input. Namely the output shape will be [(n_test, n_feat), (n_support, n_feat)]

**class** *SwitchedDropout* *(*args, **kwargs)*

Apply dropout based on an input.

This is required for uncertainty prediction. The standard Keras Dropout layer only performs dropout during training, but we sometimes need to do it during prediction. The second input to this layer should be a scalar equal to 0 or 1, indicating whether to perform dropout.

**get_config()**

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be re-instantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled by Network (one layer of abstraction above).

Note that `get_config()` does not guarantee to return a fresh copy of dict every time it is called. The callers should make a copy of the returned dict if they want to modify it.

**Returns** Python dictionary.

**call** *(inputs)*

This is where the layer’s logic lives.

The `call()` method may not create state (except in its first invocation, wrapping the creation of variables or other resources in `tf.init_scope()`). It is recommended to create state, including `tf.Variable` instances and nested Layer instances,

... called automatically before `call()` executes for the first time.

**Parameters**

- **inputs** – Input tensor, or dict/list/tuple of input tensors. The first positional `inputs` argument is subject to special rules: - `inputs` must be explicitly passed. A layer cannot have zero
arguments, and inputs cannot be provided via the default value of a keyword argument.

- NumPy array or Python scalar values in inputs get cast as tensors.
- Keras mask metadata is only collected from inputs.
- Layers are built (build(input_shape) method) using shape info from inputs only.
- input_spec compatibility is only checked against inputs.
- Mixed precision input casting is only applied to inputs. If a layer has tensor arguments in *args or **kwargs, their casting behavior in mixed precision should be handled manually.
- The SavedModel input specification is generated using inputs only.
- Integration with various ecosystem packages like TFMOT, TFLite, TF.js, etc is only supported for inputs and not for tensors in positional and keyword arguments.

• *args – Additional positional arguments. May contain tensors, although this is not recommended, for the reasons above.

• **kwargs – Additional keyword arguments. May contain tensors, although this is not recommended, for the reasons above. The following optional keyword arguments are reserved:
  - training: Boolean scalar tensor of Python boolean indicating whether the call is meant for training or inference.
  - mask: Boolean input mask. If the layer’s call() method takes a mask argument, its default value will be set to the mask generated for inputs by the previous layer (if input did come from a layer that generated a corresponding mask, i.e. if it came from a Keras layer with masking support).

Returns A tensor or list/tuple of tensors.

class WeightedLinearCombo(*args, **kwargs)
Computes a weighted linear combination of input layers, with the weights defined by trainable variables.

__init__(std=0.3, **kwargs)
Initialize this layer.

Parameters std (float, optional (default 0.3)) – The standard deviation to use when randomly initializing weights.

get_config()
Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be reinstated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers should make a copy of the returned dict if they want to modify it.

Returns Python dictionary.
```python
build(input_shape)
```

Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of `Layer` or `Model` can override if they need a state-creation step in-between layer instantiation and layer call. It is invoked automatically before the first execution of `call()`.

This is typically used to create the weights of `Layer` subclasses (at the discretion of the subclass implementer).

**Parameters**

- **input_shape** – Instance of `TensorShape`, or list of instances of `TensorShape` if the layer expects a list of inputs (one instance per input).

```python
call(inputs)
```

This is where the layer’s logic lives.

The `call()` method may not create state (except in its first invocation, wrapping the creation of variables or other resources in `tf.init_scope()`). It is recommended to create state, including `tf.Variable` instances and nested `Layer` instances,

in `__init__()`, or in the `build()` method that is called automatically before `call()` executes for the first time.

**Parameters**

- **inputs** – Input tensor, or dict/list/tuple of input tensors. The first positional `inputs` argument is subject to special rules: - `inputs` must be explicitly passed. A layer cannot have zero arguments, and `inputs` cannot be provided via the default value of a keyword argument.

  - NumPy array or Python scalar values in `inputs` get cast as tensors.
  - Keras mask metadata is only collected from `inputs`.
  - Layers are built (`build(input_shape)` method) using shape info from `inputs` only.
  - `input_spec` compatibility is only checked against `inputs`.
  - Mixed precision input casting is only applied to `inputs`. If a layer has tensor arguments in `*args` or `**kwargs`, their casting behavior in mixed precision should be handled manually.

  - The SavedModel input specification is generated using `inputs` only.

  - Integration with various ecosystem packages like TFMOT, TFLite, TF.js, etc is only supported for `inputs` and not for tensors in positional and keyword arguments.

- ***args** – Additional positional arguments. May contain tensors, although this is not recommended, for the reasons above.

- ****kwargs** – Additional keyword arguments. May contain tensors, although this is not recommended, for the reasons above. The following optional keyword arguments are reserved:

  - `training`: Boolean scalar tensor of Python boolean indicating whether the `call` is meant for training or inference.

  - `mask`: Boolean input mask. If the layer’s `call()` method takes a `mask` argument, its default value will be set to the mask generated for `inputs` by the previous layer (if `input` did come from a layer that generated a corresponding mask, i.e. if it came from a Keras layer with masking support).
Returns A tensor or list/tuple of tensors.

class CombineMeanStd(*args, **kwargs)

Generate Gaussian noise.

__init__(training_only=False, noise_epsilon=1.0, **kwargs)

Create a CombineMeanStd layer.

This layer should have two inputs with the same shape, and its output also has the same shape. Each element of the output is a Gaussian distributed random number whose mean is the corresponding element of the first input, and whose standard deviation is the corresponding element of the second input.

Parameters

- training_only (bool) – If True, noise is only generated during training. During prediction, the output is simply equal to the first input (that is, the mean of the distribution used during training).

- noise_epsilon (float) – The noise is scaled by this factor

get_config()

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be reinstated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers should make a copy of the returned dict if they want to modify it.

Returns Python dictionary.

call(inputs, training=True)

This is where the layer’s logic lives.

The call() method may not create state (except in its first invocation, wrapping the creation of variables or other resources in tf.init_scope()). It is recommended to create state, including tf.Variable instances and nested Layer instances,

in __init__(), or in the build() method that is
called automatically before call() executes for the first time.

Parameters

- inputs – Input tensor, or dict/list/tuple of input tensors. The first positional inputs argument is subject to special rules: - inputs must be explicitly passed. A layer cannot have zero arguments, and inputs cannot be provided via the default value of a keyword argument.

- NumPy array or Python scalar values in inputs get cast as tensors.

- Keras mask metadata is only collected from inputs.

- Layers are built (build(input_shape) method) using shape info from inputs only.

- input_spec compatibility is only checked against inputs.

- Mixed precision input casting is only applied to inputs. If a layer has tensor arguments in *args or **kwargs, their casting behavior in mixed precision should be handled manually.
– The SavedModel input specification is generated using inputs only.

– Integration with various ecosystem packages like TFMOT, TFLite, TF.js, etc is only supported for inputs and not for tensors in positional and keyword arguments.

• *args – Additional positional arguments. May contain tensors, although this is not recommended, for the reasons above.

• **kwargs – Additional keyword arguments. May contain tensors, although this is not recommended, for the reasons above. The following optional keyword arguments are reserved:
  - training: Boolean scalar tensor of Python boolean indicating whether the call is meant for training or inference.
  - mask: Boolean input mask. If the layer’s call() method takes a mask argument, its default value will be set to the mask generated for inputs by the previous layer (if input did come from a layer that generated a corresponding mask, i.e. if it came from a Keras layer with masking support).

Returns A tensor or list/tuple of tensors.

class Stack(*args, **kwargs)
Stack the inputs along a new axis.

get_config()

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers should make a copy of the returned dict if they want to modify it.

Returns Python dictionary.

call(inputs)

This is where the layer’s logic lives.

The call() method may not create state (except in its first invocation, wrapping the creation of variables or other resources in tf.init_scope()). It is recommended to create state, including tf.Variable instances and nested Layer instances,

    in __init__(), or in the build() method that is
called automatically before call() executes for the first time.

Parameters

• inputs – Input tensor, or dict/list/tuple of input tensors. The first positional inputs argument is subject to special rules: inputs must be explicitly passed. A layer cannot have zero arguments, and inputs cannot be provided via the default value of a keyword argument.

– NumPy array or Python scalar values in inputs get cast as tensors.

– Keras mask metadata is only collected from inputs.

– Layers are built (build(input_shape) method) using shape info from inputs only.
– *input_spec* compatibility is only checked against *inputs*.

– Mixed precision input casting is only applied to *inputs*. If a layer has tensor arguments in *args* or **kwargs, their casting behavior in mixed precision should be handled manually.

– The SavedModel input specification is generated using *inputs* only.

– Integration with various ecosystem packages like TFMOT, TFLite, TF.js, etc is only supported for *inputs* and not for tensors in positional and keyword arguments.

• *args – Additional positional arguments. May contain tensors, although this is not recommended, for the reasons above.

• **kwargs – Additional keyword arguments. May contain tensors, although this is not recommended, for the reasons above. The following optional keyword arguments are reserved:

  - training: Boolean scalar tensor of Python boolean indicating whether the *call* is meant for training or inference.

  – mask: Boolean input mask. If the layer’s *call* method takes a *mask* argument, its default value will be set to the mask generated for *inputs* by the previous layer (if *input* did come from a layer that generated a corresponding mask, i.e. if it came from a Keras layer with masking support).

**Returns** A tensor or list/tuple of tensors.

```python
class VinaFreeEnergy(*args, **kwargs)
```

Computes free-energy as defined by Autodock Vina.

TODO(rbharath): Make this layer support batching.

**get_config()**

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be reinstated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers should make a copy of the returned dict if they want to modify it.

**Returns** Python dictionary.

```python
build(input_shape)
```

Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-creation step in-between layer instantiation and layer call. It is invoked automatically before the first execution of *call*().

This is typically used to create the weights of Layer subclasses (at the discretion of the subclass implementer).

**Parameters** input_shape – Instance of TensorShape, or list of instances of TensorShape if the layer expects a list of inputs (one instance per input).

```python
nonlinearity(c, w)
```

Computes non-linearity used in Vina.
repulsion($d$)
  Computes Autodock Vina’s repulsion interaction term.

hydrophobic($d$)
  Computes Autodock Vina’s hydrophobic interaction term.

hydrogen_bond($d$)
  Computes Autodock Vina’s hydrogen bond interaction term.

gaussian_first($d$)
  Computes Autodock Vina’s first Gaussian interaction term.

gaussian_second($d$)
  Computes Autodock Vina’s second Gaussian interaction term.

call(inputs)

Parameters
  • $X$ (tf.Tensor of shape (N, d)) – Coordinates/features.
  • $Z$ (tf.Tensor of shape (N)) – Atomic numbers of neighbor atoms.

Returns layer – The free energy of each complex in batch

Return type tf.Tensor of shape (B)

class NeighborList(*args, **kwargs)
  Computes a neighbor-list in Tensorflow.

Neighbor-lists (also called Verlet Lists) are a tool for grouping atoms which are close to each other spatially. This layer computes a Neighbor List from a provided tensor of atomic coordinates. You can think of this as a general “k-means” layer, but optimized for the case $k==3$.

TODO(rbharath): Make this layer support batching.

__init__(N_atoms, M_nbrs, ndim, nbr_cutoff, start, stop, **kwargs)

Parameters
  • N_atoms (int) – Maximum number of atoms this layer will neighbor-list.
  • M_nbrs (int) – Maximum number of spatial neighbors possible for atom.
  • ndim (int) – Dimensionality of space atoms live in. (Typically 3D, but sometimes will want to use higher dimensional descriptors for atoms).
  • nbr_cutoff (float) – Length in Angstroms (?) at which atom boxes are gridded.

get_config()

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be reinstancitated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers should make a copy of the returned dict if they want to modify it.

Returns Python dictionary.
**call**(inputs)

This is where the layer’s logic lives.

The `call()` method may not create state (except in its first invocation, wrapping the creation of variables or other resources in `tf.init_scope()`). It is recommended to create state, including `tf.Variable` instances and nested `Layer` instances,

in `__init__()`, or in the `build()` method that is called automatically before `call()` executes for the first time.

**Parameters**

- **inputs** – Input tensor, or dict/list/tuple of input tensors. The first positional `inputs` argument is subject to special rules: - `inputs` must be explicitly passed. A layer cannot have zero arguments, and `inputs` cannot be provided via the default value of a keyword argument.
  - NumPy array or Python scalar values in `inputs` get cast as tensors.
  - Keras mask metadata is only collected from `inputs`.
  - Layers are built (`build(input_shape)` method) using shape info from `inputs` only.
  - `input_spec` compatibility is only checked against `inputs`.
  - Mixed precision input casting is only applied to `inputs`. If a layer has tensor arguments in `*args` or `**kwargs`, their casting behavior in mixed precision should be handled manually.
  - The SavedModel input specification is generated using `inputs` only.
  - Integration with various ecosystem packages like TFMOT, TFLite, TF.js, etc is only supported for `inputs` and not for tensors in positional and keyword arguments.

- ***args** – Additional positional arguments. May contain tensors, although this is not recommended, for the reasons above.

- ****kwargs** – Additional keyword arguments. May contain tensors, although this is not recommended, for the reasons above. The following optional keyword arguments are reserved:
  - `training`: Boolean scalar tensor of Python boolean indicating whether the `call` is meant for training or inference.
  - `mask`: Boolean input mask. If the layer’s `call()` method takes a `mask` argument, its default value will be set to the mask generated for `inputs` by the previous layer (if `input` did come from a layer that generated a corresponding mask, i.e. if it came from a Keras layer with masking support).

**Returns** A tensor or list/tuple of tensors.

**compute_nbr_list**(coords)

Get closest neighbors for atoms.

Needs to handle padding for atoms with no neighbors.

**Parameters** coords (**tf.Tensor**) – Shape (N_atoms, ndim)

**Returns** nbr_list – Shape (N_atoms, M_nbrs) of atom indices

**Return type** tf.Tensor

3.21. Layers

407
**get_atoms_in_nbrs**(*coords, cells*)
Get the atoms in neighboring cells for each cell.

**Return type** atoms_in_nbrs = (N_atoms, n_nbr_cells, M_nbrs)

**get_closest_atoms**(*coords, cells*)
For each cell, find M_nbrs closest atoms.

Let N_atoms be the number of atoms.

**Parameters**
- coords *(tf.Tensor)* – (N_atoms, ndim) shape.
- cells *(tf.Tensor)* – (n_cells, ndim) shape.

**Returns** closest_inds – Of shape (n_cells, M_nbrs)

**Return type** tf.Tensor

**get_cells_for_atoms**(*coords, cells*)
Compute the cells each atom belongs to.

**Parameters**
- coords *(tf.Tensor)* – Shape (N_atoms, ndim)
- cells *(tf.Tensor)* – (n_cells, ndim) shape.

**Returns** cells_for_atoms – Shape (N_atoms, 1)

**Return type** tf.Tensor

**get_neighbor_cells**(*cells*)
Compute neighbors of cells in grid.

# TODO(rbharath): Do we need to handle periodic boundary conditions properly here? # TODO(rbharath):
This doesn’t handle boundaries well. We hard-code # looking for n_nbr_cells neighbors, which isn’t right
for boundary cells in # the cube.

**Parameters** cells *(tf.Tensor)* – (n_cells, ndim) shape.

**Returns** nbr_cells – (n_cells, n_nbr_cells)

**Return type** tf.Tensor

**get_cells**()
Returns the locations of all grid points in box.

Suppose start is -10 Angstrom, stop is 10 Angstrom, nbr_cutoff is 1. Then would return a list of length
20^3 whose entries would be [(-10, -10, -10), (-10, -10, -9), ..., (9, 9, 9)]

**Returns** cells – (n_cells, ndim) shape.

**Return type** tf.Tensor

**class AtomicConvolution(**args, **kwargs**)**
Implements the atomic convolutional transform introduced in


At a high level, this transform performs a graph convolution on the nearest neighbors graph in 3D space.
__init__(atom_types=None, radial_params=[], boxsize=None, **kwargs)

Atomic convolution layer

N = max_num_atoms, M = max_num_neighbors, B = batch_size, d = num_features l = num_radial_filters * num_atom_types

Parameters

• atom_types (list or None) – Of length a, where a is number of atom types for filtering.
• radial_params (list) – Of length l, where l is number of radial filters learned.
• boxsize (float or None) – Simulation box length [Angstrom].

get_config()

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers should make a copy of the returned dict if they want to modify it.

Returns Python dictionary.

build(input_shape)

Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-creation step in-between layer instantiation and layer call. It is invoked automatically before the first execution of call().

This is typically used to create the weights of Layer subclasses (at the discretion of the subclass implementer).

Parameters input_shape – Instance of TensorShape, or list of instances of TensorShape if the layer expects a list of inputs (one instance per input).

call(inputs)

Parameters

• X (tf.Tensor of shape (B, N, d)) – Coordinates/features.
• Nbrs (tf.Tensor of shape (B, N, M)) – Neighbor list.
• Nbrs_Z (tf.Tensor of shape (B, N, M)) – Atomic numbers of neighbor atoms.

Returns layer – A new tensor representing the output of the atomic conv layer

Return type tf.Tensor of shape (B, N, l)

radial_symmetry_function(R, rc, rs, e)

Calculates radial symmetry function.

B = batch_size, N = max_num_atoms, M = max_num_neighbors, d = num_filters

Parameters

• R (tf.Tensor of shape (B, N, M)) – Distance matrix.
• rc (float) – Interaction cutoff [Angstrom].
• **rs** (*float*) – Gaussian distance matrix mean.
• **e** (*float*) – Gaussian distance matrix width.

**Returns** retval – Radial symmetry function (before summation)

**Return type** tf.Tensor of shape (B, N, M)

### radial_cutoff(R, rc)
Calculates radial cutoff matrix.

B = batch_size, N = max_num_atoms, M = max_num_neighbors

**Parameters**
- **R** *(tf.Tensor)* – Distance matrix.
- **N** *(tf.Tensor)* – Distance matrix.
- **M** *(tf.Tensor)* – Distance matrix.
- **rc** *(tf.Variable)* – Interaction cutoff [Angstrom].


**Return type** tf.Tensor

### gaussian_distance_matrix(R, rs, e)
Calculates gaussian distance matrix.

B = batch_size, N = max_num_atoms, M = max_num_neighbors

**Parameters**
- **R** *(tf.Tensor)* – Distance matrix.
- **N** *(tf.Tensor)* – Distance matrix.
- **M** *(tf.Tensor)* – Distance matrix.
- **rs** *(tf.Variable)* – Gaussian distance matrix mean.
- **e** *(tf.Variable)* – Gaussian distance matrix width (e = .5/std**2).


**Return type** tf.Tensor

### distance_tensor(X, Nbrs, boxsize, B, N, M, d)
Calculates distance tensor for batch of molecules.

B = batch_size, N = max_num_atoms, M = max_num_neighbors, d = num_features

**Parameters**
- **X** *(tf.Tensor of shape (B, N, d))* – Coordinates/features tensor.
- **Nbrs** *(tf.Tensor of shape (B, N, M))* – Neighbor list tensor.
- **boxsize** *(float or None)* – Simulation box length [Angstrom].

**Returns** D – Coordinates/features distance tensor.

**Return type** tf.Tensor of shape (B, N, M, d)
distance_matrix($D$)
Calculated the distance matrix from the distance tensor

$B = \text{batch}_\text{size}, N = \text{max}_\text{num}_\text{atoms}, M = \text{max}_\text{num}_\text{neighbors}, d = \text{num}_\text{features}$

**Parameters** $D$ (tf.Tensor of shape ($B$, $N$, $M$, $d$)) – Distance tensor.

**Returns** $R$ – Distance matrix.

**Return type** tf.Tensor of shape ($B$, $N$, $M$)

class AlphaShareLayer(*args, **kwargs)
Part of a sluice network. Adds alpha parameters to control sharing between the main and auxiliary tasks

Factory method AlphaShare should be used for construction

**Parameters** in_layers (list of Layers or tensors) – tensors in list must be the same size
and list must include two or more tensors

**Returns**

- **out_tensor** (a tensor with shape [len(in_layers), $x$, $y$] where $x$, $y$ were the original layer dimensions)
- Distance matrix.

get_config()
Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be reinitialized later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers should make a copy of the returned dict if they want to modify it.

**Returns** Python dictionary.

build(input_shape)
Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-creation step in-between layer instantiation and layer call. It is invoked automatically before the first execution of call().

This is typically used to create the weights of Layer subclasses (at the discretion of the subclass implementer).

**Parameters** input_shape – Instance of TensorShape, or list of instances of TensorShape if the layer expects a list of inputs (one instance per input).

call(inputs)
This is where the layer’s logic lives.

The call() method may not create state (except in its first invocation, wrapping the creation of variables or other resources in tf.init_scope()). It is recommended to create state, including tf.Variable instances and nested Layer instances,

in __init__(), or in the build() method that is called automatically before call() executes for the first time.

**Parameters**
- **inputs** – Input tensor, or dict/list/tuple of input tensors. The first positional inputs argument is subject to special rules: - inputs must be explicitly passed. A layer cannot have zero arguments, and inputs cannot be provided via the default value of a keyword argument.
  - NumPy array or Python scalar values in inputs get cast as tensors.
  - Keras mask metadata is only collected from inputs.
  - Layers are built (build(input_shape) method) using shape info from inputs only.
  - input_spec compatibility is only checked against inputs.
  - Mixed precision input casting is only applied to inputs. If a layer has tensor arguments in *args or **kwargs, their casting behavior in mixed precision should be handled manually.
  - The SavedModel input specification is generated using inputs only.
  - Integration with various ecosystem packages like TFMOT, TFLite, TF.js, etc is only supported for inputs and not for tensors in positional and keyword arguments.

- *args – Additional positional arguments. May contain tensors, although this is not recommended, for the reasons above.

- **kwargs – Additional keyword arguments. May contain tensors, although this is not recommended, for the reasons above. The following optional keyword arguments are reserved:
  - training: Boolean scalar tensor of Python boolean indicating whether the call is meant for training or inference.
  - mask: Boolean input mask. If the layer’s call() method takes a mask argument, its default value will be set to the mask generated for inputs by the previous layer (if input did come from a layer that generated a corresponding mask, i.e. if it came from a Keras layer with masking support).

**Returns** A tensor or list/tuple of tensors.

class SluiceLoss(*args, **kwargs)
Calculates the loss in a Sluice Network Every input into an AlphaShare should be used in SluiceLoss

get_config()
Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be reinstated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers should make a copy of the returned dict if they want to modify it.

**Returns** Python dictionary.
call(inputs)
This is where the layer’s logic lives.

The call() method may not create state (except in its first invocation, wrapping the creation of variables or other resources in tf.init_scope()). It is recommended to create state, including tf.Variable instances and nested Layer instances,
in \_\_init\_(), or in the build() method that is
called automatically before call() executes for the first time.

Parameters

- **inputs** – Input tensor, or dict/list/tuple of input tensors. The first positional inputs argument is subject to special rules: - inputs must be explicitly passed. A layer cannot have zero arguments, and inputs cannot be provided via the default value of a keyword argument.
  - NumPy array or Python scalar values in inputs get cast as tensors.
  - Keras mask metadata is only collected from inputs.
  - Layers are built (build(input_shape) method) using shape info from inputs only.
  - input spec compatibility is only checked against inputs.
  - Mixed precision input casting is only applied to inputs. If a layer has tensor arguments in *args or **kwargs, their casting behavior in mixed precision should be handled manually.
  - The SavedModel input specification is generated using inputs only.
  - Integration with various ecosystem packages like TFMOT, TFLite, TF.js, etc is only supported for inputs and not for tensors in positional and keyword arguments.

- ***args** – Additional positional arguments. May contain tensors, although this is not recommended, for the reasons above.

- ****kwargs – Additional keyword arguments. May contain tensors, although this is not recommended, for the reasons above. The following optional keyword arguments are reserved:
  - training: Boolean scalar tensor of Python boolean indicating whether the call is meant for training or inference.
  - mask: Boolean input mask. If the layer’s call() method takes a mask argument, its default value will be set to the mask generated for inputs by the previous layer (if input did come from a layer that generated a corresponding mask, i.e. if it came from a Keras layer with masking support).

Returns A tensor or list/tuple of tensors.

**class BetaShare(*args, **kwargs)**
Part of a sluice network. Adds beta params to control which layer outputs are used for prediction

**Parameters** in_layers (list of Layers or tensors) – tensors in list must be the same size and list must include two or more tensors

**Returns** output_layers – Distance matrix.

**Return type** list of Layers or tensors with same size as in_layers

**get_config()**

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be reinstated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled by Network (one layer of abstraction above).
Note that `get_config()` does not guarantee to return a fresh copy of dict every time it is called. The callers should make a copy of the returned dict if they want to modify it.

**Returns** Python dictionary.

`build(input_shape)`

Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of `Layer` or `Model` can override if they need a state-creation step in-between layer instantiation and layer call. It is invoked automatically before the first execution of `call()`.

This is typically used to create the weights of `Layer` subclasses (at the discretion of the subclass implementer).

**Parameters**

- **input_shape** – Instance of `TensorShape`, or list of instances of `TensorShape` if the layer expects a list of inputs (one instance per input).

`call(inputs)`

Size of input layers must all be the same.

**class ANIFeat(*args, **kwargs)**

Performs transform from 3D coordinates to ANI symmetry functions.

**__init__(**max_atoms=23, radial_cutoff=4.6, angular_cutoff=3.1, radial_length=32, angular_length=8, atom_cases=[1, 6, 7, 8, 16], atomic_number_differentiated=True, coordinates_in_bohr=True, **kwargs)**

Only X can be transformed

`get_config()`

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be reinstated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled by `Network` (one layer of abstraction above).

Note that `get_config()` does not guarantee to return a fresh copy of dict every time it is called. The callers should make a copy of the returned dict if they want to modify it.

**Returns** Python dictionary.

`call(inputs)`

In layers should be of shape dtype `tf.float32`, (None, self.max_atoms, 4)

`distance_matrix(coordinates, flags)`

Generate distance matrix

`distance_cutoff(d, cutoff, flags)`

Generate distance matrix with trainable cutoff

`radial_symmetry(d_cutoff, d, atom_numbers)`

Radial Symmetry Function

`angular_symmetry(d_cutoff, d, atom_numbers, coordinates)`

Angular Symmetry Function
class GraphEmbedPoolLayer(*args, **kwargs)

GraphCNNPool Layer from Robust Spatial Filtering with Graph Convolutional Neural Networks https://arxiv.org/abs/1703.00792

This is a learnable pool operation. It constructs a new adjacency matrix for a graph of specified number of nodes. This differs from our other pool operations which set vertices to a function value without altering the adjacency matrix.

..math:: V_{emb} = \text{SpatialGraphCNN}(V_{in})
..math:: V_{out} = \sigma(V_{emb})^T \cdot V_{in}
..math:: A_{out} = V_{emb}^T \cdot A_{in} \cdot V_{emb}

get_config()

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be re-instantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers should make a copy of the returned dict if they want to modify it.

Returns Python dictionary.

build(input_shape)

Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-creation step in-between layer instantiation and layer call. It is invoked automatically before the first execution of call().

This is typically used to create the weights of Layer subclasses (at the discretion of the subclass implementer).

Parameters input_shape – Instance of TensorShape, or list of instances of TensorShape if the layer expects a list of inputs (one instance per input).

call(inputs)

Parameters

• num_filters (int) – Number of filters to have in the output
• in_layers (list of Layers or tensors) – [V, A, mask] V are the vertex features must be of shape (batch, vertex, channel)
• graph (A are the adjacency matrixes for each) – Shape (batch, from_vertex, adj_matrix, to_vertex)
• optional (mask is)
• the (to be used when not every graph has)
• vertices (same number of)

Returns

• Returns a tf.tensor with a graph convolution applied
• The shape will be (batch, vertex, self.num_filters).
class GraphCNN(*args, **kwargs)

GraphCNN Layer from Robust Spatial Filtering with Graph Convolutional Neural Networks https://arxiv.org/abs/1703.00792

Spatial-domain convolutions can be defined as $H = h_0I + h_1A + h_2A^2 + \ldots + h_kA^k$, $H \in \mathbb{R}^{(N \times N)}$

We approximate it by $H = h_0I + h_1A$

We can define a convolution as applying multiple these linear filters over edges of different types (think up, down, left, right, diagonal in images) Where each edge type has its own adjacency matrix $H = h_0I + h_1A_1 + h_2A_2 + \ldots h_{(L1)}A_{(L1)}$

$V_{out} = \sum_{c=1}^{C} H^c V^c + b$

__init__(num_filters, **kwargs)

Parameters

- **num_filters** (int) – Number of filters to have in the output
- **in_layers** (list of Layers or tensors) – [V, A, mask] V are the vertex features must be of shape (batch, vertex, channel)
- **graph** (A are the adjacency matrixes for each) – Shape (batch, from_vertex, adj_matrix, to_vertex)
- **optional** (mask is)
- **the** (to be used when not every graph has)
- **vertices** (same number of)
- **Returns** (tf.tensor)

/applied(Returns a tf.tensor with a graph convolution) –

(batch (The shape will be) –

vertex –

self.num_filters) –

get_config()

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers should make a copy of the returned dict if they want to modify it.

Returns Python dictionary.

build(input_shape)

Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-creation step in-between layer instantiation and layer call. It is invoked automatically before the first execution of call().

This is typically used to create the weights of Layer subclasses (at the discretion of the subclass implementer).
Parameters

**input_shape** – Instance of `TensorShape`, or list of instances of `TensorShape` if the layer expects a list of inputs (one instance per input).

call(inputs)

This is where the layer’s logic lives.

The `call()` method may not create state (except in its first invocation, wrapping the creation of variables or other resources in `tf.init_scope()`). It is recommended to create state, including `tf.Variable` instances and nested `Layer` instances,

in `__init__()`, or in the `build()` method that is called automatically before `call()` executes for the first time.

Parameters

- **inputs** – Input tensor, or dict/list/tuple of input tensors. The first positional `inputs` argument is subject to special rules: - `inputs` must be explicitly passed. A layer cannot have zero arguments, and `inputs` cannot be provided via the default value of a keyword argument.
  - NumPy array or Python scalar values in `inputs` get cast as tensors.
  - Keras mask metadata is only collected from `inputs`.
  - Layers are built (`build(input_shape)` method) using shape info from `inputs` only.
  - `input_spec` compatibility is only checked against `inputs`.
  - Mixed precision input casting is only applied to `inputs`. If a layer has tensor arguments in `*args` or `**kwargs`, their casting behavior in mixed precision should be handled manually.
  - The SavedModel input specification is generated using `inputs` only.
  - Integration with various ecosystem packages like TFMOT, TFLite, TF.js, etc is only supported for `inputs` and not for tensors in positional and keyword arguments.

- ***args** – Additional positional arguments. May contain tensors, although this is not recommended, for the reasons above.

- ****kwargs** – Additional keyword arguments. May contain tensors, although this is not recommended, for the reasons above. The following optional keyword arguments are reserved:
  - `training`: Boolean scalar tensor of Python boolean indicating whether the `call` is meant for training or inference.
  - `mask`: Boolean input mask. If the layer’s `call()` method takes a `mask` argument, its default value will be set to the mask generated for `inputs` by the previous layer (if `input` did come from a layer that generated a corresponding mask, i.e. if it came from a Keras layer with masking support).

Returns

A tensor or list/tuple of tensors.

class Highway(*args, **kwargs)

Create a highway layer. $y = H(x) \cdot T(x) + x \cdot (1 - T(x))$

$H(x) = \text{activation\_fn(matmul}(W_H, x) + b_H)$ is the non-linear transformed output $T(x) = \text{sigmoid(matmul}(W_T, x) + b_T)$ is the transform gate

Implementation based on paper

This layer expects its input to be a two dimensional tensor of shape (batch size, # input features). Outputs will be in the same shape.

```python
__init__(activation_fn='relu', biases_initializer='zeros', weights_initializer=None, **kwargs)
```

**Parameters**

- `activation_fn (object)` – the Tensorflow activation function to apply to the output
- `biases_initializer (callable object)` – the initializer for bias values. This may be None, in which case the layer will not include biases.
- `weights_initializer (callable object)` – the initializer for weight values

**get_config()**

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be reinstatiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled by Network (one layer of abstraction above).

Note that `get_config()` does not guarantee to return a fresh copy of dict every time it is called. The callers should make a copy of the returned dict if they want to modify it.

**Returns** Python dictionary.

**build(input_shape)**

Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of `Layer` or `Model` can override if they need a state-creation step in-between layer instantiation and layer call. It is invoked automatically before the first execution of `call()`.

This is typically used to create the weights of `Layer` subclasses (at the discretion of the subclass implementer).

**Parameters** `input_shape` – Instance of `TensorShape`, or list of instances of `TensorShape` if the layer expects a list of inputs (one instance per input).

**call(inputs)**

This is where the layer’s logic lives.

The `call()` method may not create state (except in its first invocation, wrapping the creation of variables or other resources in `tf.init_scope()`). It is recommended to create state, including `tf.Variable` instances and nested `Layer` instances,

```
 in __init__(), or in the build() method that is called automatically before call() executes for the first time.
```

**Parameters**

- `inputs` – Input tensor, or dict/list/tuple of input tensors. The first positional `inputs` argument is subject to special rules: - `inputs` must be explicitly passed. A layer cannot have zero arguments, and `inputs` cannot be provided via the default value of a keyword argument.

  - NumPy array or Python scalar values in `inputs` get cast as tensors.
- Keras mask metadata is only collected from inputs.
- Layers are built (build(input_shape) method) using shape info from inputs only.
- input_spec compatibility is only checked against inputs.
- Mixed precision input casting is only applied to inputs. If a layer has tensor arguments in *args or **kwargs, their casting behavior in mixed precision should be handled manually.
- The SavedModel input specification is generated using inputs only.
- Integration with various ecosystem packages like TFMOT, TFLite, TF.js, etc is only supported for inputs and not for tensors in positional and keyword arguments.

*args – Additional positional arguments. May contain tensors, although this is not recommended, for the reasons above.

**kwargs – Additional keyword arguments. May contain tensors, although this is not recommended, for the reasons above. The following optional keyword arguments are reserved:
- training: Boolean scalar tensor of Python boolean indicating whether the call is meant for training or inference.
- mask: Boolean input mask. If the layer’s call() method takes a mask argument, its default value will be set to the mask generated for inputs by the previous layer (if input did come from a layer that generated a corresponding mask, i.e. if it came from a Keras layer with masking support).

Returns A tensor or list/tuple of tensors.

class WeaveLayer(*args, **kwargs)
This class implements the core Weave convolution from the Google graph convolution paper [1].
This model contains atom features and bond features separately. Here, bond features are also called pair features. There are 2 types of transformation, atom->atom, atom->pair, pair->atom, pair->pair that this model implements.

Examples
This layer expects 4 inputs in a list of the form [atom_features, pair_features, pair_split, atom_to_pair]. We’ll walk through the structure of these inputs. Let’s start with some basic definitions.

```python
>>> import deepchem as dc
>>> import numpy as np
```

Suppose you have a batch of molecules

```python
>>> smiles = ['CCC', 'C']
```

Note that there are 4 atoms in total in this system. This layer expects its input molecules to be batched together.

```python
>>> total_n_atoms = 4
```

Let’s suppose that we have a featurizer that computes n_atom_feat features per atom.

```python
>>> n_atom_feat = 75
```
Then conceptually, `atom_feat` is the array of shape \((total_n\_atoms, n\_atom\_feat)\) of atomic features. For simplicity, let’s just go with a random such matrix.

```python
>>> atom_feat = np.random.rand(total_n_atoms, n_atom_feat)
```

Let’s suppose we have `n_pair_feat` pairwise features

```python
>>> n_pair_feat = 14
```

For each molecule, we compute a matrix of shape \((n\_atoms\times n\_atoms, n\_pair\_feat)\) of pairwise features for each pair of atoms in the molecule. Let’s construct this conceptually for our example.

```python
>>> pair_feat = [np.random.rand(3*3, n_pair_feat), np.random.rand(1*1, n_pair_feat)]
>>> pair_feat = np.concatenate(pair_feat, axis=0)
```

```
>>> pair_feat.shape
(10, 14)
```

`pair_split` is an index into `pair_feat` which tells us which atom each row belongs to. In our case, we have

```python
>>> pair_split = np.array([0, 0, 0, 1, 1, 1, 2, 2, 2, 3])
```

That is, the first 9 entries belong to “CCC” and the last entry to “C”. The final entry `atom_to_pair` goes in a little more in-depth than `pair_split` and tells us the precise pair each pair feature belongs to. In our case

```python
>>> atom_to_pair = np.array([[0, 0],
 ...
 [0, 1],
 ...
 [0, 2],
 ...
 [1, 0],
 ...
 [1, 1],
 ...
 [1, 2],
 ...
 [2, 0],
 ...
 [2, 1],
 ...
 [2, 2],
 ...
 [3, 3]])
```

Let’s now define the actual layer

```python
>>> layer = WeaveLayer()
```

And invoke it

```python
>>> [A, P] = layer([atom_feat, pair_feat, pair_split, atom_to_pair])
```

The weave layer produces new atom/pair features. Let’s check their shapes

```python
>>> A = np.array(A)
>>> A.shape
(4, 50)
```

```python
>>> P = np.array(P)
>>> P.shape
(10, 50)
```

The 4 is `total_num_atoms` and the 10 is the total number of pairs. Where does 50 come from? It’s from the default arguments `n_atom_input_feat` and `n_pair_input_feat`. 

420 Chapter 3. About Us
```python
__init__(n_atom_input_feat: int = 75, n_pair_input_feat: int = 14, n_atom_output_feat: int = 50,
 50, n_hidden_PP: int = 50, update_pair: bool = True, init: str = 'glorot_uniform', activation: str =
 'relu', batch_normalize: bool = True, batch_normalize_kwargs: Dict = {'renorm': True},
 **kwargs)
```

**Parameters**

- `n_atom_input_feat (int, optional (default 75))` – Number of features for each atom in input.
- `n_pair_input_feat (int, optional (default 14))` – Number of features for each pair of atoms in input.
- `n_atom_output_feat (int, optional (default 50))` – Number of features for each atom in output.
- `n_pair_output_feat (int, optional (default 50))` – Number of features for each pair of atoms in output.
- `n_hidden_AA (int, optional (default 50))` – Number of units (convolution depths) in corresponding hidden layer
- `n_hidden_PA (int, optional (default 50))` – Number of units (convolution depths) in corresponding hidden layer
- `n_hidden_AP (int, optional (default 50))` – Number of units (convolution depths) in corresponding hidden layer
- `n_hidden_PP (int, optional (default 50))` – Number of units (convolution depths) in corresponding hidden layer
- `update_pair (bool, optional (default True))` – Whether to calculate for pair features, could be turned off for last layer
- `init (str, optional (default 'glorot_uniform'))` – Weight initialization for filters.
- `activation (str, optional (default 'relu'))` – Activation function applied
- `batch_normalize (bool, optional (default True))` – If this is turned on, apply batch normalization before applying activation functions on convolutional layers.
- `batch_normalize_kwargs (Dict, optional (default {'renorm': True}))` – Batch normalization is a complex layer which has many potential arguments which change behavior. This layer accepts user-defined parameters which are passed to all BatchNormalization layers in WeaveModel, WeaveLayer, and WeaveGather.

**get_config() → Dict**

Returns config dictionary for this layer.

**build(input_shape)**

Construct internal trainable weights.

**Parameters** `input_shape` (tuple) – Ignored since we don’t need the input shape to create internal weights.

**call(inputs: List) → List**

Creates weave tensors.
Parameters **inputs** (List) – Should contain 4 tensors [atom_features, pair_features, pair_split, atom_to_pair]

class WeaveGather(*args, **kwargs)
    Implements the weave-gathering section of weave convolutions.
    Implements the gathering layer from [1]. The weave gathering layer gathers per-atom features to create a molecule-level fingerprint in a weave convolutional network. This layer can also performs Gaussian histogram expansion as detailed in [1]. Note that the gathering function here is simply addition as in [1].

Examples

This layer expects 2 inputs in a list of the form [atom_features, pair_features]. We'll walk through the structure of these inputs. Let's start with some basic definitions.

```python
>>> import deepchem as dc
>>> import numpy as np
```

Suppose you have a batch of molecules

```python
>>> smiles = ["CCC", "C"]
```

Note that there are 4 atoms in total in this system. This layer expects its input molecules to be batched together.

```python
>>> total_n_atoms = 4
```

Let's suppose that we have \(n_{\text{atom feat}}\) features per atom.

```python
>>> n_atom_feat = 75
```

Then conceptually, \(atom\_feat\) is the array of shape \((total\_n\_atoms, n\_atom\_feat)\) of atomic features. For simplicity, let's just go with a random such matrix.

```python
>>> atom_feat = np.random.rand(total_n_atoms, n_atom_feat)
```

We then need to provide a mapping of indices to the atoms they belong to. In ours case this would be

```python
>>> atom_split = np.array([0, 0, 0, 1])
```

Let's now define the actual layer

```python
>>> gather = WeaveGather(batch_size=2, n_input=n_atom_feat)
>>> output_molecules = gather([atom_feat, atom_split])
>>> len(output_molecules)
2
```

Parameters

- **batch_size** (int) – number of molecules in a batch
- **n_input** (int, optional (default 128)) – number of features for each input molecule
- **gaussian_expand** (boolean, optional (default True)) – Whether to expand each dimension of atomic features by gaussian histogram
- **compress_post_gaussian_expansion** (bool, optional (default False)) – If True, compress the results of the Gaussian expansion back to the original dimensions of the input by using a linear layer with specified activation function. Note that this compression was not in the original paper, but was present in the original DeepChem implementation so is left present for backwards compatibility.
- **init** (str, optional (default 'glorot_uniform')) – Weight initialization for filters if compress_post_gaussian_expansion is True.
- **activation** (str, optional (default 'tanh')) – Activation function applied for filters if compress_post_gaussian_expansion is True. Should be recognizable by tf.keras.activations.

get_config()

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers should make a copy of the returned dict if they want to modify it.

Returns Python dictionary.

build(input_shape)

Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-creation step in-between layer instantiation and layer call. It is invoked automatically before the first execution of call().

This is typically used to create the weights of Layer subclasses (at the discretion of the subclass implementer).

Parameters input_shape – Instance of TensorShape, or list of instances of TensorShape if the layer expects a list of inputs (one instance per input).
call(inputs: List) → List

Creates weave tensors.

Parameters inputs (List) – Should contain 2 tensors [atom_features, atom_split]

Returns output_molecules – Each entry in this list is of shape (self.n_inputs,)

Return type List

gaussian_histogram(x)

Expands input into a set of gaussian histogram bins.

Parameters x (tf.Tensor) – Of shape (N, n_feat)

Examples

This method uses 11 bins spanning portions of a Gaussian with zero mean and unit standard deviation.

```python
>>> gaussian_memberships = [(-1.645, 0.283), (-1.080, 0.170), ...
 (-0.739, 0.134), (-0.468, 0.118), ...
 (-0.228, 0.114), (0., 0.114), ...
 (0.228, 0.114), (0.468, 0.118), ...
 (0.739, 0.134), (1.080, 0.170), ...
 (1.645, 0.283)]
```

We construct a Gaussian at `gaussian_memberships[i][0]` with standard deviation `gaussian_memberships[i][1]`. Each feature in `x` is assigned the probability of falling in each Gaussian, and probabilities are normalized across the 11 different Gaussians.

Returns outputs – Of shape (N, 11*n_feat)

Return type tf.Tensor

class DTNNEmbedding(*args, **kwargs)

__init__(n_embedding=30, periodic_table_length=30, init='glorot_uniform', **kwargs)

Parameters

- n_embedding (int, optional) – Number of features for each atom
- periodic_table_length (int, optional) – Length of embedding, 83=Bi
- init (str, optional) – Weight initialization for filters.

get_config()

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers should make a copy of the returned dict if they want to modify it.

Returns Python dictionary.
build(input_shape)

Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-creation step in-between layer instantiation and layer call. It is invoked automatically before the first execution of call().

This is typically used to create the weights of Layer subclasses (at the discretion of the subclass implementer).

Parameters

input_shape – Instance of TensorShape, or list of instances of TensorShape if the layer expects a list of inputs (one instance per input).

call(inputs)

parent layers: atom_number

class DTNNStep(*args, **kwargs)

__init__(n_embedding=30, n_distance=100, n_hidden=60, init='glorot_uniform', activation='tanh', **kwargs)

Parameters

• n_embedding (int, optional) – Number of features for each atom
• n_distance (int, optional) – granularity of distance matrix
• n_hidden (int, optional) – Number of nodes in hidden layer
• init (str, optional) – Weight initialization for filters.
• activation (str, optional) – Activation function applied

get_config()

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be reinstanciated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers should make a copy of the returned dict if they want to modify it.

Returns

Python dictionary.

build(input_shape)

Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-creation step in-between layer instantiation and layer call. It is invoked automatically before the first execution of call().

This is typically used to create the weights of Layer subclasses (at the discretion of the subclass implementer).

Parameters

input_shape – Instance of TensorShape, or list of instances of TensorShape if the layer expects a list of inputs (one instance per input).

call(inputs)

parent layers: atom_features, distance, distance_membership_i, distance_membership_j
class DTNNGather(*args, **kwargs)

    __init__(n_embedding=30, n_outputs=100, layer_sizes=[100], output_activation=True,
             init='glorot_uniform', activation='tanh', **kwargs)

Parameters

* n_embedding (int, optional) – Number of features for each atom
* n_outputs (int, optional) – Number of features for each molecule(output)
* layer_sizes (list of int, optional(default=[100])) – Structure of hidden layer(s)
* init (str, optional) – Weight initialization for filters.
* activation (str, optional) – Activation function applied

get_config()

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers should make a copy of the returned dict if they want to modify it.

Returns Python dictionary.

build(input_shape)

Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-creation step in-between layer instantiation and layer call. It is invoked automatically before the first execution of call().

This is typically used to create the weights of Layer subclasses (at the discretion of the subclass implementer).

Parameters input_shape – Instance of TensorShape, or list of instances of TensorShape if the layer expects a list of inputs (one instance per input).

call(inputs)

    parent layers: atom_features, atom_membership

class DAGLayer(*args, **kwargs)

DAG computation layer.

This layer generates a directed acyclic graph for each atom in a molecule. This layer is based on the algorithm from the following paper:


This layer performs a sort of inward sweep. Recall that for each atom, a DAG is generated that “points inward” to that atom from the undirected molecule graph. Picture this as “picking up” the atom as the vertex and using the natural tree structure that forms from gravity. The layer “sweeps inwards” from the leaf nodes of the DAG upwards to the atom. This is batched so the transformation is done for each atom.
__init__(n_graph_feat=30, n_atom_feat=75, max_atoms=50, layer_sizes=[100], init='glorot_uniform', activation='relu', dropout=None, batch_size=64, **kwargs)

Parameters

- **n_graph_feat** (int, optional) – Number of features for each node (and the whole graph).
- **n_atom_feat** (int, optional) – Number of features listed per atom.
- **max_atoms** (int, optional) – Maximum number of atoms in molecules.
- **layer_sizes** (list of int, optional (default=[100])) – List of hidden layer size(s): length of this list represents the number of hidden layers, and each element is the width of corresponding hidden layer.
- **init** (str, optional) – Weight initialization for filters.
- **activation** (str, optional) – Activation function applied.
- **dropout** (float, optional) – Dropout probability in hidden layer(s).
- **batch_size** (int, optional) – Number of molecules in a batch.

get_config()

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be reinitialized later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers should make a copy of the returned dict if they want to modify it.

Returns Python dictionary.

build(input_shape)

“Construct internal trainable weights.

call(inputs, training=True)

parent layers: atom_features, parents, calculation_orders, calculation_masks, n_atoms

class DAGGather(*args, **kwargs)

__init__(n_graph_feat=30, n_outputs=30, max_atoms=50, layer_sizes=[100], init='glorot_uniform', activation='relu', dropout=None, **kwargs)

DAG vector gathering layer

Parameters

- **n_graph_feat** (int, optional) – Number of features for each atom.
- **n_outputs** (int, optional) – Number of features for each molecule.
- **max_atoms** (int, optional) – Maximum number of atoms in molecules.
- **layer_sizes** (list of int, optional) – List of hidden layer size(s): length of this list represents the number of hidden layers, and each element is the width of corresponding hidden layer.
- **init** (str, optional) – Weight initialization for filters.
- **activation** (str, optional) – Activation function applied.
• dropout (float, optional) – Dropout probability in the hidden layer(s).

get_config()

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers should make a copy of the returned dict if they want to modify it.

Returns Python dictionary.

build(input_shape)

Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-creation step in-between layer instantiation and layer call. It is invoked automatically before the first execution of call().

This is typically used to create the weights of Layer subclasses (at the discretion of the subclass implementer).

Parameters

input_shape – Instance of TensorShape, or list of instances of TensorShape if the layer expects a list of inputs (one instance per input).

call(inputs, training=True)

Parameters

input_shape

parent layers: atom_features, membership
class MessagePassing(*args, **kwargs)

General class for MPNN default structures built according to https://arxiv.org/abs/1511.06391

__init__(T, message_fn='enn', update_fn='gru', n_hidden=100, **kwargs)

Parameters

• T (int) – Number of message passing steps
• message_fn (str, optional) – message function in the model
• update_fn (str, optional) – update function in the model
• n_hidden (int, optional) – number of hidden units in the passing phase

get_config()

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers should make a copy of the returned dict if they want to modify it.

Returns Python dictionary.
build(input_shape)

Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-creation step in-between layer instantiation and layer call. It is invoked automatically before the first execution of call().

This is typically used to create the weights of Layer subclasses (at the discretion of the subclass implementer).

Parameters input_shape – Instance of TensorShape, or list of instances of TensorShape if the layer expects a list of inputs (one instance per input).

call(inputs)

This is where the layer’s logic lives.

The call() method may not create state (except in its first invocation, wrapping the creation of variables or other resources in tf.init_scope()). It is recommended to create state, including tf.Variable instances and nested Layer instances,

in __init__(), or in the build() method that is called automatically before call() executes for the first time.

Parameters

• inputs – Input tensor, or dict/list/tuple of input tensors. The first positional inputs argument is subject to special rules: - inputs must be explicitly passed. A layer cannot have zero
arguments, and inputs cannot be provided via the default value of a keyword argument.

- NumPy array or Python scalar values in inputs get cast as tensors.
- Keras mask metadata is only collected from inputs.
- Layers are built (build(input_shape) method) using shape info from inputs only.
- input_spec compatibility is only checked against inputs.
- Mixed precision input casting is only applied to inputs. If a layer has tensor arguments in *args or **kwargs, their casting behavior in mixed precision should be handled manually.
- The SavedModel input specification is generated using inputs only.
- Integration with various ecosystem packages like TFMOT, TFLite, TF.js, etc is only supported for inputs and not for tensors in positional and keyword arguments.

- **kwargs – Additional keyword arguments. May contain tensors, although this is not recommended, for the reasons above.

The following optional keyword arguments are reserved:
- training: Boolean scalar tensor of Python boolean indicating whether the call is meant for training or inference.
- mask: Boolean input mask. If the layer’s call() method takes a mask argument, its default value will be set to the mask generated for inputs by the previous layer (if input did come from a layer that generated a corresponding mask, i.e. if it came from a Keras layer with masking support).

Returns A tensor or list/tuple of tensors.

class GatedRecurrentUnit(*args, **kwargs)
Submodule for Message Passing

get_config()
Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be re-instantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers should make a copy of the returned dict if they want to modify it.

Returns Python dictionary.

build(input_shape)
Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-creation step in-between layer instantiation and layer call. It is invoked automatically before the first execution of call().

This is typically used to create the weights of Layer subclasses (at the discretion of the subclass implemen-
Parameters **input_shape** – Instance of `TensorShape`, or list of instances of `TensorShape` if the layer expects a list of inputs (one instance per input).

```python
call(inputs)
```
This is where the layer’s logic lives.

The `call()` method may not create state (except in its first invocation, wrapping the creation of variables or other resources in `tf.init_scope()`). It is recommended to create state, including `tf.Variable` instances and nested `Layer` instances,

in `__init__()`, or in the `build()` method that is called automatically before `call()` executes for the first time.

Parameters

- **inputs** – Input tensor, or dict/list/tuple of input tensors. The first positional `inputs` argument is subject to special rules: - `inputs` must be explicitly passed. A layer cannot have zero arguments, and `inputs` cannot be provided via the default value of a keyword argument.

  - NumPy array or Python scalar values in `inputs` get cast as tensors.

  - Keras mask metadata is only collected from `inputs`.

  - Layers are built (`build(input_shape)` method) using shape info from `inputs` only.

  - `input_spec` compatibility is only checked against `inputs`.

  - Mixed precision input casting is only applied to `inputs`. If a layer has tensor arguments in `*args` or `**kwargs`, their casting behavior in mixed precision should be handled manually.

  - The SavedModel input specification is generated using `inputs` only.

  - Integration with various ecosystem packages like TFMOT, TFLite, TF.js, etc is only supported for `inputs` and not for tensors in positional and keyword arguments.

- `*args` – Additional positional arguments. May contain tensors, although this is not recommended, for the reasons above.

- `**kwargs` – Additional keyword arguments. May contain tensors, although this is not recommended, for the reasons above. The following optional keyword arguments are reserved:

  - `training`: Boolean scalar tensor of Python boolean indicating whether the `call` is meant for training or inference.

  - `mask`: Boolean input mask. If the layer’s `call()` method takes a `mask` argument, its default value will be set to the mask generated for `inputs` by the previous layer (if `input` did come from a layer that generated a corresponding mask, i.e. if it came from a Keras layer with masking support).

Returns A tensor or list/tuple of tensors.

```python
class SetGather(*args, **kwargs)
```
set2set gather layer for graph-based model

Models using this layer must set `pad_batches=True`. 

3.21. Layers 431
__init__(M, batch_size, n_hidden=100, init='orthogonal', **kwargs)

Parameters

- M (int) – Number of LSTM steps
- batch_size (int) – Number of samples in a batch (all batches must have same size)
- n_hidden (int, optional) – number of hidden units in the passing phase

get_config()

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers should make a copy of the returned dict if they want to modify it.

Returns Python dictionary.

build(input_shape)

Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-creation step in-between layer instantiation and layer call. It is invoked automatically before the first execution of call().

This is typically used to create the weights of Layer subclasses (at the discretion of the subclass implementer).

Parameters input_shape – Instance of TensorShape, or list of instances of TensorShape if the layer expects a list of inputs (one instance per input).

call(inputs)

Perform M steps of set2set gather,

Detailed descriptions in: https://arxiv.org/abs/1511.06391

3.21.3 Torch Layers

class MultilayerPerceptron(d_input: int, d_output: int, d_hidden: Optional[tuple] = None, dropout: float = 0.0, batch_norm: bool = False, batch_norm_momentum: float = 0.1, activation_fn: Union[Callable, str] = 'relu', skip_connection: bool = False, weighted_skip: bool = True)

A simple fully connected feed-forward network, otherwise known as a multilayer perceptron (MLP).
Examples

```python
>>> model = MultilayerPerceptron(d_input=10, d_hidden=(2, 3), d_output=2, dropout=0.,
activation_fn='relu')
>>> x = torch.ones(2, 10)
>>> out = model(x)
>>> print(out.shape)
torch.Size([2, 2])
```

```
__init__
(d_input: int, d_output: int, d_hidden: Optional[tuple] = None, dropout: float = 0.0, batch_norm: bool = False, batch_norm_momentum: float = 0.1, activation_fn: Union[Callable, str] = 'relu', skip_connection: bool = False, weighted_skip: bool = True)
```

Initialize the model.

**Parameters**

- **d_input** (int) – the dimension of the input layer
- **d_output** (int) – the dimension of the output layer
- **d_hidden** (tuple) – the dimensions of the hidden layers
- **dropout** (float) – the dropout probability
- **batch_norm** (bool) – whether to use batch normalization
- **batch_norm_momentum** (float) – the momentum for batch normalization
- **activation_fn** (str) – the activation function to use in the hidden layers
- **skip_connection** (bool) – whether to add a skip connection from the input to the output
- **weighted_skip** (bool) – whether to add a weighted skip connection from the input to the output

```python
build_layers()
```

Build the layers of the model, iterating through the hidden dimensions to produce a list of layers.

```
forward(x: torch.Tensor) → torch.Tensor
```

Forward pass of the model.

class CNNModule(n_tasks: int, n_features: int, dims: int, layer_filters: List[int] = [100], kernel_size: Union[int, Sequence[int]] = 5, strides: Union[int, Sequence[int]] = 1, weight_init_stddevs: Union[float, Sequence[float]] = 0.02, bias_init_consts: Union[float, Sequence[float]] = 1.0, dropouts: Union[float, Sequence[float]] = 0.5, activation_fns: Union[Callable, str] = 'relu', pool_type: str = 'max', mode: str = 'classification', n_classes: int = 2, uncertainty: bool = False, residual: bool = False, padding: Union[int, str] = 'valid')
```

A 1, 2, or 3 dimensional convolutional network for either regression or classification. The network consists of the following sequence of layers: - A configurable number of convolutional layers - A global pooling layer (either max pool or average pool) - A final fully connected layer to compute the output It optionally can compose the model from pre-activation residual blocks, as described in https://arxiv.org/abs/1603.05027, rather than a simple stack of convolution layers. This often leads to easier training, especially when using a large number of layers. Note that residual blocks can only be used when successive layers have the same output shape. Wherever the output shape changes, a simple convolution layer will be used even if residual=True. .. rubric:: Examples
```python
>>> model = CNNModule(n_tasks=5, n_features=8, dims=2, layer_filters=[3, 8, 8, 16], 
- kernel_size=3, n_classes = 7, mode='classification', uncertainty=False, padding='same')
>>> x = torch.ones(2, 224, 224, 8)
>>> x = model(x)
>>> for tensor in x:
...     print(tensor.shape)
torch.Size([2, 5, 7])
torch.Size([2, 5, 7])
```

Create a CNN.

Parameters

- **n_tasks** (int) – number of tasks
- **n_features** (int) – number of features
- **dims** (int) – the number of dimensions to apply convolutions over (1, 2, or 3)
- **layer_filters** (list) – the number of output filters for each convolutional layer in the network. The length of this list determines the number of layers.
- **kernel_size** (int, tuple, or list) – a list giving the shape of the convolutional kernel for each layer. Each element may be either an int (use the same kernel width for every dimension) or a tuple (the kernel width along each dimension). Alternatively this may be a single int or tuple instead of a list, in which case the same kernel shape is used for every layer.
- **strides** (int, tuple, or list) – a list giving the stride between applications of the kernel for each layer. Each element may be either an int (use the same stride for every dimension) or a tuple (the stride along each dimension). Alternatively this may be a single int or tuple instead of a list, in which case the same stride is used for every layer.
- **weight_init_stddevs** (list or float) – the standard deviation of the distribution to use for weight initialization of each layer. The length of this list should equal len(layer_filters)+1, where the final element corresponds to the dense layer. Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.
- **bias_init_consts** (list or float) – the value to initialize the biases in each layer to. The length of this list should equal len(layer_filters)+1, where the final element corresponds to the dense layer. Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.
- **dropouts** (list or float) – the dropout probability to use for each layer. The length of this list should equal len(layer_filters). Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.
- **activation_fns** (str or list) – the torch activation function to apply to each layer. The length of this list should equal len(layer_filters). Alternatively this may be a single value instead of a list, in which case the same value is used for every layer, ‘relu’ by default
• **pool_type** *(str)* – the type of pooling layer to use, either ‘max’ or ‘average’

• **mode** *(str)* – Either ‘classification’ or ‘regression’

• **n_classes** *(int)* – the number of classes to predict (only used in classification mode)

• **uncertainty** *(bool)* – if True, include extra outputs and loss terms to enable the uncertainty in outputs to be predicted

• **residual** *(bool)* – if True, the model will be composed of pre-activation residual blocks instead of a simple stack of convolutional layers.

• **padding** *(str, int or tuple)* – the padding to use for convolutional layers, either ‘valid’ or ‘same’

```python
```

Parameters

`x` *(torch.Tensor)* – Input Tensor

Returns

Output as per use case: regression/classification

Return type

torch.Tensor

```python
class ScaleNorm(scale: float, eps: float = 1e-05)
```

Apply Scale Normalization to input.

The ScaleNorm layer first computes the square root of the scale, then computes the matrix/vector norm of the input tensor. The norm value is calculated as $\sqrt{\text{scale}} / \text{matrix norm}$. Finally, the result is returned as $\text{input Tensor} \times \text{norm value}$.

This layer can be used instead of LayerNorm when a scaled version of the norm is required. Instead of performing the scaling operation ($scale / norm$) in a lambda-like layer, we are defining it within this layer to make prototyping more efficient.

References

Examples

```python
>>> from deepchem.models.torch_models.layers import ScaleNorm
>>> scale = 0.35
>>> layer = ScaleNorm(scale)
>>> input_tensor = torch.tensor([[1.269, 39.36], [0.00918, -9.12]])
>>> output_tensor = layer(input_tensor)
```

```python
__init__(scale: float, eps: float = 1e-05)
```

Initialize a ScaleNorm layer.

Parameters

• **scale** *(float)* – Scale magnitude.

• **eps** *(float)* – Epsilon value. Default = 1e-5.

```python
def forward(x: torch.Tensor) -> torch.Tensor
```

Defines the computation performed at every call.

Should be overridden by all subclasses.
class MATEncoderLayer(dist_kernel: str = 'softmax', lambda_attention: float = 0.33, lambda_distance: float = 0.33, h: int = 16, sa_hsize: int = 1024, sa_dropout_p: float = 0.0, output_bias: bool = True, d_input: int = 1024, d_hidden: int = 1024, d_output: int = 1024, activation: str = 'leakyrelu', n_layers: int = 1, ff_dropout_p: float = 0.0, encoder_hsize: int = 1024, encoder_dropout_p: float = 0.0)

Encoder layer for use in the Molecular Attention Transformer [1].

The MATEncoder layer primarily consists of a self-attention layer (MultiHeadedMATAttention) and a feed-forward layer (PositionwiseFeedForward). This layer can be stacked multiple times to form an encoder.

References

Examples

```python
>>> from rdkit import Chem
>>> import torch
>>> import deepchem
>>> from deepchem.models.torch_models.layers import MATEmbedding, MATEncoderLayer

>>> input_smile = "CC"

>>> feat = deepchem.feat.MATFeaturizer()

>>> out = feat.featurize(input_smile)

>>> node = torch.tensor(out[0].node_features).float().unsqueeze(0)

>>> adj = torch.tensor(out[0].adjacency_matrix).float().unsqueeze(0)

>>> dist = torch.tensor(out[0].distance_matrix).float().unsqueeze(0)

>>> mask = torch.sum(torch.abs(node), dim=-1) != 0

>>> layer = MATEncoderLayer()

>>> op = MATEmbedding()(node)

>>> output = layer(op, mask, adj, dist)
```

__init__(dist_kernel: str = 'softmax', lambda_attention: float = 0.33, lambda_distance: float = 0.33, h: int = 16, sa_hsize: int = 1024, sa_dropout_p: float = 0.0, output_bias: bool = True, d_input: int = 1024, d_hidden: int = 1024, d_output: int = 1024, activation: str = 'leakyrelu', n_layers: int = 1, ff_dropout_p: float = 0.0, encoder_hsize: int = 1024, encoder_dropout_p: float = 0.0)

Initialize a MATEncoder layer.

Parameters

- **dist_kernel** (str) – Kernel activation to be used. Can be either 'softmax' for softmax or 'exp' for exponential, for the self-attention layer.
- **lambda_attention** (float) – Constant to be multiplied with the attention matrix in the self-attention layer.
- **lambda_distance** (float) – Constant to be multiplied with the distance matrix in the self-attention layer.
- **h** (int) – Number of attention heads for the self-attention layer.
- **sa_hsize** (int) – Size of dense layer in the self-attention layer.
- **sa_dropout_p** (float) – Dropout probability for the self-attention layer.
• **output_bias** (*bool*) – If True, dense layers will use bias vectors in the self-attention layer.

• **d_input** (*int*) – Size of input layer in the feed-forward layer.

• **d_hidden** (*int*) – Size of hidden layer in the feed-forward layer.

• **d_output** (*int*) – Size of output layer in the feed-forward layer.

• **activation** (*str*) – Activation function to be used in the feed-forward layer. Can choose between ‘relu’ for ReLU, ‘leakyrelu’ for LeakyReLU, ‘prelu’ for PReLU, ‘tanh’ for TanH, ‘selu’ for SELU, ‘elu’ for ELU and ‘linear’ for linear activation.

• **n_layers** (*int*) – Number of layers in the feed-forward layer.

• **dropout_p** (*float*) – Dropout probability in the feed-forward layer.

• **encoder_hsize** (*int*) – Size of Dense layer for the encoder itself.

• **encoder_dropout_p** (*float*) – Dropout probability for connections in the encoder layer.

Output computation for the MATEncoder layer.

In the MATEncoderLayer initialization, self.sublayer is defined as an nn.ModuleList of 2 layers. We will be passing our computation through these layers sequentially. nn.ModuleList is subscriptable and thus we can access it as self.sublayer[0], for example.

Parameters

• **x** (*torch.Tensor*) – Input tensor.

• **mask** (*torch.Tensor*) – Masks out padding values so that they are not taken into account when computing the attention score.

• **adj_matrix** (*torch.Tensor*) – Adjacency matrix of a molecule.

• **distance_matrix** (*torch.Tensor*) – Distance matrix of a molecule.

• **sa_dropout_p** (*float*) – Dropout probability for the self-attention layer (MultiHeaded-MATAttention).

class MultiHeadedMATAttention(dist_kernel: str = ‘softmax’, lambda_attention: float = 0.33, lambda_distance: float = 0.33, h: int = 16, hsize: int = 1024, dropout_p: float = 0.0, output_bias: bool = True)

First constructs an attention layer tailored to the Molecular Attention Transformer [1] and then converts it into Multi-Headed Attention.

In Multi-Headed attention the attention mechanism multiple times per layer through the multiple attention heads. Thus, different subsequences of a given sequences can be processed differently. The query, key and value parameters are split multiple ways and each split is passed separately through a different attention head.

References

3.21. Layers
Examples

```python
>>> from deepchem.models.torch_models.layers import MultiHeadedMATAttention, MATEmbedding
>>> import deepchem as dc
>>> import torch

>>> input_smile = "CC"
>>> feat = dc.feat.MATFeaturizer()
>>> input_smile = "CC"
>>> out = feat.featurize(input_smile)

>>> node = torch.tensor(out[0].node_features).float().unsqueeze(0)
>>> adj = torch.tensor(out[0].adjacency_matrix).float().unsqueeze(0)
>>> dist = torch.tensor(out[0].distance_matrix).float().unsqueeze(0)
>>> mask = torch.sum(torch.abs(node), dim=-1) != 0

>>> layer = MultiHeadedMATAttention(
...   dist_kernel='softmax',
...   lambda_attention=0.33,
...   lambda_distance=0.33,
...   h=16,
...   hsize=1024,
...   dropout_p=0.0)

>>> op = MATEmbedding()(node)
>>> output = layer(op, op, op, mask, adj, dist)
```

__init__

```
Initialise a multi-headed attention layer. 
:param dist_kernel: Kernel activation to be used. Can be either ‘softmax’ for softmax or ‘exp’ for exponential.
:type dist_kernel: str
:param lambda_attention: Constant to be multiplied with the attention matrix.
:type lambda_attention: float
:param lambda_distance: Constant to be multiplied with the distance matrix.
:type lambda_distance: float
:param h: Number of attention heads.
:type h: int
:param hsize: Size of dense layer.
:type hsize: int
:param dropout_p: Dropout probability.
:type dropout_p: float
:param output_bias: If True, dense layers will use bias vectors.
:type output_bias: bool
```

forward

```
Output computation for the MultiHeadedAttention layer.
:param query: Standard query parameter for attention.
:type query: torch.Tensor
:param key: Standard key parameter for attention.
:type key: torch.Tensor
:param value: Standard value parameter for attention.
:type value: torch.Tensor
:param mask: Masks out padding values so that they are not taken into account when computing the attention score.
:type mask: torch.Tensor
:param adj_matrix: Adjacency matrix of the input molecule, returned from dc.feat.MATFeaturizer().
:type adj_matrix: torch.Tensor
:param dist_matrix: Distance matrix of the input molecule, returned from dc.feat.MATFeaturizer().
:type dist_matrix: torch.Tensor
:param dropout_p: Dropout probability.
:type dropout_p: float
:param eps: Epsilon value.
:type eps: float
:param inf: Value of infinity to be used.
:type inf: float
```

SublayerConnection

```
SublayerConnection layer based on the paper Attention Is All You Need.

The SublayerConnection normalizes and adds dropout to output tensor of an arbitrary layer. It further adds a residual layer connection between the input of the arbitrary layer and the dropout-adjusted layer output.
```
Examples

```python
>>> from deepchem.models.torch_models.layers import SublayerConnection
>>> scale = 0.35
>>> layer = SublayerConnection(2, 0.)
>>> input_ar = torch.tensor([[1., 2.], [5., 6.]])
>>> output = layer(input_ar, input_ar)
```

__init__(size: int, dropout_p: float = 0.0)

Initialize a SublayerConnection Layer.

Parameters

- **size** (int) – Size of layer.
- **dropout_p** (float) – Dropout probability.

Output computation for the SublayerConnection layer.

Takes an input tensor x, then adds the dropout-adjusted sublayer output for normalized x to it. This is done to add a residual connection followed by LayerNorm.

Parameters

- **x** (torch.Tensor) – Input tensor.
- **output** (torch.Tensor) – Layer whose normalized output will be added to x.

```python
class PositionwiseFeedForward(d_input: int = 1024, d_hidden: int = 1024, d_output: int = 1024, activation: str = 'leakyrelu', n_layers: int = 1, dropout_p: float = 0.0, dropout_at_input_no_act: bool = False)
```

PositionwiseFeedForward is a layer used to define the position-wise feed-forward (FFN) algorithm for the Molecular Attention Transformer [1].

Each layer in the MAT encoder contains a fully connected feed-forward network which applies two linear transformations and the given activation function. This is done in addition to the SublayerConnection module.

Note: This modified version of PositionwiseFeedForward class contains dropout_at_input_no_act condition to facilitate its use in the feed-forward (FFN) algorithm for the Directed Message Passing Neural Network (D-MPNN) [2].

References

Examples

```python
>>> from deepchem.models.torch_models.layers import PositionwiseFeedForward
>>> feed_fwd_layer = PositionwiseFeedForward(d_input = 2, d_hidden = 2, d_output = 2, activation = 'relu', n_layers = 1, dropout_p = 0.1)
>>> input_tensor = torch.tensor([[1., 2.], [5., 6.]])
>>> output_tensor = feed_fwd_layer(input_tensor)
```

__init__(d_input: int = 1024, d_hidden: int = 1024, d_output: int = 1024, activation: str = 'leakyrelu', n_layers: int = 1, dropout_p: float = 0.0, dropout_at_input_no_act: bool = False)

Initialize a PositionwiseFeedForward layer.

Parameters

- **d_input** (int) – Size of input layer.
• **d_hidden** (int (same as d_input if d_output = 0)) – Size of hidden layer.

• **d_output** (int (same as d_input if d_output = 0)) – Size of output layer.

• **activation** (str) – Activation function to be used. Can choose between ‘relu’ for ReLU, ‘leakyrelu’ for LeakyReLU, ‘prelu’ for PReLU, ‘tanh’ for TanH, ‘elu’ for SELU, ‘elu’ for ELU and ‘linear’ for linear activation.

• **n_layers** (int) – Number of layers.

• **dropout_p** (float) – Dropout probability.

• **dropout_at_input_no_act** (bool) – If true, dropout is applied on the input tensor. For single layer, it is not passed to an activation function.

 forward(x: torch.Tensor) → torch.Tensor

 Output Computation for the PositionwiseFeedForward layer.

 Parameters
 x (torch.Tensor) – Input tensor.

class MATEmbedding(d_input: int = 36, d_output: int = 1024, dropout_p: float = 0.0)

 Embedding layer to create embedding for inputs.

 In an embedding layer, input is taken and converted to a vector representation for each input. In the MATEmbedding layer, an input tensor is processed through a dropout-adjusted linear layer and the resultant vector is returned.

 References

 Examples

 >>> from deepchem.models.torch_models.layers import MATEmbedding
 >>> layer = MATEmbedding(d_input = 3, d_output = 3, dropout_p = 0.2)
 >>> input_tensor = torch.tensor([1., 2., 3.])
 >>> output = layer(input_tensor)

 __init__ (d_input: int = 36, d_output: int = 1024, dropout_p: float = 0.0)

 Initialize a MATEmbedding layer.

 Parameters

 • **d_input** (int) – Size of input layer.

 • **d_output** (int) – Size of output layer.

 • **dropout_p** (float) – Dropout probability for layer.

 forward(x: torch.Tensor) → torch.Tensor

 Computation for the MATEmbedding layer.

 Parameters

 x (torch.Tensor) – Input tensor to be converted into a vector.

class MATGenerator(hsize: int = 1024, aggregation_type: str = 'mean', d_output: int = 1, n_layers: int = 1, dropout_p: float = 0.0, attn_hidden: int = 128, attn_out: int = 4)

 MATGenerator defines the linear and softmax generator step for the Molecular Attention Transformer [1].

 In the MATGenerator, a Generator is defined which performs the Linear + Softmax generation step. Depending on the type of aggregation selected, the attention output layer performs different operations.
References

Examples

```python
>>> from deepchem.models.torch_models.layers import MATGenerator

layer = MATGenerator(hsize = 3, aggregation_type = 'mean', d_output = 1, n_layers = 1, dropout_p = 0.3, attn_hidden = 128, attn_out = 4)

input_tensor = torch.tensor([1., 2., 3.])

mask = torch.tensor([1., 1., 1.])

output = layer(input_tensor, mask)
```

__init__(hsizes: int = 1024, aggregation_type: str = 'mean', d_output: int = 1, n_layers: int = 1, dropout_p: float = 0.0, attn_hidden: int = 128, attn_out: int = 4)

Initialize a MATGenerator.

Parameters

- **hsizes** (int) – Size of input layer.
- **aggregation_type** (str) – Type of aggregation to be used. Can be ‘grover’, ‘mean’ or ‘contextual’.
- **d_output** (int) – Size of output layer.
- **n_layers** (int) – Number of layers in MATGenerator.
- **dropout_p** (float) – Dropout probability for layer.
- **attn_hidden** (int) – Size of hidden attention layer.
- **attn_out** (int) – Size of output attention layer.

Computation for the MATGenerator layer.

Parameters

- **x** (torch.Tensor) – Input tensor.
- **mask** (torch.Tensor) – Mask for padding so that padded values do not get included in attention score calculation.

cosine_dist(x, y)

Computes the inner product (cosine similarity) between two tensors.

This assumes that the two input tensors contain rows of vectors where each column represents a different feature. The output tensor will have elements that represent the inner product between pairs of normalized vectors in the rows of x and y. The two tensors need to have the same number of columns, because one cannot take the dot product between vectors of different lengths. For example, in sentence similarity and sentence classification tasks, the number of columns is the embedding size. In these tasks, the rows of the input tensors would be different test vectors or sentences. The input tensors themselves could be different batches. Using vectors or tensors of all 0s should be avoided.

The vectors in the input tensors are first l2-normalized such that each vector has length or magnitude of 1. The inner product (dot product) is then taken between corresponding pairs of row vectors in the input tensors and returned.
Examples

The cosine similarity between two equivalent vectors will be 1. The cosine similarity between two equivalent tensors (tensors where all the elements are the same) will be a tensor of 1s. In this scenario, if the input tensors x and y are each of shape (n,p), where each element in x and y is the same, then the output tensor would be a tensor of shape (n,n) with 1 in every entry.

```python
>>> import numpy as np
>>> import tensorflow as tf
>>> import deepchem.models.layers as layers

>>> x = tf.ones((6, 4), dtype=tf.dtypes.float32, name=None)
>>> y_same = tf.ones((6, 4), dtype=tf.dtypes.float32, name=None)
>>> cos_sim_same = layers.cosine_dist(x,y_same)
```

x and y_same are the same tensor (equivalent at every element, in this case 1). As such, the pairwise inner product of the rows in x and y will always be 1. The output tensor will be of shape $(6,6)$.

```python
>>> diff = cos_sim_same - tf.ones((6, 6), dtype=tf.dtypes.float32, name=None)
>>> np.allclose(0.0, tf.reduce_sum(diff).numpy(), atol=1e-05)
True
>>> cos_sim_same.shape
TensorShape([6, 6])
```

The cosine similarity between two orthogonal vectors will be 0 (by definition). If every row in x is orthogonal to every row in y, then the output will be a tensor of 0s. In the following example, each row in the tensor $x1$ is orthogonal to each row in $x2$ because they are halves of an identity matrix.

```python
>>> identity_tensor = tf.eye(512, dtype=tf.dtypes.float32)
>>> x1 = identity_tensor[0:256,:]
>>> x2 = identity_tensor[256:512,:]
>>> cos_sim_orth = layers.cosine_dist(x1,x2)
```

Each row in $x1$ is orthogonal to each row in $x2$. As such, the pairwise inner product of the rows in $x1$ and $x2$ will always be 0. Furthermore, because the shape of the input tensors are both of shape $(256,512)$, the output tensor will be of shape $(256,256)$.

```python
>>> np.allclose(0.0, tf.reduce_sum(cos_sim_orth).numpy(), atol=1e-05)
True
>>> cos_sim_orth.shape
TensorShape([256, 256])
```

Parameters

- x (*tf.Tensor*) – Input Tensor of shape (n, p). The shape of this input tensor should be n rows by p columns. Note that n need not equal m (the number of rows in y).

- y (*tf.Tensor*) – Input Tensor of shape (m, p) The shape of this input tensor should be m rows by p columns. Note that m need not equal n (the number of rows in x).

Returns

Returns a tensor of shape (n, m), that is, n rows by m columns. Each i,j-th entry of this output tensor is the inner product between the $l2$-normalized i-th row of the input tensor x and the $l2$-normalized j-th row of the output tensor y.

Return type

tf.Tensor
class GraphNetwork(n_node_features: int = 32, n_edge_features: int = 32, n_global_features: int = 32, is_undirected: bool = True, residual_connection: bool = True)

Graph Networks
A Graph Network [1] takes a graph as input and returns an updated graph as output. The output graph has same structure as input graph but it has updated node features, edge features and global state features.

Parameters
- n_node_features (int) – Number of features in a node
- n_edge_features (int) – Number of features in a edge
- n_global_features (int) – Number of global features
- is_undirected (bool, optional (default True)) – Directed or undirected graph
- residual_connection (bool, optional (default True)) – If True, the layer uses a residual connection during training

Example

```python
>>> import torch
>>> from deepchem.models.torch_models.layers import GraphNetwork as GN
>>> n_nodes, n_node_features = 5, 10
>>> n_edges, n_edge_features = 5, 2
>>> n_global_features = 4
>>> node_features = torch.randn(n_nodes, n_node_features)
>>> edge_features = torch.randn(n_edges, n_edge_features)
>>> edge_index = torch.tensor([[0, 1, 2, 3, 4], [1, 2, 3, 4, 0]]).long()
>>> global_features = torch.randn(1, n_global_features)
>>> gn = GN(n_node_features=n_node_features, n_edge_features=n_edge_features, n_global_features=n_global_features)
>>> node_features, edge_features, global_features = gn(node_features, edge_index, edge_features, global_features)
```

References

__init__ (n_node_features: int = 32, n_edge_features: int = 32, n_global_features: int = 32, is_undirected: bool = True, residual_connection: bool = True)

Initializes internal Module state, shared by both nn.Module and ScriptModule.

Output computation for a GraphNetwork

Parameters
- node_features (torch.Tensor) – Input node features of shape ($|\mathcal{V}|, F_n$)
- edge_index (torch.Tensor) – Edge indexes of shape ($2, |\mathcal{E}|$)
- edge_features (torch.Tensor) – Edge features of the graph, shape: ($|\mathcal{E}|, F_e$)
- global_features (torch.Tensor) – Global features of the graph, shape: ($F_g, 1$) where, $|\mathcal{V}|$ and $|\mathcal{E}|$ denotes the number of nodes and edges in the graph, F_n, F_e, F_g denotes the number of node features, edge features and global state features respectively.
• **batch** *(torch.LongTensor (optional, default: None)) – A vector that maps each node to its respective graph identifier. The attribute is used only when more than one graph are batched together during a single forward pass.*

class Affine(dim: int)

Class which performs the Affine transformation.

This transformation is based on the affinity of the base distribution with the target distribution. A geometric transformation is applied where the parameters performs changes on the scale and shift of a function (inputs).

Normalizing Flow transformations must be bijective in order to compute the logarithm of jacobian’s determinant. For this reason, transformations must perform a forward and inverse pass.

Example

```python
>>> import deepchem as dc
>>> from deepchem.models.torch_models.layers import Affine
>>> import torch
>>> from torch.distributions import MultivariateNormal

# initialize the transformation layer's parameters
>>> dim = 2
>>> samples = 96
>>> transforms = Affine(dim)

# forward pass based on a given distribution
>>> distribution = MultivariateNormal(torch.zeros(dim), torch.eye(dim))
>>> input = distribution.sample(torch.Size((samples, dim)))

2

# inverse pass based on a distribution
>>> len(transforms.inverse(input))
2
```

__init__(dim: int) → None

Create a Affine transform layer.

Parameters dim *(int)* – Value of the Nth dimension of the dataset.

forward(x: Sequence) → Tuple[torch.Tensor, torch.Tensor]

Performs a transformation between two different distributions. This particular transformation represents the following function: \(y = x \times \exp(a) + b \), where a is scale parameter and b performs a shift. This class also returns the logarithm of the jacobians determinant which is useful when invert a transformation and compute the probability of the transformation.

Parameters x *(Sequence)* – Tensor sample with the initial distribution data which will pass into the normalizing flow algorithm.

Returns

- y *(torch.Tensor)* – Transformed tensor according to Affine layer with the shape of ‘x’.
- log_det_jacobian *(torch.Tensor)* – Tensor which represents the info about the deviation of the initial and target distribution.

inverse(y: Sequence) → Tuple[torch.Tensor, torch.Tensor]

Performs a transformation between two different distributions. This transformation represents the backward pass of the function mention before. Its mathematical representation is \(x = (y - b) / \exp(a) \), where “a” is
scale parameter and “b” performs a shift. This class also returns the logarithm of the jacobians determinant which is useful when invert a transformation and compute the probability of the transformation.

Parameters

- **y** *(Sequence)* – Tensor sample with transformed distribution data which will be used in the normalizing algorithm inverse pass.

Returns

- **x** *(torch.Tensor)* – Transformed tensor according to Affine layer with the shape of ‘y’.
- **inverse_log_det_jacobian** *(torch.Tensor)* – Tensor which represents the information of the deviation of the initial and target distribution.

class RealNVPLayer(mask: torch.Tensor, hidden_size: int)

Real NVP Transformation Layer

This class is a constructor transformation layer used on a NormalizingFlow model. The Real Non-Preserving-Volumen (Real NVP) is a type of normalizing flow layer which gives advantages over this mainly because an ease to compute the inverse pass [1]_, this is to learn a target distribution.

Example

```python
>>> import torch
>>> import torch.nn as nn
>>> from torch.distributions import MultivariateNormal
>>> from deepchem.models.torch_models.layers import RealNVPLayer

>>> dim = 2
>>> samples = 96
>>> data = MultivariateNormal(torch.zeros(dim), torch.eye(dim))
>>> tensor = data.sample(torch.Size((samples, dim))

>>> layers = 4
>>> hidden_size = 16
>>> masks = F.one_hot(torch.tensor([i % 2 for i in range(layers)])).float()
>>> layers = nn.ModuleList([RealNVPLayer(mask, hidden_size) for mask in masks])

>>> for layer in layers:
...     _, inverse_log_det_jacobian = layer.inverse(tensor)
...     inverse_log_det_jacobian = inverse_log_det_jacobian.detach().numpy()

>>> len(inverse_log_det_jacobian)
96
```

References

__init__(mask: torch.Tensor, hidden_size: int) → None

Parameters

- **mask** *(torch.Tensor)* – Tensor with zeros and ones and its size depende on the number of layers and dimensions the user request.
- **hidden_size** *(int)* – The size of the outputs and inputs used on the internal nodes of the transformation layer.
forward\((x: \text{Sequence}) \rightarrow \text{Tuple[torch.Tensor, torch.Tensor]}\)

Forward pass.

This particular transformation is represented by the following function: \(y = x + (1 - x) \cdot \exp(s(x)) + t(x)\), where \(t\) and \(s\) needs an activation function. This class also returns the logarithm of the jacobians determinant which is useful when invert a transformation and compute the probability of the transformation.

Parameters \(x\) (Sequence) – Tensor sample with the initial distribution data which will pass into the normalizing algorithm

Returns

- \(y\) (torch.Tensor) – Transformed tensor according to Real NVP layer with the shape of ‘x’.
- \(\log_\text{det}_\text{jacobian}\) (torch.Tensor) – Tensor which represents the info about the deviation of the initial and target distribution.

inverse\((y: \text{Sequence}) \rightarrow \text{Tuple[torch.Tensor, torch.Tensor]}\)

Inverse pass

This class performs the inverse of the previous method (forward). Also, this method returns the logarithm of the jacobians determinant which is useful to compute the learnable features of target distribution.

Parameters \(y\) (Sequence) – Tensor sample with transformed distribution data which will be used in the normalizing algorithm inverse pass.

Returns

- \(x\) (torch.Tensor) – Transformed tensor according to Real NVP layer with the shape of ‘y’.
- \(\text{inverse}_\log_\text{det}_\text{jacobian}\) (torch.Tensor) – Tensor which represents the information of the deviation of the initial and target distribution.

class DMPNNEncoderLayer

Encoder layer for use in the Directed Message Passing Neural Network (D-MPNN) [1].

The role of the DMPNNEncoderLayer class is to generate molecule encodings in following steps:

- Message passing phase
- Get new atom hidden states and readout phase
- Concatenate the global features

Let the diagram given below represent a molecule containing 5 atoms (nodes) and 4 bonds (edges):

```
1 — 5
|   |
2 — 4
|   |
3
```

Let the bonds from atoms 1->2 (B[12]) and 2->1 (B[21]) be considered as 2 different bonds. Hence, by considering the same for all atoms, the total number of bonds = 8.

Let:
• **atom features**: a1, a2, a3, a4, a5

• **hidden states of atoms**: h1, h2, h3, h4, h5

• **bond features bonds**: b12, b21, b23, b32, b24, b42, b15, b51

• **initial hidden states of bonds**: (0)h12, (0)h21, (0)h23, (0)h32, (0)h24, (0)h42, (0)h15, (0)h51

The hidden state of every bond is a function of the concatenated feature vector which contains concatenation of the **features of initial atom of the bond** and **bond features**.

Example: (0)h21 = func1(concat(a2, b21))

Note: Here func1 is `self.W_i`

The Message passing phase

The goal of the message-passing phase is to generate **hidden states of all the atoms in the molecule**.

The hidden state of an atom is a **function of concatenation of atom features and messages (at T depth)**.

A message is a sum of **hidden states of bonds coming to the atom (at T depth)**.

Note: Depth refers to the number of iterations in the message passing phase (here, T iterations). After each iteration, the hidden states of the bonds are updated.

Example: h1 = func3(concat(a1, m1))

Note: Here func3 is `self.W_o`.

`m1` refers to the message coming to the atom.

\[
m1 = (T-1)h21 + (T-1)h51 \text{ (hidden state of bond 2->1 + hidden state of bond 5->1) (at T depth)}
\]

for, depth T = 2:

• the hidden states of the bonds @ 1st iteration will be => (0)h21, (0)h51

• the hidden states of the bonds @ 2nd iteration will be => (1)h21, (1)h51

The hidden states of the bonds in 1st iteration are already know. For hidden states of the bonds in 2nd iteration, we follow the criterion that:

• hidden state of the bond is a function of **initial hidden state of bond**

and **messages coming to that bond in that iteration**

Example: (1)h21 = func2((0)h21, (1)m21)

Note: Here func2 is `self.W_h`.

`(1)m21` refers to the messages coming to that bond 2->1 in that 2nd iteration.

Messages coming to a bond in an iteration is a **sum of hidden states of bonds (from previous iteration) coming to this bond**.

Example: (1)m21 = (0)h32 + (0)h42
Computing the messages

\[f_{\text{ini_atoms_bonds}} = [(0)h_{12}, (0)h_{21}, (0)h_{23}, (0)h_{32}, (0)h_{24}, (0)h_{42}, (0)h_{15}, (0)h_{51}, h^{(-1)}] \]

Note: \(h^{(-1)} \) is an empty array of the same size as other hidden states of bond states.

Later, the encoder will map the concatenated features from \(f_{\text{ini_atoms_bonds}} \) to \(\text{mapping} \) in each iteration up to \(T \)th iteration.

Next the encoder will sum-up the concat features within same bond index.

\[\text{message} = [(1)m_{12} + (0)h_{51}] [(0)h_{32} + (0)h_{42}] [(0)h_{12} + (0)h_{42}] [h^{(-1)} + h^{(-1)}] \]

Hence, this is how encoder can get messages for message-passing steps.

Get new atom hidden states and readout phase

Hence now for \(h_1 \):

\[
\begin{align*}
\text{h1} = & \text{func3}(
\text{concat}(
\text{a1}, \\
\begin{array}{l}
\text{func2((0)h21 , (0)h32 + (0)h42) +} \\
\text{func2((0)h51 , 0)}
\end{array}
))
\end{align*}
\]

Similarly, \(h_2, h_3, h_4 \) and \(h_5 \) are calculated.

Next, all atom hidden states are concatenated to make a feature vector of the molecule:

\[\text{mol_encodings} = [[h_1, h_2, h_3, h_4, h_5]] \]

Concatenate the global features

Let, \(\text{global_features} = [[gf_1, gf_2, gf_3]] \) This array contains molecule level features. In case of this example, it contains 3 global features.
Hence after concatenation,

mol_encodings = [[h1, h2, h3, h4, h5, gf1, gf2, gf3]] (Final output of the encoder)

References

Examples

```python
>>> from rdkit import Chem
>>> import torch
>>> import deepchem as dc

>>> input_smile = "CC"

>>> feat = dc.feat.DMPNNFeaturizer(features_generators=['morgan'])

>>> graph = feat.featurize(input_smile)

>>> from deepchem.models.torch_models.dmpnn import _MapperDMPNN

>>> mapper = _MapperDMPNN(graph[0])

>>> atom_features, f_ini_atoms_bonds, atom_to_incoming_bonds, mapping, global_features = mapper.values

>>> atom_features = torch.from_numpy(atom_features).float()

>>> f_ini_atoms_bonds = torch.from_numpy(f_ini_atoms_bonds).float()

>>> atom_to_incoming_bonds = torch.from_numpy(atom_to_incoming_bonds)

>>> mapping = torch.from_numpy(mapping)

>>> global_features = torch.from_numpy(global_features).float()

>>> molecules_unbatch_key = len(atom_features)

>>> layer = DMPNNEncoderLayer(d_hidden=2)

>>> output = layer(atom_features, f_ini_atoms_bonds, atom_to_incoming_bonds, mapping, global_features, molecules_unbatch_key)
```

```python
__init__(use_default_fdim: bool = True, atom_fdim: int = 133, bond_fdim: int = 14, d_hidden: int = 300, depth: int = 3, bias: bool = False, activation: str = 'relu', dropout_p: float = 0.0, aggregation: str = 'mean', aggregation_norm: Union[int, float] = 100)
```

Initialize a DMPNNEncoderLayer layer.

Parameters

- **use_default_fdim (bool)** – If True, self.atom_fdim and self.bond_fdim are initialized using values from the GraphConvConstants class. If False, self.atom_fdim and self.bond_fdim are initialized from the values provided.
- **atom_fdim (int)** – Dimension of atom feature vector.
- **bond_fdim (int)** – Dimension of bond feature vector.
- **d_hidden (int)** – Size of hidden layer in the encoder layer.
- **depth (int)** – No of message passing steps.
- **bias (bool)** – If True, dense layers will use bias vectors.
- **activation (str)** – Activation function to be used in the encoder layer. Can choose between ‘relu’ for ReLU, ‘leakyrelu’ for LeakyReLU, ‘prelu’ for PReLU, ‘tanh’ for TanH, ‘elu’ for SELU, and ‘selu’ for ELU.
- **dropout_p (float)** – Dropout probability for the encoder layer.
- **aggregation (str)** – Aggregation type to be used in the encoder layer. Can choose between ‘mean’, ‘sum’, and ‘norm’.
• **aggregation_norm** (Union[int, float]) – Value required if `aggregation` type is ‘norm’.

```python
```

Output computation for the DMPNNEncoderLayer.

Steps:
- Get original bond hidden states from concatenation of initial atom and bond features. (input)
- Get initial messages hidden states. (message)
- Execute message passing step for `self.depth` - 1 iterations.
- Get atom hidden states using atom features and message hidden states.
- Get molecule encodings.
- Concatenate global molecular features and molecule encodings.

Parameters

- `atom_features` (torch.Tensor) – Tensor containing atoms features.
- `f_ini_atoms_bonds` (torch.Tensor) – Tensor containing concatenated feature vector which contains concatenation of initial atom and bond features.
- `atom_to_incoming_bonds` (torch.Tensor) – Tensor containing mapping from atom index to list of indices of incoming bonds.
- `mapping` (torch.Tensor) – Tensor containing the mapping that maps bond index to ‘array of indices of the bonds’ incoming at the initial atom of the bond (excluding the reverse bonds).
- `global_features` (torch.Tensor) – Tensor containing molecule features.
- `molecules_unbatch_key` (List) – List containing number of atoms in various molecules of a batch

Returns `output` – Tensor containing the encodings of the molecules.

Return type torch.Tensor

```python
class InfoGraphEncoder(num_features, edge_features, embedding_dim)
```

The encoder for the InfoGraph model. It is a message passing graph convolutional network that produces encoded representations for molecular graph inputs.

Parameters

- `num_features` (int) – Number of node features for each input
- `edge_features` (int) – Number of edge features for each input
- `embedding_dim` (int) – Dimension of the embedding
Example

```python
>>> import numpy as np
>>> from deepchem.models.torch_models.infograph import InfoGraphEncoder
>>> from deepchem.feat.graph_data import GraphData

encoder = InfoGraphEncoder(num_features=25, edge_features=10, embedding_dim=32)

node_features = np.random.randn(10, 25)
edge_index = np.array([[0, 1, 2], [1, 2, 3]])
edge_features = np.random.randn(3, 10)
graph_index = np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

data = GraphData(node_features=node_features, edge_index=edge_index, edge_features=edge_features, graph_index=graph_index).numpy_to_torch()

embedding, feature_map = encoder(data)
print(embedding.shape)
torch.Size([1, 64])
```

__init__(num_features, edge_features, embedding_dim)

- Initializes internal Module state, shared by both nn.Module and ScriptModule.

forward(data)

- Encode input graphs into an embedding and feature map.

 Parameters
 data (Union[BatchGraphData, GraphData]) – Contains information about graphs.

 Returns
 • torch.Tensor – Encoded tensor of input data.
 • torch.Tensor – Feature map tensor of input data.

class GINEncoder(num_features: int, embedding_dim: int, num_gc_layers: int = 5)

- Graph Information Network (GIN) encoder. This is a graph convolutional network that produces encoded representations for molecular graph inputs.

 Parameters
 • num_features (int) – The number of node features
 • embedding_dim (int) – The dimension of the output embedding
 • num_gc_layers (int, optional (default 5)) – The number of graph convolutional layers to use

Example

```python
>>> import numpy as np
>>> from deepchem.models.torch_models.infograph import GINEncoder
>>> from deepchem.feat.graph_data import GraphData

encoder = GINEncoder(num_features=25, embedding_dim=32)

node_features = np.random.randn(10, 25)
edge_index = np.array([[0, 1, 2], [1, 2, 3]])
edge_features = np.random.randn(3, 10)
graph_index = np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

data = GraphData(node_features=node_features, edge_index=edge_index, edge_features=edge_features, graph_index=graph_index).numpy_to_torch()
```

(continues on next page)
embedding, intermediate_embeddings = encoder(data)
print(embedding.shape)
torch.Size([1, 30])

References

__init__(num_features: int, embedding_dim: int, num_gc_layers: int = 5)
Initializes internal Module state, shared by both nn.Module and ScriptModule.

forward(data)
Encodes the input graph data.

Parameters
data (BatchGraphData) – The batched input graph data.

Returns
A tuple containing the encoded representation and intermediate embeddings.

Return type
Tuple[torch.Tensor, torch.Tensor]

class SetGather(M: int, batch_size: int, n_hidden: int = 100, init=’orthogonal’, **kwargs)
set2set gather layer for graph-based model
Models using this layer must set pad_batches=True
Torch Equivalent of Keras SetGather layer

Parameters

• M (int) – Number of LSTM steps
• batch_size (int) – Number of samples in a batch (all batches must have same size)
• n_hidden (int, optional) – number of hidden units in the passing phase

Examples

>>> import deepchem as dc
>>> import numpy as np
>>> from deepchem.models.torch_models import layers
>>> total_n_atoms = 4
>>> n_atom_feat = 4
>>> atom_feat = np.random.randn(total_n_atoms, n_atom_feat)
>>> atom_split = np.array([0, 0, 1, 1], dtype=np.int32)
>>> gather = layers.SetGather(2, 2, n_hidden=4)
>>> output_molecules = gather([atom_feat, atom_split])
>>> print(output_molecules.shape)
torch.Size([2, 8])

__init__(M: int, batch_size: int, n_hidden: int = 100, init=’orthogonal’, **kwargs)
Initializes internal Module state, shared by both nn.Module and ScriptModule.

forward(inputs: List) → torch.Tensor
Perform M steps of set2set gather,
Detailed descriptions in: https://arxiv.org/abs/1511.06391
Parameters inputs (List) – This contains two elements. atom_features: np.ndarray
atom_split: np.ndarray
Returns q_star – Final state of the model after all M steps.
Return type torch.Tensor
class GNN(node_type_embedding, chirality_embedding, gconvs, batch_norms, dropout, jump_knowledge,
init_emb=False)
GNN module for the GNNModular model.
This module is responsible for the graph neural network layers in the GNNModular model.
Parameters
• node_type_embedding (torch.nn.Embedding) – Embedding layer for node types.
• chirality_embedding (torch.nn.Embedding) – Embedding layer for chirality tags.
• gconvs (torch.nn.ModuleList) – ModuleList of graph convolutional layers.
• batch_norms (torch.nn.ModuleList) – ModuleList of batch normalization layers.
• dropout (int) – Dropout probability.
• jump_knowledge (str) – The type of jump knowledge to use. [1] Must be one of “last”, “sum”, “max”, “concat” or “none”. “last”: Use the node representation from the last GNN layer. “concat”: Concatenate the node representations from all GNN layers. “max”: Take the element-wise maximum of the node representations from all GNN layers. “sum”: Take the element-wise sum of the node representations from all GNN layers.
• init_emb (bool) – Whether to initialize the embedding layers with Xavier uniform initialization.

References

Example

```python
>>> from deepchem.models.torch_models.gnn import GNNModular
```

__init__ (node_type_embedding, chirality_embedding, gconvs, batch_norms, dropout, jump_knowledge,
init_emb=False)
Initializes internal Module state, shared by both nn.Module and ScriptModule.
forward (data: deepchem.models.torch_models.gnn.BatchGraphData)
Forward pass for the GNN module.
Parameters data (BatchGraphData) – Batched graph data.
class GNNHead(pool, head, task, num_tasks, num_classes)
 Prediction head module for the GNNModular model.

 Parameters
 • pool (Union[function, torch.nn.Module]) – Pooling function or nn.Module to use
 • head (torch.nn.Module) – Prediction head to use
 • task (str) – The type of task. Must be one of “regression”, “classification”.
 • num_tasks (int) – Number of tasks.
 • num_classes (int) – Number of classes for classification.

 __init__(pool, head, task, num_tasks, num_classes)
 Initializes internal Module state, shared by both nn.Module and ScriptModule.

 forward(data)
 Forward pass for the GNN head module.

 Parameters data (tuple) – A tuple containing the node representations and the input graph
 data. node_representation is a torch.Tensor created after passing input through the GNN
 layers. input_batch is the original input BatchGraphData.

class LocalGlobalDiscriminator(hidden_dim)
 This discriminator module is a linear layer without bias, used to measure the similarity between local node
 representations (x) and global graph representations (summary).

 The goal of the discriminator is to distinguish between positive and negative pairs of local and global representa-
 tions.

 Examples

 >>> import torch
 >>> from deepchem.models.torch_models.gnn import LocalGlobalDiscriminator
 >>> discriminator = LocalGlobalDiscriminator(hidden_dim=64)
 >>> x = torch.randn(32, 64) # Local node representations
 >>> summary = torch.randn(32, 64) # Global graph representations
 >>> similarity_scores = discriminator(x, summary)
 >>> print(similarity_scores.shape)
 torch.Size([32])

 __init__(hidden_dim)
 self.weight is a learnable weight matrix of shape (hidden_dim, hidden_dim).

 nn.Parameters are tensors that require gradients and are optimized during the training process.

 Parameters hidden_dim (int) – The size of the hidden dimension for the weight matrix.

 forward(x, summary)
 Computes the product of summary and self.weight, and then calculates the element-wise product of x and the
 resulting matrix h. It then sums over the hidden_dim dimension, resulting in a tensor of shape (batch_size,)
 which represents the similarity scores between the local and global representations.

 Parameters
 • x (torch.Tensor) – Local node representations of shape (batch_size, hidden_dim).
• **summary** (*torch.Tensor*) – Global graph representations of shape *(batch_size, hidden_dim)*.

Returns A tensor of shape *(batch_size,)*, representing the similarity scores between the local and global representations.

Return type *torch.Tensor*

class **AtomEncoder** *(emb_dim, padding=False)*
Encodes atom features into embeddings based on the Open Graph Benchmark feature set in conformer_featurizer.

Parameters

- **emb_dim** (*int*) – The dimension that the returned embedding will have.
- **padding** (*bool, optional (default=False)*) – If true then the last index will be used for padding.

Examples

```python
>>> from deepchem.feat.molecule_featurizers.conformer_featurizer import full_atom_feature_dims
>>> atom_encoder = AtomEncoder(emb_dim=32)
>>> num_rows = 10
>>> atom_features = torch.stack([
...     torch.randint(low=0, high=dim, size=(num_rows,))
...     for dim in full_atom_feature_dims
... ], dim=1)
>>> atom_embeddings = atom_encoder(atom_features)
```

__init__(emb_dim, padding=False)
Initializes internal Module state, shared by both nn.Module and ScriptModule.

reset_parameters()
Reset the parameters of the atom embeddings.

This method resets the weights of the atom embeddings by initializing them with a uniform distribution between -sqrt(3) and sqrt(3).

forward(x)
Compute the atom embeddings for the given atom features.

Parameters *x* (*torch.Tensor, shape (batch_size, num_atoms, num_features)*) – The input atom features tensor.

Returns *x_embedding* – The computed atom embeddings.

Return type *torch.Tensor, shape (batch_size, num_atoms, emb_dim)*

class **BondEncoder** *(emb_dim, padding=False)*
Encodes bond features into embeddings based on the Open Graph Benchmark feature set in conformer_featurizer.

Parameters

- **emb_dim** (*int*) – The dimension that the returned embedding will have.
- **padding** (*bool, optional (default=False)*) – If true then the last index will be used for padding.
Examples

```python
>>> from deepchem.feat.molecule_featurizers.conformer_featurizer import full_bond_feature_dims
>>> bond_encoder = BondEncoder(emb_dim=32)
>>> num_rows = 10
>>> bond_features = torch.stack([torch.randint(low=0, high=dim, size=(num_rows,)) for dim in full_bond_feature_dims], dim=1)
>>> bond_embeddings = bond_encoder(bond_features)
```

```python
__init__(emb_dim, padding=False)
```
Initializes internal Module state, shared by both nn.Module and ScriptModule.

```python
forward(edge_attr)
```
Compute the bond embeddings for the given bond features.

Parameters
- `edge_attr` (torch.Tensor, shape (batch_size, num_edges, num_features)) – The input bond features tensor.

Returns
- `bond_embedding` – The computed bond embeddings.

Return type
- torch.Tensor, shape (batch_size, num_edges, emb_dim)

class PNALayer(in_dim: int, out_dim: int, in_dim_edges: int, aggregators: List[str], scalers: List[str], activation: Union[Callable, str] = 'relu', dropout: float = 0.0, residual: bool = True, pairwise_distances: bool = False, batch_norm: bool = True, batch_norm_momentum: 0.1, avg_d: Dict[str, float] = {'log': 1.0}, posttrans_layers: int = 2, pretrans_layers: int = 1)
Principal Neighbourhood Aggregation Layer (PNA) from [1].

Parameters
- `in_dim` (int) – Input dimension of the node features.
- `out_dim` (int) – Output dimension of the node features.
- `in_dim_edges` (int) – Input dimension of the edge features.
- `aggregators` (List[str]) – List of aggregator functions to use. Options are “mean”, “sum”, “max”, “min”, “std”, “var”, “moment3”, “moment4”, “moment5”.
- `scalers` (List[str]) – List of scaler functions to use. Options are “identity”, “amplification”, “attenuation”.
- `activation` (Union[Callable, str], optional, default="relu") – Activation function to use.
- `last_activation` (Union[Callable, str], optional, default="none") – Last activation function to use.
- `dropout` (float, optional, default=0.0) – Dropout rate.
- `residual` (bool, optional, default=True) – Whether to use residual connections.
- `pairwise_distances` (bool, optional, default=False) – Whether to use pairwise distances.
- `batch_norm` (bool, optional, default=True) – Whether to use batch normalization.
- `batch_norm_momentum` (float, optional, default=0.1) – Momentum for the batch normalization layers.
• **avg_d**(*Dict[str, float], optional, default={"log": 1.0}) – Dictionary containing the average degree of the graph.

• **posttrans_layers** (*int, optional, default=2*) – Number of post-transformation layers.

• **pretrans_layers** (*int, optional, default=1*) – Number of pre-transformation layers.

References

Examples

```python
>>> import dgl
>>> import numpy as np
>>> import torch
>>> from deepchem.models.torch_models.pna_gnn import PNALayer

>>> in_dim = 32
>>> out_dim = 64
>>> in_dim_edges = 16
>>> aggregators = ['mean', 'max']
>>> scalers = ['identity', 'amplification', 'attenuation']

>>> pna_layer = PNALayer(in_dim=in_dim,
...                       out_dim=out_dim,
...                       in_dim_edges=in_dim_edges,
...                       aggregators=aggregators,
...                       scalers=scalers)

>>> num_nodes = 10
>>> num_edges = 20

>>> node_features = torch.randn(num_nodes, in_dim)
>>> edge_features = torch.randn(num_edges, in_dim_edges)

>>> g = dgl.graph(((np.random.randint(0, num_nodes, num_edges),
...                 np.random.randint(0, num_nodes, num_edges)))

>>> g.ndata['feat'] = node_features
>>> g.edata['feat'] = edge_features

>>> g.ndata['feat'] = pna_layer(g)
```


Initializes internal Module state, shared by both nn.Module and ScriptModule.

forward(g)

Forward pass of the PNA layer.

Parameters

- **g** (*dgl.DGLGraph*) – Input graph

Returns

- **h** – Node feature tensor

Return type

- **torch.Tensor**

message_func(edges) → Dict[str, torch.Tensor]

The message function to generate messages along the edges.

Parameters

- **edges** (*dgl.EdgeBatch*) – Batch of edges.
Returns Dictionary containing the edge features.

Return type Dict[str, torch.Tensor]

reduce_func(nodes) -> Dict[str, torch.Tensor]
The reduce function to aggregate the messages. Apply the aggregators and scalers, and concatenate the results.

Parameters nodes (dgl.NodeBatch) – Batch of nodes.

Returns Dictionary containing the aggregated node features.

Return type Dict[str, torch.Tensor]

pretrans_edges(edges) -> Dict[str, torch.Tensor]
Return a mapping to the concatenation of the features from the source node, the destination node, and the edge between them (if applicable).

Parameters edges (dgl.EdgeBatch) – Batch of edges.

Returns Dictionary containing the concatenated features.

Return type Dict[str, torch.Tensor]

class PNAGNN(hidden_dim, aggregators: List[str], scalers: List[str], residual: bool = True, pairwise_distances: bool = False, activation: Union[Callable, str] = 'relu', batch_norm: bool = True, batch_norm_momentum=0.1, propagation_depth: int = 5, dropout: float = 0.0, posttrans_layers: int = 1, pretrans_layers: int = 1, **kwargs)
Principal Neighbourhood Aggregation Graph Neural Network [1]. This defines the message passing layers of the PNA model.

Parameters

- **hidden_dim** (int) – Dimension of the hidden layers.
- **aggregators** (List[str]) – List of aggregator functions to use.
- **scalers** (List[str]) – List of scaler functions to use. Options are “identity”, “amplification”, “attenuation”.
- **residual** (bool, optional, default=True) – Whether to use residual connections.
- **pairwise_distances** (bool, optional, default=False) – Whether to use pairwise distances.
- **activation** (Union[Callable, str], optional, default="relu") – Activation function to use.
- **batch_norm** (bool, optional, default=True) – Whether to use batch normalization in the layers before the aggregator.
- **batch_norm_momentum** (float, optional, default=0.1) – Momentum for the batch normalization layers.
- **propagation_depth** (int, optional, default=5) – Number of propagation layers.
- **dropout** (float, optional, default=0.0) – Dropout rate.
- **posttrans_layers** (int, optional, default=1) – Number of post-transformation layers.
- **pretrans_layers** (int, optional, default=1) – Number of pre-transformation layers.
References

Examples

```python
>>> import numpy as np
>>> from deepchem.feat.molecule_featurizers.conformer_featurizer import...
   RDKitConformerFeaturizer
>>> from deepchem.feat.graph_data import BatchGraphData
>>> from deepchem.models.torch_models.pna_gnn import PNAGNN
>>> featurizer = RDKitConformerFeaturizer(num_conformers=2)
>>> smiles = ['C1=CC=NC=C1', 'CC(=O)C', 'C']
>>> featurizer = RDKitConformerFeaturizer(num_conformers=2, rmsd_cutoff=1)
>>> data = featurizer.featurize(smiles)
>>> features = BatchGraphData(np.concatenate(data))
>>> features = features.to_dgl_graph()
>>> model = PNAGNN(hidden_dim=16, ...
   ... aggregators=['mean', 'sum'], ...
   ... scalers=['identity'])
>>> output = model(features)
```

```python
__init__(hidden_dim, aggregators: List[str], scalers: List[str], residual: bool = True, pairwise_distances: bool = False, activation: Union[Callable, str] = 'relu', batch_norm: bool = True, batch_norm_momentum: float = 0.1, propagation_depth: int = 5, dropout: float = 0.0, posttrans_layers: int = 1, **kwargs)
```

Initializes internal Module state, shared by both nn.Module and ScriptModule.

```python
forward(input_graph: dgl.heterograph.DGLGraph) -> dgl.heterograph.DGLGraph
```

Forward pass of the PNAGNN model.

Parameters

- **input_graph** (dgl.DGLGraph) – Input graph with node and edge features.

Returns

- **graph** – Output graph with updated node features after applying the message passing layers.

Return type
dgl.DGLGraph

```python
```

Message passing neural network for graph representation learning [1].

Parameters

- **hidden_dim** (int) – Hidden dimension size.
- **target_dim** (int) – Dimensionality of the output, for example for binary classification target_dim = 1.
- **scalers** (List[str]) – Type of normalization layers in the message passing network. Options are ‘identity’, ‘amplification’, ‘attenuation’.
- **readout_aggregators** (List[str]) – Type of aggregators in the readout network.
• **readout_hidden_dim** *(int, default None)* – The dimension of the hidden layer in the readout network. If not provided, the readout has the same dimensionality of the final layer of the PNA layer, which is the hidden dimension size.

• **readout_layers** *(int, default 1)* – The number of linear layers in the readout network.

• **residual** *(bool, default True)* – Whether to use residual connections.

• **pairwise_distances** *(bool, default False)* – Whether to use pairwise distances.

• **activation** *(Union[Callable, str])* – Activation function to use.

• **batch_norm** *(bool, default True)* – Whether to use batch normalization in the layers before the aggregator.

• **batch_norm_momentum** *(float, default 0.1)* – Momentum for the batch normalization layers.

• **propagation_depth** *(int, default)* – Number of propagation layers.

• **dropout** *(float, default 0.0)* – Dropout probability in the message passing layers.

• **posttrans_layers** *(int, default 1)* – Number of post-transformation layers.

• **pretrans_layers** *(int, default 1)* – Number of pre-transformation layers.

References

Examples

```python
>>> import numpy as np
>>> from deepchem.feat.graph_data import BatchGraphData
>>> from deepchem.models.torch_models.pna_gnn import PNA
>>> from deepchem.feat.molecule_featurizers.conformer_featurizer import ...
    RDKitConformerFeaturizer
>>> smiles = ["C1=CC=CN=C1", "C1CCC1"]
>>> featurizer = RDKitConformerFeaturizer(num_conformers=2)
>>> data = featurizer.featurize(smiles)
>>> features = BatchGraphData(np.concatenate(data))
>>> features = features.to_dgl_graph()
>>> target_dim = 1
>>> model = PNA(hidden_dim=16, target_dim=target_dim)
>>> output = model(features)
>>> print(output.shape)
torch.Size([1, 1])
```


Initializes internal Module state, shared by both nn.Module and ScriptModule.

forward(graph: dgl.heterograph.DGLGraph)

Defines the computation performed at every call.

Should be overridden by all subclasses.
Net3DLayer is a single layer of a 3D graph neural network based on the 3D Infomax architecture [1].

This class expects a DGL graph with node features stored under the name ‘feat’ and edge features stored under the name ‘d’ (representing 3D distances). The edge features are updated by the message network and the node features are updated by the update network.

Parameters

- **edge_dim** (int) – The dimension of the edge features.
- **hidden_dim** (int) – The dimension of the hidden layers.
- **reduce_func** (str) – The reduce function to use for aggregating messages. Can be either ‘sum’ or ‘mean’.
- **batch_norm** (bool, optional (default=False)) – Whether to use batch normalization.
- **batch_norm_momentum** (float, optional (default=0.1)) – The momentum for the batch normalization layers.
- **dropout** (float, optional (default=0.0)) – The dropout rate for the layers.
- **mid_activation** (str, optional (default='SiLU')) – The activation function to use in the network.
- **message_net_layers** (int, optional (default=2)) – The number of message network layers.
- **update_net_layers** (int, optional (default=2)) – The number of update network layers.

References

Examples

```python
>>> net3d_layer = Net3DLayer(edge_dim=3, hidden_dim=3)
>>> graph = dgl.heterograph({('node', 'node'): ([0, 1], [1, 2])})
>>> graph.ndata['feat'] = torch.tensor([[1., 2., 3.], [4., 5., 6.], [7., 8., 9.]])
>>> graph.edata['d'] = torch.tensor([[0.5, 0.6, 0.7], [0.8, 0.9, 1.0]])
>>> output = net3d_layer(graph)
```

__init__ (edge_dim: int, hidden_dim: int, reduce_func: str = 'sum', batch_norm: bool = False,
batch_norm_momentum: float = 0.1, dropout: float = 0.0, message_net_layers: int = 2,
update_net_layers: int = 2)

Initializes internal Module state, shared by both nn.Module and ScriptModule.

forward(input_graph: dgl.heterograph.DGLGraph)

Perform a forward pass on the given graph.
Parameters `input_graph` (dgl.DGLGraph) – The graph to perform the forward pass on.

Returns The updated graph after the forward pass.

Return type dgl.DGLGraph

message_function(edges)
Computes the message and edge weight for a given set of edges.

Parameters `edges` (dgl.EdgeBatch) – A dgl.EdgeBatch object containing the edges information (data, batch size, etc.).

Returns A dictionary containing the message multiplied by the edge weight.

Return type dict

update_function(nodes)
Update function for updating node features based on the aggregated messages.

This function is used in the forward method to perform a forward pass on the graph.

Parameters `nodes` (dgl.NodeBatch) – A node batch object containing the nodes information (data, batch size, etc.).

Returns A dictionary containing the updated features.

Return type dict

class Net3D(hidden_dim, target_dim, readout_aggregators: List[str], node_wise_output_layers=2, batch_norm=True, batch_norm_momentum=0.1, reduce_func='sum', dropout=0.0, propagation_depth: int = 4, readout_layers: int = 2, readout_hidden_dim=None, fourier_encodings=4, update_net_layers=2, message_net_layers=2, use_node_features=False)

Net3D is a 3D graph neural network that expects a DGL graph input with 3D coordinates stored under the name ‘d’ and node features stored under the name ‘feat’. It is based on the 3D Infomax architecture [1].

Parameters
- `hidden_dim` (int) – The dimension of the hidden layers.
- `target_dim` (int) – The dimension of the output layer.
- `readout_aggregators` (List[str]) – A list of aggregator functions for the readout layer. Options are ‘sum’, ‘max’, ‘min’, ‘mean’.
- `batch_norm` (bool, optional (default=False)) – Whether to use batch normalization.
- `node_wise_output_layers` (int, optional (default=2)) – The number of output layers for each node.
- `readout_batchnorm` (bool, optional (default=True)) – Whether to use batch normalization in the readout layer.
- `batch_norm_momentum` (float, optional (default=0.1)) – The momentum for the batch normalization layers.
- `reduce_func` (str, optional (default='sum')) – The reduce function to use for aggregating messages.
- `dropout` (float, optional (default=0.0)) – The dropout rate for the layers.
- `propagation_depth` (int, optional (default=4)) – The number of propagation layers in the network.
• **readout_layers** *(int, optional (default=2)) – The number of readout layers in the network.*

• **readout_hidden_dim** *(int, optional (default=None)) – The dimension of the hidden layers in the readout network.*

• **fourier_encodings** *(int, optional (default=0)) – The number of Fourier encodings to use.*

• **activation** *(str, optional (default='SiLU')) – The activation function to use in the network.*

• **update_net_layers** *(int, optional (default=2)) – The number of update network layers.*

• **message_net_layers** *(int, optional (default=2)) – The number of message network layers.*

• **use_node_features** *(bool, optional (default=False)) – Whether to use node features as input.*

Examples

```python
>>> from deepchem.feat.molecule_featurizers.conformer_featurizer import RDKitConformerFeaturizer
>>> from deepchem.models.torch_models.gnn3d import Net3D
>>> smiles = ['C[C@H](F)Cl', 'C[C@@H](F)Cl']
>>> featurizer = RDKitConformerFeaturizer(num_conformers=2)
>>> data = featurizer.featurize(smiles)
>>> dgldata = [[graph.to_dgl_graph() for graph in conf] for conf in data]
>>> net3d = Net3D(hidden_dim=3, target_dim=2, readout_aggregators=['sum', 'mean'])
>>> output = [[net3d(graph) for graph in conf] for conf in dgldata]
```

References

```python
__init__(self, hidden_dim, target_dim, readout_aggregators: List[str], node_wise_output_layers=2,
        batch_norm=True, batch_norm_momentum=0.1, reduce_func='sum', dropout=0.0,
        propagation_depth: int = 4, readout_layers: int = 2, readout_hidden_dim=None,
        fourier_encodings=4, update_net_layers=2, message_net_layers=2, use_node_features=False)
```

Initializes internal Module state, shared by both nn.Module and torchscript.

```python
forward(self, graph: dgl.heterograph.DGLGraph)
```

Forward pass of the Net3D model.

```
Parameters
graph (dgl.DGLGraph) – The input graph with node features stored under the key ‘x’ and edge distances stored under the key ‘d’.

Returns
The graph representation tensor of shape (1, target_dim).

Return type
torch.Tensor
```

```python
output_node_func(self, nodes)
```

Apply the node-wise output network to the node features.

```
Parameters
nodes (dgl.NodeBatch) – A batch of nodes with features stored under the key ‘feat’.
```

3.21. Layers 463
Returns A dictionary with the updated node features under the key ‘feat’.

Return type dict

input_edge_func(edges)
Apply the edge input network to the edge features.

Parameters edges (dgl.EdgeBatch) – A batch of edges with distances stored under the key ‘d’.

Returns A dictionary with the updated edge features under the key ‘d’.

Return type dict

class DTNNEmbedding(n_embedding: int = 30, periodic_table_length: int = 30, initializer: str = 'xavier_uniform_', **kwargs)

DTNNEmbedding layer for DTNN model.

Assign initial atomic descriptors. [1].

This layer creates ‘n’ number of embeddings as initial atomic descriptors. According to the required weight initializer and periodic_table_length (Total number of unique atoms).

References

Examples

```python
>>> from deepchem.models.torch_models import layers
>>> import torch
>>> layer = layers.DTNNEmbedding(30, 30, 'xavier_uniform_')
>>> output = layer(torch.tensor([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]))
>>> output.shape
torch.Size([10, 30])
```

__init__ (n_embedding: int = 30, periodic_table_length: int = 30, initializer: str = 'xavier_uniform_', **kwargs)

Parameters

- **n_embedding** (int, optional) – Number of features for each atom
- **periodic_table_length** (int, optional) – Length of embedding, 83=Bi
- **initializer** (str, optional) – Weight initialization for filters. Options: {'xavier_uniform_', 'xavier_normal_', 'kaiming_uniform_', 'kaiming_normal_', 'trunc_normal_'}

forward(inputs: torch.Tensor)
Returns Embeddings according to indices.

Parameters **inputs** (torch.Tensor) – Indices of Atoms whose embeddings are requested.

Returns **atom_embeddings** – Embeddings of atoms according to indices.

Return type torch.Tensor
class MolGANConvolutionLayer(units: int, nodes: int, activation=<built-in method tanh of type object>,
 dropout_rate: float = 0.0, edges: int = 5, name: str = '', prev_shape: int = 0)

Graph convolution layer used in MolGAN model. MolGAN is a WGAN type model for generation of small molecules. Not used directly, higher level layers like MolGANMultiConvolutionLayer use it. This layer performs basic convolution on one-hot encoded matrices containing atom and bond information. This layer also accepts three inputs for the case when convolution is performed more than once and results of previous convolution need to used. It was done in such a way to avoid creating another layer that accepts three inputs rather than two. The last input layer is so-called hidden_layer and it hold results of the convolution while first two are unchanged input tensors.

Examples

See: MolGANMultiConvolutionLayer for using in layers.

```python
>>> import torch
>>> import torch.nn as nn
>>> import torch.nn.functional as F

```  
```python
>>> vertices = 9
>>> nodes = 5
>>> edges = 5
>>> units = 128

```  
```python
>>> layer1 = MolGANConvolutionLayer(units=units, edges=edges, nodes=nodes, name='layer1')
>>> adjacency_tensor = torch.randn((1, vertices, vertices, edges))
>>> node_tensor = torch.randn((1, vertices, nodes))
>>> output = layer1([adjacency_tensor, node_tensor])

```  
References

__init__(units: int, nodes: int, activation=<built-in method tanh of type object>, dropout_rate: float = 0.0,
 edges: int = 5, name: str = '', prev_shape: int = 0)

Initialize this layer.

Parameters

- **units (int)** – Dimension of dense layers used for convolution
- **nodes (int)** – Number of features in node tensor
- **activation (function, optional (default=Tanh))** – Activation function used across model, default is Tanh
- **dropout_rate (float, optional (default=0.0))** – Dropout rate used by dropout layer
- **edges (int, optional (default=5))** – How many dense layers to use in convolution. Typically equal to number of bond types used in the model.
- **name (string, optional (default=""))** – Name of the layer
- **prev_shape (int, optional (default=0))** – Shape of the previous layer, used when more than two inputs are passed
forward (inputs: List) \rightarrow Tuple[torch.Tensor, torch.Tensor, torch.Tensor]

Invoke this layer

Parameters inputs (list) – List of two input matrices, adjacency tensor and node features tensors in one-hot encoding format.

Returns First and second are original input tensors Third is the result of convolution

Return type tuple(torch.Tensor,torch.Tensor,torch.Tensor)

class MolGANAggregationLayer (units: int = 128, activation=<built-in method tanh of type object>, dropout_rate: float = 0.0, name: str = '', prev_shape: int = 0)

Graph Aggregation layer used in MolGAN model. MolGAN is a WGAN type model for generation of small molecules. Performs aggregation on tensor resulting from convolution layers. Given its simple nature it might be removed in future and moved to MolGANEncoderLayer.

Examples

```python
>>> import torch
>>> import torch.nn as nn
>>> import torch.nn.functional as F

>>> vertices = 9
>>> nodes = 5
>>> edges = 5
>>> units = 128

>>> layer_1 = MolGANConvolutionLayer(units=units, nodes=nodes, edges=edges, name='layer1')
>>> layer_2 = MolGANAggregationLayer(units=128, name='layer2')
>>> adjacency_tensor = torch.randn((1, vertices, vertices, edges))
>>> node_tensor = torch.randn((1, vertices, nodes))
>>> hidden_1 = layer_1([adjacency_tensor, node_tensor])
>>> output = layer_2(hidden_1[2])
```

References

__init__ (units: int = 128, activation=<built-in method tanh of type object>, dropout_rate: float = 0.0, name: str = '', prev_shape: int = 0)

Initialize the layer

Parameters

- **units** (int, optional (default=128)) – Dimension of dense layers used for aggregation
- **activation** (function, optional (default=Tanh)) – Activation function used across model, default is Tanh
- **dropout_rate** (float, optional (default=0.0)) – Used by dropout layer
- **name** (string, optional (default='')) – Name of the layer
- **prev_shape** (int, optional (default=0)) – Shape of the input tensor
forward(inputs: List) → torch.Tensor

Invoke this layer

Parameters

- **inputs** (List) – Single tensor resulting from graph convolution layer

Returns

- **aggregation tensor** – Result of aggregation function on input convolution tensor.

Return type

torch.Tensor

class MolGANMultiConvolutionLayer(units: typing.Tuple = (128, 64), nodes: int = 5, activation=<built-in method tanh of type object>, dropout_rate: float = 0.0, edges: int = 5, name: str = '', **kwargs)

Multiple pass convolution layer used in MolGAN model. MolGAN is a WGAN type model for generation of small molecules. It takes outputs of previous convolution layer and uses them as inputs for the next one. It simplifies the overall framework, but might be moved to MolGANEncoderLayer in the future in order to reduce number of layers.

Example

```python
>>> import torch
>>> import torch.nn as nn
>>> import torch.nn.functional as F

>>> vertices = 9
>>> nodes = 5
>>> edges = 5
>>> units = (128,64)

>>> layer_1 = MolGANMultiConvolutionLayer(units=units, nodes=nodes, edges=edges, name='layer1')
>>> adjacency_tensor = torch.randn((1, vertices, vertices, edges))
>>> node_tensor = torch.randn((1, vertices, nodes))
>>> output = layer_1([adjacency_tensor, node_tensor])
```

References

__init__(units: typing.Tuple = (128, 64), nodes: int = 5, activation=<built-in method tanh of type object>, dropout_rate: float = 0.0, edges: int = 5, name: str = '', **kwargs)

Initialize the layer

Parameters

- **units** (Tuple, optional (default=(128,64)), min_length=2) – ist of dimensions used by consecutive convolution layers. The more values the more convolution layers invoked.

- **nodes** (int, optional (default=5)) – Number of features in node tensor

- **activation** (function, optional (default=Tanh)) – activation function used across model, default is Tanh

- **dropout_rate** (float, optional (default=0.0)) – Used by dropout layer

- **edges** (int, optional (default=5)) – Controls how many dense layers use for single convolution unit. Typically matches number of bond types used in the molecule.

- **name** (string, optional (default=''')) – Name of the layer
forward *(inputs: List) → torch.Tensor*

Invoke this layer

Parameters

inputs *(list)* – List of two input matrices, adjacency tensor and node features tensors in one-hot encoding format.

Returns

convolution tensor – Result of input tensors going through convolution a number of times.

Return type

torch.Tensor

class MolGANEncoderLayer *(units: typing.List = [(128, 64), 128], activation: typing.Callable = <built-in method tanh of type object>, dropout_rate: float = 0.0, edges: int = 5, nodes: int = 5, name: str = '')*

Main learning layer used by MolGAN model. MolGAN is a WGAN type model for generation of small molecules. It role is to further simplify model. This layer can be manually built by stacking graph convolution layers followed by graph aggregation.

Example

```python
>>> import torch
>>> import torch.nn as nn
>>> import torch.nn.functional as F

>>> vertices = 9
>>> nodes = 5
>>> edges = 5
>>> dropout_rate = 0.0

>>> adjacency_tensor = torch.randn((1, vertices, vertices, edges))
>>> node_tensor = torch.randn((1, vertices, nodes))

>>> graph = MolGANEncoderLayer(units = [(128,64),128], dropout_rate=dropout_rate, edges=edges, nodes=nodes)([adjacency_tensor,node_tensor])

>>> dense = nn.Linear(128,128)(graph)

>>> dense = torch.tanh(dense)

>>> dense = nn.Dropout(dropout_rate)(dense)

>>> dense = nn.Linear(128,64)(dense)

>>> dense = torch.tanh(dense)

>>> dense = nn.Dropout(dropout_rate)(dense)

>>> output = nn.Linear(64,1)(dense)
```

References

* __init__ *(units: typing.List = [(128, 64), 128], activation: typing.Callable = <built-in method tanh of type object>, dropout_rate: float = 0.0, edges: int = 5, nodes: int = 5, name: str = '')*

Initialize the layer

Parameters

- **units** *(List, optional (default=[(128,64),128]))* – List of dimensions used by consecutive convolution layers. The more values the more convolution layers invoked.

- **activation** *(function, optional (default=Tanh))* – activation function used across model, default is Tanh

- **dropout_rate** *(float, optional (default=0.0))* – Used by dropout layer
- **edges** (int, optional (default=5)) – Controls how many dense layers use for single convolution unit. Typically matches number of bond types used in the molecule.
- **nodes** (int, optional (default=5)) – Number of features in node tensor
- **name** (string, optional (default=“”)) – Name of the layer

forward (inputs: List) → torch.Tensor

Invoke this layer

Parameters

inputs (list) – List of two input matrices, adjacency tensor and node features tensors in one-hot encoding format.

Returns

encoder tensor – Tensor that been through number of convolutions followed by aggregation.

Return type

tf.Tensor

class DTNNStep(n_embedding: int = 30, n_distance: int = 100, n_hidden: int = 60, initializer: str = ‘xavier_uniform’, activation=’tanh’, **kwargs)

DTNNStep Layer for DTNN model.

Encodes the atom’s interaction with other atoms according to distance relationships. [1]

This Layer implements the Eq (7) from DTNN Paper. Then sums them up to get the final output using Eq (6) from DTNN Paper.

Eq (7): \(V_{ij} = \tanh(W_{fc} \cdot ((W_{cf} \cdot C_j + b_{cf}) \ast (W_{df} \cdot d_{ij} + b_{df})) \)

Eq (6): \(C_i = C_i + \sum V_{ij} \)

Here: ‘.’=Matrix Multiplication , ‘∗’=Multiplication

References

Examples

```python
>>> from deepchem.models.torch_models import layers
>>> import torch
>>> embedding_layer = layers.DTNNEmbedding(4, 4)
>>> emb = embedding_layer(torch.Tensor([0,1,2,3]).to(torch.int64))
>>> step_layer = layers.DTNNStep(4, 6, 8)
>>> output_torch = step_layer([
...   torch.Tensor(emb),
...   torch.Tensor([0, 1, 2, 3, 4, 5]).to(torch.float32),
...   torch.Tensor([1]).to(torch.int64),
...   torch.Tensor([[1]]).to(torch.int64)
... ])  
>>> output_torch.shape
torch.Size([2, 4, 4])
```

Parameters
• **n_embedding** *(int, optional)* – Number of features for each atom

• **n_distance** *(int, optional)* – Granularity of distance matrix

• **n_hidden** *(int, optional)* – Number of nodes in hidden layer

• **initializer** *(str, optional)* – Weight initialization for filters. Options:
 - `xavier_uniform_`
 - `xavier_normal_`
 - `kaiming_uniform_`
 - `kaiming_normal_`
 - `trunc_normal_`

• **activation** *(str, optional)* – Activation function applied

forward *(inputs)*

Executes the equations and returns the interaction vector of the atom with other atoms.

Parameters

- **inputs** *(torch.Tensor)* – List of Tensors having atom_features, distance, distance_membership_i, distance_membership_j.

Returns

- **interaction_vector** – Interaction of the atom with other atoms based on distance and distance_membership.

Return type

torch.Tensor

class **DTNNGather** *(n_embedding=30, n_outputs=100, layer_sizes=[100], output_activation=True, initializer='xavier_uniform_', activation='tanh', **kwargs)*

DTNNGather Layer for DTNN Model.

Predict Molecular Energy using atom_features and atom_membership. [1]

This Layer gathers the inputs got from the step layer according to atom_membership and calculates the total Molecular Energy.

References

Examples

```python
>>> from deepchem.models.torch_models import layers as layers_torch
>>> import torch

>>> gather_layer_torch = layers_torch.DTNNGather(3, 3, [10])
>>> result = gather_layer_torch([torch.Tensor([[3, 2, 1]]).to(torch.float32), torch.Tensor([0]).to(torch.int64)])
>>> result.shape
torch.Size([1, 3])
```

__init__ *(n_embedding=30, n_outputs=100, layer_sizes=[100], output_activation=True, initializer='xavier_uniform_', activation='tanh', **kwargs)*

Parameters

- **n_embedding** *(int, optional)* – Number of features for each atom

- **n_outputs** *(int, optional)* – Number of features for each molecule(output)

- **layer_sizes** *(list of int, optional (default=[1000]))* – Structure of hidden layer(s)
• **initializer** (*str, optional*) – Weight initialization for filters.

• **activation** (*str, optional*) – Activation function applied

forward (*inputs*)

Executes the equation and Returns Molecular Energies according to atom_membership.

Parameters **inputs** (*torch.Tensor*) – List of Tensor containing atom_features and atom_membership

Returns **molecular_energies** – Tensor containing the Molecular Energies according to atom_membership.

Return type *torch.Tensor*

class EdgeNetwork

(*n_pair_features: int = 8, n_hidden: int = 100, init: str = 'xavier_uniform', **kwargs*)

The EdgeNetwork module is a PyTorch submodule designed for message passing in graph neural networks.

Examples

```python
>>> pair_features = torch.rand((4, 2), dtype=torch.float32)
>>> atom_features = torch.rand((5, 2), dtype=torch.float32)
>>> atom_to_pair = []
>>> n_atoms = 2
>>> start = 0
>>> C0, C1 = np.meshgrid(np.arange(n_atoms), np.arange(n_atoms))
>>> atom_to_pair.append(np.transpose(np.array([C1.flatten() + start, C0.flatten() + start])))
>>> atom_to_pair = torch.Tensor(atom_to_pair)
>>> atom_to_pair = torch.squeeze(atom_to_pair.to(torch.int64), dim=0)
>>> inputs = [pair_features, atom_features, atom_to_pair]
>>> n_pair_features = 2
>>> n_hidden = 2
>>> init = 'xavier_uniform'
>>> layer = EdgeNetwork(n_pair_features, n_hidden, init)
>>> result = layer(inputs)
>>> result.shape[1]
2
```

__init__ (*n_pair_features: int = 8, n_hidden: int = 100, init: str = 'xavier_uniform', **kwargs*)

Initialises a EdgeNetwork Layer

Parameters

• **n_pair_features** (*int, optional*) – The length of the pair features vector.

• **n_hidden** (*int, optional*) – Number of hidden units in the passing phase

• **init** (*str, optional*) – Initialization function to be used in the message passing layer.

forward (*inputs: List[torch.Tensor]*) → *torch.Tensor*

Parameters **inputs** (*List[torch.Tensor]*) – The length of atom_to_pair should be same as n_pair_features.

Returns **result** – Tensor containing the mapping of the edge vector to a \(d \times d \) matrix, where \(d \) denotes the dimension of the internal hidden representation of each node in the graph.

Return type *torch.Tensor*

This class implements the core Weave convolution from the Google graph convolution paper [1]. This is the Torch equivalent of the original implementation using Keras.

This model contains atom features and bond features separately. Here, bond features are also called pair features. There are 2 types of transformation, atom→atom, atom→pair, pair→atom, pair→pair that this model implements.

Examples

This layer expects 4 inputs in a list of the form [atom_features, pair_features, pair_split, atom_to_pair]. We’ll walk through the structure of these inputs. Let’s start with some basic definitions. >>> import deepchem as dc >>> import numpy as np >>> smiles = ["CCC", "C"]

Note that there are 4 atoms in total in this system. This layer expects its input molecules to be batched together.

Let’s suppose that we have a featurizer that computes n_atom_feat features per atom.

Let’s suppose we have n_pair_feat pairwise features

For each molecule, we compute a matrix of shape (n_atoms×n_atoms, n_pair_feat) of pairwise features for each pair of atoms in the molecule. Let’s construct this conceptually for our example.

pair_split is an index into pair_feat which tells us which atom each row belongs to. In our case, we have

That is, the first 9 entries belong to “CCC” and the last entry to “C”. The final entry atom_to_pair goes in a little more in-depth than pair_split and tells us the precise pair each pair feature belongs to. In our case

(continues on next page)
Let’s now define the actual layer

```python
>>> layer = WeaveLayer()
```

And invoke it

```python
>>> [A, P] = layer([atom_feat, pair_feat, pair_split, atom_to_pair])
```

The weave layer produces new atom/pair features. Let’s check their shapes

```python
>>> A = A.detach().numpy()
>>> A.shape
(4, 50)
>>> P = P.detach().numpy()
>>> P.shape
(10, 50)
```

The 4 is `total_num_atoms` and the 10 is the total number of pairs. Where does 50 come from? It’s from the default arguments `n_atom_input_feat` and `n_pair_input_feat`.

References

```python
__init__(n_atom_input_feat: int = 75, n_pair_input_feat: int = 14, n_atom_output_feat: int = 50,
         50, n_hidden_PP: int = 50, update_pair: bool = True, init_: str = 'xavier_uniform_', activation:
         str = 'relu', batch_normalize: bool = True, **kwargs)
```

Parameters

- `n_atom_input_feat(int, optional (default 75))` – Number of features for each atom in input.
- `n_pair_input_feat(int, optional (default 14))` – Number of features for each pair of atoms in input.
- `n_atom_output_feat(int, optional (default 50))` – Number of features for each atom in output.
- `n_pair_output_feat(int, optional (default 50))` – Number of features for each pair of atoms in output.
- `n_hidden_AA(int, optional (default 50))` – Number of units (convolution depths) in corresponding hidden layer
- `n_hidden_PA(int, optional (default 50))` – Number of units (convolution depths) in corresponding hidden layer
- `n_hidden_AP(int, optional (default 50))` – Number of units (convolution depths) in corresponding hidden layer
- `n_hidden_PP(int, optional (default 50))` – Number of units (convolution depths) in corresponding hidden layer
• **update_pair**(bool, optional (default True)) – Whether to calculate for pair features, could be turned off for last layer

• **init**(str, optional (default 'xavier_uniform_')) – Weight initialization for filters.

• **activation**(str, optional (default 'relu')) – Activation function applied

• **batch_normalize**(bool, optional (default True)) – If this is turned on, apply batch normalization before applying activation functions on convolutional layers.

forward(inputs: List[numpy.ndarray]) \to List[torch.Tensor]

Creates weave tensors.

Parameters

- **inputs** (List[Union[np.ndarray, np.ndarray, np.ndarray, np.ndarray]])

- **atom_features** (Should contain 4 tensors)

- **pair_features**

- **pair_split**

Examples

This layer expects 2 inputs in a list of the form \([\text{atom_features}, \text{pair_features}]\). We’ll walk through the structure of these inputs. Let’s start with some basic definitions.

```python
>>> import deepchem as dc
>>> import numpy as np

Suppose you have a batch of molecules

```python
>>> smiles = ['CCC', 'C']
```
Then conceptually, \textit{atom\_feat} is the array of shape \((total\_n\_atoms, n\_atom\_feat)\) of atomic features. For simplicity, let’s just go with a random such matrix.

```python
>>> atom_feat = np.random.rand(total_n_atoms, n_atom_feat)
```

We then need to provide a mapping of indices to the atoms they belong to. In ours case this would be

```python
>>> atom_split = np.array([0, 0, 0, 1])
```

Let’s now define the actual layer

```python
>>> gather = WeaveGather(batch_size=2, n_input=n_atom_feat)
>>> output_molecules = gather([atom_feat, atom_split])
>>> len(output_molecules)
2
```

References


Parameters

- \texttt{batch\_size} (int) – number of molecules in a batch
- \texttt{n\_input} (int, optional (default 128)) – number of features for each input molecule
- \texttt{gaussian\_expand} (boolean, optional (default True)) – Whether to expand each dimension of atomic features by gaussian histogram
- \texttt{compress\_post\_gaussian\_expansion} (bool, optional (default False)) – If True, compress the results of the Gaussian expansion back to the original dimensions of the input by using a linear layer with specified activation function. Note that this compression was not in the original paper, but was present in the original DeepChem implementation so is left present for backwards compatibility.
- \texttt{init} (str, optional (default ‘xavier\_uniform’)) – Weight initialization for filters if \texttt{compress\_post\_gaussian\_expansion} is True.
- \texttt{activation} (str, optional (default ‘tanh’)) – Activation function applied for filters if \texttt{compress\_post\_gaussian\_expansion} is True.

\texttt{forward}(inputs: List[numpy.ndarray]) \rightarrow torch.Tensor

Creates weave tensors.

Parameters \texttt{inputs} (List[Union[numpy.ndarray, numpy.ndarray]]) – Should contain 2 tensors [atom\_features, atom\_split]

Returns \texttt{output\_molecules} – Each entry in this list is of shape \((self.n\_inputs,)\)

Return type torch.Tensor
gaussian_histogram(x: torch.Tensor) → torch.Tensor

Expands input into a set of gaussian histogram bins.

**Parameters**

$x$ (torch.Tensor) – Of shape (N, n_feat)

**Examples**

This method uses 11 bins spanning portions of a Gaussian with zero mean and unit standard deviation.

```python
>>> gaussian_memberships = [(-1.645, 0.283), (-1.080, 0.170),
 (-0.739, 0.134), (-0.468, 0.118),
 (-0.228, 0.114), (0., 0.114),
 (0.228, 0.114), (0.468, 0.118),
 (0.739, 0.134), (1.080, 0.170),
 (1.645, 0.283)]
```

We construct a Gaussian at \text{gaussian_memberships}[i][0] with standard deviation \text{gaussian_memberships}[i][1]. Each feature in $x$ is assigned the probability of falling in each Gaussian, and probabilities are normalized across the 11 different Gaussians.

**Returns**

 outputs – Of shape (N, 11*n_feat)

**Return type**

torch.Tensor

**Grover Layers**

The following layers are used for implementing GROVER model as described in the paper <Self-Supervised Graph Transformer on Large-Scale Molecular Data <https://drug.ai.tencent.com/publications/GROVER.pdf>._

**class GroverMPNEncoder**


Performs Message Passing to generate encodings for the molecule.

**Parameters**

- **atom_messages** (bool) – True if encoding atom-messages else False.
- **init_message_dim** (int) – Dimension of embedding message.
- **attach_feats** (bool) – Set to True if additional features are passed along with node/edge embeddings.
- **attached_feat_fdim** (int) – Dimension of additional features when attach_feats is True
- **undirected** (bool) – If set to True, the graph is considered as an undirected graph.
- **depth** (int) – number of hops in a message passing iteration
- **dynamic_depth** (str, default: none) – If set to uniform for randomly sampling dynamic depth from an uniform distribution else if set to truncnorm, dynamic depth is sampled from a truncated normal distribution.
- **input_layer** (str) – If set to fc, adds an initial feed-forward layer. If set to none, does not add an initial feed forward layer.
__init__(atom_messages: bool, init_message_dim: int, hidden_size: int, depth: int, undirected: bool, attach_feats: bool, attached_feat_fdim: int = 0, bias: bool = True, dropout: float = 0.2, activation: str = 'relu', input_layer: str = 'fc', dynamic_depth: str = 'none')

Initializes internal Module state, shared by both nn.Module and ScriptModule.

forward(init_messages, init_attached_features, a2nei, a2attached, b2a=None, b2revb=None, adjs=None) → torch.FloatTensor

Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.

class GroverAttentionHead(hidden_size: int = 128, bias: bool = True, depth: int = 1, dropout: float = 0.0, undirected: bool = False, atom_messages: bool = False)

Generates attention head using GroverMPNEncoder for generating query, key and value

Parameters

- **hidden_size** (int) – Dimension of hidden layer
- **undirected** (bool) – If set to True, the graph is considered as an undirected graph.
- **depth** (int) – Number of hops in a message passing iteration
- **atom_messages** (bool) – True if encoding atom-messages else False.

__init__(hidden_size: int = 128, bias: bool = True, depth: int = 1, dropout: float = 0.0, undirected: bool = False, atom_messages: bool = False)

Initializes internal Module state, shared by both nn.Module and ScriptModule.

forward(f_atoms, f_bonds, a2b, a2a, b2a, b2revb)

Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.

class GroverMTBlock(atom_messages: bool, input_dim: int, num_heads: int, depth: int, undirected: bool = False, hidden_size: int = 128, dropout: float = 0.0, bias: bool = True, res_connection: bool = True, activation: str = 'relu')

Message passing combined with transformer architecture

The layer combines message passing performed using GroverMPNEncoder and uses it to generate query, key and value for multi-headed Attention block.

Parameters

- **atom_messages** (bool) – True if encoding atom-messages else False.
- **input_dim** (int) – Dimension of input features
- **num_heads** (int) – Number of attention heads
• **depth** (*int*) – Number of hops in a message passing iteration

• **undirected** (*bool*) – If set to True, the graph is considered as an undirected graph.

```python
__init__(atom_messages: bool, input_dim: int, num_heads: int, depth: int, undirected: bool = False,
 hidden_size: int = 128, dropout: float = 0.0, bias: bool = True, res_connection: bool = True,
 activation: str = 'relu')
```

Initializes internal Module state, shared by both nn.Module and ScriptModule.

```python
forward(batch)
```

Defines the computation performed at every call.

Should be overridden by all subclasses.

**Note:** Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.

```python
class GroverTransEncoder(node_fdim: int, edge_fdim: int, depth: int = 3, undirected: bool = False,
 num_mt_block: int = 2, num_heads: int = 2, hidden_size: int = 64, dropout: float =
 0.2, res_connection: bool = True, bias: bool = True, activation: str = 'relu')
```

GroverTransEncoder for encoding a molecular graph

The GroverTransEncoder layer is used for encoding a molecular graph. The layer returns 4 outputs. They are atom messages aggregated from atom hidden states, atom messages aggregated from bond hidden states, bond messages aggregated from atom hidden states, bond messages aggregated from bond hidden states.

**Parameters**

• **hidden_size** (*int*) – the hidden size of the model.

• **edge_fdim** (*int*) – the dimension of additional feature for edge/bond.

• **node_fdim** (*int*) – the dimension of additional feature for node/atom.

• **depth** (*int*) – Dynamic message passing depth for use in MPN Encoder

• **undirected** (*bool*) – The message passing is undirected or not

• **dropout** (*float*) – the dropout ratio

• **activation** (*str*) – the activation function

• **num_mt_block** (*int*) – the number of mt block.

• **num_head** (*int*) – the number of attention AttentionHead.

• **bias** (*bool*) – enable bias term in all linear layers.

• **res_connection** (*bool*) – enables the skip-connection in MTBlock.

```python
__init__(node_fdim: int, edge_fdim: int, depth: int = 3, undirected: bool = False, num_mt_block: int = 2,
 num_heads: int = 2, hidden_size: int = 64, dropout: float = 0.2, res_connection: bool = True,
 bias: bool = True, activation: str = 'relu')
```

Initializes internal Module state, shared by both nn.Module and ScriptModule.

```python
forward(batch)
```

Forward layer

**Parameters**  
**batch** (*Tuple*) – A tuple of tensors representing grover attributes
Returns embeddings – Embeddings for atom generated from hidden state of nodes and bonds and embeddings of bond generated from hidden states of nodes and bond.


class GroverEmbedding

Returns a dictionary of embeddings. The embeddings are: - atom_from_atom: node messages aggregated from node hidden states - bond_from_atom: bond messages aggregated from bond hidden states - atom_from_bond: node message aggregated from bond hidden states - bond_from_bond: bond messages aggregated from bond hidden states.

Return type Dict[str, torch.Tensor]

class GroverEmbedding

This layer is a simple wrapper over GroverTransEncoder layer for retrieving the embeddings from the GroverTransEncoder layer.

Parameters

- edge_fdim (int) – the dimension of additional feature for edge/bond.
- node_fdim (int) – the dimension of additional feature for node/atom.
- depth (int) – Dynamic message passing depth for use in MPNEncoder
- undirected (bool) – The message passing is undirected or not
- num_mt_block (int) – the number of message passing blocks.
- num_head (int) – the number of attention heads.

__init__

Initializes internal Module state, shared by both nn.Module and ScriptModule.

forward(graph_batch: List[torch.Tensor])

Forward function

Parameters graph_batch (List[torch.Tensor]) – A list containing f_atoms, f_bonds, a2b, b2a, b2revb, a_scope, b_scope, a2a

Returns embedding

This layer is a simple wrapper over GroverTransEncoder layer for retrieving the embeddings from the GroverTransEncoder layer.

Parameters

- edge_fdim (int) – the dimension of additional feature for edge/bond.
- node_fdim (int) – the dimension of additional feature for node/atom.
- depth (int) – Dynamic message passing depth for use in MPNEncoder
- undirected (bool) – The message passing is undirected or not
- num_mt_block (int) – the number of message passing blocks.
- num_head (int) – the number of attention heads.
__init__\((node\_fdim, edge\_fdim, hidden\_size=128, depth=1, undirected=False, dropout=0.2,\)
\nactivation='relu', num\_int\_block=1, num\_heads=4, bias=False, res\_connection=False)\)

Initializes internal Module state, shared by both nn.Module and ScriptModule.

**forward**\((graph\_batch: \text{List[torch.Tensor]})\)

Forward function

- **graph\_batch** (List[torch.Tensor]) – A list containing f\_atoms, f\_bonds, a2b, b2a, b2revb, a\_scope, b\_scope, a2a
- **embedding** – Returns a dictionary of embeddings. The embeddings are:
  - atom\_from\_atom: node messages aggregated from node hidden states
  - bond\_from\_atom: bond messages aggregated from bond hidden states
  - atom\_from\_bond: node message aggregated from bond hidden states
  - bond\_from\_bond: bond messages aggregated from bond hidden states.

**Return type** Dict[str, torch.Tensor]

class GroverAtomVocabPredictor\((vocab\_size: \text{int}, in\_features: \text{int} = 128)\)

Grover Atom Vocabulary Prediction Module.

The GroverAtomVocabPredictor module is used for predicting atom-vocabulary for the self-supervision task in Grover architecture. In the self-supervision tasks, one task is to learn contextual-information of nodes (atoms). Contextual information are encoded as strings, like \textit{C-N-DOUBLE1-O-SINGLE1}. The module accepts an atom encoding and learns to predict the contextual information of the atom as a multi-class classification problem.

**Example**

```python
>>> from deepchem.models.torch_models.grover_layers import GroverAtomVocabPredictor
>>> num_atoms, in_features, vocab_size = 30, 16, 10
>>> layer = GroverAtomVocabPredictor(vocab_size, in_features)
>>> embedding = torch.randn(num_atoms, in_features)
>>> result = layer(embedding)
>>> result.shape
torch.Size([30, 10])
```

__init__\((vocab\_size: \text{int}, in\_features: \text{int} = 128)\)

Initializing Grover Atom Vocabulary Predictor

- **vocab\_size** (int) – size of vocabulary (vocabulary here is the total number of different possible contexts)
- **in\_features** (int) – feature size of atom embeddings.

**forward**\((embeddings)\)

- **embeddings** (torch.Tensor) – the atom embeddings of shape (vocab\_size, in\_features)
- **logits** – the prediction for each atom of shape (num\_bond, vocab\_size)

**Return type** torch.Tensor

class GroverBondVocabPredictor\((vocab\_size: \text{int}, in\_features: \text{int} = 128)\)

Layer for learning contextual information for bonds.
The layer is used in Grover architecture to learn contextual information of a bond by predicting the context of a bond from the bond embedding in a multi-class classification setting. The contextual information of a bond are encoded as strings (ex: ‘(DOUBLE-STEREONONE-NONE)_C-(SINGLE-STEREONONE-NONE)2’).

Example

```python
>>> from deepchem.models.torch_models.grover_layers import GroverBondVocabPredictor
>>> num_bonds = 20
>>> in_features, vocab_size = 16, 10
>>> layer = GroverBondVocabPredictor(vocab_size, in_features)
>>> embedding = torch.randn(num_bonds * 2, in_features)
>>> result = layer(embedding)
>>> result.shape
torch.Size([20, 10])
```

__init__ (vocab_size: int, in_features: int = 128)

Initializes GroverBondVocabPredictor

Parameters

- **vocab_size** (int) – Size of vocabulary, used for number of classes in prediction.
- **in_features** (int, default: 128) – Input feature size of bond embeddings.

forward (embeddings)

Parameters

- **embeddings** (torch.Tensor) – bond embeddings of shape (num_bond, in_features)

Returns

- **logits** – the prediction for each bond, (num_bond, vocab_size)

Return type

torch.Tensor

class GroverFunctionalGroupPredictor (functional_group_size: int, in_features=128)

The functional group prediction task for self-supervised learning.

Molecules have functional groups in them. This module is used for predicting the functional group and the problem is formulated as an multi-label classification problem.

Parameters

- **functional_group_size** (int,) – size of functional group
- **in_features** (int,) – hidden_layer size, default 128

Example

```python
>>> from deepchem.models.torch_models.grover_layers import GroverFunctionalGroupPredictor
>>> in_features, functional_group_size = 8, 20
>>> num_atoms, num_bonds = 10, 20
>>> predictor = GroverFunctionalGroupPredictor(functional_group_size=20, in_features=8)
>>> atom_scope, bond_scope = [(0, 3), (3, 3), (6, 4)], [(0, 5), (5, 4), (9, 11)]
>>> embeddings = {}
>>> embeddings['bond_from_atom'] = torch.randn(num_bonds, in_features)
```
>>> embeddings['bond_from_bond'] = torch.randn(num_bonds, in_features)
>>> embeddings['atom_from_atom'] = torch.randn(num_atoms, in_features)
>>> embeddings['atom_from_bond'] = torch.randn(num_atoms, in_features)
>>> result = predictor(embeddings, atom_scope, bond_scope)

__init__(functional_group_size: int, in_features=128)

Initializes internal Module state, shared by both nn.Module and ScriptModule.

forward(embeddings: Dict, atom_scope: List, bond_scope: List)

The forward function for the GroverFunctionalGroupPredictor (semantic motif prediction) layer. It takes atom/bond embeddings produced from node and bond hidden states from GroverEmbedding module and the atom, bond scopes and produces prediction logits for different each embedding. The scopes are used to differentiate atoms/bonds belonging to a molecule in a batched molecular graph.

Parameters

- embedding (Dict) – The input embeddings organized as an dictionary. The input embeddings are output of GroverEmbedding layer.
- atom_scope (List) – The scope for atoms.
- bond_scope (List) – The scope for bonds

Returns

- preds (Dict) – A dictionary containing the predicted logits of functional group from four different types of input embeddings. The key and their corresponding predictions

  - are described below.
    - atom_from_atom - prediction logits from atom embeddings generated via node hidden states
    - atom_from_bond - prediction logits from atom embeddings generated via bond hidden states
    - bond_from_atom - prediction logits from bond embeddings generated via node hidden states
    - bond_from_bond - prediction logits from bond embeddings generated via bond hidden states


The Grover Pretrain module.

The GroverPretrain module is used for training an embedding based on the Grover Pretraining task. Grover pretraining is a self-supervised task where an embedding is trained to learn the contextual information of atoms and bonds along with graph-level properties, which are functional groups in case of molecular graphs.

Parameters

- embedding (nn.Module) – An embedding layer to generate embedding from input molecular graph
• **atom_vocab_task_atom** (*nn.Module*) – A layer used for predicting atom vocabulary from atom features generated via atom hidden states.

• **atom_vocab_task_bond** (*nn.Module*) – A layer used for predicting atom vocabulary from atom features generated via bond hidden states.

• **bond_vocab_task_atom** (*nn.Module*) – A layer used for predicting bond vocabulary from bond features generated via atom hidden states.

• **bond_vocab_task_bond** (*nn.Module*) – A layer used for predicting bond vocabulary from bond features generated via bond hidden states.

**Returns**

• **prediction_logits** (*Tuple*) – A tuple of prediction logits containing prediction logits of atom vocabulary task from atom hidden state,

• prediction logits for atom vocabulary task from bond hidden states, prediction logits for bond vocabulary task

• from atom hidden states, prediction logits for bond vocabulary task from bond hidden states, functional

• group prediction logits from atom embedding generated from atom and bond hidden states, functional group

• prediction logits from bond embedding generated from atom and bond hidden states.

**Example**

```python
>>> import deepchem as dc
>>> from deepchem.feat.graph_data import BatchGraphData
>>> from deepchem.models.torch_models.grover import GroverPretrain
>>> from deepchem.models.torch_models.grover_layers import GroverEmbedding,
 GroverAtomVocabPredictor, GroverBondVocabPredictor, GroverFunctionalGroupPredictor

>>> smiles = ['CC', 'CCC', 'CC(=O)C']

>>> fg = dc.feat.CircularFingerprint()
>>> featurizer = dc.feat.GroverFeaturizer(features_generator=fg)

>>> graphs = featurizer.featurize(smiles)
>>> batched_graph = BatchGraphData(graphs)
>>> grover_graph_attributes = extract_grover_attributes(batched_graph)
>>> f_atoms, f_bonds, a2b, b2a, b2revb, a2a, a_scope, b_scope, _, _ = grover_graph_attributes

>>> components = {}
>>> components['embedding'] = GroverEmbedding(node_fdim=f_atoms.shape[1], edge_fdim=f_bonds.shape[1])
>>> components['atom_vocab_task_atom'] = GroverAtomVocabPredictor(vocab_size=10, in_features=128)
>>> components['atom_vocab_task_bond'] = GroverAtomVocabPredictor(vocab_size=10, in_features=128)
>>> components['bond_vocab_task_atom'] = GroverBondVocabPredictor(vocab_size=10, in_features=128)
>>> components['bond_vocab_task_bond'] = GroverBondVocabPredictor(vocab_size=10, in_features=128)
```

(continues on next page)
components['functional_group_predictor'] = GroverFunctionalGroupPredictor(10)
model = GroverPretrain(**components)

inputs = f_atoms, f_bonds, a2b, b2a, b2revb, a_scope, b_scope, a2a
output = model(inputs)


Initializes internal Module state, shared by both nn.Module and ScriptModule.

forward(graph_batch)
Forward function

Parameters

- graph_batch (List[torch.Tensor]) – A list containing grover graph attributes

class GroverFinetune(embedding: torch.nn.modules.module.Module, readout:
  torch.nn.modules.module.Module, mol_atom_from_atom_ffn:
  torch.nn.modules.module.Module, mol_atom_from_bond_ffn:
  n_tasks: int = 1, n_classes: Optional[int] = None)

Grover Finetune model.

For a graph level prediction task, the GroverFinetune model uses node/edge embeddings output by the GroverEmbedding layer and applies a readout function on it to get graph embeddings and use additional MLP layers to predict the property of the molecular graph.

Parameters

- embedding (nn.Module) – An embedding layer to generate embedding from input molecular graph
- readout (nn.Module) – A readout layer to perform readout atom and bond hidden states
- mol_atom_from_atom_ffn (nn.Module) – A feed forward network which learns representation from atom messages generated via atom hidden states of a molecular graph
- mol_atom_from_bond_ffn (nn.Module) – A feed forward network which learns representation from atom messages generated via bond hidden states of a molecular graph
- mode (str) – classification or regression

Returns

- prediction_logits – prediction logits
- Return type torch.Tensor

Example

>>> import deepchem as dc
>>> from deepchem.feat.graph_data import BatchGraphData
>>> from deepchem.utils.grover import extract_grover_attributes
>>> from deepchem.models.torch_models.grover_layers import GroverEmbedding
>>> from deepchem.models.torch_models.readout import GroverReadout
>>> from deepchem.models.torch_models.grover import GroverFinetune
>>> smiles = ['CC', 'CCC', 'CC(=O)C']
>>> fg = dc.feat.CircularFingerprint()
>>> featurizer = dc.feat.GroverFeaturizer(features_generator=fg)
>>> graphs = featurizer.featurize(smiles)
>>> batched_graph = BatchGraphData(graphs)
>>> attributes = extract_grover_attributes(batched_graph)
>>> components = {}
>>> f_atoms, f_bonds, a2b, b2a, b2revb, a2a, a_scope, b_scope, fg_labels,
    additional_features = attributes
>>> inputs = f_atoms, f_bonds, a2b, b2a, b2revb, a2a, b_scope, a2a
>>> components = {
    'embedding': GroverEmbedding(node_fdim=f_atoms.shape[1], edge_fdim=f_bonds.shape[1]),
    'readout': GroverReadout(rtype="mean", in_features=128),
    'mol_atom_from_atom_ffn': nn.Linear(in_features=additional_features.shape[1] + 128, out_features=128),
    'mol_atom_from_bond_ffn': nn.Linear(in_features=additional_features.shape[1] + 128, out_features=128),
    'model': GroverFinetune(**components, mode='regression', hidden_size=128),
    'model.training': False,
    'output': model((inputs, additional_features))}

Attention Layers

class ScaledDotProductAttention
The Scaled Dot Production Attention operation from Attention Is All You Need paper.

Example

```python
>>> from deepchem.models import ScaledDotProductAttention as SDPA
>>> attn = SDPA()
>>> x = torch.ones(1, 5)
>>> # Linear layers for making query, key, value
>>> Q, K, V = nn.Parameter(torch.ones(5)), nn.Parameter(torch.ones(5)), nn.Parameter(torch.ones(5))
>>> query, key, value = Q * x, K * x, V * x
>>> x_out, attn_score = attn(query, key, value)
```

__init__()
Initializes internal Module state, shared by both nn.Module and ScriptModule.

Parameters
- query (torch.Tensor) – Query tensor for attention
- key (torch.Tensor) – Key tensor for attention
- value (torch.Tensor) – Value tensor for attention
- mask (torch.Tensor (optional)) – Mask to apply during attention computation
- dropout (nn.Dropout (optional)) – Dropout layer for attention output

class SelfAttention(in_features, out_features, hidden_size=128)

SelfAttention Layer
Given $X_{in} \in \mathbb{R}^{n \times in\_features}$, the attention is calculated by: $a = \text{softmax}(W_2 \text{tanh}(W_1X))$, where $W_1 \in \mathbb{R}^{hidden\_size \times in\_features}$, $W_2 \in \mathbb{R}^{out\_features \times hidden}$. The final output is $y = axX$ where $y \in \mathbb{R}^{n \times out\_features}$.

Parameters
- in_features (int) – Dimension of input features
- out_features (int) – Dimension of output features
- hidden_size (int) – Dimension of hidden layer

__init__(in_features, out_features, hidden_size=128)

Initializes internal Module state, shared by both nn.Module and ScriptModule.

forward(X)

The forward function.

Parameters X (torch.Tensor) – input feature of shape $\mathbb{R}^{n \times in\_features}$.

Returns
- embedding (torch.Tensor) – The final embedding of shape $\mathbb{R}^{n \times out\_features}$
- attention-matrix (torch.Tensor) – The attention matrix

Readout Layers

class GroverReadout(rtype: str = 'mean', in_features: int = 128, attn_hidden_size: int = 32, attn_out_size: int = 32)

Performs readout on a batch of graph

The readout module is used for performing readouts on batched graphs to convert node embeddings/edge embeddings into graph embeddings. It is used in the Grover architecture to generate a graph embedding from node and edge embeddings. The generate embedding can be used in downstream tasks like graph classification or graph prediction problems.

Parameters
- rtype (str) – Readout type, can be ‘mean’ or ‘self-attention’
- in_features (int) – Size of input features
• **attn_hidden_size** *(int)* – If readout type is attention, size of hidden layer in attention network.

• **attn_out_size** *(int)* – If readout type is attention, size of attention out layer.

**Example**

```python
>>> import torch
>>> from deepchem.models.torch_models.readout import GroverReadout

>>> n_nodes, n_features = 6, 32

>>> readout = GroverReadout(rtype="mean")

>>> embedding = torch.ones(n_nodes, n_features)

>>> result = readout(embedding, scope=[(0, 6)])

>>> result.size()
torch.Size([1, 32])
```

**__init__**(rtyp: str = 'mean', in_features: int = 128, attn_hidden_size: int = 32, attn_out_size: int = 32)

Initializes internal Module state, shared by both nn.Module and ScriptModule.

**forward**(graph_embeddings: torch.Tensor, scope: List[List]) → torch.Tensor

Given a batch node/edge embedding and a scope list, produce the graph-level embedding by scope.

**Parameters**

• **embeddings** *(torch.Tensor)* – The embedding matrix, num_nodes x in_features or num_edges x in_features.

• **scope** *(List[List])* – A list, in which the element is a list [start, range]. start is the index, range is the length of scope. (start + range = end)

**Returns**

**graph_embeddings** – A stacked tensor containing graph embeddings of shape len(scope) x in_features if readout type is mean or len(scope) x attn_out_size when readout type is self-attention.

**Return type** torch.Tensor

### 3.21.4 Jax Layers

**class Linear**(num_output: int, initializer: str = 'linear', use_bias: bool = True, bias_init: float = 0.0, name: str = 'linear')

Protein folding specific Linear Module.

This differs from the standard Haiku Linear in a few ways:

• It supports inputs of arbitrary rank

• Initializers are specified by strings

This code is adapted from DeepMind’s AlphaFold code release (https://github.com/deepmind/alphafold).
Examples

```python
>>> import deepchem as dc
>>> import haiku as hk
>>> import jax
>>> import deepchem.models.jax_models.layers
>>> def forward_model(x):
... layer = dc.models.jax_models.layers.Linear(2)
... return layer(x)

>>> f = hk.transform(forward_model)

>>> rng = jax.random.PRNGKey(42)

>>> x = jnp.ones([8, 28 * 28])

>>> params = f.init(rng, x)

>>> output = f.apply(params, rng, x)
```

```
__init__ (num_output: int, initializer: str = 'linear', use_bias: bool = True, bias_init: float = 0.0, name: str = 'linear')

Constructs Linear Module.

Parameters

• num_output (int) – number of output channels.
• initializer (str (default 'linear')) – What initializer to use, should be one of \{ 'linear', 'relu', 'zeros' \}
• use_bias (bool (default True)) – Whether to include trainable bias
• bias_init (float (default 0)) – Value used to initialize bias.
• name (str (default 'linear')) – name of module, used for name scopes.
```

3.21.5 Density Functional Theory Layers

class BaseNNXC

Base class for the Neural Network XC (NNXC) and HybridXC classes.

Density-functional theory (DFT) is a theory used to calculate the electronic structure of atoms, molecules, and solids. Its objective is to use the fundamental laws of quantum mechanics to quantitatively comprehend the properties of materials.

There are serious limitations to the traditional methods used to approximate solutions to the Schrödinger equation of N interacting electrons moving in an external potential. Whereas in DFT, instead of the many-body wave function, the density (n(r)) is a function of three spatial coordinates.

The many-body electronic ground state can be described using single-particle equations and an effective potential thanks to the Kohn-Sham theory. The exchange-correlation potential, which accounts for many-body effects, the Hartree potential, which describes the electrostatic electron-electron interaction, and the ionic potential resulting from the atomic cores make up the effective potential.

The difference between the total exact energy and the total of the rest of the energy terms (such as kinetic energy), is known as the exchange-correlation energy. The exchange-correlation functional is obtained by calculating the functional derivate of the XC energy w.r.t the electron density function. In this model, we are trying to build a neural network that can be trained to calculate an exchange-correlation functional based on a specific set of molecules/atoms/ions.

This base class can be used to build layers such as the NNLDA layer, where the exchange correlation functional is trained based on the pre-defined LDA class of functionals. The methods in this class take the electron density
as the input and transform it accordingly. For example; The NNLDA layer requires only the density to build an NNXC whereas a GGA based model would require the density gradient as well. This method also takes polarization into account.

References


```python
```

This method is used to transform the electron density. The output of this method varies depending on the layer.

Parameters densinfo (Union[ValGrad, SpinParam[ValGrad]]) – Density information calculated using DQC utilities.

```python
getparamnames(methodname: str, prefix: str = '') → List[str]
```

This method is implemented only to avoid errors while passing the get_edensityxc method values to DQC and Xitorch.

```python
class NNLDA(nnmodel: torch.nn.modules.module.Module)
```

Neural network xc functional of LDA

Local-density approximations (LDA) are a class of approximations to the exchange–correlation (XC) energy. The LDA assumes variations of the density to be gradual, i.e, it is based on the homogeneous electron gas model. Which is why it is regarded as the simplest approach to the exchange correlation functional. This class of functionals depend only upon the value of the electronic density at each point in space.

Hence, in this model, we only input the density and not other components such as the gradients of the density (which is used in other functionals such as the GGA class).

Examples

```python
>>> from deepchem.models.dft.nnxc import NNLDA
>>> import torch
>>> import torch.nn as nn
>>> n_input, n_hidden = 2, 1
>>> nnmodel = (nn.Linear(n_input, n_hidden))
>>> output = NNLDA(nnmodel)
```

References


```python
__init__(nnmodel: torch.nn.modules.module.Module)
```

Initializes internal Module state, shared by both nn.Module and ScriptModule.
get_edensityxc(densinfo: Union[dqc.utils.datastruct.ValGrad, 
dqc.utils.datastruct.SpinParam[dqc.utils.datastruct.ValGrad]]) → torch.Tensor

This method transform the local electron density (n) and the spin density (xi) for polarized and unpolarized cases, to be the input of the neural network.

**Parameters**

- **densinfo** *(Union[ValGrad, SpinParam[ValGrad]])* – Density information calculated using DQC utilities.

**Returns**

Neural network output by calculating total density (n) and the spin density (xi). The shape of res is (nip, ) where nip is the number of layers in nnmodel ; which is user defined.

**Return type**

res

class NNPBE(nnmodel: torch.nn.modules.module.Module)

Neural network xc functional of GGA class of functionals

The Purdew-Burke-Ernzerhof (PBE) functional is a popular non-empirical functional which falls under the Generalized Gradient Approximation (GGA) class of functionals. GGA differs from LDA by incorporating nonlocal corrections involving gradients (or derivatives) of the electron density. In other words, the XC potential is a complicated function in 3D space since it depends on the electron density and its gradient.

Hence, in this model we input the electron density as well as the calculated gradients. We calculate these values using the DQC and Xitorch libraries.

**Examples**

```python
>>> from deepchem.models.dft.nnxc import NNPBE
>>> import torch
>>> import torch.nn as nn

>>> n_input, n_hidden = 3, 3
>>> nnmodel = (nn.Linear(n_input, n_hidden))
>>> output = NNPBE(nnmodel)
```

**References**


__init__(nnmodel: torch.nn.modules.module.Module)

**Parameters**

- **nnmodel** *(torch.nn.Module)* – Neural network for xc functional. Shape; (3,.....).

This is because the nnmodel receives an input with the shape (.....,3). This dimension is for;
(0) total density (n): (n_up + n_dn), and (1) spin density (xi): (n_up - n_dn) / (n_up + n_dn)
(2) normalized gradients (s): |del(n)| / [2(3*π^2)^(1/3) * n^(4/3)]

get_edensityxc(densinfo: Union[dqc.utils.datastruct.ValGrad, 
dqc.utils.datastruct.SpinParam[dqc.utils.datastruct.ValGrad]]) → torch.Tensor

This method transform the local electron density (n), its gradient and the spin density (xi) for polarized and unpolarized cases, to be the input of the neural network.

**Parameters**

- **densinfo** *(Union[ValGrad, SpinParam[ValGrad]])* – Density information calculated using DQC utilities.
Returns Neural network output by calculating total density (n) and the spin density (xi). The shape of res is (ninp,) where ninp is the number of layers in nnmodel; which is 3 for NNPBE. The shape of the output is (....1) and it represents the energy density per density per unit volume.

Return type res
class HybridXC(xcstr: str, nnmodel: torch.nn.modules.module.Module, aweight0: float = 0.0, bweight0: float = 1.0)
The HybridXC module computes XC energy by summing XC energy computed from libxc(any conventional DFT functional) and the trainable neural network with tunable weights. This layer constructs a hybrid functional based on the user’s choice of what model is to be used to train the functional. (Currently, we only support an LDA based model). This hybrid functional is a combination of the xc that is trained by a neural network, and a conventional DFT functional.

Examples

```python
>>> from deepchem.models.dft.nnxc import HybridXC
>>> import torch
>>> import torch.nn as nn

>>> n_input, n_hidden = 2, 1
>>> nnmodel = (nn.Linear(n_input, n_hidden))
>>> output = HybridXC("lda_x", nnmodel, aweight0=0.0)
```

__init__(xcstr: str, nnmodel: torch.nn.modules.module.Module, aweight0: float = 0.0, bweight0: float = 1.0)
Initializes internal Module state, shared by both nn.Module and ScriptModule.

property family: int
This method determines the type of model to be used, to train the neural network. Currently we only support an LDA based model and will implement more in subsequent iterations. :rtype: xc.family

Return type Total calculated electron density with tunable weights.
class XCNNSCF(xc: Union[deepchem.models.dft.nnxc.BaseNNXC, deepchem.models.dft.nnxc.HybridXC], entry: deepchem.feat.dft_data.DFTEntry)
Exchange Correlation Neural Network - Self Consistent Iterations
In the Kohn-Sham theory, the inclusion of the noninteracting kinetic energy functional results in a set of one-particle equations with Kohn-Sham orbitals as their solutions after functional differentiation. It is a variational approach that determines the lowest energy and the related molecular orbitals and orbital energies by using the electron-electron interaction potential. To learn more about Density Functional Theory and the Kohn-Sham approach please use the references below.
The XCNNSCF is used for performing self-consistent iterations. The XC functional in the Kohn-Sham model implementation is replaced by a neural network.
Examples

```python
>>> from deepchem.models.dft.scf import XCNNSCF
>>> import torch
>>> from deepchem.feat.dft_data import DFTEntry, DFTSystem
>>> from deepchem.models.dft.nnxc import HybridXC
>>>
>>> nnmodel = (torch.nn.Sequential(...
 torch.nn.Linear(2, 10),
 torch.nn.Tanh(),
 torch.nn.Linear(10, 1))).to(torch.double)
>>> e_type = 'dm'
>>> true_val = 'deepchem/feat/tests/data/dftHF_output.npy'
>>> systems = [{
 'moldesc': 'H 0.86625 0 0; F -0.86625 0 0',
 'basis': '6-311++G(3df,3pd)'
 }]
>>> entry = DFTEntry.create(e_type, true_val, systems)
>>> evl = XCNNSCF(hybridxc, entry)
>>> system = DFTSystem(systems[0])
>>> run = evl.run(system)
>>> output = run.energy()
```

Notes

This code is derived from https://github.com/mfkasim1/xcnn/blob/f2cb9777da2961ac553f256ecdcca3e314a538ca/ xcdnn2/evaluator.py

References


```
__init__(xc: Union[deepchem.models.dft.nnxc.BaseNNXC, deepchem.models.dft.nnxc.HybridXC], entry: deepchem.feat.dft_data.DFTEntry)
```

Initializes internal Module state, shared by both nn.Module and ScriptModule.

```
abstract get_xc() -> deepchem.models.dft.nnxc.HybridXC
```

Returns

- Exchange correlation functional that has been replaced by a neural network, based on a BaseNNXC model.

```
abstract run(system: deepchem.feat.dft_data.DFTSystem) -> deepchem.utils.dftutils.KSCalc
```

Kohn Sham Model This method runs the Quantum Chemistry calculation (Differentiable DFT) of the given system and returns the post-run object. This method starts with an intial density matrix, the new density matrix can be obtained from the post-run object.

Parameters system (DFTSystem) –

Return type KSCalc object

```
class DFTXC(xcstr: str, nnmodel: torch.nn.modules.module.Module)
```

This layer initializes the neural network exchange correlation functional and the hybrid functional. It is then used to run the Kohn Sham iterations.
Examples

```python
>>> import torch
>>> from deepchem.feat.dft_data import DFTEntry
>>> from deepchem.models.dft.dftxc import DFTXC

>>> e_type = 'ie'
>>> true_val = 0.53411947056
>>> systems = [{'moldesc': 'N 0 0 0',
 'basis': '6-311++G(3df,3pd)',
 'spin': '3'},
 {'moldesc': 'N 0 0 0',
 'basis': '6-311++G(3df,3pd)',
 'charge': 1,
 'spin': '2'}]
>>> entry = DFTEntry.create(e_type, true_val, systems)
>>> nnmodel = _construct_nn_model(ninp=2, nhid=10, ndepths=1, modeltype=1).to(torch.double)
>>> model = DFTXC('lda_x')
>>> output = model([entry])
```

**__init__(xstr: str, nnmodel: torch.nn.modules.module.Module)***

**Parameters**

- **xstr** (str) – The choice of xc to use. Some of the commonly used ones are: `lda_x`, `lda_c_pw`, `lda_c_ow`, `lda_c_pz`, `lda_xc_lp_a`, `lda_xc lp b`.
- **nnmodel** (torch.nn.Module) – the PyTorch model implementing the calculation

**Notes**

It is not necessary to use the default method(_construct_nn_model) with the XCMModel.

**forward(inputs)**

**Parameters** **inputs** (list) – list of entry objects that have been defined using DFTEntry

**Returns** **output** – Calculated value of the data point after running the Kohn Sham iterations using the neural network XC functional.

**Return type** list of torch.Tensor

### 3.22 Metrics

Metrics are one of the most important parts of machine learning. Unlike traditional software, in which algorithms either work or don’t work, machine learning models work in degrees. That is, there’s a continuous range of “goodness” for a model. “Metrics” are functions which measure how well a model works. There are many different choices of metrics depending on the type of model at hand.
### 3.22.1 Metric Utilities

Metric utility functions allow for some common manipulations such as switching to/from one-hot representations.

**to_one_hot**

```python
(y: numpy.ndarray, n_classes: int = 2) → numpy.ndarray
```

Transforms label vector into one-hot encoding.

Turns $y$ into vector of shape $(N, n_{classes})$ with a one-hot encoding. Assumes that $y$ takes values from 0 to $n_{classes} - 1$.

**Parameters**

- **y** (*np.ndarray*) – A vector of shape $(N,)$ or $(N, 1)$
- **n_classes** (*int, default 2*) – If specified use this as the number of classes. Else will try to impute it as $n_{classes} = \text{max}(y) + 1$ for arrays and as $n_{classes}=2$ for the case of scalars. Note this parameter only has value if `mode`="classification"

**Returns** A numpy array of shape $(N, n_{classes})$.

**Return type** *np.ndarray*

**from_one_hot**

```python
(y: numpy.ndarray, axis: int = 1) → numpy.ndarray
```

Transforms label vector from one-hot encoding.

**Parameters**

- **y** (*np.ndarray*) – A vector of shape $(n_{samples}, n_{num\_classes})$
- **axis** (*int, optional (default 1)*) – The axis with one-hot encodings to reduce on.

**Returns** A numpy array of shape $(n_{samples},)$

**Return type** *np.ndarray*

### 3.22.2 Metric Shape Handling

One of the trickiest parts of handling metrics correctly is making sure the shapes of input weights, predictions and labels and processed correctly. This is challenging in particular since DeepChem supports multitask, multiclass models which means that shapes must be handled with care to prevent errors. DeepChem maintains the following utility functions which attempt to facilitate shape handling for you.

**normalize_weight_shape**

```python
(w: Optional[numpy.ndarray], n_samples: int, n_tasks: int) → numpy.ndarray
```

A utility function to correct the shape of the weight array.

This utility function is used to normalize the shapes of a given weight array.

**Parameters**

- **w** (*np.ndarray*) – $w$ can be *None* or a scalar or a *np.ndarray* of shape $(n_{samples},)$ or of shape $(n_{samples}, n_{tasks})$. If $w$ is a scalar, it’s assumed to be the same weight for all samples/tasks.
- **n_samples** (*int*) – The number of samples in the dataset. If $w$ is not *None*, we should have $n_{samples} = w.shape[0]$ if $w$ is a *ndarray*
- **n_tasks** (*int*) – The number of tasks. If $w$ is 2d *ndarray*, then we should have $w.shape[1] == n_{tasks}$.
Examples

```python
>>> import numpy as np
>>> w_out = normalize_weight_shape(None, n_samples=10, n_tasks=1)
>>> (w_out == np.ones((10, 1))).all()
True

Returns `w_out` – Array of shape `(n_samples, n_tasks)`

Return type `np.ndarray`

normalize_labels_shape(y: numpy.ndarray, mode: Optional[str] = None, n_tasks: Optional[int] = None, n_classes: Optional[int] = None) → numpy.ndarray

A utility function to correct the shape of the labels.

Parameters

- `y` (`np.ndarray`) – `y` is an array of shape `(N,)` or `(N, n_tasks)` or `(N, n_tasks, 1)`.
- `mode` (`str`, `default None`) – If `mode` is “classification” or “regression”, attempts to apply data transformations.
- `n_tasks` (`int`, `default None`) – The number of tasks this class is expected to handle.
- `n_classes` (`int`, `default None`) – If specified use this as the number of classes. Else will try to impute it as `n_classes = max(y) + 1` for arrays and as `n_classes=2` for the case of scalars. Note this parameter only has value if `mode=="classification"

Returns `y_out` – If `mode=="classification"`, `y_out` is an array of shape `(N, n_tasks, n_classes)`. If `mode=="regression"`, `y_out` is an array of shape `(N, n_tasks)`.

Return type `np.ndarray`

A utility function to correct the shape of provided predictions.

The metric computation classes expect that inputs for classification have the uniform shape `(N, n_tasks, n_classes)` and inputs for regression have the uniform shape `(N, n_tasks)`. This function normalizes the provided input array to have the desired shape.

Examples

```python
>>> import numpy as np
>>> y = np.random.rand(10)
>>> y_out = normalize_prediction_shape(y, "regression", n_tasks=1)
>>> y_out.shape
(10, 1)

Parameters

- `y` (`np.ndarray`) – If `mode=="classification"`, `y` is an array of shape `(N,)` or `(N, n_tasks)` or `(N, n_tasks, n_classes)`. If `mode=="regression"`, `y` is an array of shape `(N,)` or `(N, n_tasks)` or `(N, n_tasks, 1)

- `mode` (`str`, `default None`) – If `mode` is “classification” or “regression”, attempts to apply data transformations.
deepchem, Release 2.7.2.dev

- `n_tasks (int, default None) – The number of tasks this class is expected to handle.
- `n_classes (int, default None) – If specified use this as the number of classes. Else will try to impute it as `n_classes = max(y) + 1` for arrays and as `n_classes=2` for the case of scalars. Note this parameter only has value if `mode==”classification”`

Returns `y_out` – If `mode==”classification”`, `y_out` is an array of shape `(N, n_tasks, n_classes)`. If `mode==”regression”, `y_out` is an array of shape `(N, n_tasks)`.

Return type `np.ndarray`

`handle_classification_mode`

Handle classification mode.

Transform predictions so that they have the correct classification mode.

Parameters

- `y (np.ndarray)` – Must be of shape `(N, n_tasks, n_classes)`
- `classification_handling_mode (str, default None)` – DeepChem models by default predict class probabilities for classification problems. This means that for a given singletask prediction, after shape normalization, the DeepChem prediction will be a numpy array of shape `(N, n_classes)` with class probabilities. `classification_handling_mode` is a string that instructs this method how to handle transforming these probabilities. It can take on the following values: - None: default value. Pass in `y_pred` directly into `self.metric`. - „threshold“: Use `threshold_predictions` to threshold `y_pred`. Use `threshold_value` as the desired threshold.

- “threshold-one-hot”: Use `threshold_predictions` to threshold `y_pred` using `threshold_values`, then apply `to_one_hot` to output.

- `threshold_value (float, default None)` – If set, and `classification_handling_mode` is “threshold” or “threshold-one-hot” apply a thresholding operation to values with this threshold. This option is only sensible on binary classification tasks. If float, this will be applied as a binary classification value.

Returns `y_out` – If `classification_handling_mode` is “direct”, then of shape `(N, n_tasks, n_classes)`. If `classification_handling_mode` is “threshold”, then of shape `(N, n_tasks)`. If `classification_handling_mode` is “threshold-one-hot”, then of shape `(N, n_tasks, n_classes)`

Return type `np.ndarray`

### 3.22.3 Metric Functions

DeepChem has a variety of different metrics which are useful for measuring model performance. A number (but not all) of these metrics are directly sourced from `sklearn`.

`matthews_corrcoef(y_true, y_pred, *, sample_weight=None)`

Compute the Matthews correlation coefficient (MCC).

The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary and multiclass classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia]
Binary and multiclass labels are supported. Only in the binary case does this relate to information about true and false positives and negatives. See references below.

Read more in the User Guide.

**Parameters**

- `y_true` *(array-like of shape (n_samples,)) – Ground truth (correct) target values.*
- `y_pred` *(array-like of shape (n_samples,)) – Estimated targets as returned by a classifier.*
- `sample_weight` *(array-like of shape (n_samples,), default=None) – Sample weights.*

New in version 0.18.

**Returns** `mcc` – The Matthews correlation coefficient (+1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction).

**Return type** float

**References**

**Examples**

```python
>>> from sklearn.metrics import matthews_corrcoef
>>> y_true = [+1, +1, +1, -1]
>>> y_pred = [+1, -1, +1, +1]
>>> matthews_corrcoef(y_true, y_pred)
-0.33...
```

**recall_score** *(y_true, y_pred, *, labels=None, pos_label=1, average='binary', sample_weight=None, zero_division='warn')*

Compute the recall.

The recall is the ratio \( \frac{tp}{tp + fn} \) where \( tp \) is the number of true positives and \( fn \) the number of false negatives. The recall is intuitively the ability of the classifier to find all the positive samples.

The best value is 1 and the worst value is 0.

Read more in the User Guide.

**Parameters**

- `y_true` *(1d array-like, or label indicator array / sparse matrix) – Ground truth (correct) target values.*
- `y_pred` *(1d array-like, or label indicator array / sparse matrix) – Estimated targets as returned by a classifier.*
- `labels` *(array-like, default=None) – The set of labels to include when average != 'binary', and their order if average is None. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `y_true` and `y_pred` are used in sorted order.*

Changed in version 0.17: Parameter `labels` improved for multiclass problem.
• **pos_label** *(int, float, bool or str, default=1)* – The class to report if `average='binary'` and the data is binary. If the data are multiclass or multilabel, this will be ignored; setting `labels=[pos_label]` and `average != 'binary'` will report scores for that label only.

• **average** *( {'micro', 'macro', 'samples', 'weighted', 'binary'} or None, default='binary' )* – This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data:

  'binary': Only report results for the class specified by `pos_label`. This is applicable only if targets `y_{true,pred}` are binary.

  'micro': Calculate metrics globally by counting the total true positives, false negatives and false positives.

  'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.

  'weighted': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters ‘macro’ to account for label imbalance; it can result in an F-score that is not between precision and recall. Weighted recall is equal to accuracy.

  'samples': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification where this differs from `accuracy_score()`).

• **sample_weight** *(array-like of shape (n_samples,), default=None)* – Sample weights.

• **zero_division** *( {'warn', 0.0, 1.0, np.nan}, default='warn' )* – Sets the value to return when there is a zero division.

  Notes: - If set to “warn”, this acts like 0, but a warning is also raised. - If set to `np.nan`, such values will be excluded from the average.

  New in version 1.3: `np.nan` option was added.

**Returns** recall – Recall of the positive class in binary classification or weighted average of the recall of each class for the multiclass task.

**Return type** float (if average is not None) or array of float of shape (n_unique_labels,)

See also:

- `precision_recall_fscore_support` Compute precision, recall, F-measure and support for each class.

- `precision_score` Compute the ratio \( tp / (tp + fp) \) where \( tp \) is the number of true positives and \( fp \) the number of false positives.

- `balanced_accuracy_score` Compute balanced accuracy to deal with imbalanced datasets.

- `multilabel_confusion_matrix` Compute a confusion matrix for each class or sample.

- `PrecisionRecallDisplay.from_estimator` Plot precision-recall curve given an estimator and some data.

- `PrecisionRecallDisplay.from_predictions` Plot precision-recall curve given binary class predictions.
Notes

When true positive + false negative == 0, recall returns 0 and raises UndefinedMetricWarning. This behavior can be modified with zero_division.

Examples

```python
>>> import numpy as np
>>> from sklearn.metrics import recall_score
>>> y_true = [0, 1, 2, 0, 1, 2]
>>> y_pred = [0, 2, 1, 0, 0, 1]
>>> recall_score(y_true, y_pred, average='macro')
0.33...
>>> recall_score(y_true, y_pred, average='micro')
0.33...
>>> recall_score(y_true, y_pred, average='weighted')
0.33...
>>> recall_score(y_true, y_pred, average=None)
array([1., 0., 0.])
>>> y_true = [0, 0, 0, 0, 0, 0]
>>> recall_score(y_true, y_pred, average=None)
array([0.5, 0., 0.])
>>> recall_score(y_true, y_pred, average=None, zero_division=1)
array([0.5, 1., 1.])
>>> recall_score(y_true, y_pred, average=None, zero_division=np.nan)
array([0.5, nan, nan])

multilabel classification
>>> y_true = [[0, 0, 0], [1, 1, 1], [0, 1, 1]]
>>> y_pred = [[0, 0, 0], [1, 1, 1], [1, 1, 0]]
>>> recall_score(y_true, y_pred, average=None)
array([1., 1., 0.5])
```

`r2_score(y_true, y_pred, *, sample_weight=None, multioutput='uniform_average', force_finite=True)`

$R^2$ (coefficient of determination) regression score function.

Best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). In the general case when the true y is non-constant, a constant model that always predicts the average y disregarding the input features would get a $R^2$ score of 0.0.

In the particular case when `y_true` is constant, the $R^2$ score is not finite: it is either NaN (perfect predictions) or -Inf (imperfect predictions). To prevent such non-finite numbers to pollute higher-level experiments such as a grid search cross-validation, by default these cases are replaced with 1.0 (perfect predictions) or 0.0 (imperfect predictions) respectively. You can set `force_finite` to `False` to prevent this fix from happening.

Note: when the prediction residuals have zero mean, the $R^2$ score is identical to the Explained Variance score.

Read more in the User Guide.

Parameters

- **y_true** (array-like of shape (n_samples,) or (n_samples, n_outputs)) – Ground truth (correct) target values.
- **y_pred** (array-like of shape (n_samples,) or (n_samples, n_outputs)) – Estimated target values.

- **sample_weight** (array-like of shape (n_samples,), default=None) – Sample weights.

- **multioutput** ({'raw_values', 'uniform_average', 'variance_weighted'}, array-like of shape (n_outputs,) or None, default='uniform_average') – Defines aggregating of multiple output scores. Array-like value defines weights used to average scores. Default is “uniform_average”.
  - 'raw_values': Returns a full set of scores in case of multioutput input.
  - 'uniform_average': Scores of all outputs are averaged with uniform weight.
  - 'variance_weighted': Scores of all outputs are averaged, weighted by the variances of each individual output.

  Changed in version 0.19: Default value of multioutput is ‘uniform_average’.

- **force_finite** (bool, default=True) – Flag indicating if NaN and -Inf scores resulting from constant data should be replaced with real numbers (1.0 if prediction is perfect, 0.0 otherwise). Default is True, a convenient setting for hyperparameters’ search procedures (e.g. grid search cross-validation).

  New in version 1.1.

Returns z – The $R^2$ score or ndarray of scores if ‘multioutput’ is ‘raw_values’.

Return type float or ndarray of floats

Notes

This is not a symmetric function.

Unlike most other scores, $R^2$ score may be negative (it need not actually be the square of a quantity R).

This metric is not well-defined for single samples and will return a NaN value if n_samples is less than two.

References

Examples

```python
>>> from sklearn.metrics import r2_score
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> r2_score(y_true, y_pred)
0.948...
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> r2_score(y_true, y_pred,
... multioutput='variance_weighted')
0.938...
>>> y_true = [1, 2, 3]
>>> y_pred = [1, 2, 3]
>>> r2_score(y_true, y_pred)
1.0
```

(continues on next page)
```python
>>> y_true = [1, 2, 3]
>>> y_pred = [2, 2, 2]
>>> r2_score(y_true, y_pred)
0.0
>>> y_true = [1, 2, 3]
>>> y_pred = [3, 2, 1]
>>> r2_score(y_true, y_pred)
-3.0
>>> y_true = [-2, -2, -2]
>>> y_pred = [-2, -2, -2]
>>> r2_score(y_true, y_pred)
1.0
>>> r2_score(y_true, y_pred, force_finite=False)
nan
>>> y_true = [-2, -2, -2]
>>> y_pred = [-2, -2, -2 + 1e-8]
>>> r2_score(y_true, y_pred)
0.0
>>> r2_score(y_true, y_pred, force_finite=False)
-inf
```

**mean_squared_error**

```
mean_squared_error(y_true, y_pred, *, sample_weight=None, multioutput='uniform_average', squared=True)
```

Mean squared error regression loss.

Read more in the User Guide.

**Parameters**

- **y_true** *(array-like of shape (n_samples,) or (n_samples, n_outputs)) – Ground truth (correct) target values.*
- **y_pred** *(array-like of shape (n_samples,) or (n_samples, n_outputs)) – Estimated target values.*
- **sample_weight** *(array-like of shape (n_samples,), default=None) – Sample weights.*
- **multioutput** *({'raw_values', 'uniform_average'} or array-like of shape (n_outputs,), default='uniform_average') – Defines aggregating of multiple output values. Array-like value defines weights used to average errors. *
  - `'raw_values'` : Returns a full set of errors in case of multioutput input. 
  - `'uniform_average'` : Errors of all outputs are averaged with uniform weight.
- **squared** *(bool, default=True) – If True returns MSE value, if False returns RMSE value.*

**Returns**

- **loss** *(float or ndarray of floats)*

**Return type** float or ndarray of floats
Examples

```python
>>> from sklearn.metrics import mean_squared_error
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> mean_squared_error(y_true, y_pred)
0.375

>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> mean_squared_error(y_true, y_pred, squared=False)
0.612...

>>> y_true = [[0.5, 1],[-1, 1],[7, -6]]
>>> y_pred = [[0, 2],[-1, 2],[8, -5]]
>>> mean_squared_error(y_true, y_pred)
0.708...

>>> mean_squared_error(y_true, y_pred, squared=False)
0.822...

>>> mean_squared_error(y_true, y_pred, multioutput='raw_values')
array([0.41666667, 1.])

>>> mean_squared_error(y_true, y_pred, multioutput=[0.3, 0.7])
0.825...
```

`mean_absolute_error(y_true, y_pred, *, sample_weight=None, multioutput='uniform_average')`

Mean absolute error regression loss.

Read more in the User Guide.

**Parameters**

- `y_true` *(array-like of shape (n_samples,) or (n_samples, n_outputs)) — Ground truth (correct) target values.*
- `y_pred` *(array-like of shape (n_samples,) or (n_samples, n_outputs)) — Estimated target values.*
- `sample_weight` *(array-like of shape (n_samples,), default=None) — Sample weights.*
- `multioutput` *({'raw_values', 'uniform_average'} or array-like of shape (n_outputs,), default='uniform_average') — Defines aggregating of multiple output values. Array-like value defines weights used to average errors.
  - `'raw_values'`: Returns a full set of errors in case of multioutput input.
  - `'uniform_average'`: Errors of all outputs are averaged with uniform weight.

**Returns**

- `loss` — If multioutput is ‘raw_values’, then mean absolute error is returned for each output separately. If multioutput is ‘uniform_average’ or an ndarray of weights, then the weighted average of all output errors is returned.

  MAE output is non-negative floating point. The best value is 0.0.

**Return type** float or ndarray of floats
Examples

```python
from sklearn.metrics import mean_absolute_error

y_true = [3, -0.5, 2, 7]
y_pred = [2.5, 0.0, 2, 8]
mean_absolute_error(y_true, y_pred)
0.5

y_true = [[0.5, 1], [-1, 1], [7, -6]]
y_pred = [[0, 2], [-1, 2], [8, -5]]
mean_absolute_error(y_true, y_pred)
0.75

mean_absolute_error(y_true, y_pred, multioutput='raw_values')
array([0.5, 1.])

mean_absolute_error(y_true, y_pred, multioutput=[0.3, 0.7])
0.85...
```

**precision_score**

```python
precision_score(y_true, y_pred, *, labels=None, pos_label=1, average='binary', sample_weight=None, zero_division='warn')
```

Compute the precision.

The precision is the ratio \( tp / (tp + fp) \) where \( tp \) is the number of true positives and \( fp \) the number of false positives. The precision is intuitively the ability of the classifier not to label as positive a sample that is negative.

The best value is 1 and the worst value is 0.

Read more in the User Guide.

**Parameters**

- **y_true** *(1d array-like, or label indicator array / sparse matrix)* – Ground truth (correct) target values.

- **y_pred** *(1d array-like, or label indicator array / sparse matrix)* – Estimated targets as returned by a classifier.

- **labels** *(array-like, default=None)* – The set of labels to include when average != 'binary', and their order if average is None. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order.

  Changed in version 0.17: Parameter labels improved for multiclass problem.

- **pos_label** *(int, float, bool or str, default=1)* – The class to report if average='binary' and the data is binary. If the data are multiclass or multilabel, this will be ignored; setting labels=[pos_label] and average != 'binary' will report scores for that label only.

- **average** *({'micro', 'macro', 'samples', 'weighted', 'binary'} or None, default='binary')* – This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data:

  - `'binary'`: Only report results for the class specified by pos_label. This is applicable only if targets (y_{true,pred}) are binary.

  - `'micro'`: Calculate metrics globally by counting the total true positives, false negatives and false positives.
'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.

'weighted': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters 'macro' to account for label imbalance; it can result in an F-score that is not between precision and recall.

'samples': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification where this differs from accuracy_score()).

- sample_weight (array-like of shape (n_samples,), default=None) – Sample weights.
- zero_division ("warn", 0.0, 1.0, np.nan, default="warn") – Sets the value to return when there is a zero division.

Notes: - If set to "warn", this acts like 0, but a warning is also raised. - If set to np.nan, such values will be excluded from the average.

New in version 1.3: np.nan option was added.

Returns precision – Precision of the positive class in binary classification or weighted average of the precision of each class for the multiclass task.

Return type float (if average is not None) or array of float of shape (n_unique_labels,)

See also:

precision_recall_fscore_support Compute precision, recall, F-measure and support for each class.

recall_score Compute the ratio tp / (tp + fn) where tp is the number of true positives and fn the number of false negatives.

PrecisionRecallDisplay.from_estimator Plot precision-recall curve given an estimator and some data.

PrecisionRecallDisplay.from_predictions Plot precision-recall curve given binary class predictions.

multilabel_confusion_matrix Compute a confusion matrix for each class or sample.

Notes

When true positive + false positive == 0, precision returns 0 and raises UndefinedMetricWarning. This behavior can be modified with zero_division.

Examples

```python
>>> import numpy as np
>>> from sklearn.metrics import precision_score
>>> y_true = [0, 1, 2, 0, 1, 2]
>>> y_pred = [0, 2, 1, 0, 0, 1]
>>> precision_score(y_true, y_pred, average='macro')
0.22...
>>> precision_score(y_true, y_pred, average='micro')
0.33...
>>> precision_score(y_true, y_pred, average='weighted')
0.22...
>>> precision_score(y_true, y_pred, average=None)
array([0.66..., 0., 0.])
```
>>> y_pred = [0, 0, 0, 0, 0, 0]
>>> precision_score(y_true, y_pred, average=None)
array([0.33..., 0., 0.])
>>> precision_score(y_true, y_pred, average=None, zero_division=1)
array([0.33..., 1., 1.])
>>> precision_score(y_true, y_pred, average=None, zero_division=np.nan)
array([0.33..., nan, nan])

>>> # multilabel classification
>>> y_true = [[0, 0, 0], [1, 1, 1], [0, 1, 1]]
>>> y_pred = [[0, 0, 0], [1, 1, 1], [1, 1, 0]]
>>> precision_score(y_true, y_pred, average=None)
array([0.5, 1., 1.])

precision_recall_curve(y_true, probas_pred, *, pos_label=None, sample_weight=None, drop_intermediate=False)

Compute precision-recall pairs for different probability thresholds.

Note: this implementation is restricted to the binary classification task.

The precision is the ratio \( tp / (tp + fp) \) where \( tp \) is the number of true positives and \( fp \) the number of false positives. The precision is intuitively the ability of the classifier not to label as positive a sample that is negative.

The recall is the ratio \( tp / (tp + fn) \) where \( tp \) is the number of true positives and \( fn \) the number of false negatives. The recall is intuitively the ability of the classifier to find all the positive samples.

The last precision and recall values are 1. and 0. respectively and do not have a corresponding threshold. This ensures that the graph starts on the y axis.

The first precision and recall values are precision=class balance and recall=1.0 which corresponds to a classifier that always predicts the positive class.

Read more in the User Guide.

Parameters

- **y_true** *(array-like of shape (n_samples,)) – True binary labels. If labels are not either {-1, 1} or {0, 1}, then pos_label should be explicitly given.*

- **probas_pred** *(array-like of shape (n_samples,)) – Target scores, can either be probability estimates of the positive class, or non-thresholded measure of decisions (as returned by decision_function on some classifiers).*

- **pos_label** *(int, float, bool or str, default=None) – The label of the positive class. When pos_label=None, if y_true is in {-1, 1} or {0, 1}, pos_label is set to 1, otherwise an error will be raised.*

- **sample_weight** *(array-like of shape (n_samples,), default=None) – Sample weights.*

- **drop_intermediate** *(bool, default=False) – Whether to drop some suboptimal thresholds which would not appear on a plotted precision-recall curve. This is useful in order to create lighter precision-recall curves.*

New in version 1.3.

Returns

- **precision** *(ndarray of shape (n_thresholds + 1,)) – Precision values such that element i is the precision of predictions with score >= thresholds[i] and the last element is 1.*
• **recall** *(ndarray of shape (n_thresholds + 1,)) – Decreasing recall values such that element i is the recall of predictions with score >= thresholds[i] and the last element is 0.

• **thresholds** *(ndarray of shape (n_thresholds,)) – Increasing thresholds on the decision function used to compute precision and recall where n_thresholds = len(np.unique(probas_pred)).

See also:

**PrecisionRecallDisplay.from_estimator** Plot Precision Recall Curve given a binary classifier.

**PrecisionRecallDisplay.from_predictions** Plot Precision Recall Curve using predictions from a binary classifier.

**average_precision_score** Compute average precision from prediction scores.

**det_curve** Compute error rates for different probability thresholds.

**roc_curve** Compute Receiver operating characteristic (ROC) curve.

### Examples

```python
gulp
>>> import numpy as np
>>> from sklearn.metrics import precision_recall_curve
>>> y_true = np.array([0, 0, 1, 1])
>>> y_scores = np.array([0.1, 0.4, 0.35, 0.8])
>>> precision, recall, thresholds = precision_recall_curve(y_true, y_scores)
>>> precision
array([0.5 , 0.66666667, 0.5 , 1. , 1.])
>>> recall
array([1. , 1. , 0.5, 0.5, 0.])
>>> thresholds
array([0.1 , 0.35, 0.4 , 0.8])
```

**auc** *(x, y)*

Compute Area Under the Curve (AUC) using the trapezoidal rule.

This is a general function, given points on a curve. For computing the area under the ROC-curve, see **roc_auc_score**(). For an alternative way to summarize a precision-recall curve, see **average_precision_score**().

**Parameters**

- **x** *(array-like of shape (n,)) – X coordinates. These must be either monotonic increasing or monotonic decreasing.

- **y** *(array-like of shape (n,)) – Y coordinates.

**Returns** **auc** – Area Under the Curve.

**Return type** float

See also:

**roc_auc_score** Compute the area under the ROC curve.

**average_precision_score** Compute average precision from prediction scores.

**precision_recall_curve** Compute precision-recall pairs for different probability thresholds.
Examples

```python
>>> import numpy as np
>>> from sklearn import metrics

>>> y = np.array([1, 1, 2, 2])
>>> pred = np.array([0.1, 0.4, 0.35, 0.8])
>>> fpr, tpr, thresholds = metrics.roc_curve(y, pred, pos_label=2)
>>> metrics.auc(fpr, tpr)
0.75
```

**jaccard_score** *(y_true, y_pred, *, labels=None, pos_label=1, average='binary', sample_weight=None, zero_division='warn')*

Jaccard similarity coefficient score.

The Jaccard index [1], or Jaccard similarity coefficient, defined as the size of the intersection divided by the size of the union of two label sets, is used to compare set of predicted labels for a sample to the corresponding set of labels in y_true.

Read more in the User Guide.

**Parameters**

- **y_true** *(1d array-like, or label indicator array / sparse matrix) – Ground truth (correct) labels.*
- **y_pred** *(1d array-like, or label indicator array / sparse matrix) – Predicted labels, as returned by a classifier.*
- **labels** *(array-like of shape (n_classes,), default=None) – The set of labels to include when average != 'binary', and their order if average is None. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order.*
- **pos_label** *(int, float, bool or str, default=1) – The class to report if average='binary' and the data is binary. If the data are multiclass or multilabel, this will be ignored; setting labels=[pos_label] and average != 'binary' will report scores for that label only.*
- **average** *({'micro', 'macro', 'samples', 'weighted', 'binary'}, or None, default='binary') – If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data: 'binary': Only report results for the class specified by pos_label. This is applicable only if targets (y_true, pred) are binary.
  'micro': Calculate metrics globally by counting the total true positives, false negatives and false positives.
  'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.
  'weighted': Calculate metrics for each label, and find their average, weighted by support (the number of true instances for each label). This alters ‘macro’ to account for label imbalance.
  'samples': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).*
• **sample_weight** (array-like of shape \((n_samples,)\), default=None) – Sample weights.

• **zero_division** ("warn", \(\{0, 1\}\), default="warn") – Sets the value to return when there is a zero division, i.e. when there are no negative values in predictions and labels. If set to "warn", this acts like 0, but a warning is also raised.

**Returns**

- **score** – The Jaccard score. When *average* is not *None*, a single scalar is returned.

**Return type**

float or ndarray of shape \((n_unique_labels,)\), dtype=np.float64

See also:

- **accuracy_score** Function for calculating the accuracy score.
- **f1_score** Function for calculating the F1 score.
- **multilabel_confusion_matrix** Function for computing a confusion matrix for each class or sample.

**Notes**

`jaccard_score()` may be a poor metric if there are no positives for some samples or classes. Jaccard is undefined if there are no true or predicted labels, and our implementation will return a score of 0 with a warning.

**References**

**Examples**

```python
>>> import numpy as np
>>> from sklearn.metrics import jaccard_score
>>> y_true = np.array([[0, 1, 1],
 [1, 1, 0]])
>>> y_pred = np.array([[1, 1, 1],
 [1, 0, 0]])

In the binary case:

>>> jaccard_score(y_true[0], y_pred[0])
0.6666...

In the 2D comparison case (e.g. image similarity):

>>> jaccard_score(y_true, y_pred, average="micro")
0.6

In the multilabel case:

>>> jaccard_score(y_true, y_pred, average='samples')
0.5833...

>>> jaccard_score(y_true, y_pred, average='macro')
0.6666...

>>> jaccard_score(y_true, y_pred, average=\'None\')
array([0.5, 0.5, 1.])

In the multiclass case:
`jaccard_score(y_true, y_pred, average=None)`

```python
>>> y_true = [0, 1, 2, 2]
>>> y_pred = [0, 2, 1, 2]
>>> jaccard_score(y_true, y_pred, average=None)
array([[1., 0., 0.33...]])
```

The Jaccard score is a simple statistic used as a measure of the overlap between two sample sets:

\[
J(S_1, S_2) = \frac{|S_1 \cap S_2|}{|S_1 \cup S_2|}
\]

where \(S_1\) and \(S_2\) are the sample sets.

`f1_score(y_true, y_pred, *, labels=None, pos_label=1, average='binary', sample_weight=None, zero_division='warn')`

Compute the F1 score, also known as balanced F-score or F-measure.

The F1 score can be interpreted as a harmonic mean of the precision and recall, where an F1 score reaches its best value at 1 and worst score at 0. The relative contribution of precision and recall to the F1 score are equal. The formula for the F1 score is:

\[
F1 = 2 \times (\text{precision} \times \text{recall}) / (\text{precision} + \text{recall})
\]

In the multi-class and multi-label case, this is the average of the F1 score of each class with weighting depending on the average parameter.

Read more in the User Guide.

Parameters

- **y_true** *(1d array-like, or label indicator array / sparse matrix)* – Ground truth (correct) target values.
- **y_pred** *(1d array-like, or label indicator array / sparse matrix)* – Estimated targets as returned by a classifier.
- **labels** *(array-like, default=None)* – The set of labels to include when average != 'binary', and their order if average is None. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `y_true` and `y_pred` are used in sorted order.
- **pos_label** *(int, float, bool, str or None, default=1)* – The class to report if average='binary' and the data is binary. If the data are multiclass or multilabel, this will be ignored; setting labels=[pos_label] and average != 'binary' will report scores for that label only.
- **average** *({'micro', 'macro', 'samples', 'weighted', 'binary'} or None, default='binary')* – This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data:
 - 'binary': Only report results for the class specified by pos_label. This is applicable only if targets (y_{true,pred}) are binary.
 - 'micro': Calculate metrics globally by counting the total true positives, false negatives and false positives.
 - 'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.
 - 'weighted': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters ‘macro’ to account for label imbalance; it can result in an F-score that is not between precision and recall.
'samples': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification where this differs from `accuracy_score()`).

- **sample_weight** *(array-like of shape (n_samples,), default=None)* – Sample weights.

- **zero_division** *({'warn', 0.0, 1.0, np.nan}, default='warn')* – Sets the value to return when there is a zero division, i.e. when all predictions and labels are negative.

 Notes: - If set to “warn”, this acts like 0, but a warning is also raised. - If set to `np.nan`, such values will be excluded from the average.

 New in version 1.3: `np.nan` option was added.

Returns **f1_score** – F1 score of the positive class in binary classification or weighted average of the F1 scores of each class for the multiclass task.

Return type **float or array of float, shape = [n_unique_labels]**

See also:

- **fbeta_score** Compute the F-beta score.
- **precision_recall_fscore_support** Compute the precision, recall, F-score, and support.
- **jaccard_score** Compute the Jaccard similarity coefficient score.
- **multilabel_confusion_matrix** Compute a confusion matrix for each class or sample.

Notes

When `true positive + false positive == 0`, precision is undefined. When `true positive + false negative == 0`, recall is undefined. In such cases, by default the metric will be set to 0, as will F-score, and `UndefinedMetricWarning` will be raised. This behavior can be modified with `zero_division`. Note that if `zero_division` is `np.nan`, scores being `np.nan` will be ignored for averaging.

References

Examples

```python
>>> import numpy as np
>>> from sklearn.metrics import f1_score
>>> y_true = [0, 1, 2, 0, 1, 2]
>>> y_pred = [0, 2, 1, 0, 0, 1]
>>> f1_score(y_true, y_pred, average='macro')
0.26...
>>> f1_score(y_true, y_pred, average='micro')
0.33...
>>> f1_score(y_true, y_pred, average='weighted')
0.26...
>>> f1_score(y_true, y_pred, average=None)
array([0.8, 0. , 0. ])
```

```python
>>> # binary classification
>>> y_true_empty = [0, 0, 0, 0, 0]
>>> y_pred_empty = [0, 0, 0, 0, 0]
```
>>> f1_score(y_true_empty, y_pred_empty)
0.0...
>>> f1_score(y_true_empty, y_pred_empty, zero_division=1.0)
1.0...
>>> f1_score(y_true_empty, y_pred_empty, zero_division=np.nan)
nan...

multilabel classification

```python
>>> y_true = [[0, 0, 0], [1, 1, 1], [0, 1, 1]]
>>> y_pred = [[0, 0, 0], [1, 1, 1], [1, 1, 0]]
>>> f1_score(y_true, y_pred, average=None)
array([0.66666667, 1. , 0.66666667])
```

roc_auc_score

```python
roc_auc_score(y_true, y_score, *, average='macro', sample_weight=None, max_fpr=None, multi_class='raise', labels=None)
```

Compute Area Under the Receiver Operating Characteristic Curve (ROC AUC) from prediction scores.

Note: this implementation can be used with binary, multiclass and multilabel classification, but some restrictions apply (see Parameters).

Read more in the User Guide.

Parameters

- **y_true** *(array-like of shape (n_samples,) or (n_samples, n_classes)) –*
 True labels or binary label indicators. The binary and multiclass cases expect labels with shape (n_samples,) while the multilabel case expects binary label indicators with shape (n_samples, n_classes).

- **y_score** *(array-like of shape (n_samples,) or (n_samples, n_classes)) –*
 Target scores.
 - In the binary case, it corresponds to an array of shape (n_samples,). Both probability estimates and non-thresholded decision values can be provided. The probability estimates correspond to the probability of the class with the greater label, i.e. estimator.classes_[1] and thus estimator.predict_proba(X, y)[; , 1]. The decision values corresponds to the output of estimator.decision_function(X, y). See more information in the User guide;
 - In the multiclass case, it corresponds to an array of shape (n_samples, n_classes) of probability estimates provided by the predict_proba method. The probability estimates must sum to 1 across the possible classes. In addition, the order of the class scores must correspond to the order of labels, if provided, or else to the numerical or lexicographical order of the labels in y_true. See more information in the User guide;
 - In the multilabel case, it corresponds to an array of shape (n_samples, n_classes). Probability estimates are provided by the predict_proba method and the non-thresholded decision values by the decision_function method. The probability estimates correspond to the probability of the class with the greater label for each output of the classifier. See more information in the User guide.

- **average** *(['micro', 'macro', 'samples', 'weighted'] or None, default='macro') –*
 If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Note: multiclass ROC AUC currently only handles the ‘macro’ and ‘weighted’ averages. For multiclass targets, average=None is only implemented for multi_class='ovr' and average='micro' is only implemented for multi_class='ovr'.
'micro': Calculate metrics globally by considering each element of the label indicator matrix as a label.

'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.

'weighted': Calculate metrics for each label, and find their average, weighted by support (the number of true instances for each label).

'samples': Calculate metrics for each instance, and find their average.

Will be ignored when y_true is binary.

- **sample_weight** (array-like of shape (n_samples,), default=None) – Sample weights.

- **max_fpr** (float > 0 and <= 1, default=None) – If not None, the standardized partial AUC [2] over the range [0, max_fpr] is returned. For the multiclass case, max_fpr should be either equal to None or 1.0 as AUC ROC partial computation currently is not supported for multiclass.

- **multi_class** ({'raise', 'ovr', 'ovo'}, default='raise') – Only used for multiclass targets. Determines the type of configuration to use. The default value raises an error, so either 'ovr' or 'ovo' must be passed explicitly.

 - **ovr**: Stands for One-vs-rest. Computes the AUC of each class against the rest [3] [4]. This treats the multiclass case in the same way as the multilabel case. Sensitive to class imbalance even when average == 'macro', because class imbalance affects the composition of each of the 'rest' groupings.

 - **ovo**: Stands for One-vs-one. Computes the average AUC of all possible pairwise combinations of classes\(^5\). Insensitive to class imbalance when average == 'macro'.

- **labels** (array-like of shape (n_classes,), default=None) – Only used for multiclass targets. List of labels that index the classes in y_score. If None, the numerical or lexicographical order of the labels in y_true is used.

Returns **auc** – Area Under the Curve score.

Return type **float**

See also:

- **average_precision_score** Area under the precision-recall curve.

- **roc_curve** Compute Receiver operating characteristic (ROC) curve.

- **RocCurveDisplay.from_estimator** Plot Receiver Operating Characteristic (ROC) curve given an estimator and some data.

- **RocCurveDisplay.from_predictions** Plot Receiver Operating Characteristic (ROC) curve given the true and predicted values.

References

Examples

Binary case:

```python
>>> from sklearn.datasets import load_breast_cancer
>>> from sklearn.linear_model import LogisticRegression
>>> from sklearn.metrics import roc_auc_score

>>> X, y = load_breast_cancer(return_X_y=True)
>>> clf = LogisticRegression(solver="liblinear", random_state=0).fit(X, y)
>>> roc_auc_score(y, clf.predict_proba(X)[:, 1])
0.99...
>>> roc_auc_score(y, clf.decision_function(X))
0.99...
```

Multiclass case:

```python
>>> from sklearn.datasets import load_iris

>>> X, y = load_iris(return_X_y=True)
>>> clf = LogisticRegression(solver="liblinear").fit(X, y)
>>> roc_auc_score(y, clf.predict_proba(X), multi_class='ovr')
0.99...
```

Multilabel case:

```python
>>> import numpy as np
>>> from sklearn.datasets import make_multilabel_classification
>>> from sklearn.multioutput import MultiOutputClassifier

>>> X, y = make_multilabel_classification(random_state=0)
>>> clf = MultiOutputClassifier(clf).fit(X, y)

# get a list of n_output containing probability arrays of shape
# (n_samples, n_classes)

>>> y_pred = clf.predict_proba(X)

# extract the positive columns for each output

>>> y_pred = np.transpose([pred[:, 1] for pred in y_pred])

>>> roc_auc_score(y, y_pred, average=None)
array([0.82..., 0.86..., 0.94..., 0.85..., 0.94...])
```

```
accuracy_score(y_true, y_pred, *, normalize=True, sample_weight=None)
```

Accuracy classification score.

In multilabel classification, this function computes subset accuracy: the set of labels predicted for a sample must exactly match the corresponding set of labels in y_true.

Read more in the User Guide.

Parameters

- `y_true` (1d array-like, or label indicator array / sparse matrix) – Ground truth (correct) labels.
- **y_pred** *(1d array-like, or label indicator array / sparse matrix)* – Predicted labels, as returned by a classifier.
- **normalize** *(bool, default=True)* – If False, return the number of correctly classified samples. Otherwise, return the fraction of correctly classified samples.
- **sample_weight** *(array-like of shape (n_samples,), default=None)* – Sample weights.

Returns

- **score** – If normalize == True, return the fraction of correctly classified samples (float), else returns the number of correctly classified samples (int).

The best performance is 1 with normalize == True and the number of samples with normalize == False.

Return type float

See also:

- **balanced_accuracy_score** Compute the balanced accuracy to deal with imbalanced datasets.
- **jaccard_score** Compute the Jaccard similarity coefficient score.
- **hamming_loss** Compute the average Hamming loss or Hamming distance between two sets of samples.
- **zero_one_loss** Compute the Zero-one classification loss. By default, the function will return the percentage of imperfectly predicted subsets.

Notes

In binary classification, this function is equal to the **jaccard_score** function.

Examples

```python
>>> from sklearn.metrics import accuracy_score
>>> y_pred = [0, 2, 1, 3]
>>> y_true = [0, 1, 2, 3]
>>> accuracy_score(y_true, y_pred)
0.5
>>> accuracy_score(y_true, y_pred, normalize=False)
2
```

In the multilabel case with binary label indicators:

```python
>>> import numpy as np
>>> accuracy_score(np.array([[0, 1], [1, 1]]), np.ones((2, 2)))
0.5
```

balanced_accuracy_score(y_true, y_pred, *, sample_weight=None, adjusted=False)

Compute the balanced accuracy.

The balanced accuracy in binary and multiclass classification problems to deal with imbalanced datasets. It is defined as the average of recall obtained on each class.

The best value is 1 and the worst value is 0 when adjusted=False.

Read more in the User Guide.
New in version 0.20.

Parameters

- **y_true** (array-like of shape (n_samples,)) – Ground truth (correct) target values.
- **y_pred** (array-like of shape (n_samples,)) – Estimated targets as returned by a classifier.
- **sample_weight** (array-like of shape (n_samples,), default=None) – Sample weights.
- **adjusted** (bool, default=False) – When true, the result is adjusted for chance, so that random performance would score 0, while keeping perfect performance at a score of 1.

Returns balanced_accuracy – Balanced accuracy score.

Return type float

See also:

- **average_precision_score** Compute average precision (AP) from prediction scores.
- **precision_score** Compute the precision score.
- **recall_score** Compute the recall score.
- **roc_auc_score** Compute Area Under the Receiver Operating Characteristic Curve (ROC AUC) from prediction scores.

Notes

Some literature promotes alternative definitions of balanced accuracy. Our definition is equivalent to `accuracy_score()` with class-balanced sample weights, and shares desirable properties with the binary case. See the User Guide.

References

Examples

```python
>>> from sklearn.metrics import balanced_accuracy_score
>>> y_true = [0, 1, 0, 0, 1, 0]
>>> y_pred = [0, 1, 0, 0, 0, 1]
>>> balanced_accuracy_score(y_true, y_pred)
0.625
```

top_k_accuracy_score(y_true, y_score, *, k=2, normalize=True, sample_weight=None, labels=None)

Top-k Accuracy classification score.

This metric computes the number of times where the correct label is among the top k labels predicted (ranked by predicted scores). Note that the multilabel case isn’t covered here.

Read more in the User Guide

Parameters

- **y_true** (array-like of shape (n_samples,)) – True labels.
y_score *(array-like of shape (n_samples,) or (n_samples, n_classes)) – Target scores. These can be either probability estimates or non-thresholded decision values (as returned by decision_function on some classifiers). The binary case expects scores with shape (n_samples,) while the multiclass case expects scores with shape (n_samples, n_classes). In the multiclass case, the order of the class scores must correspond to the order of labels, if provided, or else to the numerical or lexicographical order of the labels in y_true. If y_true does not contain all the labels, labels must be provided.

- **k** *(int, default=2) – Number of most likely outcomes considered to find the correct label.

- **normalize** *(bool, default=True) – If True, return the fraction of correctly classified samples. Otherwise, return the number of correctly classified samples.

- **sample_weight** *(array-like of shape (n_samples,), default=None) – Sample weights. If None, all samples are given the same weight.

- **labels** *(array-like of shape (n_classes,), default=None) – Multiclass only. List of labels that index the classes in y_score. If None, the numerical or lexicographical order of the labels in y_true is used. If y_true does not contain all the labels, labels must be provided.

Returns score – The top-k accuracy score. The best performance is 1 with normalize == True and the number of samples with normalize == False.

Return type float

See also:

accuracy_score Compute the accuracy score. By default, the function will return the fraction of correct predictions divided by the total number of predictions.

Notes

In cases where two or more labels are assigned equal predicted scores, the labels with the highest indices will be chosen first. This might impact the result if the correct label falls after the threshold because of that.

Examples

```python
>>> import numpy as np
>>> from sklearn.metrics import top_k_accuracy_score
>>> y_true = np.array([0, 1, 2, 2])
>>> y_score = np.array([[0.5, 0.2, 0.2],
...                      [0.3, 0.4, 0.2],
...                      [0.2, 0.4, 0.3],
...                      [0.7, 0.2, 0.1]])
>>> top_k_accuracy_score(y_true, y_score, k=2)
0.75
>>> # Not normalizing gives the number of "correctly" classified samples
>>> top_k_accuracy_score(y_true, y_score, k=2, normalize=False)
3
```

pearson_r2_score *(y: numpy.ndarray, y_pred: numpy.ndarray) → float*

Computes Pearson R^2 (square of Pearson correlation).

Parameters

- **y** *(np.ndarray) – ground truth array*
- y_pred (np.ndarray) – predicted array

Returns The Pearson-R^2 score.

Return type float

jaccard_index(y: numpy.ndarray, y_pred: numpy.ndarray) → float

Computes Jaccard Index which is the Intersection Over Union metric which is commonly used in image segmentation tasks.

DEPRECATED: WILL BE REMOVED IN A FUTURE VERSION OF DEEPCHM. USE **jaccard_score** instead.

Parameters
- y (np.ndarray) – ground truth array
- y_pred (np.ndarray) – predicted array

Returns score – The jaccard index. A number between 0 and 1.

Return type float

pixel_error(y: numpy.ndarray, y_pred: numpy.ndarray) → float

An error metric in case y, y_pred are images.

Defined as 1 - the maximal F-score of pixel similarity, or squared Euclidean distance between the original and the result labels.

Parameters
- y (np.ndarray) – ground truth array
- y_pred (np.ndarray) – predicted array

Returns score – The pixel-error. A number between 0 and 1.

Return type float

prc_auc_score(y: numpy.ndarray, y_pred: numpy.ndarray) → float

Compute area under precision-recall curve

Parameters
- y (np.ndarray) – A numpy array of shape (N, n_classes) or (N,) with true labels
- y_pred (np.ndarray) – Of shape (N, n_classes) with class probabilities.

Returns The area under the precision-recall curve. A number between 0 and 1.

Return type float

rms_score(y_true: numpy.ndarray, y_pred: numpy.ndarray) → float

Computes RMS error.

mae_score(y_true: numpy.ndarray, y_pred: numpy.ndarray) → float

Computes MAE.

kappa_score(y1, y2, *, labels=None, weights=None, sample_weight=None)

Compute Cohen’s kappa: a statistic that measures inter-annotator agreement.

This function computes Cohen’s kappa [1], a score that expresses the level of agreement between two annotators on a classification problem. It is defined as

$$\kappa = (p_o - p_e)/(1 - p_e)$$
where p_o is the empirical probability of agreement on the label assigned to any sample (the observed agreement ratio), and p_e is the expected agreement when both annotators assign labels randomly. p_e is estimated using a per-annotator empirical prior over the class labels [2].

Read more in the User Guide.

Parameters

- **y1** (*array-like of shape (n_samples,)*) – Labels assigned by the first annotator.
- **y2** (*array-like of shape (n_samples,)*) – Labels assigned by the second annotator. The kappa statistic is symmetric, so swapping $y1$ and $y2$ doesn’t change the value.
- **labels** (*array-like of shape (n_classes,), default=None*) – List of labels to index the matrix. This may be used to select a subset of labels. If None, all labels that appear at least once in $y1$ or $y2$ are used.
- **weights** ({‘linear’, ‘quadratic’}, default=None) – Weighting type to calculate the score. None means no weighted; “linear” means linear weighted; “quadratic” means quadratic weighted.
- **sample_weight** (*array-like of shape (n_samples,), default=None*) – Sample weights.

Returns

- **kappa** – The kappa statistic, which is a number between -1 and 1. The maximum value means complete agreement; zero or lower means chance agreement.

Return type float

References

bedroc_score(*y_true: numpy.ndarray, y_pred: numpy.ndarray, alpha: float = 20.0*)

Compute BEDROC metric.

BEDROC metric implemented according to Truchon and Bayley that modifies the ROC score by allowing for a factor of early recognition. Please confirm details from [1].

Parameters

- **y_true** (*np.ndarray*) – Binary class labels. 1 for positive class, 0 otherwise
- **y_pred** (*np.ndarray*) – Predicted labels
- **alpha** (*float, default 20.0*) – Early recognition parameter

Returns

Value in [0, 1] that indicates the degree of early recognition

Return type float

Notes

This function requires RDKit to be installed.
References

concordance_index *(y_true: numpy.ndarray, y_pred: numpy.ndarray) → float*

Compute Concordance index.

Statistical metric indicates the quality of the predicted ranking. Please confirm details from [1].

Parameters

- **y_true** *(np.ndarray)* – continous value
- **y_pred** *(np.ndarray)* – Predicted value

Returns score between [0,1]

Return type float

References

get_motif_scores *(encoded_sequences: numpy.ndarray, motif_names: List[str], max_scores: Optional[int] = None, return_positions: bool = False, GC_fraction: float = 0.4) → numpy.ndarray*

Computes pwm log odds.

Parameters

- **encoded_sequences** *(np.ndarray)* – A numpy array of shape \((N_{sequences}, N_{letters}, sequence_length, 1)\).
- **motif_names** *(List[str])* – List of motif file names.
- **max_scores** *(int, optional)* – Get top \(max_scores\) scores.
- **return_positions** *(bool, default False)* – Whether to return postions or not.
- **GC_fraction** *(float, default 0.4)* – GC fraction in background sequence.

Returns A numpy array of complete score. The shape is \((N_{sequences}, num_motifs, seq_length)\) by default. If \(max_scores\), the shape of score array is \((N_{sequences}, num_motifs*max_scores)\). If \(max_scores\) and \(return_positions\), the shape of score array with max scores and their positions. is \((N_{sequences}, 2*num_motifs*max_scores)\).

Return type np.ndarray

Notes

This method requires simdna to be installed.

get_pssm_scores *(encoded_sequences: numpy.ndarray, pssm: numpy.ndarray) → numpy.ndarray*

Convolves pssm and its reverse complement with encoded sequences and returns the maximum score at each position of each sequence.

Parameters

- **encoded_sequences** *(np.ndarray)* – A numpy array of shape \((N_{sequences}, N_{letters}, sequence_length, 1)\).
- **pssm** *(np.ndarray)* – A numpy array of shape \((4, pssm_length)\).

Returns scores – A numpy array of shape \((N_{sequences}, sequence_length)\).

Return type np.ndarray
in_silico_mutagenesis(model: deepchem.models.models.Model, encoded_sequences: numpy.ndarray) → numpy.ndarray

Computes in-silico-mutagenesis scores

Parameters

• **model** ([Model](#)) – This can be any model that accepts inputs of the required shape and produces an output of shape \((N_{\text{sequences}}, N_{\text{tasks}})\).

• **encoded_sequences** ([np.ndarray](#)) – A numpy array of shape \((N_{\text{sequences}}, N_{\text{letters}}, \text{sequence_length}, 1)\)

Returns A numpy array of ISM scores. The shape is \((num_{\text{task}}, N_{\text{sequences}}, N_{\text{letters}}, \text{sequence_length}, 1)\).

Return type np.ndarray

3.22.4 Metric Class

The [dc.metrics.Metric](#) class is a wrapper around metric functions which interoperates with DeepChem [dc.models.Model](#).

```python
```

Wrapper class for computing user-defined metrics.

The **Metric** class provides a wrapper for standardizing the API around different classes of metrics that may be useful for DeepChem models. The implementation provides a few non-standard conveniences such as built-in support for multitask and multiclass metrics.

There are a variety of different metrics this class aims to support. Metrics for classification and regression that assume that values to compare are scalars are supported.

At present, this class doesn’t support metric computation on models which don’t present scalar outputs. For example, if you have a generative model which predicts images or molecules, you will need to write a custom evaluation and metric setup.

```python
```

Parameters

• **metric** ([function](#)) – Function that takes args `y_true`, `y_pred` (in that order) and computes desired score. If sample weights are to be considered, `metric` may take in an additional keyword argument `sample_weight`.

• **task_averager** ([function](#), default None) – If not None, should be a function that averages metrics across tasks.

• **name** ([str](#), default None) – Name of this metric

• **threshold** ([float](#), default None (DEPRECATED)) – Used for binary metrics and is the threshold for the positive class.

• **mode** ([str](#), default None) – Should usually be “classification” or “regression.”

• **n_tasks** ([int](#), default None) – The number of tasks this class is expected to handle.
• `classification_handling_mode` *(str, default None)* – DeepChem models by default predict class probabilities for classification problems. This means that for a given singletask prediction, after shape normalization, the DeepChem labels and prediction will be numpy arrays of shape *(n_samples, n_tasks, n_classes)* with class probabilities. *classification_handling_mode* is a string that instructs this method how to handle transforming these probabilities. It can take on the following values: - “direct”: Pass `y_true` and `y_pred` directly into `self.metric`. - “threshold”: Use `threshold_predictions` to threshold `y_true` and `y_pred`.

 Use `threshold_value` as the desired threshold. This converts them into arrays of shape *(n_samples, n_tasks)*, where each element is a class index.

 - “threshold-one-hot”: Use `threshold_predictions` to threshold `y_true` and `y_pred` using `threshold_values`, then apply `to_one_hot` to output.

 - None: Select a mode automatically based on the metric.

• `threshold_value` *(float, default None)* – If set, and `classification_handling_mode` is “threshold” or “threshold-one-hot”, apply a thresholding operation to values with this threshold. This option is only sensible on binary classification tasks. For multiclass problems, or if `threshold_value` is None, `argmax()` is used to select the highest probability class for each task.

```python
def compute_metric(y_true: ArrayLike, y_pred: ArrayLike, w: Optional[ArrayLike] = None, n_tasks: Optional[int] = None, n_classes: int = 2, per_task_metrics: bool = False, **kwargs) -> Any
```

Compute a performance metric for each task.

Parameters

- `y_true` *(ArrayLike)* – An ArrayLike containing true values for each task. Must be of shape *(N,)* or *(N, n_tasks)* if a classification metric. If of shape *(N, n_tasks)* values can either be class-labels or probabilities of the positive class for binary classification problems. If a regression problem, must be of shape *(N,)* or *(N, n_tasks)* or *(N, n_tasks, 1)* if a regression metric.

- `y_pred` *(ArrayLike)* – An ArrayLike containing predicted values for each task. Must be of shape *(N, n_tasks, n_classes)* if a classification metric, else must be of shape *(N, n_tasks)* if a regression metric.

- `w` *(ArrayLike, default None)* – An ArrayLike containing weights for each datapoint. If specified, must be of shape *(N, n_tasks)*.

- `n_tasks` *(int, default None)* – The number of tasks this class is expected to handle.

- `n_classes` *(int, default 2)* – Number of classes in data for classification tasks.
• **per_task_metrics** (bool, default False) – If true, return computed metric for each task on multitask dataset.

• **use_sample_weights** (bool, default False) – If set, use per-sample weights \(w \).

• **kwargs** (dict) – Will be passed on to self.metric

Returns A numpy array containing metric values for each task.

Return type np.ndarray

compute_single_task_metric

\[
\text{compute_single_task_metric}(y_{\text{true}}, y_{\text{pred}}, w, n_{\text{samples}}, \text{use_sample_weights}, \text{**kwargs}) \rightarrow \text{float}
\]

Compute a metric value.

Parameters

• **y_true** (ArrayLike) – True values array. This array must be of shape \((N, n_{\text{classes}})\) if classification and \((N,)\) if regression.

• **y_pred** (ArrayLike) – Predictions array. This array must be of shape \((N, n_{\text{classes}})\) if classification and \((N,)\) if regression.

• **w** (ArrayLike, default None) – Sample weight array. This array must be of shape \((N,)\).

• **n_samples** (int, default None (DEPRECATED)) – The number of samples in the dataset. This is \(N\). This argument is ignored.

• **use_sample_weights** (bool, default False) – If set, use per-sample weights \(w \).

• **kwargs** (dict) – Will be passed on to self.metric

Returns metric_value – The computed value of the metric.

Return type float
3.23 Hyperparameter Tuning

One of the most important aspects of machine learning is hyperparameter tuning. Many machine learning models have a number of hyperparameters that control aspects of the model. These hyperparameters typically cannot be learned directly by the same learning algorithm used for the rest of learning and have to be set in an alternate fashion. The dc.hyper module contains utilities for hyperparameter tuning.

DeepChem’s hyperparameter optimization algorithms are simple and run in single-threaded fashion. They are not intended to be production grade hyperparameter utilities, but rather useful first tools as you start exploring your parameter space. As the needs of your application grow, we recommend swapping to a more heavy duty hyperparameter optimization library.

3.23.1 Hyperparameter Optimization API

class HyperparamOpt(model_builder: Callable[..., deepchem.models.models.Model])

Abstract superclass for hyperparameter search classes.

This class is an abstract base class for hyperparameter search classes in DeepChem. Hyperparameter search is performed on dc.models.Model classes. Each hyperparameter object accepts a dc.models.Model class upon construct. When the hyperparam_search class is invoked, this class is used to construct many different concrete models which are trained on the specified training set and evaluated on a given validation set.

Different subclasses of HyperparamOpt differ in the choice of strategy for searching the hyperparameter evaluation space. This class itself is an abstract superclass and should never be directly instantiated.

__init__(model_builder: Callable[..., deepchem.models.models.Model])

Initialize Hyperparameter Optimizer.

Note this is an abstract constructor which should only be used by subclasses.

Parameters

- model_builder (constructor function.) – This parameter must be constructor function which returns an object which is an instance of dc.models.Model. This function must accept two arguments, model_params of type dict and model_dir, a string specifying a path to a model directory. See the example.

Conduct Hyperparameter search.

This method defines the common API shared by all hyperparameter optimization subclasses. Different classes will implement different search methods but they must all follow this common API.

Parameters

- params_dict (Dict) – Dictionary mapping strings to values. Note that the precise semantics of params_dict will change depending on the optimizer that you’re using. Depending on the type of hyperparameter optimization, these values can be ints/floats/strings/lists/etc. Read the documentation for the concrete hyperparameter optimization subclass you’re using to learn more about what’s expected.

- train_dataset (Dataset) – dataset used for training

- valid_dataset (Dataset) – dataset used for validation(optimization on valid scores)

- metric (Metric) – metric used for evaluation
• **output_transformers** *(list[Transformer])* – Transformers for evaluation. This argument is needed since train_dataset and valid_dataset may have been transformed for learning and need the transform to be inverted before the metric can be evaluated on a model.

• **nb_epoch** *(int, (default 10))* – Specifies the number of training epochs during each iteration of optimization.

• **use_max** *(bool, optional)* – If True, return the model with the highest score. Else return model with the minimum score.

• **logdir** *(str, optional)* – The directory in which to store created models. If not set, will use a temporary directory.

• **logfile** *(str, optional (default results.txt))* – Name of logfile to write results to. If specified, this must be a valid file name. If not specified, results of hyperparameter search will be written to logdir/results.txt.

Returns *(best_model, best_hyperparams, all_scores)* where best_model is an instance of deepchem.models.Model, best_hyperparams is a dictionary of parameters, and all_scores is a dictionary mapping string representations of hyperparameter sets to validation scores.

Return type Tuple[best_model, best_hyperparams, all_scores]

3.23.2 Grid Hyperparameter Optimization

This is the simplest form of hyperparameter optimization that simply involves iterating over a fixed grid of possible values for hyperparameters.

class GridHyperparamOpt(model_builder: Callable[[..., deepchem.models.models.Model])

Provides simple grid hyperparameter search capabilities.

This class performs a grid hyperparameter search over the specified hyperparameter space. This implementation is simple and simply does a direct iteration over all possible hyperparameters and doesn’t use parallelization to speed up the search.

Examples

This example shows the type of constructor function expected.

```python
>>> import sklearn
>>> import deepchem as dc
→GraphConvModel(**p))
```

Here’s a more sophisticated example that shows how to optimize only some parameters of a model. In this case, we have some parameters we want to optimize, and others which we don’t. To handle this type of search, we create a model_builder which hard codes some arguments (in this case, max_iter is a hyperparameter which we don’t want to search over)

```python
>>> import deepchem as dc
>>> import numpy as np
>>> from sklearn.linear_model import LogisticRegression as LR
>>> # generating data
>>> X = np.arange(1, 11, 1).reshape(-1, 1)
>>> y = np.hstack((np.zeros(5), np.ones(5)))
```

(continues on next page)
>>> dataset = dc.data.NumpyDataset(X, y)
>>> # splitting dataset into train and test
>>> splitter = dc.splits.RandomSplitter()
>>> train_dataset, test_dataset = splitter.train_test_split(dataset)
>>> # metric to evaluate result of a set of parameters
>>> metric = dc.metrics.Metric(dc.metrics.accuracy_score)
>>> # defining `model_builder`
>>> def model_builder(**model_params):
... penalty = model_params['penalty']
... solver = model_params['solver']
... lr = LR(penalty=penalty, solver=solver, max_iter=100)
... return dc.models.SklearnModel(lr)
>>> # the parameters which are to be optimized
>>> params = {
... 'penalty': ['l1', 'l2'],
... 'solver': ['liblinear', 'saga']
... }
>>> # Creating optimizer and searching over hyperparameters
>>> optimizer = dc.hyper.GridHyperparamOpt(model_builder)
>>> best_model, best_hyperparams, all_results = optimizer.hyperparam_search(params, train_dataset, test_dataset, metric)
>>> best_hyperparams
the best hyperparameters
{'penalty': 'l2', 'solver': 'saga'}

hyperparam_search function allows you to perform hyperparameter tuning. Each key in `params_dict` corresponds to a model parameter. The values should be a list of potential values for that hyperparameter.

Parameters

- **params_dict** (`Dict`) – Maps hyperparameter names (strings) to lists of possible parameter values.
- **train_dataset** (`Dataset`) – Dataset used for training.
- **valid_dataset** (`Dataset`) – Dataset used for validation (optimization on validation scores).
- **metric** (`Metric`) – Metric used for evaluation.
- **output_transformers** (`List[transformers.Transformer]`) – Transformers for evaluation. This argument is used if `train_dataset` and `valid_dataset` may have been transformed for learning and need the transform to be inverted before the metric can be evaluated on a model.
- **nb_epoch** (`int`, **default 10**) – Specifies the number of training epochs during each iteration of optimization. Not used by all model types.
- **use_max** (`bool`, **optional**) – If True, return the model with the highest score. Else return model with the minimum score.
• logdir (str, optional) – The directory in which to store created models. If not set, will use a temporary directory.
• logfile (str, optional (default results.txt)) – Name of logfile to write results to. If specified, this must be a valid file name. If not specified, results of hyperparameter search will be written to logdir/results.txt.

Returns

• Tuple[best_model, best_hyperparams, all_scores]
 • (best_model, best_hyperparams, all_scores) where best_model is
 • an instance of dc.model.Model, best_hyperparams is a
dictionary of parameters, and all_scores is a dictionary mapping
 • string representations of hyperparameter sets to validation
 • scores.

Notes

From DeepChem 2.6, the return type of best_hyperparams is a dictionary of parameters rather than a tuple of parameters as it was previously. The new changes have been made to standardize the behaviour across different hyperparameter optimization techniques available in DeepChem.

3.23.3 Gaussian Process Hyperparameter Optimization

class GaussianProcessHyperparamOpt(model_builder: Callable[..., deepchem.models.models.Model], max_iter: int = 20, search_range: Union[int, float, Dict] = 4)

Gaussian Process Global Optimization(GPGO)

This class uses Gaussian Process optimization to select hyperparameters. Underneath the hood it uses pyGPGO to optimize models. If you don’t have pyGPGO installed, you won’t be able to use this class.

Note that params_dict has a different semantics than for GridHyperparamOpt. param_dict[hp] must be an int/float and is used as the center of a search range.

Examples

This example shows the type of constructor function expected.

```python
>>> import deepchem as dc
>>> optimizer = dc.hyper.GaussianProcessHyperparamOpt(lambda **p: dc.models.˓→GraphConvModel(n_tasks=1, **p))
```

Here’s a more sophisticated example that shows how to optimize only some parameters of a model. In this case, we have some parameters we want to optimize, and others which we don’t. To handle this type of search, we create a model_builder which hard codes some arguments (in this case, n_tasks and n_features which are properties of a dataset and not hyperparameters to search over.)

```python
>>> import numpy as np
>>> from sklearn.ensemble import RandomForestRegressor as RF
>>> def model_builder(**model_params):
...    n_estimators = model_params['n_estimators']
```
... min_samples_split = model_params['min_samples_split']
... rf_model = RF(n_estimators=n_estimators, min_samples_split=min_samples_split)
... rf_model = RF(n_estimators=n_estimators)
... return dc.models.SklearnModel(rf_model)

>>> optimizer = dc.hyper.GaussianProcessHyperparamOpt(model_builder)
>>> params_dict = {'n_estimators':100, 'min_samples_split':2}
>>> train_dataset = dc.data.NumpyDataset(X=np.random.rand(50, 5),
... y=np.random.rand(50, 1))
>>> valid_dataset = dc.data.NumpyDataset(X=np.random.rand(20, 5),
... y=np.random.rand(20, 1))
>>> metric = dc.metrics.Metric(dc.metrics.pearson_r2_score)

>> best_model, best_hyperparams, all_results = optimizer.hyperparam_search(params_dict, train_dataset,
valid_dataset, metric, max_iter=2) >> type(best_hyperparams) <class 'dict'>

Parameters

- **model_builder** (constructor function.) – This parameter must be constructor function which returns an object which is an instance of `dc.models.Model`. This function must accept two arguments, `model_params` of type dict and `model_dir`, a string specifying a path to a model directory.

- **max_iter** (int, default 20) – number of optimization trials

- **search_range** (int/float/Dict (default 4)) – The search range specifies the range of parameter values to search for. If search_range is an int/float, it is used as the global search range for parameters. This creates a search problem on the following space:

 optimization on [initial value / search_range], initial value * search_range

 If search_range is a dict, it must contain the same keys as for params_dict. In this case, search_range specifies a per-parameter search range. This is useful in case some parameters have a larger natural range than others. For a given hyperparameter hp this would create the following search range:

 optimization on hp on [initial value[hp] / search_range[hp]], initial value[hp] * search_range[hp]

Notes

This class requires pyGPGO to be installed.

```
__init__(model_builder: Callable[...], deepchem.models.models.Model], max_iter: int = 20,
search_range: Union[|nt, float, Dict] = 4)
```

Initialize Hyperparameter Optimizer.

Note this is an abstract constructor which should only be used by subclasses.

Parameters **model_builder** (constructor function.) – This parameter must be constructor function which returns an object which is an instance of `dc.models.Model`. This function must accept two arguments, `model_params` of type dict and `model_dir`, a string specifying a path to a model directory. See the example.

hyperparam_search(params_dict: Dict, train_dataset: deepchem.data.datasets.Dataset, valid_dataset: deepchem.data.datasets.Dataset, metric: deepchem.metrics.metric.Metric,
output_transformers: List[transformers.Transformer] = [], nb_epoch: int = 10,
use_max: bool = True, logfile: str = 'results.txt', logdir: Optional[|tr] = None,
**kwargs) → Tuple[deepchem.models.models.Model, Dict[str, Any], Dict[str, Any]]
Perform hyperparameter search using a gaussian process.

Parameters

- **params_dict (Dict)** – Maps hyperparameter names (strings) to possible parameter values. The semantics of this list are different than for `GridHyperparamOpt`. `params_dict[hp]` must map to an int/float, which is used as the center of a search with radius `search_range` since pyGPGO can only optimize numerical hyperparameters.

- **train_dataset (Dataset)** – dataset used for training

- **valid_dataset (Dataset)** – dataset used for validation (optimization on valid scores)

- **metric (Metric)** – metric used for evaluation

- **output_transformers (list[Transformer])** – Transformers for evaluation. This argument is needed since `train_dataset` and `valid_dataset` may have been transformed for learning and need the transform to be inverted before the metric can be evaluated on a model.

- **nb_epoch (int, (default 10))** – Specifies the number of training epochs during each iteration of optimization. Not used by all model types.

- **use_max (bool, (default True))** – Specifies whether to maximize or minimize metric. maximization(True) or minimization(False)

- **logdir (str, optional, (default None))** – The directory in which to store created models. If not set, will use a temporary directory.

- **logfile (str, optional (default results.txt))** – Name of logfile to write results to. If specified, this is must be a valid file. If not specified, results of hyperparameter search will be written to `logdir/results.txt`.

Returns (best_model, best_hyperparams, all_scores) where `best_model` is an instance of `dc.model.Model`, `best_hyperparams` is a dictionary of parameters, and `all_scores` is a dictionary mapping string representations of hyperparameter sets to validation scores.

Return type Tuple[best_model, best_hyperparams, all_scores]

3.24 Metalearning

One of the hardest challenges in scientific machine learning is lack of access of sufficient data. Sometimes experiments are slow and expensive and there’s no easy way to gain access to more data. What do you do then?

This module contains a collection of techniques for doing low data learning. “Metalearning” traditionally refers to techniques for “learning to learn” but here we take it to mean any technique which proves effective for learning with low amounts of data.
3.24.1 MetaLearner

This is the abstract superclass for metalearning algorithms.

```python
class MetaLearner

Model and data to which the MAML algorithm can be applied.

To use MAML, create a subclass of this defining the learning problem to solve. It consists of a model that can be trained to perform many different tasks, and data for training it on a large (possibly infinite) set of different tasks.

```compute_model```

(inputs, variables, training)

Compute the model for a set of inputs and variables.

Parameters

- **inputs** (list of tensors) – the inputs to the model
- **variables** (list of tensors) – the values to use for the model’s variables. This might be the actual variables (as returned by the MetaLearner’s variables property), or alternatively it might be the values of those variables after one or more steps of gradient descent for the current task.
- **training** (bool) – indicates whether the model is being invoked for training or prediction

Returns

- (loss, outputs) where loss is the value of the model’s loss function, and
- outputs is a list of the model’s outputs

```variables```

Get the list of Tensorflow variables to train.

```select_task```

Select a new task to train on.

If there is a fixed set of training tasks, this will typically cycle through them. If there are infinitely many training tasks, this can simply select a new one each time it is called.

```get_batch```

Get a batch of data for training.

This should return the data as a list of arrays, one for each of the model’s inputs. This will usually be called twice for each task, and should return a different batch on each call.

3.24.2 MAML

```python
class MAML(learner, learning_rate=0.001, optimization_steps=1, meta_batch_size=10, optimizer=<deepchem.models.optimizers.Adam object>, model_dir=None)
```

Implements the Model-Agnostic Meta-Learning algorithm for low data learning.

The algorithm is described in Finn et al., “Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks” (https://arxiv.org/abs/1703.03400). It is used for training models that can perform a variety of tasks, depending on what data they are trained on. It assumes you have training data for many tasks, but only a small amount for each one. It performs “meta-learning” by looping over tasks and trying to minimize the loss on each one after one or a few steps of gradient descent. That is, it does not try to create a model that can directly solve the tasks, but rather tries to create a model that is very easy to train.
To use this class, create a subclass of MetaLearner that encapsulates the model and data for your learning problem. Pass it to a MAML object and call fit(). You can then use train_on_current_task() to fine tune the model for a particular task.

```python
__init__(learner, learning_rate=0.001, optimization_steps=1, meta_batch_size=10, optimizer=<deepchem.models.optimizers.Adam object>, model_dir=None)
```

Create an object for performing meta-optimization.

**Parameters**

- **learner** (*MetaLearner*) – defines the meta-learning problem
- **learning_rate** (*float or Tensor*) – the learning rate to use for optimizing each task (not to be confused with the one used for meta-learning). This can optionally be made a variable (represented as a Tensor), in which case the learning rate will itself be learnable.
- **optimization_steps** (*int*) – the number of steps of gradient descent to perform for each task
- **meta_batch_size** (*int*) – the number of tasks to use for each step of meta-learning
- **optimizer** (*Optimizer*) – the optimizer to use for meta-learning (not to be confused with the gradient descent optimization performed for each task)
- **model_dir** (*str*) – the directory in which the model will be saved. If None, a temporary directory will be created.

```python
fit(steps, max_checkpoints_to_keep=5, checkpoint_interval=600, restore=False)
```

Perform meta-learning to train the model.

**Parameters**

- **steps** (*int*) – the number of steps of meta-learning to perform
- **max_checkpoints_to_keep** (*int*) – the maximum number of checkpoint files to keep. When this number is reached, older files are deleted.
- **checkpoint_interval** (*float*) – the time interval at which to save checkpoints, measured in seconds
- **restore** (*bool*) – if True, restore the model from the most recent checkpoint before training it further

```python
restore()
```

Reload the model parameters from the most recent checkpoint file.

```python
train_on_current_task(optimization_steps=1, restore=True)
```

Perform a few steps of gradient descent to fine tune the model on the current task.

**Parameters**

- **optimization_steps** (*int*) – the number of steps of gradient descent to perform
- **restore** (*bool*) – if True, restore the model from the most recent checkpoint before optimizing

```python
predict_on_batch(inputs)
```

Compute the model’s outputs for a batch of inputs.

**Parameters**

- **inputs** (*list of arrays*) – the inputs to the model

**Returns**

- *(loss, outputs)* where *loss* is the value of the model’s loss function, and
• outputs is a list of the model’s outputs

3.25 Reinforcement Learning

Reinforcement Learning is a powerful technique for learning when you have access to a simulator. That is, suppose that you have a high fidelity way of predicting the outcome of an experiment. This is perhaps a physics engine, perhaps a chemistry engine, or anything. And you’d like to solve some task within this engine. You can use reinforcement learning for this purpose.

3.25.1 Environments

class Environment(state_shape, n_actions=None, state_dtype=None, action_shape=None)

An environment in which an actor performs actions to accomplish a task.

An environment has a current state, which is represented as either a single NumPy array, or optionally a list of NumPy arrays. When an action is taken, that causes the state to be updated. The environment also computes a reward for each action, and reports when the task has been terminated (meaning that no more actions may be taken).

Two types of actions are supported. For environments with discrete action spaces, the action is an integer specifying the index of the action to perform (out of a fixed list of possible actions). For environments with continuous action spaces, the action is a NumPy array.

Environment objects should be written to support pickle and deepcopy operations. Many algorithms involve creating multiple copies of the Environment, possibly running in different processes or even on different computers.

__init__(state_shape, n_actions=None, state_dtype=None, action_shape=None)

Subclasses should call the superclass constructor in addition to doing their own initialization.

A value should be provided for either n_actions (for discrete action spaces) or action_shape (for continuous action spaces), but not both.

Parameters

• state_shape (tuple or list of tuples) – the shape(s) of the array(s) making up the state

• n_actions (int) – the number of discrete actions that can be performed. If the action space is continuous, this should be None.

• state_dtype (dtype or list of dtypes) – the type(s) of the array(s) making up the state. If this is None, all arrays are assumed to be float32.

• action_shape (tuple) – the shape of the array describing an action. If the action space is discrete, this should be None.

property state

The current state of the environment, represented as either a NumPy array or list of arrays.

If reset() has not yet been called at least once, this is undefined.

property terminated

Whether the task has reached its end.

If reset() has not yet been called at least once, this is undefined.
property state_shape
The shape of the arrays that describe a state.
If the state is a single array, this returns a tuple giving the shape of that array. If the state is a list of arrays, this returns a list of tuples where each tuple is the shape of one array.

property state_dtype
The dtypes of the arrays that describe a state.
If the state is a single array, this returns the dtype of that array. If the state is a list of arrays, this returns a list containing the dtypes of the arrays.

property n_actions
The number of possible actions that can be performed in this Environment.
If the environment uses a continuous action space, this returns None.

property action_shape
The expected shape of NumPy arrays representing actions.
If the environment uses a discrete action space, this returns None.

reset()
Initialize the environment in preparation for doing calculations with it.
This must be called before calling step() or querying the state. You can call it again later to reset the environment back to its original state.

step(action)
Take a time step by performing an action.
This causes the “state” and “terminated” properties to be updated.

Parameters
action (object) – an object describing the action to take

Returns
• the reward earned by taking the action, represented as a floating point number
• (higher values are better)

class GymEnvironment(name)
This is a convenience class for working with environments from OpenAI Gym.

__init__(name)
Create an Environment wrapping the OpenAI Gym environment with a specified name.

reset()
Initialize the environment in preparation for doing calculations with it.
This must be called before calling step() or querying the state. You can call it again later to reset the environment back to its original state.

step(action)
Take a time step by performing an action.
This causes the “state” and “terminated” properties to be updated.

Parameters
action (object) – an object describing the action to take

Returns
• the reward earned by taking the action, represented as a floating point number
• (higher values are better)
3.25.2 Policies

class Policy(output_names, rnn_initial_states=[])
A policy for taking actions within an environment.

A policy is defined by a tf.keras.Model that takes the current state as input and performs the necessary calculations. There are many algorithms for reinforcement learning, and they differ in what values they require a policy to compute. That makes it impossible to define a single interface allowing any policy to be optimized with any algorithm. Instead, this interface just tries to be as flexible and generic as possible. Each algorithm must document what values it expects the model to output.

Special handling is needed for models that include recurrent layers. In that case, the model has its own internal state which the learning algorithm must be able to specify and query. To support this, the Policy must do three things:

1. **The Model must take additional inputs that specify the initial states of** all its recurrent layers. These will be appended to the list of arrays specifying the environment state.

2. **The Model must also return the final states of all its recurrent layers as** outputs.

3. **The constructor argument rnn_initial_states must be specified to define** the states to use for the Model’s recurrent layers at the start of a new rollout.

Policy objects should be written to support pickling. Many algorithms involve creating multiple copies of the Policy, possibly running in different processes or even on different computers.

```
__init__(output_names, rnn_initial_states=[])
```

Subclasses should call the superclass constructor in addition to doing their own initialization.

Parameters

- **output_names** (list of strings) – the names of the Model’s outputs, in order. It is up to each reinforcement learning algorithm to document what outputs it expects policies to compute. Outputs that return the final states of recurrent layers should have the name ‘rnn_state’.
- **rnn_initial_states** (list of NumPy arrays) – the initial states of the Model’s recurrent layers at the start of a new rollout

```
create_model(**kwargs)
```

Construct and return a tf.keras.Model that computes the policy.

The inputs to the model consist of the arrays representing the current state of the environment, followed by the initial states for all recurrent layers. Depending on the algorithm being used, other inputs might get passed as well. It is up to each algorithm to document that.

3.25.3 A2C

class A2C(env, policy, max_rollout_length=20, discount_factor=0.99, advantage_lambda=0.98, value_weight=1.0, entropy_weight=0.01, optimizer=None, model_dir=None, use_hindsight=False)

Implements the Advantage Actor-Critic (A2C) algorithm for reinforcement learning.

The algorithm is described in Mnih et al, “Asynchronous Methods for Deep Reinforcement Learning” (https://arxiv.org/abs/1602.01783). This class supports environments with both discrete and continuous action spaces. For discrete action spaces, the “action” argument passed to the environment is an integer giving the index of the action to perform. The policy must output a vector called “action_prob” giving the probability of taking each action. For continuous action spaces, the action is an array where each element is chosen independently from a normal distribution. The policy must output two arrays of the same shape: “action_mean” gives the mean value
for each element, and “action_std” gives the standard deviation for each element. In either case, the policy must also output a scalar called “value” which is an estimate of the value function for the current state.

The algorithm optimizes all outputs at once using a loss that is the sum of three terms:

1. The policy loss, which seeks to maximize the discounted reward for each action.

2. **The value loss, which tries to make the value estimate match the actual discounted reward** that was attained at each step.

3. An entropy term to encourage exploration.

This class supports Generalized Advantage Estimation as described in Schulman et al., “High-Dimensional Continuous Control Using Generalized Advantage Estimation” (https://arxiv.org/abs/1506.02438). This is a method of trading off bias and variance in the advantage estimate, which can sometimes improve the rate of convergence. Use the advantage_lambda parameter to adjust the tradeoff.

This class supports Hindsight Experience Replay as described in Andrychowicz et al., “Hindsight Experience Replay” (https://arxiv.org/abs/1707.01495). This is a method that can enormously accelerate learning when rewards are very rare. It requires that the environment state contains information about the goal the agent is trying to achieve. Each time it generates a rollout, it processes that rollout twice: once using the actual goal the agent was pursuing while generating it, and again using the final state of that rollout as the goal. This guarantees that half of all rollouts processed will be ones that achieved their goals, and hence received a reward.

To use this feature, specify use_hindsight=True to the constructor. The environment must have a method defined as follows:

```python
def apply_hindsight(self, states, actions, goal):
 ... return new_states, rewards
```

The method receives the list of states generated during the rollout, the action taken for each one, and a new goal state. It should generate a new list of states that are identical to the input ones, except specifying the new goal. It should return that list of states, and the rewards that would have been received for taking the specified actions from those states. The output arrays may be shorter than the input ones, if the modified rollout would have terminated sooner.

**Note:** Using this class on continuous action spaces requires that `tensorflow_probability` be installed.

```python
__init__(env, policy, max_rollout_length=20, discount_factor=0.99, advantage_lambda=0.98, value_weight=1.0, entropy_weight=0.01, optimizer=None, model_dir=None, use_hindsight=False)
```

Create an object for optimizing a policy.

**Parameters**

- `env` ([Environment](#)) – the Environment to interact with
- `policy` ([Policy](#)) – the Policy to optimize. It must have outputs with the names ‘action_prob’ and ‘value’ (for discrete action spaces) or ‘action_mean’, ‘action_std’, and ‘value’ (for continuous action spaces)
- `max_rollout_length` ([int](#)) – the maximum length of rollouts to generate
- `discount_factor` ([float](#)) – the discount factor to use when computing rewards
- `advantage_lambda` ([float](#)) – the parameter for trading bias vs. variance in Generalized Advantage Estimation
- `value_weight` ([float](#)) – a scale factor for the value loss term in the loss function
- `entropy_weight` ([float](#)) – a scale factor for the entropy term in the loss function
- `optimizer` ([Optimizer](#)) – the optimizer to use. If None, a default optimizer is used.
• **model_dir** *(str)* – the directory in which the model will be saved. If None, a temporary directory will be created.

• **use_hindsight** *(bool)* – if True, use Hindsight Experience Replay

**fit***(total_steps, max_checkpoints_to_keep=5, checkpoint_interval=600, restore=False)*

Train the policy.

**Parameters**

• **total_steps** *(int)* – the total number of time steps to perform on the environment, across all rollouts on all threads

• **max_checkpoints_to_keep** *(int)* – the maximum number of checkpoint files to keep. When this number is reached, older files are deleted.

• **checkpoint_interval** *(float)* – the time interval at which to save checkpoints, measured in seconds

• **restore** *(bool)* – if True, restore the model from the most recent checkpoint and continue training from there. If False, retrain the model from scratch.

**predict***(state, use_saved_states=True, save_states=True)*

Compute the policy’s output predictions for a state.

If the policy involves recurrent layers, this method can preserve their internal states between calls. Use the use_saved_states and save_states arguments to specify how it should behave.

**Parameters**

• **state** *(array or list of arrays)* – the state of the environment for which to generate predictions

• **use_saved_states** *(bool)* – if True, the states most recently saved by a previous call to predict() or select_action() will be used as the initial states. If False, the internal states of all recurrent layers will be set to the initial values defined by the policy before computing the predictions.

• **save_states** *(bool)* – if True, the internal states of all recurrent layers at the end of the calculation will be saved, and any previously saved states will be discarded. If False, the states at the end of the calculation will be discarded, and any previously saved states will be kept.

**Return type** the array of action probabilities, and the estimated value function

**select_action***(state, deterministic=False, use_saved_states=True, save_states=True)*

Select an action to perform based on the environment’s state.

If the policy involves recurrent layers, this method can preserve their internal states between calls. Use the use_saved_states and save_states arguments to specify how it should behave.

**Parameters**

• **state** *(array or list of arrays)* – the state of the environment for which to select an action

• **deterministic** *(bool)* – if True, always return the best action (that is, the one with highest probability). If False, randomly select an action based on the computed probabilities.

• **use_saved_states** *(bool)* – if True, the states most recently saved by a previous call to predict() or select_action() will be used as the initial states. If False, the internal states of all recurrent layers will be set to the initial values defined by the policy before computing the predictions.
• **save_states** (*bool*) – if True, the internal states of all recurrent layers at the end of the calculation will be saved, and any previously saved states will be discarded. If False, the states at the end of the calculation will be discarded, and any previously saved states will be kept.

**Return type** the index of the selected action

```python
restore()
```
Reload the model parameters from the most recent checkpoint file.

```python
class A2CLossDiscrete(value_weight, entropy_weight, action_prob_index, value_index)
```
This class computes the loss function for A2C with discrete action spaces.

```python
__init__(value_weight, entropy_weight, action_prob_index, value_index)
```

### 3.25.4 PPO

```python
class PPO(env, policy, max_rollout_length=20, optimization_rollouts=8, optimization_epochs=4, batch_size=64, clipping_width=0.2, discount_factor=0.99, advantage_lambda=0.98, value_weight=1.0, entropy_weight=0.01, optimizer=None, model_dir=None, use_hindsight=False)
```
Implements the Proximal Policy Optimization (PPO) algorithm for reinforcement learning.

The algorithm is described in Schulman et al., “Proximal Policy Optimization Algorithms” (https://openai-public.s3-us-west-2.amazonaws.com/blog/2017-07/ppo/ppo-arxiv.pdf). This class requires the policy to output two quantities: a vector giving the probability of taking each action, and an estimate of the value function for the current state. It optimizes both outputs at once using a loss that is the sum of three terms:

1. The policy loss, which seeks to maximize the discounted reward for each action.
2. The value loss, which tries to make the value estimate match the actual discounted reward that was attained at each step.
3. An entropy term to encourage exploration.

This class only supports environments with discrete action spaces, not continuous ones. The “action” argument passed to the environment is an integer, giving the index of the action to perform.

This class supports Generalized Advantage Estimation as described in Schulman et al., “High-Dimensional Continuous Control Using Generalized Advantage Estimation” (https://arxiv.org/abs/1506.02438). This is a method of trading off bias and variance in the advantage estimate, which can sometimes improve the rate of convergence. Use the advantage_lambda parameter to adjust the tradeoff.

This class supports Hindsight Experience Replay as described in Andrychowicz et al., “Hindsight Experience Replay” (https://arxiv.org/abs/1707.01495). This is a method that can enormously accelerate learning when rewards are very rare. It requires that the environment state contains information about the goal the agent is trying to achieve. Each time it generates a rollout, it processes that rollout twice: once using the actual goal the agent was pursuing while generating it, and again using the final state of that rollout as the goal. This guarantees that half of all rollouts processed will be ones that achieved their goals, and hence received a reward.

To use this feature, specify use_hindsight=True to the constructor. The environment must have a method defined as follows:

```python
def apply_hindsight(self, states, actions, goal): ... return new_states, rewards
```

The method receives the list of states generated during the rollout, the action taken for each one, and a new goal state. It should generate a new list of states that are identical to the input ones, except specifying the new goal. It should return that list of states, and the rewards that would have been received for taking the specified actions from those states. The output arrays may be shorter than the input ones, if the modified rollout would have terminated sooner.
def __init__(env, policy, max_rollout_length=20, optimization_rollouts=8, optimization_epochs=4, batch_size=64, clipping_width=0.2, discount_factor=0.99, advantage_lambda=0.98, value_weight=1.0, entropy_weight=0.01, optimizer=None, model_dir=None, use_hindsight=False):
    Create an object for optimizing a policy.

    Parameters
    • env (Environment) – the Environment to interact with
    • policy (Policy) – the Policy to optimize. It must have outputs with the names ‘action_prob’ and ‘value’, corresponding to the action probabilities and value estimate
    • max_rollout_length (int) – the maximum length of rollouts to generate
    • optimization_rollouts (int) – the number of rollouts to generate for each iteration of optimization
    • optimization_epochs (int) – the number of epochs of optimization to perform within each iteration
    • batch_size (int) – the batch size to use during optimization. If this is 0, each rollout will be used as a separate batch.
    • clipping_width (float) – in computing the PPO loss function, the probability ratio is clipped to the range (1-clipping_width, 1+clipping_width)
    • discount_factor (float) – the discount factor to use when computing rewards
    • advantage_lambda (float) – the parameter for trading bias vs. variance in Generalized Advantage Estimation
    • value_weight (float) – a scale factor for the value loss term in the loss function
    • entropy_weight (float) – a scale factor for the entropy term in the loss function
    • optimizer (Optimizer) – the optimizer to use. If None, a default optimizer is used.
    • model_dir (str) – the directory in which the model will be saved. If None, a temporary directory will be created.
    • use_hindsight (bool) – if True, use Hindsight Experience Replay

def fit(total_steps, max_checkpoints_to_keep=5, checkpoint_interval=600, restore=False)
    Train the policy.

    Parameters
    • total_steps (int) – the total number of time steps to perform on the environment, across all rollouts on all threads
    • max_checkpoints_to_keep (int) – the maximum number of checkpoint files to keep. When this number is reached, older files are deleted.
    • checkpoint_interval (float) – the time interval at which to save checkpoints, measured in seconds
    • restore (bool) – if True, restore the model from the most recent checkpoint and continue training from there. If False, retrain the model from scratch.

def predict(state, use_saved_states=True, save_states=True)
    Compute the policy’s output predictions for a state.

    If the policy involves recurrent layers, this method can preserve their internal states between calls. Use the use_saved_states and save_states arguments to specify how it should behave.
Parameters

- **state** *(array or list of arrays)* – the state of the environment for which to generate predictions
- **use_saved_states** *(bool)* – if True, the states most recently saved by a previous call to predict() or select_action() will be used as the initial states. If False, the internal states of all recurrent layers will be set to the initial values defined by the policy before computing the predictions.
- **save_states** *(bool)* – if True, the internal states of all recurrent layers at the end of the calculation will be saved, and any previously saved states will be discarded. If False, the states at the end of the calculation will be discarded, and any previously saved states will be kept.

Return type the array of action probabilities, and the estimated value function

**select_action**(state, deterministic=False, use_saved_states=True, save_states=True)

Select an action to perform based on the environment’s state.

If the policy involves recurrent layers, this method can preserve their internal states between calls. Use the use_saved_states and save_states arguments to specify how it should behave.

Parameters

- **state** *(array or list of arrays)* – the state of the environment for which to select an action
- **deterministic** *(bool)* – if True, always return the best action (that is, the one with highest probability). If False, randomly select an action based on the computed probabilities.
- **use_saved_states** *(bool)* – if True, the states most recently saved by a previous call to predict() or select_action() will be used as the initial states. If False, the internal states of all recurrent layers will be set to the initial values defined by the policy before computing the predictions.
- **save_states** *(bool)* – if True, the internal states of all recurrent layers at the end of the calculation will be saved, and any previously saved states will be discarded. If False, the states at the end of the calculation will be discarded, and any previously saved states will be kept.

Return type the index of the selected action

**restore**()

Reload the model parameters from the most recent checkpoint file.

**class PPOLoss**(value_weight, entropy_weight, clipping_width, action_prob_index, value_index)

This class computes the loss function for PPO.

**__init__**(value_weight, entropy_weight, clipping_width, action_prob_index, value_index)
3.26 Docking

Thanks to advances in biophysics, we are often able to find the structure of proteins from experimental techniques like Cryo-EM or X-ray crystallography. These structures can be powerful aides in designing small molecules. The technique of Molecular docking performs geometric calculations to find a “binding pose” with the small molecule interacting with the protein in question in a suitable binding pocket (that is, a region on the protein which has a groove in which the small molecule can rest). For more information about docking, check out the Autodock Vina paper:


3.26.1 Binding Pocket Discovery

DeepChem has some utilities to help find binding pockets on proteins automatically. For now, these utilities are simple, but we will improve these in future versions of DeepChem.

class BindingPocketFinder

Abstract superclass for binding pocket detectors

Many times when working with a new protein or other macromolecule, it’s not clear what zones of the macromolecule may be good targets for potential ligands or other molecules to interact with. This abstract class provides a template for child classes that algorithmically locate potential binding pockets that are good potential interaction sites.

Note that potential interactions sites can be found by many different methods, and that this abstract class doesn’t specify the technique to be used.

find_pockets(molecule: Any)

Finds potential binding pockets in proteins.

Parameters
molecule (object) – Some representation of a molecule.

class ConvexHullPocketFinder(scoring_model: Optional[deepchem.models.models.Model] = None, pad: float = 5.0)

Implementation that uses convex hull of protein to find pockets.


__init__(scoring_model: Optional[deepchem.models.models.Model] = None, pad: float = 5.0)

Initialize the pocket finder.

Parameters

• scoring_model (Model, optional (default None)) – If specified, use this model to prune pockets.

• pad (float, optional (default 5.0)) – The number of angstroms to pad around a binding pocket’s atoms to get a binding pocket box.

find_all_pockets(protein_file: str) → List[deepchem.utils.coordinate_box_utils.CoordinateBox]

Find list of binding pockets on protein.

Parameters protein_file (str) – Protein to load in.

Returns List of binding pockets on protein. Each pocket is a CoordinateBox

Return type List[CoordinateBox]
**find_pockets** *(macromolecule_file: str) → List[deepchem.utils.coordinate_box_utils.CoordinateBox]*

Find list of suitable binding pockets on protein.

This function computes putative binding pockets on this protein. This class uses the *ConvexHull* to compute binding pockets. Each face of the hull is converted into a coordinate box used for binding.

**Parameters**

- **macromolecule_file** *(str)* – Location of the macromolecule file to load

**Returns**

List of pockets. Each pocket is a *CoordinateBox*

**Return type**

List[CoordinateBox]

### 3.26.2 Pose Generation

Pose generation is the task of finding a “pose”, that is a geometric configuration of a small molecule interacting with a protein. Pose generation is a complex process, so for now DeepChem relies on external software to perform pose generation. This software is invoked and installed under the hood.

**class PoseGenerator**

A Pose Generator computes low energy conformations for molecular complexes.

Many questions in structural biophysics reduce to that of computing the binding free energy of molecular complexes. A key step towards computing the binding free energy of two complexes is to find low energy “poses”, that is energetically favorable conformations of molecules with respect to each other. One application of this technique is to find low energy poses for protein-ligand interactions.


Generates a list of low energy poses for molecular complex

**Parameters**

- **molecular_complexes** *(Tuple[str, str]) – A representation of a molecular complex. This tuple is (protein_file, ligand_file).*

- **centroid** *(np.ndarray, optional (default None)) – The centroid to dock against. Is computed if not specified.*

- **box_dims** *(np.ndarray, optional (default None)) – A numpy array of shape *(3,)* holding the size of the box to dock. If not specified is set to size of molecular complex plus 5 angstroms.*

- **exhaustiveness** *(int, optional (default 10)) – Tells pose generator how exhaustive it should be with pose generation.*

- **num_modes** *(int, optional (default 9)) – Tells pose generator how many binding modes it should generate at each invocation.*

- **num_pockets** *(int, optional (default None)) – If specified, *self.pocket_finder* must be set. Will only generate poses for the first *num_pockets* returned by *self.pocket_finder*.

- **out_dir** *(str, optional (default None)) – If specified, write generated poses to this directory.*

- **generate_score** *(bool, optional (default False)) – If True, the pose generator will return scores for complexes. This is used typically when invoking external docking programs that compute scores.*
Return type  A list of molecular complexes in energetically favorable poses.

class VinaPoseGenerator(pocket_finder: Optional[deepchem.dock.binding_pocket.BindingPocketFinder] = None)

Uses Autodock Vina to generate binding poses.

This class uses Autodock Vina to make predictions of binding poses.

Example

```python
>> import deepchem as dc >> vpg = dc.dock.VinaPoseGenerator(pocket_finder=None) >> protein_file = '1jld_protein.pdb' >> ligand_file = '1jld_ligand.sdf' >> poses, scores = vpg.generate_poses(.. (protein_file, ligand_file), .. exhaustiveness=1, .. num_modes=1, .. out_dir=tmp, .. generate_scores=True)
```

Note:  This class requires RDKit and vina to be installed. As on 9-March-22, Vina is not available on Windows. Hence, this utility is currently available only on Ubuntu and MacOS.

__init__ (pocket_finder: Optional[deepchem.dock.binding_pocket.BindingPocketFinder] = None)

Initializes Vina Pose Generator

Parameters pocket_finder (BindingPocketFinder, optional (default None)) – If specified should be an instance of dc.dock.BindingPocketFinder.

generate_poses(molecular_complex: Tuple[str, str], centroid: Optional[np.ndarray] = None,
box_dims: Optional[np.ndarray] = None, exhaustiveness: int = 10, num_modes: int = 9,
num_pockets: Optional[int] = None, out_dir: Optional[str] = None, generate_scores:
Optional[bool] = False, **kwargs) → Union[Tuple[List[Tuple[Any, Any]], List[float]],
List[Tuple[Any, Any]]]

Generates the docked complex and outputs files for docked complex.

Parameters

- `molecular_complexes (Tuple[str, str])` – A representation of a molecular complex. This tuple is (protein_file, ligand_file). The protein should be a pdb file and the ligand should be an sdf file.
- `centroid (np.ndarray, optional)` – The centroid to dock against. Is computed if not specified.
- `box_dims (np.ndarray, optional)` – A numpy array of shape (3,) holding the size of the box to dock. If not specified is set to size of molecular complex plus 5 angstroms.
- `exhaustiveness (int, optional (default 10))` – Tells Autodock Vina how exhaustive it should be with pose generation. A higher value of exhaustiveness implies more computation effort for the docking experiment.
- `num_modes (int, optional (default 9))` – Tells Autodock Vina how many binding modes it should generate at each invocation.
- `num_pockets (int, optional (default None))` – If specified, self.pocket_finder must be set. Will only generate poses for the first num_pockets returned by self.pocket_finder.
- `out_dir (str, optional)` – If specified, write generated poses to this directory.
- `generate_score (bool, optional (default False))` – If True, the pose generator will return scores for complexes. This is used typically when invoking external docking programs that compute scores.
• **kwargs –** The kwargs - cpu, min_rmsd, max_evals, energy_range supported by VINA are as documented in https://autodock-vina.readthedocs.io/en/latest/vina.html

**Returns** Tuple of \((docked\_poses, scores)\) or \(docked\_poses\). \(docked\_poses\) is a list of docked molecular complexes. Each entry in this list contains a \((protein\_mol, ligand\_mol)\) pair of RDKit molecules. \(scores\) is a list of binding free energies predicted by Vina.

**Return type** Tuple\(\{docked\_poses, scores\}\) or \(docked\_poses\)

**Raises** **ValueError** –

---

**class GninaPoseGenerator**

Use GNINA to generate binding poses.

This class uses GNINA (a deep learning framework for molecular docking) to generate binding poses. It downloads the GNINA executable to DEEPCHEM_DATA_DIR (an environment variable you set) and invokes the executable to perform pose generation.

GNINA uses pre-trained convolutional neural network (CNN) scoring functions to rank binding poses based on learned representations of 3D protein-ligand interactions. It has been shown to outperform AutoDock Vina in virtual screening applications [1].

If you use the GNINA molecular docking engine, please cite the relevant papers: https://github.com/gnina/gnina#citation The primary citation for GNINA is [1].

**References**

“Protein–Ligand Scoring with Convolutional Neural Networks.” Journal of chemical information and modeling (2017).

---

**Note:**

- GNINA currently only works on Linux operating systems.
- GNINA requires CUDA >= 10.1 for fast CNN scoring.
- Almost all dependencies are included in the most compatible way possible, which reduces performance. Build GNINA from source for production use.

---

**__init__** ()

Initialize GNINA pose generator.

**generate_poses**(*molecular_complex: Tuple[\str, \str], centroid: Optional[numpy.ndarray] = None, 
box_dims: Optional[numpy.ndarray] = None, exhaustiveness: int = 10, num_modes: int = 
9, num_pockets: Optional[int] = None, out_dir: Optional[\str] = None, generate_scores: 
bool = True, **kwargs\) → Union[Tuple[List[Tuple[Any, Any]]], numpy.ndarray],
List[Tuple[Any, Any]]]

Generates the docked complex and outputs files for docked complex.

**Parameters**

- **molecular_complexes**(Tuple[\str, \str]) – A representation of a molecular complex. This tuple is (protein_file, ligand_file).
- **centroid**(np.ndarray, optional (default None)) – The centroid to dock against. Is computed if not specified.
**box_dims** *(np.ndarray, optional (default None)) –* A numpy array of shape (3,) holding the size of the box to dock. If not specified is set to size of molecular complex plus 4 angstroms.

**exhaustiveness** *(int (default 8)) –* Tells GNINA how exhaustive it should be with pose generation.

**num_modes** *(int (default 9)) –* Tells GNINA how many binding modes it should generate at each invocation.

**out_dir** *(str, optional)* – If specified, write generated poses to this directory.

**generate_scores** *(bool, optional (default True)) –* If True, the pose generator will return scores for complexes. This is used typically when invoking external docking programs that compute scores.

**kwarg** – Any args supported by GNINA as documented [https://github.com/gnina/gnina#usage](https://github.com/gnina/gnina#usage)

**Returns** Tuple of *(docked_poses, scores)* or *docked_poses*. *docked_poses* is a list of docked molecular complexes. Each entry in this list contains a *(protein_mol, ligand_mol)* pair of RDKit molecules. *scores* is an array of binding affinities (kcal/mol), CNN pose scores, and CNN affinities predicted by GNINA.

**Return type** Tuple*[docked_poses, scores]* or *docked_poses*

### 3.26.3 Docking

The `dc.dock.docking` module provides a generic docking implementation that depends on provide pose generation and pose scoring utilities to perform docking. This implementation is generic.


A generic molecular docking class

This class provides a docking engine which uses provided models for featurization, pose generation, and scoring. Most pieces of docking software are command line tools that are invoked from the shell. The goal of this class is to provide a python clean API for invoking molecular docking programmatically.

The implementation of this class is lightweight and generic. It’s expected that the majority of the heavy lifting will be done by pose generation and scoring classes that are provided to this class.


Builds model.

**Parameters**

- **pose_generator** *(PoseGenerator)* – The pose generator to use for this model

- **featurizer** *(ComplexFeaturizer, optional (default None))* – Featurizer associated with *scoring_model*

- **scoring_model** *(Model, optional (default None))* – Should make predictions on molecular complex.
Generic docking function.

This docking function uses this object’s featurizer, pose generator, and scoring model to make docking predictions. This function is written in generic style so

**Parameters**

- **molecular_complex (Tuple[str, str])** – A representation of a molecular complex. This tuple is (protein_file, ligand_file).
- **centroid (np.ndarray, optional (default None))** – The centroid to dock against. Is computed if not specified.
- **box_dims (np.ndarray, optional (default None))** – A numpy array of shape (3,) holding the size of the box to dock. If not specified is set to size of molecular complex plus 5 angstroms.
- **exhaustiveness (int, optional (default 10))** – Tells pose generator how exhaustive it should be with pose generation.
- **num_modes (int, optional (default 9))** – Tells pose generator how many binding modes it should generate at each invocation.
- **num_pockets (int, optional (default None))** – If specified, self.pocket_finder must be set. Will only generate poses for the first num_pockets returned by self.pocket_finder.
- **out_dir (str, optional (default None))** – If specified, write generated poses to this directory.
- **use_pose_generator_scores (bool, optional (default False))** – If True, ask pose generator to generate scores. This cannot be True if self.featurizer and self.scoring_model are set since those will be used to generate scores in that case.

**Returns** A generator. If use_pose_generator_scores==True or self.scoring_model is set, then will yield tuples (posed_complex, score). Else will yield posed_complex.

**Return type** Generator[posed_complex, score] or Generator[posed_complex]

### 3.26.4 Pose Scoring

This module contains some utilities for computing docking scoring functions directly in Python. For now, support for custom pose scoring is limited.

**pairwise_distances**(coords1: numpy.ndarray, coords2: numpy.ndarray) → numpy.ndarray

Returns matrix of pairwise Euclidean distances.

**Parameters**

- **coords1 (np.ndarray)** – A numpy array of shape (N, 3)
- **coords2 (np.ndarray)** – A numpy array of shape (M, 3)

**Returns** A (N,M) array with pairwise distances.

**Return type** np.ndarray
**cutoff_filter**\((d: \text{numpy.ndarray}, x: \text{numpy.ndarray}, \text{cutoff=}8.0) \rightarrow \text{numpy.ndarray}\)

Applies a cutoff filter on pairwise distances

**Parameters**

- \(d\) (\text{np.ndarray}) – Pairwise distances matrix. A numpy array of shape \((N, M)\)
- \(x\) (\text{np.ndarray}) – Matrix of shape \((N, M)\)
- \text{cutoff} (\text{float}, \text{optional (default 8)}) – Cutoff for selection in Angstroms

**Returns** A \((N,M)\) array with values where distance is too large thresholded to 0.

**Return type** \text{np.ndarray}

**vina_nonlinearity**\((c: \text{numpy.ndarray}, w: \text{float}, Nrot: \text{int}) \rightarrow \text{numpy.ndarray}\)

Computes non-linearity used in Vina.

**Parameters**

- \(c\) (\text{np.ndarray}) – A numpy array of shape \((N, M)\)
- \(w\) (\text{float}) – Weighting term
- \(Nrot\) (\text{int}) – Number of rotatable bonds in this molecule

**Returns** A \((N, M)\) array with activations under a nonlinearity.

**Return type** \text{np.ndarray}

**vina_repulsion**\((d: \text{numpy.ndarray}) \rightarrow \text{numpy.ndarray}\)

Computes Autodock Vina’s repulsion interaction term.

**Parameters** \(d\) (\text{np.ndarray}) – A numpy array of shape \((N, M)\).

**Returns** A \((N, M)\) array with repulsion terms.

**Return type** \text{np.ndarray}

**vina_hydrophobic**\((d: \text{numpy.ndarray}) \rightarrow \text{numpy.ndarray}\)

Computes Autodock Vina’s hydrophobic interaction term. Here, \(d\) is the set of surface distances as defined in [1].

**Parameters** \(d\) (\text{np.ndarray}) – A numpy array of shape \((N, M)\).

**Returns** A \((N, M)\) array of hydrophobic interactions in a piecewise linear curve.

**Return type** \text{np.ndarray}

**References**

**vina_hbond**\((d: \text{numpy.ndarray}) \rightarrow \text{numpy.ndarray}\)

Computes Autodock Vina’s hydrogen bond interaction term. Here, \(d\) is the set of surface distances as defined in [1].

**Parameters** \(d\) (\text{np.ndarray}) – A numpy array of shape \((N, M)\).

**Returns** A \((N, M)\) array of hydrophobic interactions in a piecewise linear curve.

**Return type** \text{np.ndarray}
References

**vina_gaussian_first**(*d*: numpy.ndarray) → numpy.ndarray

Computes Autodock Vina’s first Gaussian interaction term.

Here, *d* is the set of surface distances as defined in [1].

**Parameters**

* *d* (np.ndarray) – A numpy array of shape *(N, M).*

**Returns**

A *(N, M)* array of gaussian interaction terms.

**Return type**

np.ndarray

References

**vina_gaussian_second**(*d*: numpy.ndarray) → numpy.ndarray

Computes Autodock Vina’s second Gaussian interaction term.

Here, *d* is the set of surface distances as defined in [1].

**Parameters**

* *d* (np.ndarray) – A numpy array of shape *(N, M).*

**Returns**

A *(N, M)* array of gaussian interaction terms.

**Return type**

np.ndarray

References


Computes the Vina Energy function for two molecular conformations

**Parameters**

* *coords1* (np.ndarray) – Molecular coordinates of shape *(N, 3)*
* *coords2* (np.ndarray) – Molecular coordinates of shape *(M, 3)*
* *weights* (np.ndarray) – A numpy array of shape *(5,).* The 5 values are weights for repulsion interaction term, hydrophobic interaction term, hydrogen bond interaction term, first Gaussian interaction term and second Gaussian interaction term.
* *wrot* (float) – The scaling factor for nonlinearity
* *Nrot* (int) – Number of rotatable bonds in this calculation

**Returns**

A scalar value with free energy

**Return type**

np.ndarray
3.27 Utilities

DeepChem has a broad collection of utility functions. Many of these maybe be of independent interest to users since they deal with some tricky aspects of processing scientific datatypes.

3.27.1 Data Utilities

Array Utilities

`pad_array(x: numpy.ndarray, shape: Union[Tuple, int], fill: float = 0.0, both: bool = False) → numpy.ndarray`

Pad an array with a fill value.

Parameters

- `x (np.ndarray)` – A numpy array.
- `shape (Tuple or int)` – Desired shape. If int, all dimensions are padded to that size.
- `fill (float, optional (default 0.0))` – The padded value.
- `both (bool, optional (default False))` – If True, split the padding on both sides of each axis. If False, padding is applied to the end of each axis.

Returns  A padded numpy array

Return type  np.ndarray

Data Directory

The DeepChem data directory is where downloaded MoleculeNet datasets are stored.

`get_data_dir() → str`

Get the DeepChem data directory.

Returns  The default path to store DeepChem data. If you want to change this path, please set your own path to `DEEPCHEM_DATA_DIR` as an environment variable.

Return type  str

URL Handling

`download_url(url: str, dest_dir: str = '/tmp', name: Optional[str] = None)`

Download a file to disk.

Parameters

- `url (str)` – The URL to download from
- `dest_dir (str)` – The directory to save the file in
- `name (str)` – The file name to save it as. If omitted, it will try to extract a file name from the URL
File Handling

**untargz_file**(*file: str, dest_dir: str = '/tmp', name: Optional[str] = None*)

Untar and unzip a .tar.gz file to disk.

**Parameters**

- **file** (*str*) – The filepath to decompress
- **dest_dir** (*str*) – The directory to save the file in
- **name** (*str*) – The file name to save it as. If omitted, it will use the file name

**unzip_file**(*file: str, dest_dir: str = '/tmp', name: Optional[str] = None*)

Unzip a .zip file to disk.

**Parameters**

- **file** (*str*) – The filepath to decompress
- **dest_dir** (*str*) – The directory to save the file in
- **name** (*str*) – The directory name to unzip it to. If omitted, it will use the file name

**load_data**(*input_files: List[str], shard_size: Optional[int] = None*) → Iterator[Any]

Loads data from files.

**Parameters**

- **input_files** (*List[str]*) – List of filenames.
- **shard_size** (*int, default None*) – Size of shard to yield

**Returns** Iterator which iterates over provided files.

**Return type** Iterator[Any]

**Notes**

The supported file types are SDF, CSV and Pickle.


Load SDF file into dataframe.

**Parameters**

- **input_files** (*List[str]*) – List of filenames
- **clean_mols** (*bool, default True*) – Whether to sanitize molecules.
- **tasks** (*List[str], default []*) – Each entry in tasks is treated as a property in the SDF file and is retrieved with mol.GetProp(str(task)) where mol is the RDKit mol loaded from a given SDF entry.
- **shard_size** (*int, default None*) – The shard size to yield at one time.

**Returns** Generator which yields the dataframe which is the same shard size.

**Return type** Iterator[pd.DataFrame]
Notes

This function requires RDKit to be installed.

load_csv_files(input_files: List[str], shard_size: Optional[int] = None) → Iterator[pandas.core.frame.DataFrame]
Load data as pandas dataframe from CSV files.

Parameters

- input_files (List[str]) – List of filenames
- shard_size (int, default None) – The shard size to yield at one time.

Returns Generator which yields the dataframe which is the same shard size.

Return type  Iterator[pd.DataFrame]

load_json_files(input_files: List[str], shard_size: Optional[int] = None) → Iterator[pandas.core.frame.DataFrame]
Load data as pandas dataframe.

Parameters

- input_files (List[str]) – List of json filenames.
- shard_size (int, default None) – Chunksize for reading json files.

Returns Generator which yields the dataframe which is the same shard size.

Return type  Iterator[pd.DataFrame]

Notes

To load shards from a json file into a Pandas dataframe, the file must be originally saved with df.to_json('filename.json', orient='records', lines=True)

load_pickle_files(input_files: List[str]) → Iterator[Any]
Load dataset from pickle files.

Parameters input_files (List[str]) – The list of filenames of pickle file. This function can load from gzipped pickle file like XXXX.pkl.gz.

Returns Generator which yields the objects which is loaded from each pickle file.

Return type  Iterator[Any]

load_from_disk(filename: str) → Any
Load a dataset from file.

Parameters filename (str) – A filename you want to load data.

Returns A loaded object from file.

Return type  Any

save_to_disk(dataset: Any, filename: str, compress: int = 3)
Save a dataset to file.

Parameters

- dataset (str) – A data saved
- filename (str) – Path to save data.
deepchem, Release 2.7.2.dev

- **compress** *(int, default 3)* – The compress option when dumping joblib file.


Loads MoleculeNet train/valid/test/transformers from disk.

Expects that data was saved using *save_dataset_to_disk* below. Expects the following directory structure for *save_dir: save_dir/*


—> train_dir/ | —> valid_dir/ | —> test_dir/ | —> transformers.pkl

**Parameters**

- **save_dir** *(str)* – Directory name to load datasets.

**Returns**

- **loaded** *(bool)* – Whether the load succeeded
- **all_dataset** *(Tuple[DiskDataset, DiskDataset, DiskDataset])* – The train, valid, test datasets
- **transformers** *(Transformer)* – The transformers used for this dataset

**See also:**

*save_dataset_to_disk*

Utility used by MoleculeNet to save train/valid/test datasets.

This utility function saves a train/valid/test split of a dataset along with transformers in the same directory. The saved datasets will take the following structure: *save_dir/*


—> train_dir/ | —> valid_dir/ | —> test_dir/ | —> transformers.pkl

**Parameters**

- **save_dir** *(str)* – Directory name to save datasets to.
- **train** *(DiskDataset)* – Training dataset to save.
- **valid** *(DiskDataset)* – Validation dataset to save.
- **test** *(DiskDataset)* – Test dataset to save.
- **transformers** *(List[Transformer])* – List of transformers to save to disk.

**See also:**

*load_dataset_from_disk*
3.27.2 Molecular Utilities

**class ConformerGenerator**

```python
class ConformerGenerator(max_conformers: int = 1, rmsd_threshold: float = 0.5, force_field: str = 'uff', pool_multiplier: int = 10)
```

Generate molecule conformers.

**Notes**


Note that pruning is done _after_ minimization, which differs from the protocol described in the references\(^1\).

**References**

This class requires RDKit to be installed.

**__init__**

```python
__init__(max_conformers: int = 1, rmsd_threshold: float = 0.5, force_field: str = 'uff', pool_multiplier: int = 10)
```

**Parameters**

- **max_conformers** `(int, optional (default 1))` – Maximum number of conformers to generate (after pruning).
- **rmsd_threshold** `(float, optional (default 0.5))` – RMSD threshold for pruning conformers. If None or negative, no pruning is performed.
- **force_field** `(str, optional (default 'uff'))` – Force field to use for conformer energy calculation and minimization. Options are ‘uff’, ‘mmff94’, and ‘mmff94s’.
- **pool_multiplier** `(int, optional (default 10))` – Factor to multiply by `max_conformers` to generate the initial conformer pool. Since conformers are pruned after energy minimization, increasing the size of the pool increases the chance of identifying `max_conformers` unique conformers.

**generate_conformers** `(mol: Any) -> Any`

Generate conformers for a molecule.

This function returns a copy of the original molecule with embedded conformers.

**Parameters**

- **mol** `(rdkit.Chem.rdchem.Mol)` – RDKit Mol object

**Returns**

- **mol** – A new RDKit Mol object containing the chosen conformers, sorted by increasing energy.

**Return type**

rdkit.Chem.rdchem.Mol

**embed_molecule** `(mol: Any) -> Any`

Generate conformers, possibly with pruning.

**Parameters**

- **mol** `(rdkit.Chem.rdchem.Mol)` – RDKit Mol object

**Returns**

- **mol** – RDKit Mol object with embedded multiple conformers.

---

**Return type**  
rdkit.Chem.rdchem.Mol

### get_molecule_force_field(mol: Any, conf_id: Optional[int] = None, **kwargs) → Any

Get a force field for a molecule.

**Parameters**

- **mol**  
- **conf_id**  
  int, optional – ID of the conformer to associate with the force field.
- **kwargs**  
  dict, optional – Keyword arguments for force field constructor.

**Returns**  
ff – RDKit force field instance for a molecule.

**Return type**  
rdkit.ForceField.rdForceField.ForceField

### minimize_conformers(mol: Any) → None

Minimize molecule conformers.

**Parameters**  

- **mol**  

### get_conformer_energies(mol: Any) → numpy.ndarray

Calculate conformer energies.

**Parameters**  

- **mol**  

**Returns**  
energies – Minimized conformer energies.

**Return type**  
np.ndarray

### prune_conformers(mol: Any) → Any

Prune conformers from a molecule using an RMSD threshold, starting with the lowest energy conformer.

**Parameters**  

- **mol**  
  rdkit.Chem.rdchem.Mol – RDKit Mol object

**Returns**  
new_mol – A new rdkit.Chem.rdchem.Mol containing the chosen conformers, sorted by increasing energy.

**Return type**  
rdkit.Chem.rdchem.Mol

### static get_conformer_rmsd(mol: Any) → numpy.ndarray

Calculate conformer-conformer RMSD.

**Parameters**  

- **mol**  
  rdkit.Chem.rdchem.Mol – RDKit Mol object

**Returns**  
rmsd – A conformer-conformer RMSD value. The shape is \((\text{NumConformers}, \text{NumConformers})\)

**Return type**  
np.ndarray

### class MoleculeLoadException(*args, **kwargs)

#### __init__(*args, **kwargs)

**get_xyz_from_mol(mol)**

Extracts a numpy array of coordinates from a molecule.

**Parameters**  

- **mol**  
  rdkit.Molecule – Molecule to extract coordinates for

**Return type**  
Numpy ndarray of shape \((N, 3)\) where \(N = \text{mol.GetNumAtoms()}\).
**add_hydrogens_to_mol**(\(mol, \text{is\_protein}=False\))

Add hydrogens to a molecule object

**Parameters**

- \(mol\) (Rdkit Mol) – Molecule to hydrogenate
- \text{is\_protein} (bool, optional (default False)) – Whether this molecule is a protein.

**Return type**  Rdkit Mol

**Note:**  This function requires RDKit and PDBFixer to be installed.

**compute_charges**(\(mol\))

Attempt to compute Gasteiger Charges on Mol

This also has the side effect of calculating charges on mol. The mol passed into this function has to already have been sanitized

**Parameters**  \(mol\) (rdkit molecule) –

**Return type**  No return since updates in place.

**Note:**  This function requires RDKit to be installed.

**load_molecule**(\(molecule\_file\), \text{add\_hydrogens}=True, \text{calc\_charges}=True, \text{sanitize}=True, \text{is\_protein}=False)

Converts molecule file to (xyz-coords, obmol object)

Given molecule_file, returns a tuple of xyz coords of molecule and an rdkit object representing that molecule in that order (xyz, \text{rdkit\_mol}). This ordering convention is used in the code in a few places.

**Parameters**

- \text{molecule\_file} (str) – filename for molecule
- \text{add\_hydrogens} (bool, optional (default True)) – If True, add hydrogens via pdbfixer
- \text{calc\_charges} (bool, optional (default True)) – If True, add charges via rdkit
- \text{sanitize} (bool, optional (default False)) – If True, sanitize molecules via rdkit
- \text{is\_protein} (bool, optional (default False)) – If True, this molecule is loaded as a protein. This flag will affect some of the cleanup procedures applied.

**Returns**

- Tuple (xyz, mol) if file contains single molecule. Else returns a list of the tuples for the separate molecules in this list.

**Note:**  This function requires RDKit to be installed.

**write_molecule**(\(mol, outfile, \text{is\_protein}=False\))

Write molecule to a file

This function writes a representation of the provided molecule to the specified \text{outfile}. Doesn’t return anything.
• **mol** (rdkit Mol) – Molecule to write
• **outfile** (str) – Filename to write mol to
• **is_protein** (bool, optional) – Is this molecule a protein?

**Note:** This function requires RDKit to be installed.

Raises **ValueError** – if **outfile** isn’t of a supported format.

### 3.27.3 Molecular Fragment Utilities

It’s often convenient to manipulate subsets of a molecule. The `MolecularFragment` class aids in such manipulations.

```python
class MolecularFragment(Sequence, Any, coords: numpy.ndarray)
 A class that represents a fragment of a molecule.

 It’s often convenient to represent a fragment of a molecule. For example, if two molecules form a molecular complex, it may be useful to create two fragments which represent the subsets of each molecule that’s close to the other molecule (in the contact region).

 Ideally, we’d be able to do this in RDKit direct, but manipulating molecular fragments doesn’t seem to be supported functionality.

Examples

```python
>>> import numpy as np
>>> from rdkit import Chem
>>> mol = Chem.MolFromSmiles("C")
>>> coords = np.array([[0.0, 0.0, 0.0]])
>>> atom = mol.GetAtoms()[0]
>>> fragment = MolecularFragment([atom], coords)
```

__init__(atoms: Sequence[Any], coords: numpy.ndarray)

Initialize this object.

Parameters

• **atoms** (Iterable[rdkit.Chem.rdchem.Atom]) – Each entry in this list should be a RDKit Atom.
• **coords** (np.ndarray) – Array of locations for atoms of shape \((N, 3)\) where \(N == len(atoms)\).

GetAtoms() → List[deepchem.utils.fragment_utils.AtomShim]

Returns the list of atoms

Returns list of atoms in this fragment.

Return type List[AtomShim]

GetNumAtoms() → int

Returns the number of atoms

Returns Number of atoms in this fragment.
Return type int

GetCoords() \rightarrow \text{numpy.ndarray}

Returns 3D coordinates for this fragment as numpy array.

Returns A numpy array of shape \((N, 3)\) with coordinates for this fragment. Here, \(N\) is the number of atoms.

Return type \text{np.ndarray}

class AtomShim(atomic_num: int, partial_charge: float, atom_coords: \text{numpy.ndarray})

This is a shim object wrapping an atom.

We use this class instead of raw RDKit atoms since manipulating a large number of rdkit Atoms seems to result in segfaults. Wrapping the basic information in an AtomShim seems to avoid issues.

__init__(atomic_num: int, partial_charge: float, atom_coords: \text{numpy.ndarray})

Initialize this object

Parameters

- atomic_num (int) – Atomic number for this atom.
- partial_charge (float) – The partial Gasteiger charge for this atom
- atom_coords (np.ndarray) – Of shape \((3,)\) with the coordinates of this atom

GetAtomicNum() \rightarrow \text{int}

Returns atomic number for this atom.

Returns Atomic number for this atom.

Return type \text{int}

GetPartialCharge() \rightarrow \text{float}

Returns partial charge for this atom.

Returns A partial Gasteiger charge for this atom.

Return type \text{float}

GetCoords() \rightarrow \text{numpy.ndarray}

Returns 3D coordinates for this atom as numpy array.

Returns Numpy array of shape \((3,)\) with coordinates for this atom.

Return type \text{np.ndarray}

strip_hydrogens(coords: \text{numpy.ndarray}, mol: \text{Union[Any, deepchem.utils.fragment_utils.MolecularFragment]}) \rightarrow \text{Tuple[\text{numpy.ndarray, deepchem.utils.fragment_utils.MolecularFragment}]}

Strip the hydrogens from input molecule

Parameters

- coords (np.ndarray) – The coords must be of shape \((N, 3)\) and correspond to coordinates of mol.
- mol (rdkit.Chem.rdchem.Mol or MolecularFragment) – The molecule to strip

Returns A tuple of (coords, mol_frag) where coords is a numpy array of coordinates with hydrogen coordinates. mol_frag is a MolecularFragment.

Return type Tuple[\text{np.ndarray, MolecularFragment}]
Notes

This function requires RDKit to be installed.

merge_molecular_fragments(molecules: List[deepchem.utils.fragment_utils.MolecularFragment]) → Optional[deepchem.utils.fragment_utils.MolecularFragment]

Helper method to merge two molecular fragments.

Parameters

- **molecules** (List[MolecularFragment]) – List of MolecularFragment objects.

Returns

Returns a merged MolecularFragment

Return type

Optional[MolecularFragment]

get_contact_atom_indices(fragments: List[Tuple[numpy.ndarray, Any]], cutoff: float = 4.5) → List[List[int]]

Compute that atoms close to contact region.

Molecular complexes can get very large. This can make it unwieldy to compute functions on them. To improve memory usage, it can be very useful to trim out atoms that aren’t close to contact regions. This function computes pairwise distances between all pairs of molecules in the molecular complex. If an atom is within cutoff distance of any atom on another molecule in the complex, it is regarded as a contact atom. Otherwise it is trimmed.

Parameters

- **fragments** (List[Tuple[np.ndarray, rdkit.Chem.rdchem.Mol]]) – As returned by rdkit_utils.load_complex, a list of tuples of (coords, mol) where coords is a \((N_{\text{atoms}}, 3)\) array and mol is the rdkit molecule object.

- **cutoff** (float, optional (default 4.5)) – The cutoff distance in angstroms.

Returns

A list of length \(\text{len(molecular_complex)}\). Each entry in this list is a list of atom indices from that molecule which should be kept, in sorted order.

Return type

List[List[int]]

reduce_molecular_complex_to_contacts(fragments: List[Tuple[numpy.ndarray, Any]], cutoff: float = 4.5) → List[Tuple[numpy.ndarray, MolecularFragment]]

Reduce a molecular complex to only those atoms near a contact.

Molecular complexes can get very large. This can make it unwieldy to compute functions on them. To improve memory usage, it can be very useful to trim out atoms that aren’t close to contact regions. This function takes in a molecular complex and returns a new molecular complex representation that contains only contact atoms. The contact atoms are computed by calling get_contact_atom_indices under the hood.

Parameters

- **fragments** (List[Tuple[np.ndarray, rdkit.Chem.rdchem.Mol]]) – As returned by rdkit_utils.load_complex, a list of tuples of (coords, mol) where coords is a \((N_{\text{atoms}}, 3)\) array and mol is the rdkit molecule object.

- **cutoff** (float) – The cutoff distance in angstroms.

Returns

A list of length \(\text{len(molecular_complex)}\). Each entry in this list is a tuple of (coords, MolecularFragment). The coords is stripped down to \((N_{\text{contact_atoms}}, 3)\) where \(N_{\text{contact_atoms}}\) is the number of contact atoms for this complex. MolecularFragment is used since it’s tricky to make a RDKit sub-molecule.

Return type

List[Tuple[np.ndarray, MolecularFragment]]
3.27.4 Coordinate Box Utilities

class CoordinateBox(x_range: Tuple[float, float], y_range: Tuple[float, float], z_range: Tuple[float, float])

A coordinate box that represents a block in space.

Molecular complexes are typically represented with atoms as coordinate points. Each complex is naturally associated with a number of different box regions. For example, the bounding box is a box that contains all atoms in the molecular complex. A binding pocket box is a box that focuses in on a binding region of a protein to a ligand. A interface box is the region in which two proteins have a bulk interaction.

The CoordinateBox class is designed to represent such regions of space. It consists of the coordinates of the box, and the collection of atoms that live in this box alongside their coordinates.

__init__(x_range: Tuple[float, float], y_range: Tuple[float, float], z_range: Tuple[float, float])

Initialize this box.

Parameters

- x_range (Tuple[float, float]) – A tuple of (x_min, x_max) with max and min x-coordinates.
- y_range (Tuple[float, float]) – A tuple of (y_min, y_max) with max and min y-coordinates.
- z_range (Tuple[float, float]) – A tuple of (z_min, z_max) with max and min z-coordinates.

Raises ValueError –

__contains__(point: Sequence[float]) → bool

Check whether a point is in this box.

Parameters point (Sequence[float]) – 3-tuple or list of length 3 or np.ndarray of shape (3,).

The (x, y, z) coordinates of a point in space.

Returns True if other is contained in this box.

Return type bool
center() → Tuple[float, float, float]

Computes the center of this box.

Returns (x, y, z) the coordinates of the center of the box.

Return type Tuple[float, float, float]

Examples

```python
>>> box = CoordinateBox((0, 1), (0, 1), (0, 1))
>>> box.center()
(0.5, 0.5, 0.5)
```

volume() → float

Computes and returns the volume of this box.

Returns The volume of this box. Can be 0 if box is empty

Return type float
Examples

```python
>>> box = CoordinateBox((0, 1), (0, 1), (0, 1))
>>> box.volume()
1
```

contains(*other: deepchem.utils.coordinate_box_utils.CoordinateBox*) → bool
Test whether this box contains another.
This method checks whether *other* is contained in this box.

- **Parameters**
 - *other* (CoordinateBox) – The box to check is contained in this box.
- **Returns**
 - True if *other* is contained in this box.
- **Return type**
 - bool
- **Raises**
 - ValueError

intersect_interval(*interval1: Tuple[float, float], interval2: Tuple[float, float]*) → Tuple[float, float]
Computes the intersection of two intervals.

- **Parameters**
 - *interval1* (Tuple[float, float]) – Should be \((x_1_{\text{min}}, x_1_{\text{max}})\)
 - *interval2* (Tuple[float, float]) – Should be \((x_2_{\text{min}}, x_2_{\text{max}})\)
- **Returns**
 - \((x_{\text{intersect}},)\) – Should be the intersection. If the intersection is empty returns \((0, 0)\) to represent the empty set. Otherwise is \((\max(x_1_{\text{min}}, x_2_{\text{min}}), \min(x_1_{\text{max}}, x_2_{\text{max}}))\).
- **Return type**
 - Tuple[float, float]

union(*box1: deepchem.utils.coordinate_box_utils.CoordinateBox, box2: deepchem.utils.coordinate_box_utils.CoordinateBox*) → deepchem.utils.coordinate_box_utils.CoordinateBox
Merges provided boxes to find the smallest union box.
This method merges the two provided boxes.

- **Parameters**
 - *box1* (CoordinateBox) – First box to merge in
 - *box2* (CoordinateBox) – Second box to merge into this box
- **Returns**
 - Smallest CoordinateBox that contains both *box1* and *box2*
- **Return type**
 - CoordinateBox

merge_overlapping_boxes(*boxes: List[deepchem.utils.coordinate_box_utils.CoordinateBox], threshold: float = 0.8*) → List[deepchem.utils.coordinate_box_utils.CoordinateBox]
Merge boxes which have an overlap greater than threshold.

- **Parameters**
 - *boxes* (list[CoordinateBox]) – A list of CoordinateBox objects.
 - *threshold* (float, default 0.8) – The volume fraction of the boxes that must overlap for them to be merged together.
- **Returns**
 - List[CoordinateBox] of merged boxes. This list will have length less than or equal to the length of *boxes*.
get_face_boxes(coords: numpy.ndarray, pad: float = 5.0) → List[deepchem.utils.coordinate_box_utils.CoordinateBox]

For each face of the convex hull, compute a coordinate box around it.

The convex hull of a macromolecule will have a series of triangular faces. For each such triangular face, we construct a bounding box around this triangle. Think of this box as attempting to capture some binding interaction region whose exterior is controlled by the box. Note that this box will likely be a crude approximation, but the advantage of this technique is that it only uses simple geometry to provide some basic biological insight into the molecule at hand.

The pad parameter is used to control the amount of padding around the face to be used for the coordinate box.

Parameters

- coords (np.ndarray) – A numpy array of shape \((N, 3)\). The coordinates of a molecule.
- pad (float, optional (default 5.0)) – The number of angstroms to pad.

Return type

List[CoordinateBox]

Examples

```python
>>> coords = np.array([[0, 0, 0], [1, 0, 0], [0, 1, 0], [0, 0, 1]])
>>> boxes = get_face_boxes(coords, pad=5)
```

3.27.5 Evaluation Utils

Class that evaluates a model on a given dataset.

The evaluator class is used to evaluate a dc.models.Model class on a given dc.data.Dataset object. The evaluator is aware of dc.trans.Transformer objects so will automatically undo any transformations which have been applied.

Examples

Evaluators allow for a model to be evaluated directly on a Metric for sklearn. Let’s do a bit of setup constructing our dataset and model.

```python
>>> import deepchem as dc
>>> import numpy as np
>>> X = np.random.rand(10, 5)
>>> y = np.random.rand(10, 1)
>>> dataset = dc.data.NumpyDataset(X, y)
>>> model = dc.models.MultitaskRegressor(1, 5)
>>> transformers = []
```

Then you can evaluate this model as follows >>> import sklearn >>> evaluator = Evaluator(model, dataset, transformers) >>> multitask_scores = evaluator.compute_model_performance(... sklearn.metrics.mean_absolute_error)

Evaluators can also be used with dc.metrics.Metric objects as well in case you want to customize your metric further.
>>> evaluator = Evaluator(model, dataset, transformers)
>>> metric = dc.metrics.Metric(dc.metrics.mae_score)
>>> multitask_scores = evaluator.compute_model_performance(metric)

__init__(model, dataset: deepchem.data.datasets.Dataset, transformers: List[transformers.Transformer])
Initialize this evaluator

Parameters

- **model** (Model) – Model to evaluate. Note that this must be a regression or classification model and not a generative model.
- **dataset** (Dataset) – Dataset object to evaluate model on.
- **transformers** (List[Transformer]) – List of dc.trans.Transformer objects. These transformations must have been applied to dataset previously. The dataset will be untransformed for metric evaluation.

output_statistics(scores: Dict[str, float], stats_out: str)
Write computed stats to file.

Parameters

- **scores** (dict) – Dictionary mapping names of metrics to scores.
- **stats_out** (str) – Name of file to write scores to.

output_predictions(y_preds: numpy.ndarray, csv_out: str)
Writes predictions to file.

Writes predictions made on self.dataset to a specified file on disk. self.dataset.ids are used to format predictions.

Parameters

- **y_preds** (np.ndarray) – Predictions to output
- **csv_out** (str) – Name of file to write predictions to.

Computes statistics of model on test data and saves results to csv.

Parameters

- **metrics** (dc.metrics.Metric/list[dc.metrics.Metric]/function) – The set of metrics provided. This class attempts to do some intelligent handling of input. If a single dc.metrics.Metric object is provided or a list is provided, it will evaluate self.model on these metrics. If a function is provided, it is assumed to be a metric function that this method will attempt to wrap in a dc.metrics.Metric object. A metric function must accept two arguments, y_true, y_pred both of which are np.ndarray objects and return a floating point score. The metric function may also accept a keyword argument sample_weight to account for per-sample weights.
- **csv_out** (str, optional (DEPRECATED)) – Filename to write CSV of model predictions.
- **stats_out** (str, optional (DEPRECATED)) – Filename to write computed statistics.
• **per_task_metrics** (bool, optional) – If true, return computed metric for each task on multitask dataset.

• **use_sample_weights** (bool, optional (default False)) – If set, use per-sample weights w.

• **n_classes** (int, optional (default None)) – If specified, will use $n_classes$ as the number of unique classes in `self.dataset`. Note that this argument will be ignored for regression metrics.

Returns

• **multitask_scores** (dict) – Dictionary mapping names of metrics to metric scores.

• **all_task_scores** (dict, optional) – If `per_task_metrics == True`, then returns a second dictionary of scores for each task separately.

Evaluate models on a stream of data.

This class is a partner class to `Evaluator`. Instead of operating over datasets this class operates over a generator which yields batches of data to feed into provided model.

Examples

```python
>>> import deepchem as dc
>>> import numpy as np
>>> X = np.random.rand(10, 5)
>>> y = np.random.rand(10, 1)
>>> dataset = dc.data.NumpyDataset(X, y)
>>> model = dc.models.MultitaskRegressor(1, 5)
>>> generator = model.default_generator(dataset, pad_batches=False)
>>> transformers = []

Then you can evaluate this model as follows

```python
>>> import sklearn
>>> evaluator = GeneratorEvaluator(model, generator, transformers)
>>> multitask_scores = evaluator.compute_model_performance(...
... sklearn.metrics.mean_absolute_error)
```

Evaluators can also be used with `dc.metrics.Metric` objects as well in case you want to customize your metric further. (Note that a given generator can only be used once so we have to redefine the generator here.)

```python
>>> generator = model.default_generator(dataset, pad_batches=False)
>>> evaluator = GeneratorEvaluator(model, generator, transformers)
>>> metric = dc.metrics.Metric(dc.metrics.mae_score)
>>> multitask_scores = evaluator.compute_model_performance(metric)
```


**Parameters**

• **model** (Model) – Model to evaluate.
• **generator** (*generator*) – Generator which yields batches to feed into the model. For a KerasModel, it should be a tuple of the form (inputs, labels, weights). The “correct” way to create this generator is to use `model.default_generator` as shown in the example above.

• **transformers** (*List[Transformer]*) – Tranformers to “undo” when applied to the models outputs

• **labels** (*list of Layer*) – layers which are keys in the generator to compare to outputs

• **weights** (*list of Layer*) – layers which are keys in the generator for weight matrices

### compute_model_performance

```
def compute_model_performance(metrics: Union[deepchem.metrics.metric.Metric, Callable[..., Any], List[deepchem.metrics.metric.Metric], List[Callable[..., Any]]], per_task_metrics: bool = False, use_sample_weights: bool = False, n_classes: int = 2) -> Union[Dict[str, float], Tuple[Dict[str, float], Dict[str, float]]]
```

Computes statistics of model on test data and saves results to csv.

**Parameters**

• **metrics** (*dc.metrics.Metric/list[dc.metrics.Metric]/function*) – The set of metrics provided. This class attempts to do some intelligent handling of input. If a single `dc.metrics.Metric` object is provided or a list is provided, it will evaluate `self.model` on these metrics. If a function is provided, it is assumed to be a metric function that this method will attempt to wrap in a `dc.metrics.Metric` object. A metric function must accept two arguments, `y_true`, `y_pred` both of which are `np.ndarray` objects and return a floating point score.

• **per_task_metrics** (*bool, optional*) – If true, return computed metric for each task on multitask dataset.

• **use_sample_weights** (*bool, optional (default False)*)) – If set, use per-sample weights $w$.

• **n_classes** (*int, optional (default None)*)) – If specified, will assume that all metrics are classification metrics and will use `n_classes` as the number of unique classes in `self.dataset`.

**Returns**

• **multitask_scores** (*dict*) – Dictionary mapping names of metrics to metric scores.

• **all_task_scores** (*dict, optional*) – If `per_task_metrics == True`, then returns a second dictionary of scores for each task separately.

### relative_difference

```
def relative_difference(x: numpy.ndarray, y: numpy.ndarray) -> numpy.ndarray
```

Compute the relative difference between x and y

The two argument arrays must have the same shape.

**Parameters**

• **x** (*np.ndarray*) – First input array

• **y** (*np.ndarray*) – Second input array

**Returns** $z$ – We will have $z == np.abs(x-y) / np.abs(max(x, y))$.

**Return type** *np.ndarray*
3.27.6 Genomic Utilities

**seq_one_hot_encode** *(sequences, letters: str = 'ATCGN') → numpy.ndarray*

One hot encodes list of genomic sequences.

Sequences encoded have shape (N_sequences, N_letters, sequence_length, 1). These sequences will be processed as images with one color channel.

**Parameters**

- **sequences** *(np.ndarray or Iterator[Bio.SeqRecord])* – Iterable object of genetic sequences

- **letters** *(str, optional (default "ATCGN"))* – String with the set of possible letters in the sequences.

**Raises** *ValueError: *– If sequences are of different lengths.

**Returns** *A numpy array of shape (N_sequences, N_letters, sequence_length, 1).*

**Return type** *np.ndarray*

**encode_bio_sequence** *(fname: str, file_type: str = 'fasta', letters: str = 'ATCGN') → numpy.ndarray*

Loads a sequence file and returns an array of one-hot sequences.

**Parameters**

- **fname** *(str)* – Filename of fasta file.

- **file_type** *(str, optional (default "fasta"))* – The type of file encoding to process, e.g. fasta or fastq, this is passed to Biopython.SeqIO.parse.

- **letters** *(str, optional (default "ATCGN"))* – The set of letters that the sequences consist of, e.g. ATCG.

**Returns** *A numpy array of shape (N_sequences, N_letters, sequence_length, 1).*

**Return type** *np.ndarray*

**Notes**

This function requires BioPython to be installed.

**hhblits** *(dataset_path, database=None, data_dir=None, evalue=0.001, num_iterations=2, num_threads=4)*

Run hhblits multisequence alignment search on a dataset. This function requires the hhblits binary to be installed and in the path. This function also requires a Hidden Markov Model reference database to be provided. Both can be found here: https://github.com/soedinglab/hh-suite

The database should be in the deepchem data directory or specified as an argument. To set the deepchem data directory, run this command in your environment:

```
export DEEPCHEM_DATA_DIR=<path to data directory>
```

**Parameters**

- **dataset_path** *(str)* – Path to single sequence or multiple sequence alignment (MSA) dataset. Results will be saved in this directory.

- **database** *(str)* – Name of database to search against. Note this is not the path, but the name of the database.

- **data_dir** *(str)* – Path to database directory.
• **evalue** (*float*) – E-value cutoff.
• **num_iterations** (*int*) – Number of iterations.
• **num_threads** (*int*) – Number of threads.

**Returns**

• **results** (*a3m file*) – MSA file containing the results of the hhblits search.
• **results** (*hhr file*) – hhsuite results file containing the results of the hhblits search.

**Examples**

```python
>>> from deepchem.utils.sequence_utils import hhblits
>>> msa_path = hhblits('test/data/example.fasta', database='example_db', data_dir='test/data/', evalue=0.001, num_iterations=2, num_threads=4)
```

**hhsearch** (*dataset_path*, *database=None*, *data_dir=None*, *evalue=0.001*, *num_iterations=2*, *num_threads=4*)

Run hhsearch multiple sequence alignment search on a dataset. This function requires the hhblits binary to be installed and in the path. This function also requires a Hidden Markov Model reference database to be provided. Both can be found here: https://github.com/soedinglab/hh-suite

The database should be in the deepchem data directory or specified as an argument. To set the deepchem data directory, run this command in your environment:

```bash
export DEEPCHEM_DATA_DIR=<path to data directory>
```

**Examples**

```python
>>> from deepchem.utils.sequence_utils import hhsearch
>>> msa_path = hhsearch('test/data/example.fasta', database='example_db', data_dir='test/data/', evalue=0.001, num_iterations=2, num_threads=4)
```

**Parameters**

• **dataset_path** (*str*) – Path to multiple sequence alignment dataset. Results will be saved in this directory.
• **database** (*str*) – Name of database to search against. Note this is not the path, but the name of the database.
• **data_dir** (*str*) – Path to database directory.
• **evalue** (*float*) – E-value cutoff.
• **num_iterations** (*int*) – Number of iterations.
• **num_threads** (*int*) – Number of threads.

**Returns**

• **results** (*a3m file*) – MSA file containing the results of the hhblits search.
• **results** (*hhr file*) – hhsuite results file containing the results of the hhblits search.

**MSA_to_dataset** (*msa_path*)

Convert a multiple sequence alignment to a NumpyDataset object.
3.27.7 Geometry Utilities

**unit_vector** *(vector: numpy.ndarray) → numpy.ndarray*

Returns the unit vector of the vector.

**Parameters**
- **vector** *(np.ndarray)* – A numpy array of shape (3,), where 3 is (x,y,z).

**Returns**
- A numpy array of shape (3,). The unit vector of the input vector.

**Return type** np.ndarray

**angle_between** *(vector_i: numpy.ndarray, vector_j: numpy.ndarray) → float*

Returns the angle in radians between vectors “vector_i” and “vector_j”

Note that this function always returns the smaller of the two angles between the vectors (value between 0 and pi).

**Parameters**
- **vector_i** *(np.ndarray)* – A numpy array of shape (3,), where 3 is (x,y,z).
- **vector_j** *(np.ndarray)* – A numpy array of shape (3,), where 3 is (x,y,z).

**Returns**
- The angle in radians between the two vectors.

**Return type** np.ndarray

**Examples**

```python
>>> print("%0.06f" % angle_between((1, 0, 0), (0, 1, 0)))
1.570796
>>> print("%0.06f" % angle_between((1, 0, 0), (1, 0, 0)))
0.000000
>>> print("%0.06f" % angle_between((1, 0, 0), (-1, 0, 0)))
3.141593
```

**generate_random_unit_vector** () → numpy.ndarray

Generate a random unit vector on the sphere S^2.

**Citation:** http://mathworld.wolfram.com/SpherePointPicking.html

**Pseudocode:**

1. Choose random theta element [0, 2*pi]
2. Choose random z element [-1, 1]
3. Compute output vector u: (x,y,z) = (sqrt(1-z^2)*cos(theta), sqrt(1-z^2)*sin(theta),z)

**Returns**
- u – A numpy array of shape (3,). u is an unit vector

**Return type** np.ndarray

**generate_random_rotation_matrix** () → numpy.ndarray

Generates a random rotation matrix.

1. Generate a random unit vector u, randomly sampled from the unit sphere (see function generate_random_unit_vector() for details)

2. Generate a second random unit vector v
a. If absolute value of $u \cdot v > 0.99$, repeat.

(This is important for numerical stability. Intuition: we want them to be as linearly independent as possible or else the orthogonalized version of $v$ will be much shorter in magnitude compared to $u$. I assume in Stack they took this from Gram-Schmidt orthogonalization?)

b. $v'' = v - (u \cdot v)u$, i.e. subtract out the component of

$v$ that’s in $u$’s direction

c. normalize $v''$ (this isn’t in Stack but I assume it must be

done)

3. find $w = u \times v''$

4. $u$, $v''$, and $w$ will form the columns of a rotation matrix, $R$.

The intuition is that $u$, $v''$ and $w$ are, respectively, what the standard basis vectors $e_1$, $e_2$, and $e_3$ will be mapped to under the transformation.

Returns $R$ – A numpy array of shape $(3, 3)$. $R$ is a rotation matrix.

Return type np.ndarray

is_angle_within_cutoff(vector_i: numpy.ndarray, vector_j: numpy.ndarray, angle_cutoff: float) → bool

A utility function to compute whether two vectors are within a cutoff from 180 degrees apart.

Parameters

• vector_i (np.ndarray) – A numpy array of shape $(3,)$, where $3$ is $(x,y,z)$.

• vector_j (np.ndarray) – A numpy array of shape $(3,)$, where $3$ is $(x,y,z)$.

• cutoff (float) – The deviation from 180 (in degrees)

Returns Whether two vectors are within a cutoff from 180 degrees apart

Return type bool

3.27.8 Graph Utilities

fourier_encode_dist(x, num_encodings=4, include_self=True)

Fourier encode the input tensor $x$ based on the specified number of encodings.

This function applies a Fourier encoding to the input tensor $x$ by dividing it by a range of scales ($2^i$ for $i$ in range(num_encodings)) and then concatenating the sine and cosine of the scaled values. Optionally, the original input tensor can be included in the output.

Parameters

• x (torch.Tensor) – Input tensor to be Fourier encoded.

• num_encodings (int, optional, default=4) – Number of Fourier encodings to apply.

• include_self (bool, optional, default=True) – Whether to include the original input tensor in the output.

Returns Fourier encoded tensor.
Return type  torch.Tensor

Examples

```python
>>> import torch
>>> x = torch.tensor([1.0, 2.0, 3.0])
>>> encoded_x = fourier_encode_dist(x, num_encodings=4, include_self=True)
```

aggregate_mean(h, **kwargs)
Compute the mean of the input tensor along the second to last dimension.

Parameters  

- h (torch.Tensor) – Input tensor.

Returns  Mean of the input tensor along the second to last dimension.

Return type  torch.Tensor

aggregate_max(h, **kwargs)
Compute the max of the input tensor along the second to last dimension.

Parameters  

- h (torch.Tensor) – Input tensor.

Returns  Max of the input tensor along the second to last dimension.

Return type  torch.Tensor

aggregate_min(h, **kwargs)
Compute the min of the input tensor along the second to last dimension.

Parameters  

- h (torch.Tensor) – Input tensor.

- **kwargs – Additional keyword arguments.

Returns  Min of the input tensor along the second to last dimension.

Return type  torch.Tensor

aggregate_std(h, **kwargs)
Compute the standard deviation of the input tensor along the second to last dimension.

Parameters  

- h (torch.Tensor) – Input tensor.

Returns  Standard deviation of the input tensor along the second to last dimension.

Return type  torch.Tensor

aggregate_var(h, **kwargs)
Compute the variance of the input tensor along the second to last dimension.

Parameters  

- h (torch.Tensor) – Input tensor.

Returns  Variance of the input tensor along the second to last dimension.

Return type  torch.Tensor

aggregate_moment(h, n=3, **kwargs)
Compute the nth moment of the input tensor along the second to last dimension.

Parameters  

- h (torch.Tensor) – Input tensor.
• n (int, optional, default=3) – The order of the moment to compute.

Returns Nth moment of the input tensor along the second to last dimension.

Return type torch.Tensor

taggregate_sum(h, **kwargs)
Compute the sum of the input tensor along the second to last dimension.

Parameters h (torch.Tensor) – Input tensor.

Returns Sum of the input tensor along the second to last dimension.

Return type torch.Tensor

scale_identity(h, D=None, avg_d=None)
Identity scaling function.

Parameters
• h (torch.Tensor) – Input tensor.
• D (torch.Tensor, optional) – Degree tensor.
• avg_d (dict, optional) – Dictionary containing averages over the training set.

Returns Scaled input tensor.

Return type torch.Tensor

scale_amplification(h, D, avg_d)
Amplification scaling function. log(D + 1) / d * h where d is the average of the log(D + 1) in the training set.

Parameters
• h (torch.Tensor) – Input tensor.
• D (torch.Tensor) – Degree tensor.
• avg_d (dict) – Dictionary containing averages over the training set.

Returns Scaled input tensor.

Return type torch.Tensor

scale_attenuation(h, D, avg_d)
Attenuation scaling function. (log(D + 1))^-1 / d * X where d is the average of the log(D + 1)^-1 in the training set.

Parameters
• h (torch.Tensor) – Input tensor.
• D (torch.Tensor) – Degree tensor.
• avg_d (dict) – Dictionary containing averages over the training set.

Returns Scaled input tensor.

Return type torch.Tensor
3.27.9 Hash Function Utilities

**hash_ecfp** *(ecfp: str, size: int = 1024) → int*

Returns an int < size representing given ECFP fragment.

Input must be a string. This utility function is used for various ECFP based fingerprints.

**Parameters**

- **ecfp** *(str)* – String to hash. Usually an ECFP fragment.
- **size** *(int, optional (default 1024))* – Hash to an int in range [0, size)

**Returns** **ecfp_hash** – An int < size representing given ECFP fragment

**Return type** int

**hash_ecfp_pair** *(ecfp_pair: Tuple[str, str], size: int = 1024) → int*

Returns an int < size representing that ECFP pair.

Input must be a tuple of strings. This utility is primarily used for spatial contact featurizers. For example, if a protein and ligand have close contact region, the first string could be the protein’s fragment and the second the ligand’s fragment. The pair could be hashed together to achieve one hash value for this contact region.

**Parameters**

- **ecfp_pair** *(Tuple[str, str])* – Pair of ECFP fragment strings
- **size** *(int, optional (default 1024))* – Hash to an int in range [0, size)

**Returns** **ecfp_hash** – An int < size representing given ECFP pair.

**Return type** int

**vectorize** *(hash_function: Callable[[Any, int], int], feature_dict: Optional[Dict[int, str]] = None, size: int = 1024, feature_list: Optional[List] = None) → numpy.ndarray*

Helper function to vectorize a spatial description from a hash.

Hash functions are used to perform spatial featurizations in DeepChem. However, it’s necessary to convert backwards from the hash function to feature vectors. This function aids in this conversion procedure. It creates a vector of zeros of length size. It then loops through feature_dict, uses hash_function to hash the stored value to an integer in range [0, size) and bumps that index.

**Parameters**

- **hash_function** *(Function, Callable[[str, int], int])* – Should accept two arguments, feature, and size and return a hashed integer. Here feature is the item to hash, and size is an int. For example, if size=1024, then hashed values must fall in range [0, 1024).
- **feature_dict** *(Dict, optional (default None))* – Maps unique keys to features computed.
- **size** *(int (default 1024))* – Length of generated bit vector
- **feature_list** *(List, optional (default None))* – List of features.

**Returns** **feature_vector** – A numpy array of shape (size,)

**Return type** np.ndarray
3.27.10 Voxel Utils

**convert_atom_to_voxel** (coordinates: `numpy.ndarray`, atom_index: `int`, box_width: `float`, voxel_width: `float`) → `numpy.ndarray`

Converts atom coordinates to an i,j,k grid index.

This function offsets molecular atom coordinates by (box_width/2, box_width/2, box_width/2) and then divides by voxel_width to compute the voxel indices.

**Parameters**
- **coordinates** (`np.ndarray`) – Array with coordinates of all atoms in the molecule, shape (N, 3).
- **atom_index** (`int`) – Index of an atom in the molecule.
- **box_width** (`float`) – Size of the box in Angstroms.
- **voxel_width** (`float`) – Size of a voxel in Angstroms

**Returns**
- **indices** – A 1D numpy array of length 3 with [i, j, k], the voxel coordinates of specified atom.

**Return type** `np.ndarray`

**convert_atom_pair_to_voxel** (coordinates_tuple: Tuple[`numpy.ndarray`, `numpy.ndarray`], atom_index_pair: Tuple[`int`, `int`], box_width: `float`, voxel_width: `float`) → `numpy.ndarray`

Converts a pair of atoms to i,j,k grid indexes.

**Parameters**
- **coordinates_tuple** (`Tuple[np.ndarray, np.ndarray]`) – A tuple containing two molecular coordinate arrays of shapes (N, 3) and (M, 3).
- **atom_index_pair** (`Tuple[int, int]`) – A tuple of indices for the atoms in the two molecules.
- **box_width** (`float`) – Size of the box in Angstroms.
- **voxel_width** (`float`) – Size of a voxel in Angstroms

**Returns**
- **indices_list** – A numpy array of shape (2, 3), where 3 is [i, j, k] of the voxel coordinates of specified atom.

**Return type** `np.ndarray`

**voxelize** (get_voxels: Callable[..., Any], coordinates: Any, box_width: `float` = 16.0, voxel_width: `float` = 1.0, hash_function: Optional[Callable[..., Any]] = None, feature_dict: Optional[Dict[Any, Any]] = None, feature_list: Optional[List[Union[int, Tuple[int]]]] = None, nb_channel: int = 16, dtype: str = ‘int’) → `numpy.ndarray`

Helper function to voxelize inputs.

This helper function helps convert a hash function which specifies spatial features of a molecular complex into a voxel tensor. This utility is used by various featurizers that generate voxel grids.

**Parameters**
- **get_voxels** (`Function`) – Function that voxelize inputs
- **coordinates** (`Any`) – Contains the 3D coordinates of a molecular system. This should have whatever type get_voxels() expects as its first argument.
- **box_width** (`float`, optional (default 16.0)) – Size of a box in which voxel features are calculated. Box is centered on a ligand centroid.
- **voxel_width** (*float, optional (default 1.0)*) – Size of a 3D voxel in a grid in Angstroms.
- **hash_function** (*Function*) – Used to map feature choices to voxel channels.
- **feature_dict** (*Dict, optional (default None)*) – Keys are atom indices or tuples of atom indices, the values are computed features. If **hash_function is not None**, then the values are hashed using the hash function into \(0, nb\_channels\) and this channel at the voxel for the given key is incremented by 1 for each dictionary entry. If **hash_function is None**, then the value must be a vector of size \((n\_channels,\) which is added to the existing channel values at that voxel grid.
- **feature_list** (*List, optional (default None)*) – List of atom indices or tuples of atom indices. This can only be used if \(nb\_channel==1\). Increments the voxels corresponding to these indices by 1 for each entry.
- **nb_channel** (*int, optional (default 16)*) – The number of feature channels computed per voxel. Should be a power of 2.
- **dtype** (*str (\'int\' or \'float\'), optional (default \'int\')*) – The type of the numpy ndarray created to hold features.

Returns **feature_tensor** – The voxel of the input with the shape \((voxels\_per\_edge, voxels\_per\_edge, voxels\_per\_edge, nb\_channel)\).

Return type **np.ndarray**

### 3.27.11 Graph Convolution Utilities

**one_hot_encode**(*val: Union[int, str], allowable_set: Union[List[str], List[int]], include_unknown_set: bool = False*) → **List[float]**

One hot encoder for elements of a provided set.

**Examples**

```python
>>> one_hot_encode("a", ["a", "b", "c"])
[1.0, 0.0, 0.0]
>>> one_hot_encode(2, [0, 1, 2])
[0.0, 0.0, 1.0]
>>> one_hot_encode(3, [0, 1, 2])
[0.0, 0.0, 0.0]
>>> one_hot_encode(3, [0, 1, 2], True)
[0.0, 0.0, 0.0, 1.0]
```

**Parameters**

- **val** (*int or str*) – The value must be present in **allowable_set**.
- **allowable_set** (*List[int] or List[str]*) – List of allowable quantities.
- **include_unknown_set** (*bool, default False*) – If true, the index of all values not in **allowable_set** is \(\text{len}(allowable\_set)\).

**Returns** An one-hot vector of val. If **include_unknown_set** is False, the length is \(\text{len}(allowable\_set)\). If **include_unknown_set** is True, the length is \(\text{len}(allowable\_set) + 1\).

Return type **List[float]**

### 3.27. Utilities
Raises `ValueError` – If `include_unknown_set` is False and `val` is not in `allowable_set`.

```python
```

Get an one-hot feature of an atom type.

Parameters

- `atom` (`rdkit.Chem.rdchem.Atom`) – RDKit atom object
- `allowable_set` (`List[str]`) – The atom types to consider. The default set is `['C', 'N', 'O', 'F', 'P', 'S', 'Cl', 'Br', 'I']`
- `include_unknown_set` (`bool`, default `True`) – If true, the index of all atom not in `allowable_set` is `len(allowable_set)`.  

Returns

An one-hot vector of atom types. If `include_unknown_set` is False, the length is `len(allowable_set)`. If `include_unknown_set` is True, the length is `len(allowable_set) + 1`.

Return type `List[float]`

```python
def construct_hydrogen_bonding_info(mol: Any) -> List[Tuple[int, str]]
```

Construct hydrogen bonding infos about a molecule.

Parameters

- `mol` (`rdkit.Chem.rdchem.Mol`) – RDKit mol object

Returns

A list of tuple `(atom_index, hydrogen_bonding_type)`. The `hydrogen_bonding_type` value is “Acceptor” or “Donor”.

Return type `List[Tuple[int, str]]`

```python
def get_atom_hydrogen_bonding_one_hot(atom: Any, hydrogen_bonding: List[Tuple[int, str]]) -> List[float]
```

Get an one-hot feat about whether an atom accepts electrons or donates electrons.

Parameters

- `atom` (`rdkit.Chem.rdchem.Atom`) – RDKit atom object
- `hydrogen_bonding` (`List[Tuple[int, str]]`) – The return value of `construct_hydrogen_bonding_info`. The value is a list of tuple `(atom_index, hydrogen_bonding)` like `(1, “Acceptor”)`.

Returns

A one-hot vector of the ring size type. The first element indicates “Donor”, and the second element indicates “Acceptor”.

Return type `List[float]`

```python
def get_atom_is_in_aromatic_one_hot(atom: Any) -> List[float]
```

Get ans one-hot feature about whether an atom is in aromatic system or not.

Parameters

- `atom` (`rdkit.Chem.rdchem.Atom`) – RDKit atom object

Returns

A vector of whether an atom is in aromatic system or not.

Return type `List[float]`

```python
def get_atom_hybridization_one_hot(atom: Any, allowable_set: List[str] = ['SP', 'SP2', 'SP3'], include_unknown_set: bool = False) -> List[float]
```

Get an one-hot feature of hybridization type.

Parameters

- `atom` (`rdkit.Chem.rdchem.Atom`) – RDKit atom object
• **allowable_set** *(List[str])* – The hybridization types to consider. The default set is *{“SP”, “SP2”, “SP3”}*

• **include_unknown_set** *(bool, default False)* – If true, the index of all types not in *allowable_set* is *len(allowable_set)*.

**Returns** An one-hot vector of the hybridization type. If *include_unknown_set* is False, the length is *len(allowable_set)*. If *include_unknown_set* is True, the length is *len(allowable_set) + 1*.

**Return type** List[float]

---

**get_atom_total_num_Hs_one_hot** *(atom: Any, allowable_set: List[int] = [0, 1, 2, 3, 4], include_unknown_set: bool = True) → List[float]*

Get an one-hot feature of the number of hydrogens which an atom has.

**Parameters**

• **atom** *(rdkit.Chem.rdchem.Atom)* – RDKit atom object

• **allowable_set** *(List[int])* – The number of hydrogens to consider. The default set is *[0, 1, ..., 4]*

• **include_unknown_set** *(bool, default True)* – If true, the index of all types not in *allowable_set* is *len(allowable_set)*.

**Returns** A one-hot vector of the number of hydrogens which an atom has. If *include_unknown_set* is False, the length is *len(allowable_set)*. If *include_unknown_set* is True, the length is *len(allowable_set) + 1*.

**Return type** List[float]

---

**get_atom_chirality_one_hot** *(atom: Any) → List[float]*

Get an one-hot feature about an atom chirality type.

**Parameters**

• **atom** *(rdkit.Chem.rdchem.Atom)* – RDKit atom object

**Returns** A one-hot vector of the chirality type. The first element indicates “R”, and the second element indicates “S”.

**Return type** List[float]

---

**get_atom_formal_charge** *(atom: Any) → List[float]*

Get a formal charge of an atom.

**Parameters**

• **atom** *(rdkit.Chem.rdchem.Atom)* – RDKit atom object

**Returns** A vector of the formal charge.

**Return type** List[float]

---

**get_atom_partial_charge** *(atom: Any) → List[float]*

Get a partial charge of an atom.

**Parameters**

• **atom** *(rdkit.Chem.rdchem.Atom)* – RDKit atom object

**Returns** A vector of the parital charge.

**Return type** List[float]
Notes

Before using this function, you must calculate GasteigerCharge like AllChem.ComputeGasteigerCharges(mol).

get_atom_total_degree_one_hot(atom: Any, allowable_set: List[int] = [0, 1, 2, 3, 4, 5], include_unknown_set: bool = True) → List[float]

Get an one-hot feature of the degree which an atom has.

Parameters

• atom (rdkit.Chem.rdchem.Atom) – RDKit atom object
• allowable_set (List[int]) – The degree to consider. The default set is [0, 1, ..., 5]
• include_unknown_set (bool, default True) – If true, the index of all types not in allowable_set is len(allowable_set).

Returns A one-hot vector of the degree which an atom has. If include_unknown_set is False, the length is len(allowable_set). If include_unknown_set is True, the length is len(allowable_set) + 1.

Return type List[float]


Get an one-hot feature of bond type.

Parameters

• bond (rdkit.Chem.rdchem.Bond) – RDKit bond object
• allowable_set (List[str]) – The bond types to consider. The default set is ['SINGLE', 'DOUBLE', 'TRIPLE', 'AROMATIC'].
• include_unknown_set (bool, default False) – If true, the index of all types not in allowable_set is len(allowable_set).

Returns A one-hot vector of the bond type. If include_unknown_set is False, the length is len(allowable_set). If include_unknown_set is True, the length is len(allowable_set) + 1.

Return type List[float]

get_bond_is_in_same_ring_one_hot(bond: Any) → List[float]

Get an one-hot feature about whether atoms of a bond is in the same ring or not.

Parameters bond (rdkit.Chem.rdchem.Bond) – RDKit bond object

Returns A one-hot vector of whether a bond is in the same ring or not.

Return type List[float]

get_bond_is_conjugated_one_hot(bond: Any) → List[float]

Get an one-hot feature about whether a bond is conjugated or not.

Parameters bond (rdkit.Chem.rdchem.Bond) – RDKit bond object

Returns A one-hot vector of whether a bond is conjugated or not.

Return type List[float]

get_bond_stereo_one_hot(bond: Any, allowable_set: List[str] = ['STEREONONE', 'STEREOANY', 'STEREOZ', 'STEREOE'], include_unknown_set: bool = True) → List[float]

Get an one-hot feature of the stereo configuration of a bond.
Parameters

- **bond** (*rdkit.Chem.rdchem.Bond*) – RDKit bond object
- **allowable_set** (*List*[str]) – The stereo configuration types to consider. The default set is [“STEREONONE”, “STEREOANY”, “STEREOZ”, “STEREOE”].
- **include_unknown_set** (*bool, default True*) – If true, the index of all types not in allowable_set is len(allowable_set).

Returns

A one-hot vector of the stereo configuration of a bond. If include_unknown_set is False, the length is len(allowable_set). If include_unknown_set is True, the length is len(allowable_set) + 1.

Return type  List[float]

`get_bond_graph_distance_one_hot(bond: Any, graph_dist_matrix: numpy.ndarray, allowable_set: List[int] = [1, 2, 3, 4, 5, 6, 7], include_unknown_set: bool = True) → List[float]`

Get an one-hot feature of graph distance.

Parameters

- **bond** (*rdkit.Chem.rdchem.Bond*) – RDKit bond object
- **allowable_set** (*List[int]*) – The graph distance types to consider. The default set is [1, 2, ..., 7].
- **include_unknown_set** (*bool, default False*) – If true, the index of all types not in allowable_set is len(allowable_set).

Returns

A one-hot vector of the graph distance. If include_unknown_set is False, the length is len(allowable_set). If include_unknown_set is True, the length is len(allowable_set) + 1.

Return type  List[float]

### 3.27.12 Grover Utilities

`extract_grover_attributes(molgraph: deepchem.feat.graph_data.BatchGraphData)`

Utility to extract grover attributes for grover model

Parameters **molgraph** (*BatchGraphData*) – A batched graph data representing a collection of molecules.

Returns **graph_attributes** – A tuple containing atom features, bond features, atom to bond mapping, bond to atom mapping, bond to reverse bond mapping, atom to atom mapping, atom scope, bond scope, functional group labels and other additional features.

Return type  Tuple
Example

```python
>>> import deepchem as dc
>>> from deepchem.feat.graph_data import BatchGraphData

smiles = ['CC', 'CCC', 'CC(=O)C']
featurizer = dc.feat.GroverFeaturizer(features_generator=dc.feat.CircularFingerprint())
graphs = featurizer.featurize(smiles)
molgraph = BatchGraphData(graphs)
attributes = extract_grover_attributes(molgraph)
```

3.27.13 Debug Utilities

3.27.14 Docking Utilities

These utilities assist in file preparation and processing for molecular docking.


Writes Vina configuration file to disk.

Autodock Vina accepts a configuration file which provides options under which Vina is invoked. This utility function writes a vina configuration file which directs Autodock vina to perform docking under the provided options.

Parameters

- **protein_filename** (str) – Filename for protein
- **ligand_filename** (str) – Filename for the ligand
- **centroid** (np.ndarray) – A numpy array with shape (3,) holding centroid of system
- **box_dims** (np.ndarray) – A numpy array of shape (3,) holding the size of the box to dock
- **conf_filename** (str) – Filename to write Autodock Vina configuration to.
- **num_modes** (int, optional (default 9)) – The number of binding modes Autodock Vina should find
- **exhaustiveness** (int, optional) – The exhaustiveness of the search to be performed by Vina

`write_gnina_conf`(protein_filename: str, ligand_filename: str, conf_filename: str, num_modes: int = 9, exhaustiveness: Optional[int] = None, **kwargs) → None

 Writes GNINA configuration file to disk.

GNINA accepts a configuration file which provides options under which GNINA is invoked. This utility function writes a configuration file which directs GNINA to perform docking under the provided options.

Parameters

- **protein_filename** (str) – Filename for protein
- **ligand_filename** (str) – Filename for the ligand
- **conf_filename** (str) – Filename to write Autodock Vina configuration to.
**num_modes** (int, optional (default 9)) – The number of binding modes GNINA should find

**exhaustiveness** (int, optional) – The exhaustiveness of the search to be performed by GNINA

**kwargs** – Args supported by GNINA documented here [https://github.com/gnina/gnina#usage](https://github.com/gnina/gnina#usage)

### load_docked_ligands(pdbqt_output: str) → Tuple[List[Any], List[float]]

This function loads ligands docked by autodock vina.

Autodock vina writes outputs to disk in a PDBQT file format. This PDBQT file can contain multiple docked “poses”. Recall that a pose is an energetically favorable 3D conformation of a molecule. This utility function reads and loads the structures for multiple poses from vina’s output file.

**Parameters**

- **pdbqt_output** (str) – Should be the filename of a file generated by autodock vina’s docking software.

**Returns**

Tuple of molecules, scores. molecules is a list of rdkit molecules with 3D information. scores is the associated vina score.

**Return type**

Tuple[List[rdkit.Chem.rdchem.Mol], List[float]]

### Notes

This function requires RDKit to be installed.


This prepares protein-ligand complexes for docking.

Autodock Vina requires PDB files for proteins and ligands with sensible inputs. This function uses PDBFixer and RDKit to ensure that inputs are reasonable and ready for docking. Default values are given for convenience, but fixing PDB files is complicated and human judgement is required to produce protein structures suitable for docking. Always inspect the results carefully before trying to perform docking.

**Parameters**

- **protein** (str) – Filename for protein PDB file or a PDBID.
- **ligand** (str) – Either a filename for a ligand PDB file or a SMILES string.
- **replace_nonstandard_residues** (bool (default True)) – Replace nonstandard residues with standard residues.
- **remove_heterogens** (bool (default True)) – Removes residues that are not standard amino acids or nucleotides.
- **remove_water** (bool (default True)) – Remove water molecules.
- **add_hydrogens** (bool (default True)) – Add missing hydrogens at the protonation state given by pH.
- **pH** (float (default 7.0)) – Most common form of each residue at given pH value is used.
- **optimize_ligand** (bool (default True)) – If True, optimize ligand with RDKit. Required for SMILES inputs.
• `pdb_name` *(Optional*[str]*) – If given, write sanitized protein and ligand to files called “pdb_name.pdb” and “ligand_pdb_name.pdb”

**Returns** Tuple of `protein_molecule`, `ligand_molecule` with 3D information.

**Return type** Tuple[RDKitMol, RDKitMol]

**Note:** This function requires RDKit and OpenMM to be installed. Read more about PDBFixer here: https://github.com/openmm/pdbfixer.

### Examples

```python
>>> p, m = prepare_inputs('3cyx', 'CCC')

>>> p, m = prepare_inputs('3cyx', 'CCC', remove_heterogens=False)

>> p.GetNumAtoms()
```

`read_gnina_log` *(log_file: str) → numpy.ndarray*

Read GNINA logfile and get docking scores.

GNINA writes computed binding affinities to a logfile.

**Parameters** `log_file` *(str)* – Filename of logfile generated by GNINA.

**Returns** `scores` – Array of binding affinity (kcal/mol), CNN pose score, and CNN affinity for each binding mode.

**Return type** np.array, dimension (num_modes, 3)

### Print Threshold

The printing threshold controls how many dataset elements are printed when `dc.data.Dataset` objects are converted to strings or represented in the IPython repl.

`get_print_threshold()` *(→ int)*

Return the printing threshold for datasets.

The print threshold is the number of elements from ids/tasks to print when printing representations of `Dataset` objects.

**Returns** `threshold` – Number of elements that will be printed

**Return type** int

`set_print_threshold`(threshold: int)

Set print threshold

The print threshold is the number of elements from ids/tasks to print when printing representations of `Dataset` objects.

**Parameters** `threshold` *(int)* – Number of elements to print.
get_max_print_size() \rightarrow \text{int}

Return the max print size for a dataset.

If a dataset is large, printing self.ids as part of a string representation can be very slow. This field controls the maximum size for a dataset before ids are no longer printed.

Returns max_print_size – Maximum length of a dataset for ids to be printed in string representation.

Return type int

set_max_print_size(max_print_size: \text{int})

Set max_print_size

If a dataset is large, printing self.ids as part of a string representation can be very slow. This field controls the maximum size for a dataset before ids are no longer printed.

Parameters max_print_size (\text{int}) – Maximum length of a dataset for ids to be printed in string representation.

3.27.15 Fake Data Generator

The utilities here are used to generate random sample data which can be used for testing model architectures or other purposes.

class FakeGraphGenerator(min_nodes: \text{int} = 10, max_nodes: \text{int} = 10, n_node_features: \text{int} = 5, avg_degree: \text{int} = 4, n_edge_features: \text{int} = 3, n_classes: \text{int} = 2, task: \text{str} = 'graph', **kwargs)

Generates a random graphs which can be used for testing or other purposes.

The generated graph supports both node-level and graph-level labels.

Example

```python
>>> from deepchem.utils.fake_data_generator import FakeGraphGenerator
>>> fgg = FakeGraphGenerator(min_nodes=8, max_nodes=10, n_node_features=5, avg_degree=8, n_edge_features=3, n_classes=2, task='graph', z=5)
>>> graphs = fgg.sample(n_graphs=10)
>>> type(graphs)
<class 'deepchem.data.datasets.NumpyDataset'>
>>> type(graphs.X[0])
<class 'deepchem.feat.graph_data.GraphData'>
>>> len(graphs) == 10 # num_graphs
True
```

Note: The FakeGraphGenerator class is based on torch_geometric.dataset.FakeDataset class.

__init__(min_nodes: \text{int} = 10, max_nodes: \text{int} = 10, n_node_features: \text{int} = 5, avg_degree: \text{int} = 4, n_edge_features: \text{int} = 3, n_classes: \text{int} = 2, task: \text{str} = 'graph', **kwargs)

Parameters

- min_nodes (\text{int}, \text{default} 10) – Minimum number of permissible nodes in a graph
- max_nodes (\text{int}, \text{default} 10) – Maximum number of permissible nodes in a graph
- n_node_features (\text{int}, \text{default} 5) – Average number of node features in a graph
• **avg_degree** *(int, default 4)* – Average degree of the graph (avg_degree should be a positive number greater than the min_nodes)

• **n_edge_features** *(int, default 3)* – Average number of features in the edge

• **task** *(str, default 'graph')* – Indicates node-level labels or graph-level labels

• **kwargs** *(optional)* – Additional graph attributes and their shapes, e.g. `global_features = 5`

```python
sample(n_graphs: int = 100) \to deepchem.data.datasets.NumpyDataset
```

Samples graphs

**Parameters**

- **n_graphs** *(int, default 100)* – Number of graphs to generate

**Returns**

- **graphs** – Generated Graphs

**Return type**

- **NumpyDataset**

### 3.27.16 Electron Sampler

The utilities here are used to sample electrons in a given molecule and update it using monte carlo methods, which can be used for methods like Variational Monte Carlo, etc.

```python
class ElectronSampler(central_value: numpy.ndarray, f: Callable[[numpy.ndarray], numpy.ndarray],
 batch_no: int = 10, x: numpy.ndarray = array([], dtype=float64), steps: int = 200,
 steps_per_update: int = 10, seed: Optional[int] = None, symmetric: bool = True,
 simultaneous: bool = True)
```

This class enables to initialize electron’s position using gauss distribution around a nucleus and update using Markov Chain Monte-Carlo(MCMC) moves.

Using the probability obtained from the square of magnitude of wavefunction of a molecule/atom, MCMC steps can be performed to get the electron’s positions and further update the wavefunction. This method is primarily used in methods like Variational Monte Carlo to sample electrons around the nucleons. Sampling can be done in 2 ways:

- Simultaneous: All the electrons’ positions are updated all at once.

- Single-electron: MCMC steps are performed only a particular electron, given their index value.

Further these moves can be done in 2 methods:

- Symmetric: In this configuration, the standard deviation for all the steps are uniform.

- Asymmetric: In this configuration, the standard deviation are not uniform and typically the standard deviation is obtained a function like harmonic distances, etc.

Irrespective of these methods, the initialization is done uniformly around the respective nucleus and the number of electrons specified.

#### Example

```python
>>> from deepchem.utils.electron_sampler import ElectronSampler
>>> test_f = lambda x: 2*np.log(np.random.uniform(low=0, high=1.0, size=numpy.shape(x)[0]))
>>> distribution=ElectronSampler(central_value=numpy.array([[1,1,3],[3,2,3]]), f=test_f, seed=0, batch_no=2, steps=1000,)
>>> distribution.gauss_initialize_position(numpy.array([[1],[2]]))

>>> print(distribution.x) [[[1.03528105 1.00800314 3.01957476]]
```
>>> distribution.move()
0.5115

>> print(distribution.x) [[[[-0.32441754 1.23330263 2.67927645]
    [3.42250997 2.23617126 3.55806632]]
    [[3.37491385 1.54374006 3.13575241]]
    [[0.49067726 1.03735116 2.98045444]]
    [[3.5631939 1.68703947 2.5685874 ]]
    [[2.84560249 1.73998364 3.41274181]]]]

__init__(central_value: numpy.ndarray, f: Callable[[numpy.ndarray], numpy.ndarray], batch_no: int = 10, x: numpy.ndarray = array([], dtype=float64), steps: int = 200, steps_per_update: int = 10, seed: Optional[int] = None, symmetric: bool = True, simultaneous: bool = True)

Parameters

- **central_value** (np.ndarray) – Contains each nucleus’ coordinates in a 2D array. The shape of the array should be(number_of_nucleus,3). Ex: [[1,2,3],[3,4,5],...]
- **f** (Callable[[np.ndarray], np.ndarray]) – A function that should give the twice the log probability of wavefunction of the molecular system when called. Should taken in a 4D array of electron’s positions(x) as argument and return a numpy array containing the log probabilities of each batch.
- **batch_no** (int, optional (default 10)) – Number of batches of the electron’s positions to be initialized.
- **x** (np.ndarray, optional (default np.ndarray([]))) – Contains the electron’s coordinates in a 4D array. The shape of the array should be(batch_no,no_of_electrons,1,3). Can be a 1D empty array, when electron’s positions are yet to be initialized.
- **steps** (int, optional (default 10)) – The number of MCMC steps to be performed when the moves are called.
- **steps_per_update** (int (default 10)) – The number of steps after which the parameters of the MCMC gets updated.
- **seed** (int, optional (default None)) – Random seed to use.
- **symmetric** (bool, optional(defualt True)) – If true, symmetric moves will be used, else asymmetric moves will be followed.
- **simultaneous** (bool, optional(defualt True)) – If true, MCMC steps will be performed on all the electrons, else only a single electron gets updated.

**sampled_electrons**

Keeps track of the sampled electrons at every step, must be empty at start.

*Type* np.ndarray
harmonic_mean(y: numpy.ndarray) → numpy.ndarray
Calculates the harmonic mean of the value 'y' from the self.central value. The numpy array returned is typically scaled up to get the standard deviation matrix.

Parameters y (np.ndarray) – Containing the data distribution. Shape of y should be (batch,no_of_electron,1,3)

Returns Contains the harmonic mean of the data distribution of each batch. Shape of the array obtained (batch_no, no_of_electrons,1,1)

Return type np.ndarray

log_prob_gaussian(y: numpy.ndarray, mu: numpy.ndarray, sigma: numpy.ndarray) → numpy.ndarray
Calculates the log probability of a gaussian distribution, given the mean and standard deviation

Parameters
• y (np.ndarray) – data for which the log normal distribution is to be found
• mu (np.ndarray) – Means wrt which the log normal is calculated. Same shape as x or should be broadcastable to x
• sigma (np.ndarray,) – The standard deviation of the log normal distribution. Same shape as x or should be broadcastable to x

Returns Log probability of gaussian distribution, with the shape - (batch_no,).

Return type np.ndarray

gauss_initialize_position(no_sample: numpy.ndarray, stddev: float = 0.02)
Initializes the position around a central value as means sampled from a gauss distribution and updates self.x. :param no_sample: Contains the number of samples to initialize under each mean. should be in the form [[3],[2]..], where here it means 3 samples and 2 samples around the first entry and second entry, respectively in self.central_value is taken. :type no_sample: np.ndarray, :param stddev: contains the stddev with which the electrons’ coordinates are initialized :type stddev: float, optional (default 0.02)

electron_update(lp1, lp2, move_prob, ratio, x2) → numpy.ndarray
Performs sampling & parameter updates of electrons and appends the sampled electrons to self.sampled_electrons.

Parameters
• lp1 (np.ndarray) – Log probability of initial parameter state.
• lp2 (np.ndarray) – Log probability of the new sampled state.
• move_prob (np.ndarray) – Sampled log probabilty of the electron moving from the initial to final state, sampled assymetrically or symetrically.
• ratio (np.ndarray) – Ratio of lp1 and lp2 state.
• x2 (np.ndarray) – Numpy array of the new sampled electrons.

Returns lp1 – The update log probability of initial parameter state.

Return type np.ndarray

move(stddev: float = 0.02, asymmetric_func: Optional[Callable[[numpy.ndarray], numpy.ndarray]] = None, index: Optional[int] = None) → float
Performs Metropolis-Hasting move for self.x(electrons). The type of moves to be followed -(simultaneous or single-electron, symmetric or asymmetric) have been specified when calling the class. The self.x array is replaced with a new array at the end of each step containing the new electron’s positions.

Parameters
• **asymmetric_func** *(Callable[[np.ndarray],np.ndarray], optional(default None)) – Should be specified for an asymmetric move. The function should take in only 1 argument- y: a numpy array wrt to which mean should be calculated. This function should return the mean for the asymmetric proposal. For ferminet, this function is the harmonic mean of the distance between the electron and the nucleus.*

• **stddev** *(float, optional (default 0.02)) – Specifies the standard deviation in the case of symmetric moves and the scaling factor of the standard deviation matrix in the case of asymmetric moves.*

• **index** *(int, optional (default None)) – Specifies the index of the electron to be updated in the case of a single electron move.*

    Returns  accepted move ratio of the MCMC steps.

    Return type  float

### 3.27.17 Density Functional Theory Utilities

The utilities here are used to create an object that contains information about a system’s self-consistent iteration steps and other processes.

```python
class KSCalc(qc: dqc.qccalc.base_qccalc.BaseQCCalc)
 Interface to DQC’s KS calculation.
 Parameters qc (BaseQCCalc) – object often acts as a wrapper around an engine class (from dqc.qccalc) that contains information about the self-consistent iterations.
```

References


```python
def __init__(qc: dqc.qccalc.base_qccalc.BaseQCCalc)
 energy() → torch.Tensor
 The total energy of the Kohn-Sham calculation for a particular system.

 aodmtot() → torch.Tensor
 Both interacting and non-interacting system’s total energy can be expressed in terms of the density matrix. The ground state properties of a system can be calculated by minimizing the energy w.r.t the density matrix.

 Return type The total density matrix in atomic orbital bases.

 dens(rgrid: torch.Tensor) → torch.Tensor
 The ground state density n(r) of a system.

 Parameters rgrid (torch.Tensor) – Calculate integration grid using dqc.grid.

 Returns
 • The total density profile in the given grid

 • Reference

 • https (//github.com/diffqc/dqc/blob/master/dqc/grid/base_grid.py)
```

3.27. Utilities 583
**force()** → torch.Tensor

The force on an atom is calculated as the gradient of energy with respect to the atomic position.

**Return type** The force for each atom.

**hashstr**(s: str) → str

Encodes the string into hashed format - hexadecimal digits.

**Parameters** s (str) –

### 3.27.18 Pytorch Utilities


Computes the sum along segments of a tensor. Analogous to tf.unsorted_segment_sum.

**Parameters**

- **data** (torch.Tensor) – A tensor whose segments are to be summed.
- **segment_ids** (torch.Tensor) – The segment indices tensor.
- **num_segments** (int) – The number of segments.

**Returns** tensor

**Return type** torch.Tensor

**Examples**

```python
>>> segment_ids = torch.Tensor([0, 1, 0]).to(torch.int64)
>>> data = torch.Tensor([[1, 2, 3, 4], [5, 6, 7, 8], [4, 3, 2, 1]])
>>> num_segments = 2
>>> result = unsorted_segment_sum(data=data,
 segment_ids=segment_ids,
 num_segments=num_segments)

>>> data.shape[0]
3
>>> segment_ids.shape[0]
3
>>> len(segment_ids.shape)
1
>>> result
 tensor([[5., 5., 5., 5.],
 [5., 6., 7., 8.]])
```


This function computes the sum of values along segments within a tensor. It is useful when you have a tensor with segment IDs and you want to compute the sum of values for each segment. This function is analogous to tf.segment_sum. ([https://www.tensorflow.org/api_docs/python/tf/math/segment_sum](https://www.tensorflow.org/api_docs/python/tf/math/segment_sum)).

**Parameters**

- **data** (torch.Tensor) – A pytorch tensor containing the values to be summed. It can have any shape, but its rank (number of dimensions) should be at least 1.
• **segment_ids** (*torch.Tensor*) – A 1-D tensor containing the indices for the segmentation. The segments can be any non-negative integer values, but they must be sorted in non-decreasing order.

**Returns out_tensor** – Tensor with the same shape as data, where each value corresponds to the sum of values within the corresponding segment.

**Return type**  *torch.Tensor*

**Examples**

```python
>>> data = torch.Tensor([[1, 2, 3, 4], [4, 3, 2, 1], [5, 6, 7, 8]])
>>> segment_ids = torch.Tensor([0, 0, 1]).to(torch.int64)
>>> result = segment_sum(data=data, segment_ids=segment_ids)
>>> data.shape[0]
3
>>> segment_ids.shape[0]
3
>>> len(segment_ids.shape)
1
>>> result
tensor([[5., 5., 5., 5.],
 [5., 6., 7., 8.]])
```

### 3.28 Licensing and Commercial Uses

DeepChem is licensed under the MIT License. We actively support commercial users. Note that any novel molecules, materials, or other discoveries powered by DeepChem belong entirely to the user and not to DeepChem developers. That said, we would very much appreciate a citation if you find our tools useful. You can cite DeepChem with the following reference.

```{dashed}
@book{Ramsundar-et-al-2019,
 title={Deep Learning for the Life Sciences},
 author={Bharath Ramsundar and Peter Eastman and Patrick Walters and Vijay Pande and Karl Leswing and Zhenqin Wu},
 publisher={O'Reilly Media},
 year={2019}
}
```
3.29 Contributing to DeepChem as a Scientist

The scientific community in many ways is quite traditional. Students typically learn in apprenticeship from advisors who teach a small number of students directly. This system has endured for centuries and allows for expert scientists to teach their ways of thinking to new students.

For more context, most scientific research today is done in “labs” run in this mostly traditional fashion. A principal investigator (PI) will run the lab and work with undergraduate, graduate, and postdoctoral students who produce research papers. Labs are funded by “grants,” typically from governments and philanthropic agencies. Papers and citations are the critical currencies of this system, and a strong publication record is necessary for any scientist to establish themselves.

This traditional model can find it difficult to fund the development of high quality software for a few reasons. First, students are in a lab for limited periods of time (3-5 years often). This means there’s high turnover, and critical knowledge can be lost when a student moves on. Second, grants for software are still new and not broadly available. A lab might very reasonably choose to focus on scientific discovery rather than on necessary software engineering. (Although, it’s worth noting there are many exceptions that prove the rule! DeepChem was born in an academic lab like many other quality projects.)

We believe that contributing to and using DeepChem can be highly valuable for scientific careers. DeepChem can help maintain new scientific algorithms for the long term, making sure that your discoveries continue to be used after students graduate. We’ve seen too many brilliant projects flounder after students move on, and we’d like to help you make sure that your algorithms have the most impact.

3.29.1 Scientist FAQ

<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Wouldn’t it be better for my career to make my own package rather than use DeepChem?</td>
</tr>
<tr>
<td>• Is there a DeepChem PI?</td>
</tr>
<tr>
<td>• Do I need to add DeepChem team members as co-authors to my paper?</td>
</tr>
<tr>
<td>• I want to establish my scientific niche. How can I do that as a DeepChem contributor? Won’t my contribution be lost in the noise?</td>
</tr>
<tr>
<td>• I’m an aspiring scientist, not part of a lab. Can I join DeepChem?</td>
</tr>
<tr>
<td>• Is there DeepChem Grant Money?</td>
</tr>
<tr>
<td>• I’m an industry researcher. Can I participate too?</td>
</tr>
<tr>
<td>• What about intellectual property?</td>
</tr>
<tr>
<td>• If I use DeepChem on my organization’s data, do I have to release the data?</td>
</tr>
<tr>
<td>• What if I want to release data? Can DeepChem help?</td>
</tr>
<tr>
<td>• Is MoleculeNet just about molecules?</td>
</tr>
<tr>
<td>• Does MoleculeNet allow for releasing data under different licenses?</td>
</tr>
</tbody>
</table>
Wouldn’t it be better for my career to make my own package rather than use DeepChem?

The answer to this really depends on what you’re looking for out of your career! Making and maintaining good software is hard. It requires careful testing and continued maintenance. Your code will bitrot over time without attention. If your focus is on new inventions and you find software engineering less compelling, working with DeepChem may enable you to go further in your career by letting you focus on new algorithms and leveraging the DeepChem Project’s infrastructure to maintain your inventions.

In addition, you may find considerable inspiration from participating in the DeepChem community. Looking at how other scientists solve problems, and connecting with new collaborators across the world can help you look at problems in a new way. Longtime DeepChem contributors find that they often end up writing papers together!

All that said, there may be very solid reasons for you to build your own project! Especially if you want to explore designs that we haven’t or can’t easily. In that case, we’d still love to collaborate with you. DeepChem depends on a broad constellation of scientific packages and we’d love to make your package’s features accessible to our users.

Is there a DeepChem PI?

While DeepChem was born in the Pande lab at Stanford, the project now lives as a “decentralized research organization.” It would be more accurate to say that there are informally multiple “DeepChem PIs,” who use it in their work. You too can be a DeepChem PI!

Do I need to add DeepChem team members as co-authors to my paper?

Our suggestion is to use good judgment and usual scientific etiquette. If a particular DeepChem team member has contributed a lot to your effort, adding them might make sense. If no one person has contributed sufficiently, an acknowledgment or citation would be great!

I want to establish my scientific niche. How can I do that as a DeepChem contributor? Won’t my contribution be lost in the noise?

It’s critically important for a new scientist to establish themselves and their contributions in order to launch a scientific career. We believe that DeepChem can help you do this! If you add a significant set of new features to DeepChem, it might be appropriate for you to write a paper (as lead or corresponding author or however makes sense) that introduces the new feature and your contribution.

As a decentralized research organization, we want to help you launch your careers. We’re very open to other collaboration structures that work for your career needs.

I’m an aspiring scientist, not part of a lab. Can I join DeepChem?

Yes! DeepChem’s core mission is to democratize the use of deep learning for the sciences. This means no barriers, no walls. Anyone is welcome to join and contribute. Join our developer calls, chat one-on-one with our scientists, many of whom are glad to work with new students. You may form connections that help you join a more traditional lab, or you may choose to form your own path. We’re glad to support either.
Is there DeepChem Grant Money?

Not yet, but we’re actively looking into getting grants to support DeepChem researchers. If you’re a PI who wants to collaborate with us, please get in touch!

I’m an industry researcher. Can I participate too?

Yes! The most powerful features of DeepChem is its community. Becoming part of the DeepChem project can let you build a network that lasts across jobs and roles. Lifelong employment at a corporation is less and less common. Joining our community will let you build bonds that cross jobs and could help you do your job today better too!

What about intellectual property?

One of the core goals for DeepChem is to build a shared set of scientific resources and techniques that aren’t locked up by patents. Our hope is to enable your company or organization to leverage techniques with less worry about patent infringement.

We ask in return that you act as a responsible community member and put in as much as you get out. If you find DeepChem very valuable, please consider contributing back some innovations or improvements so others can benefit. If you’re getting a patent on your invention, try to make sure that you don’t infringe on anything in DeepChem. Lots of things sneak past patent review. As an open source community, we don’t have the resources to actively defend ourselves and we rely on your good judgment and help!

If I use DeepChem on my organization’s data, do I have to release the data?

Not at all! DeepChem is released with a permissive MIT license. Any analyses you perform belong entirely to you. You are under no obligation to release your proprietary data or inventions.

What if I want to release data? Can DeepChem help?

If you are interested in open sourcing data, the DeepChem project maintains the [MoleculeNet](https://deepchem.readthedocs.io/en/latest/moleculenet.html) suite of datasets. Adding your dataset to MoleculeNet can be a powerful way to ensure that a broad community of users can access your released data in convenient fashion. It’s important to note that MoleculeNet provides programmatic access to data, which may not be appropriate for all types of data (especially for clinical or patient data which may be governed by regulations/laws). Open source datasets can be a powerful resource, but need to be handled with care.

Is MoleculeNet just about molecules?

Not anymore! Any scientific datasets are welcome in MoleculeNet. At some point in the future, we may rename the effort to avoid confusion, but for now, we emphasize that non-molecular datasets are welcome too.
Does MoleculeNet allow for releasing data under different licenses?

MoleculeNet already supports datasets released under different licenses. We can make work with you to use your license of choice.

### 3.30 Coding Conventions

#### 3.30.1 Pre-Commit

We use pre-commit to ensure that we’re always keeping up with the best practices when it comes to linting, standard code conventions and type annotations. Although it may seem time consuming at first as to why is one supposed to run all these tests and checks but it helps in identifying simple issues before submission to code review. We’ve already specified a configuration file with a list of hooks that will get executed before every commit.

First you’ll need to setup the git hook scripts by installing them.

```
pre-commit install
```

Now whenever you commit, pre-commit will run the necessary hooks on the modified files.

#### 3.30.2 Code Formatting

We use YAPF to format all of the code in DeepChem. Although it sometimes produces slightly awkward formatting, it does have two major benefits. First, it ensures complete consistency throughout the entire codebase. And second, it avoids disagreements about how a piece of code should be formatted.

Whenever you modify a file, run yapf on it to reformat it before checking it in.

```
yapf -i <modified file>
```

YAPF is run on every pull request to make sure the formatting is correct, so if you forget to do this the continuous integration system will remind you. Because different versions of YAPF can produce different results, it is essential to use the same version that is being run on CI. At present, that is 0.32. We periodically update it to newer versions.

#### 3.30.3 Linting

We use Flake8 to check our code syntax. Lint tools basically provide these benefits.

- Prevent things like syntax errors or typos
- Save our review time (no need to check unused codes or typos)

Whenever you modify a file, run flake8 on it.

```
flake8 <modified file> --count
```

If the command returns 0, it means your code passes the Flake8 check.
3.30.4 Docstrings

All classes and functions should include docstrings describing their purpose and intended usage. When in doubt about how much information to include, always err on the side of including more rather than less. Explain what problem a class is intended to solve, what algorithms it uses, and how to use it correctly. When appropriate, cite the relevant publications.

All docstrings should follow the numpy docstring formatting conventions. To ensure that the code examples in the docstrings are working as expected, run

```python
python -m doctest <modified file>
```

3.30.5 Unit Tests

Having an extensive collection of test cases is essential to ensure the code works correctly. If you haven’t written tests for a feature, that means the feature isn’t finished yet. Untested code is code that probably doesn’t work.

Complex numerical code is sometimes challenging to fully test. When an algorithm produces a result, it sometimes is not obvious how to tell whether the result is correct or not. As far as possible, try to find simple examples for which the correct answer is exactly known. Sometimes we rely on stochastic tests which will probably pass if the code is correct and probably fail if the code is broken. This means these tests are expected to fail a small fraction of the time. Such tests can be marked with the @flaky annotation. If they fail during continuous integration, they will be run a second time and an error only reported if they fail again.

If possible, each test should run in no more than a few seconds. Occasionally this is not possible. In that case, mark the test with the @pytest.mark.slow annotation. Slow tests are skipped during continuous integration, so changes that break them may sometimes slip through and get merged into the repository. We still try to run them regularly, so hopefully the problem will be discovered fairly soon.

The full suite of slow tests can be run from the root directory of the source code as

```bash
pytest -v -m 'slow' deepchem
```

To test your code locally, you will have to setup a symbolic link to your current development directory. To do this, simply run

```bash
python setup.py develop
```

while installing the package from source. This will let you see changes that you make to the source code when you import the package and, in particular, it allows you to import the new classes/methods for unit tests.

Ensure that the tests pass locally! Check this by running

```bash
python -m pytest <modified file>
```

3.30.6 Testing Machine Learning Models

Testing the correctness of a machine learning model can be quite tricky to do in practice. When adding a new machine learning model to DeepChem, you should add at least a few basic types of unit tests:

- **Overfitting test**: Create a small synthetic dataset and test that your model can learn this dataset with high accuracy. For regression and classification task, this should correspond to low training error on the dataset. For generative tasks, this should correspond to low training loss on the dataset.

- **Reloading test**: Check that a trained model can be saved to disk and reloaded correctly. This should involve checking that predictions from the saved and reloaded models matching exactly.
Note that unit tests are not sufficient to gauge the real performance of a model. You should benchmark your model on larger datasets as well and report your benchmarking tests in the PR comments.

For testing tensorflow models and pytorch models, we recommend testing in different conda environments. Tensorflow 2.6 supports numpy 1.19 while pytorch supports numpy 1.21. This version mismatch on numpy dependency sometimes causes trouble in installing tensorflow and pytorch backends in the same environment.

For testing tensorflow models of deepchem, we create a tensorflow test environment and then run the test as follows:

```
conda create -n tf-test python=3.8
conda activate tf-test
pip install conda-merge
conda-merge requirements/tensorflow/env_tensorflow.yml requirements/env_test.yml > env.yml
conda env update --file env.yml --prune
pytest -v -m 'tensorflow' deepchem
```

For testing pytorch models of deepchem, first create a pytorch test environment and then run the tests as follows:

```
conda create -n pytorch-test python=3.8
conda activate pytorch-test
pip install conda-merge
conda-merge requirements/torch/env_torch.yml requirements/torch/env_torch.cpu.yml
conda env update --file env.yml --prune
pytest -v -m 'torch' deepchem
```

### 3.30.7 Type Annotations

Type annotations are an important tool for avoiding bugs. All new code should provide type annotations for function arguments and return types. When you make significant changes to existing code that does not have type annotations, please consider adding them at the same time.

We use the `mypy` static type checker to verify code correctness. It is automatically run on every pull request. If you want to run it locally to make sure you are using types correctly before checking in your code, cd to the top level directory of the repository and execute the command

```
mypy -p deepchem --ignore-missing-imports
```

Because Python is such a dynamic language, it sometimes is not obvious what type to specify. A good rule of thumb is to be permissive about input types and strict about output types. For example, many functions are documented as taking a list as an argument, but actually work just as well with a tuple. In those cases, it is best to specify the input type as `Sequence` to accept either one. But if a function returns a list, specify the type as `List` because we can guarantee the return value will always have that exact type.

Another important case is NumPy arrays. Many functions are documented as taking an array, but actually can accept any array-like object: a list of numbers, a list of lists of numbers, a list of arrays, etc. In that case, specify the type as `Sequence` to accept any of these. On the other hand, if the function truly requires an array and will fail with any other input, specify it as `np.ndarray`.

The `deepchem.utils.typing` module contains definitions of some types that appear frequently in the DeepChem API. You may find them useful when annotating code.
3.31 Understanding DeepChem CI

Continuous Integration (CI) is used to continuously build and run tests for the code in your repository to make sure that the changes introduced by the commits don’t introduce errors. DeepChem runs a number of CI tests (jobs) using workflows provided by Github Actions. When all CI tests in a workflow pass, it implies that the changes introduced by a commit does not introduce any errors.

When creating a PR to master branch or when pushing to master branch, around 35 CI tests are run from the following workflows.

1. Tests for DeepChem Core - The jobs are defined in the `.github/workflows/main.yml` file. The following jobs are performed:
   - Building and installation of DeepChem in latest Ubuntu OS and Python 3.7 and it checks for `import deepchem`
   - These tests run on Ubuntu latest version using Python 3.7-3.9 and on windows latest version using Python 3.7. The jobs are run for checking coding conventions using yapf, flake8 and mypy. It also includes tests for doctest and code-coverage.
   - Tests for pypi-build and docker-build are also included but they are mostly skipped.

2. Tests for DeepChem Common - The jobs are defined in the `.github/workflows/common_setup.yml` file. The following tests are performed:
   - For build environments of Python 3.7, 3.8 and 3.9, DeepChem is built and import checking is performed.
   - The tests are run for checking pytest. All pytests which are not marked as jax, tensorflow or pytorch is run on ubuntu latest with Python 3.7, 3.8 and 3.9 and on windows latest, it is run with Python 3.7.

3. Tests for DeepChem Jax/Tensorflow/PyTorch
   - Jax - DeepChem with jax backend is installed and import check is performed for deepchem and jax. The tests for pytests with jax markers are run on ubuntu latest with Python 3.7, 3.8 and 3.9.
   - Tensorflow - DeepChem with tensorflow backend is installed and import check is performed for DeepChem and tensorflow. The tests for pytests with tensorflow markers are run on ubuntu latest with Python 3.7-3.9 and on windows latest, it is run with Python 3.7.
   - PyTorch - DeepChem with pytorch backend is installed and import check is performed for DeepChem and torch. The tests for pytests with pytorch markers are run on ubuntu latest with Python 3.7-3.9 and on windows latest, it is run with Python 3.7.

4. Tests for documents
   - These tests are used for checking docs build. It is run on ubuntu latest with Python 3.7.

5. Tests for Release
   - These tests are run only when pushing a tag. It is run on ubuntu latest with Python 3.7.

General recommendations

1. Handling additional or external files in unittest

When a new feature is added to DeepChem, the respective unittest should included too. Sometimes, this test functions uses an external or additional file. To avoid problems in the CI the absolute path of the file has to be included. For example, for the use of a file called “Test_data_feature.csv”, the unittest function should manage the absolute path as:
import os
current_dir = os.path.dirname(os.path.abspath(__file__)).
data_dir = os.path.join(current_dir, "Test_data_feature.csv")
result = newFeature(data_dir)

3.31.1 Notes on Requirement Files

DeepChem’s CI as well as installation procedures use requirement files defined in requirements directory. Currently, there are a number of requirement files. Their purposes are listed here. *env_common.yml* - this file lists the scientific dependencies used by DeepChem like rdkit. *env_ubuntu.yml* and *env_mac.yml* contain scientific dependencies which are have OS specific support. Currently, vina *env_test.yml* - it is mostly used for the purpose of testing in development purpose. It contains the test dependencies. *env_test.yml* - it is mostlly used for the purpose of testing in development purpose. It contains the test dependencies. *env_test.yml* - it is mostlly used for the purpose of testing in development purpose. It contains the test dependencies. *The installation files in tensorflow, torch and jax directories contain the installation command for backend deep learning frameworks. For torch and jax, installation command is different for CPU and GPU. Hence, we use different installation files for CPU and GPU respectively.*

3.32 Infrastructures

The DeepChem project maintains supporting infrastructure on a number of different services. This infrastructure is maintained by the DeepChem development team.

3.32.1 GitHub

The core DeepChem repositories are maintained in the deepchem GitHub organization. And, we use GitHub Actions to build a continuous integration pipeline.

DeepChem developers have write access to the repositories on this repo and technical steering committee members have admin access.

3.32.2 Conda Forge

The DeepChem feedstock repo maintains the build recipe for conda-forge.

3.32.3 Docker Hub

DeepChem hosts major releases and nightly docker build instances on Docker Hub.

3.32.4 PyPI

DeepChem hosts major releases and nightly builds on PyPI.
3.32.5 Amazon Web Services

DeepChem’s website infrastructure is all managed on AWS through different AWS services. All DeepChem developers have access to these services through the deepchem-developers IAM role. (An IAM role controls access permissions.) At present, @rbharath is the only developer with admin access to the IAM role, but longer term we should migrate this so other folks have access to the roles.

S3

Amazon’s S3 allows for storage of data on “buckets” (Think of buckets like folders.) There are two core deepchem S3 buckets:

• deepchemdata: This bucket hosts the MoleculeNet datasets, pre-featurized datasets, and pretrained models.

• deepchemforum: This bucket hosts backups for the forums. The bucket is private for security reasons. The forums themselves are hosted on a digital ocean instance that only @rbharath currently has access to. Longer term, we should migrate the forums onto AWS so all DeepChem developers can access the forums. The forums themselves are a discord instance. The forums upload their backups to this S3 bucket once a day. If the forums crash, they can be restored from the backups in this bucket.

Route 53

DNS for the deepchem.io website is handled by Route 53. The “hosted zone” deepchem.io holds all DNS information for the website.

Certificate Manager

The AWS certificate manager issues the SSL/TLS certificate for the *.deepchem.io and deepchem.io domains.

GitHub Pages

We make use of GitHub Pages to serve our static website. GitHub Pages connects to the certificate in Certificate Manager. We set CNAME for www.deepchem.io, and an A-record for deepchem.io.

The GitHub Pages repository is [deepchem/deepchem.github.io](https://github.com/deepchem/deepchem.github.io).

3.32.6 GoDaddy

The deepchem.io domain is registered with GoDaddy. If you change the name servers in AWS Route 53, you will need to update the GoDaddy record. At present, only @rbharath has access to the GoDaddy account that owns the deepchem.io domain name. We should explore how to provide access to the domain name for other DeepChem developers.
3.32.7 Digital Ocean

The forums are hosted on a digital ocean instance. At present, only @rbharath has access to this instance. We should migrate this instance onto AWS so other DeepChem developers can help maintain the forums.
add_special_tokens() (RobertaFeaturizer method), 160
add_special_tokens_ids_sequence_pair() (SmilesTokenizer method), 151
add_special_tokens_ids_single_sequence() (SmilesTokenizer method), 151
add_special_tokens_single_sequence() (SmilesTokenizer method), 151
add_tokens() (RobertaFeaturizer method), 161
additional_special_tokens (RobertaFeaturizer property), 162
additional_special_tokens_ids (RobertaFeaturizer property), 162
Affine (class in deepchem.models.torch_models.layers), 444
agglomerate_mols() (ConvMol static method), 57
aggregate_max() (in module deepchem.utils.graph_utils), 567
aggregate_mean() (in module deepchem.utils.graph_utils), 567
aggregate_min() (in module deepchem.utils.graph_utils), 567
aggregate_moment() (in module deepchem.utils.graph_utils), 567
aggregate_std() (in module deepchem.utils.graph_utils), 567
aggregate_sum() (in module deepchem.utils.graph_utils), 568
aggregate_var() (in module deepchem.utils.graph_utils), 567
all_special_ids (RobertaFeaturizer property), 162
all_special_tokens (RobertaFeaturizer property), 162
all_special_tokens_extended (RobertaFeaturizer property), 162
AlphaShareLayer (class in deepchem.models.layers), 411
angle_between() (in module deepchem.utils.geometry_utils), 565
angular_symmetry() (ANIFeat method), 414
ANIFeat (class in deepchem.models.layers), 414
aodmtot() (KSCalc method), 583
as_target_tokenizer() (RobertaFeaturizer method), 162
atom_features() (in module deepchem.feat.graph_features), 119
atom_features() (MATFeaturizer method), 123
atom_to_feature_vector() (RDKitConformerFeaturizer method), 114
atom_to_id() (in module deepchem.feat.graph_features), 119
atom_to_vocab() (GroverAtomVocabularyBuilder static method), 156, 157
atom_vocab_random_mask() (GroverModel static method), 366
AtomEncoder (class in deepchem.models.torch_models.pna_gnn), 455
AtomicConvFeaturizer (class in deepchem.feat), 141
AtomicConvModel (class in deepchem.models), 313
AtomicConvolution (class in deepchem.models.layers), 408
AtomicCoordinates (class in deepchem.feat), 133
AtomShim (class in deepchem.utils.fragment_utils), 555
AttentiveFPModel (class in deepchem.models), 341
AttnLSTMEmbedding (class in deepchem.models.layers), 398
auc() (in module deepchem.metrics), 506

B
backend_tokenizer (RobertaFeaturizer property), 162
balanced_accuracy_score() (in module deepchem.metrics), 514
BalancingTransformer (class in deepchem.trans), 239
BaseNNXC (class in deepchem.models.dft.nnxc), 488
BasicMolGANDModel (class in deepchem.models), 303
BasicSmilesTokenizer (class in deepchem.feat), 152
batch_decode() (RobertaFeaturizer method), 163
batch_encode_plus() (RobertaFeaturizer method), 163
bedroc_score() (in module deepchem.metrics), 518
BertFeaturizer (class in deepchem.feat), 159
BetaShare (class in deepchem.models.layers), 413
BinaryCrossEntropy (class in deepchem.models.losses), 267
BindingPocketFeaturizer (class in deepchem.feat), 186
BindingPocketFinder (class in deepchem.dock.binding_pocket), 539
bond_fdim_base (GraphConvConstants attribute), 116
bond_features() (in module deepchem.feat.graph_features), 120
bond_to_feature_vector() (RDKitConformerFeaturizer method), 114
bond_vocab_random_mask() (GroverModel static method), 367
BondEncoder (class in deepchem.models.torch_models.pna_gnn), 455
bos_token (RobertaFeaturizer property), 166
tos_token (RobertaFeaturizer property), 166
BPSymmetryFunctionInput (class in deepchem.feat), 134
build() (AlphaShareLayer method), 411
build() (AtomicConvolution method), 409
build() (AttnLSTMEmbedding method), 399
build() (BetaShare method), 414
build() (DAGGather method), 428
C

call() (AlphaShareLayer method), 411
call() (ANIFeat method), 414
call() (AtomicConvolution method), 409
call() (AttnLSTMEmbedding method), 399
call() (BetaShare method), 414
call() (CombineMeanStd method), 403
call() (DAGGather method), 428
call() (DAGLayer method), 427
call() (DTNNEmbedding method), 425
call() (DTNNGather method), 426
call() (DTNNStep method), 425
call() (EdgeNetwork method), 429
call() (GatedRecurrentUnit method), 430
call() (GraphCNN method), 416
call() (GraphConv method), 389
call() (GraphEmbedPoolLayer method), 415
call() (GraphGather method), 392
call() (GraphPool method), 391
call() (Highway method), 418
call() (InteratomicL2Distances method), 388
call() (IterRefLSTMEmbedding method), 400
call() (LSTMStep method), 398
call() (MessagePassing method), 429
call() (MolGANAggregationLayer method), 394
call() (MolGANConvolutionLayer method), 393
call() (MolGANEncoderLayer method), 397
call() (MolGANMultiConvolutionLayer method), 396
call() (NeighborList method), 406
call() (SetGather method), 432
call() (SluiceLoss method), 412
call() (Stack method), 404
call() (SwitchedDropout method), 400
call() (VinaFreeEnergy method), 406
call() (WeaveGather method), 423
call() (WeaveLayer method), 421
call() (WeightedLinearCombi method), 402
CategoricalCrossEntropy (class in deepchem.models.losses), 267
CDFTransformer (class in deepchem.models.torch_models), 235
center() (CoordinateBox method), 557
class (CGCNNFeaturizer property), 145
class (CGCNNModel class in deepchem.models), 337
Chemberta (class in deepchem.models.torch_models.chemberta), 383
ChemCeption (class in deepchem.models), 316
CircularFingerprint (class in deepchem.models.torch_models), 123
clean_up_tokenization() (RobertaFeaturizer static method), 166
ClippingTransformer (class in deepchem.models), 231
cls_token (RobertaFeaturizer property), 166
cls_token_id (RobertaFeaturizer property), 166
CNN (class in deepchem.models), 330
CNNModule (class in deepchem.models.torch_models.layers), 433
CombineMeanStd (class in deepchem.models.layers), 403
complete_shuffle() (DiskDataset method), 36
ComplexFeaturizer (class in deepchem.models), 190
compute_charges() (in module deepchem.utils.rdkit_utils), 553
compute_features_on_batch() (DTNNModel method), 299
compute_features_on_batch() (WeaveModel method), 298
compute_metric() (Metric method), 521
compute_model() (Meta Learner method), 529
compute_model_performance() (Evaluator method), 560
compute_model_performance() (GeneratorEvaluator method), 562
compute_nbr_list() (NeighborList method), 407
compute_saliency() (KerasModel method), 287
compute_saliency() (TorchModel method), 324
compute_singletask_metric() (Metric method), 522
concordance_index() (in module deepchem.metrics), 519
configure_optimizers() (DCLightningModule method), 369
ConformerGenerator (class in deepchem.utils.conformers), 551
construct_hydrogen_bonding_info() (in module deepchem.utils.molecule_feature Utils), 572
construct_mol() (MATFeaturizer method), 122
construct_node_features_matrix() (MATFeaturizer method), 123
contains() (CoordinateBox method), 558
context_pred_loss_loader() (GNNModular method), 352
convert_atom_pair_to_voxel() (in module deepchem.utils.voxel Utils), 570
convert_atom_to_voxel() (in module deepchem.utils.voxel Utils), 570
convert_ids_to_tokens() (RobertaFeaturizer method), 166
convert_tokens_to_ids() (RobertaFeaturizer method), 167
convert_tokens_to_string() (RobertaFeaturizer method), 167
convert_tokens_to_string() (SmilesTokenizer method), 151
ConvexHullPocketFinder (class in deepchem.doc binding pocket), 539
ConvMol (class in deepchem.feature graphs), 56
ConvMolFeaturizer (class in deepchem.feat), 104
CoordinateBox (class in deepchem.utils.coordinate box Utils), 557
copy() (DiskDataset method), 32
cosine_dist() (in module deepchem.models.layers), 441
coulomb_matrix() (CoulombMatrix method), 130
coulomb_matrix() (CoulombMatrix Eig method), 132
CoulombFitTransformer (class in deepchem.trans), 248
CoulombMatrix (class in deepchem.feat), 129
CoulombMatrixEig (class in deepchem.feat), 131
create() (DFTEntry class method), 61
create_dataset() (CSVLoader method), 46
create_dataset() (DataLoader method), 67
create_dataset() (DFTYamlLoader method), 55
create_dataset() (DiskDataset static method), 30
create_dataset() (FASTALoader method), 52
create_dataset() (ImageLoader method), 48
create_dataset() (InMemoryLoader method), 53
create_dataset() (JsonLoader method), 50
create_dataset() (SDFLoader method), 51
create_dataset() (UserCSVLoader method), 48
create_discriminator() (BasicMolGANModel method), 304
create_discriminator() (GAN method), 309
create_discriminator_loss() (GAN method), 310
create_discriminator_loss() (WGAN method), 311
create_generator() (BasicMolGANModel method), 304
create_generator() (GAN method), 309
create_generator_loss() (GAN method), 309
create_generator_loss() (WGAN method), 311
custom_model() (Policy method), 533
custom_mll() (NormalizingFlowModel method), 318
custom_token_type_ids_from_sequences() (RobertaFeaturizer method), 167
CSVLoader (class in deepchem.data), 45
cutoff_filter() (in module deepchem.doc bind pose scoring), 544

D
DAGGather (class in deepchem.models.layers), 427
DAGLayer (class in deepchem.models.layers), 426
DAGModel (class in deepchem.models), 300
DAGTransformer (class in deepchem.trans), 253
data_dir (DiskDataset attribute), 30
DataLoader (class in deepchem.data), 66
Dataset (class in deepchem.data), 62
DCLightningModule (class in deepchem.models), 369
decode() (RobertaFeaturizer method), 167
decoder (RobertaFeaturizer property), 167
DeepGraphInfomaxLoss (class in deepchem.models.losses), 275
default_generator() (AtomicConvModel method), 314
default_generator() (Chemception method), 317
default_generator() (CNN method), 332
default_generator() (DAGModel method), 300
default_generator() (DMPNNModel method), 363
default_generator() (DFTNNModel method), 299
default_generator() (GNMolModel method), 352
default_generator() (GraphConvModel method), 301
default_generator() (InfoGraphStarModel method), 349
default_generator() (JaxModel method), 376
Index
Index
generate_conformers() (ConformerGenerator method), 551

Index

605
get_config() (AtomicConvolution method), 409
get_config() (AttnLSTMEmbedding method), 398
get_config() (BetaShare method), 413
get_config() (CombineMeanStd method), 403
get_config() (DAGGather method), 428
get_config() (DAGLayer method), 427
get_config() (DTNNEmbedding method), 424
get_config() (DTNNGather method), 426
get_config() (DTNNStep method), 425
get_config() (EdgeNetwork method), 429
get_config() (Gated recurrent unit method), 430
get_config() (Gated Recurrent Unit method), 416
get_config() (GraphConv method), 389
get_config() (Graph EmbedPoolLayer method), 415
get_config() (GraphGather method), 392
get_config() (GraphPool method), 391
get_config() (Highway method), 418
get_config() (Interatomic L2 Distances method), 388
get_config() (IterRefLSTMEmbedding method), 399
get_config() (LSTMStep method), 397
get_config() (Message Passing method), 428
get_config() (MolGAN AggregationLayer method), 395
get_config() (MolGAN ConvolutionLayer method), 394
get_config() (MolGAN Encoder Layer method), 397
get_config() (MolGAN MultiConvolutionLayer method), 396
get_config() (NeighborList method), 406
get_config() (Set Gather method), 432
get_config() (Slice method), 412
get_config() (Stack method), 404
get_config() (Switched Dropout method), 400
get_config() (Vina Free Energy method), 405
get_config() (Weave Gather method), 423
get_config() (Weave Layer method), 421
get_config() (Weighted Linear Combo method), 401
get_conformer_energies() (ConformerGenerator method), 552
get_conformer_rmsd() (ConformerGenerator static method), 552
get_contact_atom_indices() (in module deepchem.utils.fragment_utils), 556
get_data_dir() (in module deepchem.utils.data_utils), 547
get_data_input_shapes() (Basic MolGAN Model method), 304
get_data_input_shapes() (GAN method), 309
get_data_shape() (DiskDataset method), 32
get_deg_adjacency_lists() (ConvMol method), 56
get_deg_adjacency_lists() (MultiConvMol method), 57
get_deg_slice() (ConvMol method), 56
get_dgc_mol() (DFT System method), 60
get_edensityxc() (Base NN XC method), 489
get_edensityxc() (Hybrid XC method), 491
get_edensityxc() (NNLDA method), 489
get_edensityxc() (NPFBE method), 490
get_face_boxes() (in module deepchem.utils.coordinate_box_utils), 559
get_feature_list() (in module deepchem.feat.graph_features), 552
get_global_step() (JaxModel method), 376
get_global_step() (KerasModel method), 288
get_global_step() (TorchModel method), 326
get_interatomic_distances() (CoulombMatrix static method), 131
get_interatomic_distances() (CoulombMatrixEig static method), 132
get_intervals() (in module deepchem.feat.graph_features), 117
get_label_means() (DiskDataset method), 38
get_label_stds() (DiskDataset method), 38
get_loss_func() (Grover Model method), 366
get_max_print_size() (in module deepchem.utils.debug_utils), 578
get_model_filename() (Model static method), 262
get_molecule_force_field() (ConformerGenerator method), 552
get_motif_scores() (in module deepchem.metrics.genomic_metrics), 519
get_neighbor_cells() (NeighborList method), 408
get_noise_batch() (GAN method), 309
get_noise_input_shape() (Basic MolGAN Model method), 304
get_noise_input_shape() (GAN method), 309
get_null_mol() (ConvMol static method), 57
get_num_atoms() (MultiConvMol method), 57
get_num_atoms() (Weave Mol method), 57
get_num_atoms_with_deg() (ConvMol method), 56
get_num_features() (Weave Mol method), 57
get_num_molecules() (MultiConvMol method), 57
get_num_tasks() (Model method), 264
get_number_shards() (DiskDataset method), 32
get_pair_edges() (Weave Mol method), 57
get_pair_features() (Weave Mol method), 57
get_params_filename() (Model static method), 262
get_print_threshold() (in module deepchem.utils.debug_utils), 578
get_pssm_scores() (in module deepchem.metrics.genomic_metrics), 519
get_shape() (Dataset method), 62
get_shape() (DiskDataset method), 38
get_shape() (ImageDataset method), 41
get_shape() (NumpyDataset method), 24
get_shard() (DiskDataset method), 36
get_shard_ids() (DiskDataset method), 37
get_shard_size() (DiskDataset method), 32
get_shard_w() (DiskDataset method), 37
get_shard_y() (DiskDataset method), 37
get_special_tokens_mask() (RobertaFeaturizer method), 174
get_statistics() (Dataset method), 64
get_statistics() (DiskDataset method), 39
get_statistics() (ImageDataset method), 43
get_statistics() (NumpyDataset method), 27
get_systems() (DFTEntry method), 61
get_task_names() (Dataset method), 62
get_task_names() (DiskDataset method), 32
get_task_names() (ImageDataset method), 41
get_task_names() (NumpyDataset method), 24
get_task_type() (Model method), 264
get_true_val() (DFTEntry method), 62
get_val() (DFTEntry method), 62
get_vector() (ElemNetFeaturizer method), 144
get_vocab() (RobertaFeaturizer method), 174
get_weight() (DFTEntry method), 62
get_xc() (XCNNSCF method), 492
get_xyz_from_mol() (in module deepchem.utils.rdkit_utils), 552
GetAtomicNum() (AtomShim method), 555
GetAtoms() (MolecularFragment method), 554
GetCoords() (AtomShim method), 555
GetCoords() (MolecularFragment method), 555
GetNumAtoms() (MolecularFragment method), 554
getparamnames() (BaseNNXC method), 489
GetPartialCharge() (AtomShim method), 555
GINEncoder (class in deepchem.models.torch_models), 451
GlobalMutualInformationLoss (class in deepchem.models.losses), 269
GiniaPoseGenerator (class in deepchem.models.torch_models.grover_layers), 482
GNN (class in deepchem.models.torch_models.gnn), 453
GNNHead (class in deepchem.models.torch_models.gnn), 453
GNNModular (class in deepchem.models.torch_models.gnn), 350
GradientDescent (class in deepchem.models.optimizers), 279
GraphCNN (class in deepchem.models.layers), 415
GraphContextPredLoss (class in deepchem.models.losses), 276
GraphConv (class in deepchem.models.layers), 388
GraphConvConstants (class in deepchem.models.layers), 116
GraphConvModel (class in deepchem.models), 301
GraphData (class in deepchem.models.layers), 58
GraphEdgeMaskingLoss (class in deepchem.models.losses), 274
GraphEmbedPoolLayer (class in deepchem.models.layers), 414
GraphGather (class in deepchem.models.layers), 392
GraphNetwork (class in deepchem.models.torch_models.layers), 442
GraphNodeMaskingLoss (class in deepchem.models.losses), 273
GraphPool (class in deepchem.models.layers), 390
GridHyperparamOpt (class in deepchem.hyper), 524
GroverAtomVocabPredictor (class in deepchem.models.torch_models.grover_layers), 480
GroverAtomVocabTokenizer (class in deepchem.feat.vocabulary_builders.grover_vocab), 153
GroverAtomVocabularyBuilder (class in deepchem.feat.vocabulary_builders.grover_vocab), 155, 156
GroverAttentionHead (class in deepchem.models.torch_models.grover_layers), 477
GroverBondVocabPredictor (class in deepchem.models.torch_models.grover_layers), 480
GroverBondVocabTokenizer (class in deepchem.feat.vocabulary_builders.grover_vocab), 154
GroverEmbedding (class in deepchem.models.torch_models.grover_layers), 479
GroverFeaturizer (class in deepchem.feat), 113
GroverFinetune (class in deepchem.models.torch_models.grover), 484
GroverFunctionalGroupPredictor (class in deepchem.models.torch_models.grover_layers), 481
GroverModel (class in deepchem.models.torch_models), 364
GroverMPNEncoder (class in deepchem.models.torch_models.grover_layers), 476
GroverMTBlock (class in deepchem.models.torch_models.grover_layers), 477
GroverPretrain (class in deepchem.models.torch_models.grover), 482
GroverPretrainLoss (class in deepchem.models.losses), 271
GroverReadout (class in deepchem.models.torch_models.readout), 486
GroverEncoder (class in deepchem.models.torch_models.grover_layers), 478
GymEnvironment (class in deepchem.rl), 532
LCNNFeaturizer (class in deepchem.feat), 147
LCNNModel (class in deepchem.models), 355
LearningRateSchedule (class in deepchem.models.optimizers), 278
legacy_metadata (Dataset attribute), 30
Linear (class in deepchem.models.jax_models.layers), 487
LinearCosineDecay (class in deepchem.models.optimizers), 280
load() (GroverAtomVocabularyBuilder class method), 156, 157
load_bace_classification() (in module deepchem.molnet), 70
load_bace_regression() (in module deepchem.molnet), 70
load_bandgap() (in module deepchem.molnet), 82
load_bbbcc001() (in module deepchem.molnet), 71
load_bbbcc002() (in module deepchem.molnet), 72
load_bbbp() (in module deepchem.molnet), 72
load_cell_counting() (in module deepchem.molnet), 73
load_chembl() (in module deepchem.molnet), 74
load_chembl25() (in module deepchem.molnet), 75
load_clearance() (in module deepchem.molnet), 75
load_clintox() (in module deepchem.molnet), 75
load_csv_files() (in module deepchem.utils.data_utils), 549
load_data() (in module deepchem.utils.data_utils), 548
load_dataset_from_disk() (in module deepchem.utils.data_utils), 550
load_delaney() (in module deepchem.molnet), 76
load_docked_ligands() (in module deepchem.utils.docking_utils), 577
load_factors() (in module deepchem.molnet), 77
load_freesolv() (in module deepchem.molnet), 77
load_from_disk() (in module deepchem.utils.data_utils), 549
load_from_pretrained() (HuggingFaceModel method), 382
load_from_pretrained() (KerasModel method), 289
load_from_pretrained() (ModularTorchModel method), 329
load_from_pretrained() (TorchModel method), 326
load_hiv() (in module deepchem.molnet), 78
load_hppb() (in module deepchem.molnet), 79
load_json_files() (in module deepchem.utils.data_utils), 549
load_kaggle() (in module deepchem.molnet), 80
load_kinase() (in module deepchem.molnet), 81
load_lipo() (in module deepchem.molnet), 81
load_metadata() (Dataset method), 31
load_molecule() (in module deepchem.utils.rdkit_utils), 553
load_mp_formation_energy() (in module deepchem.molnet), 84
load_mp_formality() (in module deepchem.molnet), 85
load_muv() (in module deepchem.molnet), 86
load_nci() (in module deepchem.molnet), 87
load_pcba() (in module deepchem.molnet), 87
load_pdbbind() (in module deepchem.molnet), 88
load_peroxykite() (in module deepchem.molnet), 83
load_pickle_files() (in module deepchem.utils.data_utils), 549
load_platinum_adsorption() (in module deepchem.molnet), 101
load_ppb() (in module deepchem.molnet), 89
load_qm7() (in module deepchem.molnet), 90
load_qm8() (in module deepchem.molnet), 91
load_qm9() (in module deepchem.molnet), 92
load_samp() (in module deepchem.molnet), 94
load_sdf_files() (in module deepchem.utils.data_utils), 548
load_sider() (in module deepchem.molnet), 94
load_thermosol() (in module deepchem.molnet), 95
load_tox21() (in module deepchem.molnet), 96
load_toxcast() (in module deepchem.molnet), 97
load_uspto() (in module deepchem.molnet), 97
load_uv() (in module deepchem.molnet), 99
load_zinc15() (in module deepchem.molnet), 99
LocalGlobalDiscriminator (class in deepchem.models.torch_models.gnn), 454
LocalMutualInformationLoss (class in deepchem.models.losses), 270
log_prob_gaussian() (ElectronSampler method), 582
LogTransformer (class in deepchem.transforms), 233
Loss (class in deepchem.models.losses), 267
loss_func() (GNNModular method), 352
loss_func() (GroverModel method), 366
loss_func() (InfoGraphModel method), 347
loss_func() (InfoGraphStarModel method), 349
loss_func() (InfoMax3DModular method), 355
loss_func() (ModularTorchModel method), 328
LSTMStep (class in deepchem.models.layers), 397

MACSKeysFingerprint (class in deepchem.feat), 121
mae_score() (in module deepchem.metrics), 517
make_pytorch_dataset() (Dataset method), 65
make_pytorch_dataset() (DiskDataset method), 34
make_pytorch_dataset() (ImageDataset method), 42
make_pytorch_dataset() (NumpyDataset method), 26
make_tf_dataset() (Dataset method), 65
make_tf_dataset() (DiskDataset method), 39
make_tf_dataset() (ImageDataset method), 43
make_tf_dataset() (NumpyDataset method), 27
MAML (class in deepchem.metalearning), 529
mask_token (RobertaFeaturizer property), 174
mask_token_id (RobertaFeaturizer property), 174
masked_edge_loss_loader () (GNNModular method), 352
masked_node_loss_loader () (GNNModular method), 352
MATEmbedding (class in deepchem.models.torch_models.layers), 440
MATEncoderLayer (class in deepchem.models.torch_models.layers), 436
MaterialCompositionFeaturizer (class in deepchem,feat), 189
MaterialStructureFeaturizer (class in deepchem,feat), 189
MATFeaturizer (class in deepchem,feat), 122
MATGenerator (class in deepchem.models.torch_models.layers), 440
MATModel (class in deepchem.models.torch_models.layers), 358
matrix_mul () (IRVTransformer static method), 251
matthews_corrcoef () (in module deepchem.metrics), 496
max_len_sentences_pair (RobertaFeaturizer property), 174
max_len_single_sentence (RobertaFeaturizer property), 174
MaxMinSplitter (class in deepchem.splits), 216
mean_absolute_error () (in module deepchem.metrics), 502
mean_squared_error () (in module deepchem.metrics), 501
MEGNetModel (class in deepchem.models), 357
memory_cache_size (DiskDataset property), 38
merge () (DiskDataset static method), 35
merge () (NumpyDataset static method), 26
merge_molecular_fragments () (in module deepchem.utils.fragment_utils), 556
merge_overlapping_boxes () (in module deepchem.utils.coordinate_box_utils), 558
message_func () (PNALayer method), 457
message_function () (Net3DLayer method), 462
MessagePassing (class in deepchem.models.layers), 428
metadata_df (DiskDataset attribute), 30
MetaLearner (class in deepchem.metalearning), 529
Metric (class in deepchem.metrics), 520
minimize_conformers () (ConformerGenerator method), 552
MinMaxTransformer (class in deepchem.trans), 229
Model (class in deepchem.models), 262
ModularTorchModel (class in deepchem.models.torch_models.modular), 327
Mol2VecFingerprint (class in deepchem,feat), 125
MolecularFeaturizer (class in deepchem,feat), 188
MolecularFragment (class in deepchem,feat), 188
depthchem.utils.fragment_utils), 554
MolecularWeightSplitter (class in deepchem.splits), 213
MoleculeLoadException (class in deepchem.utils.rdkit_utils), 552
MolGANAggregationLayer (class in deepchem.models.layers), 394
MolGANAggregationLayer (class in deepchem.models.torch_models.layers), 466
MolGANConvolutionLayer (class in deepchem.models.layers), 393
MolGANConvolutionLayer (class in deepchem.models.torch_models.layers), 464
MolGANEncoderLayer (class in deepchem.models.layers), 396
MolGANEncoderLayer (class in deepchem.models.torch_models.layers), 468
MolGANFeaturizer (class in deepchem,feat), 107
MolGANMultiConvolutionLayer (class in deepchem.models.layers), 395
MolGANMultiConvolutionLayer (class in deepchem.models.torch_models.layers), 467
MolGraphConvFeaturizer (class in deepchem,feat), 108
MordredDescriptors (class in deepchem,feat), 128
move () (DiskDataset method), 31
move () (ElectronSampler method), 582
MPNNModel (class in deepchem.models), 302
MPNNModel (class in deepchem.models.torch_models), 344
MSA_to_dataset () (in module deepchem.utils.sequence_utils), 564
MultiConvMol (class in deepchem.feat.mol_graphs), 57
MultiHeadedMATAttention (class in deepchem.models.torch_models.layers), 437
MultilayerPerceptron (class in deepchem.models.torch_models.layers), 432
MultitaskClassifier (class in deepchem.models), 335
MultitaskFitTransformRegressor (class in deepchem.models), 334
MultitaskRegressor (class in deepchem.models), 332
MXMNetFeaturizer (class in deepchem,feat), 115
N
n_actions (Environment property), 532
NeighborList (class in deepchem.models.layers), 406
Net3D (class in deepchem.models.torch_models.gnn3d), 462
Net3DLayer (class in deepchem.models.torch_models.gnn3d), 461
NNLDA (class in deepchem.models.dft.nnxc), 489
NNPBE (class in deepchem.models.dft.nnxc), 490
node_features (GraphData attribute), 58
node_pos_features (GraphData attribute), 58
predict_from_embeddings() (SeqToSeq method), 308
predict_from_sequences() (SeqToSeq method), 307
predict_gan_generator() (BasicMolGANModel method), 305
predict_gan_generator() (GAN method), 310
predict_on_batch() (JaxModel method), 375
predict_on_batch() (KerasModel method), 285
predict_on_batch() (MAML method), 530
predict_on_batch() (Model method), 262
predict_on_batch() (SklearnModel method), 265
predict_on_batch() (TorchModel method), 323
predict_on_generator() (JaxModel method), 375
predict_on_generator() (KerasModel method), 285
predict_on_generator() (MultitaskFitTransformerRegressor method), 335
predict_on_generator() (TorchModel method), 322
predict_uncertainty() (KerasModel method), 287
predict_uncertainty() (TorchModel method), 324
predict_uncertainty_on_batch() (KerasModel method), 286
predict_uncertainty_on_batch() (TorchModel method), 323
prepare_for_model() (RobertaFeaturizer method), 176
prepare_inputs() (in module deepchem.utils.docking_utils), 577
prepare_seq2seq_batch() (RobertaFeaturizer method), 179
pretrans_edges() (PNALayer method), 458
ProgressiveMultitaskClassifier (class in deepchem.models), 293
ProgressiveMultitaskRegressor (class in deepchem.models), 294
prune_conformers() (ConformerGenerator method), 552
PubChemFingerprint (class in deepchem.feat), 125
push_to_hub() (RobertaFeaturizer method), 180

R
r2_score() (in module deepchem.metrics), 499
radial_cutoff() (AtomicConvolution method), 410
radial_symmetry() (ANIFeat method), 414
radial_symmetry_function() (AtomicConvolution method), 409
RandomGroupSplitter (class in deepchem.splits), 194
randomize_coulomb_matrix() (CoulombMatrix method), 130
randomize_coulomb_matrix() (CoulombMatrixEig method), 132
RandomSplitter (class in deepchem.splits), 191
RandomStratifiedSplitter (class in deepchem.splits), 197
RawFeaturizer (class in deepchem.feat), 139

RDKitConformerFeaturizer (class in deepchem.feat), 114
RDKitDescriptors (class in deepchem.feat), 127
RdkitGridFeaturizer (class in deepchem.feat), 140
read_gnina_log() (in module deepchem.utils.docking_utils), 578
realize() (CoulombFitTransformer method), 248
realize() (IRVTransformer method), 251
RealNVP layer (class in deepchem.models.torch_models.layers), 445
recall_score() (in module deepchem.metrics), 497
reduce_func() (PNALayer method), 458
reduce_molecular_complex_to_contacts() (in module deepchem.utils.fragment_utils), 556
reference_lists (GraphConvConstants attribute), 116
register_for_auto_class() (RobertaFeaturizer class method), 181
relative_difference() (in module deepchem.utils.evaluate), 562
reload() (AtomicConvModel method), 315
reload() (Model method), 262
reload() (NormalizingFlowModel method), 318
reload() (SklearnModel method), 265
remove_pad() (SmilesToSeq method), 135
repulsion() (VinaFreeEnergy method), 405
reset() (Environment method), 532
reset() (GymEnvironment method), 532
reset_parameters() (AtomEncoder method), 455
reshard() (DiskDataset method), 32
restore() (A2C method), 536
restore() (GroverModel method), 367
restore() (KerasModel method), 288
restore() (MAML method), 530
restore() (ModularTorchModel method), 329
restore() (PPO method), 538
restore() (TorchModel method), 325
rms_score() (in module deepchem.metrics), 517
RMSProp (class in deepchem.models.optimizers), 279
RobertaFeaturizer (class in deepchem.feat), 160
RobustMultitaskClassifier (class in deepchem.models), 290
RobustMultitaskRegressor (class in deepchem.models), 291
roc_auc_score() (in module deepchem.metrics), 511
run() (XCNNSCF method), 492
RxnFeaturizer (class in deepchem.feat), 185
RxnSplitTransformer (class in deepchem.trans), 254

S
safe_index() (in module deepchem.feat.graph_features), 117
sample() (FakeGraphGenerator method), 580
sampled_electrons (ElectronSampler attribute), 581
sanitize_special_tokens()  (RobertaFeaturizer method), 181
save()  (AtomicConvModel method), 315
save()  (GroverAtomVocabularyBuilder method), 156, 157
save()  (Model method), 262
save()  (NormalizingFlowModel method), 318
save()  (SklearnModel method), 265
save_checkpoint()  (KerasModel method), 288
save_checkpoint()  (ModularTorchModel method), 329
save_checkpoint()  (TorchModel method), 325
save_dataset_to_disk()  (in module deepchem.utils.data_utils), 549
save_pretrained()  (RobertaFeaturizer method), 181
save_to_disk()  (DiskDataset method), 31
save_to_disk()  (in module deepchem.utils.data_utils), 549
save_vocabulary()  (RobertaFeaturizer method), 182
save_vocabulary()  (SmilesTokenizer method), 152
ScaffoldSplitter  (in deepchem.splits), 209
scale_amplification()  (in module deepchem.utils.graph_utils), 568
scale_attenuation()  (in module deepchem.utils.graph_utils), 568
scale_identity()  (in module deepchem.utils.graph_utils), 568
ScaledDotProductAttention  (class in deepchem.models.torch_models.attention), 485
ScaleNorm  (class in deepchem.models.torch_models.layers), 435
ScScoreModel  (class in deepchem.models), 305
SDFLoader  (class in deepchem.data), 51
segment_sum()  (in module deepchem.utils.pytorch_utils), 584
select()  (Dataset method), 64
select()  (DiskDataset method), 37
select()  (ImageDataset method), 42
select()  (NumpyDataset method), 25
select_action()  (A2C method), 535
select_action()  (PPO method), 538
select_task()  (MetaLearner method), 529
SelfAttention  (class in deepchem.models.torch_models.attention), 486
sentences2vec()  (Mol2VecFingerprint method), 126
sep_token  (RobertaFeaturizer property), 182
sep_token_id  (RobertaFeaturizer property), 182
seq_one_hot_encode()  (in module deepchem.utils.genomics_utils), 563
SeqToSeq  (class in deepchem.models), 306
set_max_print_size()  (in module deepchem.utils.debug_utils), 579
set_print_threshold()  (in module deepchem.utils.debug_utils), 578
set_shard()  (DiskDataset method), 37
set_truncation_and_padding()  (RobertaFeaturizer method), 182
SetGather  (class in deepchem.models.layers), 431
SingletaskStratifiedSplitter  (class in deepchem.splits), 200
SklearnModel  (class in deepchem.models), 264
slow_tokenizer_class  (RobertaFeaturizer attribute), 183
SluiceLoss  (class in deepchem.models.layers), 412
Smiles2Vec  (class in deepchem.models), 315
smiles_from_seq()  (SmilesToSeq method), 135
smiles_to_seq()  (TextCNNModel method), 313
smiles_to_seq_batch()  (TextCNNModel method), 313
SmilesToImage  (class in deepchemfeat), 135
SmilesTokenizer  (class in deepchemfeat), 150
SmilesToSeq  (class in deepchemfeat), 134
SNAPFeaturizer  (class in deepchemfeat), 139
SoftmaxCrossEntropy  (class in deepchem.models.losses), 267
sparse_shuffle()  (DiskDataset method), 36
SparseAdam  (class in deepchem.models.optimizers), 279
SparseMatrixOneHotFeaturizer  (class in deepchemfeat), 138
SparseSoftmaxCrossEntropy  (class in deepchem.models.losses), 267
special_tokens_map  (RobertaFeaturizer property), 183
special_tokens_map_extended  (RobertaFeaturizer property), 183
SpecifiedSplitter  (class in deepchem.splits), 205
split()  (ButinaSplitter method), 219
split()  (FingerprintSplitter method), 221
split()  (IndexSplitter method), 203
split()  (MinMaxSplitter method), 216
split()  (MolecularWeightSplitter method), 213
split()  (RandomGroupSplitter method), 195
split()  (RandomSplitter method), 192
split()  (RandomStratifiedSplitter method), 197
split()  (ScaffoldSplitter method), 210
split()  (SingletaskStratifiedSplitter method), 201
split()  (SpecifiedSplitter method), 206
split()  (Splitter method), 225
split() (TaskSplitter method), 208
Splitter (class in deepchem.splits), 224
SquaredHingeLoss (class in deepchem.models.losses), 267
Stack (class in deepchem.models.layers), 404
state (Environment property), 531
state_dtype (Environment property), 532
state_shape (Environment property), 531
step() (Environment method), 532
step() (GymEnvironment method), 532
strip_hydrogens() (in module deepchem.utils.fragment_utils), 555
SublayerConnection (class in deepchem.models.torch_models.layers), 438
subset() (DiskDataset method), 35
sum_neigh() (GraphConv method), 390
SwitchedDropout (class in deepchem.models.layers), 400

T

TaskSplitter (class in deepchem.splits), 208
TensorflowMultitaskIRVClassifier (class in deepchem.models), 289
terminated (Environment property), 531
TextCNNModel (class in deepchem.models), 312
to_csv() (Dataset method), 66
to_csv() (DiskDataset method), 40
to_csv() (ImageDataset method), 44
to_csv() (NumpyDataset method), 28
to_dataframe() (Dataset method), 65
to_dataframe() (DiskDataset method), 40
to_dataframe() (ImageDataset method), 44
to_dataframe() (NumpyDataset method), 28
to_dgl_graph() (GraphData method), 59
to_json() (NumpyDataset method), 26
to_one_hot() (in module deepchem.metrics), 494
to_pyg_graph() (GraphData method), 59
to_seq() (SmilesToSeq method), 135
tokenize() (BasicSmilesTokenizer method), 152
tokenize() (RobertaFeaturizer method), 183
top_k_accuracy_score() (in module deepchem.metrics), 515
TorchModel (class in deepchem.models), 319
train_new_from_iterator() (RobertaFeaturizer method), 183
train_on_current_task() (MAML method), 530
train_test_split() (ButinaSplitter method), 220
train_test_split() (FingerprintSplitter method), 223
train_test_split() (IndexSplitter method), 204
train_test_split() (MaxMinSplitter method), 217
train_test_split() (MolecularWeightSplitter method), 214
train_test_split() (RandomGroupSplitter method), 196
train_test_split() (RandomSplitter method), 193
train_test_split() (RandomStratifiedSplitter method), 199
train_test_split() (ScaffoldSplitter method), 211
train_test_split() (SingletaskStratifiedSplitter method), 201
train_test_split() (SpecifiedSplitter method), 207
train_test_split() (Splitter method), 225
train_test_split() (TaskSplitter method), 209
train_valid_test_split() (ButinaSplitter method), 220
train_valid_test_split() (FingerprintSplitter method), 223
train_valid_test_split() (IndexSplitter method), 205
train_valid_test_split() (MaxMinSplitter method), 218
train_valid_test_split() (MolecularWeightSplitter method), 215
train_valid_test_split() (RandomGroupSplitter method), 196
train_valid_test_split() (RandomSplitter method), 193
train_valid_test_split() (RandomStratifiedSplitter method), 199
train_valid_test_split() (ScaffoldSplitter method), 212
train_valid_test_split() (SingletaskStratifiedSplitter method), 202
train_valid_test_split() (SpecifiedSplitter method), 207
train_valid_test_split() (Splitter method), 224
train_valid_test_split() (TaskSplitter method), 208
training_step() (DCLightningModule method), 372
transform() (BalancingTransformer method), 241
transform() (CDFTransformer method), 236
transform() (ClippingTransformer method), 232
transform() (CoulombFitTransformer method), 249
transform() (DAGTransformer method), 254
transform() (Dataset method), 64
transform() (DiskDataset method), 33
transform() (DuplicateBalancingTransformer method), 243
transform() (FeatureizationTransformer method), 247
transform() (ImageDataset method), 42
transform() (ImageTransformer method), 245
transform() (IRVTransformer method), 251
transform() (LogTransformer method), 234
transform() (MinMaxTransformer method), 230
transform() (NormalizationTransformer method), 228
transform() (NumpyDataset method), 25