deepchem

Release 2.6.1.dev

deepchem-contributors

Sep 03, 2022
The DeepChem project aims to democratize deep learning for science.
The DeepChem project aims to build high quality tools to democratize the use of deep learning in the sciences. The origin of DeepChem focused on applications of deep learning to chemistry, but the project has slowly evolved past its roots to broader applications of deep learning to the sciences.

The core DeepChem Repo serves as a monorepo that organizes the DeepChem suite of scientific tools. As the project matures, smaller more focused tool will be surfaced in more targeted repos. DeepChem is primarily developed in Python, but we are experimenting with adding support for other languages.

What are some of the things you can use DeepChem to do? Here’s a few examples:

• Predict the solubility of small drug-like molecules
• Predict binding affinity for small molecule to protein targets
• Predict physical properties of simple materials
• Analyze protein structures and extract useful descriptors
• Count the number of cells in a microscopy image
• More coming soon…

We should clarify one thing up front though. DeepChem is a machine learning library, so it gives you the tools to solve each of the applications mentioned above yourself. DeepChem may or may not have prebaked models which can solve these problems out of the box.

Over time, we hope to grow the set of scientific applications DeepChem can address. This means we need lots of help! If you’re a scientist who’s interested in open source, please pitch on building DeepChem.
Chapter 1. What is DeepChem?
The fastest way to get up and running with DeepChem is to run it on Google Colab. Check out one of the DeepChem Tutorials or this forum post for Colab quick start guides.

If you'd like to install DeepChem locally, we recommend installing deepchem which is nightly version and RDKit. RDKit is a soft requirement package, but many useful methods depend on it.

```shell
pip install tensorflow~=2.4
pip install --pre deepchem
conda install -y -c conda-forge rdkit
```

Then open your python and try running.

```python
import deepchem
```
DeepChem is managed by a team of open source contributors. Anyone is free to join and contribute! DeepChem has weekly developer calls. You can find meeting minutes on our forums.

DeepChem developer calls are open to the public! To listen in, please email X.Y@gmail.com, where X=bharath and Y=ramsundar to introduce yourself and ask for an invite.

Important:

Join our community gitter to discuss DeepChem.
Sign up for our forums to talk about research, development, and general questions.

3.1 Installation

3.1.1 Stable version

Install deepchem via pip or conda by simply running,

```
pip install deepchem
```

or

```
conda install -c conda-forge deepchem
```

3.1.2 Nightly build version

The nightly version is built by the HEAD of DeepChem.

For using general utilities like Molnet, Featurisers, Datasets, etc, then, you install deepchem via pip.

```
pip install --pre deepchem
```

Deepchem provides support for tensorflow, pytorch, jax and each require a individual pip Installation.

For using models with tensorflow dependencies, you install using

```
pip install --pre deepchem[tensorflow]
```

For using models with Pytorch dependencies, you install using
pip install --pre deepchem[torch]

For using models with Jax dependencies, you install using

pip install --pre deepchem[jax]

If GPU support is required, then make sure CUDA is installed and then install the desired deep learning framework using the links below before installing deepchem

1. tensorflow - just cuda installed
2. pytorch - https://pytorch.org/get-started/locally/#start-locally
3. jax - https://github.com/google/jax#pip-installation-gpu-cuda

In zsh square brackets are used for globbing/pattern matching. This means you need to escape the square brackets in the above installation. You can do so by including the dependencies in quotes like pip install --pre 'deepchem[jax]'

Note: Support for jax is not available in windows (jax is not officially supported in windows).

3.1.3 Google Colab

The fastest way to get up and running with DeepChem is to run it on Google Colab. Check out one of the DeepChem Tutorials or this forum post for Colab quick start guides.

3.1.4 Docker

If you want to install using a docker, you can pull two kinds of images from DockerHub.

- deepchemio/deepchem:x.x.x
 - Image built by using a conda (x.x.x is a version of deepchem)
 - This image is built when we push x.x.x. tag
 - Dockerfile is put in `docker/tag` directory

- deepchemio/deepchem:latest
 - Image built from source codes
 - This image is built every time we commit to the master branch
 - Dockerfile is put in `docker/nightly` directory

First, you pull the image you want to use.

docker pull deepchemio/deepchem:latest

Then, you create a container based on the image.

docker run --rm -it deepchemio/deepchem:latest

If you want GPU support:
If nvidia-docker is installed
nvidia-docker run --rm -it deepchemio/deepchem:latest
docker run --runtime nvidia --rm -it deepchemio/deepchem:latest

If nvidia-container-toolkit is installed
docker run --gpus all --rm -it deepchemio/deepchem:latest

You are now in a docker container which deepchem was installed. You can start playing with it in the command line.

```
(deepchem) root@xxxxxxxxxxxxx:~/mydir# python
Python 3.6.10 |Anaconda, Inc.| (default, May 8 2020, 02:54:21)
[GCC 7.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import deepchem as dc
```

If you want to check the tox21 benchmark:

```
(deepchem) root@xxxxxxxxxxxxx:~/mydir# wget https://raw.githubusercontent.com/deepchem/˓
→deepchem/master/examples/benchmark.py
(deepchem) root@xxxxxxxxxxxxx:~/mydir# python benchmark.py -d tox21 -m graphconv -s␣
˓
→random
```

3.1.5 Jupyter Notebook

Installing via these steps will allow you to install and import DeepChem into a jupyter notebook within a conda virtual environment.

Prerequisite

- Shell: Bash, Zsh, PowerShell
- Conda: >4.6

First, please create a conda virtual environment (here it’s named “deepchem-test”) and activate it.

```
conda create --name deepchem-test
conda activate deepchem-test
```

Install DeepChem, Jupyter and matplotlib into the conda environment.

```
conda install -y -c conda-forge nb_conda_kernels matplotlib
pip install tensorflow
pip install --pre deepchem
```

You may need to use pip3 depending on your Python 3 pip installation. Install pip dependencies after deepchem-test is activated.

While the deepchem-test environment is activated, open Jupyter Notebook by running `jupyter notebook`. Your terminal prompt should be prefixed with (deepchem-test). Once Jupyter Notebook opens in a browser, select the new button, and select the environment “Python[conda env:deepchem-test].” This will open a notebook running in the deepchem-test conda virtual environment.
deepchem, Release 2.6.1.dev

3.1.6 From source with conda
Installing via these steps will ensure you are installing from the source.
Prerequisite
• Shell: Bash, Zsh, PowerShell
• Conda: >4.6
First, please clone the deepchem repository from GitHub.
git clone https://github.com/deepchem/deepchem.git
cd deepchem
Then, execute the shell script. The shell scripts require two arguments, python version and gpu/cpu.
source scripts/install_deepchem_conda.sh 3.8 cpu
If you want GPU support (we supports only CUDA 10.1):
source scripts/install_deepchem_conda.sh 3.8 gpu
If you are using the Windows and the PowerShell:
. .\scripts\install_deepchem_conda.ps1 3.7 cpu

Before activating deepchem environment, make sure conda has been initialized.
Check if there is a (XXXX) in your command line.
If not, use conda init <YOUR_SHELL_NAME> to activate it, then:

conda activate deepchem
pip install -e .
pytest -m "not slow" deepchem # optional

3.1.7 From source lightweight guide
Installing via these steps will ensure you are installing from the source.
Prerequisite
• Shell: Bash, Zsh, PowerShell
• Conda: >4.6
First, please clone the deepchem repository from GitHub.
git clone https://github.com/deepchem/deepchem.git
cd deepchem
We would advise all users to use conda environment, following below-

10

Chapter 3. About Us


conda create --name deepchem python=3.8
conda activate deepchem
pip install -e .

DeepChem provides different additional packages depending on usage & contribution. If one also wants to build the tensorflow environment, add this:

pip install -e .[tensorflow]

If one also wants to build the Pytorch environment, add this:

pip install -e .[torch]

If one also wants to build the Jax environment, add this:

pip install -e .[jax]

DeepChem has soft requirements, which can be installed on the fly during development inside the environment but if you want to install all the soft-dependencies at once, then take a look at deepchem/requirements

3.2 Requirements

3.2.1 Hard requirements

DeepChem officially supports Python 3.6 through 3.7 and requires these packages on any condition.

- joblib
- NumPy
- pandas
- scikit-learn
- SciPy
- TensorFlow
 - Deepchem>=2.4.0 depends on TensorFlow v2 (2.3.x)
 - Deepchem<2.4.0 depends on TensorFlow v1 (>=1.14)

3.2.2 Soft requirements

DeepChem has a number of “soft” requirements.
If you’re new to DeepChem, you probably want to know the basics. What is DeepChem? Why should you care about using it? The short answer is that DeepChem is a scientific machine learning library. (The “Chem” indicates the historical fact that DeepChem initially focused on chemical applications, but we aim to support all types of scientific applications more broadly).

Why would you want to use DeepChem instead of another machine learning library? Simply put, DeepChem maintains an extensive collection of utilities to enable scientific deep learning including classes for loading scientific datasets, processing them, transforming them, splitting them up, and learning from them. Behind the scenes DeepChem uses a variety of other machine learning frameworks such as scikit-learn, TensorFlow, and XGBoost. We are also experimenting with adding additional models implemented in PyTorch and JAX. Our focus is to facilitate scientific experimentation using whatever tools are available at hand.

In the rest of this tutorials, we’ll provide a rapid fire overview of DeepChem’s API. DeepChem is a big library so we won’t cover everything, but we should give you enough to get started.

3.3 Tutorials

<table>
<thead>
<tr>
<th>Package name</th>
<th>Version</th>
<th>Location where this package is used (dc: deepchem)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BioPython</td>
<td>latest</td>
<td>dc.utils.genomics_utils</td>
</tr>
<tr>
<td>Deep Graph Library</td>
<td>0.5.x</td>
<td>dc.feat.graph_data.dc.models.torch_models</td>
</tr>
<tr>
<td>DGL-LifeSci</td>
<td>0.2.x</td>
<td>dc.models.torch_models</td>
</tr>
<tr>
<td>HuggingFace Transformers</td>
<td>Not Testing</td>
<td>dc.feature.smiles_tokenizer</td>
</tr>
<tr>
<td>LightGBM</td>
<td>latest</td>
<td>dc.models.gbdt_models</td>
</tr>
<tr>
<td>matminer</td>
<td>latest</td>
<td>dc.feature.materials_featurizers</td>
</tr>
<tr>
<td>MDTraj</td>
<td>latest</td>
<td>dc.utils.pdbqt_utils</td>
</tr>
<tr>
<td>Mol2vec</td>
<td>latest</td>
<td>dc.utils.materials_featurizers</td>
</tr>
<tr>
<td>Mordred</td>
<td>latest</td>
<td>dc.utils.materials_featurizers</td>
</tr>
<tr>
<td>NetworkX</td>
<td>latest</td>
<td>dc.utils.rdkit_utils</td>
</tr>
<tr>
<td>OpenAI Gym</td>
<td>Not Testing</td>
<td>dc.rl</td>
</tr>
<tr>
<td>OpenMM</td>
<td>latest</td>
<td>dc.utils.rdkit_utils</td>
</tr>
<tr>
<td>PDBFixer</td>
<td>latest</td>
<td>dc.utils.rdkit_utils</td>
</tr>
<tr>
<td>Pillow</td>
<td>latest</td>
<td>dc.data.data_loader.dc.transformers</td>
</tr>
<tr>
<td>PubChemPy</td>
<td>latest</td>
<td>dc.feature.materials_featurizers</td>
</tr>
<tr>
<td>pyGPGO</td>
<td>latest</td>
<td>dc.hyper.gaussian_process</td>
</tr>
<tr>
<td>Pymatgen</td>
<td>latest</td>
<td>dc.feature.materials_featurizers</td>
</tr>
<tr>
<td>PyTorch</td>
<td>1.6.0</td>
<td>dc.data.datasets</td>
</tr>
<tr>
<td>PyTorch Geometric</td>
<td>1.6.x (with PyTorch 1.6.0)</td>
<td>dc.feat.graph_data.dc.models.torch_models</td>
</tr>
<tr>
<td>RDKit</td>
<td>latest</td>
<td>Many modules (we recommend you to install)</td>
</tr>
<tr>
<td>simdna</td>
<td>latest</td>
<td>dc.metrics.genomic_metrics.dc.molnet.dnasim</td>
</tr>
<tr>
<td>Tensorflow Probability</td>
<td>0.11.x</td>
<td>dc.rl</td>
</tr>
<tr>
<td>Weights & Biases</td>
<td>Not Testing</td>
<td>dc.models.keras_model.dc.models.callbacks</td>
</tr>
<tr>
<td>XGBoost</td>
<td>latest</td>
<td>dc.models.gbdt_models</td>
</tr>
<tr>
<td>Tensorflow Addons</td>
<td>latest</td>
<td>dc.models.optimizers</td>
</tr>
</tbody>
</table>

Contents

- Data Handling
3.3.1 Data Handling

The `dc.data` module contains utilities to handle `Dataset` objects. These `Dataset` objects are the heart of DeepChem. A `Dataset` is an abstraction of a dataset in machine learning. That is, a collection of features, labels, weights, alongside associated identifiers. Rather than explaining further, we’ll just show you.

```python
>>> import deepchem as dc
>>> import numpy as np

N_samples = 50
n_features = 10
X = np.random.rand(N_samples, n_features)
y = np.random.rand(N_samples)
dataset = dc.data.NumpyDataset(X, y)
dataset.X.shape
(50, 10)
dataset.y.shape
(50,)
```

Here we’ve used the `NumpyDataset` class which stores datasets in memory. This works fine for smaller datasets and is very convenient for experimentation, but is less convenient for larger datasets. For that we have the `DiskDataset` class.

```python
>>> dataset = dc.data.DiskDataset.from_numpy(X, y)
>>> dataset.X.shape
(50, 10)
>>> dataset.y.shape
(50,)
```

In this example we haven’t specified a data directory, so this `DiskDataset` is written to a temporary folder. Note that `dataset.X` and `dataset.y` load data from disk underneath the hood! So this can get very expensive for larger datasets.

3.3.2 Feature Engineering

“Featurizer” is a chunk of code which transforms raw input data into a processed form suitable for machine learning. The `dc.feat` module contains an extensive collection of featurizers for molecules, molecular complexes and inorganic crystals. We’ll show you the example about the usage of featurizers.

```python
>>> smiles = [
... 'O=Cc1ccc(O)c(OC)c1',
... 'CN1CCC[C@H]1c2cccnc2',
... 'C1CCCCC1',
... 'c1cccccl',
... 'CC(=O)O',
...]
```
properties = [0.4, -1.5, 3.2, -0.2, 1.7]
featurizer = dc.feat.CircularFingerprint(size=1024)
ecfp = featurizer.featurize(smiles)
ecfp.shape
(5, 1024)
dataset = dc.data.NumpyDataset(X=ecfp, y=np.array(properties))
len(dataset)
5

Here, we’ve used the CircularFingerprint and converted SMILES to ECFP. The ECFP is a fingerprint which is a bit vector made by chemical structure information and we can use it as the input for various models.

And then, you may have a CSV file which contains SMILES and property like HOMO-LUMO gap. In such a case, by using DataLoader, you can load and featurize your data at once.

import pandas as pd
make a dataframe object for creating a CSV file
df = pd.DataFrame(list(zip(smiles, properties)), columns=["SMILES", "property"])
import tempfile
with dc.utils.UniversalNamedTemporaryFile(mode='w') as tmpfile:
 # dump the CSV file
df.to_csv(tmpfile.name)
 # initialize the featurizer
 featurizer = dc.feat.CircularFingerprint(size=1024)
 # initialize the dataloader
 loader = dc.data.CSVLoader(\"property\", feature_field=\"SMILES\", \n featurizer=featurizer)
 # load and featurize the data from the CSV file
 dataset = loader.create_dataset(tmpfile.name)
len(dataset)
5

3.3.3 Data Splitting

The dc.splits module contains a collection of scientifically aware splitters. Generally, we need to split the original data to training, validation and test data in order to tune the model and evaluate the model’s performance. We’ll show you the example about the usage of splitters.

splitter = dc.splits.RandomSplitter()
split 5 datapoints in the ratio of train:valid:test = 3:1:1
train_dataset, valid_dataset, test_dataset = splitter.train_valid_test_split(
 dataset=dataset, frac_train=0.6, frac_valid=0.2, frac_test=0.2
)
len(train_dataset)
3
len(valid_dataset)
1
len(test_dataset)
1

Here, we’ve used the RandomSplitter and splitted the data randomly in the ratio of train:valid:test = 3:1:1. But, the random splitting sometimes overestimates model’s performance, especially for small data or imbalance data. Please
be careful for model evaluation. The `dc.splits` provides more methods and algorithms to evaluate the model’s performance appropriately, like cross validation or splitting using molecular scaffolds.

3.3.4 Model Training and Evaluating

The `dc.models` contains an extensive collection of models for scientific applications. Most of all models inherits `dc.models.Model` and we can train them by just calling `fit` method. You don’t need to care about how to use specific framework APIs. We’ll show you the example about the usage of models.

```python
>>> from sklearn.ensemble import RandomForestRegressor
>>> rf = RandomForestRegressor()
>>> model = dc.models.SklearnModel(model=rf)
>>> # model training
>>> model.fit(train_dataset)
>>> valid_preds = model.predict(valid_dataset)
>>> valid_preds.shape
(1,)
>>> test_preds = model.predict(test_dataset)
>>> test_preds.shape
(1,)
```

Here, we’ve used the `SklearnModel` and trained the model. Even if you want to train a deep learning model which is implemented by TensorFlow or PyTorch, calling `fit` method is all you need!

And then, if you use `dc.metrics.Metric`, you can evaluate your model by just calling `evaluate` method.

```python
>>> # initialize the metric
>>> metric = dc.metrics.Metric(dc.metrics.mae_score)
>>> # evaluate the model
>>> train_score = model.evaluate(train_dataset, [metric])
>>> valid_score = model.evaluate(valid_dataset, [metric])
>>> test_score = model.evaluate(test_dataset, [metric])
```

3.3.5 More Tutorials

DeepChem maintains an extensive collection of addition tutorials that are meant to be run on Google Colab, an online platform that allows you to execute Jupyter notebooks. Once you’ve finished this introductory tutorial, we recommend working through these more involved tutorials.

3.4 Examples

We show a bunch of examples for DeepChem by the doctest style.

- We match against doctest’s ... wildcard on code where output is usually ignored
- We often use threshold assertions (e.g: `score['mean-pearson_r2_score'] > 0.92`), as this is what matters for model training code.

Contents

- Delaney (ESOL)
Before jumping in to examples, we’ll import our libraries and ensure our doctests are reproducible:

```python
>>> import numpy as np
>>> import tensorflow as tf
>>> import deepchem as dc

# Run before every test for reproducibility
>>> def seed_all():
...    np.random.seed(123)
...    tf.random.set_seed(123)
```

3.4.1 Delaney (ESOL)

Examples of training models on the Delaney (ESOL) dataset included in MoleculeNet. We’ll be using its smiles field to train models to predict its experimentally measured solvation energy (expt).

MultitaskRegressor

First, we’ll load the dataset with `load_delaney()` and fit a `MultitaskRegressor`:

```python
>>> seed_all()
>>> # Load dataset with default 'scaffold' splitting
>>> tasks, datasets, transformers = dc.molnet.load_delaney()
>>> tasks

['measured log solubility in mols per litre']
>>> train_dataset, valid_dataset, test_dataset = datasets

>>> # We want to know the pearson R squared score, averaged across tasks
>>> avg_pearson_r2 = dc.metrics.Metric(dc.metrics.pearson_r2_score, np.mean)

>>> # We'll train a multitask regressor (fully connected network)
>>> model = dc.models.MultitaskRegressor(
...    len(tasks),
...    n_features=1024,
...    layer_sizes=[500])

>>> model.fit(train_dataset)

0...

>>> # We now evaluate our fitted model on our training and validation sets
>>> train_scores = model.evaluate(train_dataset, [avg_pearson_r2], transformers)
>>> assert train_scores['mean-pearson_r2_score'] > 0.7, train_scores
```
GraphConvModel

The default featurizer for Delaney is ECFP, short for “Extended-connectivity fingerprints.” For a GraphConvModel, we’ll reload our datasets with featurizer='GraphConv':

```python
>>> seed_all()
>>> tasks, datasets, transformers = dc.molnet.load_delaney(featurizer='GraphConv')
>>> train_dataset, valid_dataset, test_dataset = datasets
>>> model = dc.models.GraphConvModel(len(tasks), mode='regression', dropout=0.5)
>>> model.fit(train_dataset, nb_epoch=30)
... 0...
>>> # We now evaluate our fitted model on our training and validation sets
>>> train_scores = model.evaluate(train_dataset, [avg_pearson_r2], transformers)
>>> assert train_scores['mean-pearson_r2_score'] > 0.5, train_scores
>>> valid_scores = model.evaluate(valid_dataset, [avg_pearson_r2], transformers)
>>> assert valid_scores['mean-pearson_r2_score'] > 0.3, valid_scores
```

3.4.2 ChEMBL

Examples of training models on ChEMBL dataset included in MoleculeNet.

ChEMBL is a manually curated database of bioactive molecules with drug-like properties. It brings together chemical, bioactivity and genomic data to aid the translation of genomic information into effective new drugs.

MultitaskRegressor

```python
>>> seed_all()
>>> chembl_tasks, datasets, transformers = dc.molnet.load_chembl(...
... shard_size=2000, featurizer="ECFP", set="5thresh", split="random")
>>> train_dataset, valid_dataset, test_dataset = datasets
>>> len(chembl_tasks)
691
>>> 'Compound train/valid/test split: {len(train_dataset)}/{len(valid_dataset)}/
...{len(test_dataset)}'
'Compound train/valid/test split: 19096/2387/2388'
>>> # We want to know the RMS, averaged across tasks
>>> avg_rms = dc.metrics.Metric(dc.metrics.rms_score, np.mean)
>>> # Create our model
```
```python
>>> n_layers = 3
>>> model = dc.models.MultitaskRegressor(
    len(chembl_tasks),
    n_features=1024,
    layer_sizes=[1000] * n_layers,
    dropouts=[.25] * n_layers,
    weight_init_stddevs=[.02] * n_layers,
    bias_init_consts=[1.] * n_layers,
    learning_rate=.0003,
    weight_decay_penalty=.0001,
    batch_size=100)
>>> model.fit(train_dataset, nb_epoch=5)
0...
>>> # We now evaluate our fitted model on our training and validation sets
>>> train_scores = model.evaluate(train_dataset, [avg_rms], transformers)
>>> assert train_scores['mean-rms_score'] < 10.00
>>> valid_scores = model.evaluate(valid_dataset, [avg_rms], transformers)
>>> assert valid_scores['mean-rms_score'] < 10.00
```

GraphConvModel

```python
>>> # Load ChEMBL dataset
>>> chembl_tasks, datasets, transformers = dc.molnet.load_chembl(
    shard_size=2000, featurizer="GraphConv", set="5thresh", split="random")
>>> train_dataset, valid_dataset, test_dataset = datasets
>>> # RMS, averaged across tasks
>>> avg_rms = dc.metrics.Metric(dc.metrics.rms_score, np.mean)
>>> model = dc.models.GraphConvModel(
    len(chembl_tasks), batch_size=128, mode='regression')
>>> # Fit trained model
>>> model.fit(train_dataset, nb_epoch=5)
0...
>>> # We now evaluate our fitted model on our training and validation sets
>>> train_scores = model.evaluate(train_dataset, [avg_rms], transformers)
>>> assert train_scores['mean-rms_score'] < 10.00
>>> valid_scores = model.evaluate(valid_dataset, [avg_rms], transformers)
>>> assert valid_scores['mean-rms_score'] < 10.00
```
3.5 Known Issues & Limitations

3.5.1 Broken features

A small number of Deepchem features are known to be broken. The Deepchem team will either fix or deprecate these broken features. It is impossible to know of every possible bug in a large project like Deepchem, but we hope to save you some headache by listing features that we know are partially or completely broken.

Note: This list is likely to be non-exhaustive. If we missed something, please let us know [here](https://github.com/deepchem/deepchem/issues/2376).

<table>
<thead>
<tr>
<th>Feature</th>
<th>Deepchem response</th>
<th>Tracker and notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANIFeature-</td>
<td>Low Priority</td>
<td>The Deepchem team recommends using TorchANI instead.</td>
</tr>
<tr>
<td>ANIModel</td>
<td>Likely deprecate</td>
<td></td>
</tr>
</tbody>
</table>

3.5.2 Experimental features

Deepchem features usually undergo rigorous code review and testing to ensure that they are ready for production environments. The following Deepchem features have not been thoroughly tested to the level of other Deepchem modules, and could be potentially problematic in production environments.

Note: This list is likely to be non-exhaustive. If we missed something, please let us know [here](https://github.com/deepchem/deepchem/issues/2376).

<table>
<thead>
<tr>
<th>Feature</th>
<th>Tracker and notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mol2 Loading</td>
<td>Needs more testing.</td>
</tr>
<tr>
<td>Interaction Fingerprints</td>
<td>Needs more testing.</td>
</tr>
</tbody>
</table>

If you would like to help us address these known issues, please consider contributing to Deepchem!

3.6 Docker Tutorial

Docker is a software used for easy building, testing and deploying of software. Docker creates an isolated workspace called containers which can avoid dependency version clashes making development of software faster. Also, software can be modularized in different containers, which allows it to be tested without impacting other components or the host computer. Containers contain all the dependencies and the user need not worry about required packages

This makes it easy for users to access older version of deepchem via docker and to develop with them.

Docker works with the following layers:

- Images:

 Images are the instructions for creating docker containers. It specifies all the packages and their version to be installed for the application to run. Images for deep chem can found at docker Hub.

- Containers:

 Containers are live instances of Images and are lightweight isolated work-spaces(it does not put much workload on your PC), where you can run and devlop on previous deepchem versions.

- Docker engine:
It is the main application that manages, runs and build containers and images. It also provides a means to interact with the docker container after its built and when it is run.

- **Registries:**
 It is a hub or place where docker images can be found. For deepchem, the default registry is the Docker Hub.

For docker installation, visit: https://docs.docker.com/engine/install/

3.6.1 Using deepchem with docker:

To work with deepchem in docker, we first have to pull deepchem images from docker hub. It can be done in the following way.

If latest deepchem version is needed, then:

```bash
# if latest:
docker pull deepchemio/deepchem:latest
```

Else if one wants to work with older version, then the following method should be used:

```bash
docker pull deepchemio/deepchem:x.x.x
#x.x.x refers to the version number
```

Now, wait for some time until the image gets downloaded. Then we have to create a container using the image. Then, you have to create a container and use it.

```bash
docker run --rm -it deepchemio/deepchem:x.x.x
#x.x.x refers to the version number
#replace "x.x.x" with "latest" if latest version is used
```

If you want GPU support:

```bash
# If nvidia-docker is installed
nvidia-docker run --rm -it deepchemio/deepchem:latest
docker run --runtime nvidia --rm -it deepchemio/deepchem:latest

# If nvidia-container-toolkit is installed
docker run --gpus all --rm -it deepchemio/deepchem:latest
```

Now, you have successfully entered the container’s bash where you can execute your programs. **To exit the container press “Ctrl+D”**. This stops the container and opens host computer’s bash.

To view all the containers present, open up a new terminal/bash of the host computer, then:

```bash
docker ps -a
```

This gives a containers list like this:

```
CONTAINER ID    IMAGE                      COMMAND                           CREATED     STATUS          PRIVILEGES
---             -------                      ---------------------------------- ----------- -------------- ------------------------------------------
```

Thus you can see all the created container’s Names and its details.

Now you can develop code in your host computer (development environment) and test it in a container having specific version of the deepchem (testing environment).
To test the program you have written, you should copy the program to the container. Open a new host computer’s terminal:

```bash
docker cp host-file-path <container-id>:path-in-container
#container ID should be check in a separate terminal
```

Similarly if you want to copy files out from a container, then open a new host computer’s terminal:

```bash
docker cp <container-id>:path-in-container host-file-path
#container ID should be check in a separate terminal
```

3.6.2 Hands-on tutorial

Let’s create a simple deepchem script and work it out in the docker container of deepchem 2.4.0.

Let the script be named deepchem.py in the host computer’s location: `/home/

deepchem.py contents:

```python
import deepchem as dc
dc.__version__
```

Step 1: pull deepchem 2.4.0 image and wait for it to be downloaded

```bash
$docker pull deepchemio/deepchem:2.4.0
```

Step 2: Create a container

```bash
$docker run --rm -it deepchemio/deepchem:2.4.0
(deepchem) root@51b1d2665016:~/mydir#
```

Step 3: Open a new terminal/bash and copy deep.py

```bash
$ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS CONTAINER ID IMAGE COMMAND CREATED STATUS
51b1d2665016 deepchemio/deepchem:2.4.0 "/bin/bash" 5 seconds ago Up 4 seconds
$docker cp /home/deepchem.py 51b1d2665016:/root/mydir/deepchem.py
```

Step 4: return back to the previous terminal in which container is running

```bash
(deepchem) root@51b1d2665016:~/mydir/python3 deepchem.py>>output.txt
2022-01-12 15:33:27.967170: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcuda.so.10.1
```

This should have created a output file in the container having the deepchem version number. The you should copy it back to host container.

step 5: In a new terminal execute the following commands.

```bash
$docker cp 51b1d2665016:/root/mydir/output.txt ~/output.txt
$cat ~/output.txt
2.4.0
```
Thus you have successfully executed the program in deepchem 2.4.0!!!
NumpyDataset

The dc.data.NumpyDataset class provides an in-memory implementation of the abstract Dataset which stores its data in numpy.ndarray objects.

class NumpyDataset(X: Union[numpy._typing._array_like._SupportsArray[numpy.dtype],
numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype],
bool, int, float, complex, str, bytes,
numpy._typing._nested_sequence._NestedSequence[Union[bool, int, float, complex, str,
bytes]], y: Optional[Union[numpy._typing._array_like._SupportsArray[numpy.dtype],
numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype],
bool, int, float, complex, str, bytes], w: Optional[Union[numpy._typing._array_like._SupportsArray[numpy.dtype],
numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype],
bool, int, float, complex, str, bytes]], ids: Optional[Union[numpy._typing._array_like._SupportsArray[numpy.dtype],
numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype],
bool, int, float, complex, str, bytes]], n_tasks: int = 1)

A Dataset defined by in-memory numpy arrays.

This subclass of Dataset stores arrays X,y,w,ids in memory as numpy arrays. This makes it very easy to construct NumpyDataset objects.

Examples

```python
>>> import numpy as np
>>> dataset = NumpyDataset(X=np.random.rand(5, 3), y=np.random.rand(5,), ids=np.arange(5))
```

__init__(X: Union[numpy._typing._array_like._SupportsArray[numpy.dtype],
numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype]],
bool, int, float, complex, str, bytes, numpy._typing._nested_sequence._NestedSequence[Union[bool,
int, float, complex, str, bytes]], y: Optional[Union[numpy._typing._array_like._SupportsArray[numpy.dtype],
numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype]],
bool, int, float, complex, str, bytes, numpy._typing._nested_sequence._NestedSequence[Union[bool,
int, float, complex, str, bytes]], ids: Optional[Union[numpy._typing._array_like._SupportsArray[numpy.dtype],
numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype]],
bool, int, float, complex, str, bytes, numpy._typing._nested_sequence._NestedSequence[Union[bool,
int, float, complex, str, bytes]], n_tasks: int = 1) → None

Initialize this object.

Parameters
• X (np.ndarray) – Input features. A numpy array of shape \((n_{samples}, \ldots) \).

• y (np.ndarray, optional (default None)) – Labels. A numpy array of shape \((n_{samples}, \ldots) \). Note that each label can have an arbitrary shape.

• w (np.ndarray, optional (default None)) – Weights. Should either be 1D array of shape \((n_{samples},) \) or if there’s more than one task, of shape \((n_{samples}, n_{tasks}) \).

• ids (np.ndarray, optional (default None)) – Identifiers. A numpy array of shape \((n_{samples},) \).

• n_tasks (int, default 1) – Number of learning tasks.

__len__() \(\rightarrow\) int
Get the number of elements in the dataset.

get_shape() \(\rightarrow\) Tuple[Tuple[int, ...], Tuple[int, ...], Tuple[int, ...], Tuple[int, ...]]
Get the shape of the dataset.

Returns four tuples, giving the shape of the X, y, w, and ids arrays.

get_task_names() \(\rightarrow\) numpy.ndarray
Get the names of the tasks associated with this dataset.

property X: numpy.ndarray
Get the X vector for this dataset as a single numpy array.

property y: numpy.ndarray
Get the y vector for this dataset as a single numpy array.

property ids: numpy.ndarray
Get the ids vector for this dataset as a single numpy array.

property w: numpy.ndarray
Get the weight vector for this dataset as a single numpy array.

iterbatches(batch_size: Optional[int] = None, epochs: int = 1, deterministic: bool = False, pad_batches: bool = False) \(\rightarrow\) Iterator[Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]]
Get an object that iterates over minibatches from the dataset.

Each minibatch is returned as a tuple of four numpy arrays: \((X, y, w, ids)\).

Parameters

• batch_size (int, optional (default None)) – Number of elements in each batch.

• epochs (int, default 1) – Number of epochs to walk over dataset.

• deterministic (bool, optional (default False)) – If True, follow deterministic order.

• pad_batches (bool, optional (default False)) – If True, pad each batch to \(\text{batch_size}\).

Returns Generator which yields tuples of four numpy arrays \((X, y, w, ids)\).

Return type Iterator[Batch]

itersamples() \(\rightarrow\) Iterator[Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]]
Get an object that iterates over the samples in the dataset.

Returns Iterator which yields tuples of four numpy arrays \((X, y, w, ids)\).
Return type: Iterator[Batch]

Examples

```python
>>> dataset = NumpyDataset(np.ones((2, 2)))
>>> for x, y, w, id in dataset.itersamples():
...   print(x.tolist(), y.tolist(), w.tolist(), id)
[1.0, 1.0] [0.0] [0.0] 0
[1.0, 1.0] [0.0] [0.0] 1
```

transform(transformer: transformers.Transformer, **args) → deepchem.data.datasets.NumpyDataset

Construct a new dataset by applying a transformation to every sample in this dataset.

The argument is a function that can be called as follows: >> newx, newy, neww = fn(x, y, w)

It might be called only once with the whole dataset, or multiple times with different subsets of the data. Each time it is called, it should transform the samples and return the transformed data.

Parameters

- **transformer** (dc.trans.Transformer) – The transformation to apply to each sample in the dataset

Returns

- A newly constructed NumpyDataset object

Return type: NumpyDataset

select(indices: Union[Sequence[int], numpy.ndarray], select_dir: Optional[str] = None) → deepchem.data.datasets.NumpyDataset

Creates a new dataset from a selection of indices from self.

Parameters

- **indices** (List[int]) – List of indices to select.
- **select_dir** (str, optional (default None)) – Used to provide same API as DiskDataset. Ignored since NumpyDataset is purely in-memory.

Returns

- A selected NumpyDataset object

Return type: NumpyDataset

make_pytorch_dataset(epochs: int = 1, deterministic: bool = False, batch_size: Optional[int] = None)

Create a torch.utils.data.IterableDataset that iterates over the data in this Dataset.

Each value returned by the Dataset’s iterator is a tuple of (X, y, w, id) containing the data for one batch, or for a single sample if batch_size is None.

Parameters

- **epochs** (int, default 1) – The number of times to iterate over the Dataset
- **deterministic** (bool, default False) – If True, the data is produced in order. If False, a different random permutation of the data is used for each epoch.
- **batch_size** (int, optional (default None)) – The number of samples to return in each batch. If None, each returned value is a single sample.

Returns

- torch.utils.data.IterableDataset that iterates over the data in this dataset.

Return type: torch.utils.data.IterableDataset
Note: This method requires PyTorch to be installed.

```python
static from_DiskDataset(ds: deepchem.data.datasets.DiskDataset) → deepchem.data.datasets.NumpyDataset
```

Convert DiskDataset to NumpyDataset.

- **Parameters**
 - `ds` *(DiskDataset)* – DiskDataset to transform to NumpyDataset.
- **Returns**
 - A new NumpyDataset created from DiskDataset.
- **Return type**
 - `NumpyDataset`

```python
to_json(fname: str) → None
```

Dump NumpyDataset to the json file.

- **Parameters**
 - `fname` *(str)* – The name of the json file.

```python
static from_json(fname: str) → deepchem.data.datasets.NumpyDataset
```

Create NumpyDataset from the json file.

- **Parameters**
 - `fname` *(str)* – The name of the json file.
- **Returns**
 - A new NumpyDataset created from the json file.
- **Return type**
 - `NumpyDataset`

```python
static merge(datasets: Sequence[deepchem.data.datasets.Dataset]) → deepchem.data.datasets.NumpyDataset
```

Merge multiple NumpyDatasets.

- **Parameters**
 - `datasets` *(List[Dataset]*) – List of datasets to merge.
- **Returns**
 - A single NumpyDataset containing all the samples from all datasets.
- **Return type**
 - `NumpyDataset`

Example

```python
>>> X1, y1 = np.random.rand(5, 3), np.random.randn(5, 1)
>>> first_dataset = dc.data.NumpyDataset(X1, y1)
>>> X2, y2 = np.random.rand(5, 3), np.random.randn(5, 1)
>>> second_dataset = dc.data.NumpyDataset(X2, y2)
>>> merged_dataset = dc.data.NumpyDataset.merge([first_dataset, second_dataset])
>>> print(len(merged_dataset) == len(first_dataset) + len(second_dataset))
True
```

```python
static from_dataframe(df: pandas.core.frame.DataFrame, X: Optional[Union[str, Sequence[str]]] = None, y: Optional[Union[str, Sequence[str]]] = None, w: Optional[Union[str, Sequence[str]]] = None, ids: Optional[str] = None)
```

Construct a Dataset from the contents of a pandas DataFrame.

- **Parameters**
 - `df` *(pd.DataFrame)* – The pandas DataFrame
 - `X` *(str or List[str], optional (default None))* – The name of the column or columns containing the X array. If this is None, it will look for default column names that match those produced by to_dataframe().
 - `y` *(str or List[str], optional (default None))* – The name of the target array.
 - `w` *(str or List[str], optional (default None))* – The name of the weight array.
 - `ids` *(str, optional (default None))* – The name of the identifier column.
• **y** *(str or List[str], optional (default None))* – The name of the column or columns containing the y array. If this is None, it will look for default column names that match those produced by `to_dataframe()`.

• **w** *(str or List[str], optional (default None))* – The name of the column or columns containing the w array. If this is None, it will look for default column names that match those produced by `to_dataframe()`.

• **ids** *(str, optional (default None))* – The name of the column containing the ids. If this is None, it will look for default column names that match those produced by `to_dataframe()`.

get_statistics *(X_stats: bool = True, y_stats: bool = True) → Tuple[ndarray, ...]*

Compute and return statistics of this dataset. Uses `self.iter_samples()` to compute means and standard deviations of the dataset. Can compute on large datasets that don’t fit in memory.

Parameters

• **X_stats** *(bool, optional (default True))* – If True, compute feature-level mean and standard deviations.

• **y_stats** *(bool, optional (default True))* – If True, compute label-level mean and standard deviations.

Returns

• If `X_stats` == True, returns `(X_means, X_stds)`.

• If `y_stats` == True, returns `(y_means, y_stds)`.

• If both are true, returns `(X_means, X_stds, y_means, y_stds)`.

Return type Tuple

make_tf_dataset *(batch_size: int = 100, epochs: int = 1, deterministic: bool = False, pad_batches: bool = False)*

Create a tf.data.Dataset that iterates over the data in this Dataset.

Each value returned by the Dataset’s iterator is a tuple of (X, y, w) for one batch.

Parameters

• **batch_size** *(int, default 100)* – The number of samples to include in each batch.

• **epochs** *(int, default 1)* – The number of times to iterate over the Dataset.

• **deterministic** *(bool, default False)* – If True, the data is produced in order. If False, a different random permutation of the data is used for each epoch.

• **pad_batches** *(bool, default False)* – If True, batches are padded as necessary to make the size of each batch exactly equal `batch_size`.

Returns TensorFlow Dataset that iterates over the same data.

Return type tf.data.Dataset

Note: This class requires TensorFlow to be installed.

to_csv *(path: str) → None*

Write object to a comma-seperated values (CSV) file
Example

```python
>>> import numpy as np
>>> X = np.random.rand(10, 10)
>>> dataset = dc.data.DiskDataset.from_numpy(X)
>>> dataset.to_csv('out.csv')
```

Parameters

path *(str)* – File path or object

Return type

None

to_dataframe() → pandas.core.frame.DataFrame

Construct a pandas DataFrame containing the data from this Dataset.

Returns

Pandas dataframe. If there is only a single feature per datapoint, will have column “X” else will have columns “X1,X2,...” for features. If there is only a single label per datapoint, will have column “y” else will have columns “y1,y2,...” for labels. If there is only a single weight per datapoint will have column “w” else will have columns “w1,w2,...”. Will have column “ids” for identifiers.

Return type

pd.DataFrame

DiskDataset

The `dc.data.DiskDataset` class allows for the storage of larger datasets on disk. Each `DiskDataset` is associated with a directory in which it writes its contents to disk. Note that a `DiskDataset` can be very large, so some of the utility methods to access fields of a `Dataset` can be prohibitively expensive.

class DiskDataset(data_dir: str)

A Dataset that is stored as a set of files on disk.

The DiskDataset is the workhorse class of DeepChem that facilitates analyses on large datasets. Use this class whenever you’re working with a large dataset that can’t be easily manipulated in RAM.

On disk, a `DiskDataset` has a simple structure. All files for a given `DiskDataset` are stored in a `data_dir`. The contents of `data_dir` should be laid out as follows:

data_dir/
 |
 | → metadata.csv.gz
 |
 | → tasks.json
 |
 | → shard-0-X.npy
 |
 | → shard-0-y.npy
 |
 | → shard-0-w.npy
 |
 | → shard-0-ids.npy
 |
 | → shard-1-X.npy
The metadata is constructed by static method `DiskDataset._construct_metadata` and saved to disk by `DiskDataset._save_metadata`. The metadata itself consists of a csv file which has columns (‘ids’, ‘X’, ‘y’, ‘w’, ‘ids_shape’, ‘X_shape’, ‘y_shape’, ‘w_shape’). `tasks.json` consists of a list of task names for this dataset.

The actual data is stored in .npy files (numpy array files) of the form ‘shard-0-X.npy’, ‘shard-0-y.npy’, etc.

The basic structure of `DiskDataset` is quite robust and will likely serve you well for datasets up to about 100 GB or larger. However note that `DiskDataset` has not been tested for very large datasets at the terabyte range and beyond. You may be better served by implementing a custom `Dataset` class for those use cases.

Examples

Let’s walk through a simple example of constructing a new `DiskDataset`.

```python
>>> import deepchem as dc
>>> import numpy as np
>>> X = np.random.rand(10, 10)
>>> dataset = dc.data.DiskDataset.from_numpy(X)
```

If you have already saved a `DiskDataset` to `data_dir`, you can reinitialize it with

```python
>> data_dir = ‘/path/to/my/data’ >> dataset = dc.data.DiskDataset(data_dir)
```

Once you have a dataset you can access its attributes as follows

```python
>>> X = np.random.rand(10, 10)
>>> y = np.random.rand(10,)
>>> w = np.ones_like(y)
>>> dataset = dc.data.DiskDataset.from_numpy(X)
>>> X, y, w = dataset.X, dataset.y, dataset.w
```

One thing to beware of is that `dataset.X`, `dataset.y`, `dataset.w` are loading data from disk! If you have a large dataset, these operations can be extremely slow. Instead try iterating through the dataset instead.

```python
>>> for (xi, yi, wi, idi) in dataset.itersamples():
...   pass
```

data_dir

Location of directory where this `DiskDataset` is stored to disk

Type: str

metadata_df

Pandas Dataframe holding metadata for this `DiskDataset`

Type: pd.DataFrame

legacy_metadata

Whether this `DiskDataset` uses legacy format.

Type: bool
Note: DiskDataset originally had a simpler metadata format without shape information. Older DiskDataset objects had metadata files with columns (‘ids’, ‘X’, ‘y’, ‘w’) and not additional shape columns. DiskDataset maintains backwards compatibility with this older metadata format, but we recommend for performance reasons not using legacy metadata for new projects.

```python
__init__(data_dir: str) → None
Load a constructed DiskDataset from disk

Note that this method cannot construct a new disk dataset. Instead use static methods DiskDataset.create_dataset or DiskDataset.from_numpy for that purpose. Use this constructor instead to load a DiskDataset that has already been created on disk.

Parameters
data_dir (str) – Location on disk of an existing DiskDataset.

Creates a new DiskDataset

Parameters

• shard_generator (Iterable[Batch]) – An iterable (either a list or generator) that provides tuples of data (X, y, w, ids). Each tuple will be written to a separate shard on disk.

• data_dir (str, optional (default None)) – Filename for data directory. Creates a temp directory if none specified.

• tasks (Sequence, optional (default []) = []) – List of tasks for this dataset.

Returns A new DiskDataset constructed from the given data

Return type DiskDataset

load_metadata() → Tuple[List[str], pandas.core.frame.DataFrame]
Helper method that loads metadata from disk.

Static helper method to write data to disk.

This helper method is used to write a shard of data to disk.

Parameters

• data_dir (str) – Data directory to write shard to.

• basename (str) – Basename for the shard in question.

• X (np.ndarray, optional (default None)) – The features array.

• y (np.ndarray, optional (default None)) – The labels array.

• w (np.ndarray, optional (default None)) – The weights array.

• ids (np.ndarray, optional (default None)) – The identifiers array.
Returns List with values [out_ids, out_X, out_y, out_w, out_ids_shape, out_X_shape, 
out_y_shape, out_w_shape] with filenames of locations to disk which these respective ar-
rays were written.

Return type List[Optional[str]]

save_to_disk() → None
Save dataset to disk.

move(new_data_dir: str, delete_if_exists: Optional[bool] = True) → None
Moves dataset to new directory.

Parameters

- new_data_dir (str) – The new directory name to move this to dataset to.
- delete_if_exists (bool, optional (default True)) – If this option is set, delete
  the destination directory if it exists before moving. This is set to True by default to be
  backwards compatible with behavior in earlier versions of DeepChem.

Note: This is a stateful operation! self.data_dir will be moved into new_data_dir. If delete_if_exists is
set to True (by default this is set True), then new_data_dir is deleted if it’s a pre-existing directory.

copy(new_data_dir: str) → deepchem.data.datasets.DiskDataset
Copies dataset to new directory.

Parameters new_data_dir (str) – The new directory name to copy this to dataset to.

Returns A copied DiskDataset object.

Return type DiskDataset

Note: This is a stateful operation! Any data at new_data_dir will be deleted and self.data_dir will be
deep copied into new_data_dir.

get_task_names() → numpy.ndarray
Gets learning tasks associated with this dataset.

reshard(shard_size: int) → None
Reshards data to have specified shard size.

Parameters shard_size (int) – The size of shard.

Examples

```python
>>> import deepchem as dc
>>> import numpy as np
>>> X = np.random.rand(100, 10)
>>> d = dc.data.DiskDataset.from_numpy(X)
>>> d.reshard(shard_size=10)
>>> d.get_number_shards()
10
```
Note: If this DiskDataset is in legacy_metadata format, reshard will convert this dataset to have non-legacy metadata.

get_data_shape() \rightarrow \text{Tuple[int, ...]}

Gets array shape of datapoints in this dataset.

get_shard_size() \rightarrow \text{int}

Gets size of shards on disk.

get_number_shards() \rightarrow \text{int}

Returns the number of shards for this dataset.

itershards() \rightarrow \text{Iterator[Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]]}

Return an object that iterates over all shards in dataset.

Datasets are stored in sharded fashion on disk. Each call to next() for the generator defined by this function returns the data from a particular shard. The order of shards returned is guaranteed to remain fixed.

Returns Generator which yields tuples of four numpy arrays (X, y, w, ids).

Return type Iterator[Batch]

iterbatches(batch_size: Optional[int] = None, epochs: int = 1, deterministic: bool = False, pad_batches: bool = False) \rightarrow \text{Iterator[Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]]}

Get an object that iterates over minibatches from the dataset.

It is guaranteed that the number of batches returned is \(\text{math.ceil(len(dataset)/batch_size)}\). Each minibatch is returned as a tuple of four numpy arrays: (X, y, w, ids).

Parameters

- \text{batch_size (int, optional (default None))} – Number of elements in a batch. If None, then it yields batches with size equal to the size of each individual shard.
- \text{epoch (int, default 1)} – Number of epochs to walk over dataset
- \text{deterministic (bool, default False)} – Whether or not we should shuffle each shard before generating the batches. Note that this is only local in the sense that it does not ever mix between different shards.
- \text{pad_batches (bool, default False)} – Whether or not we should pad the last batch, globally, such that it has exactly batch_size elements.

Returns Generator which yields tuples of four numpy arrays (X, y, w, ids).

Return type Iterator[Batch]

itersamples() \rightarrow \text{Iterator[Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]]}

Get an object that iterates over the samples in the dataset.

Returns Generator which yields tuples of four numpy arrays (X, y, w, ids).

Return type Iterator[Batch]
Examples

```python
>>> dataset = DiskDataset.from_numpy(np.ones((2,2)), np.ones((2,1)))
>>> for x, y, w, id in dataset.itersamples():
... print(x.tolist(), y.tolist(), w.tolist(), id)
[1.0, 1.0] [1.0] [1.0] 0
[1.0, 1.0] [1.0] [1.0] 1
```

```
transform(transformer: transformers.Transformer, parallel: bool = False, out_dir: Optional[str] = None, **args) → deepchem.data.datasets.DiskDataset
```

Construct a new dataset by applying a transformation to every sample in this dataset.

The argument is a function that can be called as follows: `>> newx, newy, neww = fn(x, y, w)`

It might be called only once with the whole dataset, or multiple times with different subsets of the data. Each time it is called, it should transform the samples and return the transformed data.

Parameters

- **transformer**(dc.trans.Transformer) – The transformation to apply to each sample in the dataset.
- **parallel**(bool, default False) – If True, use multiple processes to transform the dataset in parallel.
- **out_dir**(str, optional (default None)) – The directory to save the new dataset in. If this is omitted, a temporary directory is created automatically.

Returns

A newly constructed Dataset object

Return type

DiskDataset

```
make_pytorch_dataset(epochs: int = 1, deterministic: bool = False, batch_size: Optional[int] = None)
```

Create a torch.utils.data.IterableDataset that iterates over the data in this Dataset.

Each value returned by the Dataset’s iterator is a tuple of (X, y, w, id) containing the data for one batch, or for a single sample if batch_size is None.

Parameters

- **epochs**(int, default 1) – The number of times to iterate over the Dataset
- **deterministic**(bool, default False) – If True, the data is produced in order. If False, a different random permutation of the data is used for each epoch.
- **batch_size**(int, optional (default None)) – The number of samples to return in each batch. If None, each returned value is a single sample.

Returns

torch.utils.data.IterableDataset that iterates over the data in this dataset.

Return type

torch.utils.data.IterableDataset

Note: This method requires PyTorch to be installed.
static from_numpy(X: Union[numpy._typing._array_like._SupportsArray[numpy.dtype],
numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype],
bool, int, float, complex, str, bytes],
numpy._typing._nested_sequence._NestedSequence[Union[bool, int, float, complex, str,
bytes]]], y: Optional[Union[numpy._typing._array_like._SupportsArray[numpy.dtype],
numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype],
bool, int, float, complex, str, bytes]], w: Optional[Union[numpy._typing._array_like._SupportsArray[numpy.dtype],
numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype],
bool, int, float, complex, str, bytes]], ids: Optional[Union[numpy._typing._array_like._SupportsArray[numpy.dtype],
numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype],
bool, int, float, complex, str, bytes]], tasks: Optional[Union[numpy._typing._array_like._SupportsArray[numpy.dtype],
numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype],
bool, int, float, complex, str, bytes]], data_dir: Optional[str] = None) →
deepchem.data.datasets.DiskDataset

Creates a DiskDataset object from specified Numpy arrays.

Parameters

- X (np.ndarray) – Feature array.
- y (np.ndarray, optional (default None)) – Labels array.
- w (np.ndarray, optional (default None)) – Weights array.
- ids (np.ndarray, optional (default None)) – Identifiers array.
- tasks (Sequence, optional (default None)) – Tasks in this dataset.
- data_dir (str, optional (default None)) – The directory to write this dataset to. If none is specified, will use a temporary directory instead.

Returns A new DiskDataset constructed from the provided information.

Return type DiskDataset

static merge(datasets: Iterable[deepchem.data.datasets.Dataset], merge_dir: Optional[str] = None) →
deepchem.data.datasets.DiskDataset

Merges provided datasets into a merged dataset.

Parameters

- datasets (Iterable[Dataset]) – List of datasets to merge.
- merge_dir (str, optional (default None)) – The new directory path to store the merged DiskDataset.

Returns A merged DiskDataset.

Return type DiskDataset
subset(shard_nums: Sequence[int], subset_dir: Optional[str] = None) →
deeplearning.data.datasets.DiskDataset

Creates a subset of the original dataset on disk.

Parameters

- **shard_nums** (Sequence[int]) – The indices of shard to extract from the original Disk-
  Dataset.

- **subset_dir** (str, optional (default None)) – The new directory path to store the
  subset DiskDataset.

Returns A subset DiskDataset.

Return type DiskDataset

sparse_shuffle() → None

Shuffling that exploits data sparsity to shuffle large datasets.

If feature vectors are sparse, say circular fingerprints or any other representation that contains few nonzero
values, it can be possible to exploit the sparsity of the vector to simplify shuffles. This method implements
a sparse shuffle by compressing sparse feature vectors down into a compressed representation, then shuffles
this compressed dataset in memory and writes the results to disk.

Note: This method only works for 1-dimensional feature vectors (does not work for tensorial featuriza-
tions). Note that this shuffle is performed in place.

complete_shuffle(data_dir: Optional[str] = None) → deeplearning.data.datasets.Dataset

Completely shuffle across all data, across all shards.

Note: The algorithm used for this complete shuffle is O(N^2) where N is the number of shards. It simply
constructs each shard of the output dataset one at a time. Since the complete shuffle can take a long time,
it’s useful to watch the logging output. Each shuffled shard is constructed using select() which logs as it
selects from each original shard. This will results in O(N^2) logging statements, one for each extraction of
shuffled shard i’s contributions from original shard j.

Parameters **data_dir** (Optional[str], (default None)) – Directory to write the shuffled
dataset to. If none is specified a temporary directory will be used.

Returns A DiskDataset whose data is a randomly shuffled version of this dataset.

Return type DiskDataset

shuffle_each_shard(shard_basenames: Optional[List[str]] = None) → None

Shuffles elements within each shard of the dataset.

Parameters **shard_basenames** (List[str], optional (default None)) – The basen-
names for each shard. If this isn’t specified, will assume the basenames of form “shard-i”
used by create_dataset and reshard.

shuffle_shards() → None

Shuffles the order of the shards for this dataset.

get_shard(i: int) → Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]

Retrieves data for the i-th shard from disk.
Parameters  \( i \) (int) – Shard index for shard to retrieve batch from.

Returns  A batch data for i-th shard.

Return type  Batch

get_shard_ids(i: int) \( \rightarrow \) numpy.ndarray
Retrieves the list of IDs for the i-th shard from disk.

Parameters  \( i \) (int) – Shard index for shard to retrieve weights from.

Returns  A numpy array of ids for i-th shard.

Return type  np.ndarray

get_shard_y(i: int) \( \rightarrow \) numpy.ndarray
Retrieves the labels for the i-th shard from disk.

Parameters  \( i \) (int) – Shard index for shard to retrieve labels from.

Returns  A numpy array of labels for i-th shard.

Return type  np.ndarray

get_shard_w(i: int) \( \rightarrow \) numpy.ndarray
Retrieves the weights for the i-th shard from disk.

Parameters  \( i \) (int) – Shard index for shard to retrieve weights from.

Returns  A numpy array of weights for i-th shard.

Return type  np.ndarray

add_shard(X: numpy.ndarray, y: Optional[numpy.ndarray] = None, w: Optional[numpy.ndarray] = None, ids: Optional[numpy.ndarray] = None)
Adds a data shard.

Parameters

•  \( X \) (np.ndarray) – Feature array.
•  \( y \) (np.ndarray, optional (default None)) – Labels array.
•  \( w \) (np.ndarray, optional (default None)) – Weights array.
•  \( ids \) (np.ndarray, optional (default None)) – Identifiers array.

Writes data shard to disk.

Parameters

•  \( shard_num \) (int) – Shard index for shard to set new data.
•  \( X \) (np.ndarray) – Feature array.
•  \( y \) (np.ndarray, optional (default None)) – Labels array.
•  \( w \) (np.ndarray, optional (default None)) – Weights array.
•  \( ids \) (np.ndarray, optional (default None)) – Identifiers array.

select(indices: Union[Sequence[int], numpy.ndarray], select_dir: Optional[str] = None, select_shard_size: Optional[int] = None, output_numpy_dataset: Optional[bool] = False)

Creates a new dataset from a selection of indices from self.
Examples

```python
>>> import numpy as np
>>> X = np.random.rand(10, 10)
>>> dataset = dc.data.DiskDataset.from_numpy(X)
>>> selected = dataset.select([1, 3, 4])
>>> len(selected)
3
```

Parameters

- **indices** (Sequence) – List of indices to select.
- **select_dir** (str, optional (default None)) – Path to new directory that the selected indices will be copied to.
- **select_shard_size** (Optional[int], (default None)) – If specified, the shard-size to use for output selected DiskDataset. If not output_numpy_dataset, then this is set to this current dataset’s shard size if not manually specified.
- **output_numpy_dataset** (Optional[bool], (default False)) – If True, output an in-memory NumpyDataset instead of a DiskDataset. Note that select_dir and select_shard_size must be None if this is True

Returns A dataset containing the selected samples. The default dataset is DiskDataset. If output_numpy_dataset is True, the dataset is NumpyDataset.

Return type Dataset

**property ids**: numpy.ndarray

Get the ids vector for this dataset as a single numpy array.

**property X**: numpy.ndarray

Get the X vector for this dataset as a single numpy array.

**property y**: numpy.ndarray

Get the y vector for this dataset as a single numpy array.

**property w**: numpy.ndarray

Get the weight vector for this dataset as a single numpy array.

**property memory_cache_size**: int

Get the size of the memory cache for this dataset, measured in bytes.

__len__() → int

Finds number of elements in dataset.

get_shape() → Tuple[Tuple[int, ...], Tuple[int, ...], Tuple[int, ...], Tuple[int, ...]]

Finds shape of dataset.

Returns four tuples, giving the shape of the X, y, w, and ids arrays.

get_label_means() → pandas.core.frame.DataFrame

Return pandas series of label means.

get_label_stds() → pandas.core.frame.DataFrame

Return pandas series of label stds.

3.7. Data
**static from_dataframe** *(df: pandas.core.frame.DataFrame, X: Optional[Union[str, Sequence[str]]] = None, y: Optional[Union[str, Sequence[str]]] = None, w: Optional[Union[str, Sequence[str]]] = None, ids: Optional[str] = None)*

Construct a Dataset from the contents of a pandas DataFrame.

**Parameters**

- **df** *(pd.DataFrame)* – The pandas DataFrame
- **X** *(str or List[str], optional (default None))* – The name of the column or columns containing the X array. If this is None, it will look for default column names that match those produced by to_dataframe().
- **y** *(str or List[str], optional (default None))* – The name of the column or columns containing the y array. If this is None, it will look for default column names that match those produced by to_dataframe().
- **w** *(str or List[str], optional (default None))* – The name of the column or columns containing the w array. If this is None, it will look for default column names that match those produced by to_dataframe().
- **ids** *(str, optional (default None))* – The name of the column containing the ids. If this is None, it will look for default column names that match those produced by to_dataframe().

**get_statistics** *(X_stats: bool = True, y_stats: bool = True) → Tuple[numpy.ndarray, ...]*

Compute and return statistics of this dataset.

Uses self.iter_samples() to compute means and standard deviations of the dataset. Can compute on large datasets that don’t fit in memory.

**Parameters**

- **X_stats** *(bool, optional (default True))* – If True, compute feature-level mean and standard deviations.
- **y_stats** *(bool, optional (default True))* – If True, compute label-level mean and standard deviations.

**Returns**

- If X_stats == True, returns (X_means, X_stds).
- If y_stats == True, returns (y_means, y_stds).
- If both are true, returns (X_means, X_stds, y_means, y_stds).

**Return type** Tuple

**make_tf_dataset** *(batch_size: int = 100, epochs: int = 1, deterministic: bool = False, pad_batches: bool = False)*

Create a tf.data.Dataset that iterates over the data in this Dataset.

Each value returned by the Dataset’s iterator is a tuple of (X, y, w) for one batch.

**Parameters**

- **batch_size** *(int, default 100)* – The number of samples to include in each batch.
- **epochs** *(int, default 1)* – The number of times to iterate over the Dataset.
- **deterministic** *(bool, default False)* – If True, the data is produced in order. If False, a different random permutation of the data is used for each epoch.
• **pad_batches** (*bool, default False*) – If True, batches are padded as necessary to make the size of each batch exactly equal batch_size.

**Returns** TensorFlow Dataset that iterates over the same data.

**Return type** tf.data.Dataset

---

**Note:** This class requires TensorFlow to be installed.

---

`to_csv(path: str) → None`

Write object to a comma-separated values (CSV) file

**Example**

```python
>>> import numpy as np
>>> X = np.random.rand(10, 10)
>>> dataset = dc.data.DiskDataset.from_numpy(X)
>>> dataset.to_csv('out.csv')
```

**Parameters** `path` (*str*) – File path or object

**Return type** None

`to_dataframe() → pandas.core.frame.DataFrame`

Construct a pandas DataFrame containing the data from this Dataset.

**Returns** Pandas dataframe. If there is only a single feature per datapoint, will have column “X” else will have columns “X1,X2,...” for features. If there is only a single label per datapoint, will have column “y” else will have columns “y1,y2,...” for labels. If there is only a single weight per datapoint will have column “w” else will have columns “w1,w2,...”. Will have column “ids” for identifiers.

**Return type** pd.DataFrame

---

**ImageData**

The dc.data.ImageDataset class is optimized to allow for convenient processing of image based datasets.

```python
class ImageDataset(X: Union[numpy.ndarray, List[str]], y: Optional[Union[numpy.ndarray, List[str]]], w: Optional[Union[numpy._typing._array_like._SupportsArray[numpy.dtype], numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype], bool, int, float, complex, str, bytes], numpy._typing._nested_sequence._NestedSequence[Union[bool, int, float, complex, str, bytes]]]] = None, ids:
 Optional[Union[numpy._typing._array_like._SupportsArray[numpy.dtype], numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype], bool, int, float, complex, str, bytes], numpy._typing._nested_sequence._NestedSequence[Union[bool, int, float, complex, str, bytes]]]] = None)
```

A Dataset that loads data from image files on disk.
__init__(X: Union[numpy.ndarray, List[str]], y: Optional[Union[numpy.ndarray, List[str]]], w: Optional[Union[numpy._typing._array_like._SupportsArray[numpy.dtype], numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype]], bool, int, float, complex, str, bytes, numpy._typing._nested_sequence._NestedSequence[Union[bool, int, float, complex, str, bytes]]]] = None, ids:
Optional[Union[numpy._typing._array_like._SupportsArray[numpy.dtype], numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype]], bool, int, float, complex, str, bytes, numpy._typing._nested_sequence._NestedSequence[Union[bool, int, float, complex, str, bytes]]]] = None) → None

Create a dataset whose X and/or y array is defined by image files on disk.

Parameters

- **X** (np.ndarray or List[str]) – The dataset's input data. This may be either a single NumPy array directly containing the data, or a list containing the paths to the image files.

- **y** (np.ndarray or List[str]) – The dataset's labels. This may be either a single NumPy array directly containing the data, or a list containing the paths to the image files.

- **w** (np.ndarray, optional (default None)) – a 1D or 2D array containing the weights for each sample or sample/task pair.

- **ids** (np.ndarray, optional (default None)) – the sample IDs.

__len__() → int

Get the number of elements in the dataset.

get_shape() → Tuple[Tuple[int, ...], Tuple[int, ...], Tuple[int, ...], Tuple[int, ...]]

Get the shape of the dataset.

Returns four tuples, giving the shape of the X, y, w, and ids arrays.

get_task_names() → numpy.ndarray

Get the names of the tasks associated with this dataset.

**property X: numpy.ndarray**

Get the X vector for this dataset as a single numpy array.

**property y: numpy.ndarray**

Get the y vector for this dataset as a single numpy array.

**property ids: numpy.ndarray**

Get the ids vector for this dataset as a single numpy array.

**property w: numpy.ndarray**

Get the weight vector for this dataset as a single numpy array.

iterbatches(batch_size: Optional[int] = None, epochs: int = 1, deterministic: bool = False, pad_batches: bool = False) → Iterator[Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]]

Get an object that iterates over minibatches from the dataset.

Each minibatch is returned as a tuple of four numpy arrays: (X, y, w, ids).

Parameters

- **batch_size** (int, optional (default None)) – Number of elements in each batch.

- **epochs** (int, default 1) – Number of epochs to walk over dataset.

- **deterministic** (bool, default False) – If True, follow deterministic order.
• **pad_batches** (*bool*, *default* *False*) – If True, pad each batch to *batch_size*.

**Returns**  Generator which yields tuples of four numpy arrays (*X*, *y*, *w*, *ids*).

**Return type**  Iterator[Batch]

**itersamples** () → Iterator[Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]]

Get an object that iterates over the samples in the dataset.

**Returns**  Iterator which yields tuples of four numpy arrays (*X*, *y*, *w*, *ids*).

**Return type**  Iterator[Batch]

**transform** (*transformer*: transformers.Transformer, **args**) → deepchem.data.datasets.NumpyDataset

Construct a new dataset by applying a transformation to every sample in this dataset.

The argument is a function that can be called as follows:

```python
given x, y, w: new_x, new_y, new_w = fn(x, y, w)
```

It might be called only once with the whole dataset, or multiple times with different subsets of the data. Each time it is called, it should transform the samples and return the transformed data.

**Parameters**  *transformer* (*dc.trans.Transformer*) – The transformation to apply to each sample in the dataset

**Returns**  A newly constructed NumpyDataset object

**Return type**  NumpyDataset

**select** (*indices*: Union[Sequence[int], numpy.ndarray], *select_dir*: Optional[str] = None) → deepchem.data.datasets.ImageDataset

Creates a new dataset from a selection of indices from self.

**Parameters**

• **indices** (*Sequence*) – List of indices to select.

• **select_dir** (*str*, *optional* (*default* *None*)) – Used to provide same API as DiskDataset. Ignored since ImageDataset is purely in-memory.

**Returns**  A selected ImageDataset object

**Return type**  ImageDataset

**make_pytorch_dataset** (*epochs*: int = 1, *deterministic*: bool = False, *batch_size*: Optional[int] = None)

Create a torch.utils.data.IterableDataset that iterates over the data in this Dataset.

Each value returned by the Dataset’s iterator is a tuple of (*X*, *y*, *w*, *id*) containing the data for one batch, or for a single sample if *batch_size* is None.

**Parameters**

• **epochs** (*int*, *default* 1) – The number of times to iterate over the Dataset.

• **deterministic** (*bool*, *default* *False*) – If True, the data is produced in order. If False, a different random permutation of the data is used for each epoch.

• **batch_size** (*int*, *optional* (*default* *None*)) – The number of samples to return in each batch. If None, each returned value is a single sample.

**Returns**  torch.utils.data.IterableDataset that iterates over the data in this dataset.

**Return type**  torch.utils.data.IterableDataset
**Note:** This method requires PyTorch to be installed.

**static from_dataframe**

```python
static from_dataframe(df: pandas.core.frame.DataFrame, X: Optional[Union[str, Sequence[str]]] = None, y: Optional[Union[str, Sequence[str]]] = None, w: Optional[Union[str, Sequence[str]]] = None, ids: Optional[str] = None)
```

Construct a Dataset from the contents of a pandas DataFrame.

**Parameters**

- **df** *(pd.DataFrame)* – The pandas DataFrame
- **X** *(str or List[str], optional (default None))* – The name of the column or columns containing the X array. If this is None, it will look for default column names that match those produced by `to_dataframe()`.
- **y** *(str or List[str], optional (default None))* – The name of the column or columns containing the y array. If this is None, it will look for default column names that match those produced by `to_dataframe()`.
- **w** *(str or List[str], optional (default None))* – The name of the column or columns containing the w array. If this is None, it will look for default column names that match those produced by `to_dataframe()`.
- **ids** *(str, optional (default None))* – The name of the column containing the ids. If this is None, it will look for default column names that match those produced by `to_dataframe()`.

**get_statistics**

```python
get_statistics(X_stats: bool = True, y_stats: bool = True) → Tuple[numpy.ndarray, ...]
```

Compute and return statistics of this dataset.

- **X_stats** *(bool, optional (default True))* – If True, compute feature-level mean and standard deviations.
- **y_stats** *(bool, optional (default True))* – If True, compute label-level mean and standard deviations.

**Returns**

- If `X_stats == True`, returns `(X_means, X_stds)`.
- If `y_stats == True`, returns `(y_means, y_stds)`.
- If both are true, returns `(X_means, X_stds, y_means, y_stds)`.

**Return type** Tuple

**make_tf_dataset**

```python
make_tf_dataset(batch_size: int = 100, epochs: int = 1, deterministic: bool = False, pad_batches: bool = False)
```

Create a tf.data.Dataset that iterates over the data in this Dataset.

Each value returned by the Dataset’s iterator is a tuple of (X, y, w) for one batch.

**Parameters**

- **batch_size** *(int, default 100)* – The number of samples to include in each batch.
- **epochs** *(int, default 1)* – The number of times to iterate over the Dataset.
• **deterministic** *(bool, default False)* – If True, the data is produced in order. If False, a different random permutation of the data is used for each epoch.

• **pad_batches** *(bool, default False)* – If True, batches are padded as necessary to make the size of each batch exactly equal `batch_size`.

**Returns** TensorFlow Dataset that iterates over the same data.

**Return type** `tf.data.Dataset`

---

**Note:** This class requires TensorFlow to be installed.

```python
to_csv(path: str) → None

Write object to a comma-separated values (CSV) file

Example

```python
>>> import numpy as np
>>> X = np.random.rand(10, 10)
>>> dataset = dc.data.DiskDataset.from_numpy(X)
>>> dataset.to_csv('out.csv')
```

Parameters `path` *(str)* – File path or object

Return type None

```python
to_dataframe() → pandas.core.frame.DataFrame

Construct a pandas DataFrame containing the data from this Dataset.

**Returns** Pandas dataframe. If there is only a single feature per datapoint, will have column “X” else will have columns “X1,X2,...” for features. If there is only a single label per datapoint, will have column “y” else will have columns “y1,y2,...” for labels. If there is only a single weight per datapoint will have column “w” else will have columns “w1,w2,...”. Will have column “ids” for identifiers.

**Return type** `pd.DataFrame`

---

### 3.7.2 Data Loaders

Processing large amounts of input data to construct a `dc.data.Dataset` object can require some amount of hacking. To simplify this process for you, you can use the `dc.data.DataLoader` classes. These classes provide utilities for you to load and process large amounts of data.
CSVLoader

class CSVLoader(tasks: List[str], featurizer: deepchem.feat.base_classes.Featurizer, feature_field: Optional[str] = None, id_field: Optional[str] = None, smiles_field: Optional[str] = None, log_every_n: int = 1000)

Creates Dataset objects from input CSV files.

This class provides conveniences to load data from CSV files. It’s possible to directly featurize data from CSV files using pandas, but this class may prove useful if you’re processing large CSV files that you don’t want to manipulate directly in memory.

Examples

Let’s suppose we have some smiles and labels

```python
>>> smiles = ["C", "CCC"]
>>> labels = [1.5, 2.3]
```

Let’s put these in a dataframe.

```python
>>> import pandas as pd
>>> df = pd.DataFrame(list(zip(smiles, labels)), columns=["smiles", "task1"])
```

Let’s now write this to disk somewhere. We can now use CSVLoader to process this CSV dataset.

```python
>>> import tempfile
>>> import deepchem as dc
>>> with dc.utils.UniversalNamedTemporaryFile(mode='w') as tmpfile:
... df.to_csv(tmpfile.name)
... loader = dc.data.CSVLoader(["task1"], feature_field="smiles",
... featurizer=dc.feat.CircularFingerprint())
... dataset = loader.create_dataset(tmpfile.name)
>>> len(dataset)
2
```

Of course in practice you should already have your data in a CSV file if you’re using CSVLoader. If your data is already in memory, use InMemoryLoader instead.

Sometimes there will be datasets without specific tasks, for example datasets which are used in unsupervised learning tasks. Such datasets can be loaded by leaving the tasks field empty.

Example

```python
>>> x1, x2 = [2, 3, 4], [4, 6, 8]
>>> df = pd.DataFrame({'x1':x1, 'x2': x2}).reset_index()
>>> with dc.utils.UniversalNamedTemporaryFile(mode='w') as tmpfile:
... df.to_csv(tmpfile.name)
... loader = dc.data.CSVLoader(tasks=[], id_field="index", feature_field=["x1",
... "x2"],
... featurizer=dc.feat.DummyFeaturizer())
... dataset = loader.create_dataset(tmpfile.name)
>>> len(dataset)
3
```
__init__(tasks: List[str], featurizer: deepchem.feat.base_classes.Featurizer, feature_field: Optional[str] = None, id_field: Optional[str] = None, smiles_field: Optional[str] = None, log_every_n: int = 1000)

Initializes CSVLoader.

**Parameters**

- **tasks** (List[str]) – List of task names
- **featurizer** (Featurizer) – Featurizer to use to process data.
- **feature_field** (str, optional (default None)) – Field with data to be featurized.
- **id_field** (str, optional (default None)) – CSV column that holds sample identifier.
- **smiles_field** (str, optional (default None) (DEPRECATED)) – Name of field that holds smiles string.
- **log_every_n** (int, optional (default 1000)) – Writes a logging statement this often.


Creates and returns a Dataset object by featurizing provided files.

Reads in inputs and uses self.featurizer to featurize the data in these inputs. For large files, automatically shards into smaller chunks of shard_size datapoints for convenience. Returns a Dataset object that contains the featurized dataset.

This implementation assumes that the helper methods _get_shards and _featurize_shard are implemented and that each shard returned by _get_shards is a pandas dataframe. You may choose to reuse or override this method in your subclass implementations.

**Parameters**

- **inputs** (List) – List of inputs to process. Entries can be filenames or arbitrary objects.
- **data_dir** (str, optional (default None)) – Directory to store featurized dataset.
- **shard_size** (int, optional (default 8192)) – Number of examples stored in each shard.

**Returns** A DiskDataset object containing a featurized representation of data from inputs.

**Return type** DiskDataset

UserCSVLoader

class UserCSVLoader(tasks: List[str], featurizer: deepchem.feat.base_classes.Featurizer, feature_field: Optional[str] = None, id_field: Optional[str] = None, smiles_field: Optional[str] = None, log_every_n: int = 1000)

Handles loading of CSV files with user-defined features.

This is a convenience class that allows for descriptors already present in a CSV file to be extracted without any featurization necessary.
Examples

Let’s suppose we have some descriptors and labels. (Imagine that these descriptors have been computed by an external program.)

```python
>>> desc1 = [1, 43]
>>> desc2 = [-2, -22]
>>> labels = [1.5, 2.3]
>>> ids = ['cp1', 'cp2']
```

Let’s put these in a dataframe.

```python
>>> import pandas as pd
>>> df = pd.DataFrame(list(zip(ids, desc1, desc2, labels)), columns=['id', 'desc1', 'desc2', 'task1'])
```

Let’s now write this to disk somewhere. We can now use UserCSVLoader to process this CSV dataset.

```python
>>> import tempfile
>>> import deepchem as dc
>>> featurizer = dc.feat.UserDefinedFeaturizer(['desc1', 'desc2'])
>>> with dc.utils.UniversalNamedTemporaryFile(mode='w') as tmpfile:
... df.to_csv(tmpfile.name)
... loader = dc.data.UserCSVLoader(['task1'], id_field='id',
... featurizer=featurizer)
... dataset = loader.create_dataset(tmpfile.name)
>>> len(dataset)
2
>>> dataset.X[0, 0]
1
```

The difference between UserCSVLoader and CSVLoader is that our descriptors (our features) have already been computed for us, but are spread across multiple columns of the CSV file.

Of course in practice you should already have your data in a CSV file if you’re using UserCSVLoader. If your data is already in memory, use InMemoryLoader instead.

```python
```

Initializes CSVLoader.

Parameters

- **tasks** (List[str]) – List of task names
- **featurizer** (Featurizer) – Featurizer to use to process data.
- **feature_field** (str, optional (default None)) – Field with data to be featurized.
- **id_field** (str, optional, (default None)) – CSV column that holds sample identifier
- **smiles_field** (str, optional (default None) (DEPRECATED)) – Name of field that holds smiles string.
- **log_every_n** (int, optional (default 1000)) – Writes a logging statement this often.

Creates and returns a Dataset object by featurizing provided files.

Reads in inputs and uses self.featureizer to featurize the data in these inputs. For large files, automatically shards into smaller chunks of shard_size datapoints for convenience. Returns a Dataset object that contains the featurized dataset.

This implementation assumes that the helper methods _get_shards and _featurize_shard are implemented and that each shard returned by _get_shards is a pandas dataframe. You may choose to reuse or override this method in your subclass implementations.

Parameters

- inputs (List) – List of inputs to process. Entries can be filenames or arbitrary objects.
- data_dir (str, optional (default None)) – Directory to store featurized dataset.
- shard_size (int, optional (default 8192)) – Number of examples stored in each shard.

Returns A DiskDataset object containing a featurized representation of data from inputs.

Return type DiskDataset

ImageLoader

class ImageLoader(tasks: Optional[List[str]] = None)

Handles loading of image files.

This class allows for loading of images in various formats. For user convenience, also accepts zip-files and directories of images and uses some limited intelligence to attempt to traverse subdirectories which contain images.

__init__(tasks: Optional[List[str]] = None)

Initialize image loader.

At present, custom image featurizers aren’t supported by this loader class.

Parameters tasks (List[str], optional (default None)) – List of task names for image labels.


Creates and returns a Dataset object by featurizing provided image files and labels/weights.

Parameters

- inputs (Union[OneOrMany[str], Tuple[Any]]) – The inputs provided should be one of the following
  - filename
  - list of filenames
  - Tuple (list of filenames, labels)
  - Tuple (list of filenames, labels, weights)

Each file in a given list of filenames should either be of a supported image format (.png, .tif only for now) or of a compressed folder of image files (only .zip for now). If labels or
weights are provided, they must correspond to the sorted order of all filenames provided, with one label/weight per file.

- **data_dir** *(str, optional (default None)) – Directory to store featurized dataset.*
- **shard_size** *(int, optional (default 8192)) – Shard size when loading data.*
- **in_memory** *(bool, optional (default False)) – If true, return in-memory Numpy-Dataset. Else return ImageDataset.*

**Returns**

- If `in_memory == False`, the return value is ImageDataset.
- If `in_memory == True` and `data_dir is None`, the return value is NumpyDataset.
- If `in_memory == True` and `data_dir is not None`, the return value is DiskDataset.

**Return type** *ImageDataset or NumpyDataset or DiskDataset*

### JsonLoader

JSON is a flexible file format that is human-readable, lightweight, and more compact than other open standard formats like XML. JSON files are similar to python dictionaries of key-value pairs. All keys must be strings, but values can be any of (string, number, object, array, boolean, or null), so the format is more flexible than CSV. JSON is used for describing structured data and to serialize objects. It is conveniently used to read/write Pandas dataframes with the `pandas.read_json` and `pandas.write_json` methods.

```python
class JsonLoader(tasks: List[str], feature_field: str, featurizer: deepchem.feat.base_classes.Featurizer,
 label_field: Optional[str] = None,
 weight_field: Optional[str] = None,
 id_field: Optional[str] = None,
 log_every_n: int = 1000)

Creates Dataset objects from input json files.

This class provides conveniences to load data from json files. It’s possible to directly featurize data from json files using pandas, but this class may prove useful if you’re processing large json files that you don’t want to manipulate directly in memory.

It is meant to load JSON files formatted as “records” in line delimited format, which allows for sharding. list like [{column -> value}, ... , {column -> value}].

Examples

Let’s create the sample dataframe.

```python
>>> composition = ["LiCoO2", "MnO2"]
>>> labels = [1.5, 2.3]
>>> import pandas as pd
>>> df = pd.DataFrame(list(zip(composition, labels)), columns=["composition", "task →"])
```

Dump the dataframe to the JSON file formatted as “records” in line delimited format and load the json file by JsonLoader.

```python
>>> import tempfile
>>> import deepchem as dc
>>> with dc.utils.UniversalNamedTemporaryFile(mode='w') as tmpfile:
...     df.to_json(tmpfile.name, orient='records', lines=True)
```
... featurizer = dc.feat.ElementPropertyFingerprint()
... loader = dc.data.JsonLoader(['task'], feature_field='composition',
 featurizer=featurizer)
... dataset = loader.create_dataset(tmpfile.name)

>>> len(dataset)
2

Initializes JsonLoader.

Parameters

- **tasks (List[str])** – List of task names
- **feature_field (str)** – JSON field with data to be featurized.
- **featurizer (Featurizer)** – Featurizer to use to process data
- **label_field (str, optional (default None))** – Field with target variables.
- **weight_field (str, optional (default None))** – Field with weights.
- **id_field (str, optional (default None))** – Field for identifying samples.
- **log_every_n (int, optional (default 1000))** – Writes a logging statement this often.

Creates a Dataset from input JSON files.

Parameters

- **input_files (OneOrMany[str])** – List of JSON filenames.
- **data_dir (Optional[str], default None)** – Name of directory where featurized data is stored.
- **shard_size (int, optional (default 8192))** – Shard size when loading data.

Returns A DiskDataset object containing a featurized representation of data from input_files.

Return type DiskDataset

SDFLoader

class SDFLoader(tasks: List[str], featurizer: deepchem.feat.base_classes.Featurizer, sanitize: bool = False, log_every_n: int = 1000)

Creates a Dataset object from SDF input files.

This class provides conveniences to load and featurize data from Structure Data Files (SDFs). SDF is a standard format for structural information (3D coordinates of atoms and bonds) of molecular compounds.

3.7. Data
Examples

```python
>>> import deepchem as dc
>>> import os

>>> current_dir = os.path.dirname(os.path.realpath(__file__))

>>> featurizer = dc.feat.CircularFingerprint(size=16)

>>> loader = dc.data.SDFLoader(['LogP(RRCK)'], featurizer=featurizer, sanitize=True)

>>> dataset = loader.create_dataset(os.path.join(current_dir, "tests", "membrane_permeability.sdf"))

>>> len(dataset)
2
```

__init__ (tasks: List[str], featurizer: deepchem.feat.base_classes.Featurizer, sanitize: bool = False, log_every_n: int = 1000)

Initialize SDF Loader

Parameters

- **tasks** (list[str]) – List of task names. These will be loaded from the SDF file.
- **featurizer** (Featurizer) – Featurizer to use to process data
- **sanitize** (bool, optional (default False)) – Whether to sanitize molecules.
- **log_every_n** (int, optional (default 1000)) – Writes a logging statement this often.

Creates and returns a Dataset object by featurizing provided sdf files.

Parameters

- **inputs** (List) – List of inputs to process. Entries can be filenames or arbitrary objects. Each file should be supported format (.sdf) or compressed folder of .sdf files
- **data_dir** (str, optional (default None)) – Directory to store featurized dataset.
- **shard_size** (int, optional (default 8192)) – Number of examples stored in each shard.

Returns

A DiskDataset object containing a featurized representation of data from inputs.

Return type

DiskDataset

FASTALoader

class FASTALoader (featurizer: Optional[deepchem.feat.base_classes.Featurizer] = None, auto_add_annotations: bool = False, legacy: bool = True)

Handles loading of FASTA files.

FASTA files are commonly used to hold sequence data. This class provides convenience files to lead FASTA data and one-hot encode the genomic sequences for use in downstream learning tasks.

__init__ (featurizer: Optional[deepchem.feat.base_classes.Featurizer] = None, auto_add_annotations: bool = False, legacy: bool = True)

Initialize FASTALoader.

Parameters
• **featurizer** *(Featurizer *(default: None))* – The Featurizer to be used for the loaded FASTA data.

If featurizer is None and legacy is True, the original featurization logic is used, creating a one hot encoding of all included FASTA strings of shape (number of FASTA sequences, number of channels + 1, sequence length, 1).

If featurizer is None and legacy is False, the featurizer is initialized as a OneHotFeaturizer object with charset (“A”, “C”, “T”, “G”) and max_length = None.

• **auto_add_annotations** *(bool (default False))* – Whether create_dataset will automatically add [CLS] and [SEP] annotations to the sequences it reads in order to assist tokenization. Keep False if your FASTA file already includes [CLS] and [SEP] annotations.

• **legacy** *(bool (default True))* – Whether to use legacy logic for featurization. Legacy mode will create a one hot encoding of the FASTA content of shape (number of FASTA sequences, number of channels + 1, max_length, 1).

Legacy mode is only tested for ACTGN charsets, and will be deprecated.

Creates a Dataset from input FASTA files.

At present, FASTA support is limited and doesn’t allow for sharding.

Parameters

• **input_files** *(List[str])* – List of fasta files.

• **data_dir** *(str, optional (default None))* – Name of directory where featurized data is stored.

• **shard_size** *(int, optional (default None))* – For now, this argument is ignored and each FASTA file gets its own shard.

Returns A DiskDataset object containing a featurized representation of data from input_files.

Return type DiskDataset

FASTQLoader

InMemoryLoader

The dc.data.InMemoryLoader is designed to facilitate the processing of large datasets where you already hold the raw data in-memory (say in a pandas dataframe).

 class InMemoryLoader(tasks: List[str], featurizer: deepchem.feat.base_classes.Featurizer, id_field: Optional[str] = None, log_every_n: int = 1000)

Facilitate Featurization of In-memory objects.

When featurizing a dataset, it’s often the case that the initial set of data (pre-featurization) fits handily within memory. (For example, perhaps it fits within a column of a pandas DataFrame.) In this case, it would be convenient to directly be able to featurize this column of data. However, the process of featurization often generates large arrays which quickly eat up available memory. This class provides convenient capabilities to process such in-memory data by checkpointing generated features periodically to disk.

3.7. Data
Example

Here’s an example with only datapoints and no labels or weights.

```python
>>> import deepchem as dc
>>> smiles = ['C', 'CC', 'CCC', 'CCCC']
>>> featurizer = dc.feat.CircularFingerprint()
>>> loader = dc.data.InMemoryLoader(tasks=['task1'], featurizer=featurizer)
>>> dataset = loader.create_dataset(smiles, shard_size=2)
>>> len(dataset)
4
```

Here’s an example with both datapoints and labels

```python
>>> import deepchem as dc
>>> smiles = ['C', 'CC', 'CCC', 'CCCC']
>>> labels = [1, 0, 1, 0]
>>> featurizer = dc.feat.CircularFingerprint()
>>> loader = dc.data.InMemoryLoader(tasks=['task1'], featurizer=featurizer)
>>> dataset = loader.create_dataset(zip(smiles, labels), shard_size=2)
>>> len(dataset)
4
```

Here’s an example with datapoints, labels, weights and ids all provided.

```python
>>> import deepchem as dc
>>> smiles = ['C', 'CC', 'CCC', 'CCCC']
>>> labels = [1, 0, 1, 0]
>>> weights = [1.5, 0, 1.5, 0]
>>> ids = ['C', 'CC', 'CCC', 'CCCC']
>>> featurizer = dc.feat.CircularFingerprint()
>>> loader = dc.data.InMemoryLoader(tasks=['task1'], featurizer=featurizer)
>>> dataset = loader.create_dataset(zip(smiles, labels, weights, ids), shard_size=2)
>>> len(dataset)
4
```

`__init__`(tasks: `List[str]`, featurizer: `deepchem.feat.base_classes.Featurizer`, id_field: `Optional[str]` = `None`, log_every_n: `int` = `1000`)

Construct a DataLoader object.

This constructor is provided as a template mainly. You shouldn’t ever call this constructor directly as a user.

Parameters

- **tasks** (`List[str]`): List of task names
- **featurizer** (`Featurizer`): Featurizer to use to process data.
- **id_field** (`str`, optional (default `None`)): Name of field that holds sample identifier. Note that the meaning of “field” depends on the input data type and can have a different meaning in different subclasses. For example, a CSV file could have a field as a column, and an SDF file could have a field as molecular property.
- **log_every_n** (`int`, optional (default `1000`)): Writes a logging statement this often.

Creates and returns a Dataset object by featurizing provided files.

Reads in inputs and uses self.featurizer to featurize the data in these input files. For large files, automatically shards into smaller chunks of shard_size datapoints for convenience. Returns a Dataset object that contains the featurized dataset.

This implementation assumes that the helper methods _get_shards and _featurize_shard are implemented and that each shard returned by _get_shards is a pandas dataframe. You may choose to reuse or override this method in your subclass implementations.

Parameters

- **inputs** (Sequence[Any]) – List of inputs to process. Entries can be arbitrary objects so long as they are understood by self.featurizer
- **data_dir** (str, optional (default None)) – Directory to store featurized dataset.
- **shard_size** (int, optional (default 8192)) – Number of examples stored in each shard.

Returns

A DiskDataset object containing a featurized representation of data from inputs.

Return type

DiskDataset

3.7.3 Data Classes

DeepChem featurizers often transform members into “data classes”. These are classes that hold all the information needed to train a model on that data point. Models then transform these into the tensors for training in their default_generator methods.

Graph Data

These classes document the data classes for graph convolutions. We plan to simplify these classes (ConvMol, MultiConvMol, WeaveMol) into a joint data representation (GraphData) for all graph convolutions in a future version of DeepChem, so these APIs may not remain stable.

The graph convolution models which inherit KerasModel depend on ConvMol, MultiConvMol, or WeaveMol. On the other hand, the graph convolution models which inherit TorchModel depend on GraphData.

class ConvMol(atom_features, adj_list, max_deg=10, min_deg=0)

Holds information about a molecules.

Resorts order of atoms internally to be in order of increasing degree. Note that only heavy atoms (hydrogens excluded) are considered here.

__init__(atom_features, adj_list, max_deg=10, min_deg=0)

Parameters

- **atom_features** (np.ndarray) – Has shape (n_atoms, n_feat)
- **adj_list** (list) – List of length n_atoms, with neighbor indices of each atom.
- **max_deg** (int, optional) – Maximum degree of any atom.
- **min_deg** (int, optional) – Minimum degree of any atom.

get_atoms_with_deg(deg)

Retrieves atom_features with the specific degree
get_num_atoms_with_deg*(deg)***

Returns the number of atoms with the given degree.

get_atom_features()

Returns canonicalized version of atom features. Features are sorted by atom degree, with original order maintained when degrees are same.

get_adjacency_list()

Returns a canonicalized adjacency list. Canonicalized means that the atoms are re-ordered by degree.

- **Returns**: Canonicalized form of adjacency list.
- **Return type**: list

get_deg_adjacency_lists()

Returns adjacency lists grouped by atom degree. The element at position deg is itself a list of the neighbor-lists for atoms with degree deg.

- **Returns**: Has length (max_deg+1-min_deg). The element at position deg is itself a list of the neighbor-lists for atoms with degree deg.
- **Return type**: list

get_deg_slice()

Returns degree-slice tensor. The deg_slice tensor allows indexing into a flattened version of the molecule’s atoms. Assume atoms are sorted in order of degree. Then deg_slice[deg][0] is the starting position for atoms of degree deg in flattened list, and deg_slice[deg][1] is the number of atoms with degree deg.

- **Returns**: deg_slice – Shape (max_deg+1-min_deg, 2)
- **Return type**: np.ndarray

static get_null_mol*(n_feat, max_deg=10, min_deg=0)***

Constructs a null molecule with one atom of each degree, with all the atoms connected to themselves, and containing n_feat features.

Parameters

- **n_feat (int)** – number of features for the nodes in the null molecule

static agglomerate_mols*(mols, max_deg=10, min_deg=0)***

Concatenates list of ConvMol’s into one mol object that can be used to feed into tensorflow placeholders. The indexing of the molecules are preserved during the combination, but the indexing of the atoms are greatly changed.

Parameters

- **mols (list)** – ConvMol objects to be combined into one molecule

class MultiConvMol*(nodes, deg_adj_lists, deg_slice, membership, num_mols)**

Holds information about multiple molecules, for use in feeding information into tensorflow. Generated using the agglomerate_mols function

__init__*(nodes, deg_adj_lists, deg_slice, membership, num_mols)***

get_deg_adjacency_lists()

get_atom_features()
get_num_atoms()
get_num_molecules()
__module__ = 'deepchem.feat.mol_graphs'

class WeaveMol(nodes, pairs, pair_edges)
Molecular featurization object for weave convolutions.
These objects are produced by WeaveFeaturizer, and feed into WeaveModel. The underlying implementation is inspired by 1.

References

__init__(nodes, pairs, pair_edges)
get_pair_edges()
get_pair_features()
get_atom_features()
get_num_atoms()
get_num_features()
__module__ = 'deepchem.feat.mol_graphs'

class GraphData(node_features: numpy.ndarray, edge_index: numpy.ndarray, edge_features: Optional[numpy.ndarray] = None, node_pos_features: Optional[numpy.ndarray] = None, **kwargs)
GraphData class
This data class is almost same as torch_geometric.data.Data.

node_features
Node feature matrix with shape [num_nodes, num_node_features]
Type np.ndarray

edge_index
Graph connectivity in COO format with shape [2, num_edges]
Type np.ndarray, dtype int

edge_features
Edge feature matrix with shape [num_edges, num_edge_features]
Type np.ndarray, optional (default None)

node_pos_features
Node position matrix with shape [num_nodes, num_dimensions].
Type np.ndarray, optional (default None)

num_nodes

The number of nodes in the graph

Type `int`

num_node_features

The number of features per node in the graph

Type `int`

num_edges

The number of edges in the graph

Type `int`

num_edges_features

The number of features per edge in the graph

Type `int`, optional (default None)

Examples

```python
>>> import numpy as np

>>> node_features = np.random.rand(5, 10)

>>> edge_index = np.array([[0, 1, 2, 3, 4], [1, 2, 3, 4, 0]], dtype=np.int64)

>>> edge_features = np.random.rand(5, 5)

>>> global_features = np.random.random(5)

>>> graph = GraphData(node_features, edge_index, edge_features, z=global_features)

>>> graph
```

```
GraphData(node_features=[5, 10], edge_index=[2, 5], edge_features=[5, 5], z=[5])
```

__init__

```
(node_features: numpy.ndarray, edge_index: numpy.ndarray, edge_features:
Optional[numpy.ndarray] = None, node_pos_features: Optional[numpy.ndarray] = None,
**kwargs)
```

Parameters

- **node_features** (`np.ndarray`) – Node feature matrix with shape `[num_nodes, num_node_features]`
- **edge_index** (`np.ndarray, dtype int`) – Graph connectivity in COO format with shape `[2, num_edges]`
- **edge_features** (`np.ndarray, optional (default None)`) – Edge feature matrix with shape `[num_edges, num_edge_features]`
- **node_pos_features** (`np.ndarray, optional (default None)`) – Node position matrix with shape `[num_nodes, num_dimensions]`
- **kwargs** (optional) – Additional attributes and their values

to_pyg_graph()

Convert to PyTorch Geometric graph data instance

Returns Graph data for PyTorch Geometric

Return type `torch_geometric.data.Data`
Note: This method requires PyTorch Geometric to be installed.

to_dgl_graph(self_loop: bool = False)
Convert to DGL graph data instance

Returns
• dgl.DGLGraph – Graph data for DGL
• self_loop (bool) – Whether to add self loops for the nodes, i.e. edges from nodes to themselves. Default to False.

Note: This method requires DGL to be installed.

3.7.4 Base Classes (for develop)

Dataset

The dc.data.Dataset class is the abstract parent class for all datasets. This class should never be directly initialized, but contains a number of useful method implementations.

class Dataset
Abstract base class for datasets defined by X, y, w elements.

Dataset objects are used to store representations of a dataset as used in a machine learning task. Datasets contain features X, labels y, weights w and identifiers ids. Different subclasses of Dataset may choose to hold X, y, w, ids in memory or on disk.

The Dataset class attempts to provide for strong interoperability with other machine learning representations for datasets. Interconversion methods allow for Dataset objects to be converted to and from numpy arrays, pandas dataframes, tensorflow datasets, and pytorch datasets (only to and not from for pytorch at present).

Note that you can never instantiate a Dataset object directly. Instead you will need to instantiate one of the concrete subclasses.

__init__() → None

__len__() → int
Get the number of elements in the dataset.

Returns The number of elements in the dataset.

Return type int

get_shape() → Tuple[Tuple[int, ...], Tuple[int, ...], Tuple[int, ...], Tuple[int, ...]]
Get the shape of the dataset.

Returns four tuples, giving the shape of the X, y, w, and ids arrays.

Returns The tuple contains four elements, which are the shapes of the X, y, w, and ids arrays.

Return type Tuple

get_task_names() → numpy.ndarray
Get the names of the tasks associated with this dataset.
property X: numpy.ndarray
Get the X vector for this dataset as a single numpy array.

Returns
A numpy array of identifiers X.

Return type np.ndarray

Note: If data is stored on disk, accessing this field may involve loading data from disk and could potentially be slow. Using iterbatches() or itersamples() may be more efficient for larger datasets.

property y: numpy.ndarray
Get the y vector for this dataset as a single numpy array.

Returns
A numpy array of identifiers y.

Return type np.ndarray

Note: If data is stored on disk, accessing this field may involve loading data from disk and could potentially be slow. Using iterbatches() or itersamples() may be more efficient for larger datasets.

property ids: numpy.ndarray
Get the ids vector for this dataset as a single numpy array.

Returns
A numpy array of identifiers ids.

Return type np.ndarray

Note: If data is stored on disk, accessing this field may involve loading data from disk and could potentially be slow. Using iterbatches() or itersamples() may be more efficient for larger datasets.

property w: numpy.ndarray
Get the weight vector for this dataset as a single numpy array.

Returns
A numpy array of weights w.

Return type np.ndarray

Note: If data is stored on disk, accessing this field may involve loading data from disk and could potentially be slow. Using iterbatches() or itersamples() may be more efficient for larger datasets.

iterbatches(batch_size: Optional[int] = None, epochs: int = 1, deterministic: bool = False, pad_batches: bool = False) → Iterator[Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]]
Get an object that iterates over minibatches from the dataset.
Each minibatch is returned as a tuple of four numpy arrays: (X, y, w, ids).

Parameters
- **batch_size**(int, optional (default None)) – Number of elements in each batch.
- **epochs**(int, optional (default 1)) – Number of epochs to walk over dataset.
- **deterministic**(bool, optional (default False)) – If True, follow deterministic order.
- **pad_batches** *(bool, optional (default False)) – If True, pad each batch to batch_size.*

Returns Generator which yields tuples of four numpy arrays (*X, y, w, ids)*.

Return type Iterator[Batch]

itersamples () → Iterator[Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]]

Get an object that iterates over the samples in the dataset.

Examples

```python
>>> dataset = NumpyDataset(np.ones((2, 2)))
>>> for x, y, w, id in dataset.itersamples():
...     print(x.tolist(), y.tolist(), w.tolist(), id)
[1.0, 1.0] [0.0] [0.0] 0
[1.0, 1.0] [0.0] [0.0] 1
```

transform *(transformer: transformers.Transformer, **args) → deepchem.data.datasets.Dataset*

Construct a new dataset by applying a transformation to every sample in this dataset.

The argument is a function that can be called as follows: >> newx, newy, neww = fn(x, y, w)

It might be called only once with the whole dataset, or multiple times with different subsets of the data. Each time it is called, it should transform the samples and return the transformed data.

Parameters

- **transformer** *(dc.trans.Transformer)* – The transformation to apply to each sample in the dataset.

Returns A newly constructed Dataset object.

Return type Dataset

select *(indices: Union[Sequence[int], numpy.ndarray], select_dir: Optional[str] = None) → deepchem.data.datasets.Dataset*

Creates a new dataset from a selection of indices from self.

Parameters

- **indices** *(Sequence)* – List of indices to select.
- **select_dir** *(str, optional (default None))* – Path to new directory that the selected indices will be copied to.

get_statistics *(X_stats: bool = True, y_stats: bool = True) → Tuple[numpy.ndarray, ...]*

Compute and return statistics of this dataset. Uses self.itersamples() to compute means and standard deviations of the dataset. Can compute on large datasets that don’t fit in memory.

Parameters

- **X_stats** *(bool, optional (default True)) – If True, compute feature-level mean and standard deviations.*
- **y_stats** *(bool, optional (default True)) – If True, compute label-level mean and standard deviations.*

Returns

- If X_stats == True, returns (X_means, X_stds).
• If \(y_{\text{stats}} == \text{True} \), returns \((y_{\text{means}}, y_{\text{stds}})\).
• If both are true, returns \((X_{\text{means}}, X_{\text{stds}}, y_{\text{means}}, y_{\text{stds}})\).

Return type Tuple

make_tf_dataset(batch_size: int = 100, epochs: int = 1, deterministic: bool = False, pad_batches: bool = False)

Create a tf.data.Dataset that iterates over the data in this Dataset.

Each value returned by the Dataset’s iterator is a tuple of \((X, y, w)\) for one batch.

Parameters

• **batch_size** (int, default 100) – The number of samples to include in each batch.
• **epochs** (int, default 1) – The number of times to iterate over the Dataset.
• **deterministic** (bool, default False) – If True, the data is produced in order. If False, a different random permutation of the data is used for each epoch.
• **pad_batches** (bool, default False) – If True, batches are padded as necessary to make the size of each batch exactly equal batch_size.

Returns TensorFlow Dataset that iterates over the same data.

Return type tf.data.Dataset

Note: This class requires TensorFlow to be installed.

make_pytorch_dataset(epochs: int = 1, deterministic: bool = False, batch_size: Optional[int] = None)

Create a torch.utils.data.IterableDataset that iterates over the data in this Dataset.

Each value returned by the Dataset’s iterator is a tuple of \((X, y, w, id)\) containing the data for one batch, or for a single sample if batch_size is None.

Parameters

• **epochs** (int, default 1) – The number of times to iterate over the Dataset.
• **deterministic** (bool, default False) – If True, the data is produced in order. If False, a different random permutation of the data is used for each epoch.
• **batch_size** (int, optional (default None)) – The number of samples to return in each batch. If None, each returned value is a single sample.

Returns torch.utils.data.IterableDataset that iterates over the data in this dataset.

Return type torch.utils.data.IterableDataset

Note: This class requires PyTorch to be installed.

to_dataframe() → pandas.core.frame.DataFrame

Construct a pandas DataFrame containing the data from this Dataset.

Returns Pandas dataframe. If there is only a single feature per datapoint, will have column “X” else will have columns “X1,X2,...” for features. If there is only a single label per datapoint, will have column “y” else will have columns “y1,y2,...” for labels. If there is only a single weight per datapoint will have column “w” else will have columns “w1,w2,...”. Will have column “ids” for identifiers.
Return type pd.DataFrame

static from_dataframe(df: pandas.core.frame.DataFrame, X: Optional[Union[str, Sequence[str]]] = None, y: Optional[Union[str, Sequence[str]]] = None, w: Optional[Union[str, Sequence[str]]] = None, ids: Optional[str] = None)

Construct a Dataset from the contents of a pandas DataFrame.

Parameters

- df (pd.DataFrame) – The pandas DataFrame
- X (str or List[str], optional (default None)) – The name of the column or columns containing the X array. If this is None, it will look for default column names that match those produced by to_dataframe().
- y (str or List[str], optional (default None)) – The name of the column or columns containing the y array. If this is None, it will look for default column names that match those produced by to_dataframe().
- w (str or List[str], optional (default None)) – The name of the column or columns containing the w array. If this is None, it will look for default column names that match those produced by to_dataframe().
- ids (str, optional (default None)) – The name of the column containing the ids. If this is None, it will look for default column names that match those produced by to_dataframe().

to_csv(path: str) → None

Write object to a comma-seperated values (CSV) file

Example

```python
>>> import numpy as np
>>> X = np.random.rand(10, 10)
>>> dataset = dc.data.DiskDataset.from_numpy(X)
>>> dataset.to_csv('out.csv')
```

Parameters path (str) – File path or object

Return type None

DataLoader

The dc.data.DataLoader class is the abstract parent class for all dataloaders. This class should never be directly initialized, but contains a number of useful method implementations.

class DataLoader(tasks: List[str], featurizer: deepchem.feat.base_classes.Featurizer, id_field: Optional[str] = None, log_every_n: int = 1000)

Handles loading/featurizing of data from disk.

The main use of DataLoader and its child classes is to make it easier to load large datasets into Dataset objects.

DataLoader is an abstract superclass that provides a general framework for loading data into DeepChem. This class should never be instantiated directly. To load your own type of data, make a subclass of DataLoader and provide your own implementation for the create_dataset() method.
To construct a Dataset from input data, first instantiate a concrete data loader (that is, an object which is an instance of a subclass of DataLoader) with a given Featurizer object. Then call the data loader’s create_dataset() method on a list of input files that hold the source data to process. Note that each subclass of DataLoader is specialized to handle one type of input data so you will have to pick the loader class suitable for your input data type.

Note that it isn’t necessary to use a data loader to process input data. You can directly use Featurizer objects to featurize provided input into numpy arrays, but note that this calculation will be performed in memory, so you will have to write generators that walk the source files and write featurized data to disk yourself. DataLoader and its subclasses make this process easier for you by performing this work under the hood.

__init__(tasks: List[str], featurizer: deepchem.feat.base_classes.Featurizer, id_field: Optional[str] = None, log_every_n: int = 1000)

Construct a DataLoader object.

Parameters

- **tasks** (List[str]) – List of task names
- **featurizer** (Featurizer) – Featurizer to use to process data.
- **id_field** (str, optional (default None)) – Name of field that holds sample identifier. Note that the meaning of “field” depends on the input data type and can have a different meaning in different subclasses. For example, a CSV file could have a field as a column, and an SDF file could have a field as molecular property.
- **log_every_n** (int, optional (default 1000)) – Writes a logging statement this often.

Featurize provided files and write to specified location.

DEPRECATED: This method is now a wrapper for create_dataset() and calls that method under the hood. For large datasets, automatically shards into smaller chunks for convenience. This implementation assumes that the helper methods _get_shards and _featurize_shard are implemented and that each shard returned by _get_shards is a pandas dataframe. You may choose to reuse or override this method in your subclass implementations.

Parameters

- **inputs** (List) – List of inputs to process. Entries can be filenames or arbitrary objects.
- **data_dir** (str, default None) – Directory to store featurized dataset.
- **shard_size** (int, optional (default 8192)) – Number of examples stored in each shard.

Returns A Dataset object containing a featurized representation of data from inputs.

Return type Dataset

Creates and returns a Dataset object by featurizing provided files.

Reads in inputs and uses self.featurizer to featurize the data in these inputs. For large files, automatically shards into smaller chunks of shard_size datapoints for convenience. Returns a Dataset object that contains the featurized dataset.
This implementation assumes that the helper methods _get_shards and _featurize_shard are implemented and that each shard returned by _get_shards is a pandas dataframe. You may choose to reuse or override this method in your subclass implementations.

Parameters

- **inputs** (List) – List of inputs to process. Entries can be filenames or arbitrary objects.
- **data_dir** (str, optional (default None)) – Directory to store featurized dataset.
- **shard_size** (int, optional (default 8192)) – Number of examples stored in each shard.

Returns

A DiskDataset object containing a featurized representation of data from inputs.

Return type

DiskDataset

3.8 MoleculeNet

The DeepChem library is packaged alongside the MoleculeNet suite of datasets. One of the most important parts of machine learning applications is finding a suitable dataset. The MoleculeNet suite has curated a whole range of datasets and loaded them into DeepChem `dc.data.Dataset` objects for convenience.

3.8.1 Contributing a new dataset to MoleculeNet

If you are proposing a new dataset to be included in the MoleculeNet benchmarking suite, please follow the instructions below. Please review the datasets already available in MolNet before contributing.

1. Read the Contribution guidelines.
2. Open an issue to discuss the dataset you want to add to MolNet.
3. Write a `DatasetLoader` class that inherits from `deepchem.molnet.load_function.molnet_loader._MolnetLoader` and implements a `create_dataset` method. See the `_QM9Loader` for a simple example.
4. Write a `load_dataset` function that documents the dataset and add your load function to `deepchem.molnet.__init__.py` for easy importing.
5. Prepare your dataset as a .tar.gz or .zip file. Accepted filetypes include CSV, JSON, and SDF.
6. Ask a member of the technical steering committee to add your .tar.gz or .zip file to the DeepChem AWS bucket. Modify your load function to pull down the dataset from AWS.
7. Add documentation for your loader to the MoleculeNet docs.
8. Submit a [WIP] PR (Work in progress pull request) following the PR template.

3.8.2 BACE Dataset

Load BACE dataset, classification labels

BACE dataset with classification labels (“class”).
Parameters

- **featurizer** *(Featurizer or str)* – the featurizer to use for processing the data. Alternatively you can pass one of the names from dc.molnet.featurizers as a shortcut.

- **splitter** *(Splitter or str)* – the splitter to use for splitting the data into training, validation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single dataset.

- **transformers** *(list of TransformerGenerators or strings)* – the Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one of the names from dc.molnet.transformers.

- **reload** *(bool)* – if True, the first call for a particular featurizer and splitter will cache the datasets to disk, and subsequent calls will reload the cached datasets.

- **data_dir** *(str)* – a directory to save the raw data in

- **save_dir** *(str)* – a directory to save the dataset in

Load BACE dataset, regression labels

The BACE dataset provides quantitative IC50 and qualitative (binary label) binding results for a set of inhibitors of human beta-secretase 1 (BACE-1).

All data are experimental values reported in scientific literature over the past decade, some with detailed crystal structures available. A collection of 1522 compounds is provided, along with the regression labels of IC50.

Scaffold splitting is recommended for this dataset.

The raw data csv file contains columns below:

- “mol” - SMILES representation of the molecular structure
- “pIC50” - Negative log of the IC50 binding affinity
- “class” - Binary labels for inhibitor

References

3.8.3 BBBC Datasets

`load_bbbc001(splitter: Optional[Union[deepchem.splits.splitter.Splitter, str]] = 'index', transformers:
List[Union[deepchem.molnet.load_function.molnet_loader.TransformerGenerator, str]] = [],
reload: bool = True, data_dir: Optional[str] = None, save_dir: Optional[str] = None, **kwargs)
→ Tuple[List[str], Tuple[deepchem.data.datasets.Dataset, ...], List[transformers.Transformer]]`

Load BBBC001 dataset

This dataset contains 6 images of human HT29 colon cancer cells. The task is to learn to predict the cell counts in these images. This dataset is too small to serve to train algorithms, but might serve as a good test dataset. https://data.broadinstitute.org/bbbc/BBBC001/

Parameters

- `splitter` ([Splitter or str]) – the splitter to use for splitting the data into training, validation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single dataset.

- `transformers` ([list of TransformerGenerators or strings]) – the Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one of the names from dc.molnet.transformers.

- `reload` ([bool]) – if True, the first call for a particular featurizer and splitter will cache the datasets to disk, and subsequent calls will reload the cached datasets.

- `data_dir` ([str]) – a directory to save the raw data in

- `save_dir` ([str]) – a directory to save the dataset in

`load_bbbc002(splitter: Optional[Union[deepchem.splits.splitter.Splitter, str]] = 'index', transformers:
List[Union[deepchem.molnet.load_function.molnet_loader.TransformerGenerator, str]] = [],
reload: bool = True, data_dir: Optional[str] = None, save_dir: Optional[str] = None, **kwargs)
→ Tuple[List[str], Tuple[deepchem.data.datasets.Dataset, ...], List[transformers.Transformer]]`

Load BBBC002 dataset

This dataset contains data corresponding to 5 samples of Drosophila Kc167 cells. There are 10 fields of view for each sample, each an image of size 512x512. Ground truth labels contain cell counts for this dataset. Full details about this dataset are present at https://data.broadinstitute.org/bbbc/BBBC002/.

Parameters

- `splitter` ([Splitter or str]) – the splitter to use for splitting the data into training, validation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single dataset.

- `transformers` ([list of TransformerGenerators or strings]) – the Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one of the names from dc.molnet.transformers.

- `reload` ([bool]) – if True, the first call for a particular featurizer and splitter will cache the datasets to disk, and subsequent calls will reload the cached datasets.

- `data_dir` ([str]) – a directory to save the raw data in

- `save_dir` ([str]) – a directory to save the dataset in

3.8. MoleculeNet
3.8.4 BBBP Datasets

BBBP stands for Blood-Brain-Barrier Penetration

Load BBBP dataset

The blood-brain barrier penetration (BBBP) dataset is designed for the modeling and prediction of barrier permeability. As a membrane separating circulating blood and brain extracellular fluid, the blood-brain barrier blocks most drugs, hormones and neurotransmitters. Thus penetration of the barrier forms a long-standing issue in development of drugs targeting central nervous system.

This dataset includes binary labels for over 2000 compounds on their permeability properties.

Scaffold splitting is recommended for this dataset.

The raw data csv file contains columns below:

- “name” - Name of the compound
- “smiles” - SMILES representation of the molecular structure
- “p_np” - Binary labels for penetration/non-penetration

Parameters

- **featurizer** (Featurizer or str) – the featurizer to use for processing the data. Alternatively you can pass one of the names from dc.molnet.featureizers as a shortcut.
- **splitter** (Splitter or str) – the splitter to use for splitting the data into training, validation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single dataset.
- **transformers** (list of TransformerGenerators or strings) – the Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one of the names from dc.molnet.transformers.
- **reload** (bool) – if True, the first call for a particular featurizer and splitter will cache the datasets to disk, and subsequent calls will reload the cached datasets.
- **data_dir** (str) – a directory to save the raw data in
- **save_dir** (str) – a directory to save the dataset in

References

3.8.5 Cell Counting Datasets

Load Cell Counting dataset.

Loads the cell counting dataset from http://www.robots.ox.ac.uk/~vgg/research/counting/index_org.html.
Parameters

- **splitter** *(Splitter or str)* – the splitter to use for splitting the data into training, validation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single dataset.

- **transformers** *(list of TransformerGenerators or strings)* – the Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one of the names from dc.molnet.transformers.

- **reload** *(bool)* – if True, the first call for a particular featurizer and splitter will cache the datasets to disk, and subsequent calls will reload the cached datasets.

- **data_dir** *(str)* – a directory to save the raw data in

- **save_dir** *(str)* – a directory to save the dataset in

3.8.6 Chembl Datasets

```python
load_chembl(featurizer: Union[deepchem.feat.base_classes.Featurizer, str] = 'ECFP', splitter:
  Optional[Union[deepchem.splits.splitters.Splitter, str]] = 'scaffold', transformers:
  List[Union[deepchem.molnet.load_function.molnet_loader.TransformerGenerator, str]] =
  ['normalization'], set: str = '5thresh', reload: bool = True, data_dir: Optional[str] = None, save_dir:
  Optional[str] = None, **kwargs) → Tuple[List[str], Tuple[
  deepchem.data.datasets.Dataset, ...], List[transformers.Transformer]]
```

Load the ChEMBL dataset.

This dataset is based on release 22.1 of the data from https://www.ebi.ac.uk/chembl/. Two subsets of the data are available, depending on the “set” argument. “sparse” is a large dataset with 244,245 compounds. As the name suggests, the data is extremely sparse, with most compounds having activity data for only one target. “5thresh” is a much smaller set (23,871 compounds) that includes only compounds with activity data for at least five targets.

Parameters

- **featurizer** *(Featurizer or str)* – the featurizer to use for processing the data. Alternatively you can pass one of the names from dc.molnet.featureizers as a shortcut.

- **splitter** *(Splitter or str)* – the splitter to use for splitting the data into training, validation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single dataset.

- **transformers** *(list of TransformerGenerators or strings)* – the Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one of the names from dc.molnet.transformers.

- **set** *(str)* – the subset to load, either “sparse” or “5thresh”

- **reload** *(bool)* – if True, the first call for a particular featurizer and splitter will cache the datasets to disk, and subsequent calls will reload the cached datasets.

- **data_dir** *(str)* – a directory to save the raw data in

- **save_dir** *(str)* – a directory to save the dataset in
3.8.7 Chembl25 Datasets

Loads the ChEMBL25 dataset, featurizes it, and does a split.

Parameters

- **featurizer** (Featurizer or str) – the featurizer to use for processing the data. Alternatively you can pass one of the names from dc.molnet.featureizers as a shortcut.
- **splitter** (Splitter or str) – the splitter to use for splitting the data into training, validation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single dataset.
- **transformers** (list of TransformerGenerators or strings) – the Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one of the names from dc.molnet.transformers.
- **reload** (bool) – if True, the first call for a particular featurizer and splitter will cache the datasets to disk, and subsequent calls will reload the cached datasets.
- **data_dir** (str) – a directory to save the raw data in
- **save_dir** (str) – a directory to save the dataset in

3.8.8 Clearance Datasets

Load clearance datasets.

Parameters

- **featurizer** (Featurizer or str) – the featurizer to use for processing the data. Alternatively you can pass one of the names from dc.molnet.featureizers as a shortcut.
- **splitter** (Splitter or str) – the splitter to use for splitting the data into training, validation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single dataset.
- **transformers** (list of TransformerGenerators or strings) – the Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one of the names from dc.molnet.transformers.
- **reload** (bool) – if True, the first call for a particular featurizer and splitter will cache the datasets to disk, and subsequent calls will reload the cached datasets.
- **data_dir** (str) – a directory to save the raw data in
- **save_dir** (str) – a directory to save the dataset in
3.8.9 Clintox Datasets

```
```

Load ClinTox dataset

The ClinTox dataset compares drugs approved by the FDA and drugs that have failed clinical trials for toxicity reasons. The dataset includes two classification tasks for 1491 drug compounds with known chemical structures:

1. clinical trial toxicity (or absence of toxicity)
2. FDA approval status.

List of FDA-approved drugs are compiled from the SWEETLEAD database, and list of drugs that failed clinical trials for toxicity reasons are compiled from the Aggregate Analysis of ClinicalTrials.gov(AACT) database.

Random splitting is recommended for this dataset.

The raw data csv file contains columns below:

- “smiles” - SMILES representation of the molecular structure
- “FDA_APPROVED” - FDA approval status
- “CT_TOX” - Clinical trial results

Parameters

- **featurizer (Featurizer or str)** – the featurizer to use for processing the data. Alternatively you can pass one of the names from dc.molnet.featureizers as a shortcut.
- **splitter (Splitter or str)** – the splitter to use for splitting the data into training, validation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single dataset.
- **transformers (list of TransformerGenerators or strings)** – the Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one of the names from dc.molnet.transformers.
- **reload (bool)** – if True, the first call for a particular featurizer and splitter will cache the datasets to disk, and subsequent calls will reload the cached datasets.
- **data_dir (str)** – a directory to save the raw data in
- **save_dir (str)** – a directory to save the dataset in

References

3.8.10 Delaney Datasets

```
```

3.8. MoleculeNet
Load Delaney dataset

The Delaney (ESOL) dataset a regression dataset containing structures and water solubility data for 1128 compounds. The dataset is widely used to validate machine learning models on estimating solubility directly from molecular structures (as encoded in SMILES strings).

Scaffold splitting is recommended for this dataset.

The raw data csv file contains columns below:

- “Compound ID” - Name of the compound
- “smiles” - SMILES representation of the molecular structure
- “measured log solubility in mols per litre” - Log-scale water solubility of the compound, used as label

Parameters

- `featurizer` (Featurizer or str) – the featurizer to use for processing the data. Alternatively you can pass one of the names from dc.molnet.featurizers as a shortcut.
- `splitter` (Splitter or str) – the splitter to use for splitting the data into training, validation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single dataset.
- `transformers` (list of TransformerGenerators or strings) – the Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one of the names from dc.molnet.transformers.
- `reload` (bool) – if True, the first call for a particular featurizer and splitter will cache the datasets to disk, and subsequent calls will reload the cached datasets.
- `data_dir` (str) – a directory to save the raw data in
- `save_dir` (str) – a directory to save the dataset in

References

3.8.11 Factors Datasets

`load_factors(shard_size=2000, featurizer=None, split=None, reload=True)`

Loads FACTOR dataset; does not do train/test split

The Factors dataset is an in-house dataset from Merck that was first introduced in the following paper: Ramsundar, Bharath, et al. “Is multitask deep learning practical for pharma?” Journal of chemical information and modeling 57.8 (2017): 2068-2076.

It contains 1500 Merck in-house compounds that were measured for IC50 of inhibition on 12 serine proteases. Unlike most of the other datasets featured in MoleculeNet, the Factors collection does not have structures for the compounds tested since they were proprietary Merck compounds. However, the collection does feature pre-computed descriptors for these compounds.

Note that the original train/valid/test split from the source data was preserved here, so this function doesn't allow for alternate modes of splitting. Similarly, since the source data came pre-featurized, it is not possible to apply alternative featurizations.

Parameters

- `shard_size` (int, optional) – Size of the DiskDataset shards to write on disk
- `featurizer` (optional) – Ignored since featurization pre-computed
• **split** *(optional)* – Ignored since split pre-computed

• **reload** *(bool, optional)* – Whether to automatically re-load from disk

3.8.12 Freesolv Dataset

```
load_freesolv([featurizer: typing.Union[deepchem.feat.base_classes.Featurizer, str] = MATFeaturizer[], splitter:
    typing.Optional[typing.Union[deepchem.splits.splitters.Splitter, str]] = 'random', transformers:
    typing.Optional[typing.Union[deepchem.data.datasets.Dataset]] = None, **kwargs]
→
Tuple[List[str], Tuple[typing.Union[deepchem.data.datasets.Dataset, ...], List[transformers.Transformer]]]
```

Load Freesolv dataset

The FreeSolv dataset is a collection of experimental and calculated hydration free energies for small molecules in water, along with their experimental values. Here, we are using a modified version of the dataset with the molecule smile string and the corresponding experimental hydration free energies.

Random splitting is recommended for this dataset.

The raw data csv file contains columns below:

- **“mol”** - SMILES representation of the molecular structure
- **“y”** - Experimental hydration free energy

Parameters

- **featurizer** *(Featurizer or str)* – the featurizer to use for processing the data. Alternatively you can pass one of the names from dc.molnet.feature as a shortcut.

- **splitter** *(Splitter or str)* – the splitter to use for splitting the data into training, validation, and test sets. Alternatively you can pass one of the names from dc.molnet.split as a shortcut. If this is None, all the data will be included in a single dataset.

- **transformers** *(list of TransformerGenerators or strings)* – the Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one of the names from dc.molnet.transformers.

- **reload** *(bool)* – if True, the first call for a particular featurizer and splitter will cache the datasets to disk, and subsequent calls will reload the cached datasets.

- **data_dir** *(str)* – a directory to save the raw data in

- **save_dir** *(str)* – a directory to save the dataset in

References

3.8.13 HIV Datasets

```
load_hiv([featurizer: Union[deepchem.feat.base_classes.Featurizer, str] = 'ECFP', splitter:
    Optional[Union[deepchem.splits.splitters.Splitter, str]] = 'scaffold', transformers:
    List[Union[deepchem.molnet.load_function.molnet_loader.TransformerGenerator, str]] = ['balancing'],
    reload: bool = True, data_dir: Optional[typing.Union[deepchem.data.datasets.Dataset]] = None, save_dir:
    Optional[typing.Union[deepchem.data.datasets.Dataset]] = None, **kwargs]
→
Tuple[List[str], Tuple[typing.Union[deepchem.data.datasets.Dataset, ...], List[transformers.Transformer]]]
```

Load HIV dataset

3.8. MoleculeNet
The HIV dataset was introduced by the Drug Therapeutics Program (DTP) AIDS Antiviral Screen, which tested the ability to inhibit HIV replication for over 40,000 compounds. Screening results were evaluated and placed into three categories: confirmed inactive (CI), confirmed active (CA) and confirmed moderately active (CM). We further combine the latter two labels, making it a classification task between inactive (CI) and active (CA and CM).

Scaffold splitting is recommended for this dataset.

The raw data csv file contains columns below:

- “smiles”: SMILES representation of the molecular structure
- “activity”: Three-class labels for screening results: CI/CM/CA
- “HIV_active”: Binary labels for screening results: 1 (CA/CM) and 0 (CI)

Parameters

- **featurizer** *(Featurizer or str)* – the featurizer to use for processing the data. Alternatively you can pass one of the names from dc.molnet.featureizers as a shortcut.
- **splitter** *(Splitter or str)* – the splitter to use for splitting the data into training, validation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single dataset.
- **transformers** *(list of TransformerGenerators or strings)* – the Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one of the names from dc.molnet.transformers.
- **reload** *(bool)* – if True, the first call for a particular featurizer and splitter will cache the datasets to disk, and subsequent calls will reload the cached datasets.
- **data_dir** *(str)* – a directory to save the raw data in
- **save_dir** *(str)* – a directory to save the dataset in

References

3.8.14 HOPV Datasets

HOPV stands for the Harvard Organic Photovoltaic Dataset.

```python
```

Load HOPV datasets. Does not do train/test split

The HOPV datasets consist of the “Harvard Organic Photovoltaic Dataset. This dataset includes 350 small molecules and polymers that were utilized as p-type materials in OPVs. Experimental properties include: HOMO [a.u.], LUMO [a.u.], Electrochemical gap [a.u.], Optical gap [a.u.], Power conversion efficiency [%], Open circuit potential [V], Short circuit current density [mA/cm²], and fill factor [%]. Theoretical calculations in the original dataset have been removed (for now).

Parameters
• **featurizer** *(Featurizer or str)* – the featurizer to use for processing the data. Alternatively you can pass one of the names from dc.molnet.featureizers as a shortcut.

• **splitter** *(Splitter or str)* – the splitter to use for splitting the data into training, validation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single dataset.

• **transformers** *(list of TransformerGenerators or strings)* – the Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one of the names from dc.molnet.transformers.

• **reload** *(bool)* – if True, the first call for a particular featurizer and splitter will cache the datasets to disk, and subsequent calls will reload the cached datasets.

• **data_dir** *(str)* – a directory to save the raw data in

• **save_dir** *(str)* – a directory to save the dataset in

3.8.15 HPPB Datasets

```python
```

Loads the thermodynamic solubility datasets.

Parameters

• **featurizer** *(Featurizer or str)* – the featurizer to use for processing the data. Alternatively you can pass one of the names from dc.molnet.featureizers as a shortcut.

• **splitter** *(Splitter or str)* – the splitter to use for splitting the data into training, validation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single dataset.

• **transformers** *(list of TransformerGenerators or strings)* – the Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one of the names from dc.molnet.transformers.

• **reload** *(bool)* – if True, the first call for a particular featurizer and splitter will cache the datasets to disk, and subsequent calls will reload the cached datasets.

• **data_dir** *(str)* – a directory to save the raw data in

• **save_dir** *(str)* – a directory to save the dataset in

3.8.16 KAGGLE Datasets

```python
def load_kaggle(shard_size=2000, featurizer=None, splitter=None, reload=True)
```

Loads kaggle datasets. Generates if not stored already.

The Kaggle dataset is an in-house dataset from Merck that was first introduced in the following paper:

It contains 100,000 unique Merck in-house compounds that were measured on 15 enzyme inhibition and ADME/TOX datasets. Unlike most of the other datasets featured in MoleculeNet, the Kaggle collection does not
have structures for the compounds tested since they were proprietary Merck compounds. However, the collection
does feature pre-computed descriptors for these compounds.

Note that the original train/valid/test split from the source data was preserved here, so this function doesn’t allow
for alternate modes of splitting. Similarly, since the source data came pre-featurized, it is not possible to apply
alternative featurizations.

Parameters

- **shard_size** (int, optional) – Size of the DiskDataset shards to write on disk
- **featurizer** (optional) – Ignored since featurization pre-computed
- **split** (optional) – Ignored since split pre-computed
- **reload** (bool, optional) – Whether to automatically re-load from disk

3.8.17 Kinase Datasets

load_kinase(shard_size=2000, featurizer=None, split=None, reload=True)

Loads Kinase datasets, does not do train/test split

The Kinase dataset is an in-house dataset from Merck that was first introduced in the following paper: Ramsundar,
Bharath, et al. “Is multitask deep learning practical for pharma?.” Journal of chemical information and modeling
57.8 (2017): 2068-2076.

It contains 2500 Merck in-house compounds that were measured for IC50 of inhibition on 99 protein kinases.
Unlike most of the other datasets featured in MoleculeNet, the Kinase collection does not have structures for
the compounds tested since they were proprietary Merck compounds. However, the collection does feature pre-
computed descriptors for these compounds.

Note that the original train/valid/test split from the source data was preserved here, so this function doesn’t allow
for alternate modes of splitting. Similarly, since the source data came pre-featurized, it is not possible to apply
alternative featurizations.

Parameters

- **shard_size** (int, optional) – Size of the DiskDataset shards to write on disk
- **featurizer** (optional) – Ignored since featurization pre-computed
- **split** (optional) – Ignored since split pre-computed
- **reload** (bool, optional) – Whether to automatically re-load from disk

3.8.18 Lipo Datasets

**load_lipo(featurizer: Union[deepchem.feat.base_classes.Featurizer, str] = 'ECFP', splitter:
Optional[Union[deepchem.splits.splitters.Splitter, str]] = 'scaffold', transformers:
List[Union[deepchem.molnet.load_function.molnet_loader.TransformerGenerator, str]] =
['normalization'], reload: bool = True, data_dir: Optional[str] = None, save_dir: Optional[str] =
None, **kwargs) → Tuple[List[str], Tuple[deepchem.data.datasets.Dataset, ...],
List[transformers.Transformer]]**

Load Lipophilicity dataset

Lipophilicity is an important feature of drug molecules that affects both membrane permeability and solubility.
The lipophilicity dataset, curated from ChEMBL database, provides experimental results of octanol/water
distribution coefficient (logD at pH 7.4) of 4200 compounds.
Scaffold splitting is recommended for this dataset.

The raw data csv file contains columns below:

- “smiles” - SMILES representation of the molecular structure
- “exp” - Measured octanol/water distribution coefficient (logD) of the compound, used as label

Parameters

- **featurizer** *(Featurizer or str)* – the featurizer to use for processing the data. Alternatively you can pass one of the names from dc.molnet.featurizers as a shortcut.

- **splitter** *(Splitter or str)* – the splitter to use for splitting the data into training, validation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single dataset.

- **transformers** *(list of TransformerGenerators or strings)* – the Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one of the names from dc.molnet.transformers.

- **reload** *(bool)* – if True, the first call for a particular featurizer and splitter will cache the datasets to disk, and subsequent calls will reload the cached datasets.

- **data_dir** *(str)* – a directory to save the raw data in

- **save_dir** *(str)* – a directory to save the dataset in

References

3.8.19 Materials Datasets

Materials datasets include inorganic crystal structures, chemical compositions, and target properties like formation energies and band gaps. Machine learning problems in materials science commonly include predicting the value of a continuous (regression) or categorical (classification) property of a material based on its chemical composition or crystal structure. “Inverse design” is also of great interest, in which ML methods generate crystal structures that have a desired property. Other areas where ML is applicable in materials include: discovering new or modified phenomenological models that describe material behavior

```python
load_bandgap(featurizer: typing.Union[deepchem.feat.base_classes.Featurizer, str] =
ElementPropertyFingerprint[data_source='matminer'],
splitter:
typing.Optional[typing.Union[deepchem.splits.splitters.Splitter, str]] = 'random',
transformers:
typing.List[typing.Union[deepchem.molnet.load_function.molnet_loader.TransformerGenerator,
str]] = ['normalization'],
reload: bool = True, data_dir:
typing.Optional[str] = None, save_dir:
typing.Optional[str] = None, **kwargs) → Tuple[List[deepchem.data.datasets.Dataset,
...], List[transformers.Transformer]]
```

Load band gap dataset.

Contains 4604 experimentally measured band gaps for inorganic crystal structure compositions. In benchmark studies, random forest models achieved a mean average error of 0.45 eV during five-fold nested cross validation on this dataset.

For more details on the dataset see [1]_. For more details on previous benchmarks for this dataset, see [2]_.

Parameters

- **featurizer** *(Featurizer or str)* – the featurizer to use for processing the data. Alternatively you can pass one of the names from dc.molnet.featurizers as a shortcut.
• **saver** (`Saver` or `str`) – the saver to use for saving the data into training, validation, and test sets. Alternatively, you can pass one of the names from `dc.molnet.savers` as a shortcut. If this is None, all the data will be included in a single dataset.

• **transformers** (`list of TransformerGenerators or strings`) – the Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one of the names from `dc.molnet.transformers`.

• **reload** (`bool`) – if True, the first call for a particular featurizer and splitter will cache the datasets to disk, and subsequent calls will reload the cached datasets.

• **data_dir** (`str`) – a directory to save the raw data in

• **save_dir** (`str`) – a directory to save the dataset in

Returns

```
tasks, datasets, transformers
```

- **tasks** (`list`) Column names corresponding to machine learning target variables.
- **datasets** (`tuple`) train, validation, test splits of data as `deepchem.data.datasets.Dataset` instances.
- **transformers** (`list`) `deepchem.trans.transformers.Transformer` instances applied to dataset.

Return type `tuple`

References

Examples

```python
>>> import deepchem as dc
>>> tasks, datasets, transformers = dc.molnet.load_bandgap()
>>> train_dataset, val_dataset, test_dataset = datasets
>>> n_tasks = len(tasks)
>>> n_features = train_dataset.get_data_shape()[0]
>>> model = dc.models.MultitaskRegressor(n_tasks, n_features)
```

`load_perovskite` (`featurizer` typing.Union[deepchem.feat.base_classes.Featurizer, str] = DummyFeaturizer[],
 `splitter` typing.Optional[typing.Union[deepchem.splits.splitters.Splitter, str]] = 'random',
 `transformers`: typing.List[typing.Union[deepchem.molnet.load_function.molnet_loader.TransformerGenerator, str]] = ['normalization'],
 `reload` bool = True, `data_dir` typing.Optional[str] = None, `save_dir`: typing.Optional[str] = None, `**kwargs`) -> Tuple[List[str], List[deepchem.data.datasets.Dataset], ...

Load perovskite dataset.

Contains 18928 perovskite structures and their formation energies. In benchmark studies, random forest models and crystal graph neural networks achieved mean average error of 0.23 and 0.05 eV/atom, respectively, during five-fold nested cross validation on this dataset.

For more details on the dataset see [1]. For more details on previous benchmarks for this dataset, see [2].

Parameters

- **featurizer** (`Featurizer` or `str`) – the featurizer to use for processing the data. Alternatively, you can pass one of the names from `dc.molnet.featureizers` as a shortcut.
• **splits** (Splitter or str) – the splitter to use for splitting the data into training, validation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single dataset.

• **transformers** (list of TransformerGenerators or strings) – the Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one of the names from dc.molnet.transformers.

• **reload** (bool) – if True, the first call for a particular featurizer and splitter will cache the datasets to disk, and subsequent calls will reload the cached datasets.

• **data_dir** (str) – a directory to save the raw data in

• **save_dir** (str) – a directory to save the dataset in

Returns

tasks, datasets, transformers –

tasks [list] Column names corresponding to machine learning target variables.

datasets [tuple] train, validation, test splits of data as deepchem.data.datasets.Dataset instances.

transformers [list] deepchem.trans.transformers.Transformer instances applied to dataset.

Return type tuple

References

Examples

``` python
>>> import deepchem as dc
>>> tasks, datasets, transformers = dc.molnet.load_perovskite()
>>> train_dataset, val_dataset, test_dataset = datasets
>>> model = dc.models.CGCNNModel(mode='regression', batch_size=32, learning_rate=0.001)
```


Load mp formation energy dataset.

Contains 132752 calculated formation energies and inorganic crystal structures from the Materials Project database. In benchmark studies, random forest models achieved a mean average error of 0.116 eV/atom during five-folded nested cross validation on this dataset.

For more details on the dataset see [1]_. For more details on previous benchmarks for this dataset, see [2]_.

Parameters

• **featurizer** (Featurizer or str) – the featurizer to use for processing the data. Alternatively you can pass one of the names from dc.molnet.featurizers as a shortcut.
• **splitter** *(Splitter or str)* – the splitter to use for splitting the data into training, validation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single dataset.

• **transformers** *(list of TransformerGenerators or strings)* – the Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one of the names from dc.molnet.transformers.

• **reload** *(bool)* – if True, the first call for a particular featurizer and splitter will cache the datasets to disk, and subsequent calls will reload the cached datasets.

• **data_dir** *(str)* – a directory to save the raw data in

• **save_dir** *(str)* – a directory to save the dataset in

Returns

tasks, datasets, transformers –

tasks *(list)* Column names corresponding to machine learning target variables.

datasets *(tuple)* train, validation, test splits of data as deepchem.data.datasets.Dataset instances.

transformers *(list)* deepchem.trans.transformers.Transformer instances applied to dataset.

Return type tuple

References

Examples

```python
>>> import deepchem as dc
>>> tasks, datasets, transformers = dc.molnet.load_mp_formation_energy()
>>> train_dataset, val_dataset, test_dataset = datasets
>>> n_tasks = len(tasks)
>>> n_features = train_dataset.get_data_shape()[0]
>>> model = dc.models.MultitaskRegressor(n_tasks, n_features)
```

load_mp_metallicity *(featurizer: typing.Union[deepchem.feat.base_classes.Featurizer, str] = SineCoulombMatrix[max_atoms=100, flatten=True], splitter:
typing.Optional[typing.Union[deepchem.splits.splitters.Splitter, str]] = 'random',
save_dir: typing.Optional[str] = None, **kwargs) → Tuple[List[str],
Tuple[deepchem.data.datasets.Dataset, ...], List[transformers.Transformer]]

Load mp formation energy dataset.

Contains 106113 inorganic crystal structures from the Materials Project database labeled as metals or nonmetals. In benchmark studies, random forest models achieved a mean ROC-AUC of 0.9 during five-folded nested cross validation on this dataset.

For more details on the dataset see [1]_. For more details on previous benchmarks for this dataset, see [2]_.

Parameters
- **featurizer** *(Featurizer or str)* – the featurizer to use for processing the data. Alternatively you can pass one of the names from `dc.molnet.featurizers` as a shortcut.

- **splitter** *(Splitter or str)* – the splitter to use for splitting the data into training, validation, and test sets. Alternatively you can pass one of the names from `dc.molnet.splitters` as a shortcut. If this is None, all the data will be included in a single dataset.

- **transformers** *(list of TransformerGenerators or strings)* – the Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one of the names from `dc.molnet.transformers`.

- **reload** *(bool)* – if True, the first call for a particular featurizer and splitter will cache the datasets to disk, and subsequent calls will reload the cached datasets.

- **data_dir** *(str)* – a directory to save the raw data in

- **save_dir** *(str)* – a directory to save the dataset in

Returns

- **tasks, datasets, transformers**
 - **tasks** *(list)* Column names corresponding to machine learning target variables.
 - **datasets** *(tuple)* train, validation, test splits of data as `deepchem.data.datasets.Dataset` instances.
 - **transformers** *(list)* `deepchem.trans.transformers.Transformer` instances applied to dataset.

Return type *tuple*

References

Examples

```python
>>> import deepchem as dc
>>> tasks, datasets, transformers = dc.molnet.load_mp_metallicity()
>>> train_dataset, val_dataset, test_dataset = datasets
>>> n_tasks = len(tasks)
>>> n_features = train_dataset.get_data_shape()[0]
>>> model = dc.models.MultitaskRegressor(n_tasks, n_features)
```

3.8.20 MUV Datasets

Load MUV dataset

The Maximum Unbiased Validation (MUV) group is a benchmark dataset selected from PubChem BioAssay by applying a refined nearest neighbor analysis.

The MUV dataset contains 17 challenging tasks for around 90 thousand compounds and is specifically designed for validation of virtual screening techniques.
Scaffold splitting is recommended for this dataset.

The raw data csv file contains columns below:

- “mol_id” - PubChem CID of the compound
- “smiles” - SMILES representation of the molecular structure
- “MUV-XXX” - Measured results (Active/Inactive) for bioassays

Parameters

- `featurizer (Featurizer or str)` – the featurizer to use for processing the data. Alternatively you can pass one of the names from dc.molnet.featureizers as a shortcut.
- `splitter (Splitter or str)` – the splitter to use for splitting the data into training, validation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single dataset.
- `transformers (list of TransformerGenerators or strings)` – the Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one of the names from dc.molnet.transformers.
- `reload (bool)` – if True, the first call for a particular featurizer and splitter will cache the datasets to disk, and subsequent calls will reload the cached datasets.
- `data_dir (str)` – a directory to save the raw data in
- `save_dir (str)` – a directory to save the dataset in

References

3.8.21 NCI Datasets

Load NCI dataset.

Parameters

- `featurizer (Featurizer or str)` – the featurizer to use for processing the data. Alternatively you can pass one of the names from dc.molnet.featureizers as a shortcut.
- `splitter (Splitter or str)` – the splitter to use for splitting the data into training, validation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single dataset.
- `transformers (list of TransformerGenerators or strings)` – the Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one of the names from dc.molnet.transformers.
- `reload (bool)` – if True, the first call for a particular featurizer and splitter will cache the datasets to disk, and subsequent calls will reload the cached datasets.
- `data_dir (str)` – a directory to save the raw data in
- `save_dir (str)` – a directory to save the dataset in
3.8.22 PCBA Datasets

Load PCBA dataset

PubChem BioAssay (PCBA) is a database consisting of biological activities of small molecules generated by high-throughput screening. We use a subset of PCBA, containing 128 bioassays measured over 400 thousand compounds, used by previous work to benchmark machine learning methods.

Random splitting is recommended for this dataset.

The raw data csv file contains columns below:
- “mol_id” - PubChem CID of the compound
- “smiles” - SMILES representation of the molecular structure

Parameters
- \texttt{featurizer} (Featurizer or str) – the featurizer to use for processing the data. Alternatively you can pass one of the names from dc.molnet.featurizers as a shortcut.
- \texttt{splitter} (Splitter or str) – the splitter to use for splitting the data into training, validation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single dataset.
- \texttt{transformers} (list of TransformerGenerators or strings) – the Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one of the names from dc.molnet.transformers.
- \texttt{reload} (bool) – if True, the first call for a particular featurizer and splitter will cache the datasets to disk, and subsequent calls will reload the cached datasets.
- \texttt{data_dir} (str) – a directory to save the raw data in
- \texttt{save_dir} (str) – a directory to save the dataset in

References

3.8.23 PDBBIND Datasets

Load PDBBind dataset.

The PDBBind dataset includes experimental binding affinity data and structures for 4852 protein-ligand complexes from the “refined set” and 12800 complexes from the “general set” in PDBBind v2019 and 193 complexes from the “core set” in PDBBind v2013. The refined set removes data with obvious problems in 3D structure,
Random splitting is recommended for this dataset.

The raw dataset contains the columns below:

- “ligand” - SDF of the molecular structure
- “protein” - PDB of the protein structure
- “CT_TOX” - Clinical trial results

Parameters

- **featurizer** (ComplexFeaturizer or str) – the complex featurizer to use for processing the data. Alternatively you can pass one of the names from dc.molnet.featurizers as a shortcut.
- **splitter** (Splitter or str) – the splitter to use for splitting the data into training, validation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single dataset.
- **transformers** (list of TransformerGenerators or strings) – the Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one of the names from dc.molnet.transformers.
- **reload** (bool) – if True, the first call for a particular featurizer and splitter will cache the datasets to disk, and subsequent calls will reload the cached datasets.
- **data_dir** (str) – a directory to save the raw data in
- **save_dir** (str) – a directory to save the dataset in
- **pocket** (bool (default True)) – If true, use only the binding pocket for featurization.
- **set_name** (str (default ‘core’)) – Name of dataset to download. ‘refined’, ‘general’, and ‘core’ are supported.

Returns

tasks, datasets, transformers –

- **tasks**: list Column names corresponding to machine learning target variables.
- **datasets**: tuple train, validation, test splits of data as deepchem.data.datasets.Dataset instances.
- **transformers**: list deepchem.trans.transformers.Transformer instances applied to dataset.

Return type tuple
3.8.24 PPB Datasets

`load_ppb`(
 featurizer: Union[deepchem.feat.base_classes.Featurizer, str] = 'ECFP',
 splitter: Optional[Union[deepchem.splits.splitters.Splitter, str]] = 'scaffold',
 transformers: List[Union[deepchem.molnet.load_function.molnet_loader.TransformerGenerator, str]] = ['normalization'],
 reload: bool = True, data_dir: Optional[str] = None, save_dir: Optional[str] = None,
 **kwargs)
→
 Tuple[List[str], Tuple[deepchem.data.datasets.Dataset, ...],
 List[transformers.Transformer]]

Load PPB datasets.

Parameters

- **featurizer** (Featurizer or str) – the featurizer to use for processing the data. Alternatively you can pass one of the names from dc.molnet.featurizers as a shortcut.

- **splitter** (Splitter or str) – the splitter to use for splitting the data into training, validation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single dataset.

- **transformers** (list of TransformerGenerators or strings) – the Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one of the names from dc.molnet.transformers.

- **reload** (bool) – if True, the first call for a particular featurizer and splitter will cache the datasets to disk, and subsequent calls will reload the cached datasets.

- **data_dir** (str) – a directory to save the raw data in

- **save_dir** (str) – a directory to save the dataset in

3.8.25 QM7 Datasets

`load_qm7`(
 featurizer: typing.Union[deepchem.feat.base_classes.Featurizer, str] = CoulombMatrix[max_atoms=23, remove_hydrogens=False, randomize=False, upper_tri=False, n_samples=1, seed=None],
 transformers: typing.List[typing.Union[deepchem.molnet.load_function.molnet_loader.TransformerGenerator, str]] = ['normalization'],
 reload: bool = True, data_dir: typing.Optional[str] = None, save_dir: typing.Optional[str] = None,
 **kwargs)
→
 Tuple[List[str], Tuple[deepchem.data.datasets.Dataset, ...],
 List[transformers.Transformer]]

Load QM7 dataset

QM7 is a subset of GDB-13 (a database of nearly 1 billion stable and synthetically accessible organic molecules) containing up to 7 heavy atoms C, N, O, and S. The 3D Cartesian coordinates of the most stable conformations and their atomization energies were determined using ab-initio density functional theory (PBE0/tier2 basis set). This dataset also provided Coulomb matrices as calculated in [Rupp et al. PRL, 2012]:

Stratified splitting is recommended for this dataset.

The data file (.mat format, we recommend using scipy.io.loadmat for python users to load this original data) contains five arrays:

- **“X”** - (7165 x 23 x 23), Coulomb matrices
- **“T”** - (7165), atomization energies (unit: kcal/mol)
- **“P”** - (5 x 1433), cross-validation splits as used in [Montavon et al. NIPS, 2012]
• “Z” - (7165 x 23), atomic charges
• “R” - (7165 x 23 x 3), cartesian coordinate (unit: Bohr) of each atom in the molecules

Parameters

• **featurizer** *(Featurizer or str)* – the featurizer to use for processing the data. Alternatively you can pass one of the names from dc.molnet.featurizers as a shortcut.

• **splitter** *(Splitter or str)* – the splitter to use for splitting the data into training, validation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single dataset.

• **transformers** *(list of TransformerGenerators or strings)* – the Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one of the names from dc.molnet.transformers.

• **reload** *(bool)* – if True, the first call for a particular featurizer and splitter will cache the datasets to disk, and subsequent calls will reload the cached datasets.

• **data_dir** *(str)* – a directory to save the raw data in

• **save_dir** *(str)* – a directory to save the dataset in

Note: DeepChem 2.4.0 has turned on sanitization for this dataset by default. For the QM7 dataset, this means that calling this function will return 6838 compounds instead of 7160 in the source dataset file. This appears to be due to valence specification mismatches in the dataset that weren’t caught in earlier more lax versions of RDKit. Note that this may subtly affect benchmarking results on this dataset.

References

3.8.26 QM8 Datasets

Load QM8 dataset

QM8 is the dataset used in a study on modeling quantum mechanical calculations of electronic spectra and excited state energy of small molecules. Multiple methods, including time-dependent density functional theories (TDDFT) and second-order approximate coupled-cluster (CC2), are applied to a collection of molecules that include up to eight heavy atoms (also a subset of the GDB-17 database). In our collection, there are four excited state properties calculated by four different methods on 22 thousand samples:

S0 -> S1 transition energy E1 and the corresponding oscillator strength f1
S0 -> S2 transition energy E2 and the corresponding oscillator strength f2

E1, E2, f1, f2 are in atomic units. f1, f2 are in length representation

Random splitting is recommended for this dataset.

The source data contain:
• qm8.sdf: molecular structures
• qm8.sdf.csv: tables for molecular properties
 – Column 1: Molecule ID (gdb9 index) mapping to the .sdf file
 – Columns 2-5: RI-CC2/def2TZVP
 – Columns 6-9: LR-TDPBE0/def2SVP
 – Columns 10-13: LR-TDPBE0/def2TZVP
 – Columns 14-17: LR-TDCAM-B3LYP/def2TZVP

Parameters

• **featurizer** *(Featurizer or str)* – the featurizer to use for processing the data. Alternatively you can pass one of the names from dc.molnet.featurizers as a shortcut.

• **splitter** *(Splitter or str)* – the splitter to use for splitting the data into training, validation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single dataset.

• **transformers** *(list of TransformerGenerators or strings)* – the Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one of the names from dc.molnet.transformers.

• **reload** *(bool)* – if True, the first call for a particular featurizer and splitter will cache the datasets to disk, and subsequent calls will reload the cached datasets.

• **data_dir** *(str)* – a directory to save the raw data in

• **save_dir** *(str)* – a directory to save the dataset in

Note: DeepChem 2.4.0 has turned on sanitization for this dataset by default. For the QM8 dataset, this means that calling this function will return 21747 compounds instead of 21786 in the source dataset file. This appears to be due to valence specification mismatches in the dataset that weren’t caught in earlier more lax versions of RDKit. Note that this may subtly affect benchmarking results on this dataset.

References

3.8.27 QM9 Datasets

```python
```

Load QM9 dataset

QM9 is a comprehensive dataset that provides geometric, energetic, electronic and thermodynamic properties for a subset of GDB-17 database, comprising 134 thousand stable organic molecules with up to 9 heavy atoms. All molecules are modeled using density functional theory (B3LYP/6-31G(2df,p) based DFT).

Random splitting is recommended for this dataset.
The source data contain:

- **qm9.sdf**: molecular structures
- **qm9.sdf.csv**: tables for molecular properties
 - “mol_id” - Molecule ID (gdb9 index) mapping to the .sdf file
 - “A” - Rotational constant (unit: GHz)
 - “B” - Rotational constant (unit: GHz)
 - “C” - Rotational constant (unit: GHz)
 - “mu” - Dipole moment (unit: D)
 - “alpha” - Isotropic polarizability (unit: Bohr^3)
 - “homo” - Highest occupied molecular orbital energy (unit: Hartree)
 - “lumo” - Lowest unoccupied molecular orbital energy (unit: Hartree)
 - “gap” - Gap between HOMO and LUMO (unit: Hartree)
 - “r2” - Electronic spatial extent (unit: Bohr^2)
 - “zpve” - Zero point vibrational energy (unit: Hartree)
 - “u0” - Internal energy at 0K (unit: Hartree)
 - “u298” - Internal energy at 298.15K (unit: Hartree)
 - “h298” - Enthalpy at 298.15K (unit: Hartree)
 - “g298” - Free energy at 298.15K (unit: Hartree)
 - “cv” - Heat capacity at 298.15K (unit: cal/(mol*K))
 - “u0_atom” - Atomization energy at 0K (unit: kcal/mol)
 - “u298_atom” - Atomization energy at 298.15K (unit: kcal/mol)
 - “h298_atom” - Atomization enthalpy at 298.15K (unit: kcal/mol)
 - “g298_atom” - Atomization free energy at 298.15K (unit: kcal/mol)

“u0_atom” ~ “g298_atom” (used in MoleculeNet) are calculated from the differences between “u0” ~ “g298” and sum of reference energies of all atoms in the molecules, as given in [https://figshare.com/articles/Atomref%3A_Reference_thermochemical_energies_of_H%C2%80%2CC%C2%80%2CN%C2%80%2CO%C2%80%2CF_atoms/1057643](https://figshare.com/articles/Atomref%3A_Reference_thermochemical_energies_of_H%2C_C%2C_N%2C_O%2C_FAtoms/1057643)

Parameters

- **featurizer** ([Featurizer](https://deepchem.io/docs/featurizers/) or **str**) – the featurizer to use for processing the data. Alternatively you can pass one of the names from dc.molnet.featurizers as a shortcut.
- **splitter** ([Splitter](https://deepchem.io/docs/splitters/) or **str**) – the splitter to use for splitting the data into training, validation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single dataset.
- **transformers** ([list of TransformerGenerators](https://deepchem.io/docs/transformers/) or **strings**) – the Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one of the names from dc.molnet.transformers.
- **reload** (**bool**) – if True, the first call for a particular featurizer and splitter will cache the datasets to disk, and subsequent calls will reload the cached datasets.
- **data_dir** (**str**) – a directory to save the raw data in
- **save_dir** (**str**) – a directory to save the dataset in
Note: DeepChem 2.4.0 has turned on sanitization for this dataset by default. For the QM9 dataset, this means that calling this function will return 132480 compounds instead of 133885 in the source dataset file. This appears to be due to valence specification mismatches in the dataset that weren’t caught in earlier more lax versions of RDKit. Note that this may subtly affect benchmarking results on this dataset.

References

3.8.28 SAMPL Datasets

load_sampl

```python
load_sampl([featurizer: Union[deepchem.feat.base_classes.Featurizer, str] = 'ECFP', splitter:
Optional[Union[deepchem.splits.splitters.Splitter, str]] = 'scaffold', transformers:
List[Union[deepchem.molnet.load_function.molnet_loader.TransformerGenerator, str]] =
['normalization'], reload: bool = True, data_dir: Optional[str] = None, save_dir: Optional[str] =
None, **kwargs) → Tuple[List[str], Tuple[deepchem.data.datasets.Dataset, ...],
List[transformers.Transformer]]
```

Load SAMPL(FreeSolv) dataset

The Free Solvation Database, FreeSolv(SAMPL), provides experimental and calculated hydration free energy of small molecules in water. The calculated values are derived from alchemical free energy calculations using molecular dynamics simulations. The experimental values are included in the benchmark collection.

Random splitting is recommended for this dataset.

The raw data csv file contains columns below:

- “iupac” - IUPAC name of the compound
- “smiles” - SMILES representation of the molecular structure
- “expt” - Measured solvation energy (unit: kcal/mol) of the compound, used as label
- “calc” - Calculated solvation energy (unit: kcal/mol) of the compound

Parameters

- **featurizer** *(Featurizer or str)* – the featurizer to use for processing the data. Alternatively you can pass one of the names from dc.molnet.featurizers as a shortcut.

- **splitter** *(Splitter or str)* – the splitter to use for splitting the data into training, validation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single dataset.

- **transformers** *(list of TransformerGenerators or strings)* – the Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one of the names from dc.molnet.transformers.

- **reload** *(bool)* – if True, the first call for a particular featurizer and splitter will cache the datasets to disk, and subsequent calls will reload the cached datasets.

- **data_dir** *(str)* – a directory to save the raw data in

- **save_dir** *(str)* – a directory to save the dataset in
References

3.8.29 SIDER Datasets

load_sider(
featurizer: Union[deepchem.feat.base_classes.Featurizer, str] = ‘ECFP’,
splitter: Optional[Union[deepchem.splits.splitters.Splitter, str]] = ‘scaffold’,
transformers: List[Union[deepchem.molnet.load_function.molnet_loader.TransformerGenerator, str]] =
[‘balancing’],
reload: bool = True, data_dir: Optional[str] = None, save_dir: Optional[str] = None,
**kwargs) → Tuple[List[str], Tuple[deepchem.data.datasets.Dataset, ...], List[transformers.Transformer]]

Load SIDER dataset

The Side Effect Resource (SIDER) is a database of marketed drugs and adverse drug reactions (ADR). The version of the SIDER dataset in DeepChem has grouped drug side effects into 27 system organ classes following MedDRA classifications measured for 1427 approved drugs.

Random splitting is recommended for this dataset.

The raw data csv file contains columns below:

- “smiles”: SMILES representation of the molecular structure
- “Hepatobiliary disorders” ~ “Injury, poisoning and procedural complications”: Recorded side effects for the drug. Please refer to http://sideeffects.embl.de/se/?page=98 for details on ADRs.

Parameters

- **featurizer** (Featurizer or str) – the featurizer to use for processing the data. Alternatively you can pass one of the names from dc.molnet.featureizers as a shortcut.
- **splitter** (Splitter or str) – the splitter to use for splitting the data into training, validation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single dataset.
- **transformers** (list of TransformerGenerators or strings) – the Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one of the names from dc.molnet.transformers.
- **reload** (bool) – if True, the first call for a particular featurizer and splitter will cache the datasets to disk, and subsequent calls will reload the cached datasets.
- **data_dir** (str) – a directory to save the raw data in
- **save_dir** (str) – a directory to save the dataset in

References

3.8.30 Thermosol Datasets

load_thermosol(
featurizer: Union[deepchem.feat.base_classes.Featurizer, str] = ‘ECFP’,
splitter: Optional[Union[deepchem.splits.splitters.Splitter, str]] = ‘scaffold’,
transformers: List[Union[deepchem.molnet.load_function.molnet_loader.TransformerGenerator, str]] = [],

Loads the thermodynamic solubility datasets.

Parameters
• **featurizer** *(Featurizer or str)* – the featurizer to use for processing the data. Alternatively you can pass one of the names from `dc.molnet.featurizers` as a shortcut.

• **splitter** *(Splitter or str)* – the splitter to use for splitting the data into training, validation, and test sets. Alternatively you can pass one of the names from `dc.molnet.splitters` as a shortcut. If this is None, all the data will be included in a single dataset.

• **transformers** *(list of TransformerGenerators or strings)* – the Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one of the names from `dc.molnet.transformers`.

• **reload** *(bool)* – if True, the first call for a particular featurizer and splitter will cache the datasets to disk, and subsequent calls will reload the cached datasets.

• **data_dir** *(str)* – a directory to save the raw data in

• **save_dir** *(str)* – a directory to save the dataset in

3.8.31 Tox21 Datasets

Load Tox21 dataset

The “Toxicology in the 21st Century” (Tox21) initiative created a public database measuring toxicity of compounds, which has been used in the 2014 Tox21 Data Challenge. This dataset contains qualitative toxicity measurements for 8k compounds on 12 different targets, including nuclear receptors and stress response pathways.

Random splitting is recommended for this dataset.

The raw data csv file contains columns below:

- “smiles” - SMILES representation of the molecular structure
- “NR-XXX” - Nuclear receptor signaling bioassays results
- “SR-XXX” - Stress response bioassays results

please refer to https://tripod.nih.gov/tox21/challenge/data.jsp for details.

Parameters

• **featurizer** *(Featurizer or str)* – the featurizer to use for processing the data. Alternatively you can pass one of the names from `dc.molnet.featurizers` as a shortcut.

• **splitter** *(Splitter or str)* – the splitter to use for splitting the data into training, validation, and test sets. Alternatively you can pass one of the names from `dc.molnet.splitters` as a shortcut. If this is None, all the data will be included in a single dataset.

• **transformers** *(list of TransformerGenerators or strings)* – the Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one of the names from `dc.molnet.transformers`.

• **reload** *(bool)* – if True, the first call for a particular featurizer and splitter will cache the datasets to disk, and subsequent calls will reload the cached datasets.

• **data_dir** *(str)* – a directory to save the raw data in

3.8. MoleculeNet
• **save_dir** (*str*) – a directory to save the dataset in

References

3.8.32 Toxcast Datasets

```python
load_toxcast(featurizer: Union[deepchem.feat.base_classes.Featurizer, str] = 'ECFP', splitter:
    Optional[Union[deepchem.splits.splitters.Splitter, str]] = 'scaffold', transformers:
    List[Union[deepchem.molnet.load_function.molnet_loader.TransformerGenerator, str]] =
    ['balancing'], reload: bool = True, data_dir: Optional[str] = None, save_dir: Optional[str] =
    None, **kwargs) → Tuple[List[str], Tuple[deepchem.data.datasets.Dataset, ...],
    List[transformers.Transformer]]
```

Load Toxcast dataset

ToxCast is an extended data collection from the same initiative as Tox21, providing toxicology data for a large library of compounds based on in vitro high-throughput screening. The processed collection includes qualitative results of over 600 experiments on 8k compounds.

Random splitting is recommended for this dataset.

The raw data csv file contains columns below:

- “smiles”: SMILES representation of the molecular structure
- “ACEA_T47D_80hr_Negative” ~ “Tanguay_ZF_120hpf_YSE_up”: Bioassays results. Please refer to the section “high-throughput assay information” at https://www.epa.gov/chemical-research/toxicity-forecaster-toxcasttm-data for details.

Parameters

- **featurizer** (*Featurizer* or *str*) – the featurizer to use for processing the data. Alternatively you can pass one of the names from dc.molnet.feature as a shortcut.

- **splitter** (*Splitter* or *str*) – the splitter to use for splitting the data into training, validation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single dataset.

- **transformers** (*list of TransformerGenerators or strings*) – the Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one of the names from dc.molnet.transformers.

- **reload** (*bool*) – if True, the first call for a particular featurizer and splitter will cache the datasets to disk, and subsequent calls will reload the cached datasets.

- **data_dir** (*str*) – a directory to save the raw data in

- **save_dir** (*str*) – a directory to save the dataset in
Load USPTO Datasets.

The USPTO dataset consists of over 1.8 Million organic chemical reactions extracted from US patents and patent applications. The dataset contains the reactions in the form of reaction SMILES, which have the general format: reactant>reagent>product.

Molnet provides ability to load subsets of the USPTO dataset namely MIT, STEREO and 50K. The MIT dataset contains around 479K reactions, curated by Jin et al. The STEREO dataset contains around 1 Million Reactions, it does not have duplicates and the reactions include stereocchemical information. The 50K dataset contains 50,000 reactions and is the benchmark for retrosynthesis predictions. The reactions are additionally classified into 10 reaction classes. The canonicalized version of the dataset used by the loader is the same as that used by Somnath et. al.

The loader uses the SpecifiedSplitter to use the same splits as specified by Schwaller et. al and Dai et. al. Custom splitters could also be used. There is a toggle in the loader to skip the source/target transformation needed for seq2seq tasks. There is an additional toggle to load the dataset with the reagents and reactants separated or mixed. This alters the entries in source by replacing the ‘>’ with ‘.’, effectively loading them as an unified SMILES string.

Parameters

- **featurizer** (Featurizer or str) – the featurizer to use for processing the data. Alternatively you can pass one of the names from dc.molnet.feature as a shortcut.
- **splitter** (Splitter or str) – the splitter to use for splitting the data into training, validation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single dataset.
- **transformers** (list of TransformerGenerators or strings) – the Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one of the names from dc.molnet.transformers.
- **reload** (bool) – if True, the first call for a particular featurizer and splitter will cache the datasets to disk, and subsequent calls will reload the cached datasets.
- **data_dir** (str) – a directory to save the raw data in.
- **save_dir** (str) – a directory to save the dataset in.
- **subset** (str (default 'MIT')) – Subset of dataset to download. ‘FULL’, ‘MIT’, ‘STEREO’, and ‘50K’ are supported.
- **sep_reagent** (bool (default True)) – Toggle to load dataset with reactants and reagents either separated or mixed.
- **skip_transform** (bool (default True)) – Toggle to skip the source/target transformation.

Returns

tasks, datasets, transformers –
tasks [list] Column names corresponding to machine learning target variables.

datasets [tuple] Train, validation, test splits of data as `deepchem.data.datasets.Dataset` instances.

transformers [list] `deepchem.trans.transformers.Transformer` instances applied to dataset.

Return type tuple

References

3.8.34 UV Datasets

```python
load_uv(shard_size=2000, featurizer=None, split=None, reload=True)
```

Load UV dataset; does not do train/test split

The UV dataset is an in-house dataset from Merck that was first introduced in the following paper: Ramsundar, Bharath, et al. “Is multitask deep learning practical for pharma?” Journal of chemical information and modeling 57.8 (2017): 2068-2076.

The UV dataset tests 10,000 of Merck’s internal compounds on 190 absorption wavelengths between 210 and 400 nm. Unlike most of the other datasets featured in MoleculeNet, the UV collection does not have structures for the compounds tested since they were proprietary Merck compounds. However, the collection does feature pre-computed descriptors for these compounds.

Note that the original train/valid/test split from the source data was preserved here, so this function doesn’t allow for alternate modes of splitting. Similarly, since the source data came pre-featurized, it is not possible to apply alternative featurizations.

Parameters

- **shard_size** *(int, optional)* – Size of the DiskDataset shards to write on disk
- **featurizer** *(optional)* – Ignored since featurization pre-computed
- **split** *(optional)* – Ignored since split pre-computed
- **reload** *(bool, optional)* – Whether to automatically re-load from disk

3.8.35 ZINC15 Datasets

```python
```

Load zinc15.

ZINC15 is a dataset of over 230 million purchasable compounds for virtual screening of small molecules to identify structures that are likely to bind to drug targets. ZINC15 data is currently available in 2D (SMILES string) format.

MolNet provides subsets of 250K, 1M, and 10M “lead-like” compounds from ZINC15. The full dataset of 270M “goldilocks” compounds is also available. Compounds in ZINC15 are labeled by their molecular weight and LogP (solubility) values. Each compound also has information about how readily available (purchasable) it is and its reactivity. Lead-like compounds have molecular weight between 300 and 350 Daltons and LogP between
-1 and 3.5. Goldilocks compounds are lead-like compounds with LogP values further restricted to between 2 and 3.

If `reload = True` and `data_dir (save_dir)` is specified, the loader will attempt to load the raw dataset (featurized dataset) from disk. Otherwise, the dataset will be downloaded from the DeepChem AWS bucket.

For more information on ZINC15, please see [1]_ and https://zinc15.docking.org/.

Parameters

- `featurizer (Featurizer or str)` – the featurizer to use for processing the data. Alternatively you can pass one of the names from dc.molnet.featureizers as a shortcut.

- `splitter (Splitter or str)` – the splitter to use for splitting the data into training, validation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single dataset.

- `transformers (list of TransformerGenerators or strings)` – the Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one of the names from dc.molnet.transformers.

- `reload (bool)` – if True, the first call for a particular featurizer and splitter will cache the datasets to disk, and subsequent calls will reload the cached datasets.

- `data_dir (str)` – a directory to save the raw data in

- `save_dir (str)` – a directory to save the dataset in

- `size (str (default '250K'))` – Size of dataset to download. ‘250K’, ‘1M’, ‘10M’, and ‘270M’ are supported.

- `format (str (default '2D'))` – Format of data to download. 2D SMILES strings or 3D SDF files.

Returns

- `tasks, datasets, transformers` –

 - `tasks` [list] Column names corresponding to machine learning target variables.

 - `datasets` [tuple] train, validation, test splits of data as deepchem.data.datasets.Dataset instances.

 - `transformers` [list] deepchem.trans.transformers.Transformer instances applied to dataset.

Return type tuple

Notes

The total ZINC dataset with SMILES strings contains hundreds of millions of compounds and is over 100GB! ZINC250K is recommended for experimentation. The full set of 270M goldilocks compounds is 23GB.
References

3.8.36 Platinum Adsorption Dataset

```
load_Platinum_Adsorption(featurizer: typing.Union[deepchem.feat.base_classes.Featurizer, str] =
    SineCoulombMatrix[max_atoms=100, flatten=True], splitter:
    typing.Optional[typing.Union[deepchem.splits.splitters.Splitter, str]] = 'random',
    transformers: typing.List[typing.Union[deepchem.molnet.load_function.molnet_loader.TransformerGenerator,
                                             str]] = [], reload: bool = True, data_dir: typing.Optional[typing.Union[deepchem.molnet.load_function.molnet_loader.TransformerGenerator,
                                                                                     str]] = None, save_dir:
    typing.Optional[str] = None, **kwargs) → Tuple[List[str],
    Tuple[deepchem.data.datasets.Dataset, ...], List[transformers.Transformer]]
```

Load Platinum Adsorption Dataset

The dataset consist of different configurations of Adsorbates (i.e N and NO) on Platinum surface represented as
Lattice and their formation energy. There are 648 different adsorbate configuration in this datasets represented as
Pymatgen Structure objects.

1. Pymatgen structure object with site_properties with following key value.
 - “SiteTypes”, mentioning if it is a active site “A1” or spectator site “S1”.
 - “oss”, different occupational sites. For spectator sites make it -1.

Parameters

- **featurizer** (Featurizer (default LCNNFeaturizer)) – the featurizer to use for processing the data. Recommened to use the LCNNFeaturiser.
- **splitter** (Splitter (default RandomSplitter)) – the splitter to use for splitting the data into training, validation, and test sets. Alternatively you can pass one of the names from
dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single dataset.
- **transformers** (list of TransformerGenerators or strings. the Transformers to) – apply to the data and appproprite featuriser. Does’nt require
 any transformation for LCNN_featuriser
- **reload** (bool) – if True, the first call for a particular featurizer and splitter will cache the datasets to disk, and subsequent calls will reload the cached datasets.
- **data_dir** (str) – a directory to save the raw data in
- **save_dir** (str, optional (default None)) – a directory to save the dataset in

References

Examples

```python
>>> import deepchem as dc
>>> tasks, datasets, transformers = load_Platinum_Adsorption(
    reload=True,
    data_dir=data_path,
    save_dir=data_path,
)```

(continues on next page)
3.9 Featurizers

DeepChem contains an extensive collection of featurizers. If you haven’t run into this terminology before, a “featurizer” is a chunk of code which transforms raw input data into a processed form suitable for machine learning. Machine learning methods often need data to be pre-chewed for them to process. Think of this like a mama penguin chewing up food so the baby penguin can digest it easily.

Now if you’ve watched a few introductory deep learning lectures, you might ask, why do we need something like a featurizer? Isn’t part of the promise of deep learning that we can learn patterns directly from raw data?

Unfortunately it turns out that deep learning techniques need featurizers just like normal machine learning methods do. Arguably, they are less dependent on sophisticated featurizers and more capable of learning sophisticated patterns from simpler data. But nevertheless, deep learning systems can’t simply chew up raw files. For this reason, deepchem provides an extensive collection of featurization methods which we will review on this page.

Contents

- Molecule Featurizers
  - Graph Convolution Featurizers
    * ConvMolFeaturizer
    * WeaveFeaturizer
    * MolGanFeaturizer
    * MolGraphConvFeaturizer
    * PagtnMolGraphFeaturizer
    * DMPNNFeaturizer
    * Utilities
  - MACCSKeysFingerprint
  - MATFeaturizer
  - CircularFingerprint
  - PubChemFingerprint
  - Mol2VecFingerprint
  - RDKitDescriptors
  - MordredDescriptors
  - CoulombMatrix
  - CoulombMatrixEig
  - AtomCoordinates
  - BPSymmetryFunctionInput
- SmilesToSeq
- SmilesToImage
- OneHotFeaturizer
- SparseMatrixOneHotFeaturizer
- RawFeaturizer

- **Molecular Complex Featurizers**
  - RdkitGridFeaturizer
  - AtomicConvFeaturizer

- **Inorganic Crystal Featurizers**
  - MaterialCompositionFeaturizer
    * ElementPropertyFingerprint
    * ElemNetFeaturizer
  - MaterialStructureFeaturizer
    * SineCoulombMatrix
    * CGCNNFeaturizer
  - LCNNFeaturizer

- **MaterialCompositionFeaturizer**

- **Molecule Tokenizers**
  - SmilesTokenizer
  - BasicSmilesTokenizer

- **Sequence Featurizers**
  - PFMFeaturizer

- **Other Featurizers**
  - BertFeaturizer
  - RobertaFeaturizer
  - RxnFeaturizer
  - BindingPocketFeaturizer
  - UserDefinedFeaturizer
  - DummyFeaturizer

- **Base Featurizers (for develop)**
  - Featurizer
  - MolecularFeaturizer
  - MaterialCompositionFeaturizer
  - MaterialStructureFeaturizer
  - ComplexFeaturizer
3.9.1 Molecule Featurizers

These featurizers work with datasets of molecules.

Graph Convolution Featurizers

We are simplifying our graph convolution models by a joint data representation (GraphData) in a future version of DeepChem, so we provide several featurizers.

ConvMolFeaturizer and WeaveFeaturizer are used with graph convolution models which inherited KerasModel. ConvMolFeaturizer is used with graph convolution models except WeaveModel. WeaveFeaturizer are only used with WeaveModel. On the other hand, MolGraphConvFeaturizer is used with graph convolution models which inherited TorchModel. MolGanFeaturizer will be used with MolGAN model, a GAN model for generation of small molecules.

ConvMolFeaturizer

```
```

This class implements the featurization to implement Duvenaud graph convolutions.

Duvenaud graph convolutions [1]_ construct a vector of descriptors for each atom in a molecule. The featurizer computes that vector of local descriptors.

Examples

```
>>> import deepchem as dc
>>> smiles = ["C", "CCC"]
>>> featurizer=dc.feat.ConvMolFeaturizer(per_atom_fragmentation=False)
>>> f = featurizer.featurize(smiles)
>>> # Using ConvMolFeaturizer to create featurized fragments derived from molecules of interest.
... # This is used only in the context of performing interpretation of models using atomic contributions (atom-based model interpretation)
... smiles = ["C", "CCC"]
>>> featurizer=dc.feat.ConvMolFeaturizer(per_atom_fragmentation=True)
>>> f = featurizer.featurize(smiles)
>>> len(f) # contains 2 lists with featurized fragments from 2 mols
2
```

See also:

Detailed
per_atom_fragmentation: bool = False)

Parameters

• **master_atom** *(Boolean)* – if true create a fake atom with bonds to every other atom. the
initialization is the mean of the other atom features in the molecule. This technique is
briefly discussed in Neural Message Passing for Quantum Chemistry

• **use_chirality** *(Boolean)* – if true then make the resulting atom features aware of the
chirality of the molecules in question

• **atom_properties** *(list of string or None)* – properties in the RDKit Mol object
to use as additional atom-level features in the larger molecular feature. If None, then no
atom-level properties are used. Properties should be in the RDKit mol object should be in
the form atom XXXXXXXX NAME where XXXXXXXX is a zero-padded 8 digit number
corresponding to the zero-indexed atom index of each atom and NAME is the name of the
property provided in atom_properties. So “atom 00000000 sasa” would be the name of the
molecule level property in mol where the solvent accessible surface area of atom 0 would
be stored.

• **per_atom_fragmentation** *(Boolean)* – If True, then multiple “atom-depleted” versions
of each molecule will be created (using featurize() method). For each molecule, atoms
are removed one at a time and the resulting molecule is featurized. The result is a list of
ConvMol objects, one with each heavy atom removed. This is useful for subsequent model
interpretation: finding atoms favorable/unfavorable for (modelled) activity. This option is
typically used in combination with a FlatteningTransformer to split the lists into separate
samples.

• **array** *(Since ConvMol is an object and not a numpy)* –

• **to**(need to set dtype) –

object. –

featurize(datapoints: Union[Any, str, Iterable[Any], Iterable[str]], log_every_n: int = 1000, **kwargs) →
numpy.ndarray

Override parent: aim is to add handling atom-depleted molecules featurization

Parameters

• **datapoints** *(rdkit.Chem.rdchem.Mol / SMILES string / iterable)* – RDKit
Mol, or SMILES string or iterable sequence of RDKit mols/SMILES strings.

• **log_every_n** *(int, default 1000)* – Logging messages reported every log_every_n
samples.

Returns **features** – A numpy array containing a featurized representation of datapoints.

Return type np.ndarray
WeaveFeaturizer

class WeaveFeaturizer(graph_distance: bool = True, explicit_H: bool = False, use_chirality: bool = False, max_pair_distance: Optional[int] = None)

This class implements the featurization to implement Weave convolutions.

Weave convolutions were introduced in [1]. Unlike Duvenaud graph convolutions, weave convolutions require a quadratic matrix of interaction descriptors for each pair of atoms. These extra descriptors may provide for additional descriptive power but at the cost of a larger featurized dataset.

Examples

```python
>>> import deepchem as dc
>>> mols = ['CCC']
>>> featurizer = dc.feat.WeaveFeaturizer()
>>> features = featurizer.featurize(mols)
>>> type(features[0])
<class 'deepchem.feat.mol_graphs.WeaveMol'>
>>> features[0].get_num_atoms() # 3 atoms in compound
3
>>> features[0].get_num_features() # feature size
75
>>> type(features[0].get_atom_features())
<class 'numpy.ndarray'>
>>> features[0].get_atom_features().shape
(3, 75)
>>> type(features[0].get_pair_features())
<class 'numpy.ndarray'>
>>> features[0].get_pair_features().shape
(9, 14)
```

References

Note: This class requires RDKit to be installed.

featurize(datapoints, log_every_n=1000, **kwargs) → numpy.ndarray

Calculate features for molecules.

Parameters

- **datapoints** (rdkit.Chem.rdchem.Mol / SMILES string / iterable) – RDKit Mol, or SMILES string or iterable sequence of RDKit mols/SMILES strings.
- **log_every_n** (int, default 1000) – Logging messages reported every log_every_n samples.

Returns features – A numpy array containing a featurized representation of datapoints.

Return type np.ndarray

__init__(graph_distance: bool = True, explicit_H: bool = False, use_chirality: bool = False, max_pair_distance: Optional[int] = None)

Initialize this featurizer with set parameters.
Parameters

- `graph_distance (bool, (default True))` – If True, use graph distance for distance features. Otherwise, use Euclidean distance. Note that this means that molecules that this featurizer is invoked on must have valid conformer information if this option is set.

- `explicit_H (bool, (default False))` – If true, model hydrogens in the molecule.

- `use_chirality (bool, (default False))` – If true, use chiral information in the featurization

- `max_pair_distance (Optional[int], (default None))` – This value can be a positive integer or None. This parameter determines the maximum graph distance at which pair features are computed. For example, if `max_pair_distance==2`, then pair features are computed only for atoms at most graph distance 2 apart. If `max_pair_distance` is `None`, all pairs are considered (effectively infinite `max_pair_distance`)

MolGanFeaturizer
class MolGanFeaturizer(max_atom_count: int = 9, kekulize: bool = True, bond_labels: Optional[List[Any]] = None, atom_labels: Optional[List[int]] = None)

Featurizer for MolGAN de-novo molecular generation[1]. The default representation is in form of GraphMatrix object. It is wrapper for two matrices containing atom and bond type information. The class also provides reverse capabilities.

Examples

```python
>>> import deepchem as dc
>>> from rdkit import Chem
>>> rdkit_mol, smiles_mol = Chem.MolFromSmiles('CCC'), 'C1=CC=CC=C1'
>>> molecules = [rdkit_mol, smiles_mol]
>>> featurizer = dc.feat.MolGanFeaturizer()
>>> features = featurizer.featurize(molecules)
>>> len(features) # 2 molecules
2
>>> type(features[0])
<class 'deepchem.feat.molecule_featurizers.molgan_featurizer.GraphMatrix'>
>>> molecules = featurizer.defeaturize(features) # defeaturization
>>> type(molecules[0])
<class 'rdkit.Chem.rdchem.Mol'>
```

__init__ (max_atom_count: int = 9, kekulize: bool = True, bond_labels: Optional[List[Any]] = None, atom_labels: Optional[List[int]] = None)

Parameters

- `max_atom_count (int, default 9)` – Maximum number of atoms used for creation of adjacency matrix. Molecules cannot have more atoms than this number Implicit hydrogens do not count.

- `kekulize (bool, default True)` – Should molecules be kekulized. Solves number of issues with defeaturization when used.

- `bond_labels (List[RDKitBond])` – List of types of bond used for generation of adjacency matrix
atom_labels (List[int]) – List of atomic numbers used for generation of node features

References

featurize (datapoints, log_every_n=1000, **kwargs) → numpy.ndarray

Calculate features for molecules.

Parameters

- datapoints (rdkit.Chem.rdchem.Mol / SMILES string / iterable) – RDKit Mol, or SMILES string or iterable sequence of RDKit mols/SMILES strings.
- log_every_n (int, default 1000) – Logging messages reported every log_every_n samples.

Returns features – A numpy array containing a featurized representation of datapoints.

Return type np.ndarray

defeatimize (graphs: Union[deepchem.feat.molecule_featurizers.molgan_featurizer.GraphMatrix, Sequence[deepchem.feat.molecule_featurizers.molgan_featurizer.GraphMatrix]], log_every_n: int = 1000) → numpy.ndarray

Calculates molecules from corresponding GraphMatrix objects.

Parameters

- graphs (GraphMatrix / iterable) – GraphMatrix object or corresponding iterable
- log_every_n (int, default 1000) – Logging messages reported every log_every_n samples.

Returns features – A numpy array containing RDKitMol object.

Return type np.ndarray

MolGraphConvFeaturizer

class MolGraphConvFeaturizer (use_edges: bool = False, use_chirality: bool = False, use_partial_charge: bool = False)

This class is a featurizer of general graph convolution networks for molecules.

The default node(atom) and edge(bond) representations are based on WeaveNet paper. If you want to use your own representations, you could use this class as a guide to define your original Featurizer. In many cases, it’s enough to modify return values of construct_atom_feature or construct_bond_feature.

The default node representation are constructed by concatenating the following values, and the feature length is 30.

- Formal charge: Integer electronic charge.
- Hybridization: A one-hot vector of “sp”, “sp2”, “sp3”.
- Hydrogen bonding: A one-hot vector of whether this atom is a hydrogen bond donor or acceptor.
- Aromatic: A one-hot vector of whether the atom belongs to an aromatic ring.
- Degree: A one-hot vector of the degree (0-5) of this atom.
- Number of Hydrogens: A one-hot vector of the number of hydrogens (0-4) that this atom connected.

3.9. Featurizers
• Chirality: A one-hot vector of the chirality, “R” or “S”. (Optional)
• Partial charge: Calculated partial charge. (Optional)

The default edge representation are constructed by concatenating the following values, and the feature length is 11.
• Bond type: A one-hot vector of the bond type, “single”, “double”, “triple”, or “aromatic”.
• Same ring: A one-hot vector of whether the atoms in the pair are in the same ring.
• Conjugated: A one-hot vector of whether this bond is conjugated or not.
• Stereo: A one-hot vector of the stereo configuration of a bond.

If you want to know more details about features, please check the paper [1] and utilities in deepchem.utils.molecule_feature_utils.py.

Examples

```python
>>> smiles = ["C1CCC1", "C1=CC=CN=C1"]
>>> featurizer = MolGraphConvFeaturizer(use_edges=True)
>>> out = featurizer.featurize(smiles)
>>> type(out[0])
<class 'deepchem.feat.graph_data.GraphData'>
>>> out[0].num_node_features
30
>>> out[0].num_edge_features
11
```

References

Note: This class requires RDKit to be installed.

```python
__init__(use_edges: bool = False, use_chirality: bool = False, use_partial_charge: bool = False)

Parameters
- **use_edges** (bool, default False) – Whether to use edge features or not.
- **use_chirality** (bool, default False) – Whether to use chirality information or not. If True, featurization becomes slow.
- **use_partial_charge** (bool, default False) – Whether to use partial charge data or not. If True, this featurizer computes gasteiger charges. Therefore, there is a possibility to fail to featurize for some molecules and featurization becomes slow.

featurize(datapoints, log_every_n=1000, **kwargs) → numpy.ndarray

Calculate features for molecules.

Parameters
- **datapoints** (rdkit.Chem.rdchem.Mol / SMILES string / iterable) – RDKit Mol, or SMILES string or iterable sequence of RDKit mols/SMILES strings.
- **log_every_n** (int, default 1000) – Logging messages reported every log_every_n samples.
```
Returns features – A numpy array containing a featurized representation of datapoints.

Return type np.ndarray

PagtnMolGraphFeaturizer

class PagtnMolGraphFeaturizer(max_length=5)

This class is a featuriser of PAGTN graph networks for molecules.

The featurization is based on PAGTN model. It is slightly more computationally intensive than default Graph Convolution Featuriser, but it builds a Molecular Graph connecting all atom pairs accounting for interactions of an atom with every other atom in the Molecule. According to the paper, interactions between two pairs of atom are dependent on the relative distance between them and and hence, the function needs to calculate the shortest path between them.

The default node representation is constructed by concatenating the following values, and the feature length is 94.

- Atom type: One hot encoding of the atom type. It consists of the most possible elements in a chemical compound.
- Formal charge: One hot encoding of formal charge of the atom.
- Degree: One hot encoding of the atom degree
- Explicit Valence: One hot encoding of explicit valence of an atom. The supported possibilities include $0$ - $6$.
- Implicit Valence: One hot encoding of implicit valence of an atom. The supported possibilities include $0$ - $5$.
- Aromaticity: Boolean representing if an atom is aromatic.

The default edge representation is constructed by concatenating the following values, and the feature length is 42. It builds a complete graph where each node is connected to every other node. The edge representations are calculated based on the shortest path between two nodes (choose any one if multiple exist). Each bond encountered in the shortest path is used to calculate edge features.

- Bond type: A one-hot vector of the bond type, “single”, “double”, “triple”, or “aromatic”.
- Conjugated: A one-hot vector of whether this bond is conjugated or not.
- Same ring: A one-hot vector of whether the atoms in the pair are in the same ring.
- Ring Size and Aromaticity: One hot encoding of atoms in pair based on ring size and aromaticity.
- Distance: One hot encoding of the distance between pair of atoms.

Examples

```python
>>> from deepchem.feat import PagtnMolGraphFeaturizer
>>> smiles = ['"C1CCC1", "C1=CC=CN=C1"
>>> featurizer = PagtnMolGraphFeaturizer(max_length=5)
>>> out = featurizer.featurize(smiles)
>>> type(out[0])
<class 'deepchem.feat.graph_data.GraphData'>
>>> out[0].num_node_features
94
```
References

Note: This class requires RDKit to be installed.

__init__(max_length=5)

Parameters max_length (int) – Maximum distance up to which shortest paths must be considered. Paths shorter than max_length will be padded and longer will be truncated, default to 5.

featurize(datapoints, log_every_n=1000, **kwargs) → numpy.ndarray

Calculate features for molecules.

Parameters

• datapoints (rdkit.Chem.rdchem.Mol / SMILES string / iterable) – RDKit Mol, or SMILES string or iterable sequence of RDKit mols/SMILES strings.

• log_every_n (int, default 1000) – Logging messages reported every log_every_n samples.

Returns features – A numpy array containing a featurized representation of datapoints.

Return type np.ndarray

DMPNNFeaturizer

class DMPNNFeaturizer(features_generators: Optional[List[str]] = None, is_adding_hs: bool = False, use_original_atom_ranks: bool = False)

This class is a featurizer for Directed Message Passing Neural Network (D-MPNN) implementation

The default node(atom) and edge(bond) representations are based on Analyzing Learned Molecular Representations for Property Prediction paper.

The default node representation are constructed by concatenating the following values, and the feature length is 133.

• Atomic num: A one-hot vector of this atom, in a range of first 100 atoms.

• Degree: A one-hot vector of the degree (0-5) of this atom.

• Formal charge: Integer electronic charge, -1, -2, 1, 2, 0.

• Chirality: A one-hot vector of the chirality tag (0-3) of this atom.

• Number of Hydrogens: A one-hot vector of the number of hydrogens (0-4) that this atom connected.

• Hybridization: A one-hot vector of “SP”, “SP2”, “SP3”, “SP3D”, “SP3D2”.

• Aromatic: A one-hot vector of whether the atom belongs to an aromatic ring.

• Mass: Atomic mass * 0.01
The default edge representation are constructed by concatenating the following values, and the feature length is 14.

- Bond type: A one-hot vector of the bond type, “single”, “double”, “triple”, or “aromatic”.
- Same ring: A one-hot vector of whether the atoms in the pair are in the same ring.
- Conjugated: A one-hot vector of whether this bond is conjugated or not.
- Stereo: A one-hot vector of the stereo configuration (0-5) of a bond.

If you want to know more details about features, please check the paper [1] and utilities in deepchem.utils.molecule_feature_utils.py.

**Examples**

```python
>>> smiles = ["C1=CC=CN=C1", "C1CCC1"]
>>> featurizer = DMPNNFeaturizer()
>>> out = featurizer.featurize(smiles)
>>> type(out[0])
<class 'deepchem.feat.graph_data.GraphData'>
>>> out[0].num_nodes
6
>>> out[0].num_node_features
133
>>> out[0].node_features.shape
(6, 133)
>>> out[0].num_edge_features
14
>>> out[0].num_edges
12
>>> out[0].edge_features.shape
(12, 14)
```

**References**

Note: This class requires RDKit to be installed.

```
__init__(features_generators: Optional[List[str]] = None, is_adding_hs: bool = False, use_original_atom_ranks: bool = False)

Parameters

- **features_generator** (List[str], default None) – List of global feature generators to be used.
- **is_adding_hs** (bool, default False) – Whether to add Hs or not.
- **use_original_atom_ranks** (bool, default False) – Whether to use original atom mapping or canonical atom mapping

featurize(data points, log_every_n=1000, **kwargs) → numpy.ndarray

Calculate features for molecules.
```

3.9. Featurizers 105
• **datapoints** *(rdkit.Chem.rdchem.Mol / SMILES string / iterable) – RDKit Mol, or SMILES string or iterable sequence of RDKit mols/SMILES strings.*

• **log_every_n** *(int, default 1000) – Logging messages reported every log_every_n samples.*

**Returns** features – A numpy array containing a featurized representation of datapoints.

**Return type** np.ndarray

**Utilities**

Here are some constants that are used by the graph convolutional featurizers for molecules.

```python
class GraphConvConstants
 This class defines a collection of constants which are useful for graph convolutions on molecules.

 possible_atom_list = ['C', 'N', 'O', 'S', 'F', 'P', 'Cl', 'Mg', 'Na', 'Br', 'Fe', 'Ca', 'Cu', 'Mn', 'Pb', 'K', 'I', 'Al', 'Ni', 'Mn']
 Allowed Numbers of Hydrogens

 possible_numH_list = [0, 1, 2, 3, 4]
 Allowed Valences for Atoms

 possible_valence_list = [0, 1, 2, 3, 4, 5, 6]
 Allowed Formal Charges for Atoms

 possible_formal_charge_list = [-3, -2, -1, 0, 1, 2, 3]
 This is a placeholder for documentation. These will be replaced with corresponding values of the rdkit HybridizationType

 possible_hybridization_list = ['SP', 'SP2', 'SP3', 'SP3D', 'SP3D2']
 Allowed number of radical electrons.

 possible_number_radical_e_list = [0, 1, 2]
 Allowed types of Chirality

 possible_chirality_list = ['R', 'S']
 The set of all values allowed.

 reference_lists = [['C', 'N', 'O', 'S', 'F', 'P', 'Cl', 'Mg', 'Na', 'Br', 'Fe', 'Ca', 'Cu', 'Mn', 'Pb', 'K', 'I', 'Al', 'Ni', 'Mn'], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [-3, -2, -1, 0, 1, 2, 3], [0, 1, 2], ['SP', 'SP2', 'SP3', 'SP3D', 'SP3D2'], ['R', 'S']]
 The number of different values that can be taken. See get_intervals()

 intervals = [1, 6, 48, 384, 1536, 9216, 27648]
 Possible stereochemistry. We use E-Z notation for stereochemistry https://en.wikipedia.org/wiki/E%E2%80%93Z_notation

 possible_bond_stereo = ['STEREONONE', 'STEREOANY', 'STERE02', 'STEREOE']
 Number of different bond types not counting stereochemistry.

 bond_fdim_base = 6

 __module__ = 'deepchem.feat.graph_features'
```

There are a number of helper methods used by the graph convolutional classes which we document here.
one_of_k_encoding($x, allowable_set$)

Encodes elements of a provided set as integers.

Parameters

- $x$ (object) – Must be present in $allowable_set$.
- $allowable_set$ (list) – List of allowable quantities.

Example

```python
>>> import deepchem as dc
>>> dc.feat.graph_features.one_of_k_encoding("a", ["a", "b", "c"])
[True, False, False]
```

Raises ValueError –

one_of_k_encoding_unk($x, allowable_set$)

Maps inputs not in the allowable set to the last element.

Unlike one_of_k_encoding, if $x$ is not in $allowable_set$, this method pretends that $x$ is the last element of $allowable_set$.

Parameters

- $x$ (object) – Must be present in $allowable_set$.
- $allowable_set$ (list) – List of allowable quantities.

Examples

```python
>>> dc.feat.graph_features.one_of_k_encoding_unk("s", ["a", "b", "c"])
[False, False, True]
```

get_intervals($l$)

For list of lists, gets the cumulative products of the lengths

Note that we add 1 to the lengths of all lists (to avoid an empty list propagating a 0).

Parameters $l$ (list of lists) – Returns the cumulative product of these lengths.

Examples

```python
>>> dc.feat.graph_features.get_intervals([[1], [1, 2], [1, 2, 3]])
[1, 3, 12]
```

```python
>>> dc.feat.graph_features.get_intervals([[1], [], [1, 2], [1, 2, 3]])
[1, 1, 3, 12]
```

safe_index($l, e$)

Gets the index of $e$ in $l$, providing an index of len($l$) if not found

Parameters

- $l$ (list) – List of values
• e (object) – Object to check whether e is in l

**Examples**

```python
>>> dc.feat.graph_features.safe_index([1, 2, 3], 1)
0
>>> dc.feat.graph_features.safe_index([1, 2, 3], 7)
3
```

**get_feature_list** *(atom)*

Returns a list of possible features for this atom.

**Parameters**

atom *(RDKit.Chem.rdchem.Atom)* – Atom to get features for

**Examples**

```python
>>> from rdkit import Chem
>>> mol = Chem.MolFromSmiles("C")
>>> atom = mol.GetAtoms()[0]
>>> features = dc.feat.graph_features.get_feature_list(atom)
>>> type(features)
<class 'list'>
>>> len(features)
6
```

**Note:** This method requires RDKit to be installed.

**Returns**

features – List of length 6. The i-th value in this list provides the index of the atom in the corresponding feature value list. The 6 feature values lists for this function are [GraphConvConstants.possible_atom_list, GraphConvConstants.possible_numH_list, GraphConvConstants.possible_valence_list, GraphConvConstants.possible_formal_charge_list, GraphConvConstants.possible_num_radical_e_list].

**Return type**

list

**features_to_id**(features, intervals)

Convert list of features into index using spacings provided in intervals

**Parameters**

• features *(list)* – List of features as returned by get_feature_list()

• intervals *(list)* – List of intervals as returned by get_intervals()

**Returns**

id – The index in a feature vector given by the given set of features.

**Return type**

int

**id_to_features**(id, intervals)

Given an index in a feature vector, return the original set of features.

**Parameters**

• id *(int)* – The index in a feature vector given by the given set of features.
intervals (list) – List of intervals as returned by get_intervals()

Returns features – List of features as returned by get_feature_list()

atom_to_id(atom)

Return a unique id corresponding to the atom type

Parameters

atom (RDKit.Chem.rdchem.Atom) – Atom to convert to ids.

Returns id – The index in a feature vector given by the given set of features.

Return type int

This function helps compute distances between atoms from a given base atom.

find_distance(a1: Any, num_atoms: int, bond_adj_list, max_distance=7) → numpy.ndarray

Computes distances from provided atom.

Parameters

• a1 (RDKit atom) – The source atom to compute distances from.
• num_atoms (int) – The total number of atoms.
• bond_adj_list (list of lists) – bond_adj_list[i] is a list of the atom indices that atom i shares a bond with. This list is symmetrical so if j in bond_adj_list[i] then i in bond_adj_list[j].
• max_distance (int, optional (default 7)) – The max distance to search.

Returns distances – Of shape (num_atoms, max_distance). Provides a one-hot encoding of the distances. That is, distances[i] is a one-hot encoding of the distance from a1 to atom i.

Return type np.ndarray

This function is important and computes per-atom feature vectors used by graph convolutional featurizers.

atom_features(atom, bool_id_feat=False, explicit_H=False, use_chirality=False)

Helper method used to compute per-atom feature vectors.

Many different featurization methods compute per-atom features such as ConvMolFeaturizer, WeaveFeaturizer.

This method computes such features.

Parameters

• atom (RDKit.Chem.rdchem.Atom) – Atom to compute features on.
• bool_id_feat (bool, optional) – Return an array of unique identifiers corresponding to atom type.
• explicit_H (bool, optional) – If true, model hydrogens explicitly
• use_chirality (bool, optional) – If true, use chirality information.

Returns features – An array of per-atom features.

Return type np.ndarray
This function computes the bond features used by graph convolutional featurizers.

**bond_features** *(bond, use_chirality=False, use_extended_chirality=False)*

Helper method used to compute bond feature vectors.

Many different featurization methods compute bond features such as WeaveFeaturizer. This method computes such features.

**Parameters**

- **bond** *(rdkit.Chem.rdchem.Bond)* – Bond to compute features on.
- **use_chirality** *(bool, optional)* – If true, use chirality information.
- **use_extended_chirality** *(bool, optional)* – If true, use chirality information with upto 6 different types.

**Note:** This method requires RDKit to be installed.

**Returns**

- **bond_feats** *(np.ndarray)* – Array of bond features. This is a 1-D array of length 6 if use_chirality is False else of length 10 with chirality encoded.
- **bond_feats** *(Sequence[Union[bool, int, float]])* – List of bond features returned if use_extended_chirality is True.

This function computes atom-atom features (for atom pairs which may not have bonds between them.)

Helper method used to compute atom pair feature vectors.

Many different featurization methods compute atom pair features such as WeaveFeaturizer. Note that atom pair features could be for pairs of atoms which aren’t necessarily bonded to one another.

**Parameters**

- **mol** *(RDKit Mol)* – Molecule to compute features on.
- **bond_features_map** *(dict)* – Dictionary that maps pairs of atom ids (say (2, 3)) for a bond between atoms 2 and 3) to the features for the bond between them.
- **bond_adj_list** *(list of lists)* – bond_adj_list[i] is a list of the atom indices that atom i shares a bond with . This list is symmetrical so if j in bond_adj_list[i] then i in bond_adj_list[j].
- **bt_len** *(int, optional (default 6))* – The number of different bond types to consider.
- **graph_distance** *(bool, optional (default True))* – If true, use graph distance between molecules. Else use euclidean distance. The specified mol must have a conformer. Atomic positions will be retrieved by calling mol.getConformer(0).
- **max_pair_distance** *(Optional[int], (default None))* – This value can be a positive integer or None. This parameter determines the maximum graph distance at which pair features are computed. For example, if max_pair_distance==2, then pair features are computed only for atoms at most graph distance 2 apart. If max_pair_distance is None, all pairs are considered (effectively infinite max_pair_distance)

**Note:** This method requires RDKit to be installed.

**Returns**

- **features** *(np.ndarray)* – Of shape *(N_edges, bt_len + max_distance + 1)*. This is the array of pairwise features for all atom pairs, where N_edges is the number of edges within max_pair_distance of one another in this molecules.
- **pair_edges** *(np.ndarray)* – Of shape *(2, num_pairs)* where num_pairs is the total number of pairs within max_pair_distance of one another.

**MACCSKeysFingerprint**

**class MACCSKeysFingerprint**

MACCS Keys Fingerprint.

The MACCS (Molecular ACCess System) keys are one of the most commonly used structural keys. Please confirm the details in [1]_. [2]_.

---

**3.9. Featurizers**
`deepchem`, Release 2.6.1.dev

Examples

```python
>>> import deepchem as dc
>>> smiles = 'CC(=O)OC1=CC=CC=C1C(=O)O'
>>> featurizer = dc.feat.MACCSKeysFingerprint()
>>> features = featurizer.featurize([smiles])
>>> type(features[0])
<class 'numpy.ndarray'>
>>> features[0].shape
(167,)
```

References

**Note:** This class requires RDKit to be installed.

__init__()

Initialize this featurizer.

MATFeaturizer

class MATFeaturizer

This class is a featurizer for the Molecule Attention Transformer [1]. The returned value is a numpy array which consists of molecular graph descriptions:

- Node Features
- Adjacency Matrix
- Distance Matrix

References

Examples

```python
>>> import deepchem as dc
>>> feat = dc.feat.MATFeaturizer()
>>> out = feat.featurize("CCC")
```

**Note:** This class requires RDKit to be installed.

__init__()

Parameters

- **use_original_atoms_order** (bool, default False) – Whether to use original atom ordering or canonical ordering (default)

construct_mol(mol: Any) → Any

Processes an input RDKitMol further to be able to extract id-specific Conformers from it using mol.GetConformer().

Parameters

- **mol** (RDKitMol) – RDKit Mol object.
**Returns** mol – A processed RDKitMol object which is embedded, UFF Optimized and has Hydrogen atoms removed. If the former conditions are not met and there is a value error, then 2D Coordinates are computed instead.

**Return type** RDKitMol

**atom_features**(atom: Any) → numpy.ndarray

Deepchem already contains an atom_features function, however we are defining a new one here due to the need to handle features specific to MAT. Since we need new features like Atom GetNeighbors and IsInRing, and the number of features required for MAT is a fraction of what the Deepchem atom_features function computes, we can speed up computation by defining a custom function.

**Parameters**
- atom (RDKitAtom) – RDKit Atom object.

**Returns** Numpy array containing atom features.

**Return type** ndarray

**construct_node_features_matrix**(mol: Any) → numpy.ndarray

This function constructs a matrix of atom features for all atoms in a given molecule using the atom_features function.

**Parameters**
- mol (RDKitMol) – RDKit Mol object.

**Returns** Atom_features – Numpy array containing atom features.

**Return type** ndarray

**featurize**(datapoints, log_every_n=1000, **kwargs) → numpy.ndarray

Calculate features for molecules.

**Parameters**
- datapoints (rdkit.Chem.rdchem.Mol / SMILES string / iterable) – RDKit Mol, or SMILES string or iterable sequence of RDKit mols/SMILES strings.
- log_every_n (int, default 1000) – Logging messages reported every log_every_n samples.

**Returns** features – A numpy array containing a featurized representation of datapoints.

**Return type** np.ndarray

### CircularFingerprint


Circular (Morgan) fingerprints.

Extended Connectivity Circular Fingerprints compute a bag-of-words style representation of a molecule by breaking it into local neighborhoods and hashing into a bit vector of the specified size. It is used specifically for structure-activity modelling. See [1] for more details.
References

Note: This class requires RDKit to be installed.

Examples

```python
>>> import deepchem as dc
>>> from rdkit import Chem

>>> smiles = ['C1=CC=CC=C1']

>>> # Example 1: (size = 2048, radius = 4)
>>> featurizer = dc.feat.CircularFingerprint(size=2048, radius=4)
>>> features = featurizer.featurize(smiles)
>>> type(features[0])
<class 'numpy.ndarray'>
>>> features[0].shape
(2048,)

>>> # Example 2: (size = 2048, radius = 4, sparse = True, smiles = True)
>>> featurizer = dc.feat.CircularFingerprint(size=2048, radius=8, ... sparse=True, smiles=True)
>>> features = featurizer.featurize(smiles)
>>> type(features[0]) # dict containing fingerprints
<class 'dict'>
```

```python
__init__(radius: int = 2, size: int = 2048, chiral: bool = False, bonds: bool = True, features: bool = False, ... sparse: bool = False, smiles: bool = False, is_counts_based: bool = False)
```

Parameters

- **radius**: int, optional (default 2) – Fingerprint radius.
- **size**: int, optional (default 2048) – Length of generated bit vector.
- **chiral**: bool, optional (default False) – Whether to consider chirality in fingerprint generation.
- **bonds**: bool, optional (default True) – Whether to consider bond order in fingerprint generation.
- **features**: bool, optional (default False) – Whether to use feature information instead of atom information; see RDKit docs for more info.
- **sparse**: bool, optional (default False) – Whether to return a dict for each molecule containing the sparse fingerprint.
- **smiles**: bool, optional (default False) – Whether to calculate SMILES strings for fragment IDs (only applicable when calculating sparse fingerprints).
- **is_counts_based**: bool, optional (default False) – Whether to generates a counts-based fingerprint.

```python
featurize(datapoints, log_every_n=1000, **kwargs) → numpy.ndarray
```

Calculate features for molecules.
• **datapoints** *(rdkit.Chem.rdchem.Mol / SMILES string / iterable)* – RDKit Mol, or SMILES string or iterable sequence of RDKit mols/SMILES strings.

• **log_every_n** *(int, default 1000)* – Logging messages reported every \( \log_{\text{every}} \text{n} \) samples.

Returns features – A numpy array containing a featurized representation of datapoints.

Return type: np.ndarray

### PubChemFingerprint

**class** PubChemFingerprint

PubChem Fingerprint.

The PubChem fingerprint is a 881 bit structural key, which is used by PubChem for similarity searching. Please confirm the details in [1].

#### References

**Note:** This class requires RDKit and PubChemPy to be installed. PubChemPy use REST API to get the fingerprint, so you need the internet access.

#### Examples

```python
>>> import deepchem as dc
>>> smiles = ['CCC']
>>> featurizer = dc.feat.PubChemFingerprint()
>>> features = featurizer.featurize(smiles)
>>> type(features[0])
<class 'numpy.ndarray'>
>>> features[0].shape
(881,)
```

**__init__**

Initialize this featurizer.

### Mol2VecFingerprint

**class** Mol2VecFingerprint *(pretrain_model_path: Optional[str] = None, radius: int = 1, unseen: str = 'UNK')*

Mol2Vec fingerprints.

This class convert molecules to vector representations by using Mol2Vec. Mol2Vec is an unsupervised machine learning approach to learn vector representations of molecular substructures and the algorithm is based on Word2Vec, which is one of the most popular technique to learn word embeddings using neural network in NLP. Please see the details from [1].

The Mol2Vec requires the pretrained model, so we use the model which is put on the mol2vec github repository [2]. The default model was trained on 20 million compounds downloaded from ZINC using the following paramters.

* radius 1
• UNK to replace all identifiers that appear less than 4 times
• skip-gram and window size of 10
• embeddings size 300

References

Note: This class requires mol2vec to be installed.

Examples

```python
>>> import deepchem as dc
>>> from rdkit import Chem
>>> smiles = ['CCC']
>>> featurizer = dc.feat.Mol2VecFingerprint()
>>> features = featurizer.featurize(smiles)
>>> type(features)
<class 'numpy.ndarray'>
>>> features[0].shape
(300,)
```

```
__init__(pretrain_model_path: Optional[str] = None, radius: int = 1, unseen: str = 'UNK')

Parameters

- **pretrain_file** (str, optional) – The path for pretrained model. If this value is None, we use the model which is put on github repository (https://github.com/samoturk/mol2vec/tree/master/examples/models). The model is trained on 20 million compounds downloaded from ZINC.
- **radius** (int, optional (default 1)) – The fingerprint radius. The default value was used to train the model which is put on github repository.
- **unseen** (str, optional (default 'UNK')) – The string to used to replace uncommon words/identifiers while training.

sentences2vec(sentences: list, model, unseen=None) → numpy.ndarray

Generate vectors for each sentence (list) in a list of sentences. Vector is simply a sum of vectors for individual words.

Parameters

- **sentences** (list, array) – List with sentences
- **model** (word2vec.Word2Vec) – Gensim word2vec model
- **unseen** (None, str) – Keyword for unseen words. If None, those words are skipped. https://stats.stackexchange.com/questions/163005/how-to-set-the-dictionary-for-text-analysis-using-neural-networks/163032

Return type np.array

featurize(datapoints, log_every_n=1000, **kwargs) → numpy.ndarray

Calculate features for molecules.

Parameters

- **datapoints** (list) – List with molecules.
• **datapoints** *(rdkit.Chem.rdchem.Mol / SMILES string / iterable)* – RDKit Mol, or SMILES string or iterable sequence of RDKit mols/SMILES strings.

• **log_every_n** *(int, default 1000)* – Logging messages reported every `log_every_n` samples.

Returns features – A numpy array containing a featurized representation of `datapoints`.

Return type np.ndarray

RDKitDescriptors

class RDKitDescriptors(use_fragment: bool = True, ipc_avg: bool = True, is_normalized: bool = False, use_bcut2d: bool = True)

RDKit descriptors. This class computes a list of chemical descriptors like molecular weight, number of valence electrons, maximum and minimum partial charge, etc using RDKit.

This class can also compute normalized descriptors, if required. (The implementation for normalization is based on `RDKit2DNormalized()` method in ‘descriptastorus’ library.)

The neural network architecture requires that the features are appropriately scaled to prevent features with large ranges from dominating smaller ranged features, as well as preventing issues where features in the training set are not drawn from the same sample distribution as features in the testing set. To prevent these issues, a large sample of molecules is used to fit cumulative density functions (CDFs) to all features.

CDFs were used as opposed to simpler scaling algorithms mainly because CDFs have the useful property that ‘each value has the same meaning: the percentage of the population observed below the raw feature value.’

Warning: Currently, the normalizing cdf parameters are not available for BCUT2D descriptors. (BCUT2D_MWHI, BCUT2D_MWLOW, BCUT2D_CHGHI, BCUT2D_CHGLO, BCUT2D_LOGPHI, BCUT2D_LOGPLOW, BCUT2D_MRHI, BCUT2D_MRLOW)

descriptors

List of RDKit descriptor names used in this class.

Type List[str]

Note: This class requires RDKit to be installed.

Examples

```python
>>> import deepchem as dc
>>> smiles = ['CC(=O)OC1=CC=CC=C1C(=O)O']
>>> featurizer = dc.feat.RDKitDescriptors()
>>> features = featurizer.featurize(smiles)
>>> type(features[0])
<class 'numpy.ndarray'>
>>> features[0].shape
(208,)
```

__init__(use_fragment: bool = True, ipc_avg: bool = True, is_normalized: bool = False, use_bcut2d: bool = True)

Initialize this featurizer.

3.9. Featurizers
Parameters

• **use_fragment** *(bool, optional (default True)) – If True, the return value includes the fragment binary descriptors like ‘fr_XXX’.*

• **ipc_avg** *(bool, optional (default True)) – If True, the IPC descriptor calculates with avg=True option. Please see this issue: https://github.com/rdkit/rdkit/issues/1527.*

• **is_normalized** *(bool, optional (default False)) – If True, the return value contains normalized features.*

• **use_bcut2d** *(bool, optional (default True)) – If True, the return value includes the descriptors like ‘BCUT2D_XXX’.*

`featurize(datapoints, log_every_n=1000, **kwargs) → numpy.ndarray`

Calculate features for molecules.

Parameters

• **datapoints** *(rdkit.Chem.rdchem.Mol / SMILES string / iterable) – RDKit Mol, or SMILES string or iterable sequence of RDKit mols/SMILES strings.*

• **log_every_n** *(int, default 1000) – Logging messages reported every log_every_n samples.*

Returns **features** – A numpy array containing a featurized representation of `datapoints`.

Return type **np.ndarray**

MordredDescriptors

class **MordredDescriptors**(ignore_3D: bool = True)

Mordred descriptors.

This class computes a list of chemical descriptors using Mordred. Please see the details about all descriptors from [1], [2].

descriptors

List of Mordred descriptor names used in this class.

Type **List[str]**

References

Note: This class requires Mordred to be installed.

Examples

```python
>>> import deepchem as dc
>>> smiles = ['CC(=O)OC1=CC=CC=C1C(=O)O']
>>> featurizer = dc.feat.MordredDescriptors(ignore_3D=True)
>>> features = featurizer.featurize(smiles)
>>> type(features[0])
<class 'numpy.ndarray'>
```
>>> features[0].shape
(1613,)

__init__ (ignore_3D: bool = True)

Parameters

ignore_3D (bool, optional (default True)) – Whether to use 3D information or not.

featurize (datapoints, log_every_n=1000, **kwargs) → numpy.ndarray

Calculate features for molecules.

Parameters

• datapoints (rdkit.Chem.rdchem.Mol / SMILES string / iterable) – RDKit Mol, or SMILES string or iterable sequence of RDKit mols/SMILES strings.

• log_every_n (int, default 1000) – Logging messages reported every log_every_n samples.

Returns features – A numpy array containing a featurized representation of datapoints.

Return type np.ndarray

CoulombMatrix

class CoulombMatrix(max_atoms: int, remove_hydrogens: bool = False, randomize: bool = False, upper_tri: bool = False, n_samples: int = 1, seed: Optional[int] = None)

Calculate Coulomb matrices for molecules.

Coulomb matrices provide a representation of the electronic structure of a molecule. For a molecule with \(N\) atoms, the Coulomb matrix is a \(N \times N\) matrix where each element gives the strength of the electrostatic interaction between two atoms. The method is described in more detail in [1].

Examples

```python
>>> import deepchem as dc
>>> featurizers = dc.feat.CoulombMatrix(max_atoms=23)
>>> input_file = 'deepchem/feat/tests/data/water.sdf' # really backed by water.sdf.
    -> csv
>>> tasks = ['atomization_energy']
>>> loader = dc.data.SDFLoader(tasks, featurizer=featurizers)
>>> dataset = loader.create_dataset(input_file)
```

References

Note: This class requires RDKit to be installed.

__init__ (max_atoms: int, remove_hydrogens: bool = False, randomize: bool = False, upper_tri: bool = False, n_samples: int = 1, seed: Optional[int] = None)

Initialize this featurizer.

Parameters
• **max_atoms** *(int)* – The maximum number of atoms expected for molecules this featurizer will process.

• **remove_hydrogens** *(bool, optional (default False))* – If True, remove hydrogens before processing them.

• **randomize** *(bool, optional (default False))* – If True, use method `randomize_coulomb_matrices` to randomize Coulomb matrices.

• **upper_tri** *(bool, optional (default False))* – Generate only upper triangle part of Coulomb matrices.

• **n_samples** *(int, optional (default 1))* – If `randomize` is set to True, the number of random samples to draw.

• **seed** *(int, optional (default None))* – Random seed to use.

coulomb_matrix(mol: Any) → numpy.ndarray

Generate Coulomb matrices for each conformer of the given molecule.

Parameters

mol *(rdkit.Chem.rdchem.Mol)* – RDKit Mol object

Returns

The coulomb matrices of the given molecule

Return type

np.ndarray

randomize_coulomb_matrix(m: numpy.ndarray) → List[numpy.ndarray]

Randomize a Coulomb matrix as described in [1]:

1. Compute row norms for M in a vector `row_norms`.
2. Sample a zero-mean unit-variance noise vector `e` with dimension equal to `row_norms`.
3. Permute the rows and columns of M with the permutation that sorts `row_norms + e`.

Parameters

m *(np.ndarray)* – Coulomb matrix.

Returns

List of the random coulomb matrix

Return type

List[np.ndarray]

References

static get_interatomic_distances(conf: Any) → numpy.ndarray

Get interatomic distances for atoms in a molecular conformer.

Parameters

Returns

The distances matrix for all atoms in a molecule

Return type

np.ndarray

featurize(datapoints, log_every_n=1000, **kwargs) → numpy.ndarray

Calculate features for molecules.

Parameters

• **datapoints** *(rdkit.Chem.rdchem.Mol / SMILES string / iterable)* – RDKit Mol, or SMILES string or iterable sequence of RDKit mols/SMILES strings.

• **log_every_n** *(int, default 1000)* – Logging messages reported every `log_every_n` samples.

Returns

features – A numpy array containing a featurized representation of `datapoints`.
Return type np.ndarray

CoulombMatrixEig
class CoulombMatrixEig(max_atoms: int, remove_hydrogens: bool = False, randomize: bool = False, n_samples: int = 1, seed: Optional[int] = None)

Calculate the eigenvalues of Coulomb matrices for molecules.

This featurizer computes the eigenvalues of the Coulomb matrices for provided molecules. Coulomb matrices are described in [1].

Examples

```python
>>> import deepchem as dc
>>> featurizers = dc.feat.CoulombMatrixEig(max_atoms=23)
>>> input_file = 'deepchem/feat/tests/data/water.sdf' # really backed by water.sdf.
>>> tasks = ['atomization_energy']
>>> loader = dc.data.SDFLoader(tasks, featurizer=featurizers)
>>> dataset = loader.create_dataset(input_file)
```

References

__init__(max_atoms: int, remove_hydrogens: bool = False, randomize: bool = False, n_samples: int = 1, seed: Optional[int] = None)

Initialize this featurizer.

Parameters

- **max_atoms** *(int)* – The maximum number of atoms expected for molecules this featurizer will process.
- **remove_hydrogens** *(bool, optional (default False))* – If True, remove hydrogens before processing them.
- **randomize** *(bool, optional (default False))* – If True, use method `randomize_coulomb_matrices` to randomize Coulomb matrices.
- **n_samples** *(int, optional (default 1))* – If `randomize` is set to True, the number of random samples to draw.
- **seed** *(int, optional (default None))* – Random seed to use.

coulomb_matrix(mol: Any) → numpy.ndarray

Generate Coulomb matrices for each conformer of the given molecule.

Parameters mol *(rdkit.Chem.rdchem.Mol)* – RDKit Mol object

Returns The coulomb matrices of the given molecule

Return type np.ndarray

featurize(datapoints, log_every_n=1000, **kwargs) → numpy.ndarray

Calculate features for molecules.

Parameters
• **datapoints** (rdkit.Chem.rdchem.Mol / SMILES string / iterable) – RDKit Mol, or SMILES string or iterable sequence of RDKit mols/SMILES strings.

• **log_every_n** (int, default 1000) – Logging messages reported every log_every_n samples.

Returns **features** – A numpy array containing a featurized representation of datapoints.

Return type np.ndarray

Statistic get_interatomic_distances*(conf: Any) → numpy.ndarray**

Get interatomic distances for atoms in a molecular conformer.

Parameters **conf** (rdkit.Chem.rdchem.Conformer) – Molecule conformer.

Returns The distances matrix for all atoms in a molecule

Return type np.ndarray

randomize_coulomb_matrix*(m: numpy.ndarray) → List[numpy.ndarray]**

Randomize a Coulomb matrix as described in [1]_

1. Compute row norms for M in a vector row_norms.
2. Sample a zero-mean unit-variance noise vector e with dimension equal to row_norms.
3. Permute the rows and columns of M with the permutation that sorts row_norms + e.

Parameters **m** (np.ndarray) – Coulomb matrix.

Returns List of the random coulomb matrix

Return type List[np.ndarray]

References

AtomCoordinates

class AtomicCoordinates(use_bohr: bool = False)

Calculate atomic coordinates.

Examples

```python
>>> import deepchem as dc
>>> from rdkit import Chem
>>> mol = Chem.MolFromSmiles('C1C=CC=CC=1')
>>> n_atoms = len(mol.GetAtoms())
>>> n_atoms
6
>>> featurizer = dc.feat.AtomicCoordinates(use_bohr=False)
>>> features = featurizer.featurize([mol])
>>> type(features[0])
<class 'numpy.ndarray'>
>>> features[0].shape # (n_atoms, 3)
(6, 3)
```
Note: This class requires RDKit to be installed.

```python
__init__(use_bohr: bool = False)
```

Parameters

- `use_bohr` (`bool`, optional (default `False`) – Whether to use bohr or angstrom as a coordinate unit.

```python
featurize(datapoints, log_every_n=1000, **kwargs) → numpy.ndarray
```

Calculate features for molecules.

Parameters

- `datapoints` (`rdkit.Chem.rdchem.Mol / SMILES string / iterable`) – RDKit Mol, or SMILES string or iterable sequence of RDKit mols/SMILES strings.
- `log_every_n` (`int`, default `1000`) – Logging messages reported every `log_every_n` samples.

Returns

- `features` – A numpy array containing a featurized representation of `datapoints`.

Return type

- `np.ndarray`

BPSymmetryFunctionInput

```python
class BPSymmetryFunctionInput(max_atoms: int)
```

Calculate symmetry function for each atom in the molecules

This method is described in [1].

Examples

```python
>>> import deepchem as dc
>>> smiles = ['C1C=CC=CC=1']
>>> featurizer = dc.feat.BPSymmetryFunctionInput(max_atoms=10)
>>> features = featurizer.featurize(smiles)
>>> type(features[0])
<class 'numpy.ndarray'>
>>> features[0].shape  # (max_atoms, 4)
(10, 4)
```

References

Note: This class requires RDKit to be installed.

```python
__init__(max_atoms: int)
```

Initialize this featurizer.

Parameters

- `max_atoms` (`int`) – The maximum number of atoms expected for molecules this featurizer will process.

3.9. Featurizers
featurize(datapoints, log_every_n=1000, **kwargs) → numpy.ndarray
Calculate features for molecules.

Parameters

- **datapoints** (rdkit.Chem.rdchem.Mol / SMILES string / iterable) – RDKit Mol, or SMILES string or iterable sequence of RDKit mols/SMILES strings.
- **log_every_n** (int, default 1000) – Logging messages reported every log_every_n samples.

Returns features – A numpy array containing a featurized representation of datapoints.

Return type np.ndarray

SmilesToSeq
class SmilesToSeq(char_to_idx: Dict[str, int], max_len: int = 250, pad_len: int = 10)
SmilesToSeq Featurizer takes a SMILES string, and turns it into a sequence. Details taken from [1].
SMILES strings smaller than a specified max length (max_len) are padded using the PAD token while those larger than the max length are not considered. Based on the paper, there is also the option to add extra padding (pad_len) on both sides of the string after length normalization. Using a character to index (char_to_idx) mapping, the SMILES characters are turned into indices and the resulting sequence of indices serves as the input for an embedding layer.

References

Note: This class requires RDKit to be installed.

__init__(char_to_idx: Dict[str, int], max_len: int = 250, pad_len: int = 10)
Initialize this class.

Parameters

- **char_to_idx** (Dict) – Dictionary containing character to index mappings for unique characters
- **max_len** (int, default 250) – Maximum allowed length of the SMILES string.
- **pad_len** (int, default 10) – Amount of padding to add on either side of the SMILES seq
to_seq(smile: List[str]) → numpy.ndarray
Turns list of smiles characters into array of indices

remove_pad(characters: List[str]) → List[str]
Removes PAD_TOKEN from the character list.

smiles_from_seq(seq: List[int]) → str
Reconstructs SMILES string from sequence.

featurize(datapoints, log_every_n=1000, **kwargs) → numpy.ndarray
Calculate features for molecules.

Parameters
• **datapoints** *(rdkit.Chem.rdchem.Mol / SMILES string / iterable) – RDKit Mol, or SMILES string or iterable sequence of RDKit mols/SMILES strings.*

• **log_every_n** *(int, default 1000) – Logging messages reported every log_every_n samples.*

Returns *features* – A numpy array containing a featurized representation of **datapoints**.

Return type *np.ndarray*

SmilesToImage

class *SmilesToImage*(**img_size**: int = 80, **res**: float = 0.5, **max_len**: int = 250, **img_spec**: str = 'std')

Convert SMILES string to an image.

SmilesToImage Featurizer takes a SMILES string, and turns it into an image. Details taken from [1].

The default size of for the image is 80 x 80. Two image modes are currently supported - std & engd. std is the grayscale specification, with atomic numbers as pixel values for atom positions and a constant value of 2 for bond positions. engd is a 4-channel specification, which uses atom properties like hybridization, valency, charges in addition to atomic number. Bond type is also used for the bonds.

The coordinates of all atoms are computed, and lines are drawn between atoms to indicate bonds. For the respective channels, the atom and bond positions are set to the property values as mentioned in the paper.

Examples

```python
>>> import deepchem as dc

>>> smiles = ['CC(=O)OC1=CC=CC=C1C(=O)O']

>>> featurizer = dc.feat.SmilesToImage(img_size=80, img_spec='std')

>>> images = featurizer.featurize(smiles)

>>> type(images[0])
<class 'numpy.ndarray'>

>>> images[0].shape  # (img_size, img_size, 1)
(80, 80, 1)
```

References

Note: This class requires RDKit to be installed.

__init__(**img_size**: int = 80, **res**: float = 0.5, **max_len**: int = 250, **img_spec**: str = 'std')

Parameters

- **img_size** *(int, default 80)* – Size of the image tensor
- **res** *(float, default 0.5)* – Displays the resolution of each pixel in Angstrom
- **max_len** *(int, default 250)* – Maximum allowed length of SMILES string
- **img_spec** *(str, default std)* – Indicates the channel organization of the image tensor
OneHotFeaturizer

class OneHotFeaturizer

```python
OneHotFeaturizer

Initialize featurizer.

Parameters

- **charset** (List[str]) (default ZINC_CHARSET) – A list of strings, where each string is length 1 and unique.

- **max_length** (Optional[int], optional (default 100)) – The max length for string. If the length of string is shorter than max_length, the string is padded using space.

Encodes any arbitrary string or molecule as a one-hot array.

This featurizer encodes the characters within any given string as a one-hot array. It also works with RDKit molecules: it can convert RDKit molecules to SMILES strings and then one-hot encode the characters in said strings.

Standalone Usage:

```python
>>> import deepchem as dc
>>> featurizer = dc.feat.OneHotFeaturizer()
>>> smiles = ['CCC']
>>> encodings = featurizer.featurize(smiles)
>>> type(encodings[0])
<class 'numpy.ndarray'>
>>> encodings[0].shape
(100, 35)
>>> featurizer.untransform(encodings[0])
'CCC'
```

Note: This class needs RDKit to be installed in order to accept RDKit molecules as inputs. It does not need RDKit to be installed to work with arbitrary strings.
featurize\((\text{datapoints: \text{Iterable[\text{Any}]}, log\_{\text{every\_n: \text{int} = 1000}, **\text{kwargs}}}) \rightarrow \text{numpy.ndarray}\)

Featurize strings or mols.

Parameters

- \textbf{datapoints (list)} – A list of either strings (\text{str} or \text{numpy.str_}) or RDKit molecules.
- \textbf{log\_{\text{every\_n (int, optional (default 1000)) – How many elements are featurized every time a featurization is logged.}}

\textbf{pad\_smile (smiles: \text{str})} \rightarrow \text{str}

Pad SMILES string to self.pad\_length

Parameters \textbf{smiles (str)} – The SMILES string to be padded.

Returns SMILES string space padded to self.pad\_length

Return type \text{str}

\textbf{pad\_string (string: \text{str})} \rightarrow \text{str}

Pad string to self.pad\_length

Parameters \textbf{string (str)} – The string to be padded.

Returns String space padded to self.pad\_length

Return type \text{str}

untransform\((\text{one\_hot\_vectors: \text{numpy.ndarray}}) \rightarrow \text{str}\)

Convert from one hot representation back to original string

Parameters \textbf{one\_hot\_vectors (np.ndarray)} – An array of one hot encoded features.

Returns Original string for an one hot encoded array.

Return type \text{str}

\textbf{SparseMatrixOneHotFeaturizer}


Encodes any arbitrary string as a one-hot array.

This featurizer uses the sklearn OneHotEncoder to create sparse matrix representation of a one-hot array of any string. It is expected to be used in large datasets that produces memory overload using standard featurizer such as OneHotFeaturizer. For example: SwissprotDataset

\textbf{Examples}

```python
>>> import deepchem as dc
>>> featurizer = dc.feat.SparseMatrixOneHotFeaturizer()
>>> sequence = "MMMQLA"
>>> encodings = featurizer.featurize([sequence])
>>> encodings[0].shape
(6, 25)
```
Initialize featurizer.

Parameters

- **charset** *(list [str] (default code)) – A list of strings, where each string is length 1 and unique.*

Featurize strings.

Parameters

- **datapoints** *(list) – A list of either strings (str or numpy.str_)*
- **log_every_n** *(int, optional (default 1000)) – How many elements are featurized every time a featurization is logged.*

Convert from one hot representation back to original string

Parameters

- **one_hot_vectors** *(np.ndarray) – An array of one hot encoded features.*

Returns

Original string for an one hot encoded array.

Return type

str

RawFeaturizer

class RawFeaturizer(smiles: bool = False)

Encodes a molecule as a SMILES string or RDKit mol.
This featurizer can be useful when you’re trying to transform a large collection of RDKit mol objects as Smiles strings, or alternatively as a “no-op” featurizer in your molecular pipeline.

Note: This class requires RDKit to be installed.

Initialize this featurizer.

Parameters

- **smiles** *(bool, optional (default False)) – If True, encode this molecule as a SMILES string. Else as a RDKit mol.*

Calculate features for molecules.

Parameters

- **datapoints** *(rdkit.Chem.rdchem.Mol / SMILES string / iterable) – RDKit Mol, or SMILES string or iterable sequence of RDKit mols/SMILES strings.*
- **log_every_n** *(int, default 1000) – Logging messages reported every log_every_n samples.*

Returns

features – A numpy array containing a featurized representation of datapoints.

Return type

np.ndarray
3.9.2 Molecular Complex Featurizers

These featurizers work with three dimensional molecular complexes.

RdkitGridFeaturizer

class RdkitGridFeaturizer(nb_rotations=0, feature_types=None, ecfp_degree=2, ecfp_power=3, splif_power=3, box_width=16.0, voxel_width=1.0, flatten=False, verbose=True, sanitize=False, **kwargs)

Featurizes protein-ligand complex using flat features or a 3D grid (in which each voxel is described with a vector of features).

__init__(nb_rotations=0, feature_types=None, ecfp_degree=2, ecfp_power=3, splif_power=3, box_width=16.0, voxel_width=1.0, flatten=False, verbose=True, sanitize=False, **kwargs)

Parameters

- **nb_rotations** (int, optional (default 0)) – Number of additional random rotations of a complex to generate.

There are also 3 predefined sets of features ‘flat_combined’, ‘voxel_combined’, and ‘all_combined’.

Calculated features are concatenated and their order is preserved (features in predefined sets are in alphabetical order).

- **ecfp_degree** (int, optional (default 2)) – ECFP radius.
- **ecfp_power** (int, optional (default 3)) – Number of bits to store ECFP features (resulting vector will be 2^ecfp_power long)
- **splif_power** (int, optional (default 3)) – Number of bits to store SPLIF features (resulting vector will be 2^splif_power long)
- **box_width** (float, optional (default 16.0)) – Size of a box in which voxel features are calculated. Box is centered on a ligand centroid.
- **voxel_width** (float, optional (default 1.0)) – Size of a 3D voxel in a grid.
- **flatten** (bool, optional (default False)) – Indicate whether calculated features should be flattened. Output is always flattened if flat features are specified in feature_types.
- **verbose** (bool, optional (default True)) – Verbosity for logging
- **sanitize** (bool, optional (default False)) – If set to True molecules will be sanitized. Note that calculating some features (e.g. aromatic interactions) require sanitized molecules.
- ****kwargs** (dict, optional) – Keyword arguments can be used to specify custom cut-offs and bins (see default values below).
- **bins** (Default cutoffs and) –

------------------------

- **hbond_dist_bins** ([2.2, 2.5], [2.5, 3.2], [3.2, 4.0]) –
hbond_angle_cutoffs ([5, 50, 90]) –
splif_contact_bins ([(0, 2.0), (2.0, 3.0), (3.0, 4.5)]) –
ecfp_cutoff (4.5) –
sybyl_cutoff (7.0) –
salt_bridges_cutoff (5.0) –
pi_stack_dist_cutoff (4.4) –
pi_stack_angle_cutoff (30.0) –
cation_pi_dist_cutoff (6.5) –
cation_pi_angle_cutoff (30.0) –

featurize (datapoints: Optional [Iterable [Tuple [str, str]]] = None, log_every_n: int = 100, **kwargs) \(\rightarrow\) numpy.ndarray

Calculate features for mol/protein complexes.

Parameters
datapoints (Iterable [Tuple [str, str]]) – List of filenames (PDB, SDF, etc.) for ligand molecules and proteins. Each element should be a tuple of the form (ligand_filename, protein_filename).

Returns
features – Array of features

Return type
np.ndarray

AtomicConvFeaturizer

class AtomicConvFeaturizer (frag1_num_atoms, frag2_num_atoms, complex_num_atoms, max_num_neighbors, neighbor_cutoff, strip_hydrogens=True)

This class computes the featurization that corresponds to AtomicConvModel.

This class computes featurizations needed for AtomicConvModel. Given two molecular structures, it computes a number of useful geometric features. In particular, for each molecule and the global complex, it computes a coordinates matrix of size \((N_{atoms}, 3)\) where \(N_{atoms}\) is the number of atoms. It also computes a neighbor-list, a dictionary with \(N_{atoms}\) elements where neighbor-list[i] is a list of the atoms the i-th atom has as neighbors. In addition, it computes a \(z\)-matrix for the molecule which is an array of shape \((N_{atoms},)\) that contains the atomic number of that atom.

Since the featurization computes these three quantities for each of the two molecules and the complex, a total of 9 quantities are returned for each complex. Note that for efficiency, fragments of the molecules can be provided rather than the full molecules themselves.

__init__ (frag1_num_atoms, frag2_num_atoms, complex_num_atoms, max_num_neighbors, neighbor_cutoff, strip_hydrogens=True)

Parameters

- frag1_num_atoms (int) – Maximum number of atoms in fragment 1.
- frag2_num_atoms (int) – Maximum number of atoms in fragment 2.
- complex_num_atoms (int) – Maximum number of atoms in complex of frag1/frag2 together.
- max_num_neighbors (int) – Maximum number of atoms considered as neighbors.
• **neighbor_cutoff** *(float)* – Maximum distance (angstroms) for two atoms to be considered as neighbors. If more than *max_num_neighbors* atoms fall within this cutoff, the closest *max_num_neighbors* will be used.

• **strip_hydrogens** *(bool (default True))* – Remove hydrogens before computing featurization.

```python
def featurize(datapoints: Optional[Iterable[Tuple[str, str]]] = None, log_every_n: int = 100, **kwargs) -> numpy.ndarray:
 Calculate features for mol/protein complexes.

 Parameters:
 datapoints *(Iterable[Tuple[str, str]])* – List of filenames (PDB, SDF, etc.) for ligand molecules and proteins. Each element should be a tuple of the form (ligand_filename, protein_filename).

 Returns:
 features – Array of features

 Return type:
 np.ndarray
```

### 3.9.3 Inorganic Crystal Featurizers

These featurizers work with datasets of inorganic crystals.

**MaterialCompositionFeaturizer**

Material Composition Featurizers are those that work with datasets of crystal compositions with periodic boundary conditions. For inorganic crystal structures, these featurizers operate on chemical compositions (e.g. “MoS2”). They should be applied on systems that have periodic boundary conditions. Composition featurizers are not designed to work with molecules.

**ElementPropertyFingerprint**

class ElementPropertyFingerprint(data_source: str = 'matminer'):
    Fingerprint of elemental properties from composition.

    Based on the data source chosen, returns properties and statistics (min, max, range, mean, standard deviation, mode) for a compound based on elemental stoichiometry. E.g., the average electronegativity of atoms in a crystal structure. The chemical fingerprint is a vector of these statistics. For a full list of properties and statistics, see `matminer.featurizers.composition.ElementProperty(data_source).feature_labels()`.

    This featurizer requires the optional dependencies pymatgen and matminer. It may be useful when only crystal compositions are available (and not 3D coordinates).

    See references [1], [2], [3], [4] for more details.

References

Examples

```python
>>> import deepchem as dc
>>> import pymatgen as mg
>>> comp = mg.core.Composition("Fe2O3")
>>> featurizer = dc.feat.ElementPropertyFingerprint()
>>> features = featurizer.featurize([comp])
>>> type(features[0])
<class 'numpy.ndarray'>
>>> features[0].shape
(65,)
```

**Note:** This class requires matminer and Pymatgen to be installed. 
*NaN* feature values are automatically converted to 0 by this featurizer.

```python
__init__(data_source: str = 'matminer')

Parameters data_source (str of "matminer", "magpie" or "deml" (default "matminer")) – Source for element property data.

featurize(datapoints: Optional[Iterable[str]] = None, log_every_n: int = 1000, **kwargs) \rightarrow numpy.ndarray

Calculate features for crystal compositions.

Parameters

• datapoints (Iterable[str]) – Iterable sequence of composition strings, e.g. “MoS2”.

• log_every_n (int, default 1000) – Logging messages reported every log_every_n samples.

Returns features – A numpy array containing a featurized representation of compositions.

Return type np.ndarray
```

**ElemNetFeaturizer**

```python
class ElemNetFeaturizer
```

Fixed size vector of length 86 containing raw fractional elemental compositions in the compound. The 86 chosen elements are based on the original implementation at https://github.com/NU-CUCIS/ElemNet.

Returns a vector containing fractional compositions of each element in the compound.
References

Examples

```python
>>> import deepchem as dc
>>> comp = "Fe2O3"
>>> featurizer = dc.feat.ElemNetFeaturizer()
>>> features = featurizer.featurize([comp])
>>> type(features[0])
<class 'numpy.ndarray'>
>>> features[0].shape
(86,)
>>> round(sum(features[0]))
1
```

Note: This class requires Pymatgen to be installed.

**get_vector**(comp: `collections.defaultdict`) → Optional`[numpy.ndarray]`
Converts a dictionary containing element names and corresponding compositional fractions into a vector of fractions.

Parameters

- `comp` (**collections.defaultdict** object) – Dictionary mapping element names to fractional compositions.

Returns

- `fractions` – Vector of fractional compositions of each element.

Return type

`np.ndarray`

**MaterialStructureFeaturizer**

Material Structure Featurizers are those that work with datasets of crystals with periodic boundary conditions. For inorganic crystal structures, these featurizers operate on pymatgen.Structure objects, which include a lattice and 3D coordinates that specify a periodic crystal structure. They should be applied on systems that have periodic boundary conditions. Structure featurizers are not designed to work with molecules.

**SineCoulombMatrix**

```python
class SineCoulombMatrix(max_atoms: int = 100, flatten: bool = True)
```
Calculate sine Coulomb matrix for crystals.

A variant of Coulomb matrix for periodic crystals.

The sine Coulomb matrix is identical to the Coulomb matrix, except that the inverse distance function is replaced by the inverse of sin**2 of the vector between sites which are periodic in the dimensions of the crystal lattice.

Features are flattened into a vector of matrix eigenvalues by default for ML-readiness. To ensure that all feature vectors are equal length, the maximum number of atoms (eigenvalues) in the input dataset must be specified.

This featurizer requires the optional dependencies pymatgen and matminer. It may be useful when crystal structures with 3D coordinates are available.

See [1]_ for more details.
References

Examples

```python
>>> import deepchem as dc
>>> import pymatgen as mg
>>> lattice = mg.core.Lattice.cubic(4.2)
>>> structure = mg.core.Structure(lattice, ['Cs', 'Cl'], [[0, 0, 0], [0.5, 0.5, 0.5]])
>>> featurizer = dc.feat.SineCoulombMatrix(max_atoms=2)
>>> features = featurizer.featurize([structure])
>>> type(features[0])
<class 'numpy.ndarray'>
>>> features[0].shape # (max_atoms,)
(2,)
```

Note: This class requires matminer and Pymatgen to be installed.

```
__init__(max_atoms: int = 100, flatten: bool = True)

Parameters

• max_atoms (int (default 100)) – Maximum number of atoms for any crystal in the dataset. Used to pad the Coulomb matrix.

• flatten (bool (default True)) – Return flattened vector of matrix eigenvalues.

featurize(datapoints: Optional[Iterable[Union[Dict[str, Any], Any]]] = None, log_every_n: int = 1000, **kwargs) \rightarrow numpy.ndarray

Calculate features for crystal structures.

Parameters

• log_every_n (int, default 1000) – Logging messages reported every log_every_n samples.

Returns features – A numpy array containing a featurized representation of datapoints.

Return type np.ndarray
```

```
class CGCNNFeaturizer

Calculate structure graph features for crystals.

Based on the implementation in Crystal Graph Convolutional Neural Networks (CGCNN). The method constructs a crystal graph representation including atom features and bond features (neighbor distances). Neighbors are determined by searching in a sphere around atoms in the unit cell. A Gaussian filter is applied to neighbor distances. All units are in angstrom.
```

```
```
```
This featurizer requires the optional dependency pymatgen. It may be useful when 3D coordinates are available and when using graph network models and crystal graph convolutional networks.

See [1] for more details.

References

Examples

```python
>>> import deepchem as dc
>>> import pymatgen as mg

>>> featurizer = dc.feat.CGCNNFeaturizer()
>>> lattice = mg.core.Lattice.cubic(4.2)
>>> structure = mg.core.Structure(lattice, ["Cs", "Cl"], [[0, 0, 0], [0.5, 0.5, 0.5]])
>>> features = featurizer.featurize([structure])
>>> feature = features[0]
>>> print(type(feature))
<class 'deepchem.feat.graph_data.GraphData'>
```

Note: This class requires Pymatgen to be installed.

```python
__init__(radius: float = 8.0, max_neighbors: float = 12, step: float = 0.2)
```

Parameters

- **radius** *(float (default 8.0)) – Radius of sphere for finding neighbors of atoms in unit cell.*
- **max_neighbors** *(int (default 12)) – Maximum number of neighbors to consider when constructing graph.*
- **step** *(float (default 0.2)) – Step size for Gaussian filter. This value is used when building edge features.*

```python
featurize(datapoints: Optional[Iterable[Union[Dict[str, Any], Any]]] = None, log_every_n: int = 1000, **kwargs) -> numpy.ndarray
```

Calculate features for crystal structures.

Parameters

- **log_every_n** *(int, default 1000)* – Logging messages reported every log_every_n samples.

Returns

- **features** *(numpy array)* – A numpy array containing a featurized representation of datapoints.

Return type

- **np.ndarray**
class LCNNFeaturizer:

Calculates the 2-D Surface graph features in 6 different permutations. Based on the implementation of Lattice Graph Convolution Neural Network (LCNN). This method produces the Atom wise features (One Hot Encoding) and Adjacent neighbour in the specified order of permutations. Neighbors are determined by first extracting a site local environment from the primitive cell, and perform graph matching and distance matching to find neighbors. First, the template of the Primitive cell needs to be defined along with periodic boundary conditions and active and spectator site details. structure(Data Point i.e different configuration of adsorbate atoms) is passed for featurization.

This particular featurization produces a regular-graph (equal number of Neighbors) along with its permutation in 6 symmetric axis. This transformation can be applied when ordering of neighboring of nodes around a site play an important role in the propert predictions. Due to consideration of local neighbor environment, this current implementation would be fruitful in finding neighbors for calculating formation energy of adsorption tasks where the local. Adsorption turns out to be important in many applications such as catalyst and semiconductor design.

The permuted neighbors are calculated using the Primitive cells i.e periodic cells in all the data points are built via lattice transformation of the primitive cell.

Primitive cell Format:

1. Pymatgen structure object with site_properties key value
 - “SiteTypes” mentioning if it is a active site “A1” or spectator site “S1”.
2. ns, the number of spectator types elements. For “S1” its 1.
3. na, the number of active types elements. For “A1” its 1.
4. aos, the different species of active elements “A1”.
5. pbc, the periodic boundary conditions.

Data point Structure Format(Configuration of Atoms):

1. Pymatgen structure object with site_properties with following key value.
 - “SiteTypes”, mentioning if it is a active site “A1” or spectator site “S1”.
 - “oss”, different occupational sites. For spectator sites make it -1.

It is highly recommended that cells of data are directly redefined from the primitive cell, specifically, the relative coordinates between sites are consistent so that the lattice is non-deviated.

References

Examples

```python
>>> import deepchem as dc
>>> from pymatgen.core import Structure
>>> import numpy as np
>>> PRIMITIVE_CELL = {
...     "site_properties": {
...         "SiteTypes": "A1",
...         "oss": -1,
...     }
...     "lattice": [[2.818528, 0.0, 0.0],
...                  [-1.409264, 2.440917, 0.0],
...                 ]
```
```
>>> PRIMITIVE_CELL_INF0 = {
...     "cutoff": np.around(6.00),
...     "structure": Structure(**PRIMITIVE_CELL),
...     "aos": [1, 0, 2],
...     "pbc": [True, True, False],
...     "ns": 1,
...     "na": 1
... }

>>> DATA_POINT = {
...     "lattice": [[1.409264, -2.440917, 0.0],
...                 [4.227792, 2.440917, 0.0],
...                 [0.0, 0.0, 23.17559]],
...     "coords": [[0.0, 0.0, 0.099299],
...                 [0.0, 0.33333, 0.198598],
...                 [0.5, 0.16667, 0.297897],
...                 [0.0, 0.0, 0.397196],
...                 [0.0, 0.33333, 0.496495],
...                 [0.5, 0.5, 0.099299],
...                 [0.5, 0.83333, 0.198598],
...                 [0.0, 0.66667, 0.297897],
...                 [0.5, 0.5, 0.397196],
...                 [0.5, 0.83333, 0.496495],
...                 [0.0, 0.66667, 0.54654766],
...                 [0.5, 0.16667, 0.54654766]],
...     "species": ['H', 'H', 'H', 'H', 'H', 'He', 'He', 'He'],
...     "site_properties": {
...         "SiteTypes": ['S1', 'S1', 'S1', 'S1', 'S1', 'S1', 'A1', 'A1'],
...         "oss": ['-1', '-1', '-1', '-1', '-1', '-1', '0', '2']
...     }
... }

>>> featuriser = dc.feat.LCNNFeaturizer(**PRIMITIVE_CELL_INF0)
>>> print(type(featuriser._featurize(Structure(**DATA_POINT))))
<class 'deepchem.feat.graph_data.GraphData'>
```
Notes

This Class requires pymatgen, networkx, scipy installed.

__init__(structure: Any, aos: List[str], pbc: List[bool], ns: int = 1, na: int = 1, cutoff: float = 6.0)

Parameters

• **structure**: Pymatgen Structure object of the primitive cell used for calculating neighbors from lattice transformations. It also requires site_properties attribute with “Sitetypes” (Active or spectator site).

• **aos**: List of all the active site species. For the Pt, N, NO configuration set it as ['0', '1', '2']

• **pbc**: Periodic Boundary Condition

• **ns**: int = 1) — The number of spectator types elements. For “S1” its 1.

• **na**: int = 1) — the number of active types elements. For “A1” its 1.

• **cutoff**: float = 6.00) — Cutoff of radius for getting local environment. Only used down to 2 digits.

featurize(datapoints: Optional[Iterable[Union[Dict, Any]]] = None, log_every_n: int = 1000, **kwargs) → numpy.ndarray

Calculate features for crystal structures.

Parameters

• **datapoints**: Iterable[Union[Dict[str, Any], Any]] = None, log_every_n: int = 1000, **kwargs) → numpy.ndarray

3.9.4 MaterialCompositionFeaturizer

3.9.5 Molecule Tokenizers

A tokenizer is in charge of preparing the inputs for a natural language processing model. For many scientific applications, it is possible to treat inputs as “words”/“sentences” and use NLP methods to make meaningful predictions. For example, SMILES strings or DNA sequences have grammatical structure and can be usefully modeled with NLP techniques. DeepChem provides some scientifically relevant tokenizers for use in different applications. These tokenizers are based on those from the HuggingFace transformers library (which DeepChem tokenizers inherit from).

The base classes PreTrainedTokenizer and PreTrainedTokenizerFast implements the common methods for encoding string inputs in model inputs and instantiating/saving python tokenizers either from a local file or directory or from a pretrained tokenizer provided by the library (downloaded from HuggingFace’s AWS S3 repository).

PreTrainedTokenizer (transformers.PreTrainedTokenizer) thus implements the main methods for using all the tokenizers:

• Tokenizing (spliting strings in sub-word token strings), converting tokens strings to ids and back, and encoding/decoding (i.e. tokenizing + convert to integers)
- Adding new tokens to the vocabulary in a way that is independent of the underlying structure (BPE, Sentence-Piece...)
- Managing special tokens like mask, beginning-of-sentence, etc tokens (adding them, assigning them to attributes in the tokenizer for easy access and making sure they are not split during tokenization)

BatchEncoding holds the output of the tokenizer’s encoding methods (__call__, encode_plus and batch_encode_plus) and is derived from a Python dictionary. When the tokenizer is a pure python tokenizer, this class behave just like a standard python dictionary and hold the various model inputs computed by these methods (input_ids, attention_mask...). For more details on the base tokenizers which the DeepChem tokenizers inherit from, please refer to the following: HuggingFace tokenizers docs

Tokenization methods on string-based corpuses in the life sciences are becoming increasingly popular for NLP-based applications to chemistry and biology. One such example is ChemBERTa, a transformer for molecular property prediction. DeepChem offers a tutorial for utilizing ChemBERTa using an alternate tokenizer, a Byte-Piece Encoder, which can be found here.

SmilesTokenizer

The `dc.feat.SmilesTokenizer` module inherits from the BertTokenizer class in transformers. It runs a WordPiece tokenization algorithm over SMILES strings using the tokenisation SMILES regex developed by Schwaller et. al.

The SmilesTokenizer employs an atom-wise tokenization strategy using the following Regex expression:

```python
SMILES_REGEX_PATTERN = "\[\[\]\]+|Br?|Cl?|N|O|S|P|I|b|c|n|o|s|p|(|)|\.||=|#|\+|\\→|:||@|\?|>\*|\$|\%[0–9]{2}|[0–9])"
```

To use, please install the transformers package using the following pip command:

```
pip install transformers
```

References:
- RXN Mapper: Unsupervised Attention-Guided Atom-Mapping
- Molecular Transformer: Unsupervised Attention-Guided Atom-Mapping

class SmilesTokenizer(vocab_file: str = `", **kwargs)

Creates the SmilesTokenizer class. The tokenizer heavily inherits from the BertTokenizer implementation found in Huggingface’s transformers library. It runs a WordPiece tokenization algorithm over SMILES strings using the tokenisation SMILES regex developed by Schwaller et. al.

Please see https://github.com/huggingface/transformers and https://github.com/rxn4chemistry/rxnfp for more details.

Examples

```python
>>> from deepchem.feat.smiles_tokenizer import SmilesTokenizer
>>> current_dir = os.path.dirname(os.path.realpath(__file__))
>>> vocab_path = os.path.join(current_dir, 'tests/data', 'vocab.txt')
>>> tokenizer = SmilesTokenizer(vocab_path)
>>> print(tokenizer.encode("CC(=O)OC1=CC=CC=C1C(=O)O"))
[12, 16, 16, 17, 22, 19, 18, 19, 16, 20, 22, 16, 16, 22, 16, 16, 22, 16, 20, 16, 17, 22, 19, 18, 19, 13]
```
References

Note: This class requires huggingface’s transformers and tokenizers libraries to be installed.

```python
__init__(vocab_file: str = '', **kwargs)

Constructs a SmilesTokenizer.

Parameters vocab_file (str) – Path to a SMILES character per line vocabulary file. Default
vocab file is found in deepchem/feat/tests/data/vocab.txt

property vocab_size

Size of the base vocabulary (without the added tokens).

Type int

convert_tokens_to_string(tokens: List[str])

Converts a sequence of tokens (string) in a single string.

Parameters tokens (List[str]) – List of tokens for a given string sequence.

Returns out_string – Single string from combined tokens.

Return type str

add_special_tokens_ids_single_sequence(token_ids: List[Optional[int]])

Adds special tokens to the a sequence for sequence classification tasks.

A BERT sequence has the following format: [CLS] X [SEP]

Parameters token_ids (list[int]) – list of tokenized input ids. Can be obtained using the
encode or encode_plus methods.

add_special_tokens_single_sequence(tokens: List[str])

Adds special tokens to the a sequence for sequence classification tasks. A BERT sequence has the
following format: [CLS] X [SEP]

Parameters tokens (List[str]) – List of tokens for a given string sequence.

add_special_tokens_ids_sequence_pair(token_ids_0: List[Optional[int]],
token_ids_1: List[Optional[int]]) → List[Optional[int]]

Adds special tokens to a sequence pair for sequence classification tasks. A BERT sequence pair has the

Parameters

• token_ids_0 (List[int]) – List of ids for the first string sequence in the sequence pair (A).

• token_ids_1 (List[int]) – List of tokens for the second string sequence in the sequence pair (B).

add_padding_tokens(token_ids: List[Optional[int]], length: int, right: bool = True) → List[Optional[int]]

Adds padding tokens to return a sequence of length max_length. By default padding tokens are added to
the right of the sequence.

Parameters

• token_ids (list[optional[int]]) – list of tokenized input ids. Can be obtained using the
encode or encode_plus methods.

• length (int) – TODO
• **right** *(bool, default True) – TODO*

Returns TODO

Return type List[int]

**save_vocabulary** *(save_directory: str, filename_prefix: Optional[str] = None)*

Save the tokenizer vocabulary to a file.

Parameters vocab_path *(obj: str)* – The directory in which to save the SMILES character per line vocabulary file. Default vocab file is found in deepchem/feat/tests/data/vocab.txt

Returns vocab_file – Paths to the files saved. tuple with string to a SMILES character per line vocabulary file. Default vocab file is found in deepchem/feat/tests/data/vocab.txt

Return type Tuple

**BasicSmilesTokenizer**

The `dc.feat.BasicSmilesTokenizer` module uses a regex tokenization pattern to tokenize SMILES strings. The regex is developed by Schwaller et. al. The tokenizer is to be used on SMILES in cases where the user wishes to not rely on the transformers API.

References:

- Molecular Transformer: Unsupervised Attention-Guided Atom-Mapping

class **BasicSmilesTokenizer** *(regex_pattern: str = r'\[\[^\]\]+|Br?|Cl?|N|O|S|P|F|I|b|c|n|o|s|p|\(|\)|\.|=|#|\-|\+|\\|\(/|:|~|@|\?|>>?|\*|\$|\%[0-9]{2}|[0-9])' )*  

Run basic SMILES tokenization using a regex pattern developed by Schwaller et. al. This tokenizer is to be used when a tokenizer that does not require the transformers library by HuggingFace is required.

**Examples**

```python
>>> from deepchem.feat.smiles_tokenizer import BasicSmilesTokenizer
>>> tokenizer = BasicSmilesTokenizer()
>>> print(tokenizer.tokenize("CC(=O)OC1=CC=CC=C1C(=O)O"))
```

**References**

- __init__ *(regex_pattern: str = r'\[\[^\]\]+|Br?|Cl?|N|O|S|P|F|I|b|c|n|o|s|p|\(|\)|\.|=|#|\-|\+|\\|\(/|:|~|@|\?|>>?|\*|\$|\%[0-9]{2}|[0-9])' )*  

Constructs a BasicSMILESTokenizer.

Parameters regex *(string)* – SMILES token regex

**tokenize**(text)

Basic Tokenization of a SMILES.
3.9.6 Sequence Featurizers

PFMFeaturizer

The dc.feat.PFMFeaturizer module implements a featurizer for position frequency matrices. This takes in a list of multisequence alignments and returns a list of position frequency matrices.

```python
class PFMFeaturizer:
 ... # Initialize featurizer.

Parameters

- `charset` (List[str] (default CHARSET)) – A list of strings, where each string is length 1 and unique.
- `max_length` (int, optional (default 25)) – Maximum length of sequences to be featurized.

Examples

```python
>>> from deepchem.feat.sequence_featurizers import PFMFeaturizer
>>> from deepchem.data import NumpyDataset
>>> msa = NumpyDataset(X=[[ABC, 'BCD'], ['AAA', 'AAB'], ['seq01', 'seq02']], ids=[[seq01, seq02]])
>>> seqs = msa.X
>>> featurizer = PFMFeaturizer()
>>> pfm = featurizer.featurize(seqs)
>>> pfm.shape
(2, 100)
```

3.9.7 Other Featurizers

BertFeaturizer

```python
class BertFeaturizer(tokenizer: transformers.models.bert.tokenization_bert_fast.BertTokenizerFast):
    Bert Featurizer.

    Bert Featurizer. The Bert Featurizer is a wrapper class for HuggingFace's BertTokenizerFast. This class intends to allow users to use the BertTokenizer API while remaining inside the DeepChem ecosystem.
```
Examples

```python
>>> from deepchem.feat import BertFeaturizer
>>> from transformers import BertTokenizerFast

>>>
tokenizer = BertTokenizerFast.from_pretrained("Rostlab/prot_bert", do_lower_case=False)
>>>
featurizer = BertFeaturizer(tokenizer)
>>>
feats = featurizer.featurize(’D L I P [MASK] L V T’)
```

Notes

Examples are based on RostLab’s ProtBert documentation.

```
__init__(tokenizer: transformers.models.bert.tokenization_bert_fast.BertTokenizerFast)

featurize(datapoints: Iterable[Any], log_every_n: int = 1000, **kwargs) → numpy.ndarray
```

Calculate features for datapoints.

Parameters

- **datapoints (Iterable[Any])** – A sequence of objects that you’d like to featurize. Subclasses of Featurizer should instantiate the _featurize method that featurizes objects in the sequence.

- **log_every_n (int, default 1000)** – Logs featurization progress every log_every_n steps.

Returns

A numpy array containing a featurized representation of datapoints.

Return type

np.ndarray

RobertaFeaturizer

```
class RobertaFeaturizer(**kwargs)
```

Roberta Featurizer.

The Roberta Featurizer is a wrapper class of the Roberta Tokenizer, which is used by Huggingface’s transformers library for tokenizing large corpuses for Roberta Models. Please confirm the details in [1].

Examples

```python
>>> from deepchem.feat import RobertaFeaturizer
>>> smiles = ["Cn1c(=O)c2c(ncn2C)n(C)c1=O", "CC(=O)N1CN(C(C)=O)C(O)C1O"]

>>>
featurizer = RobertaFeaturizer.from_pretrained("seyonec/SMILES_tokenized_PubChem_shard00_160k")

>>> out = featurizer.featurize(smiles, add_special_tokens=True, truncation=True)
```
References

Note: This class requires transformers to be installed. RobertaFeaturizer uses dual inheritance with RobertaTokenizerFast in Huggingface for rapid tokenization, as well as DeepChem’s MolecularFeaturizer class.

```python
__init__(**kwargs)
__len__() → int
  Size of the full vocabulary with the added tokens.
add_special_tokens(special_tokens_dict: Dict[str, Union[str, tokenizers.AddedToken]]) → int
  Add a dictionary of special tokens (eos, pad, cls, etc.) to the encoder and link them to class attributes. If special tokens are NOT in the vocabulary, they are added to it (indexed starting from the last index of the current vocabulary).

  Note, None When adding new tokens to the vocabulary, you should make sure to also resize the token embedding matrix of the model so that its embedding matrix matches the tokenizer.

  In order to do that, please use the [~PreTrainedModel.resize_token_embeddings] method.

  Using add_special_tokens will ensure your special tokens can be used in several ways:
  • Special tokens are carefully handled by the tokenizer (they are never split).
  • You can easily refer to special tokens using tokenizer class attributes like tokenizer.cls_token. This makes it easy to develop model-agnostic training and fine-tuning scripts.

  When possible, special tokens are already registered for provided pretrained models (for instance [BertTokenizer] cls_token is already registered to be :obj*'[CLS]'* and XLM’s one is also registered to be ‘</s>’).

  Parameters special_tokens_dict (dictionary str to str or tokenizers.AddedToken) – Keys should be in the list of predefined special attributes: [bos_token, eos_token, unk_token, sep_token, pad_token, cls_token, mask_token, additional_special_tokens].

  Tokens are only added if they are not already in the vocabulary (tested by checking if the tokenizer assign the index of the unk_token to them).

  Returns Number of tokens added to the vocabulary.

  Return type int
```

Examples:
```
```python
Let's see how to add a new classification token to GPT-2
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
model = GPT2Model.from_pretrained("gpt2")
special_tokens_dict = {'cls_token': '<CLS>'}
num_added_toks = tokenizer.add_special_tokens(special_tokens_dict)
print("We have added", num_added_toks, "tokens")
Notice: resize_token_embeddings expect to receive the full size of the new vocabulary, i.e., the length of the tokenizer.
model.resize_token_embeddings(len(tokenizer))
assert tokenizer.cls_token == '<CLS>'
```

```python
 Add a list of new tokens to the tokenizer class. If the new tokens are not in the vocabulary, they are added to it with indices starting from length of the current vocabulary.

 Note, None When adding new tokens to the vocabulary, you should make sure to also resize the token embedding matrix of the model so that its embedding matrix matches the tokenizer.
```
In order to do that, please use the \[PreTrainedModel.resize_token_embeddings\] method.

**Parameters**

- **new_tokens** (str, tokenizers.AddedToken or a list of str or tokenizers.AddedToken) – Tokens are only added if they are not already in the vocabulary. tokenizers.AddedToken wraps a string token to let you personalize its behavior: whether this token should only match against a single word, whether this token should strip all potential whitespaces on the left side, whether this token should strip all potential whitespaces on the right side, etc.

- **special_tokens** (bool, optional, defaults to False) – Can be used to specify if the token is a special token. This mostly change the normalization behavior (special tokens like CLS or [MASK] are usually not lower-cased for instance).

See details for tokenizers.AddedToken in HuggingFace tokenizers library.

**Returns**

- **Return type** int

**Examples:**

```python
Let's see how to increase the vocabulary of Bert model and tokenizer
tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased")
model = BertModel.from_pretrained("bert-base-uncased")
num_added_toks = tokenizer.add_tokens(['new_tok1', 'my_new-tok2'])
print("We have added", num_added_toks, "tokens")
Notice: resize_token_embeddings expect to receive the full size of the new
vocabulary, i.e., the length of the tokenizer.
model.resize_token_embeddings(len(tokenizer))
```

**property additional_special_tokens:** List[str]

All the additional special tokens you may want to use. Log an error if used while not having been set.

**Type** List[str]

**property additional_special_tokens_ids:** List[int]

Ids of all the additional special tokens in the vocabulary. Log an error if used while not having been set.

**Type** List[int]

**property all_special_ids:** List[int]

List the ids of the special tokens(’<unk>’, ’<cls>’, etc.) mapped to class attributes.

**Type** List[int]

**property all_special_tokens:** List[str]

All the special tokens(’<unk>’, ’<cls>’, etc.) mapped to class attributes.

Convert tokens of tokenizers.AddedToken type to string.

**Type** List[str]

**property all_special_tokens_extended:** List[Union[str, tokenizers.AddedToken]]

All the special tokens(’<unk>’, ’<cls>’, etc.) mapped to class attributes.

Don’t convert tokens of tokenizers.AddedToken type to string so they can be used to control more finely how special tokens are tokenized.

**Type** List[Union[str, tokenizers.AddedToken]]

**as_target_tokenizer()**

Temporarily sets the tokenizer for encoding the targets. Useful for tokenizer associated to sequence-to-sequence models that need a slightly different processing for the labels.
**property** `backend_tokenizer`: `tokenizers.Tokenizer`  
The Rust tokenizer used as a backend.

**Type** `tokenizers.implementations.BaseTokenizer`  

`batch_decode`(sequences: `Union[List[int], List[List[int]], np.ndarray, torch.Tensor, tf.Tensor]`,  
skip_special_tokens: `bool = False`, clean_up_tokenization_spaces: `bool = True`, **kwargs)  
→ `List[str]`

Convert a list of lists of token ids into a list of strings by calling decode.

**Parameters**

- **skip_special_tokens** (`bool`, optional, defaults to `False`) – Whether or not to remove special tokens in the decoding.
- **clean_up_tokenization_spaces** (`bool`, optional, defaults to `True`) – Whether or not to clean up the tokenization spaces.
- **kwargs** (additional keyword arguments, optional) – Will be passed to the underlying model specific decode method.

**Returns** The list of decoded sentences.

**Return type** `List[str]`

`batch_encode_plus`(batch_text_or_text_pairs: `Union[List[str], List[Tuple[str, str]], List[List[str]], List[Tuple[List[str], List[str]]], List[List[int]], List[Tuple[List[int], List[int]]]]`,  
→ `transformers.tokenization_utils_base.BatchEncoding`

Tokenize and prepare for the model a list of sequences or a list of pairs of sequences.

<Tip warning={true}>
This method is deprecated, `__call__` should be used instead.
</Tip>

**Parameters**

- **batch_text_or_text_pairs** (`List[str], List[Tuple[str, str]], List[List[str]], List[Tuple[List[str], List[str]]], and for not-fast tokenizers, also List[List[int]], List[Tuple[List[int], List[int]]]`) – Batch of sequences or pair of sequences to be encoded. This can be a list of string/string-sequences/int-sequences or a list of pair of string/string-sequences/int-sequence (see details in `encode_plus`).
- **add_special_tokens** (`bool`, optional, defaults to `True`) – Whether or not to encode the sequences with the special tokens relative to their model.
- **padding** (`bool, str or [utils.PaddingStrategy], optional, defaults to `False`) – Activates and controls padding. Accepts the following values:
- `True` or `longest`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided).

- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided.

- `False` or `do_not_pad` (default): No padding (i.e., can output a batch with sequences of different lengths).

- **truncation (bool, str or [-tokenization_utils_base.TruncationStrategy], optional, defaults to False) –** Activates and controls truncation. Accepts the following values:

  - `True` or `longest_first`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided.

  - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided.

  - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.

  - `False` or `do_not_truncate` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size).

- **max_length (int, optional)** – Controls the maximum length to use by one of the truncation/padding parameters.

  If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated.

- **stride (int, optional, defaults to 0)** – If set to a number along with `max_length`, the overflowing tokens returned when `return_overlapping_tokens=True` will contain some tokens from the end of the truncated sequence returned to provide some overlap between truncated and overflowing sequences. The value of this argument defines the number of overlapping tokens.

- **is_split_into_words (bool, optional, defaults to False)** – Whether or not the input is already pre-tokenized (e.g., split into words). If set to `True`, the tokenizer assumes the input is already split into words (for instance, by splitting it on whitespace) which it will tokenize. This is useful for NER or token classification.

- **pad_to_multiple_of (int, optional)** – If set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta).

- **return_tensors (str or [-utils.TensorType], optional)** – If set, will return tensors instead of list of python integers. Acceptable values are:

  - `'tf'`: Return TensorFlow `tf.constant` objects.


  - `'np'`: Return Numpy `np.ndarray` objects.
• return_token_type_ids (bool, optional) – Whether to return token type IDs. If left to the default, will return the token type IDs according to the specific tokenizer’s default, defined by the return_outputs attribute.

[What are token type IDs?](../glossary#token-type-ids)

• return_attention_mask (bool, optional) – Whether to return the attention mask. If left to the default, will return the attention mask according to the specific tokenizer’s default, defined by the return_outputs attribute.

[What are attention masks?](../glossary#attention-mask)

• return_overlapping_tokens (bool, optional, defaults to False) – Whether or not to return overlapping token sequences. If a pair of sequences of input ids (or a batch of pairs) is provided with truncation_strategy = longest_first or True, an error is raised instead of returning overlapping tokens.

• return_special_tokens_mask (bool, optional, defaults to False) – Whether or not to return special tokens mask information.

• return_offsets_mapping (bool, optional, defaults to False) – Whether or not to return [char_start, char_end] for each token.

This is only available on fast tokenizers inheriting from [PreTrainedTokenizerFast](..), if using Python’s tokenizer, this method will raise NotImplemented.

• return_length (bool, optional, defaults to False) – Whether or not to return the lengths of the encoded inputs.

• verbose (bool, optional, defaults to True) – Whether or not to print more information and warnings.

• **kwargs – passed to the self.tokenize() method

**Returns**

A [BatchEncoding] with the following fields:

• input_ids – List of token ids to be fed to a model.

[What are input IDs?](../glossary#input-ids)

• token_type_ids – List of token type ids to be fed to a model (when return_token_type_ids=True or if “token_type_ids” is in self.model_input_names).

[What are token type IDs?](../glossary#token-type-ids)

• attention_mask – List of indices specifying which tokens should be attended to by the model (when return_attention_mask=True or if “attention_mask” is in self.model_input_names).

[What are attention masks?](../glossary#attention-mask)

• overlapping_tokens – List of overlapping tokens sequences (when a max_length is specified and return_overlapping_tokens=True).

• num_truncated_tokens – Number of tokens truncated (when a max_length is specified and return_overlapping_tokens=True).

• special_tokens_mask – List of 0s and 1s, with 1 specifying added special tokens and 0 specifying regular sequence tokens (when add_special_tokens=True and return_special_tokens_mask=True).

• length – The length of the inputs (when return_length=True)
Return type [BatchEncoding]

**property bos_token: str**

Beginning of sentence token. Log an error if used while not having been set.

Type str

**property bos_token_id: Optional[int]**

Id of the beginning of sentence token in the vocabulary. Returns None if the token has not been set.

Type Optional[int]

**build_inputs_with_special_tokens(token_ids_0, token_ids_1=None)**

Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens.

This implementation does not add special tokens and this method should be overridden in a subclass.

Parameters

- **token_ids_0 (List[int])** – The first tokenized sequence.
- **token_ids_1 (List[int], optional)** – The second tokenized sequence.

Returns The model input with special tokens.

Return type List[int]

**static clean_up_tokenization(out_string: str) → str**

Clean up a list of simple English tokenization artifacts like spaces before punctuations and abbreviated forms.

Parameters **out_string (str)** – The text to clean up.

Returns The cleaned-up string.

Return type str

**property cls_token: str**

Classification token, to extract a summary of an input sequence leveraging self-attention along the full depth of the model. Log an error if used while not having been set.

Type str

**property cls_token_id: Optional[int]**

Id of the classification token in the vocabulary, to extract a summary of an input sequence leveraging self-attention along the full depth of the model.

Returns None if the token has not been set.

Type Optional[int]

**convert_ids_to_tokens(ids: Union[int, List[int]], skip_special_tokens: bool = False) → Union[str, List[str]]**

Converts a single index or a sequence of indices in a token or a sequence of tokens, using the vocabulary and added tokens.

Parameters

- **ids (int or List[int])** – The token id (or token ids) to convert to tokens.
- **skip_special_tokens (bool, optional, defaults to False)** – Whether or not to remove special tokens in the decoding.

Returns The decoded token(s).
**Return type**  
`str` or `List[str]`

**convert_tokens_to_ids**  
`tokens: Union[str, List[str]]` → `Union[int, List[int]]`

Converts a token string (or a sequence of tokens) in a single integer id (or a sequence of ids), using the vocabulary.

**Parameters**  
- **tokens**  
  
  `str` or `List[str]` – One or several token(s) to convert to token id(s).

**Returns**  
The token id or list of token ids.

**Return type**  
`int` or `List[int]`

**convert_tokens_to_string**  
`tokens: List[str]` → `str`

Converts a sequence of tokens in a single string. The most simple way to do it is `" " .join(tokens)` but we often want to remove sub-word tokenization artifacts at the same time.

**Parameters**  
- **tokens**  
  
  `List[str]` – The token to join in a string.

**Returns**  
The joined tokens.

**Return type**  
`str`

**create_token_type_ids_from_sequences**  
`token_ids_0: List[int], token_ids_1: Optional[List[int]] = None` → `List[int]`

Create a mask from the two sequences passed to be used in a sequence-pair classification task. RoBERTa does not make use of token type ids, therefore a list of zeros is returned.

**Parameters**  
- **token_ids_0**  
  
  `List[int]` – List of IDs.

- **token_ids_1**  
  
  `List[int], optional` – Optional second list of IDs for sequence pairs.

**Returns**  
List of zeros.

**Return type**  
`List[int]`

**decode**  
`token_ids: Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor], skip_special_tokens: bool = False, clean_up_tokenization_spaces: bool = True, **kwargs)` → `str`

Converts a sequence of ids in a string, using the tokenizer and vocabulary with options to remove special tokens and clean up tokenization spaces.

Similar to doing `self.convert_tokens_to_string(self.convert_ids_to_tokens(token_ids))`.

**Parameters**  
- **token_ids**  
  

- **skip_special_tokens**  
  
  `bool, optional, defaults to False` – Whether or not to remove special tokens in the decoding.

- **clean_up_tokenization_spaces**  
  
  `bool, optional, defaults to True` – Whether or not to clean up the tokenization spaces.

- **kwargs**  
  
  (additional keyword arguments, `optional`) – Will be passed to the underlying model specific decode method.

**Returns**  
The decoded sentence.

**Return type**  
`str`
property decoder: tokenizers.decoders.Decoder

The Rust decoder for this tokenizer.

Type tokenizers.decoders.Decoder


Converts a string to a sequence of ids (integer), using the tokenizer and vocabulary.

Same as doing self.convert_tokens_to_ids(self.tokenize(text)).

Parameters

- **text** (str, List[str] or List[int]) – The first sequence to be encoded. This can be a string, a list of strings (tokenized string using the tokenize method) or a list of integers (tokenized string ids using the convert_tokens_to_ids method).

- **text_pair** (str, List[str] or List[int], optional) – Optional second sequence to be encoded. This can be a string, a list of strings (tokenized string using the tokenize method) or a list of integers (tokenized string ids using the convert_tokens_to_ids method).

- **add_special_tokens** (bool, optional, defaults to True) – Whether or not to encode the sequences with the special tokens relative to their model.

- **padding** (bool, str or [~utils.PaddingStrategy], optional, defaults to False) – Activates and controls padding. Accepts the following values:
  - True or ‘longest’: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided).
  - ‘max_length’: Pad to a maximum length specified with the argument max_length or to the maximum acceptable input length for the model if that argument is not provided.
  - False or ‘do_not_pad’ (default): No padding (i.e., can output a batch with sequences of different lengths).

- **truncation** (bool, str or [~tokenization_utils_base.TruncationStrategy], optional, defaults to False) – Activates and controls truncation. Accepts the following values:
  - True or ‘longest_first’: Truncate to a maximum length specified with the argument max_length or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided.
  - ‘only_first’: Truncate to a maximum length specified with the argument max_length or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
  - ‘only_second’: Truncate to a maximum length specified with the argument max_length or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
  - False or ‘do_not_truncate’ (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size).
• **max_length** (**int**, optional) – Controls the maximum length to use by one of the truncation/padding parameters.

If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated.

• **stride** (**int**, optional, defaults to 0) – If set to a number along with **max_length**, the overflowing tokens returned when `return_overlapping_tokens=True` will contain some tokens from the end of the truncated sequence returned to provide some overlap between truncated and overflowing sequences. The value of this argument defines the number of overlapping tokens.

• **is_split_into_words** (**bool**, optional, defaults to `False`) – Whether or not the input is already pre-tokenized (e.g., split into words). If set to `True`, the tokenizer assumes the input is already split into words (for instance, by splitting it on whitespace) which it will tokenize. This is useful for NER or token classification.

• **pad_to_multiple_of** (**int**, optional) – If set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta).

• **return_tensors** (**str** or [-utils.TensorType], optional) – If set, will return tensors instead of list of python integers. Acceptable values are:
  - `'tf'`: Return TensorFlow `tf.constant` objects.
  - `'np'`: Return Numpy `np.ndarray` objects.

• ****kwargs** – Passed along to the `.tokenize()` method.

**Returns**  
The tokenized ids of the text.

**Return type**  
`List[int], torch.Tensor, tf.Tensor or np.ndarray`

```
```

Tokenize and prepare for the model a sequence or a pair of sequences.

<Tip warning={true}>
This method is deprecated, `__call__` should be used instead.
</Tip>

**Parameters**

• **text** (**str**, **List[str]** or **List[int]** (the latter only for not-fast tokenizers)) – The first sequence to be encoded. This can be a string, a list of strings (tokenized string using the `tokenize` method) or a list of integers (tokenized string ids using the `convert_tokens_to_ids` method).
• **text_pair** *(str, List[str] or List[int], optional)* – Optional second sequence to be encoded. This can be a string, a list of strings (tokenized string using the `tokenize` method) or a list of integers (tokenized string ids using the `convert_tokens_to_ids` method).

• **add_special_tokens** *(bool, optional, defaults to True)* – Whether or not to encode the sequences with the special tokens relative to their model.

• **padding** *(bool, str or [~utils.PaddingStrategy], optional, defaults to False)* – Activates and controls padding. Accepts the following values:
  - *True* or *'longest'*: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided).
  - *'max_length'*: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided.
  - *False* or *'do_not_pad'* (default): No padding (i.e., can output a batch with sequences of different lengths).

• **truncation** *(bool, str or [~tokenization_utils_base.TruncationStrategy], optional, defaults to False)* – Activates and controls truncation. Accepts the following values:
  - *True* or *'longest_first'*: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided.
  - *'only_first'*: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
  - *'only_second'*: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
  - *False* or *'do_not_truncate'* (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size).

• **max_length** *(int, optional)* – Controls the maximum length to use by one of the truncation/padding parameters.

If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated.

• **stride** *(int, optional, defaults to 0)* – If set to a number along with `max_length`, the overflowing tokens returned when `return_overlapping_tokens=True` will contain some tokens from the end of the truncated sequence returned to provide some overlap between truncated and overflowing sequences. The value of this argument defines the number of overlapping tokens.

• **is_split_into_words** *(bool, optional, defaults to False)* – Whether or not the input is already pre-tokenized (e.g., split into words). If set to `True`, the tokenizer assumes the input is already split into words (for instance, by splitting it on whitespace) which it will tokenize. This is useful for NER or token classification.

• **pad_to_multiple_of** *(int, optional)* – If set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Cores on NVIDIA
hardware with compute capability >= 7.5 (Volta).

- **return_tensors** *(str or [-utils.TensorType], optional)* – If set, will return tensors instead of list of python integers. Acceptable values are:
  - ‘tf’: Return TensorFlow tf.constant objects.
  - ‘np’: Return Numpy np.ndarray objects.

- **return_token_type_ids** *(bool, optional)* – Whether to return token type IDs. If left to the default, will return the token type IDs according to the specific tokenizer’s default, defined by the `return_outputs` attribute.

[What are token type IDs?](../glossary#token-type-ids)

- **return_attention_mask** *(bool, optional)* – Whether to return the attention mask. If left to the default, will return the attention mask according to the specific tokenizer’s default, defined by the `return_outputs` attribute.

[What are attention masks?](../glossary#attention-mask)

- **return_overflowing_tokens** *(bool, optional, defaults to False)* – Whether or not to return overflowing token sequences. If a pair of sequences of input ids (or a batch of pairs) is provided with `truncation_strategy = longest_first` or `True`, an error is raised instead of returning overflowing tokens.

- **return_special_tokens_mask** *(bool, optional, defaults to False)* – Whether or not to return special tokens mask information.

- **return_offsets_mapping** *(bool, optional, defaults to False)* – Whether or not to return `(char_start, char_end)` for each token.

  This is only available on fast tokenizers inheriting from [PreTrainedTokenizerFast](.), if using Python’s tokenizer, this method will raise `NotImplementedError`.

- **return_length** *(bool, optional, defaults to False)* – Whether or not to return the lengths of the encoded inputs.

- **verbose** *(bool, optional, defaults to True)* – Whether or not to print more information and warnings.

- ****kwargs** – passed to the `self.tokenize()` method

**Returns**

A [BatchEncoding] with the following fields:

- **input_ids** – List of token ids to be fed to a model.

[What are input IDs?]([/glossary/input-ids])

- **token_type_ids** – List of token type ids to be fed to a model (when `return_token_type_ids=True` or if “token_type_ids” is in `self.model_input_names`).

[What are token type IDs?]([/glossary/token-type-ids])

- **attention_mask** – List of indices specifying which tokens should be attended to by the model (when `return_attention_mask=True` or if “attention_mask” is in `self.model_input_names`).

[What are attention masks?]([/glossary/attention-mask])

- **overflowing_tokens** – List of overflowing tokens sequences (when a `max_length` is specified and `return_overflowing_tokens=True`).
• **num_truncated_tokens** – Number of tokens truncated (when a `max_length` is specified and `return_overflowing_tokens=True`).

• **special_tokens_mask** – List of 0s and 1s, with 1 specifying added special tokens and 0 specifying regular sequence tokens (when `add_special_tokens=True` and `return_special_tokens_mask=True`).

• **length** – The length of the inputs (when `return_length=True`)

**Return type** `BatchEncoding`

**property eos_token**: `str`

End of sentence token. Log an error if used while not having been set.

Type `str`

**property eos_token_id**: `Optional[int]`

Id of the end of sentence token in the vocabulary. Returns `None` if the token has not been set.

Type `Optional[int]`

**featurize**(datapoints: `Iterable[Any]`, log_every_n: `int = 1000`, **kwargs) → numpy.ndarray

Calculate features for datapoints.

**Parameters**

• **datapoints** (`Iterable[Any]`) – A sequence of objects that you’d like to featurize. Subclasses of `Featurizer` should instantiate the `_featurize` method that featurizes objects in the sequence.

• **log_every_n** (`int, default 1000`) – Logs featurization progress every `log_every_n` steps.

**Returns** A numpy array containing a featurized representation of `datapoints`.

**Return type** `np.ndarray`

**classmethod from_pretrained**(pretrained_model_name_or_path: `Union[str, os.PathLike]`, *init_inputs, **kwargs)

Instantiate a `~tokenization_utils_base.PreTrainedTokenizerBase` (or a derived class) from a predefined tokenizer.

**Parameters**

• **pretrained_model_name_or_path** (`str` or `os.PathLike`) – Can be either:
  
  – A string, the `model id` of a predefined tokenizer hosted inside a model repo on huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a user or organization name, like `dbmdz/bert-base-german-cased`.

  – A path to a `directory` containing vocabulary files required by the tokenizer, for instance saved using the `~tokenization_utils_base.PreTrainedTokenizerBase.save_pretrained` method, e.g., `/my_model_directory/`.

  – (Deprecated, not applicable to all derived classes) A path or url to a single saved vocabulary file (if and only if the tokenizer only requires a single vocabulary file like Bert or XLNet), e.g., `/my_model_directory/vocab.txt`.

• **cache_dir** (`str` or `os.PathLike, optional`) – Path to a directory in which a downloaded predefined tokenizer vocabulary files should be cached if the standard cache should not be used.
• **force_download** (bool, optional, defaults to False) – Whether or not to force the (re-)download the vocabulary files and override the cached versions if they exist.

• **resume_download** (bool, optional, defaults to False) – Whether or not to delete incompletely received files. Attempt to resume the download if such a file exists.

• **proxies** (Dict[str, str], optional) – A dictionary of proxy servers to use by protocol or endpoint, e.g., {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request.

• **use_auth_token** (str or bool, optional) – The token to use as HTTP bearer authorization for remote files. If True, will use the token generated when running transformers-cli login (stored in ~/.huggingface).

• **local_files_only** (bool, optional, defaults to False) – Whether or not to only rely on local files and not to attempt to download any files.

• **revision** (str, optional, defaults to “main”) – The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, so revision can be any identifier allowed by git.

• **subfolder** (str, optional) – In case the relevant files are located inside a subfolder of the model repo on huggingface.co (e.g. for facebook/rag-token-base), specify it here.

• **inputs** (additional positional arguments, optional) – Will be passed along to the Tokenizer __init__ method.

• **kwargs** (additional keyword arguments, optional) – Will be passed to the Tokenizer __init__ method. Can be used to set special tokens like bos_token, eos_token, unk_token, sep_token, pad_token, cls_token, mask_token, additional_special_tokens. See parameters in the __init__ for more details.

<Tip>
Passing use_auth_token=True is required when you want to use a private model.
</Tip>

Examples:
```
``` python
# We can’t instantiate directly the base class PreTrainedTokenizerBase so let’s show our examples on a derived class: BertTokenizer

# Download vocabulary from huggingface.co and cache.
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")

# Download vocabulary from huggingface.co (user-uploaded) and cache.
tokenizer = BertTokenizer.from_pretrained("dbmdz/bert-base-german-cased")

# If vocabulary files are in a directory (e.g. tokenizer was saved using save_pretrained("/test/saved_model/"))
tokenizer = BertTokenizer.from_pretrained("/test/saved_model/")

# If the tokenizer uses a single vocabulary file, you can point directly to this file
tokenizer = BertTokenizer.from_pretrained("/test/saved_model/my_vocab.txt")

# You can link tokens to special vocabulary when instantiating tokenizer = BertTokenizer.from_pretrained("bert-base-uncased", unk_token="<unk>") # You should be sure ‘<unk>’ is in the vocabulary when doing that.  # Otherwise use tokenizer.add_special_tokens({‘unk_token’: ‘<unk>’}) instead assert tokenizer.unk_token == "<unk>" 
```

get_added_vocab() → Dict[str, int]

Returns the added tokens in the vocabulary as a dictionary of token to index.

Returns The added tokens.
Return type Dict[str, int]

get_special_tokens_mask (token_ids_0: List[int], token_ids_1: Optional[List[int]] = None,
 already_has_special_tokens: bool = False) -> List[int]

Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer prepare_for_model or encode_plus methods.

Parameters

- token_ids_0 (List[int]) – List of ids of the first sequence.
- token_ids_1 (List[int], optional) – List of ids of the second sequence.
- already_has_special_tokens (bool, optional, defaults to False) – Whether or not the token list is already formatted with special tokens for the model.

Returns 1 for a special token, 0 for a sequence token.

Return type A list of integers in the range [0, 1]

get_vocab () -> Dict[str, int]

Returns the vocabulary as a dictionary of token to index.

tokenizer.get_vocab()[token] is equivalent to tokenizer.convert_tokens_to_ids(token) when token is in the vocab.

Returns The vocabulary.

Return type Dict[str, int]

property mask_token: str

Mask token, to use when training a model with masked-language modeling. Log an error if used while not having been set.

Roberta tokenizer has a special mask token to be usable in the fill-mask pipeline. The mask token will greedily comprise the space before the <mask>.

Type str

property mask_token_id: Optional[int]

Id of the mask token in the vocabulary, used when training a model with masked-language modeling. Returns None if the token has not been set.

Type Optional[int]

property max_len_sentences_pair: int

The maximum combined length of a pair of sentences that can be fed to the model.

Type int

property max_len_single_sentence: int

The maximum length of a sentence that can be fed to the model.

Type int

num_special_tokens_to_add (pair: bool = False) -> int

Returns the number of added tokens when encoding a sequence with special tokens.

<Tip>
This encodes a dummy input and checks the number of added tokens, and is therefore not efficient. Do not put this inside your training loop.

</Tip>
Parameters

pair *(bool, optional, defaults to False)* – Whether the number of added tokens should be computed in the case of a sequence pair or a single sequence.

Returns

Number of special tokens added to sequences.

Return type *

int

Pad a single encoded input or a batch of encoded inputs up to predefined length or to the max sequence length in the batch.

Padding side (left/right) padding token ids are defined at the tokenizer level (with `self.padding_side`, `self.pad_token_id` and `self.pad_token_type_id`)

<Tip>

If the `encoded_inputs` passed are dictionary of numpy arrays, PyTorch tensors or TensorFlow tensors, the result will use the same type unless you provide a different tensor type with `return_tensors`. In the case of PyTorch tensors, you will lose the specific device of your tensors however.

</Tip>

Parameters

- **encoded_inputs** *(BatchEncoding, list of [BatchEncoding], Dict[str, List[int]], Dict[str, List[List[int]]]) – Tokenized inputs. Can represent one input (BatchEncoding or Dict[str, List[int]]) or a batch of tokenized inputs (list of [BatchEncoding], Dict[str, List[List[int]]]) so you can use this method during preprocessing as well as in a PyTorch Dataloader collate function.

Instead of `List[int]` you can have tensors (numpy arrays, PyTorch tensors or TensorFlow tensors), see the note above for the return type.

- **padding** *(bool, str or [~utils.PaddingStrategy], optional, defaults to True)* –

Select a strategy to pad the returned sequences (according to the model’s padding side and padding index) among:

- *True or ‘longest’*: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided).
- *‘max_length’*: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided.
- *False or ‘do_not_pad’* (default): No padding (i.e., can output a batch with sequences of different lengths).

- **max_length** *(int, optional)* – Maximum length of the returned list and optionally padding length (see above).

- **pad_to_multiple_of** *(int, optional)* – If set will pad the sequence to a multiple of the provided value.

This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta).
• **return_attention_mask** (bool, optional) – Whether to return the attention mask. If left to the default, will return the attention mask according to the specific tokenizer’s default, defined by the `return_outputs` attribute.

[What are attention masks?](../glossary#attention-mask)

• **return_tensors** (str or `~utils.TensorType`, optional) – If set, will return tensors instead of list of python integers. Acceptable values are:
 - `tf`: Return TensorFlow `tf.constant` objects.
 - `np`: Return Numpy `np.ndarray` objects.

• **verbose** (bool, optional, defaults to True) – Whether or not to print more information and warnings.

property pad_token: str

Padding token. Log an error if used while not having been set.

Type str

property pad_token_id: Optional[int]

Id of the padding token in the vocabulary. Returns None if the token has not been set.

Type Optional[int]

property pad_token_type_id: int

Id of the padding token type in the vocabulary.

Type int

prepare_for_model

```python

Prepares a sequence of input id, or a pair of sequences of inputs ids so that it can be used by the model. It adds special tokens, truncates sequences if overflowing while taking into account the special tokens and manages a moving window (with user defined stride) for overflowing tokens. Please Note, for `pair_ids` different than None and `truncation_strategy = longest_first` or `True`, it is not possible to return overflowing tokens. Such a combination of arguments will raise an error.

**Parameters**

• **ids** (List[int]) – Tokenized input ids of the first sequence. Can be obtained from a string by chaining the `tokenize` and `convert_tokens_to_ids` methods.

• **pair_ids** (List[int], optional) – Tokenized input ids of the second sequence. Can be obtained from a string by chaining the `tokenize` and `convert_tokens_to_ids` methods.

• **add_special_tokens** (bool, optional, defaults to True) – Whether or not to encode the sequences with the special tokens relative to their model.
• **padding** (bool, str or ~utils.PaddingStrategy, optional, defaults to False) – Activates and controls padding. Accepts the following values:
  - **True or ‘longest’**: Pad to the longest sequence in the batch (or no padding if only a single sequence is provided).
  - **’max_length’**: Pad to a maximum length specified with the argument max_length or to the maximum acceptable input length for the model if that argument is not provided.
  - **False or ‘do_not_pad’** (default): No padding (i.e., can output a batch with sequences of different lengths).

• **truncation** (bool, str or ~tokenization_utils_base.TruncationStrategy, optional, defaults to False) – Activates and controls truncation. Accepts the following values:
  - **True or ‘longest_first’**: Truncate to a maximum length specified with the argument max_length or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided.
  - **’only_first’**: Truncate to a maximum length specified with the argument max_length or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
  - **’only_second’**: Truncate to a maximum length specified with the argument max_length or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
  - **False or ‘do_not_truncate’** (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size).

• **max_length** (int, optional) – Controls the maximum length to use by one of the truncation/padding parameters.
  If left unset or set to None, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated.

• **stride** (int, optional, defaults to 0) – If set to a number along with max_length, the overflowing tokens returned when return_overflowing_tokens=True will contain some tokens from the end of the truncated sequence returned to provide some overlap between truncated and overflowing sequences. The value of this argument defines the number of overlapping tokens.

• **is_split_into_words** (bool, optional, defaults to False) – Whether or not the input is already pre-tokenized (e.g., split into words). If set to True, the tokenizer assumes the input is already split into words (for instance, by splitting it on whitespace) which it will tokenize. This is useful for NER or token classification.

• **pad_to_multiple_of** (int, optional) – If set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta).

• **return_tensors** (str or ~utils.TensorType, optional) – If set, will return tensors instead of list of python integers. Acceptable values are:
  - **’tf’**: Return TensorFlow tf.constant objects.
– 'np': Return Numpy np.ndarray objects.

• **return_token_type_ids** *(bool, optional)* – Whether to return token type IDs. If left to the default, will return the token type IDs according to the specific tokenizer’s default, defined by the `return_outputs` attribute.

[What are token type IDs?](../glossary#token-type-ids)

• **return_attention_mask** *(bool, optional)* – Whether to return the attention mask. If left to the default, will return the attention mask according to the specific tokenizer’s default, defined by the `return_outputs` attribute.

[What are attention masks?](../glossary#attention-mask)

• **return_overlapping_tokens** *(bool, optional, defaults to False)* – Whether or not to return overlapping token sequences. If a pair of sequences of input ids (or a batch of pairs) is provided with `truncation_strategy = longest_first` or `True`, an error is raised instead of returning overlapping tokens.

• **return_special_tokens_mask** *(bool, optional, defaults to False)* – Whether or not to return special tokens mask information.

• **return_offsets_mapping** *(bool, optional, defaults to False)* – Whether or not to return (char_start, char_end) for each token.

This is only available on fast tokenizers inheriting from [PreTrainedTokenizerFast](#), if using Python’s tokenizer, this method will raise `NotImplementedError`.

• **return_length** *(bool, optional, defaults to False)* – Whether or not to return the lengths of the encoded inputs.

• **verbose** *(bool, optional, defaults to True)* – Whether or not to print more information and warnings.

• ****kwargs** – passed to the `self.tokenize()` method

Returns

A [BatchEncoding] with the following fields:

• **input_ids** – List of token ids to be fed to a model.

[What are input IDs?](../glossary#input-ids)

• **token_type_ids** – List of token type ids to be fed to a model (when `return_token_type_ids=True` or if “token_type_ids” is in `self.model_input_names`).

[What are token type IDs?](../glossary#token-type-ids)

• **attention_mask** – List of indices specifying which tokens should be attended to by the model (when `return_attention_mask=True` or if “attention_mask” is in `self.model_input_names`).

[What are attention masks?](../glossary#attention-mask)

• **overflowing_tokens** – List of overflowing tokens sequences (when a `max_length` is specified and `return_overlapping_tokens=True`).

• **num_truncated_tokens** – Number of tokens truncated (when a `max_length` is specified and `return_overlapping_tokens=True`).

• **special_tokens_mask** – List of 0s and 1s, with 1 specifying added special tokens and 0 specifying regular sequence tokens (when `add_special_tokens=True` and `return_special_tokens_mask=True`).
• **length** – The length of the inputs (when `return_length=True`)

**Return type** [BatchEncoding]

```python
```

Prepare model inputs for translation. For best performance, translate one sentence at a time.

**Parameters**

- **src_texts** (List[str]) – List of documents to summarize or source language texts.
- **tgt_texts** (list, optional) – List of summaries or target language texts.
- **max_length** (int, optional) – Controls the maximum length for encoder inputs (documents to summarize or source language texts). If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated.
- **max_target_length** (int, optional) – Controls the maximum length of decoder inputs (target language texts or summaries). If left unset or set to `None`, this will use the `max_length` value.
- **padding** (bool, str or [~utils.PaddingStrategy], optional, defaults to `False`) – Activates and controls padding. Accepts the following values:
  - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided).
  - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided.
  - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths).
- **return_tensors** (str or [~utils.TensorType], optional) – If set, will return tensors instead of list of python integers. Acceptable values are:
  - `'tf'`: Return TensorFlow `tf.constant` objects.
  - `'np'`: Return Numpy `np.ndarray` objects.
- **truncation** (bool, str or [~tokenization_utils_base.TruncationStrategy], optional, defaults to `True`) – Activates and controls truncation. Accepts the following values:
  - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided.
  - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
  - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided.
This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.

- `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size).

- **kwargs – Additional keyword arguments passed along to `self.__call__`.

Returns
A `[BatchEncoding]` with the following fields:

- `input_ids` – List of token ids to be fed to the encoder.
- `attention_mask` – List of indices specifying which tokens should be attended to by the model.
- `labels` – List of token ids for `tgt_texts`.

The full set of keys `[input_ids, attention_mask, labels]`, will only be returned if `tgt_texts` is passed. Otherwise, `input_ids`, `attention_mask` will be the only keys.

**Return type** `[BatchEncoding]`


Upload the tokenizer files to the Model Hub while synchronizing a local clone of the repo in `repo_path_or_name`.

**Parameters**

- `repo_path_or_name (str, optional) – Can either be a repository name for your tokenizer in the Hub or a path to a local folder (in which case the repository will have the name of that local folder). If not specified, will default to the name given by `repo_url` and a local directory with that name will be created.

- `repo_url (str, optional) – Specify this in case you want to push to an existing repository in the hub. If unspecified, a new repository will be created in your namespace (unless you specify an `organization`) with `repo_name`.

- `use_temp_dir (bool, optional, defaults to False) – Whether or not to clone the distant repo in a temporary directory or in `repo_path_or_name` inside the current working directory. This will slow things down if you are making changes in an existing repo since you will need to clone the repo before every push.

- `commit_message (str, optional) – Message to commit while pushing. Will default to “add tokenizer”.

- `organization (str, optional) – Organization in which you want to push your tokenizer (you must be a member of this organization).

- `private (bool, optional) – Whether or not the repository created should be private (requires a paying subscription).

- `use_auth_token (bool or str, optional) – The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated when running `transformers-cli login` (stored in `~/huggingface`). Will default to `True` if `repo_url` is not specified.

**Returns** The url of the commit of your tokenizer in the given repository.

**Return type** `str`
Examples:

```python
from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")

Push the tokenizer to your namespace with the name "my-finetuned-bert" and have a local clone in the
my-finetuned-bert folder. tokenizer.push_to_hub("my-finetuned-bert")

Push the tokenizer to your namespace with the name "my-finetuned-bert" with no local clone.
tokenizer.push_to_hub("my-finetuned-bert", use_temp_dir=True)

Push the tokenizer to an organization with the name "my-finetuned-bert" and have a local clone in the
my-finetuned-bert folder. tokenizer.push_to_hub("my-finetuned-bert", organization="huggingface")

Make a change to an existing repo that has been cloned locally in my-finetuned-
bert. tokenizer.push_to_hub("my-finetuned-bert", repo_url="https://huggingface.co/sgugger/
my-finetuned-bert")
```

classmethod register_for_auto_class(auto_class=\'AutoTokenizer\')

Register this class with a given auto class. This should only be used for custom tokenizers as the ones in
the library are already mapped with AutoTokenizer.

<Tip warning={true}>
This API is experimental and may have some slight breaking changes in the next releases.
</Tip>

Parameters auto_class (str or type, optional, defaults to “AutoTokenizer”) – The auto class to
register this new tokenizer with.

sanitize_special_tokens() → int

Make sure that all the special tokens attributes of the tokenizer (tokenizer.mask_token, tokenizer.cls_token,
etc.) are in the vocabulary.

Add the missing ones to the vocabulary if needed.

Returns The number of tokens added in the vocabulary during the operation.

Return type int

save_pretrained(save_directory: Union[str, os.PathLike], legacy_format: Optional[bool] = None,
filename_prefix: Optional[str] = None, push_to_hub: bool = False, **kwargs) →
Tuple[str]

Save the full tokenizer state.

This method make sure the full tokenizer can then be re-loaded using the \[-tokeniza-
#tion_utils_base.PreTrainedTokenizer.from_pretrained\] class method..

Warning,None This won’t save modifications you may have applied to the tokenizer after the instantiation
(for instance, modifying tokenizer.do_lower_case after creation).

Parameters

- save_directory (str or os.PathLike) – The path to a directory where the tokenizer will
  be saved.

- legacy_format (bool, optional) – Only applicable for a fast tokenizer. If unset (default),
  will save the tokenizer in the unified JSON format as well as in legacy format if it exists,
  i.e. with tokenizer specific vocabulary and a separate added_tokens files.
If \textit{False}, will only save the tokenizer in the unified JSON format. This format is incompatible with “slow” tokenizers (not powered by the \textit{tokenizers} library), so the tokenizer will not be able to be loaded in the corresponding “slow” tokenizer.

If \textit{True}, will save the tokenizer in legacy format. If the “slow” tokenizer doesn’t exits, a value error is raised.

- \textbf{filename_prefix} – (str, optional): A prefix to add to the names of the files saved by the tokenizer.
- \textbf{push_to_hub} (bool, optional, defaults to \textit{False}) – Whether or not to push your model to the Hugging Face model hub after saving it.

\texttt{\textless\text{Tip warning={true}}\texttt{\textgreater}}

Using \textit{push_to_hub=True} will synchronize the repository you are pushing to with \textit{save_directory}, which requires \textit{save_directory} to be a local clone of the repo you are pushing to if it’s an existing folder. Pass along \texttt{\textit{temp_dir=True}} to use a temporary directory instead.

\texttt{\textless\text{/Tip}\texttt{\textgreater}}

\textbf{Returns} The files saved.

\textbf{Return type} A tuple of str

\texttt{save_vocabulary}(\textit{save_directory: str, filename_prefix: Optional[str] = None}) \rightarrow Tuple[str]

Save only the vocabulary of the tokenizer (vocabulary + added tokens).

This method won’t save the configuration and special token mappings of the tokenizer. Use \texttt{\textit{PreTrainedTokenizerFast._save_pretrained}} to save the whole state of the tokenizer.

\textbf{Parameters}

- \textbf{save_directory} (str) – The directory in which to save the vocabulary.
- \textbf{filename_prefix} (str, optional) – An optional prefix to add to the named of the saved files.

\textbf{Returns} Paths to the files saved.

\textbf{Return type} Tuple(str)

\textbf{property sep_token: str}

Separation token, to separate context and query in an input sequence. Log an error if used while not having been set.

\textbf{Type} str

\textbf{property sep_token_id: Optional[int]}

Id of the separation token in the vocabulary, to separate context and query in an input sequence. Returns \textit{None} if the token has not been set.

\textbf{Type} Optional[int]


Define the truncation and the padding strategies for fast tokenizers (provided by HuggingFace tokenizers library) and restore the tokenizer settings afterwards.
The provided tokenizer has no padding / truncation strategy before the managed section. If your tokenizer set a padding / truncation strategy before, then it will be reset to no padding / truncation when exiting the managed section.

**Parameters**

- **padding_strategy** ([~utils.PaddingStrategy]) – The kind of padding that will be applied to the input
- **truncation_strategy** ([~tokenization_utils_base.TruncationStrategy]) – The kind of truncation that will be applied to the input
- **max_length** (int) – The maximum size of a sequence.
- **stride** (int) – The stride to use when handling overflow.
- **pad_to_multiple_of** (int, optional) – If set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta).

**slow_tokenizer_class**

    alias of transformers.models.roberta.tokenization_roberta.RobertaTokenizer

**property special_tokens_map:** Dict[str, Union[str, List[str]]]

A dictionary mapping special token class attributes (cls_token, unk_token, etc.) to their values (‘<unk>’, ‘<cls>’, etc.).

Convert potential tokens of tokenizers.AddedToken type to string.

**Type** Dict[str, Union[str, List[str]]]

**property special_tokens_map_extended:** Dict[str, Union[str, tokenizers.AddedToken, List[Union[str, tokenizers.AddedToken]]]]

A dictionary mapping special token class attributes (cls_token, unk_token, etc.) to their values (‘<unk>’, ‘<cls>’, etc.).

Don’t convert tokens of tokenizers.AddedToken type to string so they can be used to control more finely how special tokens are tokenized.

**Type** Dict[str, Union[str, tokenizers.AddedToken, List[Union[str, tokenizers.AddedToken]]]]

**tokenize**(text: str, pair: Optional[str] = None, add_special_tokens: bool = False, **kwargs) → List[str]

Converts a string in a sequence of tokens, replacing unknown tokens with the unk_token.

**Parameters**

- **text** (str) – The sequence to be encoded.
- **pair** (str, optional) – A second sequence to be encoded with the first.
- **add_special_tokens** (bool, optional, defaults to False) – Whether or not to add the special tokens associated with the corresponding model.
- **kwargs** (additional keyword arguments, optional) – Will be passed to the underlying model specific encode method. See details in [~PreTrainedTokenizerBase._call__]

**Returns** The list of tokens.

**Return type** List[str]

**train_new_from_iterator**(text_iterator, vocab_size, length=None, new_special_tokens=None, special_tokens_map=None, **kwargs)

Trains a tokenizer on a new corpus with the same defaults (in terms of special tokens or tokenization pipeline) as the current one.
Parameters

- **text_iterator** (generator of List[str]) – The training corpus. Should be a generator of batches of texts, for instance a list of lists of texts if you have everything in memory.

- **vocab_size** (int) – The size of the vocabulary you want for your tokenizer.

- **length** (int, optional) – The total number of sequences in the iterator. This is used to provide meaningful progress tracking.

- **new_special_tokens** (list of str or AddedToken, optional) – A list of new special tokens to add to the tokenizer you are training.

- **special_tokens_map** (Dict[str, str], optional) – If you want to rename some of the special tokens this tokenizer uses, pass along a mapping old special token name to new special token name in this argument.

- **kwargs** – Additional keyword arguments passed along to the trainer from the Tokenizers library.

Returns

A new tokenizer of the same type as the original one, trained on `text_iterator`.

Return type

[PreTrainedTokenizerFast]

**truncate_sequences**

```python
truncate_sequences(ids: List[int], pair_ids: Optional[List[int]] = None, num_tokens_to_remove: int = 0, truncation_strategy: Union[str, transformers.tokenization_utils_base.TruncationStrategy] = 'longest_first', stride: int = 0) → Tuple[List[int], List[int], List[int]]
```

Truncates a sequence pair in-place following the strategy.

Parameters

- **ids** (List[int]) – Tokenized input ids of the first sequence. Can be obtained from a string by chaining the `tokenize` and `convert_tokens_to_ids` methods.

- **pair_ids** (List[int], optional) – Tokenized input ids of the second sequence. Can be obtained from a string by chaining the `tokenize` and `convert_tokens_to_ids` methods.

- **num_tokens_to_remove** (int, optional, defaults to 0) – Number of tokens to remove using the truncation strategy.

- **truncation_strategy** (str or ~tokenization_utils_base.TruncationStrategy, optional, defaults to `False`) – The strategy to follow for truncation. Can be:

  - `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided.

  - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided.

  - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.

  - `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size).

3.9. Featurizers
• **stride** *(int, optional, defaults to 0)* – If set to a positive number, the overflowing tokens returned will contain some tokens from the main sequence returned. The value of this argument defines the number of additional tokens.

**Returns** The truncated *ids*, the truncated *pair_ids* and the list of overflowing tokens. Note: The *longest_first* strategy returns empty list of overflowing tokens if a pair of sequences (or a batch of pairs) is provided.

**Return type** `Tuple[List[int], List[int], List[int]]`

**property unk_token**: `str`

Unknown token. Log an error if used while not having been set.

**Type** `str`

**property unk_token_id**: `Optional[int]`

Id of the unknown token in the vocabulary. Returns *None* if the token has not been set.

**Type** `Optional[int]`

**property vocab_size**: `int`

Size of the base vocabulary (without the added tokens).

**Type** `int`

---

**RxnFeaturizer**

class **RxnFeaturizer** *(tokenizer: transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast, sep_reagent: bool)*

Reaction Featurizer.

RxnFeaturizer is a wrapper class for HuggingFace’s RobertaTokenizerFast, that is intended for featurizing chemical reaction datasets. The featurizer computes the source and target required for a seq2seq task and applies the RobertaTokenizer on them separately. Additionally, it can also separate or mix the reactants and reagents before tokenizing.

**Examples**

```python
>>> from deepchem.feat import RxnFeaturizer
>>> from transformers import RobertaTokenizerFast
>>> tokenizer = RobertaTokenizerFast.from_pretrained("seyonec/PubChem10M_SMILES_BPE_→450k")
>>> featurizer = RxnFeaturizer(tokenizer, sep_reagent=True)
>>> feats = featurizer.featurize(['CCS(=O)(=O)Cl.OCCBr>CCN(CC)CC.CCOCC>→CCS(=O)(=O)OCCBr'])
```
Notes

- The featurize method expects a List of reactions.
- Use the sep_reagent toggle to enable/disable reagent separation.
  - True - Separate the reactants and reagents
  - False - Mix the reactants and reagents

```python
__init__(tokenizer: transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast, sep_reagent: bool)
```

Initialize a ReactionFeaturizer object.

**Parameters**

- `tokenizer` (RobertaTokenizerFast) – HuggingFace Tokenizer to be used for featurization.
- `sep_reagent` (bool) – Toggle to separate or mix the reactants and reagents.

```python
featurize(datapoints: Iterable[Any], log_every_n: int = 1000, **kwargs) \rightarrow numpy.ndarray
```

Calculate features for datapoints.

**Parameters**

- `datapoints` (Iterable[Any]) – A sequence of objects that you’d like to featurize. Subclasses of Featurizer should instantiate the _featurize method that featurizes objects in the sequence.
- `log_every_n` (int, default 1000) – Logs featurization progress every `log_every_n` steps.

**Returns** A numpy array containing a featurized representation of `datapoints`.

**Return type** np.ndarray

---

**BindingPocketFeaturizer**

**class** BindingPocketFeaturizer

Featurizes binding pockets with information about chemical environments.

In many applications, it’s desirable to look at binding pockets on macromolecules which may be good targets for potential ligands or other molecules to interact with. A BindingPocketFeaturizer expects to be given a macromolecule, and a list of pockets to featurize on that macromolecule. These pockets should be of the form produced by a dc.dock.BindingPocketFinder, that is as a list of dc.utils.CoordinateBox objects.

The base featurization in this class’s featurization is currently very simple and counts the number of residues of each type present in the pocket. It’s likely that you’ll want to overwrite this implementation for more sophisticated downstream usecases. Note that this class’s implementation will only work for proteins and not for other macromolecules.

**Note:** This class requires mdtraj to be installed.

```python
featurize(protein_file: str, pockets: List[deepchem.utils.coordinate_box_utils.CoordinateBox]) \rightarrow numpy.ndarray
```

Calculate atomic coordinates.

**Parameters**

---

3.9. Featurizers
- **protein_file** *(str)* – Location of PDB file. Will be loaded by MDTraj
- **pockets** *(List[CoordinateBox])* – List of *dc.utils.CoordinateBox* objects.

**Returns**  A numpy array of shape *(len(pockets), n_residues)*

**Return type**  *np.ndarray*

### UserDefinedFeaturizer

**class UserDefinedFeaturizer**(feature_fields)

Directs usage of user-computed featurizations.

**__init__(feature_fields)**

Creates user-defined-featurizer.

**featurize**(datapoints: *Iterable[Any]*, log_every_n: *int = 1000*, **kwargs) → *numpy.ndarray***

Calculate features for datapoints.

**Parameters**

- **datapoints** *(Iterable[Any]*) – A sequence of objects that you’d like to featurize. Subclasses of *Featurizer* should instantiate the _featurize method that featurizes objects in the sequence.
- **log_every_n** *(int, default: 1000)* – Logs featurization progress every *log_every_n* steps.

**Returns**  A numpy array containing a featurized representation of *datapoints*.

**Return type**  *np.ndarray*

### DummyFeaturizer

**class DummyFeaturizer**

Class that implements a no-op featurization. This is useful when the raw dataset has to be used without featurizing the examples. The Molnet loader requires a featurizer input and such datasets can be used in their original form by passing the raw featurizer.

#### Examples

```python
>>> import deepchem as dc
>>> smi_map = ["N#C[S-].O=C(CBr)clcccc(C(F)(F)F)c1>CCO.[K+]", "N
→#CSCC(=O)c1cccc(C(F)(F)F)c1", "C1C0CCN1.FCC(Br)clcccc(Br)n1>CCN(C(C)C(C)C.
→CN(C)C=0.0", "FCC(clcccc(Br)n1)N1CC0CC1""]
>>> Featurizer = dc.feat.DummyFeaturizer()
>>> smi_feat = Featurizer.featurize(smi_map)
>>> smi_feat
array([['N#C[S-].O=C(CBr)clcccc(C(F)(F)F)c1>CCO.[K+]',
 'N#CSCC(=O)c1cccc(C(F)(F)F)c1'],
 ['C1C0CCN1.FCC(Br)clcccc(Br)n1>CCN(C(C)C(C)C.C.N(C(C)C=0.0',
 'FCC(clcccc(Br)n1)N1CC0CC1']], dtype='<U55')
```
Featurizer

The `dc.feat.Featurizer` class is the abstract parent class for all featurizers.

class Featurizer

Abstract class for calculating a set of features for a datapoint.

This class is abstract and cannot be invoked directly. You’ll likely only interact with this class if you’re a developer. In that case, you might want to make a child class which implements the `_featurize` method for calculating features for a single datapoint if you’d like to make a featurizer for a new datatype.

featurize(datapoints: Iterable[Any], log_every_n: int = 1000, **kwargs) → numpy.ndarray

Calculate features for datapoints.

Parameters

- **datapoints** (Iterable[Any]) – A sequence of objects that you’d like to featurize. Subclasses of `Featurizer` should instantiate the `_featurize` method that featurizes objects in the sequence.

- **log_every_n** (int, default 1000) – Logs featurization progress every `log_every_n` steps.

Returns A numpy array containing a featurized representation of `datapoints`.

Return type np.ndarray

MolecularFeaturizer

If you’re creating a new featurizer that featurizes molecules, you will want to inherit from the abstract `MolecularFeaturizer` base class. This featurizer can take RDKit mol objects or SMILES as inputs.

class MolecularFeaturizer(use_original_atoms_order=False)

Abstract class for calculating a set of features for a molecule.

The defining feature of a `MolecularFeaturizer` is that it uses SMILES strings and RDKit molecule objects to represent small molecules. All other featurizers which are subclasses of this class should plan to process input which comes as smiles strings or RDKit molecules.

Child classes need to implement the `_featurize` method for calculating features for a single molecule.

Note: The subclasses of this class require RDKit to be installed.
__init__(use_original_atoms_order=False)

Parameters

use_original_atoms_order (bool, default False) – Whether to use original atom ordering or canonical ordering (default)

featurize(datapoints, log_every_n=1000, **kwargs) → numpy.ndarray

Calculate features for molecules.

Parameters

• datapoints (rdkit.Chem.rdchem.Mol / SMILES string / iterable) – RDKit Mol, or SMILES string or iterable sequence of RDKit mols/SMILES strings.

• log_every_n (int, default 1000) – Logging messages reported every log_every_n samples.

Returns

features – A numpy array containing a featurized representation of datapoints.

Return type

np.ndarray

MaterialCompositionFeaturizer

If you’re creating a new featurizer that featurizes compositional formulas, you will want to inherit from the abstract MaterialCompositionFeaturizer base class.

class MaterialCompositionFeaturizer

Abstract class for calculating a set of features for an inorganic crystal composition.

The defining feature of a MaterialCompositionFeaturizer is that it operates on 3D crystal chemical compositions. Inorganic crystal compositions are represented by Pymatgen composition objects. Featurizers for inorganic crystal compositions that are subclasses of this class should plan to process input which comes as Pymatgen composition objects.

This class is abstract and cannot be invoked directly. You’ll likely only interact with this class if you’re a developer. Child classes need to implement the _featurize method for calculating features for a single crystal composition.

Note: Some subclasses of this class will require pymatgen and matminer to be installed.

featurize(datapoints: Optional[Iterable[str]] = None, log_every_n: int = 1000, **kwargs) →

numpy.ndarray

Calculate features for crystal compositions.

Parameters

• datapoints (Iterable[str]) – Iterable sequence of composition strings, e.g. “MoS2”.

• log_every_n (int, default 1000) – Logging messages reported every log_every_n samples.

Returns

features – A numpy array containing a featurized representation of compositions.

Return type

np.ndarray
MaterialStructureFeaturizer

If you’re creating a new featurizer that featurizes inorganic crystal structure, you will want to inherit from the abstract MaterialCompositionFeaturizer base class. This featurizer can take pymatgen structure objects or dictionaries as inputs.

```python
class MaterialStructureFeaturizer
 Abstract class for calculating a set of features for an inorganic crystal structure.

 The defining feature of a MaterialStructureFeaturizer is that it operates on 3D crystal structures with periodic boundary conditions. Inorganic crystal structures are represented by Pymatgen structure objects. Featurizers for inorganic crystal structures that are subclasses of this class should plan to process input which comes as pymatgen structure objects.

 This class is abstract and cannot be invoked directly. You’ll likely only interact with this class if you’re a developer. Child classes need to implement the _featurize method for calculating features for a single crystal structure.

 Note: Some subclasses of this class will require pymatgen and matminer to be installed.
```

```python
featurize(datapoints: Optional[Iterable[Union[Dict[str, Any], Any]]] = None, log_every_n: int = 1000, **kwargs) → numpy.ndarray
 Calculate features for crystal structures.

 Parameters

 log_every_n (int, default 1000) – Logging messages reported every log_every_n samples.

 Returns features – A numpy array containing a featurized representation of datapoints.

 Return type np.ndarray
```

ComplexFeaturizer

If you’re creating a new featurizer that featurizes a pair of ligand molecules and proteins, you will want to inherit from the abstract ComplexFeaturizer base class. This featurizer can take a pair of PDB or SDF files which contain ligand molecules and proteins.

```python
class ComplexFeaturizer
 Abstract class for calculating features for mol/protein complexes.

 featurize(datapoints: Optional[Iterable[Tuple[str, str]]] = None, log_every_n: int = 100, **kwargs) → numpy.ndarray
 Calculate features for mol/protein complexes.

 Parameters datapoints (Iterable[Tuple[str, str]]) – List of filenames (PDB, SDF, etc.) for ligand molecules and proteins. Each element should be a tuple of the form (ligand_filename, protein_filename).

 log_every_n (int, default 100) – Logging messages reported every log_every_n samples.

 Returns features – Array of features

 Return type np.ndarray
```

3.9. Featurizers

173
3.10 Splitters

DeepChem dc.splits.Splitter objects are a tool to meaningfully split DeepChem datasets for machine learning testing. The core idea is that when evaluating a machine learning model, it’s useful to creating training, validation and test splits of your source data. The training split is used to train models, the validation is used to benchmark different model architectures. The test is ideally held out till the very end when it’s used to gauge a final estimate of the model’s performance.

The dc.splits module contains a collection of scientifically aware splitters. In many cases, we want to evaluate scientific deep learning models more rigorously than standard deep models since we’re looking for the ability to generalize to new domains. Some of the implemented splitters here may help.

### Contents

- **General Splitters**
  - RandomSplitter
  - RandomGroupSplitter
  - RandomStratifiedSplitter
  - SingletaskStratifiedSplitter
  - IndexSplitter
  - SpecifiedSplitter
  - TaskSplitter
- **Molecule Splitters**
  - ScaffoldSplitter
  - MolecularWeightSplitter
  - MaxMinSplitter
  - ButinaSplitter
  - FingerprintSplitter
- **Base Splitter (for develop)**

### 3.10.1 General Splitters

**RandomSplitter**

```python
class RandomSplitter
 Class for doing random data splits.
```

Examples

```python
>>> import numpy as np
>>> import deepchem as dc
>>> # Creating a dummy NumPy dataset
>>> X, y = np.random.randn(5), np.random.randn(5)
>>> dataset = dc.data.NumpyDataset(X, y)
>>> # Creating a RandomSplitter object
>>> splitter = dc.splits.RandomSplitter()
>>> # Splitting dataset into train and test datasets
>>> train_dataset, test_dataset = splitter.train_test_split(dataset)
```

**split**

```python
split(dataset: deepchem.data.datasets.Dataset, frac_train: float = 0.8, frac_valid: float = 0.1, frac_test: float = 0.1, seed: Optional[int] = None, log_every_n: Optional[int] = None) → Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray]
```

Splits internal compounds randomly into train/validation/test.

**Parameters**

- **dataset** *(Dataset)* – Dataset to be split.
- **seed** *(int, optional (default None))* – Random seed to use.
- **frac_train** *(float, optional (default 0.8))* – The fraction of data to be used for the training split.
- **frac_valid** *(float, optional (default 0.1))* – The fraction of data to be used for the validation split.
- **frac_test** *(float, optional (default 0.1))* – The fraction of data to be used for the test split.
- **seed** – Random seed to use.
- **log_every_n** *(int, optional (default None))* – Log every n examples (not currently used).

**Returns** A tuple of train indices, valid indices, and test indices. Each indices is a numpy array.

**Return type** *Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray]*

**__repr__** () → str

Convert self to repr representation.

**Returns** The string represents the class.

**Return type** *str*

**Examples**

```python
>>> import deepchem as dc
>>> dc.splits.RandomSplitter()
RandomSplitter()
```

**__str__** () → str

Convert self to str representation.

**Returns** The string represents the class.
Return type: str

Examples

```python
>>> import deepchem as dc
>>> str(dc.splits.RandomSplitter())
'RandomSplitter'
```

`__weakref__`

List of weak references to the object (if defined)

`k_fold_split(dataset: deepchem.data.datasets.Dataset, k: int, directories: Optional[List[str]] = None, **kwargs) → List[Tuple[deepchem.data.datasets.Dataset, deepchem.data.datasets.Dataset]]`

Parameters

- **dataset** (Dataset) – Dataset to do a k-fold split
- **k** (int) – Number of folds to split dataset into.
- **directories** (List[str], optional (default None)) – List of length 2*k filepaths to save the result disk-datasets.

Returns: List of length k tuples of (train, cv) where train and cv are both Dataset.

Return type: List[Tuple[Dataset, Dataset]]


Splits self into train/test sets.

Returns: Dataset objects for train/test.

Parameters

- **dataset** (data like object) – Dataset to be split.
- **train_dir** (str, optional (default None)) – If specified, the directory in which the generated training dataset should be stored. This is only considered if isinstance(dataset, dc.data.DiskDataset) is True.
- **test_dir** (str, optional (default None)) – If specified, the directory in which the generated test dataset should be stored. This is only considered if isinstance(dataset, dc.data.DiskDataset) is True.
- **frac_train** (float, optional (default 0.8)) – The fraction of data to be used for the training split.
- **seed** (int, optional (default None)) – Random seed to use.

Returns: A tuple of train and test datasets as dc.data.Dataset objects.

Return type: Tuple[Dataset, Dataset]

Splits self into train/validation/test sets.

Returns Dataset objects for train, valid, test.

**Parameters**

- **dataset** ([Dataset]) – Dataset to be split.
- **train_dir** (str, optional (default None)) – If specified, the directory in which the generated training dataset should be stored. This is only considered if `isinstance(dataset, dc.data.DiskDataset)` is True.
- **valid_dir** (str, optional (default None)) – If specified, the directory in which the generated valid dataset should be stored. This is only considered if `isinstance(dataset, dc.data.DiskDataset)` is True.
- **test_dir** (str, optional (default None)) – If specified, the directory in which the generated test dataset should be stored. This is only considered if `isinstance(dataset, dc.data.DiskDataset)` is True.
- **frac_train** (float, optional (default 0.8)) – The fraction of data to be used for the training split.
- **frac_valid** (float, optional (default 0.1)) – The fraction of data to be used for the validation split.
- **frac_test** (float, optional (default 0.1)) – The fraction of data to be used for the test split.
- **seed** (int, optional (default None)) – Random seed to use.
- **log_every_n** (int, optional (default 1000)) – Controls the logger by dictating how often logger outputs will be produced.

**Returns** A tuple of train, valid and test datasets as dc.data.Dataset objects.

**Return type** Tuple[Dataset, Optional[Dataset], Dataset]

---

**RandomGroupSplitter**

**class RandomGroupSplitter(groups: Sequence)**

Random split based on groupings.

A splitter class that splits on groupings. An example use case is when there are multiple conformations of the same molecule that share the same topology. This splitter subsequently guarantees that resulting splits preserve groupings.

Note that it doesn’t do any dynamic programming or something fancy to try to maximize the choice such that frac_train, frac_valid, or frac_test is maximized. It simply permutes the groups themselves. As such, use with caution if the number of elements per group varies significantly.

**__init__(groups: Sequence)**

Initialize this object.

**Parameters**

- **groups** (Sequence) – An array indicating the group of each item. The length is equal to `len(dataset.X)`

**Note:** The examples of groups is the following.
groups : 3 2 2 0 1 2 4 3
dataset.X : 0 1 2 3 4 5 6 7 8

groups : a b b e q x a r
dataset.X : 0 1 2 3 4 5 6 7 8

**split** *(dataset: deepchem.data.datasets.Dataset, frac_train: float = 0.8, frac_valid: float = 0.1, frac_test: float = 0.1, seed: Optional[int] = None, log_every_n: Optional[int] = None) → Tuple[List[int], List[int], List[int]]*

Return indices for specified split

**Parameters**

- **dataset** *(Dataset)* – Dataset to be split.
- **frac_train** *(float, optional (default 0.8))* – The fraction of data to be used for the training split.
- **frac_valid** *(float, optional (default 0.1))* – The fraction of data to be used for the validation split.
- **frac_test** *(float, optional (default 0.1))* – The fraction of data to be used for the test split.
- **seed** *(int, optional (default None))* – Random seed to use.
- **log_every_n** *(int, optional (default None))* – Log every n examples (not currently used).

**Returns** A tuple *(train_inds, valid_inds, test_inds)* of the indices (integers) for the various splits.

**Return type** Tuple[List[int], List[int], List[int]]

**k_fold_split** *(dataset: deepchem.data.datasets.Dataset, k: int, directories: Optional[List[str]] = None, **kwargs) → List[Tuple[deepchem.data.datasets.Dataset, deepchem.data.datasets.Dataset]]*

**Parameters**

- **dataset** *(Dataset)* – Dataset to do a k-fold split
- **k** *(int)* – Number of folds to split dataset into.
- **directories** *(List[str], optional (default None))* – List of length 2*K filepaths to save the result disk-datasets.

**Returns** List of length k tuples of (train, cv) where train and cv are both Dataset.

**Return type** List[Tuple[Dataset, Dataset]]


Splits self into train/test sets.

**Returns** Dataset objects for train/test.

**Parameters**

- **dataset** *(data like object)* – Dataset to be split.
• **train_dir** *(str, optional (default None)) – If specified, the directory in which the generated training dataset should be stored. This is only considered if `isinstance(dataset, dc.data.DiskDataset)` is True.*

• **test_dir** *(str, optional (default None)) – If specified, the directory in which the generated test dataset should be stored. This is only considered if `isinstance(dataset, dc.data.DiskDataset)` is True.*

• **frac_train** *(float, optional (default 0.8)) – The fraction of data to be used for the training split.*

• **seed** *(int, optional (default None)) – Random seed to use.*

**Returns** A tuple of train and test datasets as `dc.data.Dataset` objects.

**Return type** `Tuple[dc.data.Dataset, dc.data.Dataset]`

### train_valid_test_split

```python
train_valid_test_split(
dataset: deepchem.data.datasets.Dataset, train_dir: Optional[str] = None, valid_dir: Optional[str] = None, test_dir: Optional[str] = None, frac_train: float = 0.8, frac_valid: float = 0.1, frac_test: float = 0.1, seed: Optional[int] = None, log_every_n: int = 1000, **kwargs) →
Tuple[deepchem.data.datasets.Dataset, deepchem.data.datasets.Dataset, deepchem.data.datasets.Dataset]
```

Splits self into train/validation/test sets.

**Returns** Dataset objects for train, valid, test.

**Parameters**

• **dataset** *(Dataset)* – Dataset to be split.

• **train_dir** *(str, optional (default None)) – If specified, the directory in which the generated training dataset should be stored. This is only considered if `isinstance(dataset, dc.data.DiskDataset)`

• **valid_dir** *(str, optional (default None)) – If specified, the directory in which the generated valid dataset should be stored. This is only considered if `isinstance(dataset, dc.data.DiskDataset)` is True.

• **test_dir** *(str, optional (default None)) – If specified, the directory in which the generated test dataset should be stored. This is only considered if `isinstance(dataset, dc.data.DiskDataset)` is True.

• **frac_train** *(float, optional (default 0.8)) – The fraction of data to be used for the training split.*

• **frac_valid** *(float, optional (default 0.1)) – The fraction of data to be used for the validation split.*

• **frac_test** *(float, optional (default 0.1)) – The fraction of data to be used for the test split.*

• **seed** *(int, optional (default None)) – Random seed to use.*

• **log_every_n** *(int, optional (default 1000)) – Controls the logger by dictating how often logger outputs will be produced.

**Returns** A tuple of train, valid and test datasets as `dc.data.Dataset` objects.

**Return type** `Tuple[Dataset, Optional[Dataset], Dataset]`
RandomStratifiedSplitter

class RandomStratifiedSplitter
RandomStratified Splitter class.

For sparse multitask datasets, a standard split offers no guarantees that the splits will have any active compounds. This class tries to arrange that each split has a proportional number of the actives for each task. This is strictly guaranteed only for single-task datasets, but for sparse multitask datasets it usually manages to produces a fairly accurate division of the actives for each task.

Note: This splitter is primarily designed for boolean labeled data. It considers only whether a label is zero or non-zero. When labels can take on multiple non-zero values, it does not try to give each split a proportional fraction of the samples with each value.

split(dataset: deepchem.data.datasets.Dataset, frac_train: float = 0.8, frac_valid: float = 0.1, frac_test: float = 0.1, seed: Optional[int] = None, log_every_n: Optional[int] = None) → Tuple

Return indices for specified split

Parameters

- **dataset** (`dc.data.Dataset`) – Dataset to be split.
- **seed** (`int`, optional (default None)) – Random seed to use.
- **frac_train** (`float`, optional (default 0.8)) – The fraction of data to be used for the training split.
- **frac_valid** (`float`, optional (default 0.1)) – The fraction of data to be used for the validation split.
- **frac_test** (`float`, optional (default 0.1)) – The fraction of data to be used for the test split.
- **log_every_n** (`int`, optional (default None)) – Controls the logger by dictating how often logger outputs will be produced.

Returns A tuple `train_inds, valid_inds, test_inds` of the indices (integers) for the various splits.

Return type Tuple

__repr__() → str

Convert self to repr representation.

Returns The string represents the class.

Return type str

Examples

```python
>>> import deepchem as dc
>>> dc.splits.RandomSplitter()
RandomSplitter[

__str__() → str

Convert self to str representation.

Returns The string represents the class.

Return type str
Examples

```python
>>> import deepchem as dc

>>> str(dc.splits.RandomSplitter())
'RandomSplitter'
```

__weakref__
list of weak references to the object (if defined)

k_fold_split(dataset: deepchem.data.datasets.Dataset, k: int, directories: Optional[List[str]] = None, **kwargs) → List[Tuple[deepchem.data.datasets.Dataset, deepchem.data.datasets.Dataset]]

Parameters

- **dataset** *(Dataset)* – Dataset to do a k-fold split
- **k** *(int)* – Number of folds to split dataset into.
- **directories** *(List[str], optional (default None))* – List of length 2*k filepaths to save the result disk-datasets.

Returns
List of length k tuples of (train, cv) where train and cv are both Dataset.

Return type
List[Tuple[Dataset, Dataset]]

Splits self into train/test sets.

Returns Dataset objects for train/test.

Parameters

- **dataset** *(data like object)* – Dataset to be split.
- **train_dir** *(str, optional (default None))* – If specified, the directory in which the generated training dataset should be stored. This is only considered if isinstance(dataset, dc.data.DiskDataset) is True.
- **test_dir** *(str, optional (default None))* – If specified, the directory in which the generated test dataset should be stored. This is only considered if isinstance(dataset, dc.data.DiskDataset) is True.
- **frac_train** *(float, optional (default 0.8))* – The fraction of data to be used for the training split.
- **seed** *(int, optional (default None))* – Random seed to use.

Returns
A tuple of train and test datasets as dc.data.Dataset objects.

Return type
Tuple[Dataset, Dataset]

train_valid_test_split(dataset: deepchem.data.datasets.Dataset, train_dir: Optional[str] = None, valid_dir: Optional[str] = None, test_dir: Optional[str] = None, frac_train: float = 0.8, frac_valid: float = 0.1, frac_test: float = 0.1, seed: Optional[int] = None, log_every_n: int = 1000, **kwargs) →

Tuple[deepchem.data.datasets.Dataset, deepchem.data.datasets.Dataset, deepchem.data.datasets.Dataset]

Splits self into train/validation/test sets.

Returns Dataset objects for train, valid, test.
Parameters

- **dataset** (*Dataset*) – Dataset to be split.
- **train_dir** (*str*, *optional* (*default None*)) – If specified, the directory in which the generated training dataset should be stored. This is only considered if `isinstance(dataset, dc.data.DiskDataset)`
- **valid_dir** (*str*, *optional* (*default None*)) – If specified, the directory in which the generated valid dataset should be stored. This is only considered if `isinstance(dataset, dc.data.DiskDataset)` is True.
- **test_dir** (*str*, *optional* (*default None*)) – If specified, the directory in which the generated test dataset should be stored. This is only considered if `isinstance(dataset, dc.data.DiskDataset)` is True.
- **frac_train** (*float*, *optional* (*default 0.8*)) – The fraction of data to be used for the training split.
- **frac_valid** (*float*, *optional* (*default 0.1*)) – The fraction of data to be used for the validation split.
- **frac_test** (*float*, *optional* (*default 0.1*)) – The fraction of data to be used for the test split.
- **seed** (*int*, *optional* (*default None*)) – Random seed to use.
- **log_every_n** (*int*, *optional* (*default 1000*)) – Controls the logger by dictating how often logger outputs will be produced.

Returns A tuple of train, valid and test datasets as dc.data.Dataset objects.

Return type Tuple[*Dataset*, Optional[*Dataset*], *Dataset*]

SingletaskStratifiedSplitter

class *SingletaskStratifiedSplitter*(task_number: *int* = 0)

Class for doing data splits by stratification on a single task.

Examples

```plaintext
>>> n_samples = 100
>>> n_features = 10
>>> n_tasks = 10
>>> X = np.random.rand(n_samples, n_features)
>>> y = np.random.rand(n_samples, n_tasks)
>>> w = np.ones_like(y)
>>> dataset = DiskDataset.from_numpy(np.ones((100, n_tasks)), np.ones((100, n_tasks)))
>>> splitter = SingletaskStratifiedSplitter(task_number=5)
>>> train_dataset, test_dataset = splitter.train_test_split(dataset)
```

__init__(task_number: *int* = 0)

Creates splitter object.

Parameters

- **task_number** (*int*, *optional* (*default 0*)) – Task number for stratification.
k_fold_split

```python
def k_fold_split(dataset: deepchem.data.datasets.Dataset, k: int, directories: Optional[List[str]] = None, seed: Optional[int] = None, log_every_n: Optional[int] = None, **kwargs) -> List[deepchem.data.datasets.Dataset]
```

Splits compounds into k-folds using stratified sampling. Overriding base class k_fold_split.

Parameters

- **dataset** *(Dataset)* – Dataset to be split.
- **k** *(int)* – Number of folds to split dataset into.
- **directories** *(List[str], optional (default None))* – List of length k filepaths to save the result disk-datasets.
- **seed** *(int, optional (default None))* – Random seed to use.
- **log_every_n** *(int, optional (default None))* – Log every n examples (not currently used).

Returns fold_datasets – List of dc.data.Dataset objects

Return type List[Dataset]

split

```python
def split(dataset: deepchem.data.datasets.Dataset, frac_train: float = 0.8, frac_valid: float = 0.1, frac_test: float = 0.1, seed: Optional[int] = None, log_every_n: Optional[int] = None) -> Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray]
```

Splits compounds into train/validation/test using stratified sampling.

Parameters

- **dataset** *(Dataset)* – Dataset to be split.
- **frac_train** *(float, optional (default 0.8))* – Fraction of dataset put into training data.
- **frac_valid** *(float, optional (default 0.1))* – Fraction of dataset put into validation data.
- **frac_test** *(float, optional (default 0.1))* – Fraction of dataset put into test data.
- **seed** *(int, optional (default None))* – Random seed to use.
- **log_every_n** *(int, optional (default None))* – Log every n examples (not currently used).

Returns A tuple of train indices, valid indices, and test indices. Each indices is a numpy array.

Return type Tuple[np.ndarray, np.ndarray, np.ndarray]

train_test_split

```python
def train_test_split(dataset: deepchem.data.datasets.Dataset, train_dir: Optional[str] = None, test_dir: Optional[str] = None, frac_train: float = 0.8, seed: Optional[int] = None, **kwargs) -> Tuple[deepchem.data.datasets.Dataset, deepchem.data.datasets.Dataset]
```

Splits self into train/test sets.

Returns Dataset objects for train/test.

Parameters

- **dataset** *(data like object)* – Dataset to be split.
- **train_dir** *(str, optional (default None))* – If specified, the directory in which the generated training dataset should be stored. This is only considered if isinstance(dataset, dc.data.DiskDataset) is True.
train_valid_test_split

```python
train_valid_test_split(dataset: deepchem.data.datasets.Dataset, 
                       train_dir: Optional[str] = None, 
                       valid_dir: Optional[str] = None, 
                       test_dir: Optional[str] = None, 
                       frac_train: float = 0.8, 
                       frac_valid: float = 0.1, 
                       frac_test: float = 0.1, 
                       seed: Optional[int] = None, 
                       log_every_n: int = 1000, **kwargs) -> 
                       Tuple[deepchem.data.datasets.Dataset, deepchem.data.datasets.Dataset, 
                              deepchem.data.datasets.Dataset]
```

Splits self into train/validation/test sets.

Parameters

- **dataset** (*Dataset*) – Dataset to be split.
- **train_dir** (*str, optional (default None]*) – If specified, the directory in which the generated training dataset should be stored. This is only considered if `isinstance(dataset, dc.data.DiskDataset)` is True.
- **valid_dir** (*str, optional (default None]*) – If specified, the directory in which the generated valid dataset should be stored. This is only considered if `isinstance(dataset, dc.data.DiskDataset)` is True.
- **test_dir** (*str, optional (default None]*) – If specified, the directory in which the generated test dataset should be stored. This is only considered if `isinstance(dataset, dc.data.DiskDataset)` is True.
- **frac_train** (*float, optional (default 0.8]*) – The fraction of data to be used for the training split.
- **frac_valid** (*float, optional (default 0.1]*) – The fraction of data to be used for the validation split.
- **frac_test** (*float, optional (default 0.1]*) – The fraction of data to be used for the test split.
- **seed** (*int, optional (default None]*) – Random seed to use.
- **log_every_n** (*int, optional (default 1000]*) – Controls the logger by dictating how often logger outputs will be produced.

Returns A tuple of train, valid and test datasets as dc.data.Dataset objects.

Return type Tuple[Dataset, Optional[Dataset], Dataset]
IndexSplitter

class IndexSplitter

Class for simple order based splits.

Use this class when the Dataset you have is already ordered so you would like it to be processed. Then the first frac_train proportion is used for training, the next frac_valid for validation, and the final frac_test for testing. This class may make sense to use your Dataset is already time ordered (for example).

split(dataset: deepchem.data.datasets.Dataset, frac_train: float = 0.8, frac_valid: float = 0.1, frac_test: float = 0.1, seed: Optional[int] = None, log_every_n: Optional[int] = None) → Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray]

Splits internal compounds into train/validation/test in provided order.

Parameters

- **dataset** (Dataset) – Dataset to be split.
- **frac_train** (float, optional (default 0.8)) – The fraction of data to be used for the training split.
- **frac_valid** (float, optional (default 0.1)) – The fraction of data to be used for the validation split.
- **frac_test** (float, optional (default 0.1)) – The fraction of data to be used for the test split.
- **seed** (int, optional (default None)) – Random seed to use.
- **log_every_n** (int, optional) – Log every n examples (not currently used).

Returns A tuple of train indices, valid indices, and test indices. Each indices is a numpy array.

Return type Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray]

__repr__() → str

Convert self to repr representation.

Returns The string represents the class.

Return type str

Examples

```python
>>> import deepchem as dc
>>> dc.splits.RandomSplitter()
RandomSplitter[
```

__str__() → str

Convert self to str representation.

Returns The string represents the class.

Return type str
Examples

```python
>>> import deepchem as dc

str(dc.splits.RandomSplitter())
'

__weakref__
list of weak references to the object (if defined)

k_fold_split(dataset: deepchem.data.datasets.Dataset, k: int, directories: Optional[List[str]] = None, **kwargs) → List[Tuple[deepchem.data.datasets.Dataset, deepchem.data.datasets.Dataset]]

Parameters
• dataset (Dataset) – Dataset to do a k-fold split
• k (int) – Number of folds to split dataset into.
• directories (List[str], optional (default None)) – List of length 2*k filepaths to save the result disk-datasets.

Returns List of length k tuples of (train, cv) where train and cv are both Dataset.

Return type List[Tuple[Dataset, Dataset]]


Splits self into train/test sets.

Returns Dataset objects for train/test.

Parameters
• dataset (data like object) – Dataset to be split.
• train_dir (str, optional (default None)) – If specified, the directory in which the generated training dataset should be stored. This is only considered if isinstance(dataset, dc.data.DiskDataset) is True.
• test_dir (str, optional (default None)) – If specified, the directory in which the generated test dataset should be stored. This is only considered if isinstance(dataset, dc.data.DiskDataset) is True.
• frac_train (float, optional (default 0.8)) – The fraction of data to be used for the training split.
• seed (int, optional (default None)) – Random seed to use.

Returns A tuple of train and test datasets as dc.data.Dataset objects.

Return type Tuple[Dataset, Dataset]


Splits self into train/validation/test sets.

Returns Dataset objects for train, valid, test.
Parameters

- **dataset** (*Dataset*) – Dataset to be split.
- **train_dir** (*str*, optional (default None)) – If specified, the directory in which the generated training dataset should be stored. This is only considered if `isinstance(dataset, dc.data.DiskDataset)`.
- **valid_dir** (*str*, optional (default None)) – If specified, the directory in which the generated valid dataset should be stored. This is only considered if `isinstance(dataset, dc.data.DiskDataset)` is True.
- **test_dir** (*str*, optional (default None)) – If specified, the directory in which the generated test dataset should be stored. This is only considered if `isinstance(dataset, dc.data.DiskDataset)` is True.
- **frac_train** (*float*, optional (default 0.8)) – The fraction of data to be used for the training split.
- **frac_valid** (*float*, optional (default 0.1)) – The fraction of data to be used for the validation split.
- **frac_test** (*float*, optional (default 0.1)) – The fraction of data to be used for the test split.
- **seed** (*int*, optional (default None)) – Random seed to use.
- **log_every_n** (*int*, optional (default 1000)) – Controls the logger by dictating how often logger outputs will be produced.

Returns
A tuple of train, valid and test datasets as `dc.data.Dataset` objects.

Return type
Tuple[Dataset, Optional[Dataset], Dataset]

**SpecifiedSplitter**

class SpecifiedSplitter(valid_indices: Optional[List[int]] = None, test_indices: Optional[List[int]] = None)
Split data in the fashion specified by user.

For some applications, you will already know how you’d like to split the dataset. In this splitter, you simplify specify `valid_indices` and `test_indices` and the datapoints at those indices are pulled out of the dataset. Note that this is different from `IndexSplitter` which only splits based on the existing dataset ordering, while this `SpecifiedSplitter` can split on any specified ordering.

__init__(valid_indices: Optional[List[int]] = None, test_indices: Optional[List[int]] = None)

Parameters

- **valid_indices** (*List[int]*) – List of indices of samples in the valid set
- **test_indices** (*List[int]*) – List of indices of samples in the test set

split(dataset: deepchem.data.datasets.Dataset, frac_train: float = 0.8, frac_valid: float = 0.1, frac_test: float = 0.1, seed: Optional[int] = None, log_every_n: Optional[int] = None) → Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray]

Splits internal compounds into train/validation/test in designated order.

Parameters

- **dataset** (*Dataset*) – Dataset to be split.
- **frac_train** (*float*, optional (default 0.8)) – Fraction of dataset put into training data.

3.10. Splitters
• **frac_valid** *(float, optional (default 0.1)) – Fraction of dataset put into validation data.*

• **frac_test** *(float, optional (default 0.1)) – Fraction of dataset put into test data.*

• **seed** *(int, optional (default None)) – Random seed to use.*

• **log_every_n** *(int, optional (default None)) – Log every n examples (not currently used).*

**Returns** A tuple of train indices, valid indices, and test indices. Each indices is a numpy array.

**Return type** Tuple[np.ndarray, np.ndarray, np.ndarray]

**k_fold_split** *(dataset: deepchem.data.datasets.Dataset, k: int, directories: Optional[List[str]] = None, **kwargs) → List[Tuple[deepchem.data.datasets.Dataset, deepchem.data.datasets.Dataset]]*

**Parameters**

• **dataset** *(Dataset)* – Dataset to do a k-fold split.

• **k** *(int)* – Number of folds to split dataset into.

• **directories** *(List[str], optional (default None)) – List of length 2*k filepaths to save the result disk-datasets.

**Returns** List of length k tuples of (train, cv) where train and cv are both Dataset.

**Return type** List[Tuple[Dataset, Dataset]]


Splits self into train/test sets.

**Returns** Dataset objects for train/test.

**Parameters**

• **dataset** *(data like object)* – Dataset to be split.

• **train_dir** *(str, optional (default None)) – If specified, the directory in which the generated training dataset should be stored. This is only considered if isinstance(dataset, dc.data.DiskDataset) is True.

• **test_dir** *(str, optional (default None)) – If specified, the directory in which the generated test dataset should be stored. This is only considered if isinstance(dataset, dc.data.DiskDataset) is True.

• **frac_train** *(float, optional (default 0.8)) – The fraction of data to be used for the training split.

• **seed** *(int, optional (default None)) – Random seed to use.

**Returns** A tuple of train and test datasets as dc.data.Dataset objects.

**Return type** Tuple[Dataset, Dataset]

Splits self into train/validation/test sets.
Returns Dataset objects for train, valid, test.

Parameters

- **dataset** *(Dataset)* – Dataset to be split.
- **train_dir** *(str, optional (default None)) –* If specified, the directory in which the generated training dataset should be stored. This is only considered if `isinstance(dataset, dc.data.DiskDataset)`
- **valid_dir** *(str, optional (default None)) –* If specified, the directory in which the generated valid dataset should be stored. This is only considered if `isinstance(dataset, dc.data.DiskDataset)` is True.
- **test_dir** *(str, optional (default None)) –* If specified, the directory in which the generated test dataset should be stored. This is only considered if `isinstance(dataset, dc.data.DiskDataset)` is True.
- **frac_train** *(float, optional (default 0.8)) –* The fraction of data to be used for the training split.
- **frac_valid** *(float, optional (default 0.1)) –* The fraction of data to be used for the validation split.
- **frac_test** *(float, optional (default 0.1)) –* The fraction of data to be used for the test split.
- **seed** *(int, optional (default None)) –* Random seed to use.
- **log_every_n** *(int, optional (default 1000)) –* Controls the logger by dictating how often logger outputs will be produced.

Returns A tuple of train, valid and test datasets as dc.data.Dataset objects.

Return type Tuple[Dataset, Optional[Dataset], Dataset]

---

TaskSplitter

**class TaskSplitter**

Provides a simple interface for splitting datasets task-wise.

For some learning problems, the training and test datasets should have different tasks entirely. This is a different paradigm from the usual Splitter, which ensures that split datasets have different datapoints, not different tasks.

**__init__()**

Creates Task Splitter object.

**train_valid_test_split(dataset, frac_train=0.8, frac_valid=0.1, frac_test=0.1)**

Performs a train/valid/test split of the tasks for dataset.

If split is uneven, spillover goes to test.

Parameters

- **dataset** *(dc.data.Dataset)* – Dataset to be split
- **frac_train** *(float, optional)* – Proportion of tasks to be put into train. Rounded to nearest int.
• **frac_valid** *(float, optional)* – Proportion of tasks to be put into valid. Rounded to nearest int.

• **frac_test** *(float, optional)* – Proportion of tasks to be put into test. Rounded to nearest int.

**k_fold_split** *(dataset, K)*

Performs a K-fold split of the tasks for dataset.

If split is uneven, spillover goes to last fold.

**Parameters**

- **dataset** *(dc.data.Dataset)* – Dataset to be split
- **K** *(int)* – Number of splits to be made

**split** *(dataset: deepchem.data.datasets.Dataset, frac_train: float = 0.8, frac_valid: float = 0.1, frac_test: float = 0.1, seed: Optional[int] = None, log_every_n: Optional[int] = None) → Tuple*

Return indices for specified split

**Parameters**

- **dataset** *(dc.data.Dataset)* – Dataset to be split.
- **seed** *(int, optional (default None))* – Random seed to use.
- **frac_train** *(float, optional (default 0.8))* – The fraction of data to be used for the training split.
- **frac_valid** *(float, optional (default 0.1))* – The fraction of data to be used for the validation split.
- **frac_test** *(float, optional (default 0.1))* – The fraction of data to be used for the test split.
- **log_every_n** *(int, optional (default None))* – Controls the logger by dictating how often logger outputs will be produced.

**Returns** A tuple *(train_inds, valid_inds, test_inds)* of the indices (integers) for the various splits.

**Return type** Tuple


Splits self into train/test sets.

Returns Dataset objects for train/test.

**Parameters**

- **dataset** *(data like object)* – Dataset to be split.
- **train_dir** *(str, optional (default None))* – If specified, the directory in which the generated training dataset should be stored. This is only considered if *isinstance(dataset, dc.data.DiskDataset)* is True.
- **test_dir** *(str, optional (default None))* – If specified, the directory in which the generated test dataset should be stored. This is only considered if *isinstance(dataset, dc.data.DiskDataset)* is True.
- **frac_train** *(float, optional (default 0.8))* – The fraction of data to be used for the training split.
• **seed** (*int, optional (default None)*) – Random seed to use.

**Returns** A tuple of train and test datasets as dc.data.Dataset objects.

**Return type** Tuple[Dataset, Dataset]

### 3.10.2 Molecule Splitters

#### ScaffoldSplitter

class ScaffoldSplitter

Class for doing data splits based on the scaffold of small molecules.

Group molecules based on the Bemis-Murcko scaffold representation, which identifies rings, linkers, frameworks (combinations between linkers and rings) and atomic properties such as atom type, hybridization and bond order in a dataset of molecules. Then split the groups by the number of molecules in each group in decreasing order.

It is necessary to add the smiles representation in the ids field during the DiskDataset creation.

#### Examples

```python
>>> import deepchem as dc
>>> # creation of demo data set with some smiles strings
... data_test = ['CC(C)Cl', 'CCC(C)CO', 'CCCCCCC0', 'CCCCCCCC(=O)OC',
... 'c3ccc2nc1ccccccc1cc2c3', 'Nc2cccc3nc1ccccccc1cc23', 'C1CCCCC1']
>>> Xs = np.zeros(len(data_test))
>>> Ys = np.ones(len(data_test))
>>> # creation of a deepchem dataset with the smile codes in the ids field
... dataset = dc.data.DiskDataset.from_numpy(X=Xs, y=Ys, w=np.zeros(len(data_test)),
... ids=data_test)
>>> scaffoldsplitter = dc.splits.ScaffoldSplitter()
>>> train, test = scaffoldsplitter.train_test_split(dataset)
>>> train
<DiskDataset X.shape: (5,), y.shape: (5,), w.shape: (5,), ids: ['CC(C)Cl', 'CCC(C)CO',
... 'CCCCCCC0', 'CCCCCCCC(=O)OC', 'C1CCCCC1'], task_names: [0]>
```

#### References

**Note:** This class requires RDKit to be installed.

**split**(*dataset: deepchem.data.datasets.Dataset, frac_train: float = 0.8, frac_valid: float = 0.1, frac_test: float = 0.1, seed: Optional[int] = None, log_every_n: Optional[int] = 1000*) → Tuple[List[int], List[int], List[int]]

Splits internal compounds into train/validation/test by scaffold.

**Parameters**

- **dataset** (Dataset) – Dataset to be split.

- **frac_train** (float, optional (default 0.8)) – The fraction of data to be used for the training split.
• **frac_valid** *(float, optional (default 0.1)) – The fraction of data to be used for the validation split.*

• **frac_test** *(float, optional (default 0.1)) – The fraction of data to be used for the test split.*

• **seed** *(int, optional (default None)) – Random seed to use.*

• **log_every_n** *(int, optional (default 1000)) – Controls the logger by dictating how often logger outputs will be produced.*

**Returns** A tuple of train indices, valid indices, and test indices. Each indices is a list of integers.

**Return type** Tuple[List[int], List[int], List[int]]

**generate_scaffolds** *(dataset: deepchem.data.datasets.Dataset, log_every_n: int = 1000) → List[List[int]]*

Returns all scaffolds from the dataset.

**Parameters**

• **dataset** *(Dataset)* – Dataset to be split.

• **log_every_n** *(int, optional (default 1000)) – Controls the logger by dictating how often logger outputs will be produced.*

**Returns** scaffold_sets – List of indices of each scaffold in the dataset.

**Return type** List[List[int]]

**__repr__** () → str

Convert self to repr representation.

**Returns** The string represents the class.

**Return type** str

**Examples**

```python
>>> import deepchem as dc
>>> dc.splits.RandomSplitter()
RandomSplitter()
```

**__str__** () → str

Convert self to str representation.

**Returns** The string represents the class.

**Return type** str

**Examples**

```python
>>> import deepchem as dc
>>> str(dc.splits.RandomSplitter())
'RandomSplitter'
```

**__weakref__**

list of weak references to the object (if defined)
**k_fold_split**

```python
k_fold_split(dataset: deepchem.data.datasets.Dataset, k: int, directories: Optional[List[str]] = None, **kwargs) → List[Tuple[deepchem.data.datasets.Dataset, deepchem.data.datasets.Dataset]]
```

**Parameters**

- **dataset** (Dataset) – Dataset to do a k-fold split
- **k** (int) – Number of folds to split dataset into.
- **directories** (List[str], optional (default None)) – List of length 2*k filepaths to save the result disk-datasets.

**Returns** List of length k tuples of (train, cv) where train and cv are both Dataset.

**Return type** List[Tuple[Dataset, Dataset]]

**train_test_split**

```python
train_test_split(dataset: deepchem.data.datasets.Dataset, train_dir: Optional[str] = None, test_dir: Optional[str] = None, frac_train: float = 0.8, seed: Optional[int] = None, **kwargs) -> Tuple[deepchem.data.datasets.Dataset, deepchem.data.datasets.Dataset]
```

Splits self into train/test sets.

**Returns** Dataset objects for train/test.

**Parameters**

- **dataset** (data like object) – Dataset to be split.
- **train_dir** (str, optional (default None)) – If specified, the directory in which the generated training dataset should be stored. This is only considered if isinstance(dataset, deepchem.data.Dataset) is True.
- **test_dir** (str, optional (default None)) – If specified, the directory in which the generated test dataset should be stored. This is only considered if isinstance(dataset, deepchem.data.Dataset) is True.
- **frac_train** (float, optional (default 0.8)) – The fraction of data to be used for the training split.
- **seed** (int, optional (default None)) – Random seed to use.

**Returns** A tuple of train and test datasets as deepchem.data.Dataset objects.

**Return type** Tuple[Dataset, Dataset]

**train_valid_test_split**

```python
```

Splits self into train/validation/test sets.

**Returns** Dataset objects for train, valid, test.

**Parameters**

- **dataset** (Dataset) – Dataset to be split.
- **train_dir** (str, optional (default None)) – If specified, the directory in which the generated training dataset should be stored. This is only considered if isinstance(dataset, deepchem.data.DiskDataset) is True.
MolecularWeightSplitter

class MolecularWeightSplitter

Class for doing data splits by molecular weight.

Note: This class requires RDKit to be installed.

split(dataset: deepchem.data.datasets.Dataset, frac_train: float = 0.8, frac_valid: float = 0.1, frac_test: float = 0.1, seed: Optional[int] = None, log_every_n: Optional[int] = None) → Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray]

Splits on molecular weight.

Splits internal compounds into train/validation/test using the MW calculated by SMILES string.

Parameters

• dataset (Dataset) – Dataset to be split.
• frac_train (float, optional (default 0.8)) – The fraction of data to be used for the training split.
• frac_valid (float, optional (default 0.1)) – The fraction of data to be used for the validation split.
• frac_test (float, optional (default 0.1)) – The fraction of data to be used for the test split.
• seed (int, optional (default None)) – Random seed to use.
• log_every_n (int, optional (default 1000)) – Controls the logger by dictating how often logger outputs will be produced.

Returns A tuple of train indices, valid indices, and test indices. Each indices is a numpy array.

Return type Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray]
__repr__() → str
Convert self to repr representation.

Returns The string represents the class.
Return type str

Examples

```python
>>> import deepchem as dc
>>> dc.splits.RandomSplitter()
RandomSplitter[]
```

__str__() → str
Convert self to str representation.

Returns The string represents the class.
Return type str

Examples

```python
>>> import deepchem as dc
>>> str(dc.splits.RandomSplitter())
'RandomSplitter'
```

__weakref__
list of weak references to the object (if defined)

k_fold_split(dataset: deepchem.data.datasets.Dataset, k: int, directories: Optional[List[str]] = None, **kwargs) → List[Tuple[deepchem.data.datasets.Dataset, deepchem.data.datasets.Dataset]]

Parameters

• dataset (Dataset) – Dataset to do a k-fold split
• k (int) – Number of folds to split dataset into.
• directories (List[str], optional (default None)) – List of length 2*k filepaths to save the result disk-datasets.

Returns List of length k tuples of (train, cv) where train and cv are both Dataset.

Return type List[Tuple[Dataset, Dataset]]


Splits self into train/test sets.

Returns Dataset objects for train/test.

Parameters

• dataset (data like object) – Dataset to be split.
• train_dir (str, optional (default None)) – If specified, the directory in which the generated training dataset should be stored. This is only considered if instance(dataset, dc.data.DiskDataset) is True.
• **test_dir** *(str, optional (default None)) – If specified, the directory in which the generated test dataset should be stored. This is only considered if `isinstance(dataset, dc.data.DiskDataset)` is True.*

• **frac_train** *(float, optional (default 0.8)) – The fraction of data to be used for the training split.*

• **seed** *(int, optional (default None)) – Random seed to use.*

Returns: A tuple of train and test datasets as `dc.data.Dataset` objects.

Return type: `Tuple[Dataset, Dataset]`

---


Splits self into train/validation/test sets.

Returns Dataset objects for train, valid, test.

Parameters

• **dataset** *(Dataset) – Dataset to be split.*

• **train_dir** *(str, optional (default None)) – If specified, the directory in which the generated training dataset should be stored. This is only considered if `isinstance(dataset, dc.data.DiskDataset)`

• **valid_dir** *(str, optional (default None)) – If specified, the directory in which the generated valid dataset should be stored. This is only considered if `isinstance(dataset, dc.data.DiskDataset)` is True.

• **test_dir** *(str, optional (default None)) – If specified, the directory in which the generated test dataset should be stored. This is only considered if `isinstance(dataset, dc.data.DiskDataset)` is True.

• **frac_train** *(float, optional (default 0.8)) – The fraction of data to be used for the training split.

• **frac_valid** *(float, optional (default 0.1)) – The fraction of data to be used for the validation split.

• **frac_test** *(float, optional (default 0.1)) – The fraction of data to be used for the test split.

• **seed** *(int, optional (default None)) – Random seed to use.

• **log_every_n** *(int, optional (default 1000)) – Controls the logger by dictating how often logger outputs will be produced.

Returns: A tuple of train, valid and test datasets as `dc.data.Dataset` objects.

Return type: `Tuple[Dataset, Optional[Dataset], Dataset]`
MaxMinSplitter

class MaxMinSplitter

Chemical diversity splitter.

Class for doing splits based on the MaxMin diversity algorithm. Intuitively, the test set is comprised of the most diverse compounds of the entire dataset. Furthermore, the validation set is comprised of diverse compounds under the test set.

**Note:** This class requires RDKit to be installed.

split(dataset: deepchem.data.datasets.Dataset, frac_train: float = 0.8, frac_valid: float = 0.1, frac_test: float = 0.1, seed: Optional[int] = None, log_every_n: Optional[int] = None) → Tuple[List[int], List[int], List[int]]

Splits internal compounds into train/validation/test using the MaxMin diversity algorithm.

**Parameters**

- **dataset** (*Dataset*) – Dataset to be split.
- **frac_train** (*float, optional (default 0.8)*) – The fraction of data to be used for the training split.
- **frac_valid** (*float, optional (default 0.1)*) – The fraction of data to be used for the validation split.
- **frac_test** (*float, optional (default 0.1)*) – The fraction of data to be used for the test split.
- **seed** (*int, optional (default None)*) – Random seed to use.
- **log_every_n** (*int, optional (default None)*) – Log every n examples (not currently used).

**Returns** A tuple of train indices, valid indices, and test indices. Each indices is a list of integers.

**Return type** Tuple[List[int], List[int], List[int]]

__repr__() → str

Convert self to repr representation.

**Returns** The string represents the class.

**Return type** str

Examples

```python
>>> import deepchem as dc
>>> dc.splits.RandomSplitter()
RandomSplitter[]
```

__str__() → str

Convert self to str representation.

**Returns** The string represents the class.

**Return type** str
Examples

```python
>>> import deepchem as dc
>>> str(dc.splits.RandomSplitter())
'RandomSplitter'
```

__weakref__
list of weak references to the object (if defined)

**k_fold_split**(dataset: deepchem.data.datasets.Dataset, k: int, directories: Optional[List[str]] = None, **kwargs) → List[Tuple[deepchem.data.datasets.Dataset, deepchem.data.datasets.Dataset]]

Parameters

- **dataset** *(Dataset)* – Dataset to do a k-fold split
- **k** *(int)* – Number of folds to split dataset into.
- **directories** *(List[str], optional (default None))* – List of length 2*k filepaths to save the result disk-datasets.

Returns
List of length k tuples of (train, cv) where train and cv are both Dataset.

Return type List[Tuple[Dataset, Dataset]]


Splits self into train/test sets.

Returns Dataset objects for train/test.

Parameters

- **dataset** *(data like object)* – Dataset to be split.
- **train_dir** *(str, optional (default None))* – If specified, the directory in which the generated training dataset should be stored. This is only considered if isinstance(dataset, dc.data.DiskDataset) is True.
- **test_dir** *(str, optional (default None))* – If specified, the directory in which the generated test dataset should be stored. This is only considered if isinstance(dataset, dc.data.DiskDataset) is True.
- **frac_train** *(float, optional (default 0.8))* – The fraction of data to be used for the training split.
- **seed** *(int, optional (default None))* – Random seed to use.

Returns
A tuple of train and test datasets as dc.data.Dataset objects.

Return type Tuple[Dataset, Dataset]

**train_valid_test_split**(dataset: deepchem.data.datasets.Dataset, train_dir: Optional[str] = None, valid_dir: Optional[str] = None, test_dir: Optional[str] = None, frac_train: float = 0.8, frac_valid: float = 0.1, frac_test: float = 0.1, seed: Optional[int] = None, log_every_n: int = 1000, **kwargs) →
Tuple[deepchem.data.datasets.Dataset, deepchem.data.datasets.Dataset, deepchem.data.datasets.Dataset]

Splits self into train/validation/test sets.

Returns Dataset objects for train, valid, test.
Parameters

- **dataset** *(Dataset)* – Dataset to be split.
- **train_dir** *(str, optional (default None))* – If specified, the directory in which the generated training dataset should be stored. This is only considered if `isinstance(dataset, dc.data.DiskDataset)`
- **valid_dir** *(str, optional (default None))* – If specified, the directory in which the generated valid dataset should be stored. This is only considered if `isinstance(dataset, dc.data.DiskDataset)` is True.
- **test_dir** *(str, optional (default None))* – If specified, the directory in which the generated test dataset should be stored. This is only considered if `isinstance(dataset, dc.data.DiskDataset)` is True.
- **frac_train** *(float, optional (default 0.8))* – The fraction of data to be used for the training split.
- **frac_valid** *(float, optional (default 0.1))* – The fraction of data to be used for the validation split.
- **frac_test** *(float, optional (default 0.1))* – The fraction of data to be used for the test split.
- **seed** *(int, optional (default None))* – Random seed to use.
- **log_every_n** *(int, optional (default 1000))* – Controls the logger by dictating how often logger outputs will be produced.

Returns A tuple of train, valid and test datasets as dc.data.Dataset objects.

Return type Tuple[Dataset, Optional[Dataset], Dataset]

**ButinaSplitter**

class ButinaSplitter(cutoff: float = 0.6)

Class for doing data splits based on the butina clustering of a bulk tanimoto fingerprint matrix.

Note: This class requires RDKit to be installed.

__init__(cutoff: float = 0.6)

Create a ButinaSplitter.

Parameters cutoff *(float (default 0.6))* – The cutoff value for tanimoto similarity. Molecules that are more similar than this will tend to be put in the same dataset.

split(dataset: deepchem.data.datasets.Dataset, frac_train: float = 0.8, frac_valid: float = 0.1, frac_test: float = 0.1, seed: Optional[int] = None, log_every_n: Optional[int] = None) → Tuple[List[int], List[int], List[int]]

Splits internal compounds into train and validation based on the butina clustering algorithm. This splitting algorithm has an O(N^2) run time, where N is the number of elements in the dataset. The dataset is expected to be a classification dataset.

This algorithm is designed to generate validation data that are novel chemotypes. Setting a small cutoff value will generate smaller, finer clusters of high similarity, whereas setting a large cutoff value will generate larger, coarser clusters of low similarity.

Parameters
- **dataset** (*Dataset*) – Dataset to be split.
- **frac_train** (*float*, *optional* (*default* *0.8*)) – The fraction of data to be used for the training split.
- **frac_valid** (*float*, *optional* (*default* *0.1*)) – The fraction of data to be used for the validation split.
- **frac_test** (*float*, *optional* (*default* *0.1*)) – The fraction of data to be used for the test split.
- **seed** (*int*, *optional* (*default* *None*)) – Random seed to use.
- **log_every_n** (*int*, *optional* (*default* *None*)) – Log every n examples (not currently used).

**Returns** A tuple of train indices, valid indices, and test indices.

**Return type** Tuple[List[int], List[int], List[int]]

### k-fold_split

**k-fold_split**(*dataset*: *deepchem.data.datasets.Dataset*, *k*: *int*, *directories*: *Optional*[List[**str**]] = *None*, **kwargs) → List[Tuple[deepchem.data.datasets.Dataset, deepchem.data.datasets.Dataset]]

**Parameters**

- **dataset** (*Dataset*) – Dataset to do a k-fold split
- **k** (*int*) – Number of folds to split dataset into.
- **directories** (*List[**str**], *optional* (*default* *None*)) – List of length 2*k filepaths to save the result disk-datasets.

**Returns** List of length k tuples of (train, cv) where train and cv are both Dataset.

**Return type** List[Tuple[Dataset, Dataset]]

### train_test_split

**train_test_split**(*dataset*: *deepchem.data.datasets.Dataset*, *train_dir*: *Optional*[**str**] = *None*, *test_dir*: *Optional*[**str**] = *None*, *frac_train*: *float* = *0.8*, *seed*: *Optional*[**int**] = *None*, **kwargs) → Tuple[deepchem.data.datasets.Dataset, deepchem.data.datasets.Dataset]

Splits self into train/test sets.

**Returns** Dataset objects for train/test.

**Parameters**

- **dataset** (*data like object*) – Dataset to be split.
- **train_dir** (*str*, *optional* (*default* *None*)) – If specified, the directory in which the generated training dataset should be stored. This is only considered if isinstance(dataset, dc.data.DiskDataset) is True.
- **test_dir** (*str*, *optional* (*default* *None*)) – If specified, the directory in which the generated test dataset should be stored. This is only considered if isinstance(dataset, dc.data.DiskDataset) is True.
- **frac_train** (*float*, *optional* (*default* *0.8*)) – The fraction of data to be used for the training split.
- **seed** (*int*, *optional* (*default* *None*)) – Random seed to use.

**Returns** A tuple of train and test datasets as dc.data.Dataset objects.

**Return type** Tuple[Dataset, Dataset]

Splits self into train/validation/test sets.

Returns Dataset objects for train, valid, test.

**Parameters**

- **dataset** (Dataset) – Dataset to be split.
- **train_dir** (str, optional (default None)) – If specified, the directory in which the generated training dataset should be stored. This is only considered if isinstance(dataset, dc.data.DiskDataset)
- **valid_dir** (str, optional (default None)) – If specified, the directory in which the generated valid dataset should be stored. This is only considered if isinstance(dataset, dc.data.DiskDataset) is True.
- **test_dir** (str, optional (default None)) – If specified, the directory in which the generated test dataset should be stored. This is only considered if isinstance(dataset, dc.data.DiskDataset) is True.
- **frac_train** (float, optional (default 0.8)) – The fraction of data to be used for the training split.
- **frac_valid** (float, optional (default 0.1)) – The fraction of data to be used for the validation split.
- **frac_test** (float, optional (default 0.1)) – The fraction of data to be used for the test split.
- **seed** (int, optional (default None)) – Random seed to use.
- **log_every_n** (int, optional (default 1000)) – Controls the logger by dictating how often logger outputs will be produced.

**Returns** A tuple of train, valid and test datasets as dc.data.Dataset objects.

**Return type** Tuple[Dataset, Optional[Dataset], Dataset]

---

**FingerprintSplitter**

**class FingerprintSplitter**

Class for doing data splits based on the Tanimoto similarity between ECFP4 fingerprints.

This class tries to split the data such that the molecules in each dataset are as different as possible from the ones in the other datasets. This makes it a very stringent test of models. Predicting the test and validation sets may require extrapolating far outside the training data.

The running time for this splitter scales as O(n^2) in the number of samples. Splitting large datasets can take a long time.

**Note:** This class requires RDKit to be installed.
**split** *(dataset: deepchem.data.datasets.Dataset, frac_train: float = 0.8, frac_valid: float = 0.1, frac_test: float = 0.1, seed: Optional[int] = None, log_every_n: Optional[int] = None) → Tuple[List[int], List[int], List[int]]*

Splits compounds into training, validation, and test sets based on the Tanimoto similarity of their ECFP4 fingerprints. This splitting algorithm has an O(N^2) run time, where N is the number of elements in the dataset.

**Parameters**

- **dataset** *(Dataset)* – Dataset to be split.
- **frac_train** *(float, optional (default 0.8))* – The fraction of data to be used for the training split.
- **frac_valid** *(float, optional (default 0.1))* – The fraction of data to be used for the validation split.
- **frac_test** *(float, optional (default 0.1))* – The fraction of data to be used for the test split.
- **seed** *(int, optional (default None))* – Random seed to use (ignored since this algorithm is deterministic).
- **log_every_n** *(int, optional (default None))* – Log every n examples (not currently used).

**Returns** A tuple of train indices, valid indices, and test indices.

**Return type** Tuple[List[int], List[int], List[int]]

**__repr__** () → str

Convert self to repr representation.

**Returns** The string represents the class.

**Return type** str

**Examples**

```python
>>> import deepchem as dc
>>> dc.splits.RandomSplitter()
RandomSplitter[]
```
Examples

```python
>>> import deepchem as dc
>>> str(dc.splits.RandomSplitter())
'RandomSplitter
__weakref__
```

---

**k_fold_split** (dataset: deepchem.data.datasets.Dataset, k: int, directories: Optional[List[str]] = None, 
**kwarsgs) → List[Tuple[deepchem.data.datasets.Dataset, deepchem.data.datasets.Dataset]]

**Parameters**

- **dataset** (Dataset) – Dataset to do a k-fold split
- **k** (int) – Number of folds to split dataset into.
- **directories** (List[str], optional (default None)) – List of length 2*k filepaths to save the result disk-datasets.

**Returns** List of length k tuples of (train, cv) where train and cv are both Dataset.

**Return type** List[Tuple[Dataset, Dataset]]

---

**train_test_split** (dataset: deepchem.data.datasets.Dataset, train_dir: Optional[str] = None, 
test_dir: Optional[str] = None, frac_train: float = 0.8, seed: Optional[int] = None, **kwarsgs) → Tuple[deepchem.data.datasets.Dataset, deepchem.data.datasets.Dataset]

**Parameters**

- **dataset** (data like object) – Dataset to be split.
- **train_dir** (str, optional (default None)) – If specified, the directory in which the generated training dataset should be stored. This is only considered if isinstance(dataset, dc.data.DiskDataset) is True.
- **test_dir** (str, optional (default None)) – If specified, the directory in which the generated test dataset should be stored. This is only considered if isinstance(dataset, dc.data.DiskDataset) is True.
- **frac_train** (float, optional (default 0.8)) – The fraction of data to be used for the training split.
- **seed** (int, optional (default None)) – Random seed to use.

**Returns** A tuple of train and test datasets as dc.data.Dataset objects.

**Return type** Tuple[Dataset, Dataset]

---

**train_valid_test_split** (dataset: deepchem.data.datasets.Dataset, train_dir: Optional[str] = None, 
valid_dir: Optional[str] = None, test_dir: Optional[str] = None, frac_train: float = 0.8, frac_valid: float = 0.1, frac_test: float = 0.1, seed: Optional[int] = None, log_every_n: int = 1000, **kwarsgs) → Tuple[deepchem.data.datasets.Dataset, deepchem.data.datasets.Dataset, deepchem.data.datasets.Dataset]

**Parameters**

- **dataset** (data like object) – Dataset to be split.
- **train_dir** (str, optional (default None)) – If specified, the directory in which the generated training dataset should be stored. This is only considered if isinstance(dataset, dc.data.DiskDataset) is True.
- **valid_dir** (str, optional (default None)) – If specified, the directory in which the generated validation dataset should be stored. This is only considered if isinstance(dataset, dc.data.DiskDataset) is True.
- **test_dir** (str, optional (default None)) – If specified, the directory in which the generated test dataset should be stored. This is only considered if isinstance(dataset, dc.data.DiskDataset) is True.
- **frac_train** (float, optional (default 0.8)) – The fraction of data to be used for the training split.
- **frac_valid** (float, optional (default 0.1)) – The fraction of data to be used for the validation split.
- **frac_test** (float, optional (default 0.1)) – The fraction of data to be used for the test split.
- **seed** (int, optional (default None)) – Random seed to use.

**Returns** A tuple of train, valid, test datasets as dc.data.Dataset objects.

**Return type** Tuple[Dataset, Dataset, Dataset]

---

## 3.10. Splitters

A collection of functions to split datasets into train/test/valid splits. There are four main types of splitters:

- **RandomSplitter**: A simple random split of the dataset into train and test sets.
- **k_fold_split**: A k-fold cross-validation split of the dataset into train and cv sets.
- **train_test_split**: A train/test split of the dataset.
- **train_valid_test_split**: A train/valid/test split of the dataset.

Each splitter is a subclass of `BaseSplitter`, which has a method `split` that takes a dataset as input and returns a list of tuples containing the train and cv datasets for RandomSplitter, or the train, valid, and test datasets for k_fold_split, train_test_split, and train_valid_test_split.

**RandomSplitter**

Randomly splits the dataset into train and test sets. The split is defined by the `train_size` parameter, which specifies the fraction of the dataset to be used for training.

**k_fold_split**

Splits the dataset into k folds, where each fold is used for cross-validation. The `k` parameter specifies the number of folds, and the `directories` parameter specifies the directories in which the results are saved.

**train_test_split**

Splits the dataset into train and test sets. The `train_dir` and `test_dir` parameters specify the directories in which the results are saved.

**train_valid_test_split**

Splits the dataset into train, valid, and test sets. The `train_dir`, `valid_dir`, and `test_dir` parameters specify the directories in which the results are saved.

These splitters are used to ensure that the model is not overfitting to the training data and to test the model on unseen data.

---

### Examples

```python
>>> import deepchem as dc
>>> str(dc.splits.RandomSplitter())
'RandomSplitter
__weakref__
```
Parameters

- **dataset** (*Dataset*) – Dataset to be split.
- **train_dir** (*str*, optional (default *None*)) – If specified, the directory in which the generated training dataset should be stored. This is only considered if `isinstance(dataset, dc.data.DiskDataset)`.
- **valid_dir** (*str*, optional (default *None*)) – If specified, the directory in which the generated valid dataset should be stored. This is only considered if `isinstance(dataset, dc.data.DiskDataset)` is True.
- **test_dir** (*str*, optional (default *None*)) – If specified, the directory in which the generated test dataset should be stored. This is only considered if `isinstance(dataset, dc.data.DiskDataset)` is True.
- **frac_train** (*float*, optional (default *0.8*)) – The fraction of data to be used for the training split.
- **frac_valid** (*float*, optional (default *0.1*)) – The fraction of data to be used for the validation split.
- **frac_test** (*float*, optional (default *0.1*)) – The fraction of data to be used for the test split.
- **seed** (*int*, optional (default *None*)) – Random seed to use.
- **log_every_n** (*int*, optional (default *1000*)) – Controls the logger by dictating how often logger outputs will be produced.

Returns A tuple of train, valid and test datasets as `dc.data.Dataset` objects.

Return type `Tuple[Dataset, Optional[Dataset], Dataset]`

### 3.10.3 Base Splitter (for develop)

The `dc.splits.Splitter` class is the abstract parent class for all splitters. This class should never be directly instantiated.

**class Splitter**

Splitters split up Datasets into pieces for training/validation/testing.

In machine learning applications, it’s often necessary to split up a dataset into training/validation/test sets. Or to k-fold split a dataset (that is, divide into k equal subsets) for cross-validation. The `Splitter` class is an abstract superclass for all splitters that captures the common API across splitter classes.

Note that `Splitter` is an abstract superclass. You won’t want to instantiate this class directly. Rather you will want to use a concrete subclass for your application.


Parameters

- **dataset** (*Dataset*) – Dataset to do a k-fold split
- **k** (*int*) – Number of folds to split `dataset` into.
- **directories** (*List[str]*, optional (default *None*)) – List of length 2*k filepaths to save the result disk-datasets.

Returns List of length k tuples of (train, cv) where `train` and `cv` are both `Dataset`. 
Return type  List[Tuple[Dataset, Dataset]]

train_valid_test_split(dataset: deepchem.data.datasets.Dataset, train_dir: Optional[str] = None, 
valid_dir: Optional[str] = None, test_dir: Optional[str] = None, frac_train: float = 0.8, frac_valid: float = 0.1, frac_test: float = 0.1, seed: Optional[int] = None, log_every_n: int = 1000, **kwargs) → 
        Tuple[deepchem.data.datasets.Dataset, deepchem.data.datasets.Dataset, 
        deepchem.data.datasets.Dataset]

Splits self into train/validation/test sets.
Returns Dataset objects for train, valid, test.

Parameters
- **dataset** (Dataset) – Dataset to be split.
- **train_dir** (str, optional (default None)) – If specified, the directory in which the generated training dataset should be stored. This is only considered if isinstance(dataset, dc.data.DiskDataset)
- **valid_dir** (str, optional (default None)) – If specified, the directory in which the generated valid dataset should be stored. This is only considered if isinstance(dataset, dc.data.DiskDataset) is True.
- **test_dir** (str, optional (default None)) – If specified, the directory in which the generated test dataset should be stored. This is only considered if isinstance(dataset, dc.data.DiskDataset) is True.
- **frac_train** (float, optional (default 0.8)) – The fraction of data to be used for the training split.
- **frac_valid** (float, optional (default 0.1)) – The fraction of data to be used for the validation split.
- **frac_test** (float, optional (default 0.1)) – The fraction of data to be used for the test split.
- **seed** (int, optional (default None)) – Random seed to use.
- **log_every_n** (int, optional (default 1000)) – Controls the logger by dictating how often logger outputs will be produced.

Returns A tuple of train, valid and test datasets as dc.data.Dataset objects.

Return type  Tuple[Dataset, Optional[Dataset], Dataset]

train_test_split(dataset: deepchem.data.datasets.Dataset, train_dir: Optional[str] = None, test_dir: Optional[str] = None, frac_train: float = 0.8, seed: Optional[int] = None, **kwargs) → 
        Tuple[deepchem.data.datasets.Dataset, deepchem.data.datasets.Dataset]

Splits self into train/test sets.
Returns Dataset objects for train/test.

Parameters
- **dataset** (data like object) – Dataset to be split.
- **train_dir** (str, optional (default None)) – If specified, the directory in which the generated training dataset should be stored. This is only considered if isinstance(dataset, dc.data.DiskDataset) is True.
• **test_dir** (str, optional (default None)) – If specified, the directory in which the generated test dataset should be stored. This is only considered if \isinstance(dataset, dc.data.DiskDataset) is True.

• **frac_train** (float, optional (default 0.8)) – The fraction of data to be used for the training split.

• **seed** (int, optional (default None)) – Random seed to use.

Returns: A tuple of train and test datasets as dc.data.Dataset objects.

Return type: Tuple[Dataset, Dataset]

`split(dataset: deepchem.data.datasets.Dataset, frac_train: float = 0.8, frac_valid: float = 0.1, frac_test: float = 0.1, seed: Optional[int] = None, log_every_n: Optional[int] = None) → Tuple`

Return indices for specified split

Parameters:

• **dataset** (dc.data.Dataset) – Dataset to be split.

• **seed** (int, optional (default None)) – Random seed to use.

• **frac_train** (float, optional (default 0.8)) – The fraction of data to be used for the training split.

• **frac_valid** (float, optional (default 0.1)) – The fraction of data to be used for the validation split.

• **frac_test** (float, optional (default 0.1)) – The fraction of data to be used for the test split.

• **log_every_n** (int, optional (default None)) – Controls the logger by dictating how often logger outputs will be produced.

Returns: A tuple (train_inds, valid_inds, test_inds) of the indices (integers) for the various splits.

Return type: Tuple

### 3.11 Transformers

DeepChem `dc.trans.Transformer` objects are another core building block of DeepChem programs. Often times, machine learning systems are very delicate. They need their inputs and outputs to fit within a pre-specified range or follow a clean mathematical distribution. Real data of course is wild and hard to control. What do you do if you have a crazy dataset and need to bring its statistics to heel? Fear not for you have Transformer objects.

**Contents**

- General Transformers
  - NormalizationTransformer
  - MinMaxTransformer
  - ClippingTransformer
  - LogTransformer
  - CDFTransformer
  - PowerTransformer
3.11.1 General Transformers

NormalizationTransformer


Normalizes dataset to have zero mean and unit standard deviation

This transformer transforms datasets to have zero mean and unit standard deviation.

Examples

```python
>>> n_samples = 10
>>> n_features = 3
>>> n_tasks = 1
>>> ids = np.arange(n_samples)
>>> X = np.random.rand(n_samples, n_features)
>>> y = np.random.rand(n_samples, n_tasks)
>>> w = np.ones((n_samples, n_tasks))
>>> dataset = dc.data.NumpyDataset(X, y, w, ids)
>>> transformer = dc.trans.NormalizationTransformer(transform_y=True, dataset=dataset)
>>> dataset = transformer.transform(dataset)
```

Note: This class can only transform X or y and not w. So only one of transform_X or transform_y can be set.

Raises ValueError – if transform_X and transform_y are both set.


Initialize normalization transformation.
Parameters

- `transform_X` (bool, optional (default False)) – Whether to transform X
- `transform_y` (bool, optional (default False)) – Whether to transform y
- `transform_w` (bool, optional (default False)) – Whether to transform w
- `dataset` (dc.data.Dataset object, optional (default None)) – Dataset to be transformed

`transform_array` (X: numpy.ndarray, y: numpy.ndarray, w: numpy.ndarray, ids: numpy.ndarray) → Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]

Transform the data in a set of (X, y, w) arrays.

Parameters

- X (np.ndarray) – Array of features
- y (np.ndarray) – Array of labels
- w (np.ndarray) – Array of weights.
- ids (np.ndarray) – Array of ids.

Returns

- Xtrans (np.ndarray) – Transformed array of features
- ytrans (np.ndarray) – Transformed array of labels
- wtrans (np.ndarray) – Transformed array of weights
- idstrans (np.ndarray) – Transformed array of ids

`untransform` (z: numpy.ndarray) → numpy.ndarray

Undo transformation on provided data.

Parameters

- z (np.ndarray) – Array to transform back

Returns

- z_out – Array with normalization undone.

Return type

np.ndarray

`untransform_grad` (grad, tasks)

DEPRECATED. DO NOT USE.

`transform` (dataset: deepchem.data.datasets.Dataset, parallel: bool = False, out_dir: Optional[str] = None, **kwargs) → deepchem.data.datasets.Dataset

Transforms all internally stored data in dataset.

This method transforms all internal data in the provided dataset by using the `Dataset.transform` method. Note that this method adds X-transform, y-transform columns to metadata. Specified keyword arguments are passed on to `Dataset.transform`.

Parameters

- `dataset` (dc.data.Dataset) – Dataset object to be transformed.
- `parallel` (bool, optional (default False)) – if True, use multiple processes to transform the dataset in parallel. For large datasets, this might be faster.
- `out_dir` (str, optional) – If `out_dir` is specified in `kwargs` and `dataset` is a DiskDataset, the output dataset will be written to the specified directory.

Returns

A newly transformed Dataset object
Return type  Dataset

```
transform_on_array(X: numpy.ndarray, y: numpy.ndarray, w: numpy.ndarray, ids: numpy.ndarray) →
Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]
```

Transforms numpy arrays X, y, and w

DEPRECATED. Use `transform_array` instead.

Parameters

- X (np.ndarray) – Array of features
- y (np.ndarray) – Array of labels
- w (np.ndarray) – Array of weights.
- ids (np.ndarray) – Array of identifiers.

Returns

- Xtrans (np.ndarray) – Transformed array of features
- ytrans (np.ndarray) – Transformed array of labels
- wtrans (np.ndarray) – Transformed array of weights
- idstrans (np.ndarray) – Transformed array of ids

**MinMaxTransformer**

```
class MinMaxTransformer(transform_X: bool = False, transform_y: bool = False, dataset: Optional[deepchem.data.datasets.Dataset] = None)
```

Ensure each value rests between 0 and 1 by using the min and max.

`MinMaxTransformer` transforms the dataset by shifting each axis of X or y (depending on whether `transform_X` or `transform_y` is True), except the first one by the minimum value along the axis and dividing the result by the range (maximum value - minimum value) along the axis. This ensures each axis is between 0 and 1. In case of multi-task learning, it ensures each task is given equal importance.

Given original array A, the transformed array can be written as:

```python
>>> import numpy as np
>>> A = np.random.rand(10, 10)
>>> A_min = np.min(A, axis=0)
>>> A_max = np.max(A, axis=0)
>>> A_t = np.nan_to_num((A - A_min)/(A_max - A_min))
```

Examples

```python
>>> n_samples = 10
>>> n_features = 3
>>> n_tasks = 1
>>> ids = np.arange(n_samples)
>>> X = np.random.rand(n_samples, n_features)
>>> y = np.random.rand(n_samples, n_tasks)
>>> w = np.ones((n_samples, n_tasks))
>>> dataset = dc.data.NumpyDataset(X, y, w, ids)
```

(continues on next page)
```python
transformer = dc.trans.MinMaxTransformer(transform_y=True, dataset=dataset)
```

```python
dataset = transformer.transform(dataset)
```

**Note:** This class can only transform X or y and not w. So only one of transform_X or transform_y can be set.

**Raises** `ValueError` – if transform_X and transform_y are both set.


Initialization of MinMax transformer.

**Parameters**

- `transform_X` (bool, optional (default False)) – Whether to transform X
- `transform_y` (bool, optional (default False)) – Whether to transform y
- `dataset` (dc.data.Dataset object, optional (default None)) – Dataset to be transformed

transform_array (X: numpy.ndarray, y: numpy.ndarray, w: numpy.ndarray, ids: numpy.ndarray) → Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]

Transform the data in a set of (X, y, w, ids) arrays.

**Parameters**

- `X` (np.ndarray) – Array of features
- `y` (np.ndarray) – Array of labels
- `w` (np.ndarray) – Array of weights.
- `ids` (np.ndarray) – Array of ids.

**Returns**

- `Xtrans` (np.ndarray) – Transformed array of features
- `ytrans` (np.ndarray) – Transformed array of labels
- `wtrans` (np.ndarray) – Transformed array of weights
- `idstrans` (np.ndarray) – Transformed array of ids

untransform (z: numpy.ndarray) → numpy.ndarray

Undo transformation on provided data.

**Parameters**

- `z` (np.ndarray) – Transformed X or y array

**Returns**

Array with min-max scaling undone.

**Return type**

np.ndarray

transform (dataset: deepchem.data.datasets.Dataset, parallel: bool = False, out_dir: Optional[str] = None, **kwargs) → deepchem.data.datasets.Dataset

Transforms all internally stored data in dataset.

This method transforms all internal data in the provided dataset by using the `Dataset.transform` method. Note that this method adds X-transform, y-transform columns to metadata. Specified keyword arguments are passed on to `Dataset.transform`. 
Parameters

- `dataset (dc.data.Dataset)` – Dataset object to be transformed.
- `parallel (bool, optional (default False))` – if True, use multiple processes to transform the dataset in parallel. For large datasets, this might be faster.
- `out_dir (str, optional)` – If `out_dir` is specified in `kwargs` and `dataset` is a `DiskDataset`, the output dataset will be written to the specified directory.

Returns A newly transformed Dataset object

Return type `Dataset`

`transform_on_array(X: numpy.ndarray, y: numpy.ndarray, w: numpy.ndarray, ids: numpy.ndarray) → Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]`

Transforms numpy arrays X, y, and w

DEPRECATED. Use `transform_array` instead.

Parameters

- `X (np.ndarray)` – Array of features
- `y (np.ndarray)` – Array of labels
- `w (np.ndarray)` – Array of weights.
- `ids (np.ndarray)` – Array of identifiers.

Returns

- `Xtrans (np.ndarray)` – Transformed array of features
- `ytrans (np.ndarray)` – Transformed array of labels
- `wtrans (np.ndarray)` – Transformed array of weights
- `idstrans (np.ndarray)` – Transformed array of ids

ClippingTransformer

class ClippingTransformer(transform_X: bool = False, transform_y: bool = False, dataset: Optional[deepchem.data.datasets.Dataset] = None, x_max: float = 5.0, y_max: float = 500.0)

Clip large values in datasets.

Examples

Let’s clip values from a synthetic dataset

```python
>>> n_samples = 10
>>> n_features = 3
>>> n_tasks = 1
>>> ids = np.arange(n_samples)
>>> X = np.random.randn(n_samples, n_features)
>>> y = np.zeros((n_samples, n_tasks))
>>> w = np.ones((n_samples, n_tasks))
>>> dataset = dc.data.NumpyDataset(X, y, w, ids)
```

(continues on next page)
```python
def transformer = dc.trans.ClippingTransformer(transform_X=True)
def dataset = transformer.transform(dataset)
```

```python
__init__(transform_X: bool = False, transform_y: bool = False, dataset:
Optional[deepchem.data.datasets.Dataset] = None, x_max: float = 5.0, y_max: float = 500.0)
```

Initialize clipping transformation.

**Parameters**

- `transform_X` (bool, optional (default False)) – Whether to transform X
- `transform_y` (bool, optional (default False)) – Whether to transform y
- `dataset` (dc.data.Dataset object, optional) – Dataset to be transformed
- `x_max` (float, optional) – Maximum absolute value for X
- `y_max` (float, optional) – Maximum absolute value for y

**Note:** This transformer can transform X and y jointly, but does not transform w.

**Raises** `ValueError` – if `transform_w` is set.

```python
def transform_array(X: numpy.ndarray, y: numpy.ndarray, w: numpy.ndarray, ids: numpy.ndarray) →
_tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]
```

Transform the data in a set of (X, y, w) arrays.

**Parameters**

- `X` (np.ndarray) – Array of Features
- `y` (np.ndarray) – Array of labels
- `w` (np.ndarray) – Array of weights
- `ids` (np.ndarray) – Array of ids.

**Returns**

- `X` (np.ndarray) – Transformed features
- `y` (np.ndarray) – Transformed tasks
- `w` (np.ndarray) – Transformed weights
- `ids` (np.ndarray) – Transformed array of ids

```python
def untransform(z: numpy.ndarray) → numpy.ndarray
```

Not implemented.

```python
def transform(dataset: deepchem.data.datasets.Dataset, parallel: bool = False, out_dir: Optional[Str] = None,
**kwargs) → deepchem.data.datasets.Dataset
```

Transforms all internally stored data in dataset.

This method transforms all internal data in the provided dataset by using the `Dataset.transform` method. Note that this method adds X-transform, y-transform columns to metadata. Specified keyword arguments are passed on to `Dataset.transform`.

**Parameters**
**dataset** *(dc.data.Dataset)* – Dataset object to be transformed.

**parallel** *(bool, optional (default False))* – if True, use multiple processes to transform the dataset in parallel. For large datasets, this might be faster.

**out_dir** *(str, optional)* – If `out_dir` is specified in `kwargs` and `dataset` is a `DiskDataset`, the output dataset will be written to the specified directory.

**Returns**
A newly transformed Dataset object

**Return type** Dataset

**transform_on_array** *(X: numpy.ndarray, y: numpy.ndarray, w: numpy.ndarray, ids: numpy.ndarray) → Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]*
Transforms numpy arrays X, y, and w

**DEPRECATED. Use transform_array instead.**

**Parameters**
- **X** *(np.ndarray)* – Array of features
- **y** *(np.ndarray)* – Array of labels
- **w** *(np.ndarray)* – Array of weights.
- **ids** *(np.ndarray)* – Array of identifiers.

**Returns**
- **Xtrans** *(np.ndarray)* – Transformed array of features
- **ytrans** *(np.ndarray)* – Transformed array of labels
- **wtrans** *(np.ndarray)* – Transformed array of weights
- **idstrans** *(np.ndarray)* – Transformed array of ids

**LogTransformer**

Computes a logarithmic transformation

This transformer computes the transformation given by

```python
>>> import numpy as np
>>> A = np.random.rand(10, 10)
>>> A = np.log(A + 1)
```

Assuming that tasks/features are not specified. If specified, then transformations are only performed on specified tasks/features.
Examples

```python
>>> n_samples = 10
>>> n_features = 3
>>> n_tasks = 1
>>> ids = np.arange(n_samples)
>>> X = np.random.rand(n_samples, n_features)
>>> y = np.zeros((n_samples, n_tasks))
>>> w = np.ones((n_samples, n_tasks))
>>> dataset = dc.data.NumpyDataset(X, y, w, ids)
>>> transformer = dc.trans.LogTransformer(transform_X=True)
>>> dataset = transformer.transform(dataset)
```

**Note:** This class can only transform \( X \) or \( y \) and not \( w \). So only one of \( \text{transform}_X \) or \( \text{transform}_y \) can be set.

**Raises** `ValueError` – if \( \text{transform}_w \) is set or \( \text{transform}_X \) and \( \text{transform}_y \) are both set.

### __init__

```python
```

Initialize log transformer.

**Parameters**

- `transform_X` (bool, optional (default False)) – Whether to transform \( X \)
- `transform_y` (bool, optional (default False)) – Whether to transform \( y \)
- `features` (list[Int]) – List of features indices to transform
- `tasks` (list[str]) – List of task names to transform.
- `dataset` (dc.data.Dataset object, optional (default None)) – Dataset to be transformed

### transform_array

```python
transform_array (X: numpy.ndarray, y: numpy.ndarray, w: numpy.ndarray, ids: numpy.ndarray) ->
Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]
```

Transform the data in a set of \((X, y, w)\) arrays.

**Parameters**

- `X` (np.ndarray) – Array of features
- `y` (np.ndarray) – Array of labels
- `w` (np.ndarray) – Array of weights.
- `ids` (np.ndarray) – Array of weights.

**Returns**

- `Xtrans` (np.ndarray) – Transformed array of features
- `ytrans` (np.ndarray) – Transformed array of labels
- `wtrans` (np.ndarray) – Transformed array of weights
- `idstrans` (np.ndarray) – Transformed array of ids
**untransform** ($z$: numpy.ndarray) → numpy.ndarray

Undo transformation on provided data.

**Parameters**

- **z** (numpy.ndarray) – Transformed X or y array

**Returns**

Array with a logarithmic transformation undone.

**Return type**

numpy.ndarray

**transform** (dataset: deepchem.data.datasets.Dataset, parallel: bool = False, out_dir: Optional[str] = None, **kwargs) → deepchem.data.datasets.Dataset

Transforms all internally stored data in dataset.

This method transforms all internal data in the provided dataset by using the Dataset.transform method. Note that this method adds X-transform, y-transform columns to metadata. Specified keyword arguments are passed on to Dataset.transform.

**Parameters**

- **dataset** (dc.data.Dataset) – Dataset object to be transformed.
- **parallel** (bool, optional (default False)) – if True, use multiple processes to transform the dataset in parallel. For large datasets, this might be faster.
- **out_dir** (str, optional) – If out_dir is specified in kwargs and dataset is a Disk-Dataset, the output dataset will be written to the specified directory.

**Returns**

A newly transformed Dataset object

**Return type**

Dataset

**transform_on_array** (X: numpy.ndarray, y: numpy.ndarray, w: numpy.ndarray, ids: numpy.ndarray) → Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]

Transforms numpy arrays X, y, and w

DEPRECATED. Use transform_array instead.

**Parameters**

- **X** (numpy.ndarray) – Array of features
- **y** (numpy.ndarray) – Array of labels
- **w** (numpy.ndarray) – Array of weights.
- **ids** (numpy.ndarray) – Array of identifiers.

**Returns**

- **Xtrans** (numpy.ndarray) – Transformed array of features
- **ytrans** (numpy.ndarray) – Transformed array of labels
- **wtrans** (numpy.ndarray) – Transformed array of weights
- **idstrans** (numpy.ndarray) – Transformed array of ids

3.11. Transformers
CDFTransformer

class CDFTransformer(transform_X: bool = False, transform_y: bool = False, dataset: Optional[deepchem.data.datasets.Dataset] = None, bins: int = 2)

Histograms the data and assigns values based on sorted list.

Acts like a Cumulative Distribution Function (CDF). If given a dataset of samples from a continuous distribution computes the CDF of this dataset and replaces values with their corresponding CDF values.

Examples

Let’s look at an example where we transform only features.

```python
>>> N = 10
>>> n_feat = 5
>>> n_bins = 100

Note that we're using 100 bins for our CDF histogram

```python
>>> import numpy as np
>>> X = np.random.normal(size=(N, n_feat))
>>> y = np.random.randint(2, size=(N,))
>>> dataset = dc.data.NumpyDataset(X, y)
```python
>> cdftrans = dc.trans.CDFTransformer(transform_X=True, dataset=dataset, bins=n_bins)
>> dataset = cdftrans.transform(dataset)

Note that you can apply this transformation to y as well

```python
>>> X = np.random.normal(size=(N, n_feat))
>>> y = np.random.normal(size=(N,))
>>> dataset = dc.data.NumpyDataset(X, y)
>>> cdftrans = dc.trans.CDFTransformer(transform_y=True, dataset=dataset, bins=n_bins)
>>> dataset = cdftrans.transform(dataset)
```


Initialize this transformer.

Parameters

- **transform_X** (bool, optional (default False)) – Whether to transform X
- **transform_y** (bool, optional (default False)) – Whether to transform y
- **dataset** (dc.data.Dataset object, optional (default None)) – Dataset to be transformed
- **bins** (int, optional (default 2)) – Number of bins to use when computing histogram.

transform_array(X: numpy.ndarray, y: numpy.ndarray, w: numpy.ndarray, ids: numpy.ndarray) → Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]

Performs CDF transform on data.

Parameters
deepchem, Release 2.6.1.dev

- **X** (*np.ndarray*) – Array of features
- **y** (*np.ndarray*) – Array of labels
- **w** (*np.ndarray*) – Array of weights.
- **ids** (*np.ndarray*) – Array of identifiers

Returns

- **Xtrans** (*np.ndarray*) – Transformed array of features
- **ytrans** (*np.ndarray*) – Transformed array of labels
- **wtrans** (*np.ndarray*) – Transformed array of weights
- **idstrans** (*np.ndarray*) – Transformed array of ids

untransform (*z: numpy.ndarray*) → *numpy.ndarray*

Undo transformation on provided data.

Note that this transformation is only undone for y.

Parameters

- **z** (*np.ndarray*) – Transformed y array

Returns

Array with the transformation undone.

Return type *np.ndarray*

Transforms all internally stored data in dataset.

This method transforms all internal data in the provided dataset by using the `Dataset.transform` method. Note that this method adds X-transform, y-transform columns to metadata. Specified keyword arguments are passed on to `Dataset.transform`.

Parameters

- **dataset** (*dc.data.Dataset*) – Dataset object to be transformed.
- **parallel** (*bool, optional (default False)* – if True, use multiple processes to transform the dataset in parallel. For large datasets, this might be faster.
- **out_dir** (*str, optional*) – If `out_dir` is specified in `kwargs` and `dataset` is a `DiskDataset`, the output dataset will be written to the specified directory.

Returns

A newly transformed Dataset object

Return type *Dataset*

transform_on_array (*X: numpy.ndarray, y: numpy.ndarray, w: numpy.ndarray, ids: numpy.ndarray*) → *Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]*

Transforms numpy arrays X, y, and w

DEPRECATED. Use `transform_array` instead.

Parameters

- **X** (*np.ndarray*) – Array of features
- **y** (*np.ndarray*) – Array of labels
- **w** (*np.ndarray*) – Array of weights.
- **ids** (*np.ndarray*) – Array of identifiers.

Returns

3.11. Transformers 217
• **Xtrans** (*np.ndarray*) – Transformed array of features
• **ytrans** (*np.ndarray*) – Transformed array of labels
• **wtrans** (*np.ndarray*) – Transformed array of weights
• **idstrans** (*np.ndarray*) – Transformed array of ids

PowerTransformer

class **PowerTransformer**(*transform_X*: bool = False, *transform_y*: bool = False, *dataset*: Optional[*deepchem.data.datasets.Dataset*] = None, *powers*: List[int] = [1])

Takes power \(n \) transforms of the data based on an input vector.

Computes the specified powers of the dataset. This can be useful if you’re looking to add higher order features of the form \(x_i^2, x_i^3 \) etc. to your dataset.

Examples

Let’s look at an example where we transform only \(X \).

```python
>>> N = 10
>>> n_feat = 5
>>> powers = [1, 2, 0.5]

So in this example, we’re taking the identity, squares, and square roots. Now let’s construct our matrices

```python
>>> import numpy as np
>>> X = np.random.rand(N, n_feat)
>>> y = np.random.normal(size=(N,))
>>> dataset = dc.data.NumpyDataset(X, y)
>>> trans = dc.trans.PowerTransformer(transform_X=True, dataset=dataset, powers=powers)
>>> dataset = trans.transform(dataset)
```

Let’s now look at an example where we transform \( y \). Note that the \( y \) transform expands out the feature dimensions of \( y \) the same way it does for \( X \) so this transform is only well defined for singletask datasets.

```python
>>> import numpy as np
>>> X = np.random.rand(N, n_feat)
>>> y = np.random.rand(N)
>>> dataset = dc.data.NumpyDataset(X, y)
>>> trans = dc.trans.PowerTransformer(transform_y=True, dataset=dataset, powers=powers)
>>> dataset = trans.transform(dataset)
```


Initialize this transformer

**Parameters**

• **transform_X** (bool, optional (default False)) – Whether to transform \( X \)
• **transform_y** (bool, optional (default False)) – Whether to transform \( y \)
• **dataset** *(dc.data.Dataset object, optional (default None)) – Dataset to be transformed. Note that this argument is ignored since PowerTransformer doesn’t require it to be specified.*

• **powers** *(list[int], optional (default [1])) – The list of powers of features/labels to compute.*

**transform_array**(X: numpy.ndarray, y: numpy.ndarray, w: numpy.ndarray, ids: numpy.ndarray) → Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]

Performs power transform on data.

**Parameters**

• **X** *(np.ndarray) – Array of features*

• **y** *(np.ndarray) – Array of labels*

• **w** *(np.ndarray) – Array of weights.*

• **ids** *(np.ndarray) – Array of identifiers.*

**Returns**

• **Xtrans** *(np.ndarray) – Transformed array of features*

• **ytrans** *(np.ndarray) – Transformed array of labels*

• **wtrans** *(np.ndarray) – Transformed array of weights*

• **idstrans** *(np.ndarray) – Transformed array of ids*

**untransform**(z: numpy.ndarray) → numpy.ndarray

Undo transformation on provided data.

**Parameters**

• **z** *(np.ndarray,) – Transformed y array*

**Returns**

Array with the power transformation undone.

**Return type**

numpy.ndarray

**transform**(dataset: deepchem.data.datasets.Dataset, parallel: bool = False, out_dir: Optional[str] = None, **kwargs) → deepchem.data.datasets.Dataset

Transforms all internally stored data in dataset.

This method transforms all internal data in the provided dataset by using the Dataset.transform method. Note that this method adds X-transform, y-transform columns to metadata. Specified keyword arguments are passed on to Dataset.transform.

**Parameters**

• **dataset** *(dc.data.Dataset) – Dataset object to be transformed.*

• **parallel** *(bool, optional (default False)) – if True, use multiple processes to transform the dataset in parallel. For large datasets, this might be faster.*

• **out_dir** *(str, optional) – If out_dir is specified in kwargs and dataset is a DiskDataset, the output dataset will be written to the specified directory.*

**Returns**

A newly transformed Dataset object

**Return type**

Dataset

**transform_on_array**(X: numpy.ndarray, y: numpy.ndarray, w: numpy.ndarray, ids: numpy.ndarray) → Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]

Transforms numpy arrays X, y, and w

DEPRECATED. Use transform_array instead.
Parameters

- **X** (*np.ndarray*) – Array of features
- **y** (*np.ndarray*) – Array of labels
- **w** (*np.ndarray*) – Array of weights.
- **ids** (*np.ndarray*) – Array of identifiers.

Returns

- **Xtrans** (*np.ndarray*) – Transformed array of features
- **ytrans** (*np.ndarray*) – Transformed array of labels
- **wtrans** (*np.ndarray*) – Transformed array of weights
- **idstrans** (*np.ndarray*) – Transformed array of ids

BalancingTransformer

class BalancingTransformer(*dataset: deepchem.data.datasets.Dataset*)
Balance positive and negative (or multiclass) example weights.

This class balances the sample weights so that the sum of all example weights from all classes is the same. This can be useful when you’re working on an imbalanced dataset where there are far fewer examples of some classes than others.

Examples

Here’s an example for a binary dataset.

```python
>>> n_samples = 10
>>> n_features = 3
>>> n_tasks = 1
>>> n_classes = 2
>>> ids = np.arange(n_samples)
>>> X = np.random.rand(n_samples, n_features)
>>> y = np.random.randint(n_classes, size=(n_samples, n_tasks))
>>> w = np.ones((n_samples, n_tasks))
>>> dataset = dc.data.NumpyDataset(X, y, w, ids)
>>> transformer = dc.trans.BalancingTransformer(dataset=dataset)
>>> dataset = transformer.transform(dataset)
```

And here’s a multiclass dataset example.

```python
>>> n_samples = 50
>>> n_features = 3
>>> n_tasks = 1
>>> n_classes = 5
>>> ids = np.arange(n_samples)
>>> X = np.random.rand(n_samples, n_features)
>>> y = np.random.randint(n_classes, size=(n_samples, n_tasks))
>>> w = np.ones((n_samples, n_tasks))
>>> dataset = dc.data.NumpyDataset(X, y, w, ids)
```
```python
>>> transformer = dc.trans.BalancingTransformer(dataset=dataset)
>>> dataset = transformer.transform(dataset)
```

See also:

```
deepchem.trans.DuplicateBalancingTransformer Balance by duplicating samples.
```

Note: This transformer is only meaningful for classification datasets where \( y \) takes on a limited set of values. This class can only transform \( w \) and does not transform \( X \) or \( y \).

Raises `ValueError` – if `transform_X` or `transform_y` are set. Also raises or if \( y \) or \( w \) aren’t of shape \((N,)\) or \((N, n\_tasks)\).

__init__(dataset: deepchem.data.datasets.Dataset)\n
Initializes transformation based on dataset statistics.

Parameters

- `transform_X` (bool, optional (default False)) – Whether to transform \( X \)
- `transform_y` (bool, optional (default False)) – Whether to transform \( y \)
- `transform_w` (bool, optional (default False)) – Whether to transform \( w \)
- `transform_ids` (bool, optional (default False)) – Whether to transform ids
- `dataset` (dc.data.Dataset object, optional (default None)) – Dataset to be transformed

`transform_array(X: numpy.ndarray, y: numpy.ndarray, w: numpy.ndarray, ids: numpy.ndarray) \rightarrow Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]`

Transform the data in a set of \((X, y, w)\) arrays.

Parameters

- `X` (np.ndarray) – Array of features
- `y` (np.ndarray) – Array of labels
- `w` (np.ndarray) – Array of weights.
- `ids` (np.ndarray) – Array of weights.

Returns

- `Xtrans` (np.ndarray) – Transformed array of features
- `ytrans` (np.ndarray) – Transformed array of labels
- `wtrans` (np.ndarray) – Transformed array of weights
- `idstrans` (np.ndarray) – Transformed array of ids

`transform(dataset: deepchem.data.datasets.Dataset, parallel: bool = False, out_dir: Optional[str] = None, **kwargs) \rightarrow deepchem.data.datasets.Dataset`

Transforms all internally stored data in dataset.
This method transforms all internal data in the provided dataset by using the `Dataset.transform` method. Note that this method adds X-transform, y-transform columns to metadata. Specified keyword arguments are passed on to `Dataset.transform`.

**Parameters**

- `dataset (dc.data.Dataset)` – Dataset object to be transformed.
- `parallel (bool, optional (default False))` – if True, use multiple processes to transform the dataset in parallel. For large datasets, this might be faster.
- `out_dir (str, optional)` – If `out_dir` is specified in `kwargs` and `dataset` is a Disk-Dataset, the output dataset will be written to the specified directory.

**Returns** A newly transformed Dataset object

**Return type** Dataset

**transform_on_array**(X: numpy.ndarray, y: numpy.ndarray, w: numpy.ndarray, ids: numpy.ndarray) \rightarrow Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]

Transforms numpy arrays X, y, and w

DEPRECATED. Use `transform_array` instead.

**Parameters**

- `X (np.ndarray)` – Array of features
- `y (np.ndarray)` – Array of labels
- `w (np.ndarray)` – Array of weights.
- `ids (np.ndarray)` – Array of identifiers.

**Returns**

- `Xtrans (np.ndarray)` – Transformed array of features
- `ytrans (np.ndarray)` – Transformed array of labels
- `wtrans (np.ndarray)` – Transformed array of weights
- `idstrans (np.ndarray)` – Transformed array of ids

**untransform**(transformed: numpy.ndarray) \rightarrow numpy.ndarray

Reverses stored transformation on provided data.

Depending on whether `transform_X` or `transform_y` or `transform_w` was set, this will perform different un-transformations. Note that this method may not always be defined since some transformations aren’t 1-1.

**Parameters** `transformed (np.ndarray)` – Array which was previously transformed by this class.
**DuplicateBalancingTransformer**

**class** `DuplicateBalancingTransformer(dataset: deepchem.data.datasets.Dataset)`

Balance binary or multiclass datasets by duplicating rarer class samples.

This class balances a dataset by duplicating samples of the rarer class so that the sum of all example weights from all classes is the same. (Up to integer rounding of course). This can be useful when you’re working on an imbalanced dataset where there are far fewer examples of some classes than others.

This class differs from `BalancingTransformer` in that it actually duplicates rarer class samples rather than just increasing their sample weights. This may be more friendly for models that are numerically fragile and can’t handle imbalanced example weights.

**Examples**

Here’s an example for a binary dataset.

```python
>>> n_samples = 10
>>> n_features = 3
>>> n_tasks = 1
>>> n_classes = 2
>>> import deepchem as dc
>>> import numpy as np
>>> ids = np.arange(n_samples)
>>> X = np.random.rand(n_samples, n_features)
>>> y = np.random.randint(n_classes, size=(n_samples, n_tasks))
>>> w = np.ones((n_samples, n_tasks))
>>> dataset = dc.data.NumpyDataset(X, y, w, ids)
>>> transformer = dc.trans.DuplicateBalancingTransformer(dataset=dataset)
>>> dataset = transformer.transform(dataset)
```

And here’s a multiclass dataset example.

```python
>>> n_samples = 50
>>> n_features = 3
>>> n_tasks = 1
>>> n_classes = 5
>>> ids = np.arange(n_samples)
>>> X = np.random.rand(n_samples, n_features)
>>> y = np.random.randint(n_classes, size=(n_samples, n_tasks))
>>> w = np.ones((n_samples, n_tasks))
>>> dataset = dc.data.NumpyDataset(X, y, w, ids)
>>> transformer = dc.trans.DuplicateBalancingTransformer(dataset=dataset)
>>> dataset = transformer.transform(dataset)
```

See also:


**Note:** This transformer is only well-defined for singletask datasets. (Since examples are actually duplicated, there’s no meaningful way to duplicate across multiple tasks in a way that preserves the balance.)
This transformer is only meaningful for classification datasets where \( y \) takes on a limited set of values. This class transforms all of \( X, y, w, ids \).

Raises \texttt{ValueError} –

\_\_init\_\_(\texttt{dataset: deepchem.data.datasets.Dataset})

Initializes transformation based on dataset statistics.

Parameters

- \texttt{transform\_X (bool, optional (default False))} – Whether to transform \( X \)
- \texttt{transform\_y (bool, optional (default False))} – Whether to transform \( y \)
- \texttt{transform\_w (bool, optional (default False))} – Whether to transform \( w \)
- \texttt{transform\_ids (bool, optional (default False))} – Whether to transform \( ids \)
- \texttt{dataset (dc.data.Dataset object, optional (default None))} – Dataset to be transformed

\texttt{transform\_array (X: numpy.ndarray, y: numpy.ndarray, w: numpy.ndarray, ids: numpy.ndarray)} \rightarrow \texttt{Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]}

Transforms the data in a set of \((X, y, w, id)\) arrays.

Parameters

- \texttt{X (np.ndarray)} – Array of features
- \texttt{y (np.ndarray)} – Array of labels
- \texttt{w (np.ndarray)} – Array of weights.
- \texttt{ids (np.ndarray)} – Array of identifiers

Returns

- \texttt{Xtrans (np.ndarray)} – Transformed array of features
- \texttt{ytrans (np.ndarray)} – Transformed array of labels
- \texttt{wtrans (np.ndarray)} – Transformed array of weights
- \texttt{idtrans (np.ndarray)} – Transformed array of identifiers

\texttt{transform (dataset: deepchem.data.datasets.Dataset, parallel: bool = False, out\_dir: Optional[str] = None, **kwargs)} \rightarrow \texttt{deepchem.data.datasets.Dataset}

Transforms all internally stored data in dataset.

This method transforms all internal data in the provided dataset by using the Dataset.transform method. Note that this method adds X-transform, y-transform columns to metadata. Specified keyword arguments are passed on to Dataset.transform.

Parameters

- \texttt{dataset (dc.data.Dataset)} – Dataset object to be transformed.
- \texttt{parallel (bool, optional (default False))} – If True, use multiple processes to transform the dataset in parallel. For large datasets, this might be faster.
- \texttt{out\_dir (str, optional)} – If \texttt{out\_dir} is specified in \texttt{kwargs} and \texttt{dataset} is a DiskDataset, the output dataset will be written to the specified directory.

Returns A newly transformed Dataset object
Return type *Dataset*

**transform_on_array**

\[
(X: \text{numpy.ndarray}, y: \text{numpy.ndarray}, w: \text{numpy.ndarray}, ids: \text{numpy.ndarray}) \rightarrow \text{Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]}
\]

Transforms numpy arrays \(X\), \(y\), and \(w\)

DEPRECATED. Use `transform_array` instead.

**Parameters**

- \(X\) (*np.ndarray*) – Array of features
- \(y\) (*np.ndarray*) – Array of labels
- \(w\) (*np.ndarray*) – Array of weights.
- \(ids\) (*np.ndarray*) – Array of identifiers.

**Returns**

- \(X\) trans (*np.ndarray*) – Transformed array of features
- \(y\) trans (*np.ndarray*) – Transformed array of labels
- \(w\) trans (*np.ndarray*) – Transformed array of weights
- \(ids\) trans (*np.ndarray*) – Transformed array of ids

**untransform**

\[
(\text{transformed: numpy.ndarray}) \rightarrow \text{numpy.ndarray}
\]

Reverses stored transformation on provided data.

Depending on whether `transform_X` or `transform_y` or `transform_w` was set, this will perform different un-transformations. Note that this method may not always be defined since some transformations aren’t 1-1.

**Parameters**

- transformed (*np.ndarray*) – Array which was previously transformed by this class.

**ImageTransformer**

**class ImageTransformer**

\(size: \text{Tuple[int, int]}\)

Convert an image into width, height, channel

**Note:** This class require Pillow to be installed.

**__init__**

\(size: \text{Tuple[int, int]}\)

Initializes ImageTransformer.

**Parameters**

- size (*Tuple[int, int]*) – The image size, a tuple of (width, height).

**transform_array**

\((X, y, w)\)

Transform the data in a set of \((X, y, w, ids)\) arrays.

**Parameters**

- \(X\) (*np.ndarray*) – Array of features
- \(y\) (*np.ndarray*) – Array of labels
- \(w\) (*np.ndarray*) – Array of weights.
- \(ids\) (*np.ndarray*) – Array of identifiers.
Returns

- **Xtrans** (*np.ndarray*) – Transformed array of features
- **ytrans** (*np.ndarray*) – Transformed array of labels
- **wtrans** (*np.ndarray*) – Transformed array of weights
- **idstrans** (*np.ndarray*) – Transformed array of ids

**transform**(*dataset: deepchem.data.datasets.Dataset, parallel: bool = False, out_dir: Optional[str] = None, **kwargs) → deepchem.data.datasets.Dataset*

Transforms all internally stored data in dataset.

This method transforms all internal data in the provided dataset by using the `Dataset.transform` method. Note that this method adds X-transform, y-transform columns to metadata. Specified keyword arguments are passed on to `Dataset.transform`.

**Parameters**

- **dataset** (*dc.data.Dataset*) – Dataset object to be transformed.
- **parallel** (*bool, optional (default False)* ) – if True, use multiple processes to transform the dataset in parallel. For large datasets, this might be faster.
- **out_dir** (*str, optional*) – If `out_dir` is specified in `kwargs` and `dataset` is a `DiskDataset`, the output dataset will be written to the specified directory.

**Returns**  A newly transformed Dataset object

**Return type** *Dataset*

**transform_on_array**(*X: numpy.ndarray, y: numpy.ndarray, w: numpy.ndarray, ids: numpy.ndarray*) →*Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]*

Transforms numpy arrays X, y, and w

DEPRECATED. Use `transform_array` instead.

**Parameters**

- **X** (*np.ndarray*) – Array of features
- **y** (*np.ndarray*) – Array of labels
- **w** (*np.ndarray*) – Array of weights.
- **ids** (*np.ndarray*) – Array of identifiers.

**Returns**

- **Xtrans** (*np.ndarray*) – Transformed array of features
- **ytrans** (*np.ndarray*) – Transformed array of labels
- **wtrans** (*np.ndarray*) – Transformed array of weights
- **idstrans** (*np.ndarray*) – Transformed array of ids

**untransform**(*transformed: numpy.ndarray*) →*numpy.ndarray*

Reverses stored transformation on provided data.

Depending on whether `transform_X` or `transform_y` or `transform_w` was set, this will perform different un-transformations. Note that this method may not always be defined since some transformations aren’t 1-1.

**Parameters**  **transformed** (*np.ndarray*) – Array which was previously transformed by this class.
FeaturizationTransformer

class FeaturizationTransformer(dataset: Optional[deepchem.data.datasets.Dataset] = None, featurizer: Optional[deepchem.feat.base_classes.Featurizer] = None)

A transformer which runs a featurizer over the X values of a dataset.

Datasets used by this transformer must be compatible with the internal featurizer. The idea of this transformer is that it allows for the application of a featurizer to an existing dataset.

Examples

```python
>>> smiles = ["C", "CC"]
>>> X = np.array(smiles)
>>> y = np.array([1, 0])
>>> dataset = dc.data.NumpyDataset(X, y)
>>> trans = dc.trans.FeaturizationTransformer(dataset, dc.feat.CircularFingerprint())
>>> dataset = trans.transform(dataset)
```

__init__(dataset: Optional[deepchem.data.datasets.Dataset] = None, featurizer: Optional[deepchem.feat.base_classes.Featurizer] = None)

Initialization of FeaturizationTransformer

Parameters

- **dataset** *(dc.data.Dataset object, optional (default None)) – Dataset to be transformed*

- **featurizer** *(dc.feat.Featurizer object, optional (default None)) – Featurizer applied to perform transformations.*

transform_array(X: numpy.ndarray, y: numpy.ndarray, w: numpy.ndarray, ids: numpy.ndarray) → Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]

Transforms arrays of rdkit mols using internal featurizer.

Parameters

- **X** *(np.ndarray) – Array of features*

- **y** *(np.ndarray) – Array of labels*

- **w** *(np.ndarray) – Array of weights.*

- **ids** *(np.ndarray) – Array of identifiers.*

Returns

- **Xtrans** *(np.ndarray) – Transformed array of features*

- **ytrans** *(np.ndarray) – Transformed array of labels*

- **wtrans** *(np.ndarray) – Transformed array of weights*

- **idstrans** *(np.ndarray) – Transformed array of ids*

transform(dataset: deepchem.data.datasets.Dataset, parallel: bool = False, out_dir: Optional[str] = None, **kwargs) → deepchem.data.datasets.Dataset

Transforms all internally stored data in dataset.
This method transforms all internal data in the provided dataset by using the Dataset.transform method. Note that this method adds X-transform, y-transform columns to metadata. Specified keyword arguments are passed on to Dataset.transform.

**Parameters**

- **dataset** *(dc.data.Dataset)* – Dataset object to be transformed.
- **parallel** *(bool, optional (default False))* – if True, use multiple processes to transform the dataset in parallel. For large datasets, this might be faster.
- **out_dir** *(str, optional)* – If out_dir is specified in kwargs and dataset is a Disk-Dataset, the output dataset will be written to the specified directory.

**Returns** A newly transformed Dataset object

**Return type** Dataset

**transform_on_array** *(X: numpy.ndarray, y: numpy.ndarray, w: numpy.ndarray, ids: numpy.ndarray) → Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]*

Transforms numpy arrays X, y, and w

DEPRECATED. Use transform_array instead.

**Parameters**

- **X** *(np.ndarray)* – Array of features
- **y** *(np.ndarray)* – Array of labels
- **w** *(np.ndarray)* – Array of weights.
- **ids** *(np.ndarray)* – Array of identifiers.

**Returns**

- **Xtrans** *(np.ndarray)* – Transformed array of features
- **ytrans** *(np.ndarray)* – Transformed array of labels
- **wtrans** *(np.ndarray)* – Transformed array of weights
- **idstrans** *(np.ndarray)* – Transformed array of ids

**untransform** *(transformed: numpy.ndarray) → numpy.ndarray*

Reverses stored transformation on provided data.

Depending on whether transform_X or transform_y or transform_w was set, this will perform different un-transformations. Note that this method may not always be defined since some transformations aren’t 1-1.

**Parameters** **transformed** *(np.ndarray)* – Array which was previously transformed by this class.
3.11.2 Specified Usecase Transformers

CoulombFitTransformer

class CoulombFitTransformer(dataset: deepchem.data.datasets.Dataset)

Performs randomization and binarization operations on batches of Coulomb Matrix features during fit.

Examples

```python
>>> n_samples = 10
>>> n_features = 3
>>> n_tasks = 1
>>> ids = np.arange(n_samples)
>>> X = np.random.rand(n_samples, n_features, n_features)
>>> y = np.zeros((n_samples, n_tasks))
>>> w = np.ones((n_samples, n_tasks))
>>> dataset = dc.data.NumpyDataset(X, y, w, ids)
>>> fit_transformers = [dc.trans.CoulombFitTransformer(dataset)]
>>> model = dc.models.MultitaskFitTransformRegressor(n_tasks, ...
... [n_features, n_features], batch_size=n_samples, fit_transformers=fit_ ...
... transformers, n_evals=1)
>>> print(model.n_features)
12
```

__init__(dataset: deepchem.data.datasets.Dataset)

Initializes CoulombFitTransformer.

Parameters:

- **dataset** (dc.data.Dataset) – Dataset object to be transformed.

realize(X: numpy.ndarray) → numpy.ndarray

Randomize features.

Parameters:

- **X** (np.ndarray) – Features

Returns:

- **X** – Randomized features

Return type:

- np.ndarray

normalize(X: numpy.ndarray) → numpy.ndarray

Normalize features.

Parameters:

- **X** (np.ndarray) – Features

Returns:

- **X** – Normalized features

Return type:

- np.ndarray

expand(X: numpy.ndarray) → numpy.ndarray

Binarize features.

Parameters:

- **X** (np.ndarray) – Features

Returns:

- **X** – Binarized features

Return type:

- np.ndarray
**X_transform**($X: \text{numpy.ndarray}$) $\rightarrow$ numpy.ndarray

Perform Coulomb Fit transform on features.

**Parameters**

- $X$ (*np.ndarray*) – Features

**Returns**

- $X$ – Transformed features

**Return type**

- np.ndarray

**transform_array**($X: \text{numpy.ndarray, y: numpy.ndarray, w: numpy.ndarray, ids: numpy.ndarray}$) $\rightarrow$ Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]

Performs randomization and binarization operations on data.

**Parameters**

- $X$ (*np.ndarray*) – Array of features
- $y$ (*np.ndarray*) – Array of labels
- $w$ (*np.ndarray*) – Array of weights.

**Returns**

- $X_{\text{trans}}$ (*np.ndarray*) – Transformed array of features
- $y_{\text{trans}}$ (*np.ndarray*) – Transformed array of labels
- $w_{\text{trans}}$ (*np.ndarray*) – Transformed array of weights
- $id_{\text{trans}}$ (*np.ndarray*) – Transformed array of ids

**untransform**($z: \text{numpy.ndarray}$) $\rightarrow$ numpy.ndarray

Not implemented.

**transform**($\text{dataset: deepchem.data.datasets.Dataset, parallel: bool = False, out_dir: Optional[str] = None, **kwargs}$) $\rightarrow$ deepchem.data.datasets.Dataset

Transforms all internally stored data in dataset.

This method transforms all internal data in the provided dataset by using the Dataset.transform method. Note that this method adds X-transform, y-transform columns to metadata. Specified keyword arguments are passed on to Dataset.transform.

**Parameters**

- $\text{dataset}$ (*dc.data.Dataset*) – Dataset object to be transformed.
- $\text{parallel}$ (bool, optional (default False)) – if True, use multiple processes to transform the dataset in parallel. For large datasets, this might be faster.
- $\text{out_dir}$ (str, optional) – If out_dir is specified in kwargs and dataset is a DiskDataset, the output dataset will be written to the specified directory.

**Returns**

- A newly transformed Dataset object

**Return type**

- Dataset

**transform_on_array**($X: \text{numpy.ndarray, y: numpy.ndarray, w: numpy.ndarray, ids: numpy.ndarray}$) $\rightarrow$ Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]

Transforms numpy arrays $X$, $y$, and $w$.

DEPRECATED. Use transform_array instead.

**Parameters**
• **X** (*np.ndarray*) – Array of features
• **y** (*np.ndarray*) – Array of labels
• **w** (*np.ndarray*) – Array of weights.
• **ids** (*np.ndarray*) – Array of identifiers.

**Returns**
• **Xtrans** (*np.ndarray*) – Transformed array of features
• **ytrans** (*np.ndarray*) – Transformed array of labels
• **wtrans** (*np.ndarray*) – Transformed array of weights
• **idstrans** (*np.ndarray*) – Transformed array of ids

### IRVTransformer


Performs transform from ECFP to IRV features (K nearest neighbors).

This transformer is required by **MultitaskIRVClassifier** as a preprocessing step before training.

**Examples**

Let's start by defining the parameters of the dataset we're about to transform.

```python
>>> n_feat = 128
>>> N = 20
>>> n_tasks = 2
```

Let's now make our dataset object

```python
>>> import numpy as np
>>> import deepchem as dc
>>> X = np.random.randint(2, size=(N, n_feat))
>>> y = np.zeros((N, n_tasks))
>>> w = np.ones((N, n_tasks))
>>> dataset = dc.data.NumpyDataset(X, y, w)
```

And let's apply our transformer with 10 nearest neighbors.

```python
>>> K = 10
>>> trans = dc.trans.IRVTransformer(K, n_tasks, dataset)
>>> dataset = trans.transform(dataset)
```

**Note:** This class requires TensorFlow to be installed.


Initializes IRVTransformer.

**Parameters**

• **K** (*int*) – number of nearest neighbours being count
• **n_tasks** (int) – number of tasks
• **dataset** (dc.data.Dataset object) – train_dataset

**realize** (similarity: numpy.ndarray, y: numpy.ndarray, w: numpy.ndarray) → List

find samples with top ten similarity values in the reference dataset

**Parameters**

• **similarity** (np.ndarray) – similarity value between target dataset and reference dataset should have size of (n_samples_in_target, n_samples_in_reference)
• **y** (np.array) – labels for a single task
• **w** (np.array) – weights for a single task

**Returns** features – n_samples * np.array of size (2*K,) each array includes K similarity values and corresponding labels

**Return type** list

**X_transform** (X_target: numpy.ndarray) → numpy.ndarray

Calculate similarity between target dataset(X_target) and reference dataset(X):

\[
\text{similarity} = \frac{\text{#(1 in intersection)}}{\text{#(1 in union)}}
\]

**Parameters**

• **X_target** (np.ndarray) – fingerprints of target dataset should have same length with X in the second axis

**Returns** X_target – features of size(batch_size, 2*K*n_tasks)

**Return type** np.ndarray

**static matrix_mul** (X1, X2, shard_size=5000)

Calculate matrix multiplication for big matrix, X1 and X2 are sliced into pieces with shard_size rows(columns) then multiplied together and concatenated to the proper size


Transforms a given dataset

**Parameters**

• **dataset** (Dataset) – Dataset to transform
• **parallel** (bool, optional, (default False)) – Whether to parallelize this transformation. Currently ignored.
• **out_dir** (str, optional (default None)) – Directory to write resulting dataset.

**Returns** Dataset object that is transformed.

**Return type** DiskDataset or NumpyDataset

**untransform** (z: numpy.ndarray) → numpy.ndarray

Not implemented.

**transform_array** (X: numpy.ndarray, y: numpy.ndarray, w: numpy.ndarray, ids: numpy.ndarray) →

Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]

Transform the data in a set of (X, y, w, ids) arrays.

**Parameters**
- \textbf{X} (\textit{np.ndarray}) – Array of features
- \textbf{y} (\textit{np.ndarray}) – Array of labels
- \textbf{w} (\textit{np.ndarray}) – Array of weights.
- \textbf{ids} (\textit{np.ndarray}) – Array of identifiers.

\textbf{Returns}
- \textbf{Xtrans} (\textit{np.ndarray}) – Transformed array of features
- \textbf{ytrans} (\textit{np.ndarray}) – Transformed array of labels
- \textbf{wtrans} (\textit{np.ndarray}) – Transformed array of weights
- \textbf{idstrans} (\textit{np.ndarray}) – Transformed array of ids

\textbf{transform_on_array}(X: \textit{numpy.ndarray}, y: \textit{numpy.ndarray}, w: \textit{numpy.ndarray}, ids: \textit{numpy.ndarray}) \rightarrow \textbf{Tuple} [\textit{numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray}]

Transforms numpy arrays X, y, and w

DEPRECATED. Use \textit{transform_array} instead.

\textbf{Parameters}
- \textbf{X} (\textit{np.ndarray}) – Array of features
- \textbf{y} (\textit{np.ndarray}) – Array of labels
- \textbf{w} (\textit{np.ndarray}) – Array of weights.
- \textbf{ids} (\textit{np.ndarray}) – Array of identifiers.

\textbf{Returns}
- \textbf{Xtrans} (\textit{np.ndarray}) – Transformed array of features
- \textbf{ytrans} (\textit{np.ndarray}) – Transformed array of labels
- \textbf{wtrans} (\textit{np.ndarray}) – Transformed array of weights
- \textbf{idstrans} (\textit{np.ndarray}) – Transformed array of ids

\textbf{DAGTransformer}

\textbf{class DAGTransformer} \textit{(max_atoms: \textit{int} = 50)}

Performs transform from ConvMol adjacency lists to DAG calculation orders

This transformer is used by \textit{DAGModel} before training to transform its inputs to the correct shape. This expansion turns a molecule with \textit{n} atoms into \textit{n} DAGs, each with root at a different atom in the molecule.

\textbf{Examples}

Let’s transform a small dataset of molecules.

\begin{verbatim}
>>> N = 10
>>> n_feat = 5
>>> import numpy as np
>>> feat = dc.feat.ConvMolFeaturizer()
>>> X = feat(["C", "CC"])
>>> y = np.random.rand(N)
\end{verbatim}

(continues on next page)
```python
dataset = dc.data.NumpyDataset(X, y)
trans = dc.trans.DAGTransformer(max_atoms=5)
dataset = trans.transform(dataset)
```

__init__(max_atoms: int = 50)

Initializes DAGTransformer.

Parameters

**max_atoms** *(int, optional (Default 50)) –* Maximum number of atoms to allow

transform_array (**X**: numpy.ndarray, **y**: numpy.ndarray, **w**: numpy.ndarray, **ids**: numpy.ndarray) → Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]

Transform the data in a set of (X, y, w, ids) arrays.

Parameters

- **X** *(np.ndarray)* – Array of features
- **y** *(np.ndarray)* – Array of labels
- **w** *(np.ndarray)* – Array of weights.
- **ids** *(np.ndarray)* – Array of identifiers.

Returns

- **Xtrans** *(np.ndarray)* – Transformed array of features
- **ytrans** *(np.ndarray)* – Transformed array of labels
- **wtrans** *(np.ndarray)* – Transformed array of weights
- **idstrans** *(np.ndarray)* – Transformed array of ids

untransform (**z**: numpy.ndarray) → numpy.ndarray

Not implemented.

UG_to_DAG (**sample**: deepchem.feat.mol_graphs.ConvMol) → List

This function generates the DAGs for a molecule

Parameters

**sample** *(ConvMol)* – Molecule to transform

Returns

List of parent adjacency matrices

Return type

List

transform (**dataset**: deepchem.data.datasets.Dataset, **parallel**: bool = False, **out_dir**: Optional[str] = None, **kwargs) → deepchem.data.datasets.Dataset

Transforms all internally stored data in the provided dataset.

This method transforms all internal data in the provided dataset by using the Dataset.transform method. Note that this method adds X-transform, y-transform columns to metadata. Specified keyword arguments are passed on to Dataset.transform.

Parameters

- **dataset** *(dc.data.Dataset)* – Dataset object to be transformed.
- **parallel** *(bool, optional (default False)) –* if True, use multiple processes to transform the dataset in parallel. For large datasets, this might be faster.
- **out_dir** *(str, optional)* – If out_dir is specified in kwargs and dataset is a DiskDataset, the output dataset will be written to the specified directory.
Returns A newly transformed Dataset object
Return type Dataset

**transform_on_array** *(X: numpy.ndarray, y: numpy.ndarray, w: numpy.ndarray, ids: numpy.ndarray) → Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]*

Transforms numpy arrays X, y, and w
DEPRECATED. Use *transform_array* instead.

Parameters
- X *(np.ndarray)* – Array of features
- y *(np.ndarray)* – Array of labels
- w *(np.ndarray)* – Array of weights.
- ids *(np.ndarray)* – Array of identifiers.

Returns
- Xtrans *(np.ndarray)* – Transformed array of features
- ytrans *(np.ndarray)* – Transformed array of labels
- wtrans *(np.ndarray)* – Transformed array of weights
- idstrans *(np.ndarray)* – Transformed array of ids

### RxnSplitTransformer

**class RxnSplitTransformer**(sep_reagent: bool = True, dataset: Optional[deepchem.data.datasets.Dataset] = None)

Splits the reaction SMILES input into the source and target strings required for machine translation tasks.

The input is expected to be in the form *reactant>reagent>product*. The source string would be *reactants>reagents* and the target string would be the products.

The transformer can also separate the reagents from the reactants for a mixed training mode. During mixed training, the source string is transformed from *reactants>reagent* to *reactants.reagent>* . This can be toggled (default True) by setting the value of *sep_reagent* while calling the transformer.

### Examples

```python
>>> # When mixed training is toggled.
>>> import numpy as np
>>> from deepchem.trans.transformers import RxnSplitTransformer
>>> reactions = np.array(['CC(C)C[Mg+]..CON(C)C(=O)c1ccc(O)nc1>C1CCOC1.[Cl-]>
˓→CC(C)C(=O)c1ccc(O)nc1','CCn1cc(C(=O)O)c(=O)c2cc(F)c(-c3ccc(N)cc3)cc21.O=CO>>
˓→CCn1cc(C(=O)O)c(=O)c2cc(F)c(-c3ccc(NC=O)cc3)cc21'], dtype=object)
>>> trans = RxnSplitTransformer(sep_reagent=True)
>>> split_reactions = trans.transform_array(X=reactions, y=np.array([]), w=np.
˓→array([]), ids=np.array([]))
>>> split_reactions
(array(['CC(C)C[Mg+]..CON(C)C(=O)c1ccc(O)nc1>C1CCOC1.[Cl-]',
˓→'CC(C)CC(=O)c1ccc(O)nc1']),
_continues on next page)```
When mixed training is disabled, you get the following outputs:

```
>>> trans_disable = RxnSplitTransformer(sep_reagent=False)
>>> split_reactions = trans_disable.transform_array(X=reactions, y=np.array([]), w=np.array([]), ids=np.array([]))
>>> split_reactions
(array([['CC(C)C[Mg+]\n.CON(C)C(=O)c1ccc(0)nc1.C1CCOC1.[Cl-]>'],
       ['CCn1cc(C(=O)O)c(=O)c2cc(F)c(-c3ccc(N)c3)cc21.O=CO>','CCn1cc(C(=O)O)c(=O)c2cc(F)c(-c3ccc(NC=O)c3)cc21'],
       dtype='<U51'),
       array([], dtype=float64), array([], dtype=float64), array([], dtype=float64))
```

Note: This class only transforms the feature field of a reaction dataset like USPTO.

__init__ *(sep_reagent: bool = True, dataset: Optional[deepchem.data.datasets.Dataset] = None)*

Initializes the Reaction split Transformer.

Parameters

- **sep_reagent** *(bool, optional (default True)) – To separate the reagent and reactants for training.*

- **dataset** *(dc.data.Dataset object, optional (default None)) – Dataset to be transformed.*

transform_array *(X: numpy.ndarray, y: numpy.ndarray, w: numpy.ndarray, ids: numpy.ndarray) → Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]*

Transform the data in a set of (X, y, w, ids) arrays.

Parameters

- **X** *(np.ndarray) – Array of features(the reactions)*

- **y** *(np.ndarray) – Array of labels*

- **w** *(np.ndarray) – Array of weights.*

- **ids** *(np.ndarray) – Array of weights.*

Returns

- **Xtrans** *(np.ndarray) – Transformed array of features*

- **ytrans** *(np.ndarray) – Transformed array of labels*

- **wtrans** *(np.ndarray) – Transformed array of weights*

- **idstrans** *(np.ndarray) – Transformed array of ids*

transform *(dataset: deepchem.data.datasets.Dataset, parallel: bool = False, out_dir: Optional[str] = None, **kwargs) → deepchem.data.datasets.Dataset*

Transforms all internally stored data in dataset.
This method transforms all internal data in the provided dataset by using the `Dataset.transform` method. Note that this method adds X-transform, y-transform columns to metadata. Specified keyword arguments are passed on to `Dataset.transform`.

Parameters

- **dataset** (`dc.data.Dataset`) – Dataset object to be transformed.
- **parallel** (`bool`, optional (default `False`) – if True, use multiple processes to transform the dataset in parallel. For large datasets, this might be faster.
- **out_dir** (`str`, optional) – If `out_dir` is specified in `kwargs` and `dataset` is a `DiskDataset`, the output dataset will be written to the specified directory.

Returns

A newly transformed Dataset object

Return type `Dataset`

transform_on_array

```
transform_on_array(X: numpy.ndarray, y: numpy.ndarray, w: numpy.ndarray, ids: numpy.ndarray) →
Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]
```

Transforms numpy arrays X, y, and w

DEPRECATED. Use `transform_array` instead.

Parameters

- **X** (`np.ndarray`) – Array of features
- **y** (`np.ndarray`) – Array of labels
- **w** (`np.ndarray`) – Array of weights.
- **ids** (`np.ndarray`) – Array of identifiers.

Returns

- **Xtrans** (`np.ndarray`) – Transformed array of features
- **ytrans** (`np.ndarray`) – Transformed array of labels
- **wtrans** (`np.ndarray`) – Transformed array of weights
- **idstrans** (`np.ndarray`) – Transformed array of ids

untransform(z)

Not Implemented.

3.11.3 Base Transformer (for develop)

The `dc.trans.Transformer` class is the abstract parent class for all transformers. This class should never be directly initialized, but contains a number of useful method implementations.

class Transformer

```python
```

Abstract base class for different data transformation techniques.

A transformer is an object that applies a transformation to a given dataset. Think of a transformation as a mathematical operation which makes the source dataset more amenable to learning. For example, one transformer could normalize the features for a dataset (ensuring they have zero mean and unit standard deviation). Another transformer could for example threshold values in a dataset so that values outside a given range are truncated. Yet another transformer could act as a data augmentation routine, generating multiple different images from each source datapoint (a transformation need not necessarily be one to one).
Transformers are designed to be chained, since data pipelines often chain multiple different transformations to a dataset. Transformers are also designed to be scalable and can be applied to large `dc.data.Dataset` objects. Not that Transformers are not usually thread-safe so you will have to be careful in processing very large datasets.

This class is an abstract superclass that isn’t meant to be directly instantiated. Instead, you will want to instantiate one of the subclasses of this class inorder to perform concrete transformations.

```python
```

Initializes transformation based on dataset statistics.

Parameters

- `transform_X` (bool, optional (default False)) – Whether to transform X
- `transform_y` (bool, optional (default False)) – Whether to transform y
- `transform_w` (bool, optional (default False)) – Whether to transform w
- `transform_ids` (bool, optional (default False)) – Whether to transform ids
- `dataset` (dc.data.Dataset object, optional (default None)) – Dataset to be transformed

```python
transform(dataset: deepchem.data.datasets.Dataset, parallel: bool = False, out_dir: Optional[str] = None, **kwargs) → deepchem.data.datasets.Dataset
```

Transforms all internally stored data in dataset.

This method transforms all internal data in the provided dataset by using the `Dataset.transform` method. Note that this method adds X-transform, y-transform columns to metadata. Specified keyword arguments are passed on to `Dataset.transform`.

Parameters

- `dataset` (dc.data.Dataset) – Dataset object to be transformed.
- `parallel` (bool, optional (default False)) – if True, use multiple processes to transform the dataset in parallel. For large datasets, this might be faster.
- `out_dir` (str, optional) – If `out_dir` is specified in `kwargs` and `dataset` is a Disk-Dataset, the output dataset will be written to the specified directory.

Returns A newly transformed Dataset object

Return type Dataset

```python
transform_array(X: numpy.ndarray, y: numpy.ndarray, w: numpy.ndarray, ids: numpy.ndarray) → Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]
```

Transform the data in a set of (X, y, w, ids) arrays.

Parameters

- `X` (np.ndarray) – Array of features
- `y` (np.ndarray) – Array of labels
- `w` (np.ndarray) – Array of weights.
- `ids` (np.ndarray) – Array of identifiers.

Returns

- `Xtrans` (np.ndarray) – Transformed array of features
- `ytrans` (np.ndarray) – Transformed array of labels
• \texttt{wtrans \ (np.ndarray)} – Transformed array of weights
• \texttt{idstrans \ (np.ndarray)} – Transformed array of ids

\textbf{transform_on_array}(X: \texttt{numpy.ndarray}, y: \texttt{numpy.ndarray}, w: \texttt{numpy.ndarray}, ids: \texttt{numpy.ndarray}) \rightarrow \\
\text{Tuple[\texttt{numpy.ndarray}, \texttt{numpy.ndarray}, \texttt{numpy.ndarray}, \texttt{numpy.ndarray}]

Transforms numpy arrays X, y, and w

DEPRECATED. Use \texttt{transform_array} instead.

\textbf{Parameters}

• \texttt{X \ (np.ndarray)} – Array of features
• \texttt{y \ (np.ndarray)} – Array of labels
• \texttt{w \ (np.ndarray)} – Array of weights.
• \texttt{ids \ (np.ndarray)} – Array of identifiers.

\textbf{Returns}

• \texttt{Xtrans \ (np.ndarray)} – Transformed array of features
• \texttt{ytrans \ (np.ndarray)} – Transformed array of labels
• \texttt{wtrans \ (np.ndarray)} – Transformed array of weights
• \texttt{idstrans \ (np.ndarray)} – Transformed array of ids

\textbf{untransform}(transformed: \texttt{numpy.ndarray}) \rightarrow \texttt{numpy.ndarray}

Reverses stored transformation on provided data.

Depending on whether \texttt{transform_X} or \texttt{transform_y} or \texttt{transform_w} was set, this will perform different un-transformations. Note that this method may not always be defined since some transformations aren’t 1-1.

\textbf{Parameters} \texttt{transformed \ (np.ndarray)} – Array which was previously transformed by this class.

3.12 Model Classes

DeepChem maintains an extensive collection of models for scientific applications. DeepChem’s focus is on facilitating scientific applications, so we support a broad range of different machine learning frameworks (currently scikit-learn, xgboost, TensorFlow, and PyTorch) since different frameworks are more and less suited for different scientific applications.

3.12.1 Model Cheatsheet

If you’re just getting started with DeepChem, you’re probably interested in the basics. The place to get started is this “model cheatsheet” that lists various types of custom DeepChem models. Note that some wrappers like \texttt{SklearnModel} and \texttt{GBDTModel} which wrap external machine learning libraries are excluded, but this table should otherwise be complete.

As a note about how to read these tables: Each row describes what’s needed to invoke a given model. Some models must be applied with given \texttt{Transformer} or \texttt{Featurizer} objects. Most models can be trained calling \texttt{model.fit}, otherwise the name of the fit_method is given in the Comment column. In order to run the models, make sure that the backend (Keras and tensorflow or Pytorch or Jax) is installed. You can thus read off what’s needed to train the model from the table below.
General purpose

Table 1: General purpose models

<table>
<thead>
<tr>
<th>Model</th>
<th>Reference</th>
<th>Classifier/Regressor</th>
<th>Acceptable Featurizers</th>
<th>Backend</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNN</td>
<td></td>
<td>Classifier/Regressor</td>
<td>CircularFingerprint RDKitDescriptors CoulombMatrix Eig RdkitGridFeaturizer BindingPocketFeaturizer ElementPropertyFingerprint</td>
<td>Keras</td>
<td></td>
</tr>
<tr>
<td>Multi-taskClassifier</td>
<td></td>
<td>Classifier</td>
<td>CircularFingerprint RDKitDescriptors CoulombMatrix Eig RdkitGridFeaturizer BindingPocketFeaturizer ElementPropertyFingerprint</td>
<td>Py-Torch</td>
<td></td>
</tr>
<tr>
<td>MultitaskFit-Transform-Regressor</td>
<td></td>
<td>Regressor</td>
<td>CircularFingerprint RDKitDescriptors CoulombMatrix Eig RdkitGridFeaturizer BindingPocketFeaturizer ElementPropertyFingerprint</td>
<td>Py-Torch</td>
<td>any Transformer can be used</td>
</tr>
<tr>
<td>MultitaskIRVClassifier</td>
<td></td>
<td>Classifier</td>
<td>CircularFingerprint RDKitDescriptors CoulombMatrix Eig RdkitGridFeaturizer BindingPocketFeaturizer ElementPropertyFingerprint</td>
<td>Keras</td>
<td>use IRVTransformer</td>
</tr>
<tr>
<td>MultitaskRegressor</td>
<td></td>
<td>Regressor</td>
<td>CircularFingerprint RDKitDescriptors CoulombMatrix Eig RdkitGridFeaturizer BindingPocketFeaturizer ElementPropertyFingerprint</td>
<td>Torch</td>
<td></td>
</tr>
<tr>
<td>ProgressiveMultitaskClassifier</td>
<td>ref</td>
<td>Classifier</td>
<td>CircularFingerprint RDKitDescriptors CoulombMatrix Eig RdkitGridFeaturizer BindingPocketFeaturizer ElementPropertyFingerprint</td>
<td>Keras</td>
<td></td>
</tr>
<tr>
<td>Progressive-MultitaskRegressor</td>
<td>ref</td>
<td>Regressor</td>
<td>CircularFingerprint RDKitDescriptors CoulombMatrix Eig RdkitGridFeaturizer BindingPocketFeaturizer ElementPropertyFingerprint</td>
<td>Keras</td>
<td></td>
</tr>
<tr>
<td>RobustMultitaskClassifier</td>
<td>ref</td>
<td>Classifier</td>
<td>CircularFingerprint RDKitDescriptors CoulombMatrix Eig RdkitGridFeaturizer BindingPocketFeaturizer ElementPropertyFingerprint</td>
<td>Keras</td>
<td></td>
</tr>
<tr>
<td>RobustMultitaskRegressor</td>
<td>ref</td>
<td>Regressor</td>
<td>CircularFingerprint RDKitDescriptors CoulombMatrix Eig RdkitGridFeaturizer BindingPocketFeaturizer ElementPropertyFingerprint</td>
<td>Keras</td>
<td></td>
</tr>
<tr>
<td>SeqToSeq</td>
<td>ref</td>
<td>Adversarial</td>
<td></td>
<td>Keras</td>
<td>fit method: fit_sequences</td>
</tr>
<tr>
<td>WGAN</td>
<td>ref</td>
<td></td>
<td></td>
<td>Keras</td>
<td>fit method: fit_gan</td>
</tr>
</tbody>
</table>

Molecules

Many models implemented in DeepChem were designed for small to medium-sized organic molecules, most often drug-like compounds. If your data is very different (e.g. molecules contain ‘exotic’ elements not present in the original dataset) or cannot be represented well using SMILES (e.g. metal complexes, crystals), some adaptations to the featurization and/or model might be needed to get reasonable results.
Table 2: Molecular models

<table>
<thead>
<tr>
<th>Model</th>
<th>Reference</th>
<th>Type</th>
<th>Acceptable Featurizers</th>
<th>Backend</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>ScScore-Model</td>
<td>ref</td>
<td>Classifier</td>
<td>CircularFingerprint</td>
<td>Keras</td>
<td></td>
</tr>
<tr>
<td>Atomic-ConvModel</td>
<td>ref</td>
<td>Classifier/Regressor</td>
<td>ComplexNeighborListFragmentAtomicCoordinates</td>
<td>Keras</td>
<td></td>
</tr>
<tr>
<td>AttentiveFP-Model</td>
<td>ref</td>
<td>Classifier/Regressor</td>
<td>MolGraphConvFeaturizer</td>
<td>PyTorch</td>
<td></td>
</tr>
<tr>
<td>ChemCepation</td>
<td>ref</td>
<td>Classifier/Regressor</td>
<td>SmilesToImage</td>
<td>Keras</td>
<td></td>
</tr>
<tr>
<td>DAGModel</td>
<td>ref</td>
<td>Classifier/Regressor</td>
<td>ConvMolFeaturizer</td>
<td>Keras</td>
<td>use DAG-Transformer</td>
</tr>
<tr>
<td>GATModel</td>
<td>ref</td>
<td>Classifier/Regressor</td>
<td>MolGraphConvFeaturizer</td>
<td>DGL/PyTorch</td>
<td></td>
</tr>
<tr>
<td>GCNModel</td>
<td>ref</td>
<td>Classifier/Regressor</td>
<td>MolGraphConvFeaturizer</td>
<td>DGL/PyTorch</td>
<td></td>
</tr>
<tr>
<td>GraphConv-Model</td>
<td>ref</td>
<td>Classifier/Regressor</td>
<td>ConvMolFeaturizer</td>
<td>Keras</td>
<td></td>
</tr>
<tr>
<td>MEGNetModel</td>
<td>ref</td>
<td>Classifier/Regressor</td>
<td></td>
<td>PyTorch/PyTorch Geometric</td>
<td></td>
</tr>
<tr>
<td>MPNN-Model</td>
<td>ref</td>
<td>Classifier/Regressor</td>
<td>MolGraphConvFeaturizer</td>
<td>DGL/PyTorch</td>
<td></td>
</tr>
<tr>
<td>PagtnModel</td>
<td>ref</td>
<td>Classifier/Regressor</td>
<td>PagtnMolGraphFeaturizer MolGraphConvFeaturizer</td>
<td>DGL/PyTorch</td>
<td></td>
</tr>
<tr>
<td>Smiles2Vec</td>
<td>ref</td>
<td>Classifier/Regressor</td>
<td>SmilesToSeq</td>
<td>Keras</td>
<td></td>
</tr>
<tr>
<td>TextCNN-Model</td>
<td>ref</td>
<td>Classifier/Regressor</td>
<td></td>
<td>Keras</td>
<td></td>
</tr>
<tr>
<td>DTNN-Model</td>
<td>ref</td>
<td>Regressor</td>
<td>CoulombMatrix</td>
<td>Keras</td>
<td></td>
</tr>
<tr>
<td>MATModel</td>
<td>ref</td>
<td>Regressor</td>
<td>MATFeaturizer</td>
<td>PyTorch</td>
<td></td>
</tr>
<tr>
<td>WeaveModel</td>
<td>ref</td>
<td>Regressor</td>
<td>WeaveFeaturizer</td>
<td>Keras</td>
<td></td>
</tr>
<tr>
<td>BasicMol-GANModel</td>
<td>ref</td>
<td>Generator</td>
<td>MolGanFeaturizer</td>
<td>Keras</td>
<td>fit method: fit_gan</td>
</tr>
<tr>
<td>DMPNN-Model</td>
<td>ref</td>
<td>Classifier/Regressor</td>
<td>DMPNNFeaturizer</td>
<td>PyTorch</td>
<td></td>
</tr>
</tbody>
</table>

Materials

The following models were designed specifically for (inorganic) materials.

Table 3: Material models

<table>
<thead>
<tr>
<th>Model</th>
<th>Reference</th>
<th>Type</th>
<th>Acceptable Featurizers</th>
<th>Backend</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>CGCNN-Model</td>
<td>ref</td>
<td>Classifier/Regressor</td>
<td>CGCNNFeaturizer</td>
<td>DGL/PTorch</td>
<td>crystal graph CNN</td>
</tr>
<tr>
<td>MEGNetModel</td>
<td>ref</td>
<td>Classifier/Regressor</td>
<td></td>
<td>PyTorch/PyTorch Geometric</td>
<td></td>
</tr>
<tr>
<td>LCNN-Model</td>
<td>ref</td>
<td>Regressor</td>
<td>LCNNFeaturizer</td>
<td>PyTorch</td>
<td>lattice CNN</td>
</tr>
</tbody>
</table>
3.12.2 Model

class Model(model=None, model_dir: Optional[str] = None, **kwargs)

Abstract base class for DeepChem models.

__init__(model=None, model_dir: Optional[str] = None, **kwargs) → None

Abstract class for all models.

This is intended only for convenience of subclass implementations and should not be invoked directly.

Parameters

• **model** *(object)* – Wrapper around ScikitLearn/Keras/Tensorflow model object.

• **model_dir** *(str, optional (default None))* – Path to directory where model will be stored. If not specified, model will be stored in a temporary directory.

fit_on_batch(X: Sequence, y: Sequence, w: Sequence)

Perform a single step of training.

Parameters

• **X** *(np.ndarray)* – the inputs for the batch

• **y** *(np.ndarray)* – the labels for the batch

• **w** *(np.ndarray)* – the weights for the batch

predict_on_batch(X: Union[numpy._typing._array_like._SupportsArray[numpy.dtype],
numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype],
bool, int, float, complex, str, bytes,
numpy._typing._nested_sequence._NestedSequence[Union[bool, int, float, complex, str, bytes]]])

Makes predictions on given batch of new data.

Parameters **X** *(np.ndarray)* – Features

reload() → None

Reload trained model from disk.

static get_model_filename(model_dir: str) → str

Given model directory, obtain filename for the model itself.

static get_params_filename(model_dir: str) → str

Given model directory, obtain filename for the model itself.

save() → None

Dispatcher function for saving.

Each subclass is responsible for overriding this method.

fit(dataset: deepchem.data.datasets.Dataset)

Fits a model on data in a Dataset object.

Parameters **dataset** *(Dataset)* – the Dataset to train on

Uses self to make predictions on provided Dataset object.

Parameters
• **dataset** *(Dataset)* – Dataset to make prediction on

• **transformers** *(List[Transformer])* – Transformers that the input data has been transformed by. The output is passed through these transformers to undo the transformations.

Returns A numpy array of predictions the model produces.

Return type np.ndarray

Evaluates the performance of this model on specified dataset.

This function uses *Evaluator* under the hood to perform model evaluation. As a result, it inherits the same limitations of *Evaluator*. Namely, that only regression and classification models can be evaluated in this fashion. For generator models, you will need to overwrite this method to perform a custom evaluation.

Keyword arguments specified here will be passed to *Evaluator.compute_model_performance*.

Parameters

• **dataset** *(Dataset)* – Dataset object.

• **metrics** *(Metric / List[Metric] / function)* – The set of metrics provided. This class attempts to do some intelligent handling of input. If a single *dc.metrics.Metric* object is provided or a list is provided, it will evaluate *self.model* on these metrics. If a function is provided, it is assumed to be a metric function that this method will attempt to wrap in a *dc.metrics.Metric* object. A metric function must accept two arguments, *y_true, y_pred* both of which are *np.ndarray* objects and return a floating point score. The metric function may also accept a keyword argument *sample_weight* to account for per-sample weights.

• **transformers** *(List[Transformer])* – List of *dc.trans.Transformer* objects. These transformations must have been applied to *dataset* previously. The dataset will be untransformed for metric evaluation.

• **per_task_metrics** *(bool, optional (default False))* – If true, return computed metric for each task on multitask dataset.

• **use_sample_weights** *(bool, optional (default False))* – If set, use per-sample weights *w*.

• **n_classes** *(int, optional (default None))* – If specified, will use *n_classes* as the number of unique classes in *self.dataset*. Note that this argument will be ignored for regression metrics.

Returns

• **multitask_scores** *(dict)* – Dictionary mapping names of metrics to metric scores.

• **all_task_scores** *(dict, optional)* – If *per_task_metrics* == *True* is passed as a keyword argument, then returns a second dictionary of scores for each task separately.

get_task_type *(*) → str

Currently models can only be classifiers or regressors.

get_num_tasks *(*) → int

Get number of tasks.
3.13 Scikit-Learn Models

Scikit-learn’s models can be wrapped so that they can interact conveniently with DeepChem. Oftentimes scikit-learn models are more robust and easier to train and are a nice first model to train.

3.13.1 SklearnModel

class SklearnModel(model: sklearn.base.BaseEstimator, model_dir: Optional[str] = None, **kwargs)
Wrapper class that wraps scikit-learn models as DeepChem models.

When you’re working with scikit-learn and DeepChem, at times it can be useful to wrap a scikit-learn model as a DeepChem model. The reason for this might be that you want to do an apples-to-apples comparison of a scikit-learn model to another DeepChem model, or perhaps you want to use the hyperparameter tuning capabilities in dc.hyper. The SklearnModel class provides a wrapper around scikit-learn models that allows scikit-learn models to be trained on Dataset objects and evaluated with the same metrics as other DeepChem models.

Example

```python
>>> import deepchem as dc
>>> import numpy as np
>>> from sklearn.linear_model import LinearRegression

# Generating a random data and creating a dataset
>>> X, y = np.random.randn(5, 1), np.random.randn(5)
>>> dataset = dc.data.NumpyDataset(X, y)

# Wrapping a Sklearn Linear Regression model using DeepChem models API
>>> sklearn_model = LinearRegression()
>>> dc_model = dc.models.SklearnModel(sklearn_model)

# fitting dataset
>>> dc_model.fit(dataset)  # fitting dataset

```

Notes

All SklearnModels perform learning solely in memory. This means that it may not be possible to train SklearnModel on large datasets.

__init__(model: sklearn.base.BaseEstimator, model_dir: Optional[str] = None, **kwargs)

Parameters

- **model** (BaseEstimator) – The model instance which inherits a scikit-learn BaseEstimator Class.
- **model_dir** (str, optional (default None)) – If specified the model will be stored in this directory. Else, a temporary directory will be used.
- **model_instance** (BaseEstimator (DEPRECATED)) – The model instance which inherits a scikit-learn BaseEstimator Class.
- **kwargs** (dict) – kwargs['use_weights'] is a bool which determines if we pass weights into self.model.fit().

fit(dataset: deepchem.data.datasets.Dataset) → None

Fits scikit-learn model to data.

Parameters **dataset** (Dataset) – The Dataset to train this model on.
predict_on_batch(X: Union[numpy._typing._array_like._SupportsArray[numpy.dtype], numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype], bool, int, float, complex, str, bytes], numpy._typing._nested_sequence._NestedSequence[Union[bool, int, float, complex, str, bytes]]]) → numpy.ndarray

Makes predictions on batch of data.

Parameters

- **X** (np.ndarray) – A numpy array of features.

Returns

The value is a return value of `predict_proba` or `predict` method of the scikit-learn model. If the scikit-learn model has both methods, the value is always a return value of `predict_proba`.

Return type

np.ndarray

Makes predictions on dataset.

Parameters

- **dataset** (Dataset) – Dataset to make prediction on.

- **transformers** (List[Transformer]) – Transformers that the input data has been transformed by. The output is passed through these transformers to undo the transformations.

save()

Saves scikit-learn model to disk using joblib.

reload()

Loads scikit-learn model from joblib file on disk.

3.14 Gradient Boosting Models

Gradient Boosting Models (LightGBM and XGBoost) can be wrapped so they can interact with DeepChem.

3.14.1 GBDTModel

class GBDTModel(model: sklearn.base.BaseEstimator, model_dir: Optional[str] = None, early_stopping_rounds: int = 50, eval_metric: Optional[Union[Callable, str]] = None, **kwargs)

Wrapper class that wraps GBDT models as DeepChem models.

This class supports LightGBM/XGBoost models.

__init__(model: sklearn.base.BaseEstimator, model_dir: Optional[str] = None, early_stopping_rounds: int = 50, eval_metric: Optional[Union[Callable, str]] = None, **kwargs)

Parameters

- **model** (BaseEstimator) – The model instance of scikit-learn wrapper LightGBM/XGBoost models.

- **model_dir** (str, optional (default None)) – Path to directory where model will be stored.

- **early_stopping_rounds** (int, optional (default 50)) – Activates early stopping. Validation metric needs to improve at least once in every early_stopping_rounds round(s) to continue training.
• **eval_metric** (*Union[Union[Union[str, Callable]]*, Callable]) – If string, it should be a built-in evaluation metric to use. If callable, it should be a custom evaluation metric, see official note for more details.

```python
fit(dataset: deepchem.data.datasets.Dataset)
```
Fits GDBT model with all data.

First, this function splits all data into train and valid data (8:2), and finds the best n_estimators. And then, we retrain all data using best n_estimators * 1.25.

Parameters

- **dataset** (*Dataset*) – The Dataset to train this model on.

```python
fit_with_eval(train_dataset: deepchem.data.datasets.Dataset, valid_dataset: deepchem.data.datasets.Dataset)
```
Fits GDBT model with valid data.

Parameters

- **train_dataset** (*Dataset*) – The Dataset to train this model on.
- **valid_dataset** (*Dataset*) – The Dataset to validate this model on.

3.15 Deep Learning Infrastructure

DeepChem maintains a lightweight layer of common deep learning model infrastructure that can be used for models built with different underlying frameworks. The losses and optimizers can be used for both TensorFlow and PyTorch models.

3.15.1 Losses

class Loss

A loss function for use in training models.

class L1Loss

The absolute difference between the true and predicted values.

class HuberLoss

Modified version of L1 Loss, also known as Smooth L1 loss. Less sensitive to small errors, linear for larger errors. Huber loss is generally better for cases where are are both large outliers as well as small, as compared to the L1 loss. By default, Delta = 1.0 and reduction = ‘none’.

class L2Loss

The squared difference between the true and predicted values.

class HingeLoss

The hinge loss function.

The ‘output’ argument should contain logits, and all elements of ‘labels’ should equal 0 or 1.

class SquaredHingeLoss

The Squared Hinge loss function.

Defined as the square of the hinge loss between y_true and y_pred. The Squared Hinge Loss is differentiable.
class PoissonLoss

The Poisson loss function is defined as the mean of the elements of \(y_{\text{pred}} - (y_{\text{true}} \times \log(y_{\text{pred}}) \) for an input of \((y_{\text{true}}, y_{\text{pred}}) \). Poisson loss is generally used for regression tasks where the data follows the poisson distribution.

class BinaryCrossEntropy

The cross entropy between pairs of probabilities.

The arguments should each have shape (batch_size) or (batch_size, tasks) and contain probabilities.

class CategoricalCrossEntropy

The cross entropy between two probability distributions.

The arguments should each have shape (batch_size, classes) or (batch_size, tasks, classes), and represent a probability distribution over classes.

class SigmoidCrossEntropy

The cross entropy between pairs of probabilities.

The arguments should each have shape (batch_size) or (batch_size, tasks). The labels should be probabilities, while the outputs should be logits that are converted to probabilities using a sigmoid function.

class SoftmaxCrossEntropy

The cross entropy between two probability distributions.

The arguments should each have shape (batch_size, classes) or (batch_size, tasks, classes). The labels should be probabilities, while the outputs should be logits that are converted to probabilities using a softmax function.

class SparseSoftmaxCrossEntropy

The cross entropy between two probability distributions.

The labels should have shape (batch_size) or (batch_size, tasks), and be integer class labels. The outputs have shape (batch_size, classes) or (batch_size, tasks, classes) and be logits that are converted to probabilities using a softmax function.

class VAE_ELBO

The Variational AutoEncoder loss, KL Divergence Regularize + marginal log-likelihood.

This losses based on [1]. ELBO(Evidence lower bound) lexically replaced Variational lower bound. BCE means marginal log-likelihood, and KLD means KL divergence with normal distribution. Added hyper parameter ‘kl_scale’ for KLD.

The logvar and mu should have shape (batch_size, hidden_space). The x and reconstruction_x should have (batch_size, attribute). The kl_scale should be float.

Examples

Examples for calculating loss using constant tensor.

batch_size = 2, hidden_space = 2, num of original attribute = 3 >>> import numpy as np >>> import torch >>> import tensorflow as tf >>> logvar = np.array([[1.0,1.3],[0.6,1.2]]) >>> mu = np.array([[0.2,0.7],[1.2,0.4]]) >>> x = np.array([[0.9,0.4,0.8],[0.3,0,1]]) >>> reconstruction_x = np.array([[0.8,0.3,0.7],[0.2,0,0.9]])

Case tensorflow >>> VAE_ELBO()._compute_tf_loss(tf.constant(logvar), tf.constant(mu), tf.constant(x), tf.constant(reconstruction_x)) <tf.Tensor: shape=(2,), dtype=float64, numpy=array([0.70165154, 0.76238271])>

Case pytorch >>> (VAE_ELBO()._create_pytorch_loss())(torch.tensor(logvar), torch.tensor(mu), torch.tensor(x), torch.tensor(reconstruction_x)) tensor([0.7017, 0.7624], dtype=torch.float64)
References

class VAE_KLDivergence

The KL_divergence between hidden distribution and normal distribution.

This loss represents KL divergence losses between normal distribution (using parameter of distribution) based on
\[1\].

The logvar should have shape (batch_size, hidden_space) and each term represents standard deviation of hidden
distribution. The mean should have (batch_size, hidden_space) and each term represents mean of hidden distribtuon.

Examples

Examples for calculating loss using constant tensor.

batch_size = 2, hidden_space = 2, >>> import numpy as np >>> import torch >>> import tensorflow as tf >>>
logvar = np.array([[1.0, 1.3], [0.6, 1.2]]) >>> mu = np.array([[0.2, 0.7], [1.2, 0.4]])

Case tensorflow >>> VAE_KLDivergence()._compute_tf_loss(tf.constant(logvar), tf.constant(mu)) <tf.Tensor:
shape=(2,), dtype=float64, numpy=array([0.17381787, 0.51425203])>

Case pytorch >>> (VAE_KLDivergence()._create_pytorch_loss())(torch.tensor(logvar), torch.tensor(mu)) ten-
sor([0.1738, 0.5143], dtype=torch.float64)

References

class ShannonEntropy

The ShannonEntropy of discrete-distribution.

This loss represents shannon entropy based on \[1\].

The inputs should have shape (batch size, num of variable) and represents probabilites distribution.

Examples

Examples for calculating loss using constant tensor.

batch_size = 2, num_of variable = variable, >>> import numpy as np >>> import torch >>> import tensorflow as tf >>>
inputs = np.array([[0.7, 0.3], [0.9, 0.1]])

Case tensorflow >>> ShannonEntropy()._compute_tf_loss(tf.constant(inputs)) <tf.Tensor: shape=(2,),
dtype=float64, numpy=array([0.30543215, 0.16254149])>

Case pytorch >>> (ShannonEntropy()._create_pytorch_loss())(torch.tensor(inputs)) tensor([0.3054, 0.1625],
dtype=torch.float64)
3.15.2 Optimizers

```python
class Optimizer(learning_rate: Union[float, deepchem.models.optimizers.LearningRateSchedule])
    An algorithm for optimizing a model.
    This is an abstract class. Subclasses represent specific optimization algorithms.

    __init__(learning_rate: Union[float, deepchem.models.optimizers.LearningRateSchedule])
    This constructor should only be called by subclasses.

    Parameters
    learning_rate (float or LearningRateSchedule) – the learning rate to use
    for optimization

class LearningRateSchedule
    A schedule for changing the learning rate over the course of optimization.
    This is an abstract class. Subclasses represent specific schedules.

class AdaGrad(learning_rate: Union[float, deepchem.models.optimizers.LearningRateSchedule] = 0.001,
               initial_accumulator_value: float = 0.1, epsilon: float = 1e-07)
    The AdaGrad optimization algorithm.
    Adagrad is an optimizer with parameter-specific learning rates, which are adapted relative to how frequently a
    parameter gets updated during training. The more updates a parameter receives, the smaller the updates. See
    [1] for a full reference for the algorithm.

    __init__(learning_rate: Union[float, deepchem.models.optimizers.LearningRateSchedule] = 0.001,
               initial_accumulator_value: float = 0.1, epsilon: float = 1e-07)
    Construct an AdaGrad optimizer. :param learning_rate: the learning rate to use for optimization :type learn-
    ing_rate: float or LearningRateSchedule :param initial_accumulator_value: a parameter of the AdaGrad
    algorithm :type initial_accumulator_value: float :param epsilon: a parameter of the AdaGrad algorithm
    :type epsilon: float

class Adam(learning_rate: Union[float, deepchem.models.optimizers.LearningRateSchedule] = 0.001, beta1:
               float = 0.9, beta2: float = 0.999, epsilon: float = 1e-08)
    The Adam optimization algorithm.

    __init__(learning_rate: Union[float, deepchem.models.optimizers.LearningRateSchedule] = 0.001, beta1:
               float = 0.9, beta2: float = 0.999, epsilon: float = 1e-08)
    Construct an Adam optimizer.

    Parameters
    learning_rate (float or LearningRateSchedule) – the learning rate to use for opti-
    mization
    beta1 (float) – a parameter of the Adam algorithm
    beta2 (float) – a parameter of the Adam algorithm
    epsilon (float) – a parameter of the Adam algorithm
```

References

1. [1]
class AdamW(learning_rate: Union[float, deepchem.models.optimizers.LearningRateSchedule] = 0.001,
weight_decay: Union[float, deepchem.models.optimizers.LearningRateSchedule] = 0.01, beta1: float = 0.9, beta2: float = 0.999, epsilon: float = 1e-08, amsgrad: bool = False)

The AdamW optimization algorithm. AdamW is a variant of Adam, with improved weight decay. In Adam, weight decay is implemented as: weight_decay (float, optional) – weight decay (L2 penalty) (default: 0) In AdamW, weight decay is implemented as: weight_decay (float, optional) – weight decay coefficient (default: 1e-2)

__init__(learning_rate: Union[float, deepchem.models.optimizers.LearningRateSchedule] = 0.001,
weight_decay: Union[float, deepchem.models.optimizers.LearningRateSchedule] = 0.01, beta1: float = 0.9, beta2: float = 0.999, epsilon: float = 1e-08, amsgrad: bool = False)

class SparseAdam(learning_rate: Union[float, deepchem.models.optimizers.LearningRateSchedule] = 0.001,
beta1: float = 0.9, beta2: float = 0.999, epsilon: float = 1e-08)

The Sparse Adam optimization algorithm, also known as Lazy Adam. Sparse Adam is suitable for sparse tensors. It handles sparse updates more efficiently. It only updates moving-average accumulators for sparse variable indices that appear in the current batch, rather than updating the accumulators for all indices.

__init__(learning_rate: Union[float, deepchem.models.optimizers.LearningRateSchedule] = 0.001, beta1: float = 0.9, beta2: float = 0.999, epsilon: float = 1e-08)

Construct an Adam optimizer.

Parameters

- learning_rate (float or LearningRateSchedule) – the learning rate used for optimization
- beta1 (float) – a parameter of the SparseAdam algorithm
- beta2 (float) – a parameter of the SparseAdam algorithm
- epsilon (float) – a parameter of the SparseAdam algorithm

class RMSProp(learning_rate: Union[float, deepchem.models.optimizers.LearningRateSchedule] = 0.001,
momentum: float = 0.0, decay: float = 0.9, epsilon: float = 1e-10)

RMSProp Optimization algorithm.

__init__(learning_rate: Union[float, deepchem.models.optimizers.LearningRateSchedule] = 0.001,
momentum: float = 0.0, decay: float = 0.9, epsilon: float = 1e-10)

Construct an RMSProp Optimizer.

Parameters

- learning_rate (float or LearningRateSchedule) – the learning rate used for optimization
- momentum (float, default 0.0) – a parameter of the RMSProp algorithm
- decay (float, default 0.9) – a parameter of the RMSProp algorithm
- epsilon (float, default 1e-10) – a parameter of the RMSProp algorithm
class GradientDescent(learning_rate: Union[float, deepchem.models.optimizers.LearningRateSchedule] = 0.001)

The gradient descent optimization algorithm.

__init__(learning_rate: Union[float, deepchem.models.optimizers.LearningRateSchedule] = 0.001)

Construct a gradient descent optimizer.

Parameters

- learning_rate (float or LearningRateSchedule) – the learning rate to use for optimization

class ExponentialDecay(initial_rate: float, decay_rate: float, decay_steps: int, staircase: bool = True)

A learning rate that decreases exponentially with the number of training steps.

__init__(initial_rate: float, decay_rate: float, decay_steps: int, staircase: bool = True)

Create an exponentially decaying learning rate.

The learning rate starts as initial_rate. Every decay_steps training steps, it is multiplied by decay_rate.

Parameters

- initial_rate (float) – the initial learning rate
- decay_rate (float) – the base of the exponential
- decay_steps (int) – the number of training steps over which the rate decreases by decay_rate
- staircase (bool) – if True, the learning rate decreases by discrete jumps every decay_steps. If False, the learning rate decreases smoothly every step

class PolynomialDecay(initial_rate: float, final_rate: float, decay_steps: int, power: float = 1.0)

A learning rate that decreases from an initial value to a final value over a fixed number of training steps.

__init__(initial_rate: float, final_rate: float, decay_steps: int, power: float = 1.0)

Create a smoothly decaying learning rate.

The learning rate starts as initial_rate. It smoothly decreases to final_rate over decay_steps training steps. It decays as a function of (1-step/decay_steps)**power. Once the final rate is reached, it remains there for the rest of optimization.

Parameters

- initial_rate (float) – the initial learning rate
- final_rate (float) – the final learning rate
- decay_steps (int) – the number of training steps over which the rate decreases from initial_rate to final_rate
- power (float) – the exponent controlling the shape of the decay

class LinearCosineDecay(initial_rate: float, decay_steps: int, alpha: float = 0.0, beta: float = 0.001, num_periods: float = 0.5)

Applies linear cosine decay to the learning rate

__init__(initial_rate: float, decay_steps: int, alpha: float = 0.0, beta: float = 0.001, num_periods: float = 0.5)

Parameters

- learning_rate (float) –
- rate (initial learning) –

3.15. Deep Learning Infrastructure
• `decay_steps (int)` –
• `over (number of steps to decay)` –
• `num_periods (number of periods in the cosine part of the decay)` –

3.16 Keras Models

DeepChem extensively uses Keras to build deep learning models.

3.16.1 KerasModel

Training loss and validation metrics can be automatically logged to Weights & Biases with the following commands:

```python
# Install wandb in shell
pip install wandb

# Login in shell (required only once)
wandb login
# Login in notebook (required only once)
import wandb
wandb.login()

# Initialize a WandbLogger
logger = WandbLogger(...)

# Set `wandb_logger` when creating `KerasModel`
import deepchem as dc
model = dc.models.KerasModel(..., wandb_logger=logger)
model.fit(...)

# Log validation metrics to wandb using ValidationCallback
import deepchem as dc
vc = dc.models.ValidationCallback(...)  
model = KerasModel(..., wandb_logger=logger)
model.fit(..., callbacks=[vc])
logger.finish()
```

```python
```

This is a DeepChem model implemented by a Keras model.

This class provides several advantages over using the Keras model’s fitting and prediction methods directly.

1. It provides better integration with the rest of DeepChem, such as direct support for Datasets and Transformers.
2. It defines the loss in a more flexible way. In particular, Keras does not support multidimensional weight matrices, which makes it impossible to implement most multitask models with Keras.

3. It provides various additional features not found in the Keras model class, such as uncertainty prediction and saliency mapping.

Here is a simple example of code that uses KerasModel to train a Keras model on a DeepChem dataset.

```python
>> keras_model = tf.keras.Sequential([ >> tf.keras.layers.Dense(1000, activation='tanh'), >> tf.keras.layers.Dense(1) >> ]) >> model = KerasModel(keras_model, loss=dc.models.losses.L2Loss()) >> model.fit(dataset)
```

The loss function for a model can be defined in two different ways. For models that have only a single output and use a standard loss function, you can simply provide a `dc.models.losses.Loss` object. This defines the loss for each sample or sample/task pair. The result is automatically multiplied by the weights and averaged over the batch. Any additional losses computed by model layers, such as weight decay penalties, are also added.

For more complicated cases, you can instead provide a function that directly computes the total loss. It must be of the form \(f(\text{outputs}, \text{labels}, \text{weights}) \), taking the list of outputs from the model, the expected values, and any weight matrices. It should return a scalar equal to the value of the loss function for the batch. No additional processing is done to the result; it is up to you to do any weighting, averaging, adding of penalty terms, etc.

You can optionally provide an `output_types` argument, which describes how to interpret the model’s outputs. This should be a list of strings, one for each output. You can use an arbitrary `output_type` for a output, but some `output_types` are special and will undergo extra processing:

- ‘prediction’: This is a normal output, and will be returned by `predict()`. If output types are not specified, all outputs are assumed to be of this type.

- ‘loss’: This output will be used in place of the normal outputs for computing the loss function. For example, models that output probability distributions usually do it by computing unbounded numbers (the logits), then passing them through a softmax function to turn them into probabilities. When computing the cross entropy, it is more numerically stable to use the logits directly rather than the probabilities. You can do this by having the model produce both probabilities and logits as outputs, then specifying `output_types=['prediction', 'loss']`. When `predict()` is called, only the first output (the probabilities) will be returned. But during training, it is the second output (the logits) that will be passed to the loss function.

- ‘variance’: This output is used for estimating the uncertainty in another output. To create a model that can estimate uncertainty, there must be the same number of ‘prediction’ and ‘variance’ outputs. Each variance output must have the same shape as the corresponding prediction output, and each element is an estimate of the variance in the corresponding prediction. Also be aware that if a model supports uncertainty, it MUST use dropout on every layer, and dropout must be enabled during uncertainty prediction. Otherwise, the uncertainties it computes will be inaccurate.

- other: Arbitrary `output_types` can be used to extract outputs produced by the model, but will have no additional processing performed.

```python
```

Create a new KerasModel.

Parameters

- `model (tf.keras.Model)` – the Keras model implementing the calculation
• **loss** (*dc.models.losses.Loss or function*) – a Loss or function defining how to compute the training loss for each batch, as described above

• **output_types** (*list of strings*) – the type of each output from the model, as described above

• **batch_size** (*int*) – default batch size for training and evaluating

• **model_dir** (*str*) – the directory on disk where the model will be stored. If this is None, a temporary directory is created.

• **learning_rate** (*float or LearningRateSchedule*) – the learning rate to use for fitting. If optimizer is specified, this is ignored.

• **optimizer** (*Optimizer*) – the optimizer to use for fitting. If this is specified, learning_rate is ignored.

• **tensorboard** (*bool*) – whether to log progress to TensorBoard during training

• **wandb** (*bool*) – whether to log progress to Weights & Biases during training (deprecated)

• **log_frequency** (*int*) – The frequency at which to log data. Data is logged using *logging* by default. If tensorboard is set, data is also logged to TensorBoard. If wandb is set, data is also logged to Weights & Biases. Logging happens at global steps. Roughly, a global step corresponds to one batch of training. If you’d like a printout every 10 batch steps, you’d set log_frequency=10 for example.

• **wandb_logger** (*WandbLogger*) – the Weights & Biases logger object used to log data and metrics

```python
```

Train this model on a dataset.

Parameters

• **dataset** (*Dataset*) – the Dataset to train on

• **nb_epoch** (*int*) – the number of epochs to train for

• **max_checkpoints_to_keep** (*int*) – the maximum number of checkpoints to keep. Older checkpoints are discarded.

• **checkpoint_interval** (*int*) – the frequency at which to write checkpoints, measured in training steps. Set this to 0 to disable automatic checkpointing.

• **deterministic** (*bool*) – if True, the samples are processed in order. If False, a different random order is used for each epoch.

• **restore** (*bool*) – if True, restore the model from the most recent checkpoint and continue training from there. If False, retrain the model from scratch.

• **variables** (*list of tf.Variable*) – the variables to train. If None (the default), all trainable variables in the model are used.

• **loss** (*function*) – a function of the form f(outputs, labels, weights) that computes the loss for each batch. If None (the default), the model’s standard loss function is used.

• **callbacks** (*function or list of functions*) – one or more functions of the form f(model, step) that will be invoked after every step. This can be used to perform validation, logging, etc.
• **all_losses** (Optional[List[float]], optional (default None)) – If specified, all logged losses are appended into this list. Note that you can call `fit()` repeatedly with the same list and losses will continue to be appended.

Return type The average loss over the most recent checkpoint interval

`fit_generator`

Train this model on data from a generator.

Parameters

- **generator** (generator) – this should generate batches, each represented as a tuple of the form (inputs, labels, weights).
- **max_checkpoints_to_keep** (int) – the maximum number of checkpoints to keep. Older checkpoints are discarded.
- **checkpoint_interval** (int) – the frequency at which to write checkpoints, measured in training steps. Set this to 0 to disable automatic checkpointing.
- **restore** (bool) – if True, restore the model from the most recent checkpoint and continue training from there. If False, retrain the model from scratch.
- **variables** (list of tf.Variable) – the variables to train. If None (the default), all trainable variables in the model are used.
- **loss** (function) – a function of the form f(outputs, labels, weights) that computes the loss for each batch. If None (the default), the model’s standard loss function is used.
- **callbacks** (function or list of functions) – one or more functions of the form f(model, step) that will be invoked after every step. This can be used to perform validation, logging, etc.
- **all_losses** (Optional[List[float]], optional (default None)) – If specified, all logged losses are appended into this list. Note that you can call `fit()` repeatedly with the same list and losses will continue to be appended.

Return type The average loss over the most recent checkpoint interval

`fit_on_batch`
`X: Sequence, y: Sequence, w: Sequence, variables: Optional[List[tensorflow.python.ops.variables.Variable]] = None, loss: Optional[Callable[[List, List, List], Any]] = None, callbacks: Union[Callable, List[Callable]] = [], checkpoint: bool = True, max_checkpoints_to_keep: int = 5) → float

Perform a single step of training.

Parameters

- **X** (ndarray) – the inputs for the batch
- **y** (ndarray) – the labels for the batch
- **w** (ndarray) – the weights for the batch
- **variables** (list of tf.Variable) – the variables to train. If None (the default), all trainable variables in the model are used.
- **loss** (function) – a function of the form f(outputs, labels, weights) that computes the loss for each batch. If None (the default), the model’s standard loss function is used.
• **callbacks** (*function or list of functions*) – one or more functions of the form \(f(model, step) \) that will be invoked after every step. This can be used to perform validation, logging, etc.

• **checkpoint** (*bool*) – if true, save a checkpoint after performing the training step

• **max_checkpoints_to_keep** (*int*) – the maximum number of checkpoints to keep. Older checkpoints are discarded.

Return type the loss on the batch

```python
```

Parameters

• **generator** (*generator*) – this should generate batches, each represented as a tuple of the form (inputs, labels, weights).

• **transformers** (*list of dc.trans.Transformers*) – Transformers that the input data has been transformed by. The output is passed through these transformers to undo the transformations.

• **outputs** (*Tensor or list of Tensors*) – The outputs to return. If this is None, the model’s standard prediction outputs will be returned. Alternatively one or more Tensors within the model may be specified, in which case the output of those Tensors will be returned. If outputs is specified, output_types must be None.

• **output_types** (*String or list of Strings*) – If specified, all outputs of this type will be retrieved from the model. If output_types is specified, outputs must be None.

• **Returns** – a NumPy array of the model produces a single output, or a list of arrays if it produces multiple outputs

```python
predict_on_batch(X: Union[numpy._typing._array_like._SupportsArray[numpy.dtype],
numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype, bool, int, float, complex, str, bytes],
```

Generates predictions for input samples, processing samples in a batch.

Parameters

• **X** (*ndarray*) – the input data, as a Numpy array.

• **transformers** (*list of dc.trans.Transformers*) – Transformers that the input data has been transformed by. The output is passed through these transformers to undo the transformations.

• **outputs** (*Tensor or list of Tensors*) – The outputs to return. If this is None, the model’s standard prediction outputs will be returned. Alternatively one or more Tensors within the model may be specified, in which case the output of those Tensors will be returned.
Returns

- a NumPy array of the model produces a single output, or a list of arrays
- if it produces multiple outputs

predict_uncertainty_on_batch \(\text{X: Sequence, masks: int = 50} \) \rightarrow \text{Union[Tuple[numpy.ndarray, numpy.ndarray], Sequence[Tuple[numpy.ndarray, numpy.ndarray]]]}

Predict the model’s outputs, along with the uncertainty in each one.

The uncertainty is computed as described in https://arxiv.org/abs/1703.04977. It involves repeating the prediction many times with different dropout masks. The prediction is computed as the average over all the predictions. The uncertainty includes both the variation among the predicted values (epistemic uncertainty) and the model’s own estimates for how well it fits the data (aleatoric uncertainty). Not all models support uncertainty prediction.

Parameters

- \(\text{X (ndarray)}\) – the input data, as a Numpy array.
- \(\text{masks (int)}\) – the number of dropout masks to average over

Returns

- for each output, a tuple \((y_{\text{pred}}, y_{\text{std}})\) where \(y_{\text{pred}}\) is the predicted value of the output, and each element of \(y_{\text{std}}\) estimates the standard deviation of the corresponding element of \(y_{\text{pred}}\)

predict \(\text{dataset: deepchem.data.datasets.Dataset, transformers: List[transformers.Transformer] = []}, \text{outputs: Optional[Union[tensorflow.python.framework.ops.Tensor, Sequence[tensorflow.python.framework.ops.Tensor]]] = None, output_types: Optional[List[str]] = None} \rightarrow \text{Union[numpy.ndarray, Sequence[numpy.ndarray]]}

Uses self to make predictions on provided Dataset object.

Parameters

- \(\text{dataset (dc.data.Dataset)}\) – Dataset to make prediction on
- \(\text{transformers (list of dc.trans.Transformers)}\) – Transformers that the input data has been transformed by. The output is passed through these transformers to undo the transformations.
- \(\text{outputs (Tensor or list of Tensors)}\) – The outputs to return. If this is None, the model’s standard prediction outputs will be returned. Alternatively one or more Tensors within the model may be specified, in which case the output of those Tensors will be returned.
- \(\text{output_types (String or list of Strings)}\) – If specified, all outputs of this type will be retrieved from the model. If output_types is specified, outputs must be None.

Returns

- a NumPy array of the model produces a single output, or a list of arrays
- if it produces multiple outputs

predict_embedding \(\text{dataset: deepchem.data.datasets.Dataset} \rightarrow \text{Union[numpy.ndarray, Sequence[numpy.ndarray]]}\)

Predicts embeddings created by underlying model if any exist. An embedding must be specified to have output_type of 'embedding' in the model definition.

Parameters \(\text{dataset (dc.data.Dataset)}\) – Dataset to make prediction on
Returns

- a NumPy array of the embeddings model produces, or a list
- of arrays if it produces multiple embeddings

`predict_uncertainty(dataset: deepchem.data.datasets.Dataset, masks: int = 50) → Union[Tuple[numpy.ndarray, numpy.ndarray], Sequence[Tuple[numpy.ndarray, numpy.ndarray]]]

Predict the model’s outputs, along with the uncertainty in each one.

The uncertainty is computed as described in https://arxiv.org/abs/1703.04977. It involves repeating the prediction many times with different dropout masks. The prediction is computed as the average over all the predictions. The uncertainty includes both the variation among the predicted values (epistemic uncertainty) and the model’s own estimates for how well it fits the data (aleatoric uncertainty). Not all models support uncertainty prediction.

Parameters

- `dataset` (`dc.data.Dataset`) – Dataset to make prediction on
- `masks` (int) – the number of dropout masks to average over

Returns

- for each output, a tuple (y_pred, y_std) where y_pred is the predicted
- value of the output, and each element of y_std estimates the standard
- deviation of the corresponding element of y_pred

Evaluate the performance of this model on the data produced by a generator.

Parameters

- `generator` (`generator`) – this should generate batches, each represented as a tuple of the form (inputs, labels, weights).
- `metric` (list of deepchem.metrics.Metric) – Evaluation metric
- `transformers` (list of dc.trans.Transformer) – Transformers that the input data has been transformed by. The output is passed through these transformers to undo the transformations.
- `per_task_metrics` (bool) – If True, return per-task scores.

Returns Maps tasks to scores under metric.

Return type dict

`compute_saliency(X: numpy.ndarray) → Union[numpy.ndarray, Sequence[numpy.ndarray]]`

Compute the saliency map for an input sample.

This computes the Jacobian matrix with the derivative of each output element with respect to each input element. More precisely,

- If this model has a single output, it returns a matrix of shape (output_shape, input_shape) with the derivatives.
- If this model has multiple outputs, it returns a list of matrices, one for each output.

This method cannot be used on models that take multiple inputs.
Parameters X (ndarray) – the input data for a single sample

Return type the Jacobian matrix, or a list of matrices

default_generator (dataset: deepchem.data.datasets.Dataset, epochs: int = 1, mode: str = 'fit',
 deterministic: bool = True, pad_batches: bool = True) → Iterable[Tuple[List, List, List]]

Create a generator that iterates batches for a dataset.

Subclasses may override this method to customize how model inputs are generated from the data.

Parameters

• dataset (Dataset) – the data to iterate
• epochs (int) – the number of times to iterate over the full dataset
• mode (str) – allowed values are ‘fit’ (called during training), ‘predict’ (called during prediction), and ‘uncertainty’ (called during uncertainty prediction)
• deterministic (bool) – whether to iterate over the dataset in order, or randomly shuffle the data for each epoch
• pad_batches (bool) – whether to pad each batch up to this model’s preferred batch size

Returns

• a generator that iterates batches, each represented as a tuple of lists
• ([inputs], [outputs], [weights])

save_checkpoint (max_checkpoints_to_keep: int = 5, model_dir: Optional[str] = None) → None

Save a checkpoint to disk.

Usually you do not need to call this method, since fit() saves checkpoints automatically. If you have disabled automatic checkpointing during fitting, this can be called to manually write checkpoints.

Parameters

• max_checkpoints_to_keep (int) – the maximum number of checkpoints to keep. Older checkpoints are discarded.
• model_dir (str, default None) – Model directory to save checkpoint to. If None, revert to self.model_dir

get_checkpoints (model_dir: Optional[str] = None)

Get a list of all available checkpoint files.

Parameters model_dir (str, default None) – Directory to get list of checkpoints from. Reverts to self.model_dir if None

restore (checkpoint: Optional[str] = None, model_dir: Optional[str] = None) → None

Reload the values of all variables from a checkpoint file.

Parameters

• checkpoint (str) – the path to the checkpoint file to load. If this is None, the most recent checkpoint will be chosen automatically. Call get_checkpoints() to get a list of all available checkpoints.
• model_dir (str, default None) – Directory to restore checkpoint from. If None, use self.model_dir.
get_global_step() → int
Get the number of steps of fitting that have been performed.

load_from_pretrained(source_model: deepchem.models.keras_model.KerasModel, assignment_map: Optional[Dict[Any, Any]] = None, value_map: Optional[Dict[Any, Any]] = None, checkpoint: Optional[str] = None, model_dir: Optional[str] = None, include_top: bool = True, inputs: Optional[Sequence[Any]] = None, **kwargs) → None
Copies variable values from a pretrained model. source_model can either be a pretrained model or a model with the same architecture. value_map is a variable-value dictionary. If no value_map is provided, the variable values are restored to the source_model from a checkpoint and a default value_map is created. assignment_map is a dictionary mapping variables from the source_model to the current model. If no assignment_map is provided, one is made from scratch and assumes the model is composed of several different layers, with the final one being a dense layer. include_top is used to control whether or not the final dense layer is used. The default assignment map is useful in cases where the type of task is different (classification vs regression) and/or number of tasks in the setting.

Parameters

- **source_model** (dc.KerasModel, required) – source_model can either be the pretrained model or a dc.KerasModel with the same architecture as the pretrained model. It is used to restore from a checkpoint, if value_map is None and to create a default assignment map if assignment_map is None
- **assignment_map** (Dict, default None) – Dictionary mapping the source_model variables and current model variables
- **value_map** (Dict, default None) – Dictionary containing source_model trainable variables mapped to numpy arrays. If value_map is None, the values are restored and a default variable map is created using the restored values
- **checkpoint** (str, default None) – the path to the checkpoint file to load. If this is None, the most recent checkpoint will be chosen automatically. Call get_checkpoints() to get a list of all available checkpoints
- **model_dir** (str, default None) – Restore model from custom model directory if needed
- **include_top** (bool, default True) – if True, copies the weights and bias associated with the final dense layer. Used only when assignment map is None
- **inputs** (List, input tensors for model) – if not None, then the weights are built for both the source and self. This option is useful only for models that are built by subclassing tf.keras.Model, and not using the functional API by tf.keras

3.16.2 TensorflowMultitaskIRVClassifier

class TensorflowMultitaskIRVClassifier(*args, **kwargs)

__init__(*args, **kwargs)
Initialize MultitaskIRVClassifier

Parameters

- **n_tasks** (int) – Number of tasks
- **K** (int) – Number of nearest neighbours used in classification
- **penalty** (float) – Amount of penalty (l2 or l1 applied)
3.16.3 RobustMultitaskClassifier

class RobustMultitaskClassifier(n_tasks, n_features, layer_sizes=[1000], weight_init_stddevs=0.02, bias_init_consts=1.0, weight_decay_penalty=0.0, weight_decay_penalty_type='l2', dropouts=0.5, activation_fns=<function relu>, n_classes=2, bypass_layer_sizes=[100], bypass_weight_init_stddevs=[0.02], bypass_bias_init_consts=[1.0], bypass_dropouts=[0.5], **kwargs)

Implements a neural network for robust multitasking.

The key idea of this model is to have bypass layers that feed directly from features to task output. This might provide some flexibility to route around challenges in multitasking with destructive interference.

References

This technique was introduced in [1].

Create a RobustMultitaskClassifier.

Parameters

- n_tasks (int) – number of tasks
- n_features (int) – number of features
- layer_sizes (list) – the size of each dense layer in the network. The length of this list determines the number of layers.
- weight_init_stddevs (list or float) – the standard deviation of the distribution to use for weight initialization of each layer. The length of this list should equal \(\text{len} (\text{layer}_\text{sizes}) \). Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.
- bias_init_consts (list or float) – the value to initialize the biases in each layer to.

 The length of this list should equal \(\text{len} (\text{layer}_\text{sizes}) \). Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.
- weight_decay_penalty (float) – the magnitude of the weight decay penalty to use
- weight_decay_penalty_type (str) – the type of penalty to use for weight decay, either ‘l1’ or ‘l2’
- dropouts (list or float) – the dropout probability to use for each layer. The length of this list should equal \(\text{len} (\text{layer}_\text{sizes}) \). Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.
- activation_fns (list or object) – the Tensorflow activation function to apply to each layer. The length of this list should equal \(\text{len} (\text{layer}_\text{sizes}) \). Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.
- n_classes (int) – the number of classes
- bypass_layer_sizes (list) – the size of each dense layer in the bypass network. The length of this list determines the number of bypass layers.
• **bypass_weight_init_stddevs** *(list or float)* – the standard deviation of the distribution to use for weight initialization of bypass layers. same requirements as weight_init_stddevs

• **bypass_bias_init_consts** *(list or float)* – the value to initialize the biases in bypass layers same requirements as bias_init_consts

• **bypass_dropouts** *(list or float)* – the dropout probability to use for bypass layers. same requirements as dropouts

default_generator *(dataset, epochs=1, mode=‘fit’, deterministic=True, pad_batches=True)*

Create a generator that iterates batches for a dataset.

Subclasses may override this method to customize how model inputs are generated from the data.

Parameters

- **dataset** *(Dataset)* – the data to iterate
- **epochs** *(int)* – the number of times to iterate over the full dataset
- **mode** *(str)* – allowed values are ‘fit’ (called during training), ‘predict’ (called during prediction), and ‘uncertainty’ (called during uncertainty prediction)
- **deterministic** *(bool)* – whether to iterate over the dataset in order, or randomly shuffle the data for each epoch
- **pad_batches** *(bool)* – whether to pad each batch up to this model’s preferred batch size

Returns

- a generator that iterates batches, each represented as a tuple of lists
- *(inputs, outputs, weights)*

3.16.4 RobustMultitaskRegressor

class **RobustMultitaskRegressor** *(n_tasks, n_features, layer_sizes=[1000], weight_init_stddevs=0.02, bias_init_consts=1.0, weight_decay_penalty=0.0, weight_decay_penalty_type='l2', dropouts=0.5, activation_fns=<function relu>, bypass_layer_sizes=[100], bypass_weight_init_stddevs=[0.02], bypass_bias_init_consts=[1.0], bypass_dropouts=[0.5], **kwargs)*

Implements a neural network for robust multitasking.

The key idea of this model is to have bypass layers that feed directly from features to task output. This might provide some flexibility to route around challenges in multitasking with destructive interference.

References

__init__ *(n_tasks, n_features, layer_sizes=[1000], weight_init_stddevs=0.02, bias_init_consts=1.0, weight_decay_penalty=0.0, weight_decay_penalty_type='l2', dropouts=0.5, activation_fns=<function relu>, bypass_layer_sizes=[100], bypass_weight_init_stddevs=[0.02], bypass_bias_init_consts=[1.0], bypass_dropouts=[0.5], **kwargs)*

Create a RobustMultitaskRegressor.

Parameters

- **n_tasks** *(int)* – number of tasks
- **n_features** *(int)* – number of features
• **layer_sizes** *(list)* – the size of each dense layer in the network. The length of this list determines the number of layers.

• **weight_init_stddevs** *(list or float)* – the standard deviation of the distribution to use for weight initialization of each layer. The length of this list should equal `len(layer_sizes)`. Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.

• **bias_init_consts** *(list or float)* – the value to initialize the biases in each layer to. The length of this list should equal `len(layer_sizes)`. Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.

• **weight_decay_penalty** *(float)* – the magnitude of the weight decay penalty to use

• **weight_decay_penalty_type** *(str)* – the type of penalty to use for weight decay, either ‘l1’ or ‘l2’

• **dropouts** *(list or float)* – the dropout probability to use for each layer. The length of this list should equal `len(layer_sizes)`. Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.

• **activation_fns** *(list or object)* – the Tensorflow activation function to apply to each layer. The length of this list should equal `len(layer_sizes)`. Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.

• **bypass_layer_sizes** *(list)* – the size of each dense layer in the bypass network. The length of this list determines the number of bypass layers.

• **bypass_weight_init_stddevs** *(list or float)* – the standard deviation of the distribution to use for weight initialization of bypass layers. same requirements as `weight_init_stddevs`

• **bypass_bias_init_consts** *(list or float)* – the value to initialize the biases in bypass layers same requirements as `bias_init_consts`

• **bypass_dropouts** *(list or float)* – the dropout probability to use for bypass layers. same requirements as dropouts

default_generator *(dataset: deepchem.data.datasets.Dataset, epochs: int = 1, mode: str = 'fit', deterministic: bool = True, pad_batches: bool = True) → Iterable[Tuple[List, List, List]]*

Create a generator that iterates batches for a dataset.

Subclasses may override this method to customize how model inputs are generated from the data.

Parameters

• **dataset** *(Dataset)* – the data to iterate

• **epochs** *(int)* – the number of times to iterate over the full dataset

• **mode** *(str)* – allowed values are ‘fit’ (called during training), ‘predict’ (called during prediction), and ‘uncertainty’ (called during uncertainty prediction)

• **deterministic** *(bool)* – whether to iterate over the dataset in order, or randomly shuffle the data for each epoch

• **pad_batches** *(bool)* – whether to pad each batch up to this model’s preferred batch size

Returns

• a generator that iterates batches, each represented as a tuple of lists

• *(inputs), (outputs), (weights)***

3.16. Keras Models
3.16.5 ProgressiveMultitaskClassifier

class ProgressiveMultitaskClassifier(n_tasks, n_features, alpha_init_stddevs=0.02, layer_sizes=[1000], weight_init_stddevs=0.02, bias_init_consts=1.0, weight_decay_penalty=0.0, weight_decay_penalty_type='l2', dropouts=0.5, activation_fns=<function relu>, **kwargs)

Implements a progressive multitask neural network for classification.

Progressive networks allow for multitask learning where each task gets a new column of weights. As a result, there is no exponential forgetting where previous tasks are ignored.

__init__ (n_tasks, n_features, alpha_init_stddevs=0.02, layer_sizes=[1000], weight_init_stddevs=0.02, bias_init_consts=1.0, weight_decay_penalty=0.0, weight_decay_penalty_type='l2', dropouts=0.5, activation_fns=<function relu>, **kwargs)

Creates a progressive network.

Only listing parameters specific to progressive networks here.

Parameters

- **n_tasks** (int) – Number of tasks
- **n_features** (int) – Number of input features
- **alpha_init_stddevs** (list) – List of standard-deviations for alpha in adapter layers.
- **layer_sizes** (list) – the size of each dense layer in the network. The length of this list determines the number of layers.
- **weight_init_stddevs** (list or float) – the standard deviation of the distribution to use for weight initialization of each layer. The length of this list should equal len(layer_sizes)+1. The final element corresponds to the output layer. Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.
- **bias_init_consts** (list or float) – the value to initialize the biases in each layer to. The length of this list should equal len(layer_sizes)+1. The final element corresponds to the output layer. Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.
- **weight_decay_penalty** (float) – the magnitude of the weight decay penalty to use
- **weight_decay_penalty_type** (str) – the type of penalty to use for weight decay, either ‘l1’ or ‘l2’
- **dropouts** (list or float) – the dropout probability to use for each layer. The length of this list should equal len(layer_sizes). Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.
- **activation_fns** (list or object) – the Tensorflow activation function to apply to each layer. The length of this list should equal len(layer_sizes). Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.
3.16.6 ProgressiveMultitaskRegressor

class ProgressiveMultitaskRegressor(n_tasks, n_features, alpha_init_stddevs=0.02, layer_sizes=[1000], weight_init_stddevs=0.02, bias_init_consts=1.0, weight_decay_penalty=0.0, weight_decay_penalty_type='l2', dropouts=0.5, activation_fns=<function relu>, n_outputs=1, **kwargs)

Implements a progressive multitask neural network for regression.

Progressive networks allow for multitask learning where each task gets a new column of weights. As a result, there is no exponential forgetting where previous tasks are ignored.

References

See [1] for a full description of the progressive architecture

__init__ (n_tasks, n_features, alpha_init_stddevs=0.02, layer_sizes=[1000], weight_init_stddevs=0.02, bias_init_consts=1.0, weight_decay_penalty=0.0, weight_decay_penalty_type='l2', dropouts=0.5, activation_fns=<function relu>, n_outputs=1, **kwargs)

Creates a progressive network.

Only listing parameters specific to progressive networks here.

Parameters

- **n_tasks** (int) – Number of tasks
- **n_features** (int) – Number of input features
- **alpha_init_stddevs** (list) – List of standard-deviations for alpha in adapter layers.
- **layer_sizes** (list) – the size of each dense layer in the network. The length of this list determines the number of layers.
- **weight_init_stddevs** (list or float) – the standard deviation of the distribution to use for weight initialization of each layer. The length of this list should equal len(layer_sizes)+1. The final element corresponds to the output layer. Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.
- **bias_init_consts** (list or float) – the value to initialize the biases in each layer to. The length of this list should equal len(layer_sizes)+1. The final element corresponds to the output layer. Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.
- **weight_decay_penalty** (float) – the magnitude of the weight decay penalty to use
- **weight_decay_penalty_type** (str) – the type of penalty to use for weight decay, either ‘l1’ or ‘l2’
- **dropouts** (list or float) – the dropout probability to use for each layer. The length of this list should equal len(layer_sizes). Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.
- **activation_fns** (list or object) – the Tensorflow activation function to apply to each layer. The length of this list should equal len(layer_sizes). Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.

add_adapter(all_layers, task, layer_num)

Add an adapter connection for given task/layer combo
Train this model on a dataset.

Parameters

- **dataset** (*Dataset*) – the Dataset to train on
- **nb_epoch** (*int*) – the number of epochs to train for
- **max_checkpoints_to_keep** (*int*) – the maximum number of checkpoints to keep. Older checkpoints are discarded.
- **checkpoint_interval** (*int*) – the frequency at which to write checkpoints, measured in training steps. Set this to 0 to disable automatic checkpointing.
- **deterministic** (*bool*) – if True, the samples are processed in order. If False, a different random order is used for each epoch.
- **restore** (*bool*) – if True, restore the model from the most recent checkpoint and continue training from there. If False, retrain the model from scratch.
- **variables** (*list of tf.Variable*) – the variables to train. If None (the default), all trainable variables in the model are used.
- **loss** (*function*) – a function of the form f(outputs, labels, weights) that computes the loss for each batch. If None (the default), the model’s standard loss function is used.
- **callbacks** (*function or list of functions*) – one or more functions of the form f(model, step) that will be invoked after every step. This can be used to perform validation, logging, etc.
- **all_losses** (*Optional[List[float]], optional (default None]*) – If specified, all logged losses are appended into this list. Note that you can call `fit()` repeatedly with the same list and losses will continue to be appended.

Return type

The average loss over the most recent checkpoint interval

Implements Google-style Weave Graph Convolutions
This model implements the Weave style graph convolutions from \[1\].

The biggest difference between WeaveModel style convolutions and GraphConvModel style convolutions is that Weave convolutions model bond features explicitly. This has the side effect that it needs to construct a NxN matrix explicitly to model bond interactions. This may cause scaling issues, but may possibly allow for better modeling of subtle bond effects.

Note that \[1\] introduces a whole variety of different architectures for Weave models. The default settings in this class correspond to the W2N2 variant from \[1\] which is the most commonly used variant.

Examples

Here’s an example of how to fit a WeaveModel on a tiny sample dataset.

```python
>>> import numpy as np
>>> import deepchem as dc
>>> featurizer = dc.feat.WeaveFeaturizer()
>>> X = featurizer(["C", "CC"])
>>> y = np.array([1, 0])
>>> dataset = dc.data.NumpyDataset(X, y)
>>> model = dc.models.WeaveModel(n_tasks=1, n_weave=2, fully_connected_layer_sizes=[2000, 1000], mode="classification")
>>> loss = model.fit(dataset)
```

Note: In general, the use of batch normalization can cause issues with NaNs. If you’re having trouble with NaNs while using this model, consider setting `batch_normalize_kwargs={"trainable": False}` or turning off batch normalization entirely with `batch_normalize=False`.

References

__init__

```python
```

Parameters

- `n_tasks` (int) – Number of tasks
- `n_atom_feat` (int, optional (default 75)) – Number of features per atom. Note this is 75 by default and should be 78 if chirality is used by WeaveFeaturizer.
- `n_pair_feat` (int, optional (default 14)) – Number of features per pair of atoms.
• **n_hidden**(int, optional (default 50)) – Number of units (convolution depths) in corresponding hidden layer

• **n_graph_feat**(int, optional (default 128)) – Number of output features for each molecule (graph)

• **n_weave**(int, optional (default 2)) – The number of weave layers in this model.

• **fully_connected_layer_sizes**(list (default [2000, 100])) – The size of each dense layer in the network. The length of this list determines the number of layers.

• **conv_weight_init_stddevs**(list or float (default 0.03)) – The standard deviation of the distribution to use for weight initialization of each convolutional layer. The length of this list should equal n_weave. Alternatively, this may be a single value instead of a list, in which case the same value is used for each layer.

• **weight_init_stddevs**(list or float (default 0.01)) – The standard deviation of the distribution to use for weight initialization of each fully connected layer. The length of this list should equal len(layer_sizes). Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.

• **bias_init_consts**(list or float (default 0.0)) – The value to initialize the biases in each fully connected layer. The length of this list should equal len(layer_sizes). Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.

• **weight_decay_penalty**(float (default 0.0)) – The magnitude of the weight decay penalty to use

• **weight_decay_penalty_type**(str (default “l2”)) – The type of penalty to use for weight decay, either ‘l1’ or ‘l2’

• **dropouts**(list or float (default 0.25)) – The dropout probability to use for each fully connected layer. The length of this list should equal len(layer_sizes). Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.

• **final_conv_activation_fn**(Optional[ActivationFn] (default tf.nn.tanh)) – The Tensorflow activation function to apply to the final convolution at the end of the weave convolutions. If None, then no activate is applied (hence linear).

• **activation_fns**(list or object (default tf.nn.relu)) – The Tensorflow activation function to apply to each fully connected layer. The length of this list should equal len(layer_sizes). Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.

• **gaussian_expand**(boolean, optional (default True)) – Whether to expand each dimension of atomic features by gaussian histogram

• **compress_post_gaussian_expansion**(bool, optional (default False)) – If True, compress the results of the Gaussian expansion back to the original dimensions of the input.
• **mode** *(str (default "classification")) – Either “classification” or “regression” for type of model.*

• **n_classes** *(int (default 2)) – Number of classes to predict (only used in classification mode)*

• **batch_size** *(int (default 100)) – Batch size used by this model for training.*

compute_features_on_batch(X_b)

Compute tensors that will be input into the model from featurized representation.

The featurized input to *WeaveModel* is instances of *WeaveMol* created by *WeaveFeaturizer*. This method converts input *WeaveMol* objects into tensors used by the Keras implementation to compute *WeaveModel* outputs.

Parameters

- **X_b** *(np.ndarray) – A numpy array with dtype=object where elements are *WeaveMol* objects.*

Returns

- **atom_feat** *(np.ndarray) – Of shape *(N_atoms, N_atom_feat).*

- **pair_feat** *(np.ndarray) – Of shape *(N_pairs, N_pair_feat).* Note that *N_pairs* will depend on the number of pairs being considered. If *max_pair_distance* is None, then this will be *N_atoms**2. Else it will be the number of pairs within the specified graph distance.

- **pair_split** *(np.ndarray) – Of shape *(N_pairs,)*. The i-th entry in this array will tell you the originating atom for this pair (the “source”). Note that pairs are symmetric so for a pair *(a, b)*, both *a* and *b* will separately be sources at different points in this array.

- **atom_split** *(np.ndarray) – Of shape *(N_atoms,).* The i-th entry in this array will be the molecule with the i-th atom belongs to.

- **atom_to_pair** *(np.ndarray) – Of shape *(N_pairs, 2).* The i-th row in this array will be the array *[a, b]* if *(a, b)* is a pair to be considered. (Note by symmetry, this implies some other row will contain *[b, a]*.)

Convert a dataset into the tensors needed for learning.

Parameters

- **dataset** *(dc.data.Dataset) – Dataset to convert*

- **epochs** *(int, optional (Default 1)) – Number of times to walk over dataset*

- **mode** *(str, optional (Default 'fit')) – Ignored in this implementation.*

- **deterministic** *(bool, optional (Default True)) – Whether the dataset should be walked in a deterministic fashion*

- **pad_batches** *(bool, optional (Default True)) – If true, each returned batch will have size self.batch_size.*

Return type *Iterator which walks over the batches*
3.16.8 DTNNModel

class DTNNModel(n_tasks, n_embedding=30, n_hidden=100, distance_min=-1, distance_max=18, output_activation=True, mode='regression', dropout=0.0, **kwargs)

Deep Tensor Neural Networks
This class implements deep tensor neural networks as first defined in [1].

References

__init__(n_tasks, n_embedding=30, n_hidden=100, distance_min=-1, distance_max=18, output_activation=True, mode='regression', dropout=0.0, **kwargs)

Parameters

• **n_tasks** (int) – Number of tasks

• **n_embedding** (int, optional) – Number of features per atom.

• **n_hidden** (int, optional) – Number of features for each molecule after DTNNStep

• **n_distance** (int, optional) – granularity of distance matrix step size will be (distance_max-distance_min)/n_distance

• **distance_min** (float, optional) – minimum distance of atom pairs, default = -1 Angstrom

• **distance_max** (float, optional) – maximum distance of atom pairs, default = 18 Angstrom

• **mode** (str) – Only “regression” is currently supported.

• **dropout** (float) – the dropout probability to use.

compute_features_on_batch(X_b)

Computes the values for different Feature Layers on given batch

A tf.py_func wrapper is written around this when creating the input_fn for tf.Estimator

default_generator(dataset, epochs=1, mode='fit', deterministic=True, pad_batches=True)

Create a generator that iterates batches for a dataset.

Subclasses may override this method to customize how model inputs are generated from the data.

Parameters

• **dataset** (Dataset) – the data to iterate

• **epochs** (int) – the number of times to iterate over the full dataset

• **mode** (str) – allowed values are ‘fit’ (called during training), ‘predict’ (called during prediction), and ‘uncertainty’ (called during uncertainty prediction)

• **deterministic** (bool) – whether to iterate over the dataset in order, or randomly shuffle the data for each epoch

• **pad_batches** (bool) – whether to pad each batch up to this model’s preferred batch size

Returns

• a generator that iterates batches, each represented as a tuple of lists

• ([inputs], [outputs], [weights])
3.16.9 DAGModel

```python
class DAGModel(n_tasks=50, max_atoms=50, n_atom_feat=75, n_graph_feat=30, n_outputs=30, layer_sizes=[100],
layer_sizes_gather=[100], dropout=None, mode='classification', n_classes=2,
uncertainty=False, batch_size=100, **kwargs)
```

Directed Acyclic Graph models for molecular property prediction.

This model is based on the following paper:

The basic idea for this paper is that a molecule is usually viewed as an undirected graph. However, you can convert it to a series of directed graphs. The idea is that for each atom, you make a DAG using that atom as the vertex of the DAG and edges pointing “inwards” to it. This transformation is implemented in `dc.trans.transformers.DAGTransformer.UG_to_DAG`.

This model accepts ConvMols as input, just as GraphConvModel does, but these ConvMol objects must be transformed by `dc.trans.DAGTransformer`.

As a note, performance of this model can be a little sensitive to initialization. It might be worth training a few different instantiations to get a stable set of parameters.

```python
__init__(n_tasks=50, max_atoms=50, n_atom_feat=75, n_graph_feat=30, n_outputs=30, layer_sizes=[100],
layer_sizes_gather=[100], dropout=None, mode='classification', n_classes=2, uncertainty=False, 
batch_size=100, **kwargs)
```

Parameters

- **n_tasks** (int) – Number of tasks.
- **max_atoms** (int, optional) – Maximum number of atoms in a molecule, should be defined based on dataset.
- **n_atom_feat** (int, optional) – Number of features per atom.
- **n_graph_feat** (int, optional) – Number of features for atom in the graph.
- **n_outputs** (int, optional) – Number of features for each molecule.
- **layer_sizes** (list of int, optional) – List of hidden layer size(s) in the propagation step: length of this list represents the number of hidden layers, and each element is the width of corresponding hidden layer.
- **layer_sizes_gather** (list of int, optional) – List of hidden layer size(s) in the gather step.
- **dropout** (None or float, optional) – Dropout probability, applied after each propagation step and gather step.
- **mode** (str, optional) – Either “classification” or “regression” for type of model.
- **n_classes** (int) – the number of classes to predict (only used in classification mode)
- **uncertainty** (bool) – if True, include extra outputs and loss terms to enable the uncertainty in outputs to be predicted

```python
default_generator(dataset, epochs=1, mode='fit', deterministic=True, pad_batches=True)
```

Convert a dataset into the tensors needed for learning
3.16.10 GraphConvModel

class GraphConvModel(n_tasks: int, graph_conv_layers: List[int] = [64, 64], dense_layer_size: int = 128, dropout: float = 0.0, mode: str = 'classification', number_atom_features: int = 75, n_classes: int = 2, batch_size: int = 100, batch_normalize: bool = True, uncertainty: bool = False, **kwargs)

Graph Convolutional Models.

This class implements the graph convolutional model from the following paper [1]. These graph convolutions start with a per-atom set of descriptors for each atom in a molecule, then combine and recombine these descriptors over convolutional layers, following [1].

References

__init__(n_tasks: int, graph_conv_layers: List[int] = [64, 64], dense_layer_size: int = 128, dropout: float = 0.0, mode: str = 'classification', number_atom_features: int = 75, n_classes: int = 2, batch_size: int = 100, batch_normalize: bool = True, uncertainty: bool = False, **kwargs)

The wrapper class for graph convolutions.

Note that since the underlying _GraphConvKerasModel class is specified using imperative subclassing style, this model cannot make predictions for arbitrary outputs.

Parameters

• **n_tasks** (int) – Number of tasks

• **graph_conv_layers** (list of int) – Width of channels for the Graph Convolution Layers

• **dense_layer_size** (int) – Width of channels for Atom Level Dense Layer after Graph-Pool

• **dropout** (list or float) – The dropout probability to use for each layer. The length of this list should equal len(graph_conv_layers)+1 (one value for each convolution layer, and one for the dense layer). Alternatively, this may be a single value instead of a list, in which case the same value is used for every layer.

• **mode** (str) – Either “classification” or “regression”

• **number_atom_features** (int) – 75 is the default number of atom features created, but this can vary if various options are passed to the function atom_features in graph_features

• **n_classes** (int) – The number of classes to predict (only used in classification mode)

• **batch_normalize** (bool) – If True, apply batch normalization to model

• **uncertainty** (bool) – If True, include extra outputs and loss terms to enable the uncertainty in outputs to be predicted

default_generator(dataset, epochs=1, mode='fit', deterministic=True, pad_batches=True)

Create a generator that iterates batches for a dataset.

Subclasses may override this method to customize how model inputs are generated from the data.

Parameters

• **dataset** (Dataset) – the data to iterate

• **epochs** (int) – the number of times to iterate over the full dataset
• **mode** *(str)* – allowed values are ‘fit’ (called during training), ‘predict’ (called during prediction), and ‘uncertainty’ (called during uncertainty prediction)

• **deterministic** *(bool)* – whether to iterate over the dataset in order, or randomly shuffle the data for each epoch

• **pad_batches** *(bool)* – whether to pad each batch up to this model’s preferred batch size

Returns

• a generator that iterates batches, each represented as a tuple of lists

• ([inputs], [outputs], [weights])

3.16.11 MPNNModel

```python
class MPNNModel(n_tasks, n_atom_feat=70, n_pair_feat=8, n_hidden=100, T=5, M=10, mode='regression', dropout=0.0, n_classes=2, uncertainty=False, batch_size=100, **kwargs)
```

Message Passing Neural Network,

Message Passing Neural Networks treat graph convolutional operations as an instantiation of a more general message passing schem. Recall that message passing in a graph is when nodes in a graph send each other "messages" and update their internal state as a consequence of these messages.

Ordering structures in this model are built according to [1].

References

```python
__init__(n_tasks, n_atom_feat=70, n_pair_feat=8, n_hidden=100, T=5, M=10, mode='regression', dropout=0.0, n_classes=2, uncertainty=False, batch_size=100, **kwargs)
```

Parameters

• **n_tasks** *(int)* – Number of tasks

• **n_atom_feat** *(int, optional)* – Number of features per atom.

• **n_pair_feat** *(int, optional)* – Number of features per pair of atoms.

• **n_hidden** *(int, optional)* – Number of units(convolution depths) in corresponding hidden layer

• **n_graph_feat** *(int, optional)* – Number of output features for each molecule(graph)

• **dropout** *(float)* – the dropout probability to use.

• **n_classes** *(int)* – the number of classes to predict (only used in classification mode)

• **uncertainty** *(bool)* – if True, include extra outputs and loss terms to enable the uncertainty in outputs to be predicted

default_generator(dataset, epochs=1, mode='fit', deterministic=True, pad_batches=True)

Create a generator that iterates batches for a dataset.

Subclasses may override this method to customize how model inputs are generated from the data.

Parameters

• **dataset** *(Dataset)* – the data to iterate

• **epochs** *(int)* – the number of times to iterate over the full dataset
• **mode** (str) – allowed values are ‘fit’ (called during training), ‘predict’ (called during prediction), and ‘uncertainty’ (called during uncertainty prediction)

• **deterministic** (bool) – whether to iterate over the dataset in order, or randomly shuffle the data for each epoch

• **pad_batches** (bool) – whether to pad each batch up to this model’s preferred batch size

Returns

• a generator that iterates batches, each represented as a tuple of lists

• ([inputs], [outputs], [weights])

3.16.12 BasicMolGANModel

class BasicMolGANModel(edges: int = 5, vertices: int = 9, nodes: int = 5, embedding_dim: int = 10, dropout_rate: float = 0.0, **kwargs)

Model for de-novo generation of small molecules based on work of Nicola De Cao et al. [1]. Utilizes WGAN infrastructure; uses adjacency matrix and node features as inputs. Inputs need to be one-hot representation.

Examples

```python
>>> from deepchem.models import BasicMolGANModel as MolGAN
>>> from deepchem.models.optimizers import ExponentialDecay
>>> import deepchem as dc
>>> smiles = ['CCC', 'C1=CC=CC=C1', 'CNC']
>>> # create featurizer
>>> feat = dc.feat.MolGanFeaturizer()
>>> # featurize molecules
>>> features = feat.featurize(smiles)
>>> # Remove empty objects
>>> features = list(filter(lambda x: x is not None, features))
>>> # create model
>>> gan = MolGAN(learning_rate=ExponentialDecay(0.001, 0.9, 5000))
>>> dataset = dc.data.NumpyDataset([x.adjacency_matrix for x in features], [x.node_features for x in features])
>>> def iterbatches(epochs):
... for i in range(epochs):
... for batch in dataset.iterbatches(batch_size=gan.batch_size, pad_batches=True):
... adjacency_tensor = one_hot(batch[0], gan.edges)
... node_tensor = one_hot(batch[1], gan.nodes)
... yield {gan.data_inputs[0]: adjacency_tensor, gan.data_inputs[1]:node_tensor}
>>> gan.fit_gan(iterbatches(8), generator_steps=0.2, checkpoint_interval=5000)
>>> generated_data = gan.predict_gan_generator(1000)
>>> # convert graphs to RDKit molecules
>>> nmols = feat.defeaturize(generated_data)
>>> print("{} molecules generated".format(len(nmols)))
>>> # remove invalid moles
```

(continues on next page)
>>> nmols = list(filter(lambda x: x is not None, nmols))
>>> # currently training is unstable so 0 is a common outcome
>>> print("{} valid molecules”.format(len(nmols)))

References

__init__(edges: int = 5, vertices: int = 9, nodes: int = 5, embedding_dim: int = 10, dropout_rate: float = 0.0, **kwargs)

Initialize the model

Parameters

- **edges** (int, default 5) – Number of bond types includes BondType.Zero
- **vertices** (int, default 9) – Max number of atoms in adjacency and node features matrices
- **nodes** (int, default 5) – Number of atom types in node features matrix
- **embedding_dim** (int, default 10) – Size of noise input array
- **dropout_rate** (float, default = 0.) – Rate of dropout used across whole model
- **name** (str, default '') – Name of the model

get_noise_input_shape() → Tuple[int]

Return shape of the noise input used in generator

Returns Shape of the noise input

Return type Tuple

get_data_input_shapes() → List

Return input shape of the discriminator

Returns List of shapes used as an input for discriminator.

Return type List

create_generator() → keras.engine.training.Model

Create generator model. Take noise data as an input and processes it through number of dense and dropout layers. Then data is converted into two forms one used for training and other for generation of compounds. The model has two outputs:

1. edges
2. nodes

The format differs depending on intended use (training or sample generation). For sample generation use flag, sample_generation=True while calling generator i.e. gan.generators[0](noise_input, training=False, sample_generation=True). In case of training, not flag is necessary.

create_discriminator() → keras.engine.training.Model

Create discriminator model based on MolGAN layers. Takes two inputs:

1. adjacency tensor, containing bond information
2. nodes tensor, containing atom information

The input vectors need to be in one-hot encoding format. Use MolGAN featurizer for that purpose. It will be simplified in the future release.

3.16. Keras Models
predict_gan_generator(batch_size: int = 1, noise_input: Optional[List] = None, conditional_inputs: List = [], generator_index: int = 0) → List[deepchem.feat.molecule_featurizers.molgan_featurizer.GraphMatrix]

Use the GAN to generate a batch of samples.

Parameters

• **batch_size** (int) – the number of samples to generate. If either noise_input or conditional_inputs is specified, this argument is ignored since the batch size is then determined by the size of that argument.

• **noise_input** (array) – the value to use for the generator’s noise input. If None (the default), get_noise_batch() is called to generate a random input, so each call will produce a new set of samples.

• **conditional_inputs** (list of arrays) – NOT USED. the values to use for all conditional inputs. This must be specified if the GAN has any conditional inputs.

• **generator_index** (int) – NOT USED. the index of the generator (between 0 and n_generators-1) to use for generating the samples.

Returns Returns a list of GraphMatrix object that can be converted into RDKit molecules using MolGANFeaturizer defeaturize function.

Return type List[GraphMatrix]

3.16.13 ScScoreModel

class ScScoreModel(n_features, layer_sizes=[300, 300, 300], dropouts=0.0, **kwargs)

https://pubs.acs.org/doi/abs/10.1021/acs.jcim.7b00622 Several definitions of molecular complexity exist to facilitate prioritization of lead compounds, to identify diversity-inducing and complexifying reactions, and to guide retrosynthetic searches. In this work, we focus on synthetic complexity and reformulate its definition to correlate with the expected number of reaction steps required to produce a target molecule, with implicit knowledge about what compounds are reasonable starting materials. We train a neural network model on 12 million reactions from the Reaxys database to impose a pairwise inequality constraint enforcing the premise of this definition: that on average, the products of published chemical reactions should be more synthetically complex than their corresponding reactants. The learned metric (SCScore) exhibits highly desirable nonlinear behavior, particularly in recognizing increases in synthetic complexity throughout a number of linear synthetic routes.

Our model here actually uses hinge loss instead of the shifted relu loss in https://github.com/connorcoley/scscore. This could cause issues differentiation issues with compounds that are “close” to each other in “complexity”

__init__(n_features, layer_sizes=[300, 300, 300], dropouts=0.0, **kwargs)

Parameters

• **n_features** (int) – number of features per molecule

• **layer_sizes** (list of int) – size of each hidden layer

• **dropouts** (int) – dropout to apply to each hidden layer

• **kwargs** – This takes all kwards as TensorGraph

default_generator(dataset, epochs=1, mode='fit', deterministic=True, pad_batches=True)

Create a generator that iterates batches for a dataset.

Subclasses may override this method to customize how model inputs are generated from the data.

Parameters
• **dataset** (*Dataset*) – the data to iterate

• **epochs** (*int*) – the number of times to iterate over the full dataset

• **mode** (*str*) – allowed values are ‘fit’ (called during training), ‘predict’ (called during prediction), and ‘uncertainty’ (called during uncertainty prediction)

• **deterministic** (*bool*) – whether to iterate over the dataset in order, or randomly shuffle the data for each epoch

• **pad_batches** (*bool*) – whether to pad each batch up to this model’s preferred batch size

Returns

• a generator that iterates batches, each represented as a tuple of lists

• ([inputs], [outputs], [weights])

3.16.14 SeqToSeq

```python
class SeqToSeq(input_tokens, output_tokens, max_output_length, encoder_layers=4, decoder_layers=4,
               embedding_dimension=512, dropout=0.0, reverse_input=True, variational=False,
               annealing_start_step=5000, annealing_final_step=10000, **kwargs)
```

Implements sequence to sequence translation models.

The model is based on the description in Sutskever et al., “Sequence to Sequence Learning with Neural Networks” (https://arxiv.org/abs/1409.3215), although this implementation uses GRUs instead of LSTMs. The goal is to take sequences of tokens as input, and translate each one into a different output sequence. The input and output sequences can both be of variable length, and an output sequence need not have the same length as the input sequence it was generated from. For example, these models were originally developed for use in natural language processing. In that context, the input might be a sequence of English words, and the output might be a sequence of French words. The goal would be to train the model to translate sentences from English to French.

The model consists of two parts called the “encoder” and “decoder”. Each one consists of a stack of recurrent layers. The job of the encoder is to transform the input sequence into a single, fixed length vector called the “embedding”. That vector contains all relevant information from the input sequence. The decoder then transforms the embedding vector into the output sequence.

These models can be used for various purposes. First and most obviously, they can be used for sequence to sequence translation. In any case where you have sequences of tokens, and you want to translate each one into a different sequence, a SeqToSeq model can be trained to perform the translation.

Another possible use case is transforming variable length sequences into fixed length vectors. Many types of models require their inputs to have a fixed shape, which makes it difficult to use them with variable sized inputs (for example, when the input is a molecule, and different molecules have different numbers of atoms). In that case, you can train a SeqToSeq model as an autoencoder, so that it tries to make the output sequence identical to the input one. That forces the embedding vector to contain all information from the original sequence. You can then use the encoder for transforming sequences into fixed length embedding vectors, suitable to use as inputs to other types of models.

Another use case is to train the decoder for use as a generative model. Here again you begin by training the SeqToSeq model as an autoencoder. Once training is complete, you can supply arbitrary embedding vectors, and transform each one into an output sequence. When used in this way, you typically train it as a variational autoencoder. This adds random noise to the encoder, and also adds a constraint term to the loss that forces the embedding vector to have a unit Gaussian distribution. You can then pick random vectors from a Gaussian distribution, and the output sequences should follow the same distribution as the training data.

When training as a variational autoencoder, it is best to use KL cost annealing, as described in https://arxiv.org/abs/1511.06349. The constraint term in the loss is initially set to 0, so the optimizer just tries to minimize
the reconstruction loss. Once it has made reasonable progress toward that, the constraint term can be gradually
turned back on. The range of steps over which this happens is configurable.

```
__init__(input_tokens, output_tokens, max_output_length, encoder_layers=4, decoder_layers=4,
        embedding_dimension=512, dropout=0.0, reverse_input=True, variational=False,
        annealing_start_step=5000, annealing_final_step=10000, **kwargs)
```

Construct a SeqToSeq model.

In addition to the following arguments, this class also accepts all the keyword arguments from TensorGraph.

Parameters

- **input_tokens** *(list)* – a list of all tokens that may appear in input sequences
- **output_tokens** *(list)* – a list of all tokens that may appear in output sequences
- **max_output_length** *(int)* – the maximum length of output sequence that may be generated
- **encoder_layers** *(int)* – the number of recurrent layers in the encoder
- **decoder_layers** *(int)* – the number of recurrent layers in the decoder
- **embedding_dimension** *(int)* – the width of the embedding vector. This also is the width of all recurrent layers.
- **dropout** *(float)* – the dropout probability to use during training
- **reverse_input** *(bool)* – if True, reverse the order of input sequences before sending them into the encoder. This can improve performance when working with long sequences.
- **variational** *(bool)* – if True, train the model as a variational autoencoder. This adds random noise to the encoder, and also constrains the embedding to follow a unit Gaussian distribution.
- **annealing_start_step** *(int)* – the step (that is, batch) at which to begin turning on the constraint term for KL cost annealing
- **annealing_final_step** *(int)* – the step (that is, batch) at which to finish turning on the constraint term for KL cost annealing

```
fit_sequences(sequences, max_checkpoints_to_keep=5, checkpoint_interval=1000, restore=False)
```

Train this model on a set of sequences

Parameters

- **sequences** *(iterable)* – the training samples to fit to. Each sample should be represented as a tuple of the form (input_sequence, output_sequence).
- **max_checkpoints_to_keep** *(int)* – the maximum number of checkpoints to keep. Older checkpoints are discarded.
- **checkpoint_interval** *(int)* – the frequency at which to write checkpoints, measured in training steps.
- **restore** *(bool)* – if True, restore the model from the most recent checkpoint and continue training from there. If False, retrain the model from scratch.

```
predict_from_sequences(sequences, beam_width=5)
```

Given a set of input sequences, predict the output sequences.

The prediction is done using a beam search with length normalization.

Parameters
• **sequences** (*iterable*) – the input sequences to generate a prediction for

• **beam_width** (*int*) – the beam width to use for searching. Set to 1 to use a simple greedy search.

predict_from_embeddings(embeddings, beam_width=5)

Given a set of embedding vectors, predict the output sequences.

The prediction is done using a beam search with length normalization.

Parameters

• **embeddings** (*iterable*) – the embedding vectors to generate predictions for

• **beam_width** (*int*) – the beam width to use for searching. Set to 1 to use a simple greedy search.

predict_embeddings(sequences)

Given a set of input sequences, compute the embedding vectors.

Parameters
sequences (*iterable*) – the input sequences to generate an embedding vector for

3.16.15 GAN

class GAN(n_generators=1, n_discriminators=1, **kwargs)

Implements Generative Adversarial Networks.

A Generative Adversarial Network (GAN) is a type of generative model. It consists of two parts called the “generator” and the “discriminator”. The generator takes random noise as input and transforms it into an output that (hopefully) resembles the training data. The discriminator takes a set of samples as input and tries to distinguish the real training samples from the ones created by the generator. Both of them are trained together. The discriminator tries to get better and better at telling real from false data, while the generator tries to get better and better at fooling the discriminator.

In many cases there also are additional inputs to the generator and discriminator. In that case it is known as a Conditional GAN (CGAN), since it learns a distribution that is conditional on the values of those inputs. They are referred to as “conditional inputs”.

Many variations on this idea have been proposed, and new varieties of GANs are constantly being proposed. This class tries to make it very easy to implement straightforward GANs of the most conventional types. At the same time, it tries to be flexible enough that it can be used to implement many (but certainly not all) variations on the concept.

To define a GAN, you must create a subclass that provides implementations of the following methods:

get_noise_input_shape()
get_data_input_shapes()
create_generator()
create_discriminator()

If you want your GAN to have any conditional inputs you must also implement:

get_conditional_input_shapes()

The following methods have default implementations that are suitable for most conventional GANs. You can override them if you want to customize their behavior:

create_generator_loss()
create_discriminator_loss()
get_noise_batch()

This class allows a GAN to have multiple generators and discriminators, a model known as MIX+GAN. It is described in Arora et al., “Generalization and Equilibrium in Generative Adversarial Nets (GANs)” (https://arxiv.org/abs/1703.00573). This can lead to better models, and is especially useful for reducing mode collapse, since different generators can learn different parts of the distribution. To use this technique, simply specify the
number of generators and discriminators when calling the constructor. You can then tell predict_gan_generator() which generator to use for predicting samples.

```
__init__(n_generators=1, n_discriminators=1, **kwargs)
Construct a GAN.
```

In addition to the parameters listed below, this class accepts all the keyword arguments from KerasModel.

Parameters

- `n_generators (int)`: the number of generators to include
- `n_discriminators (int)`: the number of discriminators to include

```
get_noise_input_shape()
Get the shape of the generator's noise input layer.
```

Subclasses must override this to return a tuple giving the shape of the noise input. The actual Input layer will be created automatically. The dimension corresponding to the batch size should be omitted.

```
get_data_input_shapes()
Get the shapes of the inputs for training data.
```

Subclasses must override this to return a list of tuples, each giving the shape of one of the inputs. The actual Input layers will be created automatically. This list of shapes must also match the shapes of the generator’s outputs. The dimension corresponding to the batch size should be omitted.

```
get_conditional_input_shapes()
Get the shapes of any conditional inputs.
```

Subclasses may override this to return a list of tuples, each giving the shape of one of the conditional inputs. The actual Input layers will be created automatically. The dimension corresponding to the batch size should be omitted.

The default implementation returns an empty list, meaning there are no conditional inputs.

```
get_noise_batch(batch_size)
Get a batch of random noise to pass to the generator.
```

This should return a NumPy array whose shape matches the one returned by get_noise_input_shape(). The default implementation returns normally distributed values. Subclasses can override this to implement a different distribution.

```
create_generator()
Create and return a generator.
```

Subclasses must override this to construct the generator. The returned value should be a tf.keras.Model whose inputs are a batch of noise, followed by any conditional inputs. The number and shapes of its outputs must match the return value from get_data_input_shapes(), since generated data must have the same form as training data.

```
create_discriminator()
Create and return a discriminator.
```

Subclasses must override this to construct the discriminator. The returned value should be a tf.keras.Model whose inputs are all data inputs, followed by any conditional inputs. Its output should be a one dimensional tensor containing the probability of each sample being a training sample.

```
create_generator_loss(discrim_output)
Create the loss function for the generator.
```
The default implementation is appropriate for most cases. Subclasses can override this if the need to custom-
ize it.

Parameters

- **discrim_output** (*Tensor*) – the output from the discriminator on a batch of generated data. This is its estimate of the probability that each sample is training data.

Return type A Tensor equal to the loss function to use for optimizing the generator.

create_discriminator_loss(discrim_output_train, discrim_output_gen)

Create the loss function for the discriminator.

The default implementation is appropriate for most cases. Subclasses can override this if the need to cus-
tomize it.

Parameters

- **discrim_output_train** (*Tensor*) – the output from the discriminator on a batch of training data. This is its estimate of the probability that each sample is training data.

- **discrim_output_gen** (*Tensor*) – the output from the discriminator on a batch of generated data. This is its estimate of the probability that each sample is training data.

Return type A Tensor equal to the loss function to use for optimizing the discriminator.

fit_gan(batches, generator_steps=1.0, max_checkpoints_to_keep=5, checkpoint_interval=1000, restore=False)

Train this model on data.

Parameters

- **batches** (*iterable*) – batches of data to train the discriminator on, each represented as a dict that maps Inputs to values. It should specify values for all members of data_inputs and conditional_inputs.

- **generator_steps** (*float*) – the number of training steps to perform for the generator for each batch. This can be used to adjust the ratio of training steps for the generator and discriminator. For example, 2.0 will perform two training steps for every batch, while 0.5 will only perform one training step for every two batches.

- **max_checkpoints_to_keep** (*int*) – the maximum number of checkpoints to keep. Older checkpoints are discarded.

- **checkpoint_interval** (*int*) – the frequency at which to write checkpoints, measured in batches. Set this to 0 to disable automatic checkpointing.

- **restore** (*bool*) – if True, restore the model from the most recent checkpoint before train-
ing it.

predict_gan_generator(batch_size=1, noise_input=None, conditional_inputs=[], generator_index=0)

Use the GAN to generate a batch of samples.

Parameters

- **batch_size** (*int*) – the number of samples to generate. If either noise_input or condi-
tional_inputs is specified, this argument is ignored since the batch size is then determined by the size of that argument.

- **noise_input** (*array*) – the value to use for the generator’s noise input. If None (the default), get_noise_batch() is called to generate a random input, so each call will produce a new set of samples.

- **conditional_inputs** (*list of arrays*) – the values to use for all conditional inputs. This must be specified if the GAN has any conditional inputs.
• **generator_index** (*int*) – the index of the generator (between 0 and n_generators-1) to use for generating the samples.

Returns

• An array (if the generator has only one output) or list of arrays (if it has multiple outputs) containing the generated samples.

WGAN

```python
class WGAN(gradient_penalty=10.0, **kwargs)
```

Implements Wasserstein Generative Adversarial Networks.

This class implements Wasserstein Generative Adversarial Networks (WGANs) as described in Arjovsky et al., “Wasserstein GAN” (https://arxiv.org/abs/1701.07875). A WGAN is conceptually rather different from a conventional GAN, but in practical terms very similar. It reinterprets the discriminator (often called the “critic” in this context) as learning an approximation to the Earth Mover distance between the training and generated distributions. The generator is then trained to minimize that distance. In practice, this just means using slightly different loss functions for training the generator and discriminator.

WGANs have theoretical advantages over conventional GANs, and they often work better in practice. In addition, the discriminator’s loss function can be directly interpreted as a measure of the quality of the model. That is an advantage over conventional GANs, where the loss does not directly convey information about the quality of the model.

The theory WGANs are based on requires the discriminator’s gradient to be bounded. The original paper achieved this by clipping its weights. This class instead does it by adding a penalty term to the discriminator’s loss, as described in https://arxiv.org/abs/1704.00028. This is sometimes found to produce better results.

There are a few other practical differences between GANs and WGANs. In a conventional GAN, the discriminator’s output must be between 0 and 1 so it can be interpreted as a probability. In a WGAN, it should produce an unbounded output that can be interpreted as a distance.

When training a WGAN, you also should usually use a smaller value for generator_steps. Conventional GANs rely on keeping the generator and discriminator “in balance” with each other. If the discriminator ever gets too good, it becomes impossible for the generator to fool it and training stalls. WGANs do not have this problem, and in fact the better the discriminator is, the easier it is for the generator to improve. It therefore usually works best to perform several training steps on the discriminator for each training step on the generator.

```python
__init__(gradient_penalty=10.0, **kwargs)
```

Construct a WGAN.

In addition to the following, this class accepts all the keyword arguments from GAN and KerasModel.

Parameters

- **gradient_penalty** (*float*) – the magnitude of the gradient penalty loss

```python
create_generator_loss(discrim_output)
```

Create the loss function for the generator.

The default implementation is appropriate for most cases. Subclasses can override this if the need to customize it.

Parameters

- **discrim_output** (*Tensor*) – the output from the discriminator on a batch of generated data. This is its estimate of the probability that each sample is training data.

Return type A Tensor equal to the loss function to use for optimizing the generator.
create_discriminator_loss (*discrim_output_train, discrim_output_gen*)

Create the loss function for the discriminator.

The default implementation is appropriate for most cases. Subclasses can override this if the need to customize it.

Parameters

- **discrim_output_train** (*Tensor*) – the output from the discriminator on a batch of training data. This is its estimate of the probability that each sample is training data.
- **discrim_output_gen** (*Tensor*) – the output from the discriminator on a batch of generated data. This is its estimate of the probability that each sample is training data.

Return type A Tensor equal to the loss function to use for optimizing the discriminator.

3.16.16 TextCNNModel

class *TextCNNModel*(

```
TextCNNModel(n_tasks, char_dict, seq_length, n_embedding=75, kernel_sizes=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20], num_filters=[100, 200, 200, 200, 200, 100, 100, 100, 100, 100, 160, 160], dropout=0.25, mode='classification', **kwargs)
```

A Convolutional neural network on smiles strings

Reimplementation of the discriminator module in ORGAN [1]_. Originated from [2]_.

This model applies multiple 1D convolutional filters to the padded strings, then max-over-time pooling is applied on all filters, extracting one feature per filter. All features are concatenated and transformed through several hidden layers to form predictions.

This model is initially developed for sentence-level classification tasks, with words represented as vectors. In this implementation, SMILES strings are dissected into characters and transformed to one-hot vectors in a similar way. The model can be used for general molecular-level classification or regression tasks. It is also used in the ORGAN model as discriminator.

Training of the model only requires SMILES strings input, all featurized datasets that include SMILES in the `ids` attribute are accepted. PDBbind, QM7 and QM7b are not supported. To use the model, `build_char_dict` should be called first before defining the model to build character dict of input dataset, example can be found in `examples/delaney/delaney_textcnn.py`

References

- [1]_
- [2]_

3.16. Keras Models

__init__(n_tasks, char_dict, seq_length, n_embedding=75, kernel_sizes=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20], num_filters=[100, 200, 200, 200, 200, 100, 100, 100, 100, 100, 160, 160], dropout=0.25, mode='classification', **kwargs)

Parameters

- **n_tasks** (*int*) – Number of tasks
- **char_dict** (*dict*) – Mapping from characters in smiles to integers
- **seq_length** (*int*) – Length of sequences(after padding)
- **n_embedding** (*int, optional*) – Length of embedding vector
- **filter_sizes** (*list of int, optional*) – Properties of filters used in the conv net
- **num_filters** (*list of int, optional*) – Properties of filters used in the conv net
- **dropout** (*float, optional*) – Dropout rate
• **mode** (str) – Either “classification” or “regression” for type of model.

 static build_char_dict((dataset, default_dict={}) → None

 Collect all unique characters (in smiles) from the dataset. This method should be called before defining the model to build appropriate char_dict

 smiles_to_seq_batch(ids_b) → np.array

 Converts SMILES strings to np.array sequence.

 default_generator(dataset, epochs=1, mode='fit', deterministic=True, pad_batches=True) → np.array

 Transfer smiles strings to fixed length integer vectors

 smiles_to_seq(smiles) → np.array

 Tokenize characters in smiles to integers

3.16.17 AtomicConvModel

 class AtomicConvModel(n_tasks: int, frag1_num_atoms: int = 70, frag2_num_atoms: int = 634, complex_num_atoms: int = 701, max_num_neighbors: int = 12, batch_size: int = 24, atom_types: typing.Sequence[float] = [6, 7.0, 8.0, 9.0, 11.0, 12.0, 15.0, 16.0, 17.0, 20.0, 25.0, 30.0, 35.0, 53.0, -1.0], radial: typing.Sequence[typing.Sequence[float]] = [[1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0, 10.5, 11.0, 11.5, 12.0], [0.0, 4.0, 8.0], [0.4]], layer_sizes=[100], weight_init_stddevs: typing.Union[float, typing.Sequence[float]] = 0.02, bias_init_consts: typing.Union[float, typing.Sequence[float]] = 0.0, weight_decay_penalty: float = 0.0, weight_decay_penalty_type: str = 'l2', dropouts: typing.Sequence[float] = [0.5, activation_fns: typing.Sequence[typing.Union[typing.Callable, str]] = <function relu>, residual: bool = False, learning_rate=0.001, **kwargs) → None

 Implements an Atomic Convolution Model.

 Implements the atomic convolutional networks as introduced in

 The atomic convolutional networks function as a variant of graph convolutions. The difference is that the “graph” here is the nearest neighbors graph in 3D space. The AtomicConvModel leverages these connections in 3D space to train models that learn to predict energetic state starting from the spatial geometry of the model.

 __init__ (n_tasks: int, frag1_num_atoms: int = 70, frag2_num_atoms: int = 634, complex_num_atoms: int = 701, max_num_neighbors: int = 12, batch_size: int = 24, atom_types: typing.Sequence[float] = [6, 7.0, 8.0, 9.0, 11.0, 12.0, 15.0, 16.0, 17.0, 20.0, 25.0, 30.0, 35.0, 53.0, -1.0], radial: typing.Sequence[typing.Sequence[float]] = [[1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0, 10.5, 11.0, 11.5, 12.0], [0.0, 4.0, 8.0], [0.4]], layer_sizes=[100], weight_init_stddevs: typing.Union[float, typing.Sequence[float]] = 0.02, bias_init_consts: typing.Union[float, typing.Sequence[float]] = 0.0, weight_decay_penalty: float = 0.0, weight_decay_penalty_type: str = 'l2', dropouts: typing.Sequence[float] = [0.5, activation_fns: typing.Sequence[typing.Union[typing.Callable, str]] = <function relu>, residual: bool = False, learning_rate=0.001, **kwargs) → None
Parameters

- **n_tasks** (*int*) – number of tasks
- **frag1_num_atoms** (*int*) – Number of atoms in first fragment
- **frag2_num_atoms** (*int*) – Number of atoms in second fragment
- **max_num_neighbors** (*int*) – Maximum number of neighbors possible for an atom. Recall neighbors are spatial neighbors.
- **atom_types** (*list*) – List of atoms recognized by model. Atoms are indicated by their nuclear numbers.
- **radial** (*list*) – Radial parameters used in the atomic convolution transformation.
- **layer_sizes** (*list*) – the size of each dense layer in the network. The length of this list determines the number of layers.
- **weight_init_stddevs** (*list or float*) – the standard deviation of the distribution to use for weight initialization of each layer. The length of this list should equal \(\text{len}(\text{layer_sizes}) \). Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.
- **bias_init_consts** (*list or float*) – the value to initialize the biases in each layer to. The length of this list should equal \(\text{len}(\text{layer_sizes}) \). Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.
- **weight_decay_penalty** (*float*) – the magnitude of the weight decay penalty to use
- **weight_decay_penalty_type** (*str*) – the type of penalty to use for weight decay, either ‘l1’ or ‘l2’
- **dropouts** (*list or float*) – the dropout probability to use for each layer. The length of this list should equal \(\text{len}(\text{layer_sizes}) \). Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.
- **activation_fns** (*list or object*) – the Tensorflow activation function to apply to each layer. The length of this list should equal \(\text{len}(\text{layer_sizes}) \). Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.
- **residual** (*bool*) – if True, the model will be composed of pre-activation residual blocks instead of a simple stack of dense layers.
- **learning_rate** (*float*) – Learning rate for the model.

default_generator(dataset, epochs=1, mode='fit', deterministic=True, pad_batches=True)

Create a generator that iterates batches for a dataset.

Subclasses may override this method to customize how model inputs are generated from the data.

Parameters

- **dataset** (*Dataset*) – the data to iterate
- **epochs** (*int*) – the number of times to iterate over the full dataset
- **mode** (*str*) – allowed values are ‘fit’ (called during training), ‘predict’ (called during prediction), and ‘uncertainty’ (called during uncertainty prediction)
- **deterministic** (*bool*) – whether to iterate over the dataset in order, or randomly shuffle the data for each epoch
- **pad_batches** (*bool*) – whether to pad each batch up to this model’s preferred batch size

Returns
• a generator that iterates batches, each represented as a tuple of lists

 \((\text{[inputs]}, \text{[outputs]}, \text{[weights]})\)

save

Saves model to disk using joblib.

reload

Loads model from joblib file on disk.

3.16.18 Smiles2Vec

```python
class Smiles2Vec(char_to_idx, n_tasks=10, max_seq_len=270, embedding_dim=50, n_classes=2,
                 use_bidir=True, use_conv=True, filters=192, kernel_size=3, strides=1, rnn_sizes=[224, 384],
                 rnn_types=['GRU', 'GRU'], mode='regression', **kwargs)
```

Implements the Smiles2Vec model, that learns neural representations of SMILES strings which can be used for downstream tasks.

The model is based on the description in Goh et al., “SMILES2vec: An Interpretable General-Purpose Deep Neural Network for Predicting Chemical Properties” (https://arxiv.org/pdf/1712.02034.pdf). The goal here is to take SMILES strings as inputs, turn them into vector representations which can then be used in predicting molecular properties.

The model consists of an Embedding layer that retrieves embeddings for each character in the SMILES string. These embeddings are learnt jointly with the rest of the model. The output from the embedding layer is a tensor of shape (batch_size, seq_len, embedding_dim). This tensor can optionally be fed through a 1D convolutional layer, before being passed to a series of RNN cells (optionally bidirectional). The final output from the RNN cells aims to have learnt the temporal dependencies in the SMILES string, and in turn information about the structure of the molecule, which is then used for molecular property prediction.

In the paper, the authors also train an explanation mask to endow the model with interpretability and gain insights into its decision making. This segment is currently not a part of this implementation as this was developed for the purpose of investigating a transfer learning protocol, ChemNet (which can be found at https://arxiv.org/abs/1712.02734).

```python
__init__(char_to_idx, n_tasks=10, max_seq_len=270, embedding_dim=50, n_classes=2, use_bidir=True,
         use_conv=True, filters=192, kernel_size=3, strides=1, rnn_sizes=[224, 384], rnn_types=['GRU',
         'GRU'], mode='regression', **kwargs)
```

Parameters

- **char_to_idx (dict,)** – char_to_idx contains character to index mapping for SMILES characters
- **embedding_dim (int, default 50)** – Size of character embeddings used.
- **use_bidir (bool, default True)** – Whether to use BiDirectional RNN Cells
- **use_conv (bool, default True)** – Whether to use a conv-layer
- **kernel_size (int, default 3)** – Kernel size for convolutions
- **filters (int, default 192)** – Number of filters
- **strides (int, default 1)** – Strides used in convolution
- **rnn_sizes (list[int], default [224, 384])** – Number of hidden units in the RNN cells
• **mode** (*str, default regression*) – Whether to use model for regression or classification

default_generator(dataset, epochs=1, mode='fit', deterministic=True, pad_batches=True)

Create a generator that iterates batches for a dataset.

Subclasses may override this method to customize how model inputs are generated from the data.

Parameters

- **dataset** (*Dataset*) – the data to iterate
- **epochs** (*int*) – the number of times to iterate over the full dataset
- **mode** (*str*) – allowed values are ‘fit’ (called during training), ‘predict’ (called during prediction), and ‘uncertainty’ (called during uncertainty prediction)
- **deterministic** (*bool*) – whether to iterate over the dataset in order, or randomly shuffle the data for each epoch
- **pad_batches** (*bool*) – whether to pad each batch up to this model’s preferred batch size

Returns

- a generator that iterates batches, each represented as a tuple of lists
 - ([inputs], [outputs], [weights])

3.16.19 ChemCeption

Implements the ChemCeption model that leverages the representational capacities of convolutional neural networks (CNNs) to predict molecular properties.

The model is based on the description in Goh et al., “Chemception: A Deep Neural Network with Minimal Chemistry Knowledge Matches the Performance of Expert-developed QSAR/QSPR Models” (https://arxiv.org/pdf/1706.06689.pdf). The authors use an image based representation of the molecule, where pixels encode different atomic and bond properties. More details on the image representations can be found at https://arxiv.org/abs/1710.02238

The model consists of a Stem Layer that reduces the image resolution for the layers to follow. The output of the Stem Layer is followed by a series of Inception-Resnet blocks & a Reduction layer. Layers in the Inception-Resnet blocks process image tensors at multiple resolutions and use a ResNet style skip-connection, combining features from different resolutions. The Reduction layers reduce the spatial extent of the image by max-pooling and 2-strided convolutions. More details on these layers can be found in the ChemCeption paper referenced above. The output of the final Reduction layer is subject to a Global Average Pooling, and a fully-connected layer maps the features to downstream outputs.

In the ChemCeption paper, the authors perform real-time image augmentation by rotating images between 0 to 180 degrees. This can be done during model training by setting the argument augment to True.

Parameters

- **img_spec** (*str, default std*) – Image specification used
• **img_size** (*int, default 80*) – Image size used
• **base_filters** (*int, default 16*) – Base filters used for the different inception and reduction layers
• **inception_blocks** (*dict.*) – Dictionary containing number of blocks for every inception layer
• **n_tasks** (*int, default 10*) – Number of classification or regression tasks
• **n_classes** (*int, default 2*) – Number of classes (used only for classification)
• **augment** (*bool, default False*) – Whether to augment images
• **mode** (*str, default regression*) – Whether the model is used for regression or classification

`build_inception_module(inputs, type='A')`

Inception module is a series of inception layers of similar type. This function builds that.

`default_generator(dataset, epochs=1, mode='fit', deterministic=True, pad_batches=True)`

Create a generator that iterates batches for a dataset.

Subclasses may override this method to customize how model inputs are generated from the data.

Parameters

• **dataset** (*Dataset*) – the data to iterate
• **epochs** (*int*) – the number of times to iterate over the full dataset
• **mode** (*str*) – allowed values are ‘fit’ (called during training), ‘predict’ (called during prediction), and ‘uncertainty’ (called during uncertainty prediction)
• **deterministic** (*bool*) – whether to iterate over the dataset in order, or randomly shuffle the data for each epoch
• **pad_batches** (*bool*) – whether to pad each batch up to this model’s preferred batch size

Returns

• a generator that iterates batches, each represented as a tuple of lists
 • ([inputs], [outputs], [weights])

3.16.20 NormalizingFlowModel

The purpose of a normalizing flow is to map a simple distribution (that is easy to sample from and evaluate probability densities for) to a more complex distribution that is learned from data. Normalizing flows combine the advantages of autoregressive models (which provide likelihood estimation but do not learn features) and variational autoencoders (which learn feature representations but do not provide marginal likelihoods). They are effective for any application requiring a probabilistic model with these capabilities, e.g. generative modeling, unsupervised learning, or probabilistic inference.

class `NormalizingFlowModel(model: deepchem.models.normalizing_flows.NormalizingFlow, **kwargs)`

A base distribution and normalizing flow for applying transformations.

Normalizing flows are effective for any application requiring a probabilistic model that can both sample from a distribution and compute marginal likelihoods, e.g. generative modeling, unsupervised learning, or probabilistic inference. For a thorough review of normalizing flows, see [1].

A distribution implements two main operations:
1. Sampling from the transformed distribution
2. Calculating log probabilities

A normalizing flow implements three main operations:

1. Forward transformation
2. Inverse transformation
3. Calculating the Jacobian

Deep Normalizing Flow models require normalizing flow layers where input and output dimensions are the same, the transformation is invertible, and the determinant of the Jacobian is efficient to compute and differentiable. The determinant of the Jacobian of the transformation gives a factor that preserves the probability volume to 1 when transforming between probability densities of different random variables.

References

```python
__init__ (model: deepchem.models.normalizing_flows.NormalizingFlow, **kwargs) → None
```

Creates a new NormalizingFlowModel.

In addition to the following arguments, this class also accepts all the keyword arguments from KerasModel.

Parameters

- **model** (*NormalizingFlow*) – An instance of NormalizingFlow.

Examples

```python
>> import tensorflow_probability as tfp >> tfd = tfp.distributions >> tfb = tfp.bijectors >> flow_layers = [ .. tfb.RealNVP( .. num_masked=2, .. shift_and_log_scale_fn=tfb.real_nvp_default_template( .. hidden_layers=[8, 8])) .. ] >> base_distribution = tfd.MultivariateNormalDiag(loc=[0., 0., 0.]) >> nf = NormalizingFlow(base_distribution, flow_layers) >> nfm = NormalizingFlowModel(nf) >> dataset = NumpyDataset( .. X=np.random.rand(5, 3).astype(np.float32), .. y=np.random.rand(5,), .. ids=np.arange(5)) >> nfm.fit(dataset)
```

```python
create_nll (input: Union[tensorflow.python.framework.ops.Tensor, Sequence[tensorflow.python.framework.ops.Tensor]]) →
tensorflow.python.framework.ops.Tensor
```

Create the negative log likelihood loss function.

The default implementation is appropriate for most cases. Subclasses can override this if there is a need to customize it.

Parameters

- **input** (*OneOrMany [tf.Tensor]*) – A batch of data.

Return type
A Tensor equal to the loss function to use for optimization.

```python
save ()
```

Saves model to disk using joblib.

```python
reload ()
```

Loads model from joblib file on disk.
3.17 PyTorch Models

DeepChem supports the use of PyTorch to build deep learning models.

3.17.1 TorchModel

You can wrap an arbitrary torch.nn.Module in a TorchModel object.

```python
```

This is a DeepChem model implemented by a PyTorch model.

Here is a simple example of code that uses TorchModel to train a PyTorch model on a DeepChem dataset.

```python
>>> import torch
>>> import deepchem as dc
>>> import numpy as np

>>> X, y = np.random.random((10, 100)), np.random.random((10, 1))

>>> dataset = dc.data.NumpyDataset(X=X, y=y)

>>> pytorch_model = torch.nn.Sequential(
...    torch.nn.Linear(100, 1000),
...    torch.nn.Tanh(),
...    torch.nn.Linear(1000, 1))

>>> model = dc.models.TorchModel(pytorch_model, loss=dc.models.losses.L2Loss())

>>> loss = model.fit(dataset, nb_epoch=5)
```

The loss function for a model can be defined in two different ways. For models that have only a single output and use a standard loss function, you can simply provide a dc.models.losses.Loss object. This defines the loss for each sample or sample/task pair. The result is automatically multiplied by the weights and averaged over the batch.

For more complicated cases, you can instead provide a function that directly computes the total loss. It must be of the form f(outputs, labels, weights), taking the list of outputs from the model, the expected values, and any weight matrices. It should return a scalar equal to the value of the loss function for the batch. No additional processing is done to the result; it is up to you to do any weighting, averaging, adding of penalty terms, etc.

You can optionally provide an output_types argument, which describes how to interpret the model’s outputs. This should be a list of strings, one for each output. You can use an arbitrary output_type for a output, but some output_types are special and will undergo extra processing:

- ‘prediction’: This is a normal output, and will be returned by predict(). If output types are not specified, all outputs are assumed to be of this type.
- ‘loss’: This output will be used in place of the normal outputs for computing the loss function. For example, models that output probability distributions usually do it by computing unbounded numbers (the logits), then passing them through a softmax function to turn them into probabilities. When computing the cross entropy, it is more numerically stable to use the logits directly rather than the probabilities. You can do this by having the model produce both probabilities and logits as outputs, then specifying out-
put_types=['prediction', 'loss']. When predict() is called, only the first output (the probabilities) will be returned. But during training, it is the second output (the logits) that will be passed to the loss function.

- ‘variance’: This output is used for estimating the uncertainty in another output. To create a model that can estimate uncertainty, there must be the same number of ‘prediction’ and ‘variance’ outputs. Each variance output must have the same shape as the corresponding prediction output, and each element is an estimate of the variance in the corresponding prediction. Also be aware that if a model supports uncertainty, it MUST use dropout on every layer, and dropout must be enabled during uncertainty prediction. Otherwise, the uncertainties it computes will be inaccurate.

- other: Arbitrary output_types can be used to extract outputs produced by the model, but will have no additional processing performed.

```python
```

Create a new TorchModel.

Parameters

- **model** *(torch.nn.Module)* – the PyTorch model implementing the calculation
- **loss** *(dc.models.losses.Loss or function)* – a Loss or function defining how to compute the training loss for each batch, as described above
- **output_types** *(list of strings, optional (default None))* – the type of each output from the model, as described above
- **batch_size** *(int, optional (default 100))* – default batch size for training and evaluating
- **model_dir** *(str, optional (default None))* – the directory on disk where the model will be stored. If this is None, a temporary directory is created.
- **learning_rate** *(float or LearningRateSchedule, optional (default 0.001))* – the learning rate to use for fitting. If optimizer is specified, this is ignored.
- **optimizer** *(Optimizer, optional (default None))* – the optimizer to use for fitting. If this is specified, learning_rate is ignored.
- **tensorboard** *(bool, optional (default False))* – whether to log progress to TensorBoard during training
- **wandb** *(bool, optional (default False))* – whether to log progress to Weights & Biases during training
- **log_frequency** *(int, optional (default 100))* – The frequency at which to log data. Data is logged using logging by default. If tensorboard is set, data is also logged to TensorBoard. If wandb is set, data is also logged to Weights & Biases. Logging happens at global steps. Roughly, a global step corresponds to one batch of training. If you’d like a printout every 10 batch steps, you’d set log_frequency=10 for example.
- **device** *(torch.device, optional (default None))* – the device on which to run computations. If None, a device is chosen automatically.
- **regularization_loss** *(Callable, optional)* – a function that takes no arguments, and returns an extra contribution to add to the loss function
wandb_logger *(WandbLogger)* – the Weights & Biases logger object used to log data and metrics

```
```

Train this model on a dataset.

Parameters

- **dataset** *(Dataset)* – the Dataset to train on
- **nb_epoch** *(int)* – the number of epochs to train for
- **max_checkpoints_to_keep** *(int)* – the maximum number of checkpoints to keep. Older checkpoints are discarded.
- **checkpoint_interval** *(int)* – the frequency at which to write checkpoints, measured in training steps. Set this to 0 to disable automatic checkpointing.
- **deterministic** *(bool)* – if True, the samples are processed in order. If False, a different random order is used for each epoch.
- **restore** *(bool)* – if True, restore the model from the most recent checkpoint and continue training from there. If False, retrain the model from scratch.
- **variables** *(list of torch.nn.Parameter)* – the variables to train. If None (the default), all trainable variables in the model are used.
- **loss** *(function)* – a function of the form f(outputs, labels, weights) that computes the loss for each batch. If None (the default), the model’s standard loss function is used.
- **callbacks** *(function or list of functions)* – one or more functions of the form f(model, step) that will be invoked after every step. This can be used to perform validation, logging, etc.
- **all_losses** *(Optional[List[float]]*, optional (default None)) – If specified, all logged losses are appended into this list. Note that you can call `fit()` repeatedly with the same list and losses will continue to be appended.

Return type The average loss over the most recent checkpoint interval

```
```

Train this model on data from a generator.

Parameters

- **generator** *(generator)* – this should generate batches, each represented as a tuple of the form (inputs, labels, weights).
- **max_checkpoints_to_keep** *(int)* – the maximum number of checkpoints to keep. Older checkpoints are discarded.
- **checkpoint_interval** *(int)* – the frequency at which to write checkpoints, measured in training steps. Set this to 0 to disable automatic checkpointing.
- **restore** *(bool)* – if True, restore the model from the most recent checkpoint and continue training from there. If False, retrain the model from scratch.
• **variables** (*list of torch.nn.Parameter*) – the variables to train. If None (the default), all trainable variables in the model are used.

• **loss** (*function*) – a function of the form \(f(\text{outputs}, \text{labels}, \text{weights}) \) that computes the loss for each batch. If None (the default), the model’s standard loss function is used.

• **callbacks** (*function or list of functions*) – one or more functions of the form \(f(\text{model}, \text{step}) \) that will be invoked after every step. This can be used to perform validation, logging, etc.

• **all_losses** (*Optional[List[float]], optional (default None]*) – If specified, all logged losses are appended into this list. Note that you can call `fit()` repeatedly with the same list and losses will continue to be appended.

Return type The average loss over the most recent checkpoint interval

```python
fit_on_batch(X: Sequence, y: Sequence, w: Sequence, variables: Optional[List[torch.nn.parameter.Parameter]] = None, loss: Optional[Callable[[List, List, List], Any]] = None, callbacks: Union[Callable, List[Callable]] = [], checkpoint: bool = True, max_checkpoints_to_keep: int = 5) → float
```

Perform a single step of training.

Parameters

• **X** (*ndarray*) – the inputs for the batch

• **y** (*ndarray*) – the labels for the batch

• **w** (*ndarray*) – the weights for the batch

• **variables** (*list of torch.nn.Parameter*) – the variables to train. If None (the default), all trainable variables in the model are used.

• **loss** (*function*) – a function of the form \(f(\text{outputs}, \text{labels}, \text{weights}) \) that computes the loss for each batch. If None (the default), the model’s standard loss function is used.

• **callbacks** (*function or list of functions*) – one or more functions of the form \(f(\text{model}, \text{step}) \) that will be invoked after every step. This can be used to perform validation, logging, etc.

• **checkpoint** (*bool*) – if true, save a checkpoint after performing the training step

• **max_checkpoints_to_keep** (*int*) – the maximum number of checkpoints to keep. Older checkpoints are discarded.

Return type the loss on the batch

```python
```

Parameters

• **generator** (*generator*) – this should generate batches, each represented as a tuple of the form (inputs, labels, weights).

• **transformers** (*list of dc.trans.Transformers*) – Transformers that the input data has been transformed by. The output is passed through these transformers to undo the transformations.

• **output_types** (*String or list of Strings*) – If specified, all outputs of this type will be retrieved from the model. If output_types is specified, outputs must be None.
• **Returns** – a NumPy array of the model produces a single output, or a list of arrays if it produces multiple outputs

predict_on_batch

\[
X: \text{Union[numpy._typing._array_like._SupportsArray[numpy.dtype],}
\text{numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype],}
\text{bool, int, float, complex, str, bytes,}
\text{numpy._typing._nestedSequence._NestedSequence[Union[bool, int, float, complex, str, bytes]], transformers: List[transformers.Transformer] = []}) \rightarrow \text{Union[numpy.ndarray,}
\text{Sequence[numpy.ndarray]]}
\]

Generates predictions for input samples, processing samples in a batch.

Parameters

- **X** (*ndarray*) – the input data, as a Numpy array.

- **transformers** (list of `dc.trans.Transformer`) – Transformers that the input data has been transformed by. The output is passed through these transformers to undo the transformations.

Returns

- a NumPy array of the model produces a single output, or a list of arrays

- if it produces multiple outputs

predict_uncertainty_on_batch

\[
X: \text{Sequence, masks: int = 50)) \rightarrow \text{Union[Tuple[numpy.ndarray,}
\text{numpy.ndarray], Sequence[Tuple[numpy.ndarray, numpy.ndarray]]]}
\]

Predict the model’s outputs, along with the uncertainty in each one.

The uncertainty is computed as described in https://arxiv.org/abs/1703.04977. It involves repeating the prediction many times with different dropout masks. The prediction is computed as the average over all the predictions. The uncertainty includes both the variation among the predicted values (epistemic uncertainty) and the model’s own estimates for how well it fits the data (aleatoric uncertainty). Not all models support uncertainty prediction.

Parameters

- **X** (*ndarray*) – the input data, as a Numpy array.

- **masks** (int) – the number of dropout masks to average over

Returns

- for each output, a tuple (y_pred, y_std) where y_pred is the predicted

- value of the output, and each element of y_std estimates the standard

- deviation of the corresponding element of y_pred

predict

\[
\text{output_types: Optional[List[str]] = None}) \rightarrow \text{Union[numpy.ndarray,}
\text{Sequence[numpy.ndarray]]}
\]

Uses self to make predictions on provided Dataset object.

Parameters

- **dataset** (*dc.data.Dataset*) – Dataset to make prediction on

- **transformers** (list of `dc.trans.Transformer`) – Transformers that the input data has been transformed by. The output is passed through these transformers to undo the transformations.

- **output_types** (*String or list of Strings*) – If specified, all outputs of this type will be retrieved from the model. If output_types is specified, outputs must be None.
Returns

• a NumPy array of the model produces a single output, or a list of arrays
• if it produces multiple outputs

predict_embedding(dataset: deepchem.data.datasets.Dataset) \(\rightarrow\) Union[numpy.ndarray,
Sequence[numpy.ndarray]]

Predicts embeddings created by underlying model if any exist. An embedding must be specified to have output_type of `embedding` in the model definition.

Parameters dataset (dc.data.Dataset) – Dataset to make prediction on

Returns

• a NumPy array of the embeddings model produces, or a list
• of arrays if it produces multiple embeddings

predict_uncertainty(dataset: deepchem.data.datasets.Dataset, masks: int = 50) \(\rightarrow\) Union[Tuple[numpy.ndarray, numpy.ndarray], Sequence[Tuple[numpy.ndarray, numpy.ndarray]]]

Predict the model’s outputs, along with the uncertainty in each one.

The uncertainty is computed as described in https://arxiv.org/abs/1703.04977. It involves repeating the prediction many times with different dropout masks. The prediction is computed as the average over all the predictions. The uncertainty includes both the variation among the predicted values (epistemic uncertainty) and the model’s own estimates for how well it fits the data (aleatoric uncertainty). Not all models support uncertainty prediction.

Parameters

• dataset (dc.data.Dataset) – Dataset to make prediction on
• masks (int) – the number of dropout masks to average over

Returns

• for each output, a tuple (y_pred, y_std) where y_pred is the predicted
• value of the output, and each element of y_std estimates the standard
• deviation of the corresponding element of y_pred

Evaluate the performance of this model on the data produced by a generator.

Parameters

• generator (generator) – this should generate batches, each represented as a tuple of the form (inputs, labels, weights).
• metric (list of deepchem.metrics.Metric) – Evaluation metric
• transformers (list of dc.trans.Transformer) – Transformers that the input data has been transformed by. The output is passed through these transformers to undo the transformations.
• per_task_metrics (bool) – If True, return per-task scores.

Returns Maps tasks to scores under metric.

Return type dict
compute_saliency

```python
compute_saliency(X: numpy.ndarray) → Union[numpy.ndarray, Sequence[numpy.ndarray]]
```

Compute the saliency map for an input sample.

This computes the Jacobian matrix with the derivative of each output element with respect to each input element. More precisely,

- If this model has a single output, it returns a matrix of shape (output_shape, input_shape) with the derivatives.
- If this model has multiple outputs, it returns a list of matrices, one for each output.

This method cannot be used on models that take multiple inputs.

Parameters

- **X** *(ndarray)* – the input data for a single sample

Return type

the Jacobian matrix, or a list of matrices

default_generator

```python
```

Create a generator that iterates batches for a dataset.

Subclasses may override this method to customize how model inputs are generated from the data.

Parameters

- **dataset** *(Dataset)* – the data to iterate
- **epochs** *(int)* – the number of times to iterate over the full dataset
- **mode** *(str)* – allowed values are ‘fit’ (called during training), ‘predict’ (called during prediction), and ‘uncertainty’ (called during uncertainty prediction)
- **deterministic** *(bool)* – whether to iterate over the dataset in order, or randomly shuffle the data for each epoch
- **pad_batches** *(bool)* – whether to pad each batch up to this model’s preferred batch size

Returns

- a generator that iterates batches, each represented as a tuple of lists
- ([inputs], [outputs], [weights])

save_checkpoint

```python
save_checkpoint(max_checkpoints_to_keep: int = 5, model_dir: Optional[str] = None) → None
```

Save a checkpoint to disk.

Usually you do not need to call this method, since fit() saves checkpoints automatically. If you have disabled automatic checkpointing during fitting, this can be called to manually write checkpoints.

Parameters

- **max_checkpoints_to_keep** *(int)* – the maximum number of checkpoints to keep. Older checkpoints are discarded.
- **model_dir** *(str, default None)* – Model directory to save checkpoint to. If None, revert to self.model_dir

get_checkpoints

```python
get_checkpoints(model_dir: Optional[str] = None)
```

Get a list of all available checkpoint files.

Parameters

- **model_dir** *(str, default None)* – Directory to get list of checkpoints from. Reverts to self.model_dir if None
restore *(checkpoint: Optional[str] = None, model_dir: Optional[str] = None) → None*

Reload the values of all variables from a checkpoint file.

Parameters

- **checkpoint** *(str)* – the path to the checkpoint file to load. If this is None, the most recent checkpoint will be chosen automatically. Call `get_checkpoints()` to get a list of all available checkpoints.

- **model_dir** *(str, default None)* – Directory to restore checkpoint from. If None, use `self.model_dir`. If checkpoint is not None, this is ignored.

get_global_step() → int

Get the number of steps of fitting that have been performed.

load_from_pretrained *(source_model: deepchem.models.torch_models.torch_model.TorchModel, assignment_map: Optional[Dict[Any, Any]] = None, value_map: Optional[Dict[Any, Any]] = None, checkpoint: Optional[str] = None, model_dir: Optional[str] = None, include_top: bool = True, inputs: Optional[Sequence[Any]] = None, **kwargs)* → None

Copies parameter values from a pretrained model. `source_model` can either be a pretrained model or a model with the same architecture. `value_map` is a parameter-value dictionary. If no `value_map` is provided, the parameter values are restored to the `source_model` from a checkpoint and a default `value_map` is created. `assignment_map` is a dictionary mapping parameters from the `source_model` to the current model. If no `assignment_map` is provided, one is made from scratch and assumes the model is composed of several different layers, with the final one being a dense layer. `include_top` is used to control whether or not the final dense layer is used. The default assignment map is useful in cases where the type of task is different (classification vs regression) and/or number of tasks in the setting.

Parameters

- **source_model** *(dc.TorchModel, required)* – `source_model` can either be the pretrained model or a `dc.TorchModel` with the same architecture as the pretrained model. It is used to restore from a checkpoint, if `value_map` is None and to create a default assignment map if `assignment_map` is None

- **assignment_map** *(Dict, default None)* – Dictionary mapping the `source_model` parameters and current model parameters

- **value_map** *(Dict, default None)* – Dictionary containing `source_model` trainable parameters mapped to numpy arrays. If `value_map` is None, the values are restored and a default parameter map is created using the restored values

- **checkpoint** *(str, default None)* – the path to the checkpoint file to load. If this is None, the most recent checkpoint will be chosen automatically. Call `get_checkpoints()` to get a list of all available checkpoints

- **model_dir** *(str, default None)* – Restore model from custom model directory if needed

- **include_top** *(bool, default True)* – if True, copies the weights and bias associated with the final dense layer. Used only when assignment map is None

- **inputs** *(List, input tensors for model)* – if not None, then the weights are built for both the source and self.
3.17.2 CNN

class CNN(n_tasks: int, n_features: int, dims: int, layer_filters: List[int] = [100], kernel_size: Union[int, Sequence[int]] = 5, strides: Union[int, Sequence[int]] = 1, weight_init_stdevs: Union[float, Sequence[float]] = 0.02, bias_init_consts: Union[float, Sequence[float]] = 1.0, weight_decay_penalty: float = 0.0, weight_decay_penalty_type: str = 'l2', dropouts: Union[float, Sequence[float]] = 0.5, activation_fns: Union[Callable, str, Sequence[Union[Callable, str]]] = ['relu', 'pool_type': str = 'max', mode: str = 'classification', n_classes: int = 2, uncertainty: bool = False, residual: bool = False, padding: Union[int, str] = 'valid', **kwargs)

A 1, 2, or 3 dimensional convolutional network for either regression or classification.

The network consists of the following sequence of layers:

- A configurable number of convolutional layers
- A global pooling layer (either max pool or average pool)
- A final fully connected layer to compute the output

It optionally can compose the model from pre-activation residual blocks, as described in https://arxiv.org/abs/1603.05027, rather than a simple stack of convolution layers. This often leads to easier training, especially when using a large number of layers. Note that residual blocks can only be used when successive layers have the same output shape. Wherever the output shape changes, a simple convolution layer will be used even if residual=True.

Examples

```python
>>> n_samples = 10
>>> n_features = 3
>>> n_tasks = 1
>>> np.random.seed(123)
>>> X = np.random.rand(n_samples, 10, n_features)
>>> y = np.random.randint(2, size=(n_samples, n_tasks)).astype(np.float32)
>>> dataset: dc.data.Dataset = dc.data.NumpyDataset(X, y)
>>> regression_metric = dc.metrics.Metric(dc.metrics.mean_squared_error)
>>> model = CNN(n_tasks, n_features, dims=1, kernel_size=3, mode='regression')
>>> avg_loss = model.fit(dataset, nb_epoch=10)
```

__init__(n_tasks: int, n_features: int, dims: int, layer_filters: List[int] = [100], kernel_size: Union[int, Sequence[int]] = 5, strides: Union[int, Sequence[int]] = 1, weight_init_stdevs: Union[float, Sequence[float]] = 0.02, bias_init_consts: Union[float, Sequence[float]] = 1.0, weight_decay_penalty: float = 0.0, weight_decay_penalty_type: str = 'l2', dropouts: Union[float, Sequence[float]] = 0.5, activation_fns: Union[Callable, str, Sequence[Union[Callable, str]]] = ['relu', 'pool_type': str = 'max', mode: str = 'classification', n_classes: int = 2, uncertainty: bool = False, residual: bool = False, padding: Union[int, str] = 'valid', **kwargs) → None

TorchModel wrapper for CNN

Parameters

n_tasks: int number of tasks

n_features: int number of features

dims: int the number of dimensions to apply convolutions over (1, 2, or 3)

layer_filters: list the number of output filters for each convolutional layer in the network. The length of this list determines the number of layers.
kernel_size: int, tuple, or list a list giving the shape of the convolutional kernel for each layer. Each element may be either an int (use the same kernel width for every dimension) or a tuple (the kernel width along each dimension). Alternatively this may be a single int or tuple instead of a list, in which case the same kernel shape is used for every layer.

strides: int, tuple, or list a list giving the stride between applications of the kernel for each layer. Each element may be either an int (use the same stride for every dimension) or a tuple (the stride along each dimension). Alternatively this may be a single int or tuple instead of a list, in which case the same stride is used for every layer.

weight_init_stdevs: list or float the standard deviation of the distribution to use for weight initialization of each layer. The length of this list should equal len(layer_filters)+1, where the final element corresponds to the dense layer. Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.

bias_init_consts: list or float the value to initialize the biases in each layer to. The length of this list should equal len(layer_filters)+1, where the final element corresponds to the dense layer. Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.

weight_decay_penalty: float the magnitude of the weight decay penalty to use

weight_decay_penalty_type: str the type of penalty to use for weight decay, either ‘l1’ or ‘l2’

dropouts: list or float the dropout probability to use for each layer. The length of this list should equal len(layer_filters). Alternatively this may be a single value instead of a list, in which case the same value is used for every layer

activation_fns: str or list the torch activation function to apply to each layer. The length of this list should equal len(layer_filters). Alternatively this may be a single value instead of a list, in which case the same value is used for every layer, ‘relu’ by default

pool_type: str the type of pooling layer to use, either ‘max’ or ‘average’

mode: str Either ‘classification’ or ‘regression’

n_classes: int the number of classes to predict (only used in classification mode)

uncertainty: bool if True, include extra outputs and loss terms to enable the uncertainty in outputs to be predicted

residual: bool if True, the model will be composed of pre-activation residual blocks instead of a simple stack of convolutional layers.

padding: str, int or tuple the padding to use for convolutional layers, either ‘valid’ or ‘same’

default_generator(dataset, epochs=1, mode='fit', deterministic=True, pad_batches=True)
Create a generator that iterates batches for a dataset.
Subclasses may override this method to customize how model inputs are generated from the data.

Parameters

• dataset (Dataset) – the data to iterate
• epochs (int) – the number of times to iterate over the full dataset
• mode (str) – allowed values are ‘fit’ (called during training), ‘predict’ (called during prediction), and ‘uncertainty’ (called during uncertainty prediction)
• deterministic (bool) – whether to iterate over the dataset in order, or randomly shuffle the data for each epoch
• pad_batches (bool) – whether to pad each batch up to this model’s preferred batch size
Returns

- a generator that iterates batches, each represented as a tuple of lists
- ([inputs], [outputs], [weights])

3.17.3 MultitaskRegressor
class MultitaskRegressor(n_tasks: int, n_features: int, layer_sizes: Sequence[int] = [1000],
weight_init_stddevs: Union[float, Sequence[float]] = 0.02, bias_init_consts:
Union[float, Sequence[float]] = 1.0, weight_decay_penalty: float = 0.0,
weight_decay_penalty_type: str = 'l2', dropouts: Union[float, Sequence[float]] =
0.5, activation_fns: Union[Callable, str, Sequence[Union[Callable, str]]] = 'relu',
uncertainty: bool = False, residual: bool = False, **kwargs)

A fully connected network for multitask regression.

This class provides lots of options for customizing aspects of the model: the number and widths of layers, the
activation functions, regularization methods, etc.

It optionally can compose the model from pre-activation residual blocks, as described in https://arxiv.org/abs/
1603.05027, rather than a simple stack of dense layers. This often leads to easier training, especially when using
a large number of layers. Note that residual blocks can only be used when successive layers have the same width.
Wherever the layer width changes, a simple dense layer will be used even if residual=True.

__init__(n_tasks: int, n_features: int, layer_sizes: Sequence[int] = [1000], weight_init_stddevs:
Union[float, Sequence[float]] = 0.02, bias_init_consts: Union[float, Sequence[float]] = 1.0,
weight_decay_penalty: float = 0.0, weight_decay_penalty_type: str = 'l2', dropouts: Union[float,
Sequence[float]] = 0.5, activation_fns: Union[Callable, str, Sequence[Union[Callable, str]]] =
'relu', uncertainty: bool = False, residual: bool = False, **kwargs) \rightarrow None

Create a MultitaskRegressor.

In addition to the following arguments, this class also accepts all the keyword arguments from TensorGraph.

Parameters

- n_tasks (int) – number of tasks
- n_features (int) – number of features
- layer_sizes (list) – the size of each dense layer in the network. The length of this list
determines the number of layers.
- weight_init_stddevs (list or float) – the standard deviation of the distribution
to use for weight initialization of each layer. The length of this list should equal
len(layer_sizes)+1. The final element corresponds to the output layer. Alternatively this
may be a single value instead of a list, in which case the same value is used for every layer.
- bias_init_consts (list or float) – the value to initialize the biases in each layer
to. The length of this list should equal len(layer_sizes)+1. The final element corresponds
to the output layer. Alternatively this may be a single value instead of a list, in which case
the same value is used for every layer.
- weight_decay_penalty (float) – the magnitude of the weight decay penalty to use
- weight_decay_penalty_type (str) – the type of penalty to use for weight decay, either
‘l1’ or ‘l2’
- dropouts (list or float) – the dropout probability to use for each layer. The length of
this list should equal len(layer_sizes). Alternatively this may be a single value instead of a
list, in which case the same value is used for every layer.
• **activation_fns** *(list or object)* – the PyTorch activation function to apply to each layer. The length of this list should equal `len(layer_sizes)`. Alternatively this may be a single value instead of a list, in which case the same value is used for every layer. Standard activation functions from `torch.nn.functional` can be specified by name.

• **uncertainty** *(bool)* – if True, include extra outputs and loss terms to enable the uncertainty in outputs to be predicted

• **residual** *(bool)* – if True, the model will be composed of pre-activation residual blocks instead of a simple stack of dense layers.

default_generator *(dataset: deepchem.data.datasets.Dataset, epochs: int = 1, mode: str = 'fit', deterministic: bool = True, pad_batches: bool = True) → Iterable[Tuple[List, List, List]]*

Create a generator that iterates batches for a dataset.

Subclasses may override this method to customize how model inputs are generated from the data.

Parameters

* dataset *(Dataset)* – the data to iterate
* epochs *(int)* – the number of times to iterate over the full dataset
* mode *(str)* – allowed values are ‘fit’ (called during training), ‘predict’ (called during prediction), and ‘uncertainty’ (called during uncertainty prediction)
* deterministic *(bool)* – whether to iterate over the dataset in order, or randomly shuffle the data for each epoch
* pad_batches *(bool)* – whether to pad each batch up to this model’s preferred batch size

Returns

* a generator that iterates batches, each represented as a tuple of lists
 * ([inputs], [outputs], [weights])

3.17.4 MultitaskFitTransformRegressor

class MultitaskFitTransformRegressor *(n_tasks: int, n_features: int, fit_transformers: Sequence[transformers.Transformer] = [], batch_size: int = 50, **kwargs)*

Implements a MultitaskRegressor that performs on-the-fly transformation during fit/predict.

Examples

```python
>>> n_samples = 10
>>> n_features = 3
>>> n_tasks = 1
>>> ids = np.arange(n_samples)
>>> X = np.random.rand(n_samples, n_features, n_features)
>>> y = np.zeros((n_samples, n_tasks))
>>> w = np.ones((n_samples, n_tasks))
>>> dataset = dc.data.NumpyDataset(X, y, w, ids)
>>> fit_transformers = [dc.trans.CoulombFitTransformer(dataset)]
>>> model = dc.models.MultitaskFitTransformRegressor(n_tasks, [n_features, n_features],
```

(continues on next page)
... dropouts=[0.], learning_rate=0.003, weight_init_stddevs=[np.sqrt(6)/np.sqrt(1000)],
... batch_size=n_samples, fit_transformers=fit_transformers)

>>> model.n_features
12

__init__(n_tasks: int, n_features: int, fit_transformers: Sequence[transformers.Transformer] = [],
batch_size: int = 50, **kwargs)

Create a MultitaskFitTransformRegressor.

In addition to the following arguments, this class also accepts all the keyword arguments from MultitaskRegressor.

Parameters

- **n_tasks** (int) – number of tasks
- **n_features** (list or int) – number of features
- **fit_transformers** (list) – List of dc.trans.FitTransformer objects

default_generator(dataset: deepchem.data.datasets.Dataset, epochs: int = 1, mode: str = 'fit',
deterministic: bool = True, pad_batches: bool = True) → Iterable[Tuple[List, List, List]]

Create a generator that iterates batches for a dataset.

Subclasses may override this method to customize how model inputs are generated from the data.

Parameters

- **dataset** (Dataset) – the data to iterate
- **epochs** (int) – the number of times to iterate over the full dataset
- **mode** (str) – allowed values are ‘fit’ (called during training), ‘predict’ (called during prediction), and ‘uncertainty’ (called during uncertainty prediction)
- **deterministic** (bool) – whether to iterate over the dataset in order, or randomly shuffle the data for each epoch
- **pad_batches** (bool) – whether to pad each batch up to this model’s preferred batch size

Returns

- a generator that iterates batches, each represented as a tuple of lists
- ([inputs], [outputs], [weights])

predict_on_generator(generator: Iterable[Tuple[Any, Any, Any]], transformers:
List[transformers.Transformer] = [], output_types: Optional[Union[str, Sequence[str]]] = None) → Union[numpy.ndarray, Sequence[numpy.ndarray]]

Parameters

- **generator** (generator) – this should generate batches, each represented as a tuple of the form (inputs, labels, weights).
- **transformers** (list of dc.trans.Transformers) – Transformers that the input data has been transformed by. The output is passed through these transformers to undo the transformations.
3.17.5 MultitaskClassifier

class MultitaskClassifier(n_tasks: int, n_features: int, layer_sizes: Sequence[int] = [1000], weight_init_stdevs: Union[float, Sequence[float]] = 0.02, bias_init_consts: Union[float, Sequence[float]] = 1.0, weight_decay_penalty: float = 0.0, weight_decay_penalty_type: str = 'l2', dropouts: Union[float, Sequence[float]] = 0.5, activation_fns: Union[Callable, str, Sequence[Union[Callable, str]]] = 'relu', n_classes: int = 2, residual: bool = False, **kwargs)

A fully connected network for multitask classification.

This class provides lots of options for customizing aspects of the model: the number and widths of layers, the activation functions, regularization methods, etc.

It optionally can compose the model from pre-activation residual blocks, as described in https://arxiv.org/abs/1603.05027, rather than a simple stack of dense layers. This often leads to easier training, especially when using a large number of layers. Note that residual blocks can only be used when successive layers have the same width. Wherever the layer width changes, a simple dense layer will be used even if residual=True.

__init__(n_tasks: int, n_features: int, layer_sizes: Sequence[int] = [1000], weight_init_stdevs: Union[float, Sequence[float]] = 0.02, bias_init_consts: Union[float, Sequence[float]] = 1.0, weight_decay_penalty: float = 0.0, weight_decay_penalty_type: str = 'l2', dropouts: Union[float, Sequence[float]] = 0.5, activation_fns: Union[Callable, str, Sequence[Union[Callable, str]]] = 'relu', n_classes: int = 2, residual: bool = False, **kwargs) → None

Create a MultitaskClassifier.

In addition to the following arguments, this class also accepts all the keyword arguments from TensorGraph.

Parameters

- **n_tasks** (int) – number of tasks
- **n_features** (int) – number of features
- **layer_sizes** (list) – the size of each dense layer in the network. The length of this list determines the number of layers.
- **weight_init_stdevs** (list or float) – the standard deviation of the distribution to use for weight initialization of each layer. The length of this list should equal len(layer_sizes). Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.
- **bias_init_consts** (list or float) – the value to initialize the biases in each layer to. The length of this list should equal len(layer_sizes). Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.
- **weight_decay_penalty** (float) – the magnitude of the weight decay penalty to use
- **weight_decay_penalty_type** (str) – the type of penalty to use for weight decay, either ‘l1’ or ‘l2’
- **dropouts** (list or float) – the dropout probability to use for each layer. The length of this list should equal len(layer_sizes). Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.
activation_fns *(list or object)* – the PyTorch activation function to apply to each layer. The length of this list should equal len(layer_sizes). Alternatively this may be a single value instead of a list, in which case the same value is used for every layer. Standard activation functions from torch.nn.functional can be specified by name.

n_classes *(int)* – the number of classes

residual *(bool)* – if True, the model will be composed of pre-activation residual blocks instead of a simple stack of dense layers.

default_generator *(dataset: deepchem.data.datasets.Dataset, epochs: int = 1, mode: str = 'fit', deterministic: bool = True, pad_batches: bool = True) → Iterable[Tuple[List, List, List]]*

Create a generator that iterates batches for a dataset.

Subclasses may override this method to customize how model inputs are generated from the data.

Parameters

- **dataset** *(Dataset)* – the data to iterate
- **epochs** *(int)* – the number of times to iterate over the full dataset
- **mode** *(str)* – allowed values are ‘fit’ (called during training), ‘predict’ (called during prediction), and ‘uncertainty’ (called during uncertainty prediction)
- **deterministic** *(bool)* – whether to iterate over the dataset in order, or randomly shuffle the data for each epoch
- **pad_batches** *(bool)* – whether to pad each batch up to this model’s preferred batch size

Returns

- a generator that iterates batches, each represented as a tuple of lists

```
([inputs], [outputs], [weights])
```

3.17.6 CGCNNModel

class CGCNNModel *(in_node_dim: int = 92, hidden_node_dim: int = 64, in_edge_dim: int = 41, num_conv: int = 3, predictor_hidden_feats: int = 128, n_tasks: int = 1, mode: str = 'regression', n_classes: int = 2, **kwargs)*

Crystal Graph Convolutional Neural Network (CGCNN).

Here is a simple example of code that uses the CGCNNModel with materials dataset.

Examples

```python
>>> import deepchem as dc
>>> dataset_config = {'reload': False, 'featurizer': dc.feat.CGCNNFeaturizer(), ...
˓→'transformers': []}
>>> tasks, datasets, transformers = dc.molnet.load_perovskite(**dataset_config)
>>> train, valid, test = datasets
>>> model = dc.models.CGCNNModel(mode='regression', batch_size=32, learning_rate=0.001)
>>> avg_loss = model.fit(train, nb_epoch=50)
```
This model takes arbitrary crystal structures as an input, and predict material properties using the element information and connection of atoms in the crystal. If you want to get some material properties which has a high computational cost like band gap in the case of DFT, this model may be useful. This model is one of variants of Graph Convolutional Networks. The main differences between other GCN models are how to construct graphs and how to update node representations. This model defines the crystal graph from structures using distances between atoms. The crystal graph is an undirected multigraph which is defined by nodes representing atom properties and edges representing connections between atoms in a crystal. And, this model updates the node representations using both neighbor node and edge representations. Please confirm the detail algorithms from [1].

References

Notes

This class requires DGL and PyTorch to be installed.

```python
__init__(in_node_dim: int = 92, hidden_node_dim: int = 64, in_edge_dim: int = 41, num_conv: int = 3, predictor_hidden_feats: int = 128, n_tasks: int = 1, mode: str = 'regression', n_classes: int = 2, **kwargs)
```

This class accepts all the keyword arguments from TorchModel.

Parameters

- **in_node_dim** (int, default 92) – The length of the initial node feature vectors. The 92 is based on length of vectors in the atom_init.json.
- **hidden_node_dim** (int, default 64) – The length of the hidden node feature vectors.
- **in_edge_dim** (int, default 41) – The length of the initial edge feature vectors. The 41 is based on default setting of CGCNNFeaturizer.
- **num_conv** (int, default 3) – The number of convolutional layers.
- **predictor_hidden_feats** (int, default 128) – The size for hidden representations in the output MLP predictor.
- **n_tasks** (int, default 1) – The number of the output size.
- **mode** (str, default 'regression') – The model type, ‘classification’ or ‘regression’.
- **n_classes** (int, default 2) – The number of classes to predict (only used in classification mode).
- **kwargs** (Dict) – This class accepts all the keyword arguments from TorchModel.

3.17.7 GATModel

```python
class GATModel(n_tasks: int, graph_attention_layers: typing.Optional[list] = None, n_attention_heads: int = 8, agg_modes: typing.Optional[list] = None, activation=<function elu>, residual: bool = True, dropout: float = 0.0, alpha: float = 0.2, predictor_hidden_feats: int = 128, predictor_dropout: float = 0.0, mode: str = 'regression', number_atom_features: int = 30, n_classes: int = 2, self_loop: bool = True, **kwargs)
```

Model for Graph Property Prediction Based on Graph Attention Networks (GAT).

This model proceeds as follows:

- Update node representations in graphs with a variant of GAT
For each graph, compute its representation by 1) a weighted sum of the node representations in the graph, where the weights are computed by applying a gating function to the node representations 2) a max pooling of the node representations 3) concatenating the output of 1) and 2)

Perform the final prediction using an MLP

Examples

```python
>>> import deepchem as dc
>>> from deepchem.models import GATModel

>>> # preparing dataset
>>> smiles = ['C1CCC1', 'C1=CC=CN=C1']
>>> labels = [0., 1.]
>>> featurizer = dc.feat.MolGraphConvFeaturizer()
>>> X = featurizer.featureize(smiles)
>>> dataset = dc.data.NumpyDataset(X=X, y=labels)

>>> # training model
>>> model = GATModel(mode='classification', n_tasks=1,
...                    batch_size=16, learning_rate=0.001)
>>> loss = model.fit(dataset, nb_epoch=5)
```

References

Notes

This class requires DGL (https://github.com/dmlc/dgl) and DGL-LifeSci (https://github.com/awslabs/dgl-lifesci) to be installed.

```python
```
• **residual** *(bool)* – Whether to add a residual connection within each GAT layer. Default to True.

• **dropout** *(float)* – The dropout probability within each GAT layer. Default to 0.

• **alpha** *(float)* – A hyperparameter in LeakyReLU, which is the slope for negative values. Default to 0.2.

• **predictor_hidden_feats** *(int)* – The size for hidden representations in the output MLP predictor. Default to 128.

• **predictor_dropout** *(float)* – The dropout probability in the output MLP predictor. Default to 0.

• **mode** *(str)* – The model type, ‘classification’ or ‘regression’. Default to ‘regression’.

• **number_atom_features** *(int)* – The length of the initial atom feature vectors. Default to 30.

• **n_classes** *(int)* – The number of classes to predict per task (only used when **mode** is ‘classification’). Default to 2.

• **self_loop** *(bool)* – Whether to add self loops for the nodes, i.e. edges from nodes to themselves. When input graphs have isolated nodes, self loops allow preserving the original feature of them in message passing. Default to True.

• **kwargs** – This can include any keyword argument of TorchModel.

3.17.8 GCNModel

```python
class GCNModel(n_tasks: int, graph_conv_layers: Optional[list] = None, activation=None, residual: bool = True, batchnorm: bool = False, dropout: float = 0.0, predictor_hidden_feats: int = 128, predictor_dropout: float = 0.0, mode: str = 'regression', number_atom_features=30, n_classes: int = 2, self_loop: bool = True, **kwargs)
```

Model for Graph Property Prediction Based on Graph Convolution Networks (GCN).

This model proceeds as follows:

• Update node representations in graphs with a variant of GCN

• For each graph, compute its representation by 1) a weighted sum of the node representations in the graph, where the weights are computed by applying a gating function to the node representations 2) a max pooling of the node representations 3) concatenating the output of 1) and 2)

• Perform the final prediction using an MLP

Examples

```python
>>> import deepchem as dc
>>> from deepchem.models import GCNModel
>>> # preparing dataset
>>> smiles = ['C1CCC1', 'CCC']
>>> labels = [0., 1.]
>>> featurizer = dc.feat.MolGraphConvFeaturizer()
>>> X = featurizer.featurize(smiles)
>>> dataset = dc.data.NumpyDataset(X=X, y=labels)
>>> # training model
```
deepchem, Release 2.6.1.dev

>>> model = GCNModel(mode='classification', n_tasks=1, ...
 batch_size=16, learning_rate=0.001)
>>> loss = model.fit(dataset, nb_epoch=5)

References

Notes

This class requires DGL (https://github.com/dmlc/dgl) and DGL-LifeSci (https://github.com/awslabs/dgl-lifesci) to be installed.

This model is different from deepchem.models.GraphConvModel as follows:

- For each graph convolution, the learnable weight in this model is shared across all nodes. GraphConvModel employs separate learnable weights for nodes of different degrees. A learnable weight is shared across all nodes of a particular degree.

- For GraphConvModel, there is an additional GraphPool operation after each graph convolution. The operation updates the representation of a node by applying an element-wise maximum over the representations of its neighbors and itself.

- For computing graph-level representations, this model computes a weighted sum and an element-wise maximum of the representations of all nodes in a graph and concatenates them. The node weights are obtained by using a linear/dense layer followed by a sigmoid function. For GraphConvModel, the sum over node representations is unweighted.

- There are various minor differences in using dropout, skip connection and batch normalization.

```
__init__(n_tasks: int, graph_conv_layers: Optional[list] = None, activation=None, residual: bool = True, batchnorm: bool = False, dropout: float = 0.0, predictor_hidden_feats: int = 128, predictor_dropout: float = 0.0, mode: str = 'regression', number_atom_features=30, n_classes: int = 2, self_loop: bool = True, **kwargs)
```

Parameters

- **n_tasks** (int) – Number of tasks.
- **graph_conv_layers** (list of int) – Width of channels for GCN layers. graph_conv_layers[i] gives the width of channel for the i-th GCN layer. If not specified, the default value will be [64, 64].
- **activation** (callable) – The activation function to apply to the output of each GCN layer. By default, no activation function will be applied.
- **residual** (bool) – Whether to add a residual connection within each GCN layer. Default to True.
- **batchnorm** (bool) – Whether to apply batch normalization to the output of each GCN layer. Default to False.
- **dropout** (float) – The dropout probability for the output of each GCN layer. Default to 0.
- **predictor_hidden_feats** (int) – The size for hidden representations in the output MLP predictor. Default to 128.
- **predictor_dropout** (float) – The dropout probability in the output MLP predictor. Default to 0.
• **mode** *(str)* – The model type, ‘classification’ or ‘regression’. Default to ‘regression’.

• **number_atom_features** *(int)* – The length of the initial atom feature vectors. Default to 30.

• **n_classes** *(int)* – The number of classes to predict per task (only used when **mode** is ‘classification’). Default to 2.

• **self_loop** *(bool)* – Whether to add self loops for the nodes, i.e. edges from nodes to themselves. When input graphs have isolated nodes, self loops allow preserving the original feature of them in message passing. Default to True.

• **kwargs** – This can include any keyword argument of TorchModel.

3.17.9 AttentiveFPModel

class **AttentiveFPModel**(n_tasks: int, num_layers: int = 2, num_timesteps: int = 2, graph_feat_size: int = 200, dropout: float = 0.0, mode: str = 'regression', number_atom_features: int = 30, number_bond_features: int = 11, n_classes: int = 2, self_loop: bool = True, **kwargs)

Model for Graph Property Prediction.

This model proceeds as follows:

• Combine node features and edge features for initializing node representations, which involves a round of message passing

• Update node representations with multiple rounds of message passing

• For each graph, compute its representation by combining the representations of all nodes in it, which involves a gated recurrent unit (GRU).

• Perform the final prediction using a linear layer

Examples

```python
>>> import deepchem as dc
>>> from deepchem.models import AttentiveFPModel
>>> # preparing dataset
>>> smiles = ['C1CCC1', 'C1=CC=CN=C1']
>>> labels = [0., 1.]
>>> featurizer = dc.feat.MolGraphConvFeaturizer(use_edges=True)
>>> X = featurizer.featurize(smiles)
>>> dataset = dc.data.NumpyDataset(X=X, y=labels)
>>> # training model
>>> model = AttentiveFPModel(mode='classification', n_tasks=1,
... batch_size=16, learning_rate=0.001)
>>> loss = model.fit(dataset, nb_epoch=5)
```


References

Notes

This class requires DGL (https://github.com/dmlc/dgl) and DGL-LifeSci (https://github.com/awslabs/dgl-lifesci) to be installed.

```python
__init__(n_tasks: int, num_layers: int = 2, num_timesteps: int = 2, graph_feat_size: int = 200, dropout: float = 0.0, mode: str = 'regression', number_atom_features: int = 30, number_bond_features: int = 11, n_classes: int = 2, self_loop: bool = True, **kwargs)
```

Parameters

- **n_tasks** (int) – Number of tasks.
- **num_layers** (int) – Number of graph neural network layers, i.e. number of rounds of message passing. Default to 2.
- **num_timesteps** (int) – Number of time steps for updating graph representations with a GRU. Default to 2.
- **graph_feat_size** (int) – Size for graph representations. Default to 200.
- **dropout** (float) – Dropout probability. Default to 0.
- **mode** (str) – The model type, ‘classification’ or ‘regression’. Default to ‘regression’.
- **number_atom_features** (int) – The length of the initial atom feature vectors. Default to 30.
- **number_bond_features** (int) – The length of the initial bond feature vectors. Default to 11.
- **n_classes** (int) – The number of classes to predict per task (only used when mode is ‘classification’). Default to 2.
- **self_loop** (bool) – Whether to add self loops for the nodes, i.e. edges from nodes to themselves. When input graphs have isolated nodes, self loops allow preserving the original feature of them in message passing. Default to True.
- **kwargs** – This can include any keyword argument of TorchModel.

3.17.10 PagtnModel

```python
```

Model for Graph Property Prediction.

This model proceeds as follows:

- Update node representations in graphs with a variant of GAT, where a linear additive form of attention is applied. Attention Weights are derived by concatenating the node and edge features for each bond.
- Update node representations with multiple rounds of message passing.
- For each layer has, residual connections with its previous layer.
- The final molecular representation is computed by combining the representations of all nodes in the molecule.
Perform the final prediction using a linear layer

Examples

```python
>>> import deepchem as dc
>>> from deepchem.models import PagtnModel
>>> # preparing dataset
>>> smiles = ["C1CCC1", "CCC"]
>>> labels = [0., 1.]
>>> featurizer = dc.feat.PagtnMolGraphFeaturizer(max_length=5)
>>> X = featurizer.featurize(smiles)
>>> dataset = dc.data.NumpyDataset(X=X, y=labels)
>>> # training model
>>> model = PagtnModel(mode='classification', n_tasks=1,
...                      batch_size=16, learning_rate=0.001)
>>> loss = model.fit(dataset, nb_epoch=5)
```

References

Notes

This class requires DGL (https://github.com/dmlc/dgl) and DGL-LifeSci (https://github.com/awslabs/dgl-lifesci) to be installed.

```
```

Parameters

- `n_tasks` (int) – Number of tasks.
- `number_atom_features` (int) – Size for the input node features. Default to 94.
- `number_bond_features` (int) – Size for the input edge features. Default to 42.
- `mode` (str) – The model type, ‘classification’ or ‘regression’. Default to ‘regression’.
- `n_classes` (int) – The number of classes to predict per task (only used when `mode` is ‘classification’). Default to 2.
- `output_node_features` (int) – Size for the output node features in PAGTN layers. Default to 256.
- `hidden_features` (int) – Size for the hidden node features in PAGTN layers. Default to 32.
- `num_layers` (int) – Number of graph neural network layers, i.e. number of rounds of message passing. Default to 2.
- `num_heads` (int) – Number of attention heads. Default to 1.
- `dropout` (float) – Dropout probability. Default to 0.1
- `pool_mode` (‘max’ or ‘mean’ or ‘sum’) – Whether to compute elementwise maximum, mean or sum of the node representations.
- `kwargs` – This can include any keyword argument of TorchModel.
3.17.11 MPNNModel

Note that this is an alternative implementation for MPNN and currently you can only import it from `deepchem.models.torch_models`.

Model for graph property prediction

This model proceeds as follows:

• Combine latest node representations and edge features in updating node representations, which involves multiple rounds of message passing

• For each graph, compute its representation by combining the representations of all nodes in it, which involves a Set2Set layer.

• Perform the final prediction using an MLP

Examples

```python
>>> import deepchem as dc
>>> from deepchem.models.torch_models import MPNNModel
>>> # preparing dataset
>>> smiles = ['C1CCC1', 'CCC']
>>> labels = [0., 1.]
>>> featurizer = dc.feat.MolGraphConvFeaturizer(use_edges=True)
>>> X = featurizer.featurize(smiles)
>>> dataset = dc.data.NumpyDataset(X=X, y=labels)
>>> # training model
>>> model = MPNNModel(mode='classification', n_tasks=1, ...
... batch_size=16, learning_rate=0.001)
>>> loss = model.fit(dataset, nb_epoch=5)
```

References

Notes

This class requires DGL (https://github.com/dmlc/dgl) and DGL-LifeSci (https://github.com/awslabs/dgl-lifesci) to be installed.

Parameters

• n_tasks (int) – Number of tasks.

• node_out_feats (int) – The length of the final node representation vectors. Default to 64.
• **edge_hidden_feats** (int) – The length of the hidden edge representation vectors. Default to 128.

• **num_step_message_passing** (int) – The number of rounds of message passing. Default to 3.

• **num_step_set2set** (int) – The number of set2set steps. Default to 6.

• **num_layer_set2set** (int) – The number of set2set layers. Default to 3.

• **mode** (str) – The model type, ‘classification’ or ‘regression’. Default to ‘regression’.

• **number_atom_features** (int) – The length of the initial atom feature vectors. Default to 30.

• **number_bond_features** (int) – The length of the initial bond feature vectors. Default to 11.

• **n_classes** (int) – The number of classes to predict per task (only used when **mode** is ‘classification’). Default to 2.

• **self_loop** (bool) – Whether to add self loops for the nodes, i.e. edges from nodes to themselves. Generally, an MPNNModel does not require self loops. Default to False.

• **kwargs** – This can include any keyword argument of TorchModel.

3.17.12 LCNNModel

```python
class LCNNModel(n_occupancy: int = 3, n_neighbor_sites_list: int = 19, n_permutation_list: int = 6, n_task: int = 1, dropout_rate: float = 0.4, n_conv: int = 2, n_features: int = 44, sitewise_n_feature: int = 25, **kwargs)
```

Lattice Convolutional Neural Network (LCNN). Here is a simple example of code that uses the LCNNModel with Platinum 2d Adsorption dataset.

This model takes arbitrary configurations of Molecules on an adsorbate and predicts their formation energy. These formation energies are found using DFT calculations and LCNNModel is to automate that process. This model defines a crystal graph using the distance between atoms. The crystal graph is an undirected regular graph (equal neighbours) and different permutations of the neighbours are pre-computed using the LCNNFeaturizer. On each node for each permutation, the neighbour nodes are concatenated which are further operated. This model has only a node representation. Please confirm the detail algorithms from [1].

Examples

```python
>>> import deepchem as dc
>>> from pymatgen.core import Structure
>>> import numpy as np
>>> from deepchem.feat import LCNNFeaturizer
>>> from deepchem.molnet import load_Platinum_Adsorption
>>> PRIMITIVE_CELL = {
..   "lattice": [[2.818528, 0.0, 0.0],
..     [-1.409264, 2.440917, 0.0],
..     [0.0, 0.0, 25.508255]],
..   "coords": [[0.66667, 0.33333, 0.090221],
..     [0.33333, 0.66667, 0.18043936],
..     [0.0, 0.0, 0.27065772],
```

(continues on next page)
.. [0.66667, 0.33333, 0.36087608],
.. [0.33333, 0.66667, 0.45109444],
.. [0.0, 0.0, 0.49656991],
.. "species": ['H', 'H', 'H', 'H', 'He'],
.. "site_properties": {'SiteTypes': ['S1', 'S1', 'S1', 'S1', 'S1', 'A1']}
.. }

>> PRIMITIVE_CELL_INFO = {
.. "cutoff": np.around(6.00),
.. "structure": Structure(**PRIMITIVE_CELL),
.. "aos": ['1', '0', '2'],
.. "pbc": [True, True, False],
.. "ns": 1,
.. "na": 1
.. }

>> tasks, datasets, transformers = load_Platinum_Adsorption(
.. featurizer= LCNNFeaturizer(**PRIMITIVE_CELL_INFO)
..)

>> model = LCNNModel(mode='regression',
.. batch_size=8,
.. learning_rate=0.001)

>> model = LCNN()

>> out = model(lcnn_feat)

>> model.fit(train, nb_epoch=10)

References

Notes

This class requires DGL and PyTorch to be installed.

```
__init__(n_occupancy: int = 3, n_neighbor_sites_list: int = 19, n_permutation_list: int = 6, n_task: int = 1, 
dropout_rate: float = 0.4, n_conv: int = 2, n_features: int = 44, sitewise_n_feature: int = 25, 
**kwargs)
```

This class accepts all the keyword arguments from TorchModel.

Parameters

- **n_occupancy** (int, *default* 3) – number of possible occupancy.
- **n_neighbor_sites_list** (int, *default* 19) – Number of neighbors of each site.
- **n_permutation** (int, *default* 6) – Different permutations taken along different directions.
- **n_task** (int, *default* 1) – Number of tasks.
- **dropout_rate** (float, *default* 0.4) – p value for dropout between 0.0 to 1.0
- **n_conv** (int, *default* 2) – number of convolutions performed.
- **n_feature** (int, *default* 44) – number of feature for each site.
- **sitewise_n_feature** (int, *default* 25) – number of features for atoms for site-wise activation.
- **kwargs** (Dict) – This class accepts all the keyword arguments from TorchModel.
3.17.13 MEGNetModel

class MEGNetModel(n_node_features: int = 32, n_edge_features: int = 32, n_global_features: int = 32, n_blocks: int = 1, is_undirected: bool = True, residual_connection: bool = True, mode: str = 'regression', n_classes: int = 2, n_tasks: int = 1, **kwargs)

MatErials Graph Network for Molecules and Crystals

MatErials Graph Network [1] are Graph Networks [2] which are used for property prediction in molecules and crystals. The model implements multiple layers of Graph Network as MEGNetBlocks and then combines the node properties and edge properties of all nodes and edges via a Set2Set layer. The combines information is used with the global features of the material/molecule for property prediction tasks.

Example

```python
>>> import deepchem as dc
>>> from deepchem.models import MEGNetModel
>>> from deepchem.utils.fake_data_generator import FakeGraphGenerator as FGG
>>> graphs = FGG(global_features=4, num_classes=10).sample(n_graphs=20)
>>> model = dc.models.MEGNetModel(n_node_features=5, n_edge_features=3, n_global_features=4, n_blocks=3, is_undirected=True, residual_connection=True, mode='classification', n_classes=10, batch_size=16)
>>> training_loss = model.fit(graphs)
```

References

Note: The model requires PyTorch-Geometric to be installed.

__init__(n_node_features: int = 32, n_edge_features: int = 32, n_global_features: int = 32, n_blocks: int = 1, is_undirected: bool = True, residual_connection: bool = True, mode: str = 'regression', n_classes: int = 2, n_tasks: int = 1, **kwargs)

Parameters

- **n_node_features** (int) – Number of features in a node
- **n_edge_features** (int) – Number of features in an edge
- **n_global_features** (int) – Number of global features
- **n_blocks** (int) – Number of GraphNets block to use in update
- **is_undirected** (bool, optional (default True)) – True when the model is used on undirected graphs otherwise false
- **residual_connection** (bool, optional (default True)) – If True, the layer uses a residual connection during training
- **n_tasks** (int, default 1) – The number of tasks
- **mode** (str, default 'regression') – The model type - classification or regression
- **n_classes** (int, default 2) – The number of classes to predict (used only in classification mode).
- **kwargs** (Dict) – kwargs supported by TorchModel
3.17.14 MATModel

class MATModel(dist_kernel: str = 'softmax', n_encoders=8, lambda_attention: float = 0.33, lambda_distance: float = 0.33, h: int = 16, sa_hsize: int = 1024, sa_dropout_p: float = 0.0, output_bias: bool = True, d_input: int = 1024, d_hidden: int = 1024, d_output: int = 1024, activation: str = 'leakyrelu', n_layers: int = 1, ff_dropout_p: float = 0.0, encoder_hsize: int = 1024, encoder_dropout_p: float = 0.0, embed_input_hsize: int = 36, embed_dropout_p: float = 0.0, gen_aggregation_type: str = 'mean', gen_dropout_p: float = 0.0, gen_n_layers: int = 1, gen_attn_hidden: int = 128, gen_attn_out: int = 4, gen_d_output: int = 1, **kwargs)

Molecular Attention Transformer.

This class implements the Molecular Attention Transformer [1]. The MATFeaturizer (deepchem.feat.MATFeaturizer) is intended to work with this class. The model takes a batch of MATEncodings (from MATFeaturizer) as input, and returns an array of size Nx1, where N is the number of molecules in the batch. Each molecule is broken down into its Node Features matrix, adjacency matrix and distance matrix. A mask tensor is calculated for the batch. All of this goes as input to the MATEmbedding, MATEncoder and MATGenerator layers, which are defined in deepchem.models.torch_models.layers.py

Currently, MATModel is intended to be a regression model for the freesolv dataset.

References

Examples

```python
>>> import deepchem as dc
>>> import pandas as pd
>>> smiles = ['CC', 'CCC', 'CCCC', 'CCCCC', 'CCCCCCC']
>>> vals = [1.35, 6.72, 5.67, 1.23, 1.76]
>>> df = pd.DataFrame(list(zip(smiles, vals)), columns = ['smiles', 'y'])
>>> loader = dc.data.CSVLoader(tasks=['y'], feature_field='smiles', featurizer=dc.feat.MATFeaturizer())
>>> df.to_csv('test.csv')
>>> dataset = loader.create_dataset('test.csv')
>>> model = dc.models.torch_models.MATModel(batch_size = 2)
>>> out = model.fit(dataset, nb_epoch = 1)
```

The wrapper class for the Molecular Attention Transformer.

Since we are using a custom data class as input (MATEncoding), we have overridden the default_generator function from DiskDataset and customized it to work with a batch of MATEncoding classes.

Parameters

- **dist_kernel (str)** – Kernel activation to be used. Can be either ‘softmax’ for softmax or ‘exp’ for exponential, for the self-attention layer.
- **n_encoders (int)** – Number of encoder layers in the encoder block.
• **lambda_attention** (*float*) – Constant to be multiplied with the attention matrix in the self-attention layer.

• **lambda_distance** (*float*) – Constant to be multiplied with the distance matrix in the self-attention layer.

• **h** (*int*) – Number of attention heads for the self-attention layer.

• **sa_hsize** (*int*) – Size of dense layer in the self-attention layer.

• **sa_dropout_p** (*float*) – Dropout probability for the self-attention layer.

• **output_bias** (*bool*) – If True, dense layers will use bias vectors in the self-attention layer.

• **d_input** (*int*) – Size of input layer in the feed-forward layer.

• **d_hidden** (*int*) – Size of hidden layer in the feed-forward layer. Will also be used as d_output for the MATEmbedding layer.

• **d_output** (*int*) – Size of output layer in the feed-forward layer.

• **activation** (*str*) – Activation function to be used in the feed-forward layer. Can choose between ‘relu’ for ReLU, ‘leakyrelu’ for LeakyReLU, ‘prelu’ for PReLU, ‘tanh’ for TanH, ‘selu’ for SELU, ‘elu’ for ELU and ‘linear’ for linear activation.

• **n_layers** (*int*) – Number of layers in the feed-forward layer.

• **ff_dropout_p** (*float*) – Dropout probability in the feed-forward layer.

• **encoder_hsize** (*int*) – Size of Dense layer for the encoder itself.

• **encoder_dropout_p** (*float*) – Dropout probability for connections in the encoder layer.

• **embed_input_hsize** (*int*) – Size of input layer for the MATEmbedding layer.

• **embed_dropout_p** (*float*) – Dropout probability for the MATEmbedding layer.

• **gen_aggregation_type** (*str*) – Type of aggregation to be used. Can be ‘grover’, ‘mean’ or ‘contextual’.

• **gen_dropout_p** (*float*) – Dropout probability for the MATGenerator layer.

• **gen_n_layers** (*int*) – Number of layers in MATGenerator.

• **gen_attn_hidden** (*int*) – Size of hidden attention layer in the MATGenerator layer.

• **gen_attn_out** (*int*) – Size of output attention layer in the MATGenerator layer.

• **gen_d_output** (*int*) – Size of output layer in the MATGenerator layer.

pad_array *(array: numpy.ndarray, shape: Any) → numpy.ndarray*

Pads an array to the desired shape.

Parameters

- **array** (*np.ndarray*)
- **padded** (*array to be*)
- **shape** (*int or Tuple*)
- **to** (*Shape the array is padded*)

Returns

- **array** (*np.ndarray*)
- **Array padded to input shape*
pad_sequence(sequence: numpy.ndarray) → numpy.ndarray

Pads a given sequence using the pad_array function.

Parameters

- sequence (np.ndarray)

sequence. (Arrays in this sequence are padded to the largest shape in the)

Returns

- array (np.ndarray)

Sequence with padded arrays.

default_generator(dataset, epochs=1, mode='fit', deterministic=True, pad_batches=True, **kwargs)

Create a generator that iterates batches for a dataset.

Subclasses may override this method to customize how model inputs are generated from the data.

Parameters

- dataset (Dataset) – the data to iterate
- epochs (int) – the number of times to iterate over the full dataset
- mode (str) – allowed values are ‘fit’ (called during training), ‘predict’ (called during prediction), and ‘uncertainty’ (called during uncertainty prediction)
- deterministic (bool) – whether to iterate over the dataset in order, or randomly shuffle the data for each epoch
- pad_batches (bool) – whether to pad each batch up to this model’s preferred batch size

Returns

- a generator that iterates batches, each represented as a tuple of lists

- ([inputs], [outputs], [weights])

3.17.15 NormalizingFlowModel

class NormalizingFlow(transform: Sequence, base_distribution, dim: int)

Normalizing flows are widely used to perform generative models. This algorithm gives advantages over variational autoencoders (VAE) because of ease in sampling by applying invertible transformations (Frey, Gadepally, & Ramsundar, 2022).

Example

```python
>>> import deepchem as dc
>>> from deepchem.models.torch_models.layers import Affine
>>> from deepchem.models.torch_models.normalizing_flows_pytorch import NormalizingFlow
>>> import torch
>>> from torch.distributions import MultivariateNormal
>>> # initialize the transformation layer's parameters
>>> dim = 2
>>> samples = 96
```
transforms = [Affine(dim)]

distribution = MultivariateNormal(torch.zeros(dim), torch.eye(dim))

initialize normalizing flow model
model = NormalizingFlow(transforms, distribution, dim)

evaluate the log_prob when applying the transformation layers
input = distribution.sample(torch.Size((samples, dim)))

len(model.log_prob(input))

evaluates the the sampling method and its log_prob
len(model.sample(samples))

3.17.16 DMPNNModel

class DMPNNModel(mode: str = 'regression', n_classes: int = 3, n_tasks: int = 1, number_of_molecules: int = 1,
global_features_size: int = 0, use_default_fdim: bool = True, atom_fdim: int = 133,
bond_fdim: int = 14, enc_hidden: int = 300, depth: int = 3, bias: bool = False,
enc_activation: str = 'relu', enc_dropout_p: float = 0.0, aggregation: str = 'mean',
aggregation_norm: Union[int, float] = 100, encoder_wts_shared: bool = False, ffn_hidden:
int = 300, ffn_activation: str = 'relu', ffn_layers: int = 3, ffn_dropout_p: float = 0.0,
ffn_dropout_at_input_no_act: bool = True, **kwargs)

Directed Message Passing Neural Network

This class implements the Directed Message Passing Neural Network (D-MPNN) [1].

Note: Current implementation of the DMPNNModel class only supports features of 1 molecule per batch.

The DMPNN model has 2 phases, message-passing phase and read-out phase.

- The goal of the message-passing phase is to generate ‘hidden states of all the atoms in the molecule’ using encoders.
- Next in read-out phase, the features are passed into feed-forward neural network to get the task-based prediction.

For additional information:

- Mapper class
- Encoder layer class
- Feed-Forward class

Example

>>> import deepchem as dc
>>> import os
>>> model_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
>>> input_file = os.path.join(model_dir, 'tests/assets/freesolv_sample_5.csv')
>>> loader = dc.data.CSVLoader(tasks=['y'], feature_field='smiles', featurizer=dc.
˓→feat.DMPNNFeaturizer())
>>> dataset = loader.create_dataset(input_file)

(continues on next page)
>>> model = DMPNNModel()
>>> out = model.fit(dataset, nb_epoch=1)

References

Initialize the DMPNNModel class.

Parameters

- **mode** (str, default 'regression') – The model type - classification or regression.
- **n_classes** (int, default 3) – The number of classes to predict (used only in classification mode).
- **n_tasks** (int, default 1) – The number of tasks.
- **number_of_molecules** (int, default 1) – The number of molecules in a batch.
- **global_features_size** (int, default 0) – Size of the global features vector, based on the global featurizers used during featurization.
- **use_default_fdim** (bool) – If True, self.atom_fdim and self.bond_fdim are initialized using values from the GraphConvConstants class. If False, self.atom_fdim and self.bond_fdim are initialized from the values provided.
- **atom_fdim** (int) – Dimension of atom feature vector.
- **bond_fdim** (int) – Dimension of bond feature vector.
- **enc_hidden** (int) – Size of hidden layer in the encoder layer.
- **depth** (int) – No of message passing steps.
- **bias** (bool) – If True, dense layers will use bias vectors.
- **enc_activation** (str) – Activation function to be used in the encoder layer. Can choose between 'relu' for ReLU, 'leakyrelu' for LeakyReLU, 'prelu' for PReLU, 'tanh' for TanH, 'selu' for SELU, and 'elu' for ELU.
- **enc_dropout_p** (float) – Dropout probability for the encoder layer.
- **aggregation** (str) – Aggregation type to be used in the encoder layer. Can choose between 'mean', 'sum', and 'norm'.
- **aggregation_norm** (Union[int, float]) – Value required if aggregation type is 'norm'.
- **encoder_wts_shared** (bool) – If True, all encoders are initialized with same weights.
- **ffn_hidden** (int) – Size of hidden layer in the feed-forward network layer.
- **ffn_activation** (str) – Activation function to be used in feed-forward network layer. Can choose between 'relu' for ReLU, 'leakyrelu' for LeakyReLU, 'prelu' for PReLU, 'tanh' for TanH, 'selu' for SELU, and 'elu' for ELU.
• **ffn_layers** *(int)* – Number of layers in the feed-forward network layer.

• **ffn_dropout_p** *(float)* – Dropout probability for the feed-forward network layer.

• **ffn_dropout_at_input_no_act** *(bool)* – If true, dropout is applied on the input tensor. For single layer, it is not passed to an activation function.

• **kwargs** *(Dict)* – kwargs supported by TorchModel

default_generator *(dataset: deepchem.data.datasets.Dataset, epochs: int = 1, mode: str = 'fit', deterministic: bool = True, pad_batches: bool = False, **kwargs) → Iterable[Tuple[List, List, List]]*

Create a generator that iterates batches for a dataset.

Overrides the existing `default_generator` method to customize how model inputs are generated from the data.

Here, the `_MapperDMPNN` helper class is used to get required input parameters:

• atom_features

• f_ini_atoms_bonds

• atom_to_incoming_bonds

• mapping

• global_features

Note: Current implementation only supports features of 1 molecule per batch.

Parameters

• **dataset** *(Dataset)* – the data to iterate

• **epochs** *(int)* – the number of times to iterate over the full dataset

• **mode** *(str)* – allowed values are ‘fit’ (called during training), ‘predict’ (called during prediction), and ‘uncertainty’ (called during uncertainty prediction)

• **deterministic** *(bool)* – whether to iterate over the dataset in order, or randomly shuffle the data for each epoch

• **pad_batches** *(bool)* – whether to pad each batch up to this model’s preferred batch size

Returns

• a generator that iterates batches, each represented as a tuple of lists

• *(inputs), (outputs), (weights))
3.18 PyTorch Lightning Models

DeepChem supports the use of PyTorch-Lightning to build PyTorch models.

3.18.1 DCLightningModule

You can wrap an arbitrary TorchModel in a DCLightningModule object.

```python
class DCLightningModule(dc_model):
    DeepChem Lightning Module to be used with Lightning trainer.
    TODO: Add dataloader, example code and fit, once datasetmodule is ready
    The lightning module is a wrapper over deepchem’s torch model. This module directly works with pytorch lightning trainer which runs training for multiple epochs and also is responsible for setting up and training models on multiple GPUs. https://pytorch-lightning.readthedocs.io/en/stable/api/pytorch_lightning.core.LightningModule.html?highlight=LightningModule

Notes

This class requires PyTorch to be installed.

__init__(dc_model)
Create a new DCLightningModule.

Parameters:

dc_model (deepchem.models.torch_models.torch_model.TorchModel) – TorchModel to be wrapped inside the lightning module.

configure_optimizers()
Choose what optimizers and learning-rate schedulers to use in your optimization. Normally you’d need one. But in the case of GANs or similar you might have multiple.

Returns

Any of these 6 options.

• Single optimizer.

• List or Tuple of optimizers.

• Two lists - The first list has multiple optimizers, and the second has multiple LR schedulers (or multiple lr_scheduler_config).

• Dictionary, with an "optimizer" key, and (optionally) a "lr_scheduler" key whose value is a single LR scheduler or lr_scheduler_config.

• Tuple of dictionaries as described above, with an optional "frequency" key.

• None - Fit will run without any optimizer.

The lr_scheduler_config is a dictionary which contains the scheduler and its associated configuration. The default configuration is shown below.

```lr_scheduler_config = {
 # REQUIRED: The scheduler instance
 "scheduler": lr_scheduler,
 # The unit of the scheduler's step size, could also be 'step'.
 # 'epoch' updates the scheduler on epoch end whereas 'step'
 # (continues on next page)
When there are schedulers in which the .step() method is conditioned on a value, such as the `torch.optim.lr_scheduler.ReduceLROnPlateau` scheduler, Lightning requires that the `lr_scheduler_config` contain the keyword "monitor" set to the metric name that the scheduler should be conditioned on.

```python
# The ReduceLROnPlateau scheduler requires a monitor
def configure_optimizers(self):
    optimizer = Adam(...)
    return {
        "optimizer": optimizer,
        "lr_scheduler": {
            "scheduler": ReduceLROnPlateau(optimizer, ...),
            "monitor": "metric_to_track",
            "frequency": "indicates how often the metric is updated"
            # If "monitor" references validation metrics, then "frequency" should be set to a
            # multiple of "trainer.check_val_every_n_epoch".
        },
    }

# In the case of two optimizers, only one using the ReduceLROnPlateau scheduler
def configure_optimizers(self):
    optimizer1 = Adam(...)  
    optimizer2 = SGD(...)  
    scheduler1 = ReduceLROnPlateau(optimizer1, ...)  
    scheduler2 = LambdaLR(optimizer2, ...)  
    return (
        {
            "optimizer": optimizer1,
            "lr_scheduler": {
                "scheduler": scheduler1,
                "monitor": "metric_to_track",
            },
        },
    )
```

(continues on next page)
deepchem, Release 2.6.1.dev

(continued from previous page)

},
{"optimizer": optimizer2, "lr_scheduler": scheduler2},
)
Metrics can be made available to monitor by simply logging it using self.log('metric_to_track',
metric_val) in your LightningModule.
Note: The frequency value specified in a dict along with the optimizer key is an int corresponding to
the number of sequential batches optimized with the specific optimizer. It should be given to none or to all
of the optimizers. There is a difference between passing multiple optimizers in a list, and passing multiple
optimizers in dictionaries with a frequency of 1:
• In the former case, all optimizers will operate on the given batch in each optimization step.
• In the latter, only one optimizer will operate on the given batch at every step.
This is different from the frequency value specified in the lr_scheduler_config mentioned above.
def configure_optimizers(self):
optimizer_one = torch.optim.SGD(self.model.parameters(), lr=0.01)
optimizer_two = torch.optim.SGD(self.model.parameters(), lr=0.01)
return [
{"optimizer": optimizer_one, "frequency": 5},
{"optimizer": optimizer_two, "frequency": 10},
]
In this example, the first optimizer will be used for the first 5 steps, the second optimizer for the next 10
steps and that cycle will continue. If an LR scheduler is specified for an optimizer using the lr_scheduler
key in the above dict, the scheduler will only be updated when its optimizer is being used.
Examples:
most cases. no learning rate scheduler
def configure_optimizers(self):
return Adam(self.parameters(), lr=1e-3)
multiple optimizer case (e.g.: GAN)
def configure_optimizers(self):
gen_opt = Adam(self.model_gen.parameters(), lr=0.01)
dis_opt = Adam(self.model_dis.parameters(), lr=0.02)
return gen_opt, dis_opt
example with learning rate schedulers
def configure_optimizers(self):
gen_opt = Adam(self.model_gen.parameters(), lr=0.01)
dis_opt = Adam(self.model_dis.parameters(), lr=0.02)
dis_sch = CosineAnnealing(dis_opt, T_max=10)
return [gen_opt, dis_opt], [dis_sch]
example with step-based learning rate schedulers
each optimizer has its own scheduler
def configure_optimizers(self):
gen_opt = Adam(self.model_gen.parameters(), lr=0.01)
(continues on next page)

324

Chapter 3. About Us


dis_opt = Adam(self.model_dis.parameters(), lr=0.02)

gen_sch = {
 'scheduler': ExponentialLR(gen_opt, 0.99),
 'interval': 'step' # called after each training step
}

dis_sch = CosineAnnealing(dis_opt, T_max=10) # called every epoch

return [gen_opt, dis_opt], [gen_sch, dis_sch]

example with optimizer frequencies
see training procedure in 'Improved Training of Wasserstein GANs’, Algorithm 1
https://arxiv.org/abs/1704.00028

def configure_optimizers(self):
 gen_opt = Adam(self.model_gen.parameters(), lr=0.01)
 dis_opt = Adam(self.model_dis.parameters(), lr=0.02)
 n_critic = 5
 return {
 'optimizer': dis_opt, 'frequency': n_critic},
 {'optimizer': gen_opt, 'frequency': 1}

Note: Some things to know:

• Lightning calls .backward() and .step() on each optimizer and learning rate scheduler as needed.
• If you use 16-bit precision (precision=16), Lightning will automatically handle the optimizers.
• If you use multiple optimizers, training_step() will have an additional optimizer_idx parameter.
• If you use torch.optim.LBFGS, Lightning handles the closure function automatically for you.
• If you use multiple optimizers, gradients will be calculated only for the parameters of current optimizer
 at each training step.
• If you need to control how often those optimizers step or override the default .step() schedule,
 override the optimizer_step() hook.

training_step(batch, batch_idx)
Perform a training step.

Parameters

• batch (A tensor, tuple or list.) –

• batch_idx (Integer displaying index of this batch) –

• optimizer_idx (When using multiple optimizers, this argument will also be present.) –

Returns loss_outputs

Return type outputs of losses.
DeepChem supports the use of Jax to build deep learning models.

3.19.1 JaxModel

```python
class JaxModel:
```

This is a DeepChem model implemented by a Jax Model. Here is a simple example of that uses JaxModel to train a Haiku (JAX Neural Network Library) based model on deepchem dataset.

```python
>>> def forward_model(x):
...    net = hk.nets.MLP([512, 256, 128, 1])
...    return net(x)

>>> def rms_loss(pred, tar, w):
...    return jnp.mean(optax.l2_loss(pred, tar))

>>> params_init, forward_fn = hk.transform(forward_model)
>>> rng = jax.random.PRNGKey(500)
>>> inputs, _, _ = next(iter(dataset.iterbatches(batch_size=256)))
>>> params = params_init(rng, inputs)
>>> j_m = JaxModel(forward_fn, params, rms_loss, 256, 0.001, 100)
>>> j_m.fit(train_dataset)
```

All optimizations will be done using the optax library.

Parameters

- **model (hk.State or Function)** – Any Jax based model that has an `apply` method for computing the network. Currently only haiku models are supported.
- **params (hk.Params)** – The parameter of the Jax based networks
- **loss (dc.models.losses.Loss or function)** – a Loss or function defining how to compute the training loss for each batch, as described above
- **output_types** (*list of strings, optional (default None)*) – the type of each output from the model, as described above
- **batch_size** (*int, optional (default 100)*) – default batch size for training and evaluating
- **learning_rate** (*float or LearningRateSchedule, optional (default 0.001)*) – the learning rate to use for fitting. If optimizer is specified, this is ignored.
- **optimizer** (*optax object*) – For the time being, it is optax object
- **rng** (*jax.random.PRNGKey, optional (default 1)*) – A default global PRNG key to use for drawing random numbers.
- **log_frequency** (*int, optional (default 100)*) – The frequency at which to log data. Data is logged using logging by default.

model_dir: str, optional (default None) Will be added along with the save & load method

tensorboard: bool, optional (default False) whether to log progress to TensorBoard during training

wandb: bool, optional (default False) whether to log progress to Weights & Biases during training

[1] Integrate the optax losses, optimizers, schedulers with Deepchem

```python
```

Train this model on a dataset.

- **param dataset**: the Dataset to train on
- **param nb_epochs**: the number of epochs to train for
- **param deterministic**: if True, the samples are processed in order. If False, a different random order is used for each epoch.

Parameters

- **loss** (*function*) – a function of the form f(outputs, labels, weights) that computes the loss for each batch. If None (the default), the model’s standard loss function is used.

- **callbacks** (*function or list of functions*) – one or more functions of the form f(model, step) that will be invoked after every step. This can be used to perform validation, logging, etc.

- **all_losses** (*Optional[List[float]], optional (default None)*) – If specified, all logged losses are appended into this list. Note that you can call fit() repeatedly with the same list and losses will continue to be appended.

Returns

- The average loss over the most recent checkpoint interval

Miscellaneous Parameters Yet To Add

- **max_checkpoints_to_keep** (*int*) – the maximum number of checkpoints to keep. Older checkpoints are discarded.

- **checkpoint_interval** (*int*) – the frequency at which to write checkpoints, measured in training steps. Set this to 0 to disable automatic checkpointing.
• **restore** (bool) – if True, restore the model from the most recent checkpoint and continue training from there. If False, retrain the model from scratch.

• **variables** (list of `hk.Variable`) – the variables to train. If None (the default), all trainable variables in the model are used.

• **Work in Progress**

• [1] Integrate the optax losses, optimizers, schedulers with Deepchem

• [2] Support for saving & loading the model.

• [3] Adding support for output types (choosing only `self._loss_outputs`)

predict_on_generator

```python
```

Parameters

- **generator** (generator) – this should generate batches, each represented as a tuple of the form (inputs, labels, weights).

- **transformers** (List[`dc.trans.Transformer`]) – Transformers that the input data has been transformed by. The output is passed through these transformers to undo the transformations.

- **output_types** (String or list of Strings) – If specified, all outputs of this type will be retrieved from the model. If output_types is specified, outputs must be None.

Returns

- a NumPy array of the model produces a single output, or a list of arrays

- if it produces multiple outputs

predict_on_batch

```python
predict_on_batch(X: Union[numpy._typing._array_like._SupportsArray[numpy.dtype],
numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype], bool, int, float, complex, str, bytes],
numpy._typing._nested_sequence._NestedSequence[Union[bool, int, float, complex, str, bytes]], transformers: List[ transformers.Transformer ] = [] ) → Union[ numpy.ndarray, Sequence[ numpy.ndarray ]]
```

Generates predictions for input samples, processing samples in a batch.

- **param X**: the input data, as a Numpy array.
- **type X**: ndarray
- **param transformers**: Transformers that the input data has been transformed by. The output is passed through these transformers to undo the transformations.

Returns

- a NumPy array of the model produces a single output, or a list of arrays

- if it produces multiple outputs

predict

```python
```

Uses self to make predictions on provided Dataset object.

Parameters
• **dataset** ([`dc.data.Dataset`](#)) – Dataset to make prediction on

• **transformers** ([`List[dc.trans.Transformers]`](#)) – Transformers that the input data has been transformed by. The output is passed through these transformers to undo the transformations.

• **output_types** ([String or list of Strings](#)) – If specified, all outputs of this type will be retrieved from the model. If `output_types` is specified, outputs must be `None`.

Returns

• a NumPy array of the model produces a single output, or a list of arrays

• if it produces multiple outputs

get_global_step() → int

Get the number of steps of fitting that have been performed.

Evaluate the performance of this model on the data produced by a generator. :param generator: this should generate batches, each represented as a tuple of the form

(inputs, labels, weights).

Parameters

• **metric** ([list of `deepchem.metrics.Metric`](#)) – Evaluation metric

• **transformers** ([List[dc.trans.Transformers]](#)) – Transformers that the input data has been transformed by. The output is passed through these transformers to undo the transformations.

• **per_task_metrics** ([bool](#)) – If True, return per-task scores.

Returns Maps tasks to scores under metric.

Return type `dict`

default_generator (dataset: `deepchem.data.datasets.Dataset`, `epochs` = `1`, `mode` = `'fit'`, `deterministic` = `True`, `pad_batches` = `True`) → `Iterable[Tuple[List, List, List]]`

Create a generator that iterates batches for a dataset. Subclasses may override this method to customize how model inputs are generated from the data. :param dataset: the data to iterate :type dataset: Dataset :param epochs: the number of times to iterate over the full dataset :type epochs: int :param mode: allowed values are ‘fit’ (called during training), ‘predict’ (called during prediction), and ‘uncertainty’ (called during uncertainty prediction)

Parameters

• **deterministic** ([bool](#)) – whether to iterate over the dataset in order, or randomly shuffle the data for each epoch

• **pad_batches** ([bool](#)) – whether to pad each batch up to this model’s preferred batch size

Returns

• a generator that iterates batches, each represented as a tuple of lists

• ([`inputs`], `[outputs`], `[weights`])
3.19.2 PinnModel

```python
class PINNModel:
                 initial_data: dict = {},
                 output_types: typing.Optional[typing.List[str]] = None,
                 batch_size: int = 100,
                 learning_rate: float = 0.001,
                 optimizer: typing.Optional[typing.Union[optax._src.base.GradientTransformation,
                                                     deepchem.models.optimizers.Optimizer]] = None,
                 grad_fn: typing.Callable = <function create_default_gradient_fn>,
                 update_fn: typing.Callable = <function create_default_update_fn>,
                 eval_fn: typing.Callable = <function create_default_eval_fn>,
                 rng=DeviceArray([0, 1], dtype=uint32),
                 log_frequency: int = 100, **kwargs):
```

This class is derived from the JaxModel class and methods are also very similar to JaxModel, but it has the option of passing multiple arguments (Done using *args) suitable for PINNs model. Ex - Approximating f(x, y, z, t) satisfying a Linear differential equation.

This model is recommended for linear partial differential equations but if you can accurately write the gradient function in Jax depending on your use case, then it will work as well.

This class requires two functions apart from the usual function definition and weights

1. `grad_fn`: Each PINNs have a different strategy for calculating its final losses. This function tells the PINN-Model how to go about computing the derivatives for backpropagation. It should follow this format:

   ```python
   >>> def gradient_fn(forward_fn, loss_outputs, initial_data):
   ... def model_loss(params, target, weights, rng, ...):
   ... # write code using the arguments.
   ... # ... indicates the variable number of positional arguments.
   ... return
   ... return model_loss
   ```

 “…” can be replaced with various arguments like (x, y, z, y) but should match with `eval_fn`

2. `eval_fn`: Function for defining how the model needs to compute during inference. It should follow this format

   ```python
   >>> def create_eval_fn(forward_fn, params):
   ... def eval_model(..., rng=None):
   ... # write code here using arguments
   ... return
   ... return eval_model
   ```

 “…” can be replaced with various arguments like (x, y, z, y) but should match with `grad_fn`

[3] boundary_data: For a detailed example, check out - deepchem/models/jax_models/tests/test_pinn.py where we have solved $f'(x) = -\sin(x)$
This class requires Jax, Haiku and Optax to be installed.

```python
```

Parameters

- **forward_fn** (*hk.State or Function*) – Any Jax based model that has a `apply` method for computing the network. Currently only haiku models are supported.
- **params** (*hk.Params*) – The parameter of the Jax based networks
- **initial_data** (*dict*) – This acts as a session variable which will be passed as a dictionary in `grad_fn`
- **output_types** (*list of strings, optional (default None)*) – the type of each output from the model, as described above
- **batch_size** (*int, optional (default 100)*) – default batch size for training and evaluating
- **learning_rate** (*float or LearningRateSchedule, optional (default 0.001)*) – the learning rate to use for fitting. If `optimizer` is specified, this is ignored.
- **optimizer** (*optax object*) – For the time being, it is optax object
- **grad_fn** (*Callable (default create_default_gradient_fn)*) – It defines how the loss function and gradients need to be calculated for the PINNs model
- **update_fn** (*Callable (default create_default_update_fn)*) – It defines how the weights need to be updated using backpropogation. We have used optax library for optimisation operations. Its recomended to leave this default.
- **eval_fn** (*Callable (default create_default_eval_fn)*) – Function for defining on how the model needs to compute during inference.
- **rng** (*jax.random.PRNGKey, optional (default 1)*) – A default global PRNG key to use for drawing random numbers.
- **log_frequency** (*int, optional (default 100)*) – The frequency at which to log data. Data is logged using `logging` by default.

```python
default_generator(dataset: deepchem.data.datasets.Dataset, epochs: int = 1, mode: str = 'fit', deterministic: bool = True, pad_batches: bool = True) -> Iterable[Tuple[List, List, List]]
```

Create a generator that iterates batches for a dataset. Subclasses may override this method to customize how model inputs are generated from the data.

Parameters

- **dataset** (*Dataset*) – the data to iterate
• **epochs** (*int*) – the number of times to iterate over the full dataset

• **mode** (*str*) – allowed values are ‘fit’ (called during training), ‘predict’ (called during prediction), and ‘uncertainty’ (called during uncertainty prediction)

• **deterministic** (*bool*) – whether to iterate over the dataset in order, or randomly shuffle the data for each epoch

• **pad_batches** (*bool*) – whether to pad each batch up to this model’s preferred batch size

Returns

• a generator that iterates batches, each represented as a tuple of lists

• (*inputs*, *outputs*, *weights*)

3.20 Layers

Deep learning models are often said to be made up of “layers”. Intuitively, a “layer” is a function which transforms some tensor into another tensor. DeepChem maintains an extensive collection of layers which perform various useful scientific transformations. For now, most layers are Keras only but over time we expect this support to expand to other types of models and layers.

3.20.1 Keras Layers

```python
class InteratomicL2Distances(*args, **kwargs)
    Compute (squared) L2 Distances between atoms given neighbors.
    This class computes pairwise distances between its inputs.

Examples

```python
generate

```python
def generate
    import numpy as np
    import deepchem as dc
    atoms = 5
    neighbors = 2
    coords = np.random.rand(atoms, 3)
    neighbor_list = np.random.randint(0, atoms, size=(atoms, neighbors))
    layer = InteratomicL2Distances(atoms, neighbors, 3)
    result = np.array(layer([coords, neighbor_list]))
    result.shape
    (5, 2)
```

__init__(*N_atoms: int*, *M_nbrs: int*, *ndim: int*, **kwargs)

Constructor for this layer.

Parameters

• **N_atoms** (*int*) – Number of atoms in the system total.

• **M_nbrs** (*int*) – Number of neighbors to consider when computing distances.

• **ndim** (*int*) – Number of descriptors for each atom.
get_config() → Dict

Returns config dictionary for this layer.

call(inputs: List)

Invokes this layer.

Parameters inputs (List) – Should be of form inputs=[coords, nbr_list] where coords is a tensor of shape \((None, N, 3) \) and nbr_list is a list.

Return type Tensor of shape \((N_{\text{atoms}}, M_{\text{nbrs}}) \) with interatomic distances.

class GraphConv(*args, **kwargs)

Graph Convolutional Layers

This layer implements the graph convolution introduced in [1]. The graph convolution combines per-node feature vectors in a nonlinear fashion with the feature vectors for neighboring nodes. This “blends” information in local neighborhoods of a graph.

References

__init__(out_channel: int, min_deg: int = 0, max_deg: int = 10, activation_fn: Optional[Callable] = None, **kwargs)

Initialize a graph convolutional layer.

Parameters

- out_channel (int) – The number of output channels per graph node.
- min_deg (int, optional (default 0)) – The minimum allowed degree for each graph node.
- max_deg (int, optional (default 10)) – The maximum allowed degree for each graph node. Note that this is set to 10 to handle complex molecules (some organometallic compounds have strange structures). If you’re using this for non-molecular applications, you may need to set this much higher depending on your dataset.
- activation_fn (function) – A nonlinear activation function to apply. If you’re not sure, \text{tf.nn.relu} is probably a good default for your application.

build(input_shape)

Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of \text{Layer} or \text{Model} can override if they need a state-creation step in-between layer instantiation and layer call. It is invoked automatically before the first execution of call().

This is typically used to create the weights of \text{Layer} subclasses (at the discretion of the subclass implementer).

Parameters input_shape – Instance of \text{TensorShape}, or list of instances of \text{TensorShape} if the layer expects a list of inputs (one instance per input).

get_config()

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled by \text{Network} (one layer of abstraction above).
Note that `get_config()` does not guarantee to return a fresh copy of dict every time it is called. The callers should make a copy of the returned dict if they want to modify it.

Returns Python dictionary.

call(inputs)

This is where the layer’s logic lives.

The `call()` method may not create state (except in its first invocation, wrapping the creation of variables or other resources in `tf.init_scope()`). It is recommended to create state in `__init__()`, or the `build()` method that is called automatically before `call()` executes the first time.

Parameters

- **inputs** – Input tensor, or dict/list/tuple of input tensors. The first positional `inputs` argument is subject to special rules: - `inputs` must be explicitly passed. A layer cannot have zero arguments, and `inputs` cannot be provided via the default value of a keyword argument.
 - NumPy array or Python scalar values in `inputs` get cast as tensors.
 - Keras mask metadata is only collected from `inputs`.
 - Layers are built (`build(input_shape)` method) using shape info from `inputs` only.
 - `input_spec` compatibility is only checked against `inputs`.
 - Mixed precision input casting is only applied to `inputs`. If a layer has tensor arguments in `*args` or `**kwargs`, their casting behavior in mixed precision should be handled manually.
 - The SavedModel input specification is generated using `inputs` only.
 - Integration with various ecosystem packages like TFMOT, TFLite, TF.js, etc is only supported for `inputs` and not for tensors in positional and keyword arguments.

- **args** – Additional positional arguments. May contain tensors, although this is not recommended, for the reasons above.

- **kwargs** – Additional keyword arguments. May contain tensors, although this is not recommended, for the reasons above. The following optional keyword arguments are reserved:
 - `training`: Boolean scalar tensor of Python boolean indicating whether the `call` is meant for training or inference.
 - `mask`: Boolean input mask. If the layer’s `call()` method takes a `mask` argument, its default value will be set to the mask generated for `inputs` by the previous layer (if `input` did come from a layer that generated a corresponding mask, i.e. if it came from a Keras layer with masking support).

Returns A tensor or list/tuple of tensors.

sum_neigh(atoms, deg_adj_lists)

Store the summed atoms by degree

class GraphPool(*args, **kwargs)

A GraphPool gathers data from local neighborhoods of a graph.

This layer does a max-pooling over the feature vectors of atoms in a neighborhood. You can think of this layer as analogous to a max-pooling layer for 2D convolutions but which operates on graphs instead. This technique is described in [1].

334 Chapter 3. About Us
__init__ (min_degree=0, max_degree=10, **kwargs)
Initialize this layer

Parameters

- min_deg (int, optional (default 0)) – The minimum allowed degree for each graph node.
- max_deg (int, optional (default 10)) – The maximum allowed degree for each graph node. Note that this is set to 10 to handle complex molecules (some organometallic compounds have strange structures). If you’re using this for non-molecular applications, you may need to set this much higher depending on your dataset.

get_config()
Returns the config of the layer.
A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be re-instantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers should make a copy of the returned dict if they want to modify it.

Returns Python dictionary.

call (inputs)
This is where the layer’s logic lives.

The call() method may not create state (except in its first invocation, wrapping the creation of variables or other resources in tf.init_scope()). It is recommended to create state in __init__(), or the build() method that is called automatically before call() executes the first time.

Parameters

- inputs – Input tensor, or dict/list/tuple of input tensors. The first positional inputs argument is subject to special rules: - inputs must be explicitly passed. A layer cannot have zero arguments, and inputs cannot be provided via the default value of a keyword argument.

 – NumPy array or Python scalar values in inputs get cast as tensors.
 – Keras mask metadata is only collected from inputs.
 – Layers are built (build(input_shape) method) using shape info from inputs only.
 – input_spec compatibility is only checked against inputs.
 – Mixed precision input casting is only applied to inputs. If a layer has tensor arguments in *args or **kwargs, their casting behavior in mixed precision should be handled manually.
 – The SavedModel input specification is generated using inputs only.
 – Integration with various ecosystem packages like TFMOT, TFLite, TF.js, etc is only supported for inputs and not for tensors in positional and keyword arguments.

- *args – Additional positional arguments. May contain tensors, although this is not recommended, for the reasons above.
**kwargs – Additional keyword arguments. May contain tensors, although this is not recommended, for the reasons above. The following optional keyword arguments are reserved:
- training: Boolean scalar tensor of Python boolean indicating whether the call is meant for training or inference.
- mask: Boolean input mask. If the layer’s call() method takes a mask argument, its default value will be set to the mask generated for inputs by the previous layer (if input did come from a layer that generated a corresponding mask, i.e. if it came from a Keras layer with masking support).

Returns A tensor or list/tuple of tensors.

class GraphGather(*args, **kwargs)
A GraphGather layer pools node-level feature vectors to create a graph feature vector.

Many graph convolutional networks manipulate feature vectors per graph-node. For a molecule for example, each node might represent an atom, and the network would manipulate atomic feature vectors that summarize the local chemistry of the atom. However, at the end of the application, we will likely want to work with a molecule level feature representation. The GraphGather layer creates a graph level feature vector by combining all the node-level feature vectors.

One subtlety about this layer is that it depends on the batch_size. This is done for internal implementation reasons. The GraphConv, and GraphPool layers pool all nodes from all graphs in a batch that’s being processed. The GraphGather reassembles these jumbled node feature vectors into per-graph feature vectors.

References

__init__(batch_size, activation_fn=None, **kwargs)
Initialize this layer.

Parameters

- batch_size (int) – The batch size for this layer. Note that the layer’s behavior changes depending on the batch size.
- activation_fn (function) – A nonlinear activation function to apply. If you’re not sure, tf.nn.relu is probably a good default for your application.

get_config()
Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers should make a copy of the returned dict if they want to modify it.

Returns Python dictionary.

call(inputs)
Invoking this layer.

Parameters inputs (list) – This list should consist of inputs = [atom_features, deg_slice, membership, deg_adj_list placeholders...]. These are all tensors that are created/process by GraphConv and GraphPool.
class MolGANConvolutionLayer(*args, **kwargs)

Graph convolution layer used in MolGAN model. MolGAN is a WGAN type model for generation of small molecules. Not used directly, higher level layers like MolGANMultiConvolutionLayer use it. This layer performs basic convolution on one-hot encoded matrices containing atom and bond information. This layer also accepts three inputs for the case when convolution is performed more than once and results of previous convolution need to used. It was done in such a way to avoid creating another layer that accepts three inputs rather than two. The last input layer is so-called hidden_layer and it hold results of the convolution while first two are unchanged input tensors.

Example

See: MolGANMultiConvolutionLayer for using in layers.

```python
>>> from tensorflow.keras import Model
>>> from tensorflow.keras.layers import Input

>>> vertices = 9
>>> nodes = 5
>>> edges = 5
>>> units = 128

>>> layer1 = MolGANConvolutionLayer(units=units, edges=edges, name='layer1')
>>> layer2 = MolGANConvolutionLayer(units=units, edges=edges, name='layer2')
>>> adjacency_tensor = Input(shape=(vertices, vertices, edges))
>>> node_tensor = Input(shape=(vertices, nodes))
>>> hidden1 = layer1([adjacency_tensor, node_tensor])
>>> output = layer2(hidden1)
>>> model = Model(inputs=[adjacency_tensor, node_tensor], outputs=[output])
```

References

__init__(units: int, activation: typing.Callable = <function tanh>, dropout_rate: float = 0.0, edges: int = 5, name: str = '', **kwargs)

Initialize this layer.

Parameters

- **units (int)** – Dimension of dense layers used for convolution
- **activation (function, optional (default=Tanh))** – Activation function used across model, default is Tanh
- **dropout_rate (float, optional (default=0.0))** – Dropout rate used by dropout layer
- **edges (int, optional (default=5))** – How many dense layers to use in convolution. Typically equal to number of bond types used in the model.
- **name (string, optional (default=''))** – Name of the layer

_call(inputs, training=False)

Invoke this layer

Parameters

- **inputs (list)** – List of two input matrices, adjacency tensor and node features tensors in one-hot encoding format.
• **training** *(bool)* – Should this layer be run in training mode. Typically decided by main model, influences things like dropout.

Returns First and second are original input tensors Third is the result of convolution

Return type tuple(tf.Tensor, tf.Tensor, tf.Tensor)

get_config() → Dict
Returns config dictionary for this layer.

class **MolGANAggregationLayer**(*args, **kwargs)*
Graph Aggregation layer used in MolGAN model. MolGAN is a WGAN type model for generation of small molecules. Performs aggregation on tensor resulting from convolution layers. Given its simple nature it might be removed in future and moved to MolGANEncoderLayer.

Example

```python
>>> from tensorflow.keras import Model
>>> from tensorflow.keras.layers import Input

>>> vertices = 9
>>> nodes = 5
>>> edges = 5
>>> units = 128

>>> layer_1 = MolGANConvolutionLayer(units=units, edges=edges, name='layer1')
>>> layer_2 = MolGANConvolutionLayer(units=units, edges=edges, name='layer2')
>>> layer_3 = MolGANAggregationLayer(units=128, name='layer3')
>>> adjacency_tensor = Input(shape=(vertices, vertices, edges))
>>> node_tensor = Input(shape=(vertices, nodes))

>>> hidden_1 = layer_1([adjacency_tensor, node_tensor])
>>> hidden_2 = layer_2(hidden_1)

>>> output = layer_3(hidden_2[2])
>>> model = Model(inputs=[adjacency_tensor, node_tensor], outputs=[output])
```

References

```python
__init__**(units: int = 128, activation: typing.Callable = <function tanh>, dropout_rate: float = 0.0, name: str = '', **kwargs)**

Initialize the layer

**Parameters**

- **units** *(int, optional (default=128)) – Dimesion of dense layers used for aggregation
- **activation** *(function, optional (default=Tanh)) – activation function used across model, default is Tanh
- **dropout_rate** *(float, optional (default=0.0)) – Used by dropout layer
- **name** *(string, optional (default='')) – Name of the layer

**call**(inputs, training=False)
Invoke this layer

**Parameters**
• **inputs** (*List*) – Single tensor resulting from graph convolution layer

• **training** (*bool*) – Should this layer be run in training mode. Typically decided by main model, influences things like dropout.

Returns aggregation tensor – Result of aggregation function on input convolution tensor.

Return type **tf.Tensor**

`get_config()` → **Dict**

Returns config dictionary for this layer.

**class** MolGANMultiConvolutionLayer(*args, **kwargs*)

Multiple pass convolution layer used in MolGAN model. MolGAN is a WGAN type model for generation of small molecules. It takes outputs of previous convolution layer and uses them as inputs for the next one. It simplifies the overall framework, but might be moved to MolGANEncoderLayer in the future in order to reduce number of layers.

**Example**

```python
>>> from tensorflow.keras import Model
>>> from tensorflow.keras.layers import Input

>>> vertices = 9
>>> nodes = 5
>>> edges = 5
>>> units = 128

>>> layer_1 = MolGANMultiConvolutionLayer(units=(128, 64), name='layer1')
>>> layer_2 = MolGANAggregationLayer(units=128, name='layer2')
>>> adjacency_tensor = Input(shape=(vertices, vertices, edges))
>>> node_tensor = Input(shape=(vertices, nodes))
>>> hidden = layer_1([adjacency_tensor, node_tensor])
>>> output = layer_2(hidden)
>>> model = Model(inputs=[adjacency_tensor, node_tensor], outputs=[output])
```

**References**

`__init__` (units: *typing.Tuple* = (128, 64), activation: *typing.Callable* = `<function tanh>`, dropout_rate: *float* = 0.0, edges: *int* = 5, name: *str* = ", **kwargs)

Initialize the layer

**Parameters**

• **units** (*Tuple*, *optional* (default=(128, 64)), *min_length=2*) – List of dimensions used by consecutive convolution layers. The more values the more convolution layers invoked.

• **activation** (*function*, *optional* (default=tanh)) – activation function used across model, default is Tanh

• **dropout_rate** (*float*, *optional* (default=0.0)) – Used by dropout layer

• **edges** (*int*, *optional* (default=0)) – Controls how many dense layers use for single convolution unit. Typically matches number of bond types used in the molecule.

• **name** (*string*, *optional* (default="")) – Name of the layer
call(inputs, training=False)

Invoke this layer

Parameters

- inputs (list) – List of two input matrices, adjacency tensor and node features tensors in one-hot encoding format.
- training (bool) – Should this layer be run in training mode. Typically decided by main model, influences things like dropout.

Returns convolution tensor – Result of input tensors going through convolution a number of times.

Return type tf.Tensor

get_config() → Dict

Returns config dictionary for this layer.

class MolGANEncoderLayer(*args, **kwargs)

Main learning layer used by MolGAN model. MolGAN is a WGAN type model for generation of small molecules. It role is to further simplify model. This layer can be manually built by stacking graph convolution layers followed by graph aggregation.

Example

```python
>>> from tensorflow.keras import Model
>>> from tensorflow.keras.layers import Input, Dropout, Dense
>>> vertices = 9
>>> edges = 5
>>> nodes = 5
>>> dropout_rate = .0
>>> adjacency_tensor = Input(shape=(vertices, vertices, edges))
>>> node_tensor = Input(shape=(vertices, nodes))

>>> graph = MolGANEncoderLayer(units = [(128,64),128], dropout_rate= dropout_rate, edges=edges)([adjacency_tensor,node_tensor])

>>> dense = Dense(units=128, activation='tanh')(graph)
>>> dense = Dropout(dropout_rate)(dense)
>>> dense = Dense(units=64, activation='tanh')(dense)
>>> dense = Dropout(dropout_rate)(dense)

>>> model = Model(inputs=[adjacency_tensor,node_tensor], outputs=[output])
```
References

__init__(units: typing.List = [(128, 64), 128], activation: typing.Callable = <function tanh>, dropout_rate: float = 0.0, edges: int = 5, name: str = '', **kwargs)

Initialize the layer.

Parameters

- **units** (List, optional (default=[(128, 64), 128])) – List of units for MolGANMultiConvolutionLayer and GraphAggregationLayer i.e. [(128,64),128] means two convolution layers dims = [128,64] followed by aggregation layer dims=128
- **activation** (function, optional (default=Tanh)) – activation function used across model, default is Tanh
- **dropout_rate** (float, optional (default=0.0)) – Used by dropout layer
- **edges** (int, optional (default=0)) – Controls how many dense layers use for single convolution unit. Typically matches number of bond types used in the molecule.
- **name** (string, optional (default='')) – Name of the layer

call(inputs, training=False)

Invoke this layer

Parameters

- **inputs** (list) – List of two input matrices, adjacency tensor and node features tensors in one-hot encoding format.
- **training** (bool) – Should this layer be run in training mode. Typically decided by main model, influences things like dropout.

Returns **encoder tensor** – Tensor that been through number of convolutions followed by aggregation.

Return type **tf.Tensor**

get_config() → Dict

Returns config dictionary for this layer.

class LSTMStep(*args, **kwargs)

Layer that performs a single step LSTM update.

This layer performs a single step LSTM update. Note that it is not a full LSTM recurrent network. The LSTMStep layer is useful as a primitive for designing layers such as the AttnLSTMEmbedding or the IterRefLSTMEmbedding below.

__init__(output_dim, input_dim, init_fn='glorot_uniform', inner_init_fn='orthogonal', activation_fn='tanh', inner_activation_fn='hard_sigmoid', **kwargs)

Parameters

- **output_dim** (int) – Dimensionality of output vectors.
- **input_dim** (int) – Dimensionality of input vectors.
- **init_fn** (str) – TensorFlow initialization to use for W.
- **inner_init_fn** (str) – TensorFlow initialization to use for U.
- **activation_fn** (str) – TensorFlow activation to use for output.
- **inner_activation_fn** (str) – TensorFlow activation to use for inner steps.
get_config()

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be re-instantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers should make a copy of the returned dict if they want to modify it.

Returns Python dictionary.

build(input_shape)

Constructs learnable weights for this layer.

call(inputs)

Execute this layer on input tensors.

Parameters
inputs (list) – List of three tensors (x, h_tm1, c_tm1). h_tm1 means “h, t-1”.

Returns
Returns h, [h, c]

Return type
list

class AttnLSTMEmbedding(*args, **kwargs)

Implements AttnLSTM as in matching networks paper.

The AttnLSTM embedding adjusts two sets of vectors, the “test” and “support” sets. The “support” consists of a set of evidence vectors. Think of these as the small training set for low-data machine learning. The “test” consists of the queries we wish to answer with the small amounts of available data. The AttnLSTMEmbedding allows us to modify the embedding of the “test” set depending on the contents of the “support”. The AttnLSTMEmbedding is thus a type of learnable metric that allows a network to modify its internal notion of distance.

See references [1]_[2] for more details.

References

__init__(n_test, n_support, n_feat, max_depth, **kwargs)

Parameters

- n_support (int) – Size of support set.
- n_test (int) – Size of test set.
- n_feat (int) – Number of features per atom
- max_depth (int) – Number of “processing steps” used by sequence-to-sequence for sets model.

get_config()

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be re-instantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers should make a copy of the returned dict if they want to modify it.
Returns Python dictionary.

build(input_shape)

Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-creation step in-between layer instantiation and layer call. It is invoked automatically before the first execution of call().

This is typically used to create the weights of Layer subclasses (at the discretion of the subclass implementer).

Parameters input_shape – Instance of TensorShape, or list of instances of TensorShape if the layer expects a list of inputs (one instance per input).

call(inputs)

Execute this layer on input tensors.

Parameters inputs (list) – List of two tensors (X, Xp). X should be of shape (n_test, n_feat) and Xp should be of shape (n_support, n_feat) where n_test is the size of the test set, n_support that of the support set, and n_feat is the number of per-atom features.

Returns Returns two tensors of same shape as input. Namely the output shape will be [(n_test, n_feat), (n_support, n_feat)]

Return type list

class IterRefLSTMEmbedding(*args, **kwargs)

Implements the Iterative Refinement LSTM.

Much like AttnLSTMEmbedding, the IterRefLSTMEmbedding is another type of learnable metric which adjusts “test” and “support.” Recall that “support” is the small amount of data available in a low data machine learning problem, and that “test” is the query. The AttnLSTMEmbedding only modifies the “test” based on the contents of the support. However, the IterRefLSTM modifies both the “support” and “test” based on each other. This allows the learnable metric to be more malleable than that from AttnLSTMEmbedding.

__init__ (n_test, n_support, n_feat, max_depth, **kwargs)

Unlike the AttnLSTM model which only modifies the test vectors additively, this model allows for an additive update to be performed to both test and support using information from each other.

Parameters

- n_support (int) – Size of support set.
- n_test (int) – Size of test set.
- n_feat (int) – Number of input atom features
- max_depth (int) – Number of LSTM Embedding layers.

get_config()

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers should make a copy of the returned dict if they want to modify it.

Returns Python dictionary.
build(input_shape)

Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-creation step in-between layer instantiation and layer call. It is invoked automatically before the first execution of call().

This is typically used to create the weights of Layer subclasses (at the discretion of the subclass implementer).

Parameters input_shape – Instance of TensorShape, or list of instances of TensorShape if the layer expects a list of inputs (one instance per input).

call(inputs)

Execute this layer on input tensors.

Parameters inputs (list) – List of two tensors (X, Xp). X should be of shape (n_test, n_feat) and Xp should be of shape (n_support, n_feat) where n_test is the size of the test set, n_support that of the support set, and n_feat is the number of per-atom features.

Returns

• Returns two tensors of same shape as input. Namely the output
• shape will be [(n_test, n_feat), (n_support, n_feat)]

class SwitchedDropout(*args, **kwargs)

Apply dropout based on an input.

This is required for uncertainty prediction. The standard Keras Dropout layer only performs dropout during training, but we sometimes need to do it during prediction. The second input to this layer should be a scalar equal to 0 or 1, indicating whether to perform dropout.

get_config()

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be reinstated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers should make a copy of the returned dict if they want to modify it.

Returns Python dictionary.

call(inputs)

This is where the layer’s logic lives.

The call() method may not create state (except in its first invocation, wrapping the creation of variables or other resources in tf.init_scope()). It is recommended to create state in __init__(), or the build() method that is called automatically before call() executes the first time.

Parameters

• inputs – Input tensor, or dict/list/tuple of input tensors. The first positional inputs argument is subject to special rules: - inputs must be explicitly passed. A layer cannot have zero arguments, and inputs cannot be provided via the default value of a keyword argument.
  – NumPy array or Python scalar values in inputs get cast as tensors.
– Keras mask metadata is only collected from inputs.
– Layers are built \(\text{build(input\_shape)}\) method using shape info from inputs only.
– \textit{input\_spec} compatibility is only checked against inputs.
– Mixed precision input casting is only applied to inputs. If a layer has tensor arguments in \texttt{*args} or \texttt{**kwargs}, their casting behavior in mixed precision should be handled manually.
– The SavedModel input specification is generated using inputs only.
– Integration with various ecosystem packages like TFMOT, TFLite, TF.js, etc is only supported for inputs and not for tensors in positional and keyword arguments.

• \texttt{*args} – Additional positional arguments. May contain tensors, although this is not recommended, for the reasons above.

• \texttt{**kwargs} – Additional keyword arguments. May contain tensors, although this is not recommended, for the reasons above. The following optional keyword arguments are reserved:
  - \texttt{training}: Boolean scalar tensor of Python boolean indicating whether the call is meant for training or inference.
  - \texttt{mask}: Boolean input mask. If the layer’s \texttt{call()} method takes a mask argument, its default value will be set to the mask generated for inputs by the previous layer (if input did come from a layer that generated a corresponding mask, i.e. if it came from a Keras layer with masking support).

\textbf{Returns} A tensor or list/tuple of tensors.

class WeightedLinearCombo(*args, **kwargs)
Computes a weighted linear combination of input layers, with the weights defined by trainable variables.

\texttt{__init__}(std=0.3, **kwargs)
Initialize this layer.

\textbf{Parameters} \texttt{std} (float, optional (default 0.3)) – The standard deviation to use when randomly initializing weights.

get_config()
Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled by \texttt{Network} (one layer of abstraction above).

Note that \texttt{get\_config()} does not guarantee to return a fresh copy of dict every time it is called. The callers should make a copy of the returned dict if they want to modify it.

\textbf{Returns} Python dictionary.

\texttt{build(input\_shape)}
Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of \texttt{Layer} or \texttt{Model} can override if they need a state-creation step in-between layer instantiation and layer call. It is invoked automatically before the first execution of \texttt{call()}. 

3.20. Layers

345
This is typically used to create the weights of Layer subclasses (at the discretion of the subclass implementer).

**Parameters**

**input_shape** – Instance of TensorShape, or list of instances of TensorShape if the layer expects a list of inputs (one instance per input).

call(inputs)

This is where the layer’s logic lives.

The call() method may not create state (except in its first invocation, wrapping the creation of variables or other resources in tf.init_scope()). It is recommended to create state in __init__(), or the build() method that is called automatically before call() executes the first time.

**Parameters**

- **inputs** – Input tensor, or dict/list/tuple of input tensors. The first positional inputs argument is subject to special rules: - inputs must be explicitly passed. A layer cannot have zero arguments, and inputs cannot be provided via the default value of a keyword argument.
  - NumPy array or Python scalar values in inputs get cast as tensors.
  - Keras mask metadata is only collected from inputs.
  - Layers are built (build(input_shape) method) using shape info from inputs only.
  - input_spec compatibility is only checked against inputs.
  - Mixed precision input casting is only applied to inputs. If a layer has tensor arguments in *args or **kwargs, their casting behavior in mixed precision should be handled manually.
  - The SavedModel input specification is generated using inputs only.
  - Integration with various ecosystem packages like TFMOT, TFLite, TF.js, etc is only supported for inputs and not for tensors in positional and keyword arguments.

- ***args** – Additional positional arguments. May contain tensors, although this is not recommended, for the reasons above.

- ****kwargs** – Additional keyword arguments. May contain tensors, although this is not recommended, for the reasons above. The following optional keyword arguments are reserved:
  - **training**: Boolean scalar tensor of Python boolean indicating whether the call is meant for training or inference.
  - **mask**: Boolean input mask. If the layer’s call() method takes a mask argument, its default value will be set to the mask generated for inputs by the previous layer (if input did come from a layer that generated a corresponding mask, i.e. if it came from a Keras layer with masking support).

**Returns**

A tensor or list/tuple of tensors.

class CombineMeanStd(*args, **kwargs)

Generate Gaussian noise.

__init__(training_only=False, noise_epsilon=1.0, **kwargs)

Create a CombineMeanStd layer.
This layer should have two inputs with the same shape, and its output also has the same shape. Each element of the output is a Gaussian distributed random number whose mean is the corresponding element of the first input, and whose standard deviation is the corresponding element of the second input.

**Parameters**

- **training_only** *(bool)* – if True, noise is only generated during training. During prediction, the output is simply equal to the first input (that is, the mean of the distribution used during training).

- **noise_epsilon** *(float)* – The noise is scaled by this factor

**get_config()**

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be re-instantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled by Network (one layer of abstraction above).

Note that `get_config()` does not guarantee to return a fresh copy of dict every time it is called. The callers should make a copy of the returned dict if they want to modify it.

**Returns** Python dictionary.

**call(inputs, training=True)**

This is where the layer’s logic lives.

The `call()` method may not create state (except in its first invocation, wrapping the creation of variables or other resources in `tf.init_scope()`). It is recommended to create state in `__init__()` or the `build()` method that is called automatically before `call()` executes the first time.

**Parameters**

- **inputs** – Input tensor, or dict/list/tuple of input tensors. The first positional `inputs` argument is subject to special rules: - `inputs` must be explicitly passed. A layer cannot have zero arguments, and `inputs` cannot be provided via the default value of a keyword argument.
  - NumPy array or Python scalar values in `inputs` get cast as tensors.
  - Keras mask metadata is only collected from `inputs`.
  - Layers are built (`build(input_shape)` method) using shape info from `inputs` only.
  - `input_spec` compatibility is only checked against `inputs`.
  - Mixed precision input casting is only applied to `inputs`. If a layer has tensor arguments in `*args` or `**kwargs`, their casting behavior in mixed precision should be handled manually.
  - The SavedModel input specification is generated using `inputs` only.
  - Integration with various ecosystem packages like TFMOT, TFLite, TF.js, etc is only supported for `inputs` and not for tensors in positional and keyword arguments.

- **args** – Additional positional arguments. May contain tensors, although this is not recommended, for the reasons above.

- **kwargs** – Additional keyword arguments. May contain tensors, although this is not recommended, for the reasons above. The following optional keyword arguments are reserved: - `training`: Boolean scalar tensor of Python boolean indicating...
whether the `call` is meant for training or inference.

- `mask`: Boolean input mask. If the layer’s `call()` method takes a `mask` argument, its default value will be set to the mask generated for `inputs` by the previous layer (if `input` did come from a layer that generated a corresponding mask, i.e. if it came from a Keras layer with masking support).

**Returns**  A tensor or list/tuple of tensors.

```python
class Stack(*args, **kwargs)
Stack the inputs along a new axis.

get_config()
Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be re-instantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled by Network (one layer of abstraction above).

Note that `get_config()` does not guarantee to return a fresh copy of dict every time it is called. The callers should make a copy of the returned dict if they want to modify it.

Returns Python dictionary.

call(inputs)
This is where the layer’s logic lives.

The `call()` method may not create state (except in its first invocation, wrapping the creation of variables or other resources in `tf.init_scope()`). It is recommended to create state in `__init__()`, or the `build()` method that is called automatically before `call()` executes the first time.

Parameters

- `inputs` – Input tensor, or dict/list/tuple of input tensors. The first positional `inputs` argument is subject to special rules: - `inputs` must be explicitly passed. A layer cannot have zero arguments, and `inputs` cannot be provided via the default value of a keyword argument.

- NumPy array or Python scalar values in `inputs` get cast as tensors.
- Keras mask metadata is only collected from `inputs`.
- Layers are built (`build(input_shape)` method) using shape info from `inputs` only.
- `input_spec` compatibility is only checked against `inputs`.
- Mixed precision input casting is only applied to `inputs`. If a layer has tensor arguments in `*args` or `**kwargs`, their casting behavior in mixed precision should be handled manually.
- The SavedModel input specification is generated using `inputs` only.
- Integration with various ecosystem packages like TFMOT, TFLite, TFjs, etc is only supported for `inputs` and not for tensors in positional and keyword arguments.

- `*args` – Additional positional arguments. May contain tensors, although this is not recommended, for the reasons above.
```
**kwargs – Additional keyword arguments. May contain tensors, although this is not recommended, for the reasons above. The following optional keyword arguments are reserved:

- `training`: Boolean scalar tensor of Python boolean indicating whether the `call` is meant for training or inference.

- `mask`: Boolean input mask. If the layer’s `call()` method takes a `mask` argument, its default value will be set to the mask generated for `inputs` by the previous layer (if `input` did come from a layer that generated a corresponding mask, i.e. if it came from a Keras layer with masking support).

Returns A tensor or list/tuple of tensors.

class VinaFreeEnergy(*args, **kwargs)

Computes free-energy as defined by Autodock Vina.

TODO(rbharath): Make this layer support batching.

get_config()

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled by `Network` (one layer of abstraction above).

Note that `get_config()` does not guarantee to return a fresh copy of dict every time it is called. The callers should make a copy of the returned dict if they want to modify it.

Returns Python dictionary.

build(input_shape)

Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of `Layer` or `Model` can override if they need a state-creation step in-between layer instantiation and layer call. It is invoked automatically before the first execution of `call()`.

This is typically used to create the weights of `Layer` subclasses (at the discretion of the subclass implementer).

Parameters `input_shape` – Instance of `TensorShape`, or list of instances of `TensorShape` if the layer expects a list of inputs (one instance per input).

nonlinearity(c, w)

Computes non-linearity used in Vina.

repulsion(d)

Computes Autodock Vina’s repulsion interaction term.

hydrophobic(d)

Computes Autodock Vina’s hydrophobic interaction term.

hydrogen_bond(d)

Computes Autodock Vina’s hydrogen bond interaction term.

gaussian_first(d)

Computes Autodock Vina’s first Gaussian interaction term.
**gaussian_second**(*d*)

Computes Autodock Vina's second Gaussian interaction term.

**call**(*inputs*)

**Parameters**

- `X` (*tf.Tensor of shape *(N, d]*) – Coordinates/features.

**Returns**

- **layer** – The free energy of each complex in batch

**Return type**

*tf.Tensor of shape *(B]*)

**class NeighborList**(*args, **kwargs*)

Computes a neighbor-list in Tensorflow.

Neighbor-lists (also called Verlet Lists) are a tool for grouping atoms which are close to each other spatially. This layer computes a Neighbor List from a provided tensor of atomic coordinates. You can think of this as a general “k-means” layer, but optimized for the case `k==3`.

TODO(rbharath): Make this layer support batching.

**__init__**(*N_atoms, M_nbrs, ndim, nbr_cutoff, start, stop, **kwargs*)

**Parameters**

- `N_atoms` (*int*) – Maximum number of atoms this layer will neighbor-list.
- `M_nbrs` (*int*) – Maximum number of spatial neighbors possible for atom.
- `ndim` (*int*) – Dimensionality of space atoms live in. (Typically 3D, but sometimes will want to use higher dimensional descriptors for atoms).
- `nbr_cutoff` (*float*) – Length in Angstroms (?) at which atom boxes are gridded.

**get_config**()

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be re-instantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled by `Network` (one layer of abstraction above).

Note that `get_config()` does not guarantee to return a fresh copy of dict every time it is called. The callers should make a copy of the returned dict if they want to modify it.

**Returns**

*Python dictionary.*

**call**(*inputs*)

This is where the layer’s logic lives.

The `call()` method may not create state (except in its first invocation, wrapping the creation of variables or other resources in `tf.init_scope()`). It is recommended to create state in `__init__()`, or the `build()` method that is called automatically before `call()` executes the first time.

**Parameters**

- `inputs` – Input tensor, or dict/list/tuple of input tensors. The first positional `inputs` argument is subject to special rules: - `inputs` must be explicitly passed. A layer cannot have zero arguments, and `inputs` cannot be provided via the default value of a keyword argument.
- NumPy array or Python scalar values in inputs get cast as tensors.
- Keras mask metadata is only collected from inputs.
- Layers are built (build(input_shape) method) using shape info from inputs only.
- input_spec compatibility is only checked against inputs.
- Mixed precision input casting is only applied to inputs. If a layer has tensor arguments in *args or **kwargs, their casting behavior in mixed precision should be handled manually.
- The SavedModel input specification is generated using inputs only.
- Integration with various ecosystem packages like TFMOT, TFLite, TF.js, etc is only supported for inputs and not for tensors in positional and keyword arguments.

- **args – Additional positional arguments. May contain tensors, although this is not recommended, for the reasons above.
- **kwargs – Additional keyword arguments. May contain tensors, although this is not recommended, for the reasons above. The following optional keyword arguments are reserved:
  - training: Boolean scalar tensor of Python boolean indicating whether the call is meant for training or inference.
  - mask: Boolean input mask. If the layer’s call() method takes a mask argument, its default value will be set to the mask generated for inputs by the previous layer (if input did come from a layer that generated a corresponding mask, i.e. if it came from a Keras layer with masking support).

Returns A tensor or list/tuple of tensors.

**compute_nbr_list**(coords)
Get closest neighbors for atoms.

Parameters coords (tf.Tensor) – Shape (N_atoms, ndim)

Returns nbr_list – Shape (N_atoms, M_nbrs) of atom indices

Return type tf.Tensor

**get_atoms_in_nbrs**(coords, cells)
Get the atoms in neighboring cells for each cells.

Return type atoms_in_nbrs = (N_atoms, n_nbr_cells, M_nbrs)

**get_closest_atoms**(coords, cells)
For each cell, find M_nbrs closest atoms.

Parameters

- coords (tf.Tensor) – (N_atoms, ndim) shape.
- cells (tf.Tensor) – (n_cells, ndim) shape.

Returns closest_inds – Of shape (n_cells, M_nbrs)

Return type tf.Tensor
get_cells_for_atoms(coords, cells)
Compute the cells each atom belongs to.

Parameters
• coords (tf.Tensor) – Shape (N_atoms, ndim)
• cells (tf.Tensor) – (n_cells, ndim) shape.

Returns cells_for_atoms – Shape (N_atoms, 1)
Return type tf.Tensor

get_neighbor_cells(cells)
Compute neighbors of cells in grid.

# TODO(rbharath): Do we need to handle periodic boundary conditions properly here? # TODO(rbharath): This doesn’t handle boundaries well. We hard-code # looking for n_nbr_cells neighbors, which isn’t right for boundary cells in # the cube.

Parameters cells (tf.Tensor) – (n_cells, ndim) shape.

Returns nbr_cells – (n_cells, n_nbr_cells)
Return type tf.Tensor

get_cells()
Returns the locations of all grid points in box.

Suppose start is -10 Angstrom, stop is 10 Angstrom, nbr_cutoff is 1. Then would return a list of length 20^3 whose entries would be [(-10, -10, -10), (-10, -10, -9), ..., (9, 9, 9)]

Returns cells – (n_cells, ndim) shape.
Return type tf.Tensor

class AtomicConvolution(*args, **kwargs)
Implements the atomic convolutional transform introduced in

At a high level, this transform performs a graph convolution on the nearest neighbors graph in 3D space.

__init__(atom_types=None, radial_params=[], boxsize=None, **kwargs)
Atomic convolution layer

N = max_num_atoms, M = max_num_neighbors, B = batch_size, d = num_features l = num_radial_filters
* num_atom_types

Parameters
• atom_types (list or None) – Of length a, where a is number of atom types for filtering.
• radial_params (list) – Of length l, where l is number of radial filters learned.
• boxsize (float or None) – Simulation box length [Angstrom].

get_config()
Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be reinstated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled by Network (one layer of abstraction above).
Note that `get_config()` does not guarantee to return a fresh copy of dict every time it is called. The callers should make a copy of the returned dict if they want to modify it.

**Returns**  
Python dictionary.

**build** (*input_shape*)

Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of `Layer` or `Model` can override if they need a state-creation step in-between layer instantiation and layer call. It is invoked automatically before the first execution of `call()`.

This is typically used to create the weights of `Layer` subclasses (at the discretion of the subclass implementer).

**Parameters**  
`input_shape` – Instance of `TensorShape`, or list of instances of `TensorShape` if the layer expects a list of inputs (one instance per input).

**call** (*inputs*)

**Parameters**

- `X` *(tf.Tensor of shape (B, N, d)) – Coordinates/features.*
- `Nbrs` *(tf.Tensor of shape (B, N, M)) – Neighbor list.*
- `Nbrs_Z` *(tf.Tensor of shape (B, N, M)) – Atomic numbers of neighbor atoms.*

**Returns**  
`layer` – A new tensor representing the output of the atomic conv layer

**Return type**  
tf.Tensor of shape (B, N, l)

**radial_symmetry_function** (*R*, *rc*, *rs*, *e*)

Calculates radial symmetry function.

B = batch_size, N = max_num_atoms, M = max_num_neighbors, d = num_filters

**Parameters**

- `R` *(tf.Tensor of shape (B, N, M)) – Distance matrix.*
- `rc` *(float) – Interaction cutoff [Angstrom].*
- `rs` *(float) – Gaussian distance matrix mean.*
- `e` *(float) – Gaussian distance matrix width.*

**Returns**  
`retval` – Radial symmetry function (before summation)

**Return type**  
tf.Tensor of shape (B, N, M)

**radial_cutoff** (*R*, *rc*)

Calculates radial cutoff matrix.

B = batch_size, N = max_num_atoms, M = max_num_neighbors

**Parameters**

- `[B (R)] – Distance matrix.*
- `N` *(tf.Tensor) – Distance matrix.*
- `M` *(tf.Tensor) – Distance matrix.*
- `rc` *(tf.Variable) – Interaction cutoff [Angstrom].*

**Returns**  
Return type: tf.Tensor

gaussian_distance_matrix(R, rs, e)
Calculates gaussian distance matrix.

B = batch_size, N = max_num_atoms, M = max_num_neighbors

Parameters:

- R (tf.Tensor) – Distance matrix.
- N (tf.Tensor) – Distance matrix.
- M (tf.Tensor) – Distance matrix.
- rs (tf.Variable) – Gaussian distance matrix mean.
- e (tf.Variable) – Gaussian distance matrix width (e = .5/std**2).


Return type: tf.Tensor

distance_tensor(X, Nbrs, boxsize, B, N, M, d)
Calculates distance tensor for batch of molecules.

B = batch_size, N = max_num_atoms, M = max_num_neighbors, d = num_features

Parameters:

- X (tf.Tensor of shape (B, N, d)) – Coordinates/features tensor.
- Nbrs (tf.Tensor of shape (B, N, M)) – Neighbor list tensor.
- boxsize (float or None) – Simulation box length [Angstrom].

Returns: D – Coordinates/features distance tensor.

Return type: tf.Tensor of shape (B, N, M, d)

distance_matrix(D)
Calculates the distance matrix from the distance tensor

B = batch_size, N = max_num_atoms, M = max_num_neighbors, d = num_features

Parameters: D (tf.Tensor of shape (B, N, M, d)) – Distance tensor.

Returns: R – Distance matrix.

Return type: tf.Tensor of shape (B, N, M)

class AlphaShareLayer(*args, **kwargs)
Part of a sluice network. Adds alpha parameters to control sharing between the main and auxiliary tasks

Factory method AlphaShare should be used for construction

Parameters: in_layers (list of Layers or tensors) – tensors in list must be the same size and list must include two or more tensors

Returns:

- out_tensor (a tensor with shape [len(in_layers), x, y] where x, y were the original layer dimensions)
- Distance matrix.
get_config()

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be re-instantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers should make a copy of the returned dict if they want to modify it.

Returns Python dictionary.

build(input_shape)

Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-creation step in-between layer instantiation and layer call. It is invoked automatically before the first execution of call().

This is typically used to create the weights of Layer subclasses (at the discretion of the subclass implementer).

Parameters input_shape – Instance of TensorShape, or list of instances of TensorShape if the layer expects a list of inputs (one instance per input).

call(inputs)

This is where the layer’s logic lives.

The call() method may not create state (except in its first invocation, wrapping the creation of variables or other resources in tf.init_scope()). It is recommended to create state in __init__(), or the build() method that is called automatically before call() executes the first time.

Parameters

• inputs – Input tensor, or dict/list/tuple of input tensors. The first positional inputs argument is subject to special rules: - inputs must be explicitly passed. A layer cannot have zero arguments, and inputs cannot be provided via the default value of a keyword argument.
  - NumPy array or Python scalar values in inputs get cast as tensors.
  - Keras mask metadata is only collected from inputs.
  - Layers are built (build(input_shape) method) using shape info from inputs only.
  - input_spec compatibility is only checked against inputs.
  - Mixed precision input casting is only applied to inputs. If a layer has tensor arguments in *args or **kwargs, their casting behavior in mixed precision should be handled manually.
  - The SavedModel input specification is generated using inputs only.
  - Integration with various ecosystem packages like TFMOT, TFLite, TF.js, etc is only supported for inputs and not for tensors in positional and keyword arguments.

• *args – Additional positional arguments. May contain tensors, although this is not recommended, for the reasons above.
**kwargs – Additional keyword arguments. May contain tensors, although this is not recommended, for the reasons above. The following optional keyword arguments are reserved:
- training: Boolean scalar tensor of Python boolean indicating whether the call is meant for training or inference.
- mask: Boolean input mask. If the layer’s call() method takes a mask argument, its default value will be set to the mask generated for inputs by the previous layer (if input did come from a layer that generated a corresponding mask, i.e. if it came from a Keras layer with masking support).

**Returns** A tensor or list/tuple of tensors.

```python
class SluiceLoss(*args, **kwargs)
```
Calculates the loss in a Sluice Network Every input into an AlphaShare should be used in SluiceLoss

```python
get_config()
```
Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be reinstanitated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers should make a copy of the returned dict if they want to modify it.

** Returns** Python dictionary.

```python
call(inputs)
```
This is where the layer’s logic lives.

The call() method may not create state (except in its first invocation, wrapping the creation of variables or other resources in tf.init_scope()). It is recommended to create state in __init__(), or the build() method that is called automatically before call() executes the first time.

**Parameters**

- **inputs** – Input tensor, or dict/list/tuple of input tensors. The first positional inputs argument is subject to special rules: - inputs must be explicitly passed. A layer cannot have zero arguments, and inputs cannot be provided via the default value of a keyword argument.

  - NumPy array or Python scalar values in inputs get cast as tensors.

  - Keras mask metadata is only collected from inputs.

  - Layers are built (build(input_shape) method) using shape info from inputs only.

  - input_spec compatibility is only checked against inputs.

  - Mixed precision input casting is only applied to inputs. If a layer has tensor arguments in *args or **kwargs, their casting behavior in mixed precision should be handled manually.

  - The SavedModel input specification is generated using inputs only.

  - Integration with various ecosystem packages like TFMOT, TFLite, TF.js, etc is only supported for inputs and not for tensors in positional and keyword arguments.
• *args – Additional positional arguments. May contain tensors, although this is not recommended, for the reasons above.

• **kwargs – Additional keyword arguments. May contain tensors, although this is not recommended, for the reasons above. The following optional keyword arguments are reserved:
  - training: Boolean scalar tensor of Python boolean indicating whether the call is meant for training or inference.
  - mask: Boolean input mask. If the layer’s call() method takes a mask argument, its default value will be set to the mask generated for inputs by the previous layer (if input did come from a layer that generated a corresponding mask, i.e. if it came from a Keras layer with masking support).

Returns A tensor or list/tuple of tensors.

class BetaShare(*args, **kwargs)

Part of a sluice network. Adds beta params to control which layer outputs are used for prediction

Parameters in_layers (list of Layers or tensors) – tensors in list must be the same size and list must include two or more tensors

Returns output_layers – Distance matrix.

Return type list of Layers or tensors with same size as in_layers

get_config()

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers should make a copy of the returned dict if they want to modify it.

Returns Python dictionary.

build(input_shape)

Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-creation step in-between layer instantiation and layer call. It is invoked automatically before the first execution of call().

This is typically used to create the weights of Layer subclasses (at the discretion of the subclass implementer).

Parameters input_shape – Instance of TensorShape, or list of instances of TensorShape if the layer expects a list of inputs (one instance per input).

call(inputs)

Size of input layers must all be the same

class ANIFeat(*args, **kwargs)

Performs transform from 3D coordinates to ANI symmetry functions
__init__(max_atoms=23, radial_cutoff=4.6, angular_cutoff=3.1, radial_length=32, angular_length=8, atom_cases=[1, 6, 7, 8, 16], atomic_number_differentiated=True, coordinates_in_bohr=True, **kwargs)

Only X can be transformed

get_config()

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be instantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers should make a copy of the returned dict if they want to modify it.

Returns Python dictionary.

call(inputs)

In layers should be of shape dtype tf.float32, (None, self.max_atoms, 4)

distance_matrix(coordinates, flags)

Generate distance matrix

distance_cutoff(d, cutoff, flags)

Generate distance matrix with trainable cutoff

radial_symmetry(d_cutoff, d, atom_numbers)

Radial Symmetry Function

angular_symmetry(d_cutoff, d, atom_numbers, coordinates)

Angular Symmetry Function

class GraphEmbedPoolLayer(*args, **kwargs)

GraphCNNPool Layer from Robust Spatial Filtering with Graph Convolutional Neural Networks https://arxiv.org/abs/1703.00792

This is a learnable pool operation. It constructs a new adjacency matrix for a graph of specified number of nodes.

This differs from our other pool operations which set vertices to a function value without altering the adjacency matrix.

.. math:: V_{emb} = \text{SpatialGraphCNN}([V_{in}])

.. math:: V_{out} = \sigma(V_{emb})^T * V_{in}

.. math:: A_{out} = V_{emb}^T * A_{in} * V_{emb}

get_config()

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be instantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers should make a copy of the returned dict if they want to modify it.

Returns Python dictionary.
build(input_shape)

Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-creation step in-between layer instantiation and layer call. It is invoked automatically before the first execution of call().

This is typically used to create the weights of Layer subclasses (at the discretion of the subclass implementer).

Parameters

input_shape – Instance of TensorShape, or list of instances of TensorShape if the layer expects a list of inputs (one instance per input).

call(inputs)

Parameters

num_filters (int) – Number of filters to have in the output

in_layers (list of Layers or tensors) – [V, A, mask] V are the vertex features must be of shape (batch, vertex, channel)

A are the adjacency matrixes for each graph Shape (batch, from_vertex, adj_matrix, to_vertex)

mask is optional, to be used when not every graph has the same number of vertices

Returns

Returns a tf.tensor with a graph convolution applied

The shape will be (batch, vertex, self.num_filters).

class GraphCNN(*args, **kwargs)

GraphCNN Layer from Robust Spatial Filtering with Graph Convolutional Neural Networks https://arxiv.org/abs/1703.00792

Spatial-domain convolutions can be defined as \( H = h_0I + h_1A + h_2A^2 + \ldots + h_kA^k \), \( H \in \mathbb{R}^{(N \times N)} \)

We approximate it by \( H = h_0I + h_1A \)

We can define a convolution as applying multiple these linear filters over edges of different types (think up, down, left, right, diagonal in images) Where each edge type has its own adjacency matrix \( H = h_0I + h_1A_1 + h_2A_2 + \ldots h_{(L1)}A_{(L1)} \)

\( V_{out} = \sum_{c=1}^{C} H^c V^c + b \)

__init__(num_filters, **kwargs)

Parameters

num_filters (int) – Number of filters to have in the output

in_layers (list of Layers or tensors) – [V, A, mask] V are the vertex features must be of shape (batch, vertex, channel)

A are the adjacency matrixes for each graph Shape (batch, from_vertex, adj_matrix, to_vertex)

mask is optional, to be used when not every graph has the same number of vertices

Returns

Returns a tf.tensor –

applied (Returns a tf.tensor with a graph convolution) –

(batch (The shape will be) –
• vertex –
  • self.num_filters) –

get_config()

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be re-instantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers should make a copy of the returned dict if they want to modify it.

Returns Python dictionary.

build(input_shape)

Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-creation step in-between layer instantiation and layer call. It is invoked automatically before the first execution of call().

This is typically used to create the weights of Layer subclasses (at the discretion of the subclass implementer).

Parameters input_shape – Instance of TensorShape, or list of instances of TensorShape if the layer expects a list of inputs (one instance per input).

call(inputs)

This is where the layer’s logic lives.

The call() method may not create state (except in its first invocation, wrapping the creation of variables or other resources in tf.init_scope()). It is recommended to create state in __init__(), or the build() method that is called automatically before call() executes the first time.

Parameters

• inputs – Input tensor, or dict/list/tuple of input tensors. The first positional inputs argument is subject to special rules: - inputs must be explicitly passed. A layer cannot have zero arguments, and inputs cannot be provided via the default value of a keyword argument.

  – NumPy array or Python scalar values in inputs get cast as tensors.
  – Keras mask metadata is only collected from inputs.
  – Layers are built (build(input_shape) method) using shape info from inputs only.
  – input_spec compatibility is only checked against inputs.
  – Mixed precision input casting is only applied to inputs. If a layer has tensor arguments in *args or **kwargs, their casting behavior in mixed precision should be handled manually.
  – The SavedModel input specification is generated using inputs only.
  – Integration with various ecosystem packages like TFMOT, TFLite, TF.js, etc is only supported for inputs and not for tensors in positional and keyword arguments.
• *args – Additional positional arguments. May contain tensors, although this is not recommended, for the reasons above.

• **kwargs – Additional keyword arguments. May contain tensors, although this is not recommended, for the reasons above. The following optional keyword arguments are reserved:
  - training: Boolean scalar tensor of Python boolean indicating whether the call is meant for training or inference.
  - mask: Boolean input mask. If the layer’s call() method takes a mask argument, its default value will be set to the mask generated for inputs by the previous layer (if input did come from a layer that generated a corresponding mask, i.e. if it came from a Keras layer with masking support).

Returns A tensor or list/tuple of tensors.

class Highway(*args, **kwargs)
Create a highway layer. y = H(x) * T(x) + x * (1 - T(x))
H(x) = activation_fn(matmul(W_H, x) + b_H) is the non-linear transformed output
T(x) = sigmoid(matmul(W_T, x) + b_T) is the transform gate
Implementation based on paper
This layer expects its input to be a two dimensional tensor of shape (batch size, # input features). Outputs will be in the same shape.

__init__(activation_fn='relu', biases_initializer='zeros', weights_initializer=None, **kwargs)

Parameters
  • activation_fn (object) – the Tensorflow activation function to apply to the output
  • biases_initializer (callable object) – the initializer for bias values. This may be None, in which case the layer will not include biases.
  • weights_initializer (callable object) – the initializer for weight values

get_config()
Returns the config of the layer.
A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be re-instantiated later (without its trained weights) from this configuration.
The config of a layer does not include connectivity information, nor the layer class name. These are handled by Network (one layer of abstraction above).
Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers should make a copy of the returned dict if they want to modify it.

Returns Python dictionary.

build(input_shape)
Creates the variables of the layer (optional, for subclass implementers).
This is a method that implementers of subclasses of Layer or Model can override if they need a state-creation step in-between layer instantiation and layer call. It is invoked automatically before the first execution of call().
This is typically used to create the weights of \textit{Layer} subclasses (at the discretion of the subclass implementer).

\textbf{Parameters} \texttt{input\_shape} – Instance of \texttt{TensorShape}, or list of instances of \texttt{TensorShape} if the layer expects a list of inputs (one instance per input).

call(\texttt{inputs})

This is where the layer’s logic lives.

The \texttt{call()} method may not create state (except in its first invocation, wrapping the creation of variables or other resources in \texttt{tf.init\_scope()}). It is recommended to create state in \texttt{\_init()} or the \texttt{build()} method that is called automatically before \texttt{call()} executes the first time.

\textbf{Parameters}

- \texttt{\_inputs} – Input tensor, or dict/list/tuple of input tensors. The first positional \texttt{inputs} argument is subject to special rules: - \texttt{inputs} must be explicitly passed. A layer cannot have zero arguments, and \texttt{inputs} cannot be provided via the default value of a keyword argument.
  - NumPy array or Python scalar values in \texttt{inputs} get cast as tensors.
  - Keras mask metadata is only collected from \texttt{inputs}.
  - Layers are built (\texttt{build(input\_shape)} method) using shape info from \texttt{inputs} only.
  - \texttt{input\_spec} compatibility is only checked against \texttt{inputs}.
  - Mixed precision input casting is only applied to \texttt{inputs}. If a layer has tensor arguments in \texttt{*args} or \texttt{**kwargs}, their casting behavior in mixed precision should be handled manually.
  - The SavedModel input specification is generated using \texttt{inputs} only.
  - Integration with various ecosystem packages like TFMOT, TFLite, TF.js, etc is only supported for \texttt{inputs} and not for tensors in positional and keyword arguments.

- \texttt{\*args} – Additional positional arguments. May contain tensors, although this is not recommended, for the reasons above.

- \texttt{\*\*kwargs} – Additional keyword arguments. May contain tensors, although this is not recommended, for the reasons above. The following optional keyword arguments are reserved: - \texttt{training}: Boolean scalar tensor of Python boolean indicating whether the \texttt{call} is meant for training or inference.
  - \texttt{mask}: Boolean input mask. If the layer’s \texttt{call()} method takes a \texttt{mask} argument, its default value will be set to the mask generated for \texttt{inputs} by the previous layer (if \texttt{input} did come from a layer that generated a corresponding mask, i.e. if it came from a Keras layer with masking support).

\textbf{Returns} A tensor or list/tuple of tensors.

class \texttt{WeaveLayer}(\texttt{*args, **kwargs})

This class implements the core Weave convolution from the Google graph convolution paper [1].

This model contains atom features and bond features separately. Here, bond features are also called pair features. There are 2 types of transformation, atom->atom, atom->pair, pair->atom, pair->pair that this model implements.
Examples

This layer expects 4 inputs in a list of the form \([\text{atom_features}, \text{pair_features}, \text{pair_split}, \text{atom_to_pair}]\). We’ll walk through the structure of these inputs. Let’s start with some basic definitions.

```python
>>> import deepchem as dc
dc
tt
>>> import numpy as np

Suppose you have a batch of molecules

```python
>>> smiles = ["CCC", "C"]
```

Note that there are 4 atoms in total in this system. This layer expects its input molecules to be batched together.

```python
>>> total_n_atoms = 4
```

Let’s suppose that we have a featurizer that computes \(n_{atomic\ features}\) features per atom.

```python
>>> n_atom_feat = 75
```

Then conceptually, \(atom_feat\) is the array of shape \((total_n_atoms, n_{atomic_feat})\) of atomic features. For simplicity, let’s just go with a random such matrix.

```python
>>> atom_feat = np.random.rand(total_n_atoms, n_atom_feat)
```

Let’s suppose we have \(n_{pair_feat}\) pairwise features

```python
>>> n_pair_feat = 14
```

For each molecule, we compute a matrix of shape \((n_{atoms} \times n_{atoms}, n_{pair_feat})\) of pairwise features for each pair of atoms in the molecule. Let’s construct this conceptually for our example.

```python
>>> pair_feat = [np.random.rand(3*3, n_pair_feat), np.random.rand(1*1, n_pair_feat)]
>>> pair_feat = np.concatenate(pair_feat, axis=0)
>>> pair_feat.shape
(10, 14)
```

\(pair_split\) is an index into \(pair_feat\) which tells us which atom each row belongs to. In our case, we have

```python
>>> pair_split = np.array([0, 0, 0, 1, 1, 1, 2, 2, 2, 3])
```

That is, the first 9 entries belong to “CCC” and the last entry to “C”. The final entry \(atom_to_pair\) goes in a little more in-depth than \(pair_split\) and tells us the precise pair each pair feature belongs to. In our case

```python
>>> atom_to_pair = np.array([[0, 0],
...                            [0, 1],
...                            [0, 2],
...                            [1, 0],
...                            [1, 1],
...                            [1, 2],
...                            [2, 0],
...                            [2, 1],
...                            [2, 2],
...                            [3, 3]])
```

Let’s now define the actual layer
```python
>>> layer = WeaveLayer()

And invoke it

```python
>>> [A, P] = layer([atom_feat, pair_feat, pair_split, atom_to_pair])

The weave layer produces new atom/pair features. Let’s check their shapes

```python
>>> A = np.array(A)
>>> A.shape  
(4, 50)
>>> P = np.array(P)
>>> P.shape  
(10, 50)
```

The 4 is `total_num_atoms` and the 10 is the total number of pairs. Where does 50 come from? It’s from the default arguments `n_atom_input_feat` and `n_pair_input_feat`.

References

```python
__init__(n_atom_input_feat: int = 75, n_pair_input_feat: int = 14, n_atom_output_feat: int = 50,  
**kwargs)
```

Parameters

- `n_atom_input_feat` *(int, optional (default 75)) – Number of features for each atom in input.*
- `n_pair_input_feat` *(int, optional (default 14)) – Number of features for each pair of atoms in input.*
- `n_atom_output_feat` *(int, optional (default 50)) – Number of features for each atom in output.*
- `n_pair_output_feat` *(int, optional (default 50)) – Number of features for each pair of atoms in output.*
- `n_hidden_AA` *(int, optional (default 50)) – Number of units(convolution depths) in corresponding hidden layer*
- `n_hidden_PA` *(int, optional (default 50)) – Number of units(convolution depths) in corresponding hidden layer*
- `n_hidden_AP` *(int, optional (default 50)) – Number of units(convolution depths) in corresponding hidden layer*
- `n_hidden_PP` *(int, optional (default 50)) – Number of units(convolution depths) in corresponding hidden layer*
- `update_pair` *(bool, optional (default True)) – Whether to calculate for pair features, could be turned off for last layer*
- `init` *(str, optional (default 'glorot_uniform')) – Weight initialization for filters.*
- `activation` *(str, optional (default 'relu')) – Activation function applied*
• **batch_normalize** *(bool, optional (default True)) – If this is turned on, apply batch normalization before applying activation functions on convolutional layers.*

• **batch_normalize_kwargs** *(Dict, optional (default \{renorm=True\})) – Batch normalization is a complex layer which has many potential arguments which change behavior. This layer accepts user-defined parameters which are passed to all BatchNormalization layers in WeaveModel, WeaveLayer, and WeaveGather.*

```python
def get_config() -> Dict:
    Returns config dictionary for this layer.

build(input_shape)
    Construct internal trainable weights.
    
    **Parameters** input_shape *(tuple)* – Ignored since we don’t need the input shape to create internal weights.

```call(inputs: List) → List
 Creates weave tensors.

 Parameters inputs *(List)* – Should contain 4 tensors [atom_features, pair_features, pair_split, atom_to_pair]

class WeaveGather(*args, **kwargs)
 Implements the weave-gathering section of weave convolutions.

 Implements the gathering layer from [1]. The weave gathering layer gathers per-atom features to create a molecule-level fingerprint in a weave convolutional network. This layer can also perform Gaussian histogram expansion as detailed in [1]. Note that the gathering function here is simply addition as in [1].

Examples

This layer expects 2 inputs in a list of the form [atom_features, pair_features]. We’ll walk through the structure of these inputs. Let’s start with some basic definitions.

```python
>>> import deepchem as dc
>>> import numpy as np

Suppose you have a batch of molecules

```python
>>> smiles = ["CCC", "C"]

Note that there are 4 atoms in total in this system. This layer expects its input molecules to be batched together.

```python
>>> total_n_atoms = 4

Let’s suppose that we have n_atom_feat features per atom.

```python
>>> n_atom_feat = 75

Then conceptually, atom_feat is the array of shape (total_n_atoms, n_atom_feat) of atomic features. For simplicity, let’s just go with a random such matrix.

```python
>>> atom_feat = np.random.randn(total_n_atoms, n_atom_feat)

We then need to provide a mapping of indices to the atoms they belong to. In ours case this would be
atom_split = np.array([0, 0, 0, 1])

Let’s now define the actual layer

gather = WeaveGather(batch_size=2, n_input=n_atom_feat)
output_molecules = gather([atom_feat, atom_split])
len(output_molecules)

References

Note: This class requires tensorflow_probability to be installed.

__init__(batch_size: int, n_input: int = 128, gaussian_expand: bool = True,
compress_post_gaussian_expansion: bool = False, init: str = 'glorot_uniform', activation: str = 'tanh', **kwargs)

Parameters

• batch_size (int) – number of molecules in a batch
• n_input (int, optional (default 128)) – number of features for each input molecule
• gaussian_expand (boolean, optional (default True)) – Whether to expand each dimension of atomic features by gaussian histogram
• compress_post_gaussian_expansion (bool, optional (default False)) – If True, compress the results of the Gaussian expansion back to the original dimensions of the input by using a linear layer with specified activation function. Note that this compression was not in the original paper, but was present in the original DeepChem implementation so is left present for backwards compatibility.
• init (str, optional (default 'glorot_uniform')) – Weight initialization for filters if compress_post_gaussian_expansion is True.
• activation (str, optional (default 'tanh')) – Activation function applied for filters if compress_post_gaussian_expansion is True. Should be recognizable by tf.keras.activations.

get_config()

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers should make a copy of the returned dict if they want to modify it.

Returns Python dictionary.
**build**(*input_shape*)

Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of *Layer or Model* can override if they need a state-creation step in-between layer instantiation and layer call. It is invoked automatically before the first execution of *call()*.

This is typically used to create the weights of *Layer* subclasses (at the discretion of the subclass implementer).

**Parameters**

- **input_shape** – Instance of *TensorShape*, or list of instances of *TensorShape* if the layer expects a list of inputs (one instance per input).

**call**(*inputs: List*) → List

Creates weave tensors.

**Parameters**

- **inputs** (List) – Should contain 2 tensors [atom_features, atom_split]

**Returns**

- **output_molecules** – Each entry in this list is of shape (*self.n_inputs,*)

**Return type**

List

**gaussian_histogram**(*x*)

Expands input into a set of gaussian histogram bins.

**Parameters**

- **x** (tf.Tensor) – Of shape (*N, n_feat*)

**Examples**

This method uses 11 bins spanning portions of a Gaussian with zero mean and unit standard deviation.

```python
>>> gaussian_memberships = [(-1.645, 0.283), (-1.080, 0.170),
... (-0.739, 0.134), (-0.468, 0.118),
... (-0.228, 0.114), (0., 0.114),
... (0.228, 0.114), (0.468, 0.118),
... (0.739, 0.134), (1.080, 0.170),
... (1.645, 0.283)]
```

We construct a Gaussian at *gaussian_memberships[i][0]* with standard deviation *gaussian_memberships[i][1]*. Each feature in *x* is assigned the probability of falling in each Gaussian, and probabilities are normalized across the 11 different Gaussians.

**Returns**

- **outputs** – Of shape (*N, 11*n_feat*)

**Return type**

tf.Tensor

**class DTNNEmbedding**(*args, **kwargs*)

__init__(*n_embedding=30, periodic_table_length=30, init='glorot_uniform', **kwargs*)

**Parameters**

- **n_embedding** (int, optional) – Number of features for each atom
- **periodic_table_length** (int, optional) – Length of embedding, 83=Bi
- **init** (str, optional) – Weight initialization for filters.
get_config()
Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers should make a copy of the returned dict if they want to modify it.

Returns Python dictionary.

build(input_shape)
Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-creation step in-between layer instantiation and layer call. It is invoked automatically before the first execution of call().

This is typically used to create the weights of Layer subclasses (at the discretion of the subclass implementer).

Parameters input_shape – Instance of TensorShape, or list of instances of TensorShape if the layer expects a list of inputs (one instance per input).

call(inputs)
parent layers: atom_number

class DTNNStep(*args, **kwargs)

__init__(n_embedding=30, n_distance=100, n_hidden=60, init='glorot_uniform', activation='tanh', **kwargs)

Parameters

- n_embedding (int, optional) – Number of features for each atom
- n_distance (int, optional) – granularity of distance matrix
- n_hidden (int, optional) – Number of nodes in hidden layer
- init (str, optional) – Weight initialization for filters.
- activation (str, optional) – Activation function applied

get_config()
Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers should make a copy of the returned dict if they want to modify it.

Returns Python dictionary.
**build**(*input_shape*)

Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of *Layer* or *Model* can override if they need a state-creation step in-between layer instantiation and layer call. It is invoked automatically before the first execution of *call()*. This is typically used to create the weights of *Layer* subclasses (at the discretion of the subclass implementer).

**Parameters**

- **input_shape** – Instance of *TensorShape*, or list of instances of *TensorShape* if the layer expects a list of inputs (one instance per input).

**call**(inputs)

parent layers: atom_features, distance, distance_membership_i, distance_membership_j

**class DTNNGather**( *args, **kwargs*)

**__init__**(n_embedding=30, n_outputs=100, layer_sizes=[100], output_activation=True, init='glorot_uniform', activation='tanh', **kwargs)

**Parameters**

- **n_embedding** *(int, optional)* – Number of features for each atom
- **n_outputs** *(int, optional)* – Number of features for each molecule (output)
- **layer_sizes** *(list of int, optional (default=[1000]))* – Structure of hidden layer(s)
- **init** *(str, optional)* – Weight initialization for filters.
- **activation** *(str, optional)* – Activation function applied

**get_config()**

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be re-instantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled by *Network* (one layer of abstraction above).

Note that *get_config()* does not guarantee to return a fresh copy of dict every time it is called. The callers should make a copy of the returned dict if they want to modify it.

**Returns** Python dictionary.

**build**(*input_shape*)

Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of *Layer* or *Model* can override if they need a state-creation step in-between layer instantiation and layer call. It is invoked automatically before the first execution of *call()*. This is typically used to create the weights of *Layer* subclasses (at the discretion of the subclass implementer).

**Parameters**

- **input_shape** – Instance of *TensorShape*, or list of instances of *TensorShape* if the layer expects a list of inputs (one instance per input).

**call**(inputs)

parent layers: atom_features, atom_membership
class DAGLayer(*args, **kwargs)

DAG computation layer.

This layer generates a directed acyclic graph for each atom in a molecule. This layer is based on the algorithm from the following paper:


This layer performs a sort of inward sweep. Recall that for each atom, a DAG is generated that “points inward” to that atom from the undirected molecule graph. Picture this as “picking up” the atom as the vertex and using the natural tree structure that forms from gravity. The layer “sweeps inwards” from the leaf nodes of the DAG upwards to the atom. This is batched so the transformation is done for each atom.

__init__(n_graph_feat=30, n_atom_feat=75, max_atoms=50, layer_sizes=[100], init='glorot_uniform', activation='relu', dropout=None, batch_size=64, **kwargs)

Parameters

- **n_graph_feat** (int, optional) – Number of features for each node (and the whole graph).
- **n_atom_feat** (int, optional) – Number of features listed per atom.
- **max_atoms** (int, optional) – Maximum number of atoms in molecules.
- **layer_sizes** (list of int, optional (default=[100])) – List of hidden layer size(s): length of this list represents the number of hidden layers, and each element is the width of corresponding hidden layer.
- **init** (str, optional) – Weight initialization for filters.
- **activation** (str, optional) – Activation function applied.
- **dropout** (float, optional) – Dropout probability in hidden layer(s).
- **batch_size** (int, optional) – number of molecules in a batch.

get_config()

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be re-instantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers should make a copy of the returned dict if they want to modify it.

Returns Python dictionary.

build(input_shape)

“Construct internal trainable weights.

call(inputs, training=True)

parent layers: atom_features, parents, calculation_orders, calculation_masks, n_atoms

class DLAGGather(*args, **kwargs)
__init__(n_graph_feat=30, n_outputs=30, max_atoms=50, layer_sizes=[100], init='glorot_uniform', activation='relu', dropout=None, **kwargs)

DAG vector gathering layer

Parameters

- **n_graph_feat** (int, optional) – Number of features for each atom.
- **n_outputs** (int, optional) – Number of features for each molecule.
- **max_atoms** (int, optional) – Maximum number of atoms in molecules.
- **layer_sizes** (list of int, optional) – List of hidden layer size(s): length of this list represents the number of hidden layers, and each element is the width of corresponding hidden layer.
- **init** (str, optional) – Weight initialization for filters.
- **activation** (str, optional) – Activation function applied.
- **dropout** (float, optional) – Dropout probability in the hidden layer(s).

get_config()

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers should make a copy of the returned dict if they want to modify it.

Returns Python dictionary.

build(input_shape)

Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-creation step in-between layer instantiation and layer call. It is invoked automatically before the first execution of call().

This is typically used to create the weights of Layer subclasses (at the discretion of the subclass implementer).

Parameters **input_shape** – Instance of TensorShape, or list of instances of TensorShape if the layer expects a list of inputs (one instance per input).

call(inputs, training=True)

parent layers: atom_features, membership

class MessagePassing(*args, **kwargs)

General class for MPNN default structures built according to https://arxiv.org/abs/1511.06391

__init__(T, message_fn='enn', update_fn='gru', n_hidden=100, **kwargs)

Parameters

- **T** (int) – Number of message passing steps
- **message_fn** (str, optional) – message function in the model
- **update_fn** (str, optional) – update function in the model
• n_hidden (int, optional) – number of hidden units in the passing phase

get_config()

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers should make a copy of the returned dict if they want to modify it.

Returns Python dictionary.

build(input_shape)

Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-creation step in-between layer instantiation and layer call. It is invoked automatically before the first execution of call().

This is typically used to create the weights of Layer subclasses (at the discretion of the subclass implementer).

Parameters input_shape – Instance of TensorShape, or list of instances of TensorShape if the layer expects a list of inputs (one instance per input).

call(inputs)

Perform T steps of message passing

class EdgeNetwork(*args, **kwargs)

Submodule for Message Passing

get_config()

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers should make a copy of the returned dict if they want to modify it.

Returns Python dictionary.

build(input_shape)

Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-creation step in-between layer instantiation and layer call. It is invoked automatically before the first execution of call().

This is typically used to create the weights of Layer subclasses (at the discretion of the subclass implementer).

Parameters input_shape – Instance of TensorShape, or list of instances of TensorShape if the layer expects a list of inputs (one instance per input).
call(inputs)

This is where the layer’s logic lives.

The call() method may not create state (except in its first invocation, wrapping the creation of variables or other resources in \texttt{tf.init_scope()}). It is recommended to create state in \texttt{__init__()}, or the \texttt{build()} method that is called automatically before \texttt{call()} executes the first time.

**Parameters**

- **inputs** – Input tensor, or dict/list/tuple of input tensors. The first positional inputs argument is subject to special rules: - inputs must be explicitly passed. A layer cannot have zero arguments, and inputs cannot be provided via the default value of a keyword argument.
  - NumPy array or Python scalar values in inputs get cast as tensors.
  - Keras mask metadata is only collected from inputs.
  - Layers are built (\texttt{build(input_shape)} method) using shape info from inputs only.
  - \texttt{input_spec} compatibility is only checked against inputs.
  - Mixed precision input casting is only applied to inputs. If a layer has tensor arguments in *\texttt{args} or **\texttt{kwargs}, their casting behavior in mixed precision should be handled manually.
  - The SavedModel input specification is generated using inputs only.
  - Integration with various ecosystem packages like TFMOT, TFLite, TF.js, etc is only supported for inputs and not for tensors in positional and keyword arguments.

- **\texttt{args}** – Additional positional arguments. May contain tensors, although this is not recommended, for the reasons above.

- **\texttt{kwargs}** – Additional keyword arguments. May contain tensors, although this is not recommended, for the reasons above. The following optional keyword arguments are reserved:
  - training: Boolean scalar tensor of Python boolean indicating whether the call is meant for training or inference.
  - mask: Boolean input mask. If the layer’s call() method takes a mask argument, its default value will be set to the mask generated for inputs by the previous layer (if input did come from a layer that generated a corresponding mask, i.e. if it came from a Keras layer with masking support).

**Returns** A tensor or list/tuple of tensors.

class GatedRecurrentUnit(*\texttt{args}, **\texttt{kwargs})

Submodule for Message Passing

\texttt{get\_config()} Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be reinstated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled by Network (one layer of abstraction above).

Note that \texttt{get\_config()} does not guarantee to return a fresh copy of dict every time it is called. The callers should make a copy of the returned dict if they want to modify it.
Returns Python dictionary.

build(input_shape)

Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-creation step in-between layer instantiation and layer call. It is invoked automatically before the first execution of call().

This is typically used to create the weights of Layer subclasses (at the discretion of the subclass implementer).

Parameters input_shape – Instance of TensorShape, or list of instances of TensorShape if the layer expects a list of inputs (one instance per input).

call(inputs)

This is where the layer’s logic lives.

The call() method may not create state (except in its first invocation, wrapping the creation of variables or other resources in \texttt{tf.init_scope()}). It is recommended to create state in \texttt{\_\_init\_()}, or the build() method that is called automatically before call() executes the first time.

Parameters

- **inputs** – Input tensor, or dict/list/tuple of input tensors. The first positional inputs argument is subject to special rules: - inputs must be explicitly passed. A layer cannot have zero arguments, and inputs cannot be provided via the default value of a keyword argument.

  – NumPy array or Python scalar values in inputs get cast as tensors.

  – Keras mask metadata is only collected from inputs.

  – Layers are built (build(input_shape) method) using shape info from inputs only.

  – input_spec compatibility is only checked against inputs.

  – Mixed precision input casting is only applied to inputs. If a layer has tensor arguments in *args or **kwargs, their casting behavior in mixed precision should be handled manually.

  – The SavedModel input specification is generated using inputs only.

  – Integration with various ecosystem packages like TFMOT, TFLite, TF.js, etc is only supported for inputs and not for tensors in positional and keyword arguments.

- **args** – Additional positional arguments. May contain tensors, although this is not recommended, for the reasons above.

- **kwargs** – Additional keyword arguments. May contain tensors, although this is not recommended, for the reasons above. The following optional keyword arguments are reserved: - training: Boolean scalar tensor of Python boolean indicating whether the call is meant for training or inference.

  – mask: Boolean input mask. If the layer’s call() method takes a mask argument, its default value will be set to the mask generated for inputs by the previous layer (if input did come from a layer that generated a corresponding mask, i.e. if it came from a Keras layer with masking support).

Returns A tensor or list/tuple of tensors.
class SetGather(*args, **kwargs)

set2set gather layer for graph-based model

Models using this layer must set pad_batches=True.

__init__(M, batch_size, n_hidden=100, init='orthogonal', **kwargs)

Parameters

- M (int) – Number of LSTM steps
- batch_size (int) – Number of samples in a batch (all batches must have same size)
- n_hidden (int, optional) – number of hidden units in the passing phase

get_config()

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be re-instantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of dict every time it is called. The callers should make a copy of the returned dict if they want to modify it.

Returns Python dictionary.

build(input_shape)

Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-creation step in-between layer instantiation and layer call. It is invoked automatically before the first execution of call().

This is typically used to create the weights of Layer subclasses (at the discretion of the subclass implementer).

Parameters input_shape – Instance of TensorShape, or list of instances of TensorShape if the layer expects a list of inputs (one instance per input).

call(inputs)

Perform M steps of set2set gather,

Detailed descriptions in: https://arxiv.org/abs/1511.06391

### 3.20.2 Torch Layers

class CNNModule(n_tasks: int, n_features: int, dims: int, layer_filters: List[int] = [100], kernel_size: Union[int, Sequence[int]] = 5, strides: Union[int, Sequence[int]] = 1, weight_init_stddevs: Union[float, Sequence[float]] = 0.02, bias_init_consts: Union[float, Sequence[float]] = 1.0, dropouts: Union[float, Sequence[float]] = 0.5, activation_fns: Union[Callable, str, Sequence[Union[Callable, str]]] = 'relu', pool_type: str = 'max', mode: str = 'classification', n_classes: int = 2, uncertainty: bool = False, residual: bool = False, padding: Union[int, str] = 'valid')

A 1, 2, or 3 dimensional convolutional network for either regression or classification. The network consists of the following sequence of layers: - A configurable number of convolutional layers - A global pooling layer (either max pool or average pool) - A final fully connected layer to compute the output It optionally can compose the model from pre-activation residual blocks, as described in https://arxiv.org/abs/1603.05027, rather than a simple
deepchem, Release 2.6.1.dev

stack of convolution layers. This often leads to easier training, especially when using a large number of layers. Note that residual blocks can only be used when successive layers have the same output shape. Wherever the output shape changes, a simple convolution layer will be used even if residual=True.

```python
>>> model = CNNModule(n_tasks=5, n_features=8, dims=2, layer_filters=[3, 8, 8, 16],
 kernel_size=3, n_classes = 7, mode='classification', uncertainty=False, padding='same')
>>> x = torch.ones(2, 224, 224, 8)
>>> x = model(x)
>>> for tensor in x:
 ... print(tensor.shape)
torch.Size([2, 5, 7])
torch.Size([2, 5, 7])
```

Create a CNN.

```
__init__(n_tasks: int, n_features: int, dims: int, layer_filters: List[int] = [100], kernel_size: Union[int, Sequence[int]] = 5, strides: Union[int, Sequence[int]] = 1, weight_init_stddevs: Union[float, Sequence[float]] = 0.02, bias_init_consts: Union[float, Sequence[float]] = 1.0, dropouts: Union[float, Sequence[float]] = 0.5, activation_fns: Union[Callable, str, Sequence[Union[Callable, str]]] = 'relu', pool_type: str = 'max', mode: str = 'classification', n_classes: int = 2, uncertainty: bool = False, residual: bool = False, padding: Union[int, str] = 'valid') → None
```

Create a CNN.

The length of this list determines the number of layers.

**Parameters**

- **kernel_size** *(int, tuple, or list)* – a list giving the shape of the convolutional kernel for each layer. Each element may be either an int (use the same kernel width for every dimension) or a tuple (the kernel width along each dimension). Alternatively this may be a single int or tuple instead of a list, in which case the same kernel shape is used for every layer.

- **strides** *(int, tuple, or list)* – a list giving the stride between applications of the kernel for each layer. Each element may be either an int (use the same stride for every dimension) or a tuple (the stride along each dimension). Alternatively this may be a single int or tuple instead of a list, in which case the same stride is used for every layer.

- **weight_init_stddevs** *(list or float)* – the standard deviation of the distribution to use for weight initialization of each layer. The length of this list should be equal to len(layer_filters)+1, where the final element corresponds to the dense layer. Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.

- **bias_init_consts** *(list or float)* – the value to initialize the biases in each layer. The length of this list should be equal to len(layer_filters)+1, where the final element corresponds to the dense layer. Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.

- **dropouts** *(list or float)* – the dropout probability to use for each layer. The length of this list should be equal to len(layer_filters). Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.

- **activation_fns** *(str or list)* – the torch activation function to apply to each layer. The length of this list should be equal to len(layer_filters). Alternatively this may be a single
value instead of a list, in which case the same value is used for every layer, ‘relu’ by default

- **pool_type** (str) – the type of pooling layer to use, either ‘max’ or ‘average’
- **mode** (str) – Either ‘classification’ or ‘regression’
- **n_classes** (int) – the number of classes to predict (only used in classification mode)
- **uncertainty** (bool) – if True, include extra outputs and loss terms to enable the uncertainty in outputs to be predicted
- **residual** (bool) – if True, the model will be composed of pre-activation residual blocks instead of a simple stack of convolutional layers.
- **padding** (str, int or tuple) – the padding to use for convolutional layers, either ‘valid’ or ‘same’

```
forward(inputs: Union[torch.Tensor, Sequence[torch.Tensor]]) → List[Any]
```

Parameters

- **x** (torch.Tensor) – Input Tensor

Returns

Output as per use case: regression/classification

Return type

torch.Tensor

class ScaleNorm(scale: float, eps: float = 1e-05)

Apply Scale Normalization to input.

The ScaleNorm layer first computes the square root of the scale, then computes the matrix/vector norm of the input tensor. The norm value is calculated as \( \sqrt{\text{scale}} / \text{matrix norm} \). Finally, the result is returned as \( \text{input_tensor} \times \text{norm value} \).

This layer can be used instead of LayerNorm when a scaled version of the norm is required. Instead of performing the scaling operation \( \text{scale} / \text{norm} \) in a lambda-like layer, we are defining it within this layer to make prototyping more efficient.

References

Examples

```
>>> from deepchem.models.torch_models.layers import ScaleNorm
>>> scale = 0.35
>>> layer = ScaleNorm(scale)
>>> input_tensor = torch.tensor([[1.269, 39.36], [0.00918, -9.12]])
>>> output_tensor = layer(input_tensor)
```

__init__(scale: float, eps: float = 1e-05)

Initialize a ScaleNorm layer.

Parameters

- **scale** (float) – Scale magnitude.
- **eps** (float) – Epsilon value. Default = 1e-5.

forward(x: torch.Tensor) → torch.Tensor

Defines the computation performed at every call.

Should be overridden by all subclasses.
Note: Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.

```python
class MATEncoderLayer(dist_kernel: str = 'softmax', lambda_attention: float = 0.33, lambda_distance: float = 0.33, h: int = 16, sa_hsize: int = 1024, sa_dropout_p: float = 0.0, output_bias: bool = True, d_input: int = 1024, d_hidden: int = 1024, d_output: int = 1024, activation: str = 'leakyrelu', n_layers: int = 1, ff_dropout_p: float = 0.0, encoder_hsize: int = 1024, encoder_dropout_p: float = 0.0):
```

Encoder layer for use in the Molecular Attention Transformer [1].

The MATEncoder layer primarily consists of a self-attention layer (MultiHeadedMATAttention) and a feed-forward layer (PositionwiseFeedForward). This layer can be stacked multiple times to form an encoder.

References

Examples

```python
>>> from rdkit import Chem
>>> import torch
>>> import deepchem
>>> from deepchem.models.torch_models.layers import MATEmbedding, MATEncoderLayer

>>> input_smile = "CC"

>>> feat = deepchem.feat.MATFeaturizer()

>>> out = feat.featurize(input_smile)

>>> node = torch.tensor(out[0].node_features).float().unsqueeze(0)

>>> adj = torch.tensor(out[0].adjacency_matrix).float().unsqueeze(0)

>>> dist = torch.tensor(out[0].distance_matrix).float().unsqueeze(0)

>>> mask = torch.sum(torch.abs(node), dim=-1) != 0

>>> layer = MATEncoderLayer()

>>> op = MATEmbedding()(node)

>>> output = layer(op, mask, adj, dist)
```

```python
__init__(dist_kernel: str = 'softmax', lambda_attention: float = 0.33, lambda_distance: float = 0.33, h: int = 16, sa_hsize: int = 1024, sa_dropout_p: float = 0.0, output_bias: bool = True, d_input: int = 1024, d_hidden: int = 1024, d_output: int = 1024, activation: str = 'leakyrelu', n_layers: int = 1, ff_dropout_p: float = 0.0, encoder_hsize: int = 1024, encoder_dropout_p: float = 0.0)
```

Initialize a MATEncoder layer.

Parameters

- **dist_kernel (str)** – Kernel activation to be used. Can be either 'softmax' for softmax or 'exp' for exponential, for the self-attention layer.

- **lambda_attention (float)** – Constant to be multiplied with the attention matrix in the self-attention layer.

- **lambda_distance (float)** – Constant to be multiplied with the distance matrix in the self-attention layer.

- **h (int)** – Number of attention heads for the self-attention layer.

- **sa_hsize (int)** – Size of dense layer in the self-attention layer.

- **sa_dropout_p (float)** – Dropout probability for the self-attention layer.
• **output_bias** (*bool*) – If True, dense layers will use bias vectors in the self-attention layer.
• **d_input** (*int*) – Size of input layer in the feed-forward layer.
• **d_hidden** (*int*) – Size of hidden layer in the feed-forward layer.
• **d_output** (*int*) – Size of output layer in the feed-forward layer.
• **activation** (*str*) – Activation function to be used in the feed-forward layer. Can choose between ‘relu’ for ReLU, ‘leakyrelu’ for LeakyReLU, ‘prelu’ for PReLU, ‘tanh’ for TanH, ‘selu’ for SELU, ‘elu’ for ELU and ‘linear’ for linear activation.
• **n_layers** (*int*) – Number of layers in the feed-forward layer.
• **dropout_p** (*float*) – Dropout probability in the feed-forward layer.
• **encoder_hsize** (*int*) – Size of Dense layer for the encoder itself.
• **encoder_dropout_p** (*float*) – Dropout probability for connections in the encoder layer.

```python
```

Output computation for the MATEncoder layer.

In the MATEncoderLayer initialization, self.sublayer is defined as an nn.ModuleList of 2 layers. We will be passing our computation through these layers sequentially. nn.ModuleList is subscriptable and thus we can access it as self.sublayer[0], for example.

**Parameters**

• **x** (*torch.Tensor*) – Input tensor.
• **mask** (*torch.Tensor*) – Masks out padding values so that they are not taken into account when computing the attention score.
• **adj_matrix** (*torch.Tensor*) – Adjacency matrix of a molecule.
• **distance_matrix** (*torch.Tensor*) – Distance matrix of a molecule.
• **sa_dropout_p** (*float*) – Dropout probability for the self-attention layer (MultiHeaded-MATAttention).

```python
class MultiHeadedMATAttention(dist_kernel: str = ‘softmax’, lambda_attention: float = 0.33,
lambda_distance: float = 0.33, h: int = 16, hsize: int = 1024, dropout_p: float = 0.0, output_bias: bool = True)
```

First constructs an attention layer tailored to the Molecular Attention Transformer [1] and then converts it into Multi-Headed Attention.

In Multi-Headed attention the attention mechanism multiple times parallely through the multiple attention heads. Thus, different subsequences of a given sequences can be processed differently. The query, key and value parameters are split multiple ways and each split is passed separately through a different attention head. .. rubric:: References
Examples

```python
>>> from deepchem.models.torch_models.layers import MultiHeadedMATAttention,
... MATEmbedding
>>> import deepchem as dc
>>> import torch

>>> input_smile = "CC"
>>> feat = dc.feat.MATFeaturizer()

>>> input_smile = "CC"
>>> out = feat.featurize(input_smile)

>>> node = torch.tensor(out[0].node_features).float().unsqueeze(0)
>>> adj = torch.tensor(out[0].adjacency_matrix).float().unsqueeze(0)
>>> dist = torch.tensor(out[0].distance_matrix).float().unsqueeze(0)

>>> mask = torch.sum(torch.abs(node), dim=-1) != 0

>>> layer = MultiHeadedMATAttention(
... dist_kernel='softmax',
... lambda_attention=0.33,
... lambda_distance=0.33,
... h=16,
... hsize=1024,
... dropout_p=0.0)

>>> op = MATEmbedding()(node)

>>> output = layer(op, op, op, mask, adj, dist)
```

**__init__**

```
Initialize a multi-headed attention layer.
:param dist_kernel: Kernel activation to be used. Can be either 'softmax' for softmax or 'exp' for exponential.
:type dist_kernel: str
:param lambda_attention: Constant to be multiplied with the attention matrix.
:type lambda_attention: float
:param lambda_distance: Constant to be multiplied with the distance matrix.
:type lambda_distance: float
:param h: Number of attention heads.
:type h: int
:param hsize: Size of dense layer.
:type hsize: int
:param dropout_p: Dropout probability.
:type dropout_p: float
:param output_bias: If True, dense layers will use bias vectors.
:type output_bias: bool
```

**forward**

```
Output computation for the MultiHeadedAttention layer.
:param query: Standard query parameter for attention.
:type query: torch.Tensor
:param key: Standard key parameter for attention.
:type key: torch.Tensor
:param value: torch.Tensor
:param mask: Mask out padding values so that they are not taken into account when computing the attention score.
:type mask: torch.Tensor
:param adj_matrix: Adjacency matrix of the input molecule, returned from dc.feat.MATFeaturizer().
:type adj_matrix: torch.Tensor
:param dist_matrix: Distance matrix of the input molecule, returned from dc.feat.MATFeaturizer().
:type dist_matrix: torch.Tensor
:param dropout_p: Dropout probability.
:type dropout_p: float
:param eps: Epsilon value
:type eps: float
:param inf: Value of infinity to be used.
:type inf: float
```

**class SublayerConnection**(size: int, dropout_p: float = 0.0)

SublayerConnection layer which establishes a residual connection, as used in the Molecular Attention Transformer [1].

The SublayerConnection layer is a residual layer which is then passed through Layer Normalization. The residual connection is established by computing the dropout-adjusted layer output of a normalized tensor and adding this to the original input tensor.
References

Examples

```python
>>> from deepchem.models.torch_models.layers import SublayerConnection
>>> scale = 0.35
>>> layer = SublayerConnection(2, 0.)
>>> input_ar = torch.tensor([[1., 2.], [5., 6.]])
>>> output = layer(input_ar, input_ar)
```

```
__init__(size: int, dropout_p: float = 0.0)
Initialize a SublayerConnection Layer.

Parameters
• size (int) – Size of layer.
• dropout_p (float) – Dropout probability.

forward(x: torch.Tensor, output: torch.Tensor) → torch.Tensor
Output computation for the SublayerConnection layer.
Takes an input tensor x, then adds the dropout-adjusted sublayer output for normalized x to it. This is done
to add a residual connection followed by LayerNorm.

Parameters
• x (torch.Tensor) – Input tensor.
• output (torch.Tensor) – Layer whose normalized output will be added to x.
```

```python
class PositionwiseFeedForward(d_input: int = 1024, d_hidden: int = 1024, d_output: int = 1024, activation: str = 'leakyrelu', n_layers: int = 1, dropout_p: float = 0.0, dropout_at_input_no_act: bool = False)
PositionwiseFeedForward is a layer used to define the position-wise feed-forward (FFN) algorithm for the Molecular Attention Transformer [1].

Each layer in the MAT encoder contains a fully connected feed-forward network which applies two linear transformations and the given activation function. This is done in addition to the SublayerConnection module.

Note: This modified version of PositionwiseFeedForward class contains dropout_at_input_no_act condition to facilitate its use in the feed-forward (FFN) algorithm for the Directed Message Passing Neural Network (D-MPNN) [2].

References

Examples

```python
>>> from deepchem.models.torch_models.layers import PositionwiseFeedForward
>>> feed_fwd_layer = PositionwiseFeedForward(d_input = 2, d_hidden = 2, d_output = 2, activation = 'relu', n_layers = 1, dropout_p = 0.1)
>>> input_tensor = torch.tensor([[1., 2.], [5., 6.]])
>>> output_tensor = feed_fwd_layer(input_tensor)
```

```
__init__(d_input: int = 1024, d_hidden: int = 1024, d_output: int = 1024, activation: str = 'leakyrelu', n_layers: int = 1, dropout_p: float = 0.0, dropout_at_input_no_act: bool = False)
Initialize a PositionwiseFeedForward layer.
```
Parameters

- **d_input** (int) – Size of input layer.
- **d_hidden** (int (same as d_input if d_output = 0)) – Size of hidden layer.
- **d_output** (int (same as d_input if d_output = 0)) – Size of output layer.
- **activation** (str) – Activation function to be used. Can choose between ‘relu’ for ReLU, ‘leakyrelu’ for LeakyReLU, ‘prelu’ for PReLU, ‘tanh’ for TanH, ‘relu’ for SELU, ‘elu’ for ELU and ‘linear’ for linear activation.
- **n_layers** (int) – Number of layers.
- **dropout_p** (float) – Dropout probability.
- **dropout_at_input_no_act** (bool) – If true, dropout is applied on the input tensor. For single layer, it is not passed to an activation function.

```
forward(x: torch.Tensor) -> torch.Tensor
```

Output Computation for the PositionwiseFeedForward layer.

Parameters x (torch.Tensor) – Input tensor.

class MATEmbedding(d_input: int = 36, d_output: int = 1024, dropout_p: float = 0.0)

Embedding layer to create embedding for inputs.

In an embedding layer, input is taken and converted to a vector representation for each input. In the MATEmbedding layer, an input tensor is processed through a dropout-adjusted linear layer and the resultant vector is returned.

References

Examples

```python
>>> from deepchem.models.torch_models.layers import MATEmbedding
>>> layer = MATEmbedding(d_input = 3, d_output = 3, dropout_p = 0.2)
>>> input_tensor = torch.tensor([1., 2., 3.])
>>> output = layer(input_tensor)
```

```
__init__(d_input: int = 36, d_output: int = 1024, dropout_p: float = 0.0)
```

Initialize a MATEmbedding layer.

Parameters

- **d_input** (int) – Size of input layer.
- **d_output** (int) – Size of output layer.
- **dropout_p** (float) – Dropout probability for layer.

```
forward(x: torch.Tensor) -> torch.Tensor
```

Computation for the MATEmbedding layer.

Parameters x (torch.Tensor) – Input tensor to be converted into a vector.

class MATGenerator(hsize: int = 1024, aggregation_type: str = 'mean', d_output: int = 1, n_layers: int = 1, dropout_p: float = 0.0, attn_hidden: int = 128, attn_out: int = 4)

MATGenerator defines the linear and softmax generator step for the Molecular Attention Transformer [1].

In the MATGenerator, a Generator is defined which performs the Linear + Softmax generation step. Depending on the type of aggregation selected, the attention output layer performs different operations.
References

Examples

```python
>>> from deepchem.models.torch_models.layers import MATGenerator

layer = MATGenerator(hsize = 3, aggregation_type = 'mean', d_output = 1, n_layers = 1, dropout_p = 0.3, attn_hidden = 128, attn_out = 4)

input_tensor = torch.tensor([1., 2., 3.])

mask = torch.tensor([1., 1., 1.])

output = layer(input_tensor, mask)
```

__init__(hszie: int = 1024, aggregation_type: str = 'mean', d_output: int = 1, n_layers: int = 1, dropout_p: float = 0.0, attn_hidden: int = 128, attn_out: int = 4)

Initialize a MATGenerator.

Parameters

- **hszie** (int) – Size of input layer.
- **aggregation_type** (str) – Type of aggregation to be used. Can be ‘grover’, ‘mean’ or ‘contextual’.
- **d_output** (int) – Size of output layer.
- **n_layers** (int) – Number of layers in MATGenerator.
- **dropout_p** (float) – Dropout probability for layer.
- **attn_hidden** (int) – Size of hidden attention layer.
- **attn_out** (int) – Size of output attention layer.

Computation for the MATGenerator layer.

Parameters

- **x** (torch.Tensor) – Input tensor.
- **mask** (torch.Tensor) – Mask for padding so that padded values do not get included in attention score calculation.

cosine_dist(x, y)

Computes the inner product (cosine similarity) between two tensors.

This assumes that the two input tensors contain rows of vectors where each column represents a different feature. The output tensor will have elements that represent the inner product between pairs of normalized vectors in the rows of x and y. The two tensors need to have the same number of columns, because one cannot take the dot product between vectors of different lengths. For example, in sentence similarity and sentence classification tasks, the number of columns is the embedding size. In these tasks, the rows of the input tensors would be different test vectors or sentences. The input tensors themselves could be different batches. Using vectors or tensors of all 0s should be avoided.

The vectors in the input tensors are first l2-normalized such that each vector has length or magnitude of 1. The inner product (dot product) is then taken between corresponding pairs of row vectors in the input tensors and returned.
Examples

The cosine similarity between two equivalent vectors will be 1. The cosine similarity between two equivalent tensors (tensors where all the elements are the same) will be a tensor of 1s. In this scenario, if the input tensors x and y are each of shape (n,p), where each element in x and y is the same, then the output tensor would be a tensor of shape (n,n) with 1 in every entry.

```python
>>> import numpy as np
>>> import tensorflow as tf
>>> import deepchem.models.layers as layers

>>> x = tf.ones((6, 4), dtype=tf.dtypes.float32, name=None)
>>> y_same = tf.ones((6, 4), dtype=tf.dtypes.float32, name=None)
>>> cos_sim_same = layers.cosine_dist(x,y_same)
```

x and y_same are the same tensor (equivalent at every element, in this case 1). As such, the pairwise inner product of the rows in x and y will always be 1. The output tensor will be of shape (6,6).

```python
>>> diff = cos_sim_same - tf.ones((6, 6), dtype=tf.dtypes.float32, name=None)
>>> np.allclose(0.0, tf.reduce_sum(diff).numpy(), atol=1e-05)
True
>>> cos_sim_same.shape
TensorShape([6, 6])
```

The cosine similarity between two orthogonal vectors will be 0 (by definition). If every row in x is orthogonal to every row in y, then the output will be a tensor of 0s. In the following example, each row in the tensor $x1$ is orthogonal to each row in $x2$ because they are halves of an identity matrix.

```python
>>> identity_tensor = tf.eye(512, dtype=tf.dtypes.float32)
>>> x1 = identity_tensor[0:256,:]
>>> x2 = identity_tensor[256:512,:]
>>> cos_sim_orth = layers.cosine_dist(x1,x2)
```

Each row in $x1$ is orthogonal to each row in $x2$. As such, the pairwise inner product of the rows in $x1$ and $x2$ will always be 0. Furthermore, because the shape of the input tensors are both of shape $(256,512)$, the output tensor will be of shape (256,256).

```python
>>> np.allclose(0.0, tf.reduce_sum(cos_sim_orth).numpy(), atol=1e-05)
True
>>> cos_sim_orth.shape
TensorShape([256, 256])
```

Parameters

- x (tf.Tensor) – Input Tensor of shape (n, p). The shape of this input tensor should be n rows by p columns. Note that n need not equal m (the number of rows in y).

- y (tf.Tensor) – Input Tensor of shape (m, p) The shape of this input tensor should be m rows by p columns. Note that m need not equal n (the number of rows in x).

Returns

Returns a tensor of shape (n, m), that is, n rows by m columns. Each i,j-th entry of this output tensor is the inner product between the l2-normalized i-th row of the input tensor x and the the l2-normalized j-th row of the output tensor y.

Return type

tf.Tensor
class GraphNetwork(n_node_features: int = 32, n_edge_features: int = 32, n_global_features: int = 32, is_undirected: bool = True, residual_connection: bool = True)

Graph Networks

A Graph Network [1] takes a graph as input and returns an updated graph as output. The output graph has the same structure as the input graph but it has updated node features, edge features and global state features.

Parameters

• n_node_features (int) – Number of features in a node
• n_edge_features (int) – Number of features in an edge
• n_global_features (int) – Number of global features
• is_undirected (bool, optional (default True)) – Directed or undirected graph
• residual_connection (bool, optional (default True)) – If True, the layer uses a residual connection during training

Example

```python
>>> import torch
>>> from deepchem.models.torch_models.layers import GraphNetwork as GN
>>> n_nodes, n_node_features = 5, 10
>>> n_edges, n_edge_features = 5, 2
>>> n_global_features = 4
>>> node_features = torch.randn(n_nodes, n_node_features)
>>> edge_features = torch.randn(n_edges, n_edge_features)
>>> edge_index = torch.tensor([[0, 1, 2, 3, 4], [1, 2, 3, 4, 0]]).long()
>>> global_features = torch.randn(1, n_global_features)
>>> gn = GN(n_node_features=n_node_features, n_edge_features=n_edge_features, n_global_features=n_global_features)
>>> node_features, edge_features, global_features = gn(node_features, edge_index, edge_features, global_features)
```

References

__init__(n_node_features: int = 32, n_edge_features: int = 32, n_global_features: int = 32, is_undirected: bool = True, residual_connection: bool = True)

Initializes internal Module state, shared by both nn.Module and ScriptModule.

Output computation for a GraphNetwork

Parameters

• node_features (torch.Tensor) – Input node features of shape (|\mathcal{V}|, F_n)
• edge_index (torch.Tensor) – Edge indexes of shape (2, |\mathcal{E}|)
• edge_features (torch.Tensor) – Edge features of the graph, shape: (|\mathcal{E}|, F_e)
• global_features (torch.Tensor) – Global features of the graph, shape: (F_g, 1) where, |\mathcal{V}| and |\mathcal{E}| denotes the number of nodes and edges in the graph, F_n, F_e, F_g denotes the number of node features, edge features and global state features respectively.
batch (torch.LongTensor (optional, default: None)) – A vector that maps each node to its respective graph identifier. The attribute is used only when more than one graph are batched together during a single forward pass.

class Affine(dim: int)
Class which performs the Affine transformation.

This transformation is based on the affinity of the base distribution with the target distribution. A geometric transformation is applied where the parameters performs changes on the scale and shift of a function (inputs).

Normalizing Flow transformations must be bijective in order to compute the logarithm of jacobian’s determinant. For this reason, transformations must perform a forward and inverse pass.

Example

```python
>>> import deepchem as dc
>>> from deepchem.models.torch_models.layers import Affine
>>> import torch
>>> from torch.distributions import MultivariateNormal

>>> # initialize the transformation layer's parameters
>>> dim = 2
>>> samples = 96
>>> transforms = Affine(dim)

>>> # forward pass based on a given distribution
>>> distribution = MultivariateNormal(torch.zeros(dim), torch.eye(dim))
>>> input = distribution.sample(torch.Size((samples, dim)))

2

>>> # inverse pass based on a distribution
>>> len(transforms.inverse(input))
2
```

__init__(dim: int) ➞ None
Create a Affine transform layer.

Parameters:
- dim (int) – Value of the Nth dimension of the dataset.

forward(x: Sequence) ➞ Tuple[torch.Tensor, torch.Tensor]
Performs a transformation between two different distributions. This particular transformation represents the following function: y = x * exp(a) + b, where a is scale parameter and b performs a shift. This class also returns the logarithm of the jacobians determinant which is useful when invert a transformation and compute the probability of the transformation.

Parameters:
- x (Sequence) – Tensor sample with the initial distribution data which will pass into the normalizing flow algorithm.

Returns
- y (torch.Tensor) – Transformed tensor according to Affine layer with the shape of ‘x’.
- log_det_jacobian (torch.Tensor) – Tensor which represents the info about the deviation of the initial and target distribution.

inverse(y: Sequence) ➞ Tuple[torch.Tensor, torch.Tensor]
Performs a transformation between two different distributions. This transformation represents the backward pass of the function mention before. Its mathematical representation is x = (y - b) / exp(a), where “a” is
scale parameter and “b” performs a shift. This class also returns the logarithm of the jacobians determinant which is useful when invert a transformation and compute the probability of the transformation.

Parameters

- **y** *(Sequence)* – Tensor sample with transformed distribution data which will be used in the normalizing algorithm inverse pass.

Returns

- **x** *(torch.Tensor)* – Transformed tensor according to Affine layer with the shape of ‘y’.
- **inverse_log_det_jacobian** *(torch.Tensor)* – Tensor which represents the information of the deviation of the initial and target distribution.

class RealNVPLayer *(mask: torch.Tensor, hidden_size: int)*

Real NVP Transformation Layer

This class is a constructor transformation layer used on a NormalizingFlow model. The Real Non-Preserving-Volumen (Real NVP) is a type of normalizing flow layer which gives advantages over this mainly because an ease to compute the inverse pass [1]. this is to learn a target distribution.

Example

```python
>>> import torch
>>> import torch.nn as nn
>>> from torch.distributions import MultivariateNormal
>>> from deepchem.models.torch_models.layers import RealNVPLayer

>>> dim = 2
>>> samples = 96
>>> data = MultivariateNormal(torch.zeros(dim), torch.eye(dim))
>>> tensor = data.sample(torch.Size((samples, dim))

>>> layers = 4
>>> hidden_size = 16
>>> masks = F.one_hot(torch.tensor([i % 2 for i in range(layers)])).float()
>>> layers = nn.ModuleList([RealNVPLayer(mask, hidden_size) for mask in masks])

>>> for layer in layers:
...     _, inverse_log_det_jacobian = layer.inverse(tensor)
...     inverse_log_det_jacobian = inverse_log_det_jacobian.detach().numpy()

>>> len(inverse_log_det_jacobian)
96
```

References

__init__ *(mask: torch.Tensor, hidden_size: int) → None*

Parameters

- **mask** *(torch.Tensor)* – Tensor with zeros and ones and its size depende on the number of layers and dimensions the user request.
- **hidden_size** *(int)* – The size of the outputs and inputs used on the internal nodes of the transformation layer.
forward\((x: \text{Sequence}) \rightarrow \text{Tuple[torch.Tensor, torch.Tensor]}\)

Forward pass.

This particular transformation is represented by the following function:
\[y = x + (1 - x) \ast \exp(s(x)) + t(x), \]
where \(t \) and \(s \) needs an activation function. This class also returns the logarithm of the jacobian's determinant which is useful when invert a transformation and compute the probability of the transformation.

Parameters \(x \) (Sequence) – Tensor sample with the initial distribution data which will pass into the normalizing algorithm

Returns
- \(y \) (torch.Tensor) – Transformed tensor according to Real NVP layer with the shape of ‘x’.
- \(\text{log_det_jacobian} \) (torch.Tensor) – Tensor which represents the info about the deviation of the initial and target distribution.

inverse\((y: \text{Sequence}) \rightarrow \text{Tuple[torch.Tensor, torch.Tensor]}\)

Inverse pass

This class performs the inverse of the previous method (forward). Also, this method returns the logarithm of the jacobians determinant which is useful to compute the learnable features of target distribution.

Parameters \(y \) (Sequence) – Tensor sample with transformed distribution data which will be used in the normalizing algorithm inverse pass.

Returns
- \(x \) (torch.Tensor) – Transformed tensor according to Real NVP layer with the shape of ‘y’.
- \(\text{inverse_log_det_jacobian} \) (torch.Tensor) – Tensor which represents the information of the deviation of the initial and target distribution.

class DMPNNEncoderLayer\((use_default_fdim: \text{bool} = \text{True}, atom_fdim: \text{int} = \text{133}, bond_fdim: \text{int} = \text{14}, d_hidden: \text{int} = \text{300}, depth: \text{int} = \text{3}, bias: \text{bool} = \text{False}, activation: \text{str} = \text{‘relu’}, dropout_p: \text{float} = \text{0.0}, aggregation: \text{str} = \text{‘mean’}, aggregation_norm: \text{Union[int, float]} = \text{100})\)

Encoder layer for use in the Directed Message Passing Neural Network (D-MPNN) [1]_.

The role of the DMPNNEncoderLayer class is to generate molecule encodings in following steps:
- Message passing phase
- Get new atom hidden states and readout phase
- Concatenate the global features

Let the diagram given below represent a molecule containing 5 atoms (nodes) and 4 bonds (edges):

```
1 — 5
| 2 — 4
| 3
```

Let the bonds from atoms 1->2 (B[12]) and 2->1 (B[21]) be considered as 2 different bonds. Hence, by considering the same for all atoms, the total number of bonds = 8.

Let:
• **atom features**: a1, a2, a3, a4, a5
• **hidden states of atoms**: h1, h2, h3, h4, h5
• **bond features bonds**: b12, b21, b23, b32, b24, b42, b15, b51
• **initial hidden states of bonds**: (0)h12, (0)h21, (0)h23, (0)h32, (0)h24, (0)h42, (0)h15, (0)h51

The hidden state of every bond is a function of the concatenated feature vector which contains concatenation of the **features of initial atom of the bond** and **bond features**.

Example: \((0)h21 = \text{func1}(\text{concat}(a2, b21))\)

The Message passing phase

The goal of the message-passing phase is to generate **hidden states of all the atoms in the molecule**.

The hidden state of an atom is a function of concatenation of atom features and messages (at \(T\) depth).

A message is a sum of **hidden states of bonds coming to the atom** (at \(T\) depth).

Note: Depth refers to the number of iterations in the message passing phase (here, \(T\) iterations). After each iteration, the hidden states of the bonds are updated.

Example

\[h1 = \text{func3}(\text{concat}(a1, m1)) \]

Note: Here \(\text{func3}\) is \(\text{self.W_o}\).

\(m1\) refers to the message coming to the atom.

\[m1 = (T-1)h21 + (T-1)h51 \text{ (hidden state of bond 2->1 + hidden state of bond 5->1) (at T depth)} \]

for, depth \(T = 2\):

• the hidden states of the bonds @ 1st iteration will be => (0)h21, (0)h51
• the hidden states of the bonds @ 2nd iteration will be => (1)h21, (1)h51

The hidden states of the bonds in 1st iteration are already known. For hidden states of the bonds in 2nd iteration, we follow the criterion that:

• hidden state of the bond is a function of **initial hidden state of bond** and **messages coming to that bond in that iteration**
Example

(1)h21 = func2((0)h21, (1)m21)

Note: Here func2 is self.W_h.

(1)m21 refers to the messages coming to that bond 2→1 in that 2nd iteration.

Messages coming to a bond in an iteration is a sum of hidden states of bonds (from previous iteration) coming to this bond.

Example

(1)m21 = (0)h32 + (0)h42

Computing the messages

\[
\begin{array}{cccccccc}
\text{B0} & B1 & B2 & B3 & B4 & B5 & B6 & B7 \\
\text{B8} & \rightarrow
\end{array}
\]

\[
f_{\text{ini_atoms_bonds}} = [(0)h12, (0)h21, (0)h23, (0)h32, (0)h24, (0)h42, (0)h15, (0)h51, \rightarrow h(-1)]
\]

Note: h(-1) is an empty array of the same size as other hidden states of bond states.

\[
\begin{array}{cccccccccccc}
B0 & B1 & B2 & B3 & B4 & B5 & B6 & B7 & B8 \\
\end{array}
\]

Later, the encoder will map the concatenated features from the f_{ini_atoms_bonds} to mapping in each iteration upto Tth iteration.

Next the encoder will sum-up the concat features within same bond index.

\[
\begin{array}{cccccccccccc}
(1)m12 & (1)m21 & (1)m23 & (1)m32 & \rightarrow (1)m24 & (1)m42 & (1)m15 & (1)m51 & m(-1) \\
\rightarrow [(h(-1) + (0)h51) & [(0)h32 + (0)h42] & [(0)h12 + (0)h42] & h(-1) + h(-1)] & \rightarrow [(0)h12 + (0)h32] & h(-1) + h(-1)] & [(0)h21 + h(-1)] & [h(-1) + h(-1)] & [h(-1) + h(-1)] & [h(-1) + h(-1)] & \rightarrow [(h(-1) + h(-1))]
\end{array}
\]

Hence, this is how encoder can get messages for message-passing steps.

Get new atom hidden states and readout phase

Hence now for h1:
Similarly, h2, h3, h4 and h5 are calculated.

Next, all atom hidden states are concatenated to make a feature vector of the molecule:

\[
\text{mol_encodings} = [h_1, h_2, h_3, h_4, h_5]
\]

Concatenate the global features

Let, \(\text{global_features} = [g_{f1}, g_{f2}, g_{f3}] \)

This array contains molecule level features. In case of this example, it contains 3 global features.

Hence after concatenation, \(\text{mol_encodings} = [h_1, h_2, h_3, h_4, h_5, g_{f1}, g_{f2}, g_{f3}] \) (Final output of the encoder)

References

Examples

```python
>>> from rdkit import Chem
>>> import torch
>>> import deepchem as dc

>>> input_smile = "CC"
>>> feat = dc.feat.DMPNNFeaturizer(features_generators=['morgan'])
>>> graph = feat.featurize(input_smile)
>>> from deepchem.models.torch_models.dmpnn import _MapperDMPNN
>>> mapper = _MapperDMPNN(graph[0])
>>> atom_features, f_ini_atoms_bonds, atom_to_incoming_bonds, mapping, global_features = mapper.values
>>> atom_features = torch.from_numpy(atom_features).float()
>>> f_ini_atoms_bonds = torch.from_numpy(f_ini_atoms_bonds).float()
>>> atom_to_incoming_bonds = torch.from_numpy(atom_to_incoming_bonds)
>>> mapping = torch.from_numpy(mapping)
>>> global_features = torch.from_numpy(global_features).float()
>>> layer = DMPNNEncoderLayer(d_hidden=2)
>>> output = layer(atom_features, f_ini_atoms_bonds, atom_to_incoming_bonds, mapping, global_features)
```

```
__init__

Parameters

- use_default_fdim: bool = True, atom_fdim: int = 133, bond_fdim: int = 14, d_hidden: int = 300, depth: int = 3, bias: bool = False, activation: str = 'relu', dropout_p: float = 0.0, aggregation: str = 'mean', aggregation_norm: Union[int, float] = 100
```

Initialize a DMPNNEncoderLayer layer.
• **use_default_fdim** (bool) – If True, `self.atom_fdim` and `self.bond_fdim` are initialized using values from the GraphConvConstants class. If False, `self.atom_fdim` and `self.bond_fdim` are initialized from the values provided.

• **atom_fdim** (int) – Dimension of atom feature vector.

• **bond_fdim** (int) – Dimension of bond feature vector.

• **d_hidden** (int) – Size of hidden layer in the encoder layer.

• **depth** (int) – No of message passing steps.

• **bias** (bool) – If True, dense layers will use bias vectors.

• **activation** (str) – Activation function to be used in the encoder layer. Can choose between ‘relu’ for ReLU, ‘leakyrelu’ for LeakyReLU, ‘prelu’ for PReLU, ‘tanh’ for TanH, ‘selu’ for SELU, and ‘elu’ for ELU.

• **dropout_p** (float) – Dropout probability for the encoder layer.

• **aggregation** (str) – Aggregation type to be used in the encoder layer. Can choose between ‘mean’, ‘sum’, and ‘norm’.

• **aggregation_norm** (Union[int, float]) – Value required if **aggregation** type is ‘norm’.

Output computation for the DMPNNEncoderLayer.

Steps:

• Get original bond hidden states from concatenation of initial atom and bond features. (input)

• Get initial messages hidden states. (message)

• Execute message passing step for `self.depth - 1` iterations.

• Get atom hidden states using atom features and message hidden states.

• Get molecule encodings.

• Concatenate global molecular features and molecule encodings.

Parameters

• **atom_features** (torch.Tensor) – Tensor containing atoms features.

• **f_ini_atoms_bonds** (torch.Tensor) – Tensor containing concatenated feature vector which contains concatenation of initial atom and bond features.

• **atom_to_incoming_bonds** (torch.Tensor) – Tensor containing mapping from atom index to list of indices of incoming bonds.

• **mapping** (torch.Tensor) – Tensor containing the mapping that maps bond index to ‘array of indices of the bonds’ incoming at the initial atom of the bond (excluding the reverse bonds).

• **global_features** (torch.Tensor) – Tensor containing molecule features.

Returns output – Tensor containing the encodings of the molecules.

Return type torch.Tensor
3.20.3 Jax Layers

class Linear(*args, **kwargs)

Protein folding specific Linear Module.

This differs from the standard Haiku Linear in a few ways:

- It supports inputs of arbitrary rank
- Initializers are specified by strings

This code is adapted from DeepMind’s AlphaFold code release (https://github.com/deepmind/alphafold).

Examples

```python
>>> import deepchem as dc
>>> import haiku as hk
>>> import jax
>>> import deepchem.models.jax_models.layers

>>> def forward_model(x):
...    layer = dc.models.jax_models.layers.Linear(2)
...    return layer(x)

>>> f = hk.transform(forward_model)
>>> rng = jax.random.PRNGKey(42)
>>> x = jnp.ones([8, 28 * 28])
>>> params = f.init(rng, x)
>>> output = f.apply(params, rng, x)
```

__init__(num_output: int, initializer: str = 'linear', use_bias: bool = True, bias_init: float = 0.0, name: str = 'linear')

Constructs Linear Module.

Parameters

- **num_output** (int) – number of output channels.
- **initializer** (str (default 'linear')) – What initializer to use, should be one of {'linear', 'relu', 'zeros'}
- **use_bias** (bool (default True)) – Whether to include trainable bias
- **bias_init** (float (default 0)) – Value used to initialize bias.
- **name** (str (default 'linear')) – name of module, used for name scopes.

3.21 Metrics

Metrics are one of the most important parts of machine learning. Unlike traditional software, in which algorithms either work or don’t work, machine learning models work in degrees. That is, there’s a continuous range of “goodness” for a model. “Metrics” are functions which measure how well a model works. There are many different choices of metrics depending on the type of model at hand.
3.21.1 Metric Utilities

Metric utilities allow for some common manipulations such as switching to/from one-hot representations.

to_one_hot(y: numpy.ndarray, n_classes: int = 2) \rightarrow \text{numpy.ndarray}

Transforms label vector into one-hot encoding.

Turns y into vector of shape \((N, n_{\text{classes}})\) with a one-hot encoding. Assumes that \(y\) takes values from 0 to \(n_{\text{classes}} - 1\).

Parameters

- **y** (np.ndarray) – A vector of shape \((N,)\) or \((N, 1)\)
- **n_classes** (int, default 2) – If specified use this as the number of classes. Else will try to impute it as \(n_{\text{classes}} = \max(y) + 1\) for arrays and as \(n_{\text{classes}}=2\) for the case of scalars.

Note this parameter only has value if mode==”classification”

Returns A numpy array of shape \((N, n_{\text{classes}})\).

Return type np.ndarray

from_one_hot(y: numpy.ndarray, axis: int = 1) \rightarrow \text{numpy.ndarray}

Transforms label vector from one-hot encoding.

Parameters

- **y** (np.ndarray) – A vector of shape \((n_{\text{samples}}, \text{num}_{\text{classes}})\)
- **axis** (int, optional (default 1)) – The axis with one-hot encodings to reduce on.

Returns A numpy array of shape \((n_{\text{samples}},)\)

Return type np.ndarray

3.21.2 Metric Shape Handling

One of the trickiest parts of handling metrics correctly is making sure the shapes of input weights, predictions and labels and processed correctly. This is challenging in particular since DeepChem supports multitask, multiclass models which means that shapes must be handled with care to prevent errors. DeepChem maintains the following utility functions which attempt to facilitate shape handling for you.

normalize_weight_shape(w: Optional[numpy.ndarray], n_samples: int, n_tasks: int) \rightarrow \text{numpy.ndarray}

A utility function to correct the shape of the weight array.

This utility function is used to normalize the shapes of a given weight array.

Parameters

- **w** (np.ndarray) – w can be None or a scalar or a np.ndarray of shape \((n_{\text{samples}},)\) or of shape \((n_{\text{samples}}, n_{\text{tasks}})\). If \(w\) is a scalar, it’s assumed to be the same weight for all samples/tasks.
- **n_samples** (int) – The number of samples in the dataset. If \(w\) is not None, we should have \(n_{\text{samples}} = w\text{.shape}[0]\) if \(w\) is a ndarray
- **n_tasks** (int) – The number of tasks. If \(w\) is 2d ndarray, then we should have \(w\text{.shape}[1] == n_{\text{tasks}}\).
Examples

```python
>>> import numpy as np
>>> w_out = normalize_weight_shape(None, n_samples=10, n_tasks=1)
>>> (w_out == np.ones((10, 1))).all()
True
```

Returns `w_out` – Array of shape `(n_samples, n_tasks)`

Return type `np.ndarray`

`normalize_labels_shape` *(y: numpy.ndarray, mode: Optional[str] = None, n_tasks: Optional[int] = None, n_classes: Optional[int] = None) → numpy.ndarray*

A utility function to correct the shape of the labels.

Parameters

- `y` *(np.ndarray)* – `y` is an array of shape `(N,` or `(N, n_tasks)` or `(N, n_tasks, 1)`.
- `mode` *(str, default None)* – If `mode` is “classification” or “regression”, attempts to apply data transformations.
- `n_tasks` *(int, default None)* – The number of tasks this class is expected to handle.
- `n_classes` *(int, default None)* – If specified use this as the number of classes. Else will try to impute it as `n_classes = max(y) + 1` for arrays and as `n_classes=2` for the case of scalars. Note this parameter only has value if `mode`="classification"

Returns `y_out` – If `mode`="classification", `y_out` is an array of shape `(N, n_tasks, n_classes)`. If `mode="regression", `y_out` is an array of shape `(N, n_tasks)`.

Return type `np.ndarray`

A utility function to correct the shape of provided predictions.

The metric computation classes expect that inputs for classification have the uniform shape `(N, n_tasks, n_classes)` and inputs for regression have the uniform shape `(N, n_tasks)`. This function normalizes the provided input array to have the desired shape.

Examples

```python
>>> import numpy as np
>>> y = np.random.rand(10)
>>> y_out = normalize_prediction_shape(y, "regression", n_tasks=1)
>>> y_out.shape
(10, 1)
```

Parameters

- `y` *(np.ndarray)* – If `mode`="classification", `y` is an array of shape `(N,` or `(N, n_tasks)` or `(N, n_tasks, n_classes)`. If `mode="regression", `y` is an array of shape `(N,` or `(N, n_tasks)` or `(N, n_tasks, 1)`.
- `mode` *(str, default None)* – If `mode` is “classification” or “regression”, attempts to apply data transformations.
n_tasks *(int, default None)* – The number of tasks this class is expected to handle.

n_classes *(int, default None)* – If specified use this as the number of classes. Else will try to impute it as \(n_{\text{classes}} = \max(y) + 1 \) for arrays and as \(n_{\text{classes}}=2 \) for the case of scalars. Note this parameter only has value if \(\text{mode}==\text{"classification"} \).

Returns *y_out* – If \(\text{mode}==\text{"classification"} \), \(y_{\text{out}} \) is an array of shape \((N, n_{\text{tasks}}, n_{\text{classes}})\). If \(\text{mode}==\text{"regression"} \), \(y_{\text{out}} \) is an array of shape \((N, n_{\text{tasks}})\).

Return type *np.ndarray*

handle_classification_mode *(y: numpy.ndarray, classification_handling_mode: Optional[str], threshold_value: Optional[float] = None) → numpy.ndarray*

Handle classification mode.

Transform predictions so that they have the correct classification mode.

Parameters

- **y** *(np.ndarray)* – Must be of shape \((N, n_{\text{tasks}}, n_{\text{classes}})\)

- **classification_handling_mode** *(str, default None)* – DeepChem models by default predict class probabilities for classification problems. This means that for a given singletask prediction, after shape normalization, the DeepChem prediction will be a numpy array of shape \((N, n_{\text{classes}})\) with class probabilities. *classification_handling_mode* is a string that instructs this method how to handle transforming these probabilities. It can take on the following values:
 - None: default value. Pass in \(y_{\text{pred}} \) directly into self.metric.
 - “threshold”: Use \(\text{threshold}_{\text{predictions}} \) to threshold \(y_{\text{pred}} \). Use \(\text{threshold}_{\text{value}} \) as the desired threshold.
 - “threshold-one-hot”: Use \(\text{threshold}_{\text{predictions}} \) to threshold \(y_{\text{pred}} \) using \(\text{threshold}_{\text{values}} \), then apply to_one_hot to output.

- **threshold_value** *(float, default None)* – If set, and \(\text{classification_handling_mode} \) is “threshold” or “threshold-one-hot” apply a thresholding operation to values with this threshold. This option is only sensible on binary classification tasks. If float, this will be applied as a binary classification value.

Returns *y_out* – If \(\text{classification_handling_mode} \) is “direct”, then of shape \((N, n_{\text{tasks}}, n_{\text{classes}})\). If \(\text{classification_handling_mode} \) is “threshold”, then of shape \((N, n_{\text{tasks}})\). If “classification_handling_mode” is “threshold-one-hot”, then of shape \((N, n_{\text{tasks}}, n_{\text{classes}})\)

Return type *np.ndarray*

3.21.3 Metric Functions

DeepChem has a variety of different metrics which are useful for measuring model performance. A number (but not all) of these metrics are directly sourced from *sklearn*.

matthews_corrcoef *(y_true, y_pred, *, sample_weight=\text{None})*

Compute the Matthews correlation coefficient (MCC).

The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary and multiclass classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia]
Binary and multiclass labels are supported. Only in the binary case does this relate to information about true and false positives and negatives. See references below.

Read more in the User Guide.

Parameters

- **y_true** *(array, shape = [n_samples]) – Ground truth (correct) target values.*
- **y_pred** *(array, shape = [n_samples]) – Estimated targets as returned by a classifier.*
- **sample_weight** *(array-like of shape (n_samples,), default=None) – Sample weights.*

New in version 0.18.

Returns **mcc** – The Matthews correlation coefficient (+1 represents a perfect prediction, 0 an average random prediction and -1 and inverse prediction).

Return type **float**

References

Examples

```python
>>> from sklearn.metrics import matthews_corrcoef
>>> y_true = [+1, +1, +1, -1]
>>> y_pred = [+1, -1, +1, +1]
>>> matthews_corrcoef(y_true, y_pred)
-0.33...
```

recall_score *(y_true, y_pred, *, labels=None, pos_label=1, average='binary', sample_weight=None, zero_division='warn')*

Compute the recall.

The recall is the ratio \(tp / (tp + fn) \) where \(tp \) is the number of true positives and \(fn \) the number of false negatives. The recall is intuitively the ability of the classifier to find all the positive samples.

The best value is 1 and the worst value is 0.

Read more in the User Guide.

Parameters

- **y_true** *(1d array-like, or label indicator array / sparse matrix) – Ground truth (correct) target values.*
- **y_pred** *(1d array-like, or label indicator array / sparse matrix) – Estimated targets as returned by a classifier.*
- **labels** *(array-like, default=None) – The set of labels to include when average != 'binary', and their order if average is None. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order.*

Changed in version 0.17: Parameter labels improved for multiclass problem.
• **pos_label (str or int, default=1)** – The class to report if `average='binary'` and the data is binary. If the data are multiclass or multilabel, this will be ignored; setting `labels=[pos_label]` and `average != 'binary'` will report scores for that label only.

• **average ({'micro', 'macro', 'samples', 'weighted', 'binary'} or None, default='binary')** – This parameter is required for multiclass/multilabel targets. If `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data:

 'binary': Only report results for the class specified by `pos_label`. This is applicable only if targets (`y_{true,pred}`) are binary.

 'micro': Calculate metrics globally by counting the total true positives, false negatives and false positives.

 'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.

 'weighted': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters ‘macro’ to account for label imbalance; it can result in an F-score that is not between precision and recall. Weighted recall is equal to accuracy.

 'samples': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification where this differs from `accuracy_score()`).

• **sample_weight (array-like of shape (n_samples,), default=None)** – Sample weights.

• **zero_division ("warn", 0 or 1, default="warn")** – Sets the value to return when there is a zero division. If set to "warn", this acts as 0, but warnings are also raised.

Returns recall – Recall of the positive class in binary classification or weighted average of the recall of each class for the multiclass task.

Return type float (if average is not None) or array of float of shape (n_unique_labels,)

See also:

- `precision_recall_fscore_support` Compute precision, recall, F-measure and support for each class.
- `precision_score` Compute the ratio $\frac{tp}{(tp + fp)}$ where tp is the number of true positives and fp the number of false positives.
- `balanced_accuracy_score` Compute balanced accuracy to deal with imbalanced datasets.
- `multilabel_confusion_matrix` Compute a confusion matrix for each class or sample.
- `PrecisionRecallDisplay.from_estimator` Plot precision-recall curve given an estimator and some data.
- `PrecisionRecallDisplay.from_predictions` Plot precision-recall curve given binary class predictions.
Notes

When `true positive + false negative == 0`, recall returns 0 and raises `UndefinedMetricWarning`. This behavior can be modified with `zero_division`.

Examples

```python
>>> from sklearn.metrics import recall_score
>>> y_true = [0, 1, 2, 0, 1, 2]
>>> y_pred = [0, 2, 1, 0, 0, 1]
>>> recall_score(y_true, y_pred, average='macro')
0.33...
>>> recall_score(y_true, y_pred, average='micro')
0.33...
>>> recall_score(y_true, y_pred, average='weighted')
0.33...
>>> recall_score(y_true, y_pred, average=None)
array([1., 0., 0.])
>>> y_true = [0, 0, 0, 0, 0, 0]
>>> recall_score(y_true, y_pred, average=None)
array([0.5, 0., 0.])
>>> recall_score(y_true, y_pred, average=None, zero_division=1)
array([0.5, 1., 1.])
>>> # multilabel classification
>>> y_true = [[0, 0, 0], [1, 1, 1], [0, 1, 1]]
>>> y_pred = [[0, 0, 0], [1, 1, 1], [1, 1, 0]]
>>> recall_score(y_true, y_pred, average=None)
array([1. , 1. , 0.5])
```

`r2_score(y_true, y_pred, *, sample_weight=None, multioutput='uniform_average', forcefinite=True)`

R^2 (coefficient of determination) regression score function.

Best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). In the general case when the true y is non-constant, a constant model that always predicts the average y disregarding the input features would get a R^2 score of 0.0.

In the particular case when y_{true} is constant, the R^2 score is not finite: it is either NaN (perfect predictions) or $-\infty$ (imperfect predictions). To prevent such non-finite numbers to pollute higher-level experiments such as a grid search cross-validation, by default these cases are replaced with 1.0 (perfect predictions) or 0.0 (imperfect predictions) respectively. You can set `forcefinite` to `False` to prevent this fix from happening.

Note: when the prediction residuals have zero mean, the R^2 score is identical to the Explained Variance score.

Read more in the User Guide.

Parameters

- `y_true` (`array-like of shape (n_samples,) or (n_samples, n_outputs)`) – Ground truth (correct) target values.
- `y_pred` (`array-like of shape (n_samples,) or (n_samples, n_outputs)`) – Estimated target values.
- `sample_weight` (`array-like of shape (n_samples,), default=None`) – Sample weights.
- **multioutput** (array-like of shape (n_outputs,) or None, default='uniform_average') – Defines aggregating of multiple output scores. Array-like value defines weights used to average scores. Default is “uniform_average”.
 - 'raw_values': Returns a full set of scores in case of multioutput input.
 - 'uniform_average': Scores of all outputs are averaged with uniform weight.
 - 'variance_weighted': Scores of all outputs are averaged, weighted by the variances of each individual output.

 Changed in version 0.19: Default value of multioutput is ‘uniform_average’.

- **force_finite** (bool, default=True) – Flag indicating if NaN and -Inf scores resulting from constant data should be replaced with real numbers (1.0 if prediction is perfect, 0.0 otherwise). Default is True, a convenient setting for hyperparameters’ search procedures (e.g. grid search cross-validation).

 New in version 1.1.

Returns
- **z** – The R^2 score or ndarray of scores if ‘multioutput’ is ‘raw_values’.

Return type float or ndarray of floats

Notes

This is not a symmetric function.

Unlike most other scores, R^2 score may be negative (it need not actually be the square of a quantity R).

This metric is not well-defined for single samples and will return a NaN value if n_samples is less than two.

References

Examples

```python
>>> from sklearn.metrics import r2_score
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> r2_score(y_true, y_pred)
0.948...
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> r2_score(y_true, y_pred,
...     multioutput='variance_weighted')
0.938...
>>> y_true = [1, 2, 3]
>>> y_pred = [1, 2, 3]
>>> r2_score(y_true, y_pred)
1.0
>>> y_true = [1, 2, 3]
>>> y_pred = [2, 2, 2]
>>> r2_score(y_true, y_pred)
0.0
>>> y_true = [1, 2, 3]
```
deepchem, Release 2.6.1.dev

>>> y_pred = [3, 2, 1]
>>> r2_score(y_true, y_pred)
-3.0

>>> y_true = [-2, -2, -2]
>>> y_pred = [-2, -2, -2]
>>> r2_score(y_true, y_pred)
1.0

>>> r2_score(y_true, y_pred, force_finite=False)
nan

>>> y_true = [-2, -2, -2]
>>> y_pred = [-2, -2, -2 + 1e-8]
>>> r2_score(y_true, y_pred)
0.0

mean_squared_error(y_true, y_pred, *, sample_weight=None, multioutput='uniform_average', squared=True)

Mean squared error regression loss.

Read more in the User Guide.

Parameters

- **y_true** (array-like of shape (n_samples,) or (n_samples, n_outputs)) – Ground truth (correct) target values.
- **y_pred** (array-like of shape (n_samples,) or (n_samples, n_outputs)) – Estimated target values.
- **sample_weight** (array-like of shape (n_samples,), default=None) – Sample weights.
- **multioutput** (‘raw_values’, ‘uniform_average’) or array-like of shape (n_outputs,), default=’uniform_average’ – Defines aggregating of multiple output values. Array-like value defines weights used to average errors.
 - **’raw_values’** : Returns a full set of errors in case of multioutput input.
 - **’uniform_average’** : Errors of all outputs are averaged with uniform weight.
- **squared** (bool, default=True) – If True returns MSE value, if False returns RMSE value.

Returns loss – A non-negative floating point value (the best value is 0.0), or an array of floating point values, one for each individual target.

Return type float or ndarray of floats
Examples

```python
>>> from sklearn.metrics import mean_squared_error
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> mean_squared_error(y_true, y_pred)
0.375
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> mean_squared_error(y_true, y_pred, squared=False)
0.612...
>>> y_true = [[0.5, 1],[-1, 1],[7, -6]]
>>> y_pred = [[0, 2],[-1, 2],[8, -5]]
>>> mean_squared_error(y_true, y_pred)
0.708...
>>> mean_squared_error(y_true, y_pred, squared=False)
0.822...
>>> mean_squared_error(y_true, y_pred, multioutput='raw_values')
array([0.41666667, 1.0])
>>> mean_squared_error(y_true, y_pred, multioutput=[0.3, 0.7])
0.825...
```

mean_absolute_error *(y_true, y_pred, *, sample_weight=None, multioutput='uniform_average')*

Mean absolute error regression loss.

Read more in the User Guide.

Parameters

- **y_true** *(array-like of shape (n_samples,) or (n_samples, n_outputs)) –* Ground truth (correct) target values.
- **y_pred** *(array-like of shape (n_samples,) or (n_samples, n_outputs)) –* Estimated target values.
- **sample_weight** *(array-like of shape (n_samples,), default=None) –* Sample weights.
- **multioutput** *({'raw_values', 'uniform_average'} or array-like of shape (n_outputs,), default='uniform_average') –* Defines aggregating of multiple output values. Array-like value defines weights used to average errors.
 - **'raw_values'**: Returns a full set of errors in case of multioutput input.
 - **'uniform_average'**: Errors of all outputs are averaged with uniform weight.

Returns

- **loss** – If multioutput is ‘raw_values’, then mean absolute error is returned for each output separately. If multioutput is ‘uniform_average’ or an ndarray of weights, then the weighted average of all output errors is returned.

 MAE output is non-negative floating point. The best value is 0.0.

Return type float or ndarray of floats
Examples

```python
>>> from sklearn.metrics import mean_absolute_error
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> mean_absolute_error(y_true, y_pred)
0.5
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> mean_absolute_error(y_true, y_pred)
0.75
>>> mean_absolute_error(y_true, y_pred, multioutput='raw_values')
array([0.5, 1.])
>>> mean_absolute_error(y_true, y_pred, multioutput=[0.3, 0.7])
0.85...
```

precision_score

```python
precision_score(y_true, y_pred, *, labels=None, pos_label=1, average='binary', sample_weight=None, zero_division='warn')
```

Compute the precision.

The precision is the ratio \(tp / (tp + fp) \) where \(tp \) is the number of true positives and \(fp \) the number of false positives. The precision is intuitively the ability of the classifier not to label as positive a sample that is negative.

The best value is 1 and the worst value is 0.

Read more in the User Guide.

Parameters

- **y_true** *(1d array-like, or label indicator array / sparse matrix)* – Ground truth (correct) target values.
- **y_pred** *(1d array-like, or label indicator array / sparse matrix)* – Estimated targets as returned by a classifier.
- **labels** *(array-like, default=None)* – The set of labels to include when average != 'binary', and their order if average is None. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order.

Changed in version 0.17: Parameter labels improved for multiclass problem.

- **pos_label** *(str or int, default=1)* – The class to report if average='binary' and the data is binary. If the data are multiclass or multilabel, this will be ignored; setting labels=[pos_label] and average != 'binary' will report scores for that label only.
- **average** *(dict of {'micro', 'macro', 'samples', 'weighted', 'binary'} or None, default='binary')* – This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data:
 - 'binary': Only report results for the class specified by pos_label. This is applicable only if targets (y_true, y_pred) are binary.
 - 'micro': Calculate metrics globally by counting the total true positives, false negatives and false positives.

3.21. Metrics 403
'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.

'weighted': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters ‘macro’ to account for label imbalance; it can result in an F-score that is not between precision and recall.

'samples': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification where this differs from accuracy_score()).

- **sample_weight** *(array-like of shape (n_samples,), default=None)* – Sample weights.
- **zero_division** *("warn", 0 or 1, default="warn")* – Sets the value to return when there is a zero division. If set to “warn”, this acts as 0, but warnings are also raised.

Returns precision – Precision of the positive class in binary classification or weighted average of the precision of each class for the multiclass task.

Return type float (if average is not None) or array of float of shape (n_unique_labels,)

See also:

precision_recall_fscore_support Compute precision, recall, F-measure and support for each class.

recall_score Compute the ratio tp / (tp + fn) where tp is the number of true positives and fn the number of false negatives.

PrecisionRecallDisplay.from_estimator Plot precision-recall curve given an estimator and some data.

PrecisionRecallDisplay.from_predictions Plot precision-recall curve given binary class predictions.

multilabel_confusion_matrix Compute a confusion matrix for each class or sample.

Notes

When true positive + false positive == 0, precision returns 0 and raises UndefinedMetricWarning. This behavior can be modified with zero_division.

Examples

```python
>>> from sklearn.metrics import precision_score
>>> y_true = [0, 1, 2, 0, 1, 2]
>>> y_pred = [0, 2, 1, 0, 0, 1]
>>> precision_score(y_true, y_pred, average='macro')
0.22...
>>> precision_score(y_true, y_pred, average='micro')
0.33...
>>> precision_score(y_true, y_pred, average='weighted')
0.22...
>>> precision_score(y_true, y_pred, average=None)
array([0.66..., 0. , 0. ])
>>> y_pred = [0, 0, 0, 0, 0, 0]
>>> precision_score(y_true, y_pred, average=None)
array([0.33..., 0. , 0. ])
>>> precision_score(y_true, y_pred, average=None, zero_division=1)
array([0.33..., 1. , 1. ])
```
>>> # multilabel classification
>>> y_true = [[0, 0, 0], [1, 1, 1], [0, 1, 1]]
>>> y_pred = [[0, 0, 0], [1, 1, 1], [1, 1, 0]]
>>> precision_score(y_true, y_pred, average=None)
array([0.5, 1. , 1.])

precision_recall_curve(y_true, probas_pred, *, pos_label=None, sample_weight=None)
Compute precision-recall pairs for different probability thresholds.

Note: this implementation is restricted to the binary classification task.

The precision is the ratio \(\frac{tp}{tp + fp}\) where \(tp\) is the number of true positives and \(fp\) the number of false positives. The precision is intuitively the ability of the classifier not to label as positive a sample that is negative.

The recall is the ratio \(\frac{tp}{tp + fn}\) where \(tp\) is the number of true positives and \(fn\) the number of false negatives. The recall is intuitively the ability of the classifier to find all the positive samples.

The last precision and recall values are 1. and 0. respectively and do not have a corresponding threshold. This ensures that the graph starts on the y axis.

The first precision and recall values are precision=class balance and recall=1.0 which corresponds to a classifier that always predicts the positive class.

Read more in the User Guide.

Parameters

- **y_true (ndarray of shape (n_samples,))** – True binary labels. If labels are not either {-1, 1} or {0, 1}, then pos_label should be explicitly given.

- **probas_pred (ndarray of shape (n_samples,))** – Target scores, can either be probability estimates of the positive class, or non-thresholded measure of decisions (as returned by decision_function on some classifiers).

- **pos_label (int or str, default=None)** – The label of the positive class. When pos_label=None, if y_true is in {-1, 1} or {0, 1}, pos_label is set to 1, otherwise an error will be raised.

- **sample_weight (array-like of shape (n_samples,), default=None)** – Sample weights.

Returns

- **precision (ndarray of shape (n_thresholds + 1,))** – Precision values such that element i is the precision of predictions with score >= thresholds[i] and the last element is 1.

- **recall (ndarray of shape (n_thresholds + 1,))** – Decreasing recall values such that element i is the recall of predictions with score >= thresholds[i] and the last element is 0.

- **thresholds (ndarray of shape (n_thresholds,))** – Increasing thresholds on the decision function used to compute precision and recall where n_thresholds = len(np.unique(probas_pred)).

See also:

- PrecisionRecallDisplay.from_estimator Plot Precision Recall Curve given a binary classifier.

- PrecisionRecallDisplay.from_predictions Plot Precision Recall Curve using predictions from a binary classifier.

- average_precision_score Compute average precision from prediction scores.
det_curve Compute error rates for different probability thresholds.

roc_curve Compute Receiver operating characteristic (ROC) curve.

Examples

```python
>>> import numpy as np
>>> from sklearn.metrics import precision_recall_curve
>>> y_true = np.array([0, 0, 1, 1])
>>> y_scores = np.array([0.1, 0.4, 0.35, 0.8])
>>> precision, recall, thresholds = precision_recall_curve(y_true, y_scores)
>>> precision
array([0.5 , 0.66666667, 0.5 , 1. , 1. ])
>>> recall
array([1. , 1. , 0.5, 0.5, 0. ])
>>> thresholds
array([0.1 , 0.35, 0.4 , 0.8 ])
```

auc(x, y)

Compute Area Under the Curve (AUC) using the trapezoidal rule.

This is a general function, given points on a curve. For computing the area under the ROC curve, see `roc_auc_score()`. For an alternative way to summarize a precision-recall curve, see `average_precision_score()`.

Parameters

- **x** (*ndarray of shape* *(n,]*) – X coordinates. These must be either monotonic increasing or monotonic decreasing.
- **y** (*ndarray of shape* *, (n,]*) – Y coordinates.

Returns

- **auc** – Area Under the Curve.

Return type

- **float**

See also:

- `roc_auc_score` Compute the area under the ROC curve.
- `average_precision_score` Compute average precision from prediction scores.
- `precision_recall_curve` Compute precision-recall pairs for different probability thresholds.

Examples

```python
>>> import numpy as np
>>> from sklearn import metrics
>>> y = np.array([1, 1, 2, 2])
>>> pred = np.array([0.1, 0.4, 0.35, 0.8])
>>> fpr, tpr, thresholds = metrics.roc_curve(y, pred, pos_label=2)
>>> metrics.auc(fpr, tpr)
0.75
```
Jaccard similarity coefficient score.

The Jaccard index [1], or Jaccard similarity coefficient, defined as the size of the intersection divided by the size of the union of two label sets, is used to compare set of predicted labels for a sample to the corresponding set of labels in \(y_{true} \).

Read more in the User Guide.

Parameters

- **y_true** (1d array-like, or label indicator array / sparse matrix) – Ground truth (correct) labels.
- **y_pred** (1d array-like, or label indicator array / sparse matrix) – Predicted labels, as returned by a classifier.
- **labels** (array-like of shape (n_classes,), default=None) – The set of labels to include when \(\text{average} \neq \text{'binary'} \), and their order if \(\text{average} = \text{None} \). Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in \(y_{true} \) and \(y_{pred} \) are used in sorted order.
- **pos_label** (str or int, default=1) – The class to report if \(\text{average} = \text{'binary'} \) and the data is binary. If the data are multiclass or multilabel, this will be ignored; setting \(\text{labels}=[\text{pos_label}] \) and \(\text{average} \neq \text{'binary'} \) will report scores for that label only.
- **average** (\{'micro', 'macro', 'samples', 'weighted', 'binary'\} or None, default='binary') – If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data:
 - 'binary': Only report results for the class specified by \(\text{pos_label} \). This is applicable only if targets (\(y_{\{true, pred}\}) are binary.
 - 'micro': Calculate metrics globally by counting the total true positives, false negatives and false positives.
 - 'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.
 - 'weighted': Calculate metrics for each label, and find their average, weighted by support (the number of true instances for each label). This alters 'macro' to account for label imbalance.
 - 'samples': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).
- **sample_weight** (array-like of shape (n_samples,), default=None) – Sample weights.
- **zero_division** ("warn", \{0.0, 1.0\}, default="warn") – Sets the value to return when there is a zero division, i.e. when there are no negative values in predictions and labels. If set to ‘warn’, this acts like 0, but a warning is also raised.

Returns

- **score** – The Jaccard score. When \(\text{average} \) is not None, a single scalar is returned.

Return type float or ndarray of shape (n_unique_labels,), dtype=np.float64

See also:

- accuracy_score Function for calculating the accuracy score.
f1_score Function for calculating the F1 score.

multilabel_confusion_matrix Function for computing a confusion matrix for each class or sample.

Notes

jaccard_score() may be a poor metric if there are no positives for some samples or classes. Jaccard is undefined if there are no true or predicted labels, and our implementation will return a score of 0 with a warning.

References

Examples

```python
>>> import numpy as np
>>> from sklearn.metrics import jaccard_score
>>> y_true = np.array([[0, 1, 1],
                     ...,
                     [1, 1, 0]])
>>> y_pred = np.array([[1, 1, 1],
                     ...,
                     [1, 0, 0]])
```

In the binary case:

```python
>>> jaccard_score(y_true[0], y_pred[0])
0.6666...
```

In the 2D comparison case (e.g. image similarity):

```python
>>> jaccard_score(y_true, y_pred, average="micro")
0.6
```

In the multilabel case:

```python
>>> jaccard_score(y_true, y_pred, average='samples')
0.5833...
>>> jaccard_score(y_true, y_pred, average='macro')
0.6666...
>>> jaccard_score(y_true, y_pred, average=None)
array([0.5, 0.5, 1. ])
```

In the multiclass case:

```python
>>> y_pred = [0, 2, 1, 2]
>>> y_true = [0, 1, 2, 2]
>>> jaccard_score(y_true, y_pred, average=None)
array([1. , 0. , 0.33...])
```

f1_score(y_true, y_pred, *, labels=None, pos_label=1, average='binary', sample_weight=None, zero_division='warn')

Compute the F1 score, also known as balanced F-score or F-measure.

The F1 score can be interpreted as a harmonic mean of the precision and recall, where an F1 score reaches its best value at 1 and worst score at 0. The relative contribution of precision and recall to the F1 score are equal. The formula for the F1 score is:
In the multi-class and multi-label case, this is the average of the F1 score of each class with weighting depending on the `average` parameter.

Read more in the User Guide.

Parameters

- **y_true** *(1d array-like, or label indicator array / sparse matrix)* – Ground truth (correct) target values.

- **y_pred** *(1d array-like, or label indicator array / sparse matrix)* – Estimated targets as returned by a classifier.

- **labels** *(array-like, default=None)* – The set of labels to include when `average` is not 'binary', and their order if `average` is None. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `y_true` and `y_pred` are used in sorted order.

Changed in version 0.17: Parameter `labels` improved for multiclass problem.

- **pos_label** *(str or int, default=1)* – The class to report if `average='binary'` and the data is binary. If the data are multiclass or multilabel, this will be ignored; setting `labels=[pos_label]` and `average != 'binary'` will report scores for that label only.

- **average** *(str or None, default='binary')* – This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data:

 - **'binary'**: Only report results for the class specified by `pos_label`. This is applicable only if targets (`y_{true,pred}`) are binary.

 - **'micro'**: Calculate metrics globally by counting the total true positives, false negatives and false positives.

 - **'macro'**: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.

 - **'weighted'**: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `macro` to account for label imbalance; it can result in an F-score that is not between precision and recall.

 - **'samples'**: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification where this differs from `accuracy_score()`).

- **sample_weight** *(array-like of shape (n_samples,), default=None)* – Sample weights.

- **zero_division** *("warn", 0 or 1, default="warn")* – Sets the value to return when there is a zero division, i.e. when all predictions and labels are negative. If set to “warn”, this acts as 0, but warnings are also raised.

Returns **f1_score** – F1 score of the positive class in binary classification or weighted average of the F1 scores of each class for the multiclass task.

Return type float or array of float, shape = [n_unique_labels]

See also:

3.21. Metrics
fbeta_score Compute the F-beta score.

precision_recall_fscore_support Compute the precision, recall, F-score, and support.

jaccard_score Compute the Jaccard similarity coefficient score.

multilabel_confusion_matrix Compute a confusion matrix for each class or sample.

Notes

When \(\text{true positive} + \text{false positive} = 0 \), precision is undefined. When \(\text{true positive} + \text{false negative} = 0 \), recall is undefined. In such cases, by default the metric will be set to 0, as will f-score, and **UndefinedMetricWarning** will be raised. This behavior can be modified with **zero_division**.

References

Examples

```python
>>> from sklearn.metrics import f1_score
>>> y_true = [0, 1, 2, 0, 1, 2]
>>> y_pred = [0, 2, 1, 0, 0, 1]
>>> f1_score(y_true, y_pred, average='macro')
0.26...
>>> f1_score(y_true, y_pred, average='micro')
0.33...
>>> f1_score(y_true, y_pred, average='weighted')
0.26...
>>> f1_score(y_true, y_pred, average=None)
array([0.8, 0., 0.])
>>> y_true = [0, 0, 0, 0, 0, 0]
>>> y_pred = [0, 0, 0, 0, 0, 0]
>>> f1_score(y_true, y_pred, zero_division=1)
1.0...
>>> # multilabel classification
>>> y_true = [[0, 0, 0], [1, 1, 1], [0, 1, 1]]
>>> y_pred = [[0, 0, 0], [1, 1, 1], [1, 1, 0]]
>>> f1_score(y_true, y_pred, average=None)
array([0.66666667, 1. , 0.66666667])
```

roc_auc_score
\(\text{roc_auc_score}(y_true, y_score, *, \text{average}='macro', \text{sample_weight}=\text{None}, \text{max_fpr}=\text{None}, \text{multi_class}='raise', \text{labels}=\text{None}) \)

Compute Area Under the Receiver Operating Characteristic Curve (ROC AUC) from prediction scores.

Note: this implementation can be used with binary, multiclass and multilabel classification, but some restrictions apply (see Parameters).

Read more in the User Guide.

Parameters

- **y_true** (array-like of shape (n_samples,) or (n_samples, n_classes)) – True labels or binary label indicators. The binary and multiclass cases expect labels with shape (n_samples,) while the multilabel case expects binary label indicators with shape (n_samples, n_classes).
• **y_score** *(array-like of shape (n_samples,) or (n_samples, n_classes)) – Target scores.*

 – In the binary case, it corresponds to an array of shape *(n_samples,)*. Both probability estimates and non-thresholded decision values can be provided. The probability estimates correspond to the **probability of the class with the greater label**, i.e. `estimator.classes_[1]` and thus `estimator.predict_proba(X, y)[:, 1]`. The decision values corresponds to the output of `estimator.decision_function(X, y)`. See more information in the User guide;

 – In the multiclass case, it corresponds to an array of shape *(n_samples, n_classes)* of probability estimates provided by the `predict_proba` method. The probability estimates **must** sum to 1 across the possible classes. In addition, the order of the class scores must correspond to the order of `labels`, if provided, or else to the numerical or lexicographical order of the labels in `y_true`. See more information in the User guide;

 – In the multilabel case, it corresponds to an array of shape *(n_samples, n_classes)*. Probability estimates are provided by the `predict_proba` method and the non-thresholded decision values by the `decision_function` method. The probability estimates correspond to the **probability of the class with the greater label for each output** of the classifier. See more information in the User guide.

• **average** *({'micro', 'macro', 'samples', 'weighted'} or None, default='macro') – If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Note: multiclass ROC AUC currently only handles the ‘macro’ and ‘weighted’ averages. For multiclass targets, `average=None` is only implemented for `multi_class='ovo'`.

 'micro': Calculate metrics globally by considering each element of the label indicator matrix as a label.

 'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.

 'weighted': Calculate metrics for each label, and find their average, weighted by support (the number of true instances for each label).

 'samples': Calculate metrics for each instance, and find their average.

Will be ignored when `y_true` is binary.

• **sample_weight** *(array-like of shape (n_samples,), default=None) – Sample weights.*

• **max_fpr** *(float > 0 and <= 1, default=None) – If not None, the standardized partial AUC [2] over the range [0, max_fpr] is returned. For the multiclass case, `max_fpr` should be either equal to None or 1.0 as AUC ROC partial computation currently is not supported for multiclass.

• **multi_class** *({'raise', 'ovr', 'ovo'}, default='raise') – Only used for multiclass targets. Determines the type of configuration to use. The default value raises an error, so either 'ovr' or 'ovo' must be passed explicitly.

 'ovr': Stands for One-vs-rest. Computes the AUC of each class against the rest [3], [4].

 This treats the multiclass case in the same way as the multilabel case. Sensitive to class imbalance even when `average == 'macro'`, because class imbalance affects the composition of each of the ‘rest’ groupings.

 'ovo': Stands for One-vs-one. Computes the average AUC of all possible pairwise combinations of classes [5]. Insensitive to class imbalance when `average == 'macro'`.

labels (array-like of shape (n_classes,), default=None) – Only used for multiclass targets. List of labels that index the classes in y_score. If None, the numerical or lexicographical order of the labels in y_true is used.

Returns auc – Area Under the Curve score.

Return type float

See also:

- `average_precision_score` Area under the precision-recall curve.
- `roc_curve` Compute Receiver operating characteristic (ROC) curve.
- `RocCurveDisplay.from_estimator` Plot Receiver Operating Characteristic (ROC) curve given an estimator and some data.
- `RocCurveDisplay.from_predictions` Plot Receiver Operating Characteristic (ROC) curve given the true and predicted values.

References

Examples

Binary case:

```python
>>> from sklearn.datasets import load_breast_cancer
>>> from sklearn.linear_model import LogisticRegression
>>> from sklearn.metrics import roc_auc_score

>>> X, y = load_breast_cancer(return_X_y=True)
>>> clf = LogisticRegression(solver="liblinear", random_state=0).fit(X, y)
>>> roc_auc_score(y, clf.predict_proba(X)[:, 1])
0.99...
>>> roc_auc_score(y, clf.decision_function(X))
0.99...
```

Multiclass case:

```python
>>> from sklearn.datasets import load_iris

>>> X, y = load_iris(return_X_y=True)
>>> clf = LogisticRegression(solver="liblinear").fit(X, y)
>>> roc_auc_score(y, clf.predict_proba(X), multi_class='ovr')
0.99...
```

Multilabel case:

```python
>>> import numpy as np
>>> from sklearn.datasets import make_multilabel_classification
>>> from sklearn.multioutput import MultiOutputClassifier

>>> X, y = make_multilabel_classification(random_state=0)
>>> clf = MultiOutputClassifier(LogisticRegression()).fit(X, y)
>>> y_pred = clf.predict_proba(X)
>>> y_pred = np.transpose([pred[:, 1] for pred in y_pred])
```

(continues on next page)
accuracy_score(y_true, y_pred, *args, normalize=True, sample_weight=None)

Accuracy classification score.

In multilabel classification, this function computes subset accuracy: the set of labels predicted for a sample must exactly match the corresponding set of labels in y_true.

Read more in the User Guide.

Parameters

- **y_true** (1d array-like, or label indicator array / sparse matrix) – Ground truth (correct) labels.

- **y_pred** (1d array-like, or label indicator array / sparse matrix) – Predicted labels, as returned by a classifier.

- **normalize** (bool, default=True) – If False, return the number of correctly classified samples. Otherwise, return the fraction of correctly classified samples.

- **sample_weight** (array-like of shape (n_samples,), default=None) – Sample weights.

Returns

score – If normalize == True, return the fraction of correctly classified samples (float), else returns the number of correctly classified samples (int).

The best performance is 1 with normalize == True and the number of samples with normalize == False.

Return type float

See also:

- balanced_accuracy_score Compute the balanced accuracy to deal with imbalanced datasets.

- jaccard_score Compute the Jaccard similarity coefficient score.

- hamming_loss Compute the average Hamming loss or Hamming distance between two sets of samples.

- zero_one_loss Compute the Zero-one classification loss. By default, the function will return the percentage of imperfectly predicted subsets.
Notes

In binary classification, this function is equal to the \texttt{jaccard_score} function.

Examples

\begin{verbatim}
>>> from sklearn.metrics import accuracy_score
>>> y_pred = [0, 2, 1, 3]
>>> y_true = [0, 1, 2, 3]
>>> accuracy_score(y_true, y_pred)
0.5
>>> accuracy_score(y_true, y_pred, normalize=False)
2
In the multilabel case with binary label indicators:

\begin{verbatim}
>>> import numpy as np
>>> accuracy_score(np.array([[0, 1], [1, 1]]), np.ones((2, 2)))
0.5
\end{verbatim}

\texttt{balanced_accuracy_score}(y_true, y_pred, *, sample_weight=None, adjusted=False)

Compute the balanced accuracy.

The balanced accuracy in binary and multiclass classification problems to deal with imbalanced datasets. It is defined as the average of recall obtained on each class.

The best value is 1 and the worst value is 0 when adjusted=False.

Read more in the User Guide.

New in version 0.20.

Parameters

\begin{itemize}
\item \texttt{y_true} (1d array-like) – Ground truth (correct) target values.
\item \texttt{y_pred} (1d array-like) – Estimated targets as returned by a classifier.
\item \texttt{sample_weight} (array-like of shape (n_samples,), default=None) – Sample weights.
\item \texttt{adjusted} (bool, default=False) – When true, the result is adjusted for chance, so that random performance would score 0, while keeping perfect performance at a score of 1.
\end{itemize}

Returns \texttt{balanced_accuracy} – Balanced accuracy score.

Return type float

See also:

average_precision_score Compute average precision (AP) from prediction scores.

precision_score Compute the precision score.

recall_score Compute the recall score.

roc_auc_score Compute Area Under the Receiver Operating Characteristic Curve (ROC AUC) from prediction scores.
Notes

Some literature promotes alternative definitions of balanced accuracy. Our definition is equivalent to `accuracy_score()` with class-balanced sample weights, and shares desirable properties with the binary case. See the User Guide.

References

Examples

```python
>>> from sklearn.metrics import balanced_accuracy_score
>>> y_true = [0, 1, 0, 0, 1, 0]
>>> y_pred = [0, 1, 0, 0, 0, 1]
>>> balanced_accuracy_score(y_true, y_pred)
0.625
```

top_k_accuracy_score(y_true, y_score, *, k=2, normalize=True, sample_weight=None, labels=None)

Top-k Accuracy classification score.

This metric computes the number of times where the correct label is among the top \(k\) labels predicted (ranked by predicted scores). Note that the multilabel case isn’t covered here.

Read more in the User Guide

Parameters

- **y_true** (array-like of shape (n_samples,)) – True labels.
- **y_score** (array-like of shape (n_samples,) or (n_samples, n_classes)) – Target scores. These can be either probability estimates or non-thresholded decision values (as returned by decision_function on some classifiers). The binary case expects scores with shape (n_samples,) while the multiclass case expects scores with shape (n_samples, n_classes). In the multiclass case, the order of the class scores must correspond to the order of labels, if provided, or else to the numerical or lexicographical order of the labels in y_true. If y_true does not contain all the labels, labels must be provided.
- **k** (int, default=2) – Number of most likely outcomes considered to find the correct label.
- **normalize** (bool, default=True) – If True, return the fraction of correctly classified samples. Otherwise, return the number of correctly classified samples.
- **sample_weight** (array-like of shape (n_samples,), default=None) – Sample weights. If None, all samples are given the same weight.
- **labels** (array-like of shape (n_classes,), default=None) – Multiclass only. List of labels that index the classes in y_score. If None, the numerical or lexicographical order of the labels in y_true is used. If y_true does not contain all the labels, labels must be provided.

Returns **score** – The top-k accuracy score. The best performance is 1 with normalize == True and the number of samples with normalize == False.

Return type float

See also:

accuracy_score
Notes

In cases where two or more labels are assigned equal predicted scores, the labels with the highest indices will be chosen first. This might impact the result if the correct label falls after the threshold because of that.

Examples

```python
>>> import numpy as np
>>> from sklearn.metrics import top_k_accuracy_score
>>> y_true = np.array([0, 1, 2, 2])
>>> y_score = np.array([[0.5, 0.2, 0.2],  # 0 is in top 2
                      ...                  
                      [0.3, 0.4, 0.2],   # 1 is in top 2
                      ...                  
                      [0.2, 0.4, 0.3],   # 2 is in top 2
                      ...                  
                      [0.7, 0.2, 0.1]])  # 2 isn't in top 2
>>> top_k_accuracy_score(y_true, y_score, k=2)
0.75
>>> # Not normalizing gives the number of "correctly" classified samples
>>> top_k_accuracy_score(y_true, y_score, k=2, normalize=False)
3
```

pearson_r2_score

\(y: \text{numpy.ndarray}, \text{y_pred: numpy.ndarray} \rightarrow \text{float}\)

Computes Pearson R\(^2\) (square of Pearson correlation).

Parameters

- \(y \text{ (numpy.ndarray)}\) – ground truth array
- \(y_\text{pred} \text{ (numpy.ndarray)}\) – predicted array

Returns The Pearson-R\(^2\) score.

Return type float

jaccard_index

\(y: \text{numpy.ndarray}, \text{y_pred: numpy.ndarray} \rightarrow \text{float}\)

Computes Jaccard Index which is the Intersection Over Union metric which is commonly used in image segmentation tasks.

DEPRECATED: WILL BE REMOVED IN A FUTURE VERSION OF DEEPHEM. USE jaccard_score instead.

Parameters

- \(y \text{ (numpy.ndarray)}\) – ground truth array
- \(y_\text{pred} \text{ (numpy.ndarray)}\) – predicted array

Returns score – The jaccard index. A number between 0 and 1.

Return type float

pixel_error

\(y: \text{numpy.ndarray}, \text{y_pred: numpy.ndarray} \rightarrow \text{float}\)

An error metric in case y, y_pred are images.

Defined as 1 - the maximal F-score of pixel similarity, or squared Euclidean distance between the original and the result labels.

Parameters

- \(y \text{ (numpy.ndarray)}\) – ground truth array
- \(y_\text{pred} \text{ (numpy.ndarray)}\) – predicted array
Returns score – The pixel-error. A number between 0 and 1.

Return type float

prc_auc_score(y: numpy.ndarray, y_pred: numpy.ndarray) → float
Compute area under precision-recall curve

Parameters
• y (np.ndarray) – A numpy array of shape (N, n_classes) or (N,) with true labels
• y_pred (np.ndarray) – Of shape (N, n_classes) with class probabilities.

Returns The area under the precision-recall curve. A number between 0 and 1.

Return type float

rms_score(y_true: numpy.ndarray, y_pred: numpy.ndarray) → float
Computes RMS error.

mae_score(y_true: numpy.ndarray, y_pred: numpy.ndarray) → float
Computes MAE.

kappa_score(y1, y2, *, labels=None, weights=None, sample_weight=None)
Compute Cohen’s kappa: a statistic that measures inter-annotator agreement.
This function computes Cohen’s kappa [1], a score that expresses the level of agreement between two annotators on a classification problem. It is defined as
\[\kappa = (p_o - p_e)/(1 - p_e) \]
where \(p_o \) is the empirical probability of agreement on the label assigned to any sample (the observed agreement ratio), and \(p_e \) is the expected agreement when both annotators assign labels randomly. \(p_e \) is estimated using a per-annotator empirical prior over the class labels [2].

Read more in the User Guide.

Parameters
• y1 (array of shape (n_samples,)) – Labels assigned by the first annotator.
• y2 (array of shape (n_samples,)) – Labels assigned by the second annotator. The kappa statistic is symmetric, so swapping y1 and y2 doesn’t change the value.
• labels (array-like of shape (n_classes,), default=None) – List of labels to index the matrix. This may be used to select a subset of labels. If None, all labels that appear at least once in y1 or y2 are used.
• weights (\{‘linear’, ‘quadratic’\}, default=None) – Weighting type to calculate the score. None means no weighted; “linear” means linear weighted; “quadratic” means quadratic weighted.
• sample_weight (array-like of shape (n_samples,), default=None) – Sample weights.

Returns kappa – The kappa statistic, which is a number between -1 and 1. The maximum value means complete agreement; zero or lower means chance agreement.

Return type float
bedroc_score(y_true: numpy.ndarray, y_pred: numpy.ndarray, alpha: float = 20.0)

Compute BEDROC metric.

BEDROC metric implemented according to Truchon and Bayley that modifies the ROC score by allowing for a factor of early recognition. Please confirm details from [1].

Parameters

- **y_true** (np.ndarray) – Binary class labels. 1 for positive class, 0 otherwise
- **y_pred** (np.ndarray) – Predicted labels
- **alpha** (float, default 20.0) – Early recognition parameter

Returns

Value in [0, 1] that indicates the degree of early recognition

Return type

float

Notes

This function requires RDKit to be installed.

concordance_index(y_true: numpy.ndarray, y_pred: numpy.ndarray) → float

Compute Concordance index.

Statistical metric indicates the quality of the predicted ranking. Please confirm details from [1].

Parameters

- **y_true** (np.ndarray) – continous value
- **y_pred** (np.ndarray) – Predicted value

Returns

score between [0,1]

Return type

float

get_motif_scores(encoded_sequences: numpy.ndarray, motif_names: List[str], max_scores: Optional[int] = None, return_positions: bool = False, GC_fraction: float = 0.4) → numpy.ndarray

Computes pwm log odds.

Parameters

- **encoded_sequences** (np.ndarray) – A numpy array of shape (N_sequences, N_letters, sequence_length, 1).
- **motif_names** (List[str]) – List of motif file names.
- **max_scores** (int, optional) – Get top max_scores scores.
- **return_positions** (bool, default False) – Whether to return postions or not.
- **GC_fraction** (float, default 0.4) – GC fraction in background sequence.
Returns A numpy array of complete score. The shape is \((N_{sequences}, num_motifs, seq_length)\) by default. If \(max_scores\), the shape of score array is \((N_{sequences}, num_motifs*max_scores)\). If \(max_scores\) and \(return_positions\), the shape of score array with max scores and their positions. is \((N_{sequences}, 2*num_motifs*max_scores)\).

Return type np.ndarray

Notes

This method requires simdna to be installed.

get_pssm_scores

\(encoded_sequences: numpy.ndarray, pssm: numpy.ndarray) \rightarrow numpy.ndarray\)

Convolves pssm and its reverse complement with encoded sequences and returns the maximum score at each position of each sequence.

Parameters

- **encoded_sequences** (np.ndarray) – A numpy array of shape \((N_{sequences}, N_letters, sequence_length, 1)\).
- **pssm** (np.ndarray) – A numpy array of shape \((4, pssm_length)\).

Returns scores – A numpy array of shape \((N_{sequences}, sequence_length)\).

Return type np.ndarray

in_silico_mutagenesis

\(model: deepchem.models.models.Model, encoded_sequences: numpy.ndarray) \rightarrow numpy.ndarray\)

Computes in-silico-mutagenesis scores

Parameters

- **model** (Model) – This can be any model that accepts inputs of the required shape and produces an output of shape \((N_{sequences}, N_tasks)\).
- **encoded_sequences** (np.ndarray) – A numpy array of shape \((N_sequences, N_letters, sequence_length, 1)\)

Returns A numpy array of ISM scores. The shape is \((num_task, N_sequences, N_letters, sequence_length, 1)\).

Return type np.ndarray

3.21.4 Metric Class

The `dc.metrics.Metric` class is a wrapper around metric functions which interoperates with DeepChem `dc.models.Model`.

class Metric

```python
```

Wrapper class for computing user-defined metrics.

The `Metric` class provides a wrapper for standardizing the API around different classes of metrics that may be useful for DeepChem models. The implementation provides a few non-standard conveniences such as built-in support for multitask and multiclass metrics.

There are a variety of different metrics this class aims to support. Metrics for classification and regression that assume that values to compare are scalars are supported.
At present, this class doesn’t support metric computation on models which don’t present scalar outputs. For example, if you have a generative model which predicts images or molecules, you will need to write a custom evaluation and metric setup.

```python
```

Parameters

- **metric** *(function)* – Function that takes args `y_true`, `y_pred` (in that order) and computes desired score. If sample weights are to be considered, `metric` may take in an additional keyword argument `sample_weight`.

- **task_averager** *(function, default None)* – If not None, should be a function that averages metrics across tasks.

- **name** *(str, default None)* – Name of this metric

- **threshold** *(float, default None (DEPRECATED))* – Used for binary metrics and is the threshold for the positive class.

- **mode** *(str, default None)* – Should usually be “classification” or “regression.”

- **n_tasks** *(int, default None)* – The number of tasks this class is expected to handle.

- **classification_handling_mode** *(str, default None)* – DeepChem models by default predict class probabilities for classification problems. This means that for a given singletask prediction, after shape normalization, the DeepChem labels and prediction will be numpy arrays of shape `(n_samples, n_tasks, n_classes)` with class probabilities. `classification_handling_mode` is a string that instructs this method how to handle transforming these probabilities. It can take on the following values: - “direct”: Pass `y_true` and `y_pred` directly into `self.metric`. - “threshold”: Use `threshold_predictions` to threshold `y_true` and `y_pred` using `threshold_values`, then apply `to_one_hot` to output. - “threshold-one-hot”: Use `threshold_predictions` to threshold `y_true` and `y_pred` using `threshold_values`, then apply `to_one_hot` to output. - None: Select a mode automatically based on the metric.

- **threshold_value** *(float, default None)* – If set, and `classification_handling_mode` is “threshold” or “threshold-one-hot”, apply a thresholding operation to values with this threshold. This option is only sensible on binary classification tasks. For multiclass problems, or if `threshold_value` is None, `argmax()` is used to select the highest probability class for each task.
compute_metric(y_true: Union[numpy.typing._array_like._SupportsArray[numpy.dtype],
numpy.typing._nested_sequence._NestedSequence[numpy.typing._array_like._SupportsArray[numpy.dtype],
bool, int, float, complex, str, bytes],
numpy.typing._nested_sequence._NestedSequence[Union[bool, int, float, complex, str,
bytes]], y_pred: Union[numpy.typing._array_like._SupportsArray[numpy.dtype],
numpy.typing._nested_sequence._NestedSequence[numpy.typing._array_like._SupportsArray[numpy.dtype],
bool, int, float, complex, str, bytes],
numpy.typing._nested_sequence._NestedSequence[Union[bool, int, float, complex, str,
bytes]], w: Optional[Union[numpy.typing._array_like._SupportsArray[numpy.dtype],
numpy.typing._nested_sequence._NestedSequence[numpy.typing._array_like._SupportsArray[numpy.dtype],
bool, int, float, complex, str, bytes],
numpy.typing._nested_sequence._NestedSequence[Union[bool, int, float, complex, str,
bytes]]] = None, n_tasks: Optional[int] = None, n_classes: int = 2, per_task_metrics: bool = False, use_sample_weights: bool = False, **kwargs) → Any

Compute a performance metric for each task.

Parameters

- **y_true** (ArrayLike) – An ArrayLike containing true values for each task. Must be of shape \((N,\) or \((N, n\text{_tasks})\) or \((N, n\text{_tasks}, n\text{_classes})\) if a classification metric. If of shape \((N, n\text{_tasks})\) values can either be class-labels or probabilities of the positive class for binary classification problems. If a regression problem, must be of shape \((N,)\) or \((N, n\text{_tasks})\) or \((N, n\text{_tasks}, 1)\) if a regression metric.

- **y_pred** (ArrayLike) – An ArrayLike containing predicted values for each task. Must be of shape \((N, n\text{_tasks}, n\text{_classes})\) if a classification metric, else must be of shape \((N, n\text{_tasks})\) if a regression metric.

- **w** (ArrayLike, default None) – An ArrayLike containing weights for each datapoint. If specified, must be of shape \((N, n\text{_tasks})\).

- **n_tasks** (int, default None) – The number of tasks this class is expected to handle.

- **n_classes** (int, default None) – Number of classes in data for classification tasks.

- **per_task_metrics** (bool, default False) – If true, return computed metric for each task on multitask dataset.

- **use_sample_weights** (bool, default False) – If set, use per-sample weights \(w\).

- **kwargs** (dict) – Will be passed on to self.metric

Returns A numpy array containing metric values for each task.

Return type np.ndarray
compute_single_task_metric(y_true: Union[numpy._typing._array_like._SupportsArray[numpy.dtype],
numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[
bool, int, float, complex, str, bytes],
numpy._typing._nested_sequence._NestedSequence[Union[bool, int, float, complex, str, bytes]]], y_pred:
Union[numpy._typing._array_like._SupportsArray[numpy.dtype],
numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[
bool, int, float, complex, str, bytes],
numpy._typing._nested_sequence._NestedSequence[Union[bool, int, float, complex, str, bytes]]], w: Optional[Union[numpy._typing._array_like._SupportsArray[numpy.dtype],
numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[
bool, int, float, complex, str, bytes],
numpy._typing._nested_sequence._NestedSequence[Union[bool, int, float, complex, str, bytes]]]] = None, n_samples: Optional[int] = None, use_sample_weights: bool = False, **kwargs) → float

Compute a metric value.

Parameters

- **y_true** (ArrayLike) – True values array. This array must be of shape \((N, n_classes)\) if classification and \((N,)\) if regression.
- **y_pred** (ArrayLike) – Predictions array. This array must be of shape \((N, n_classes)\) if classification and \((N,)\) if regression.
- **w** (ArrayLike, default None) – Sample weight array. This array must be of shape \((N,)\)
- **n_samples** (int, default None (DEPRECATED)) – The number of samples in the dataset. This is \(N\). This argument is ignored.
- **use_sample_weights** (bool, default False) – If set, use per-sample weights \(w\).
- **kwargs** (dict) – Will be passed on to self.metric

Returns metric_value – The computed value of the metric.

Return type float

3.22 Hyperparameter Tuning

One of the most important aspects of machine learning is hyperparameter tuning. Many machine learning models have a number of hyperparameters that control aspects of the model. These hyperparameters typically cannot be learned directly by the same learning algorithm used for the rest of learning and have to be set in an alternate fashion. The dc.hyper module contains utilities for hyperparameter tuning.

DeepChem’s hyperparameter optimization algorithms are simple and run in single-threaded fashion. They are not intended to be production grade hyperparameter utilities, but rather useful first tools as you start exploring your parameter space. As the needs of your application grow, we recommend swapping to a more heavy duty hyperparameter optimization library.
3.22.1 Hyperparameter Optimization API

class HyperparamOpt(model_builder: Callable[..., deepchem.models.models.Model])

Abstract superclass for hyperparameter search classes.

This class is an abstract base class for hyperparameter search classes in DeepChem. Hyperparameter search is performed on dc.models.Model classes. Each hyperparameter object accepts a dc.models.Model class upon construct. When the hyperparam_search class is invoked, this class is used to construct many different concrete models which are trained on the specified training set and evaluated on a given validation set.

Different subclasses of HyperparamOpt differ in the choice of strategy for searching the hyperparameter evaluation space. This class itself is an abstract superclass and should never be directly instantiated.

__init__(model_builder: Callable[..., deepchem.models.models.Model])

Initialize Hyperparameter Optimizer.

Note this is an abstract constructor which should only be used by subclasses.

Parameters model_builder (constructor function.) – This parameter must be constructor function which returns an object which is an instance of dc.models.Model. This function must accept two arguments, model_params of type dict and model_dir, a string specifying a path to a model directory. See the example.

Conduct Hyperparameter search.

This method defines the common API shared by all hyperparameter optimization subclasses. Different classes will implement different search methods but they must all follow this common API.

Parameters

- **params_dict** (Dict) – Dictionary mapping strings to values. Note that the precise semantics of params_dict will change depending on the optimizer that you’re using. Depending on the type of hyperparameter optimization, these values can be ints/floats/strings/lists/etc. Read the documentation for the concrete hyperparameter optimization subclass you’re using to learn more about what’s expected.

- **train_dataset** (Dataset) – dataset used for training

- **valid_dataset** (Dataset) – dataset used for validation(optimization on valid scores)

- **metric** (Metric) – metric used for evaluation

- **output_transformers** (list[Transformer]) – Transformers for evaluation. This argument is needed since train_dataset and valid_dataset may have been transformed for learning and need the transform to be inverted before the metric can be evaluated on a model.

- **nb_epoch** (int, (default 10)) – Specifies the number of training epochs during each iteration of optimization.

- **use_max** (bool, optional) – If True, return the model with the highest score. Else return model with the minimum score.

- **logdir** (str, optional) – The directory in which to store created models. If not set, will use a temporary directory.
Returns \(\text{best_model, best_hyperparams, all_scores} \) where \text{best_model} is an instance of \text{dc.models.Model}, \text{best_hyperparams} is a dictionary of parameters, and \text{all_scores} is a dictionary mapping string representations of hyperparameter sets to validation scores.

Return type Tuple[\text{best_model, best_hyperparams, all_scores}]

3.22.2 Grid Hyperparameter Optimization

This is the simplest form of hyperparameter optimization that simply involves iterating over a fixed grid of possible values for hyperparameters.

class \text{GridHyperparamOpt}(model_builder: \text{Callable[[...], dc.models.models.Model]})

Provides simple grid hyperparameter search capabilities.

This class performs a grid hyperparameter search over the specified hyperparameter space. This implementation is simple and simply does a direct iteration over all possible hyperparameters and doesn’t use parallelization to speed up the search.

Examples

This example shows the type of constructor function expected.

```python
>>> import sklearn
>>> import deepchem as dc
>>>
optimizer = dc.hyper.GridHyperparamOpt(
    lambda **p: dc.models.GraphConvModel(**p))
```

Here’s a more sophisticated example that shows how to optimize only some parameters of a model. In this case, we have some parameters we want to optimize, and others which we don’t. To handle this type of search, we create a `model_builder` which hard codes some arguments (in this case, \text{max_iter} is a hyperparameter which we don’t want to search over)

```python
>>> import deepchem as dc
>>> import numpy as np
>>> from sklearn.linear_model import LogisticRegression as LR

# generating data
>>> X = np.arange(1, 11, 1).reshape(-1, 1)
>>> y = np.hstack((np.zeros(5), np.ones(5)))
>>> dataset = dc.data.NumpyDataset(X, y)

# splitting dataset into train and test
>>> splitter = dc.splits.RandomSplitter()
>>> train_dataset, test_dataset = splitter.train_test_split(dataset)

# metric to evaluate result of a set of parameters
>>> metric = dc.metrics.Metric(dc.metrics.accuracy_score)

# defining `model\_builder`
>>> def model\_builder(**model\_params):
...     penalty = model\_params['penalty']
...     solver = model\_params['solver']
...     lr = LR(penalty=penalty, solver=solver, max_iter=100)
...     return dc.models.SklearnModel(lr)

# the parameters which are to be optimized
>>> params = {
...     'penalty': ['l1', 'l2'],
...     'solver': ['saga', 'lbfgs'],
...     ...
... }

(continues on next page)
... 'solver': ['liblinear', 'saga']
...

```python
>>> # Creating optimizer and searching over hyperparameters
>>> optimizer = dc.hyper.GridHyperparamOpt(model_builder)
>>> best_model, best_hyperparams, all_results = optimizer.hyperparam_search(params, train_dataset, test_dataset, metric)
>>> best_hyperparams # the best hyperparameters
{'penalty': 'l2', 'solver': 'saga'}
```


Perform hyperparams search according to params_dict.

Each key to hyperparams_dict is a model_param. The values should be a list of potential values for that hyperparam.

**Parameters**

- **params_dict** *(Dict) – Maps hyperparameter names (strings) to lists of possible parameter values.*

- **train_dataset** *(Dataset) – dataset used for training.*

- **valid_dataset** *(Dataset) – dataset used for validation(optimization on valid scores).*

- **metric** *(Metric) – metric used for evaluation.*

- **output_transformers** *(list[Transformer]) – Transformers for evaluation. This argument is needed since train_dataset and valid_dataset may have been transformed for learning and need the transform to be inverted before the metric can be evaluated on a model.*

- **nb_epoch** *(int, (default 10)) – Specifies the number of training epochs during each iteration of optimization. Not used by all model types.*

- **use_max** *(bool, optional) – If True, return the model with the highest score. Else return model with the minimum score.*

- **logdir** *(str, optional) – The directory in which to store created models. If not set, will use a temporary directory.*

- **logfile** *(str, optional (default None)) – Name of logfile to write results to. If specified, this is must be a valid file name. If not specified, results of hyperparameter search will be written to logdir/results.txt.*

**Returns** *(best_model, best_hyperparams, all_scores) where best_model is an instance of dc.model.Model, best_hyperparams is a dictionary of parameters, and all_scores is a dictionary mapping string representations of hyperparameter sets to validation scores.*

**Return type** *Tuple[best_model, best_hyperparams, all_scores]
Notes

From DeepChem 2.6, the return type of best_hyperparams is a dictionary of parameters rather than a tuple of parameters as it was previously. The new changes have been made to standardize the behaviour across different hyperparameter optimization techniques available in DeepChem.

3.22.3 Gaussian Process Hyperparameter Optimization

class GaussianProcessHyperparamOpt(model_builder: Callable[..., deepchem.models.models.Model])

Gaussian Process Global Optimization (GPGO)

This class uses Gaussian Process optimization to select hyperparameters. Underneath the hood it uses pyGPGO to optimize models. If you don’t have pyGPGO installed, you won’t be able to use this class.

Note that params_dict has a different semantics than for GridHyperparamOpt. param_dict[hp] must be an int/float and is used as the center of a search range.

Examples

This example shows the type of constructor function expected.

```python
>>> import deepchem as dc
>>> optimizer = dc.hyper.GaussianProcessHyperparamOpt(lambda **p: dc.models.GraphConvModel(n_tasks=1, **p))
```

Here’s a more sophisticated example that shows how to optimize only some parameters of a model. In this case, we have some parameters we want to optimize, and others which we don’t. To handle this type of search, we create a model_builder which hard codes some arguments (in this case, n_tasks and n_features which are properties of a dataset and not hyperparameters to search over.)

```python
>>> import numpy as np
>>> from sklearn.ensemble import RandomForestRegressor as RF
>>> def model_builder(**model_params):
... n_estimators = model_params['n_estimators']
... min_samples_split = model_params['min_samples_split']
... rf_model = RF(n_estimators=n_estimators, min_samples_split=min_samples_split)
... return dc.models.SklearnModel(rf_model)
>>> optimizer = dc.hyper.GaussianProcessHyperparamOpt(model_builder)
>>> params_dict = {'n_estimators':100, 'min_samples_split':2}
>>> train_dataset = dc.data.NumpyDataset(X=np.random.rand(50, 5), y=np.random.rand(50, 1))
>>> valid_dataset = dc.data.NumpyDataset(X=np.random.rand(20, 5), y=np.random.rand(20, 1))
>>> metric = dc.metrics.Metric(dc.metrics.pearson_r2_score)
>>> best_model, best_hyperparams, all_results = optimizer.hyperparam_search(params_dict, train_dataset, valid_dataset, metric, max_iter=2)
>>> type(best_hyperparams) <class 'dict'>
```
Notes

This class requires pyGPGO to be installed.

**hyperparam_search**

```
```

Perform hyperparameter search using a gaussian process.

**Parameters**

- **params_dict** (:obj:`Dict`) – Maps hyperparameter names (strings) to possible parameter values. The semantics of this list are different than for :func:`GridHyperparamOpt`. `params_dict[hp]` must map to an int/float, which is used as the center of a search with radius `search_range` since pyGPGO can only optimize numerical hyperparameters.

- **train_dataset** (:obj:`Dataset`) – dataset used for training

- **valid_dataset** (:obj:`Dataset`) – dataset used for validation(optimization on valid scores)

- **metric** (:obj:`Metric`) – metric used for evaluation

- **output_transformers** (:obj:`List[Transformer]`) – Transformers for evaluation. This argument is needed since `train_dataset` and `valid_dataset` may have been transformed for learning and need the transform to be inverted before the metric can be evaluated on a model.

- **nb_epoch** (:obj:`int`, *(default 10)*) – Specifies the number of training epochs during each iteration of optimization. Not used by all model types.

- **use_max** (:obj:`bool`, *(default True)*) – Specifies whether to maximize or minimize `metric`. maximization(True) or minimization(False)

- **logdir** (:obj:`str`, *optional, (default None)*) – The directory in which to store created models. If not set, will use a temporary directory.

- **max_iter** (:obj:`int`, *(default 20)*) – number of optimization trials

- **search_range** (:obj:`int/float/Dict (default 4)` – The `search_range` specifies the range of parameter values to search for. If `search_range` is an int/float, it is used as the global search range for parameters. This creates a search problem on the following space:

```
optimization on [initial value / search_range, initial value * search_range]
```

If `search_range` is a dict, it must contain the same keys as for `params_dict`. In this case, `search_range` specifies a per-parameter search range. This is useful in case some parameters have a larger natural range than others. For a given hyperparameter `hp` this would create the following search range:

```
optimization on hp on [initial value[hp] / search_range[hp], initial value[hp] * search_range[hp]]
```

- **logfile** (:obj:`str`, *optional (default None)*) – Name of logfile to write results to. If specified, this is must be a valid file. If not specified, results of hyperparameter search will be written to `logdir/ txt`.

**Returns** `Tuple[best_model, best_hyperparams, all_scores]` where `best_model` is an instance of deepchem.Model, `best_hyperparams` is a dictionary of parameters, and `all_scores` is a dictionary mapping string representations of hyperparameter sets to validation scores.

**Return type** `Tuple[best_model, best_hyperparams, all_scores]`
3.23 Metalearning

One of the hardest challenges in scientific machine learning is lack of access of sufficient data. Sometimes experiments are slow and expensive and there’s no easy way to gain access to more data. What do you do then?

This module contains a collection of techniques for doing low data learning. “Metalearning” traditionally refers to techniques for “learning to learn” but here we take it to mean any technique which proves effective for learning with low amounts of data.

3.23.1 MetaLearner

This is the abstract superclass for metalearning algorithms.

class MetaLearner
    Model and data to which the MAML algorithm can be applied.

    To use MAML, create a subclass of this defining the learning problem to solve. It consists of a model that can be trained to perform many different tasks, and data for training it on a large (possibly infinite) set of different tasks.

    compute_model(inputs, variables, training)
        Compute the model for a set of inputs and variables.

        Parameters
        • inputs (list of tensors) – the inputs to the model
        • variables (list of tensors) – the values to use for the model’s variables. This might be the actual variables (as returned by the MetaLearner’s variables property), or alternatively it might be the values of those variables after one or more steps of gradient descent for the current task.
        • training (bool) – indicates whether the model is being invoked for training or prediction

        Returns
        • (loss, outputs) where loss is the value of the model’s loss function, and
        • outputs is a list of the model’s outputs

    property variables
        Get the list of Tensorflow variables to train.

    select_task()
        Select a new task to train on.

        If there is a fixed set of training tasks, this will typically cycle through them. If there are infinitely many training tasks, this can simply select a new one each time it is called.

    get_batch()
        Get a batch of data for training.

        This should return the data as a list of arrays, one for each of the model’s inputs. This will usually be called twice for each task, and should return a different batch on each call.
3.23.2 MAML

class MAML(learner, learning_rate=0.001, optimization_steps=1, meta_batch_size=10, optimizer=<deepchem.models.optimizers.Adam object>, model_dir=None)

Implements the Model-Agnostic Meta-Learning algorithm for low data learning.

The algorithm is described in Finn et al., “Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks” (https://arxiv.org/abs/1703.03400). It is used for training models that can perform a variety of tasks, depending on what data they are trained on. It assumes you have training data for many tasks, but only a small amount for each one. It performs “meta-learning” by looping over tasks and trying to minimize the loss on each one after one or a few steps of gradient descent. That is, it does not try to create a model that can directly solve the tasks, but rather tries to create a model that is very easy to train.

To use this class, create a subclass of MetaLearner that encapsulates the model and data for your learning problem. Pass it to a MAML object and call fit(). You can then use train_on_current_task() to fine tune the model for a particular task.

__init__(learner, learning_rate=0.001, optimization_steps=1, meta_batch_size=10, optimizer=<deepchem.models.optimizers.Adam object>, model_dir=None)

Create an object for performing meta-optimization.

Parameters

- learner (MetaLearner) – defines the meta-learning problem
- learning_rate (float or Tensor) – the learning rate to use for optimizing each task (not to be confused with the one used for meta-learning). This can optionally be made a variable (represented as a Tensor), in which case the learning rate will itself be learnable.
- optimization_steps (int) – the number of steps of gradient descent to perform for each task
- meta_batch_size (int) – the number of tasks to use for each step of meta-learning
- optimizer (Optimizer) – the optimizer to use for meta-learning (not to be confused with the gradient descent optimization performed for each task)
- model_dir (str) – the directory in which the model will be saved. If None, a temporary directory will be created.

fit(steps, max_checkpoints_to_keep=5, checkpoint_interval=600, restore=False)

Perform meta-learning to train the model.

Parameters

- steps (int) – the number of steps of meta-learning to perform
- max_checkpoints_to_keep (int) – the maximum number of checkpoint files to keep. When this number is reached, older files are deleted.
- checkpoint_interval (float) – the time interval at which to save checkpoints, measured in seconds
- restore (bool) – if True, restore the model from the most recent checkpoint before training it further

restore()

Reload the model parameters from the most recent checkpoint file.

train_on_current_task(optimization_steps=1, restore=True)

Perform a few steps of gradient descent to fine tune the model on the current task.
3.24 Reinforcement Learning

Reinforcement Learning is a powerful technique for learning when you have access to a simulator. That is, suppose that you have a high fidelity way of predicting the outcome of an experiment. This is perhaps a physics engine, perhaps a chemistry engine, or anything. And you’d like to solve some task within this engine. You can use reinforcement learning for this purpose.

3.24.1 Environments

class Environment(state_shape, n_actions=None, state_dtype=None, action_shape=None)

An environment in which an actor performs actions to accomplish a task.

An environment has a current state, which is represented as either a single NumPy array, or optionally a list of NumPy arrays. When an action is taken, that causes the state to be updated. The environment also computes a reward for each action, and reports when the task has been terminated (meaning that no more actions may be taken).

Two types of actions are supported. For environments with discrete action spaces, the action is an integer specifying the index of the action to perform (out of a fixed list of possible actions). For environments with continuous action spaces, the action is a NumPy array.

Environment objects should be written to support pickle and deepcopy operations. Many algorithms involve creating multiple copies of the Environment, possibly running in different processes or even on different computers.

__init__(state_shape, n_actions=None, state_dtype=None, action_shape=None)

Subclasses should call the superclass constructor in addition to doing their own initialization.

A value should be provided for either n_actions (for discrete action spaces) or action_shape (for continuous action spaces), but not both.

Parameters

- state_shape (tuple or list of tuples) – the shape(s) of the array(s) making up the state
- n_actions (int) – the number of discrete actions that can be performed. If the action space is continuous, this should be None.
- state_dtype (dtype or list of dtypes) – the type(s) of the array(s) making up the state. If this is None, all arrays are assumed to be float32.
• action_shape (tuple) – the shape of the array describing an action. If the action space is discrete, this should be none.

property state
   The current state of the environment, represented as either a NumPy array or list of arrays.
   If reset() has not yet been called at least once, this is undefined.

property terminated
   Whether the task has reached its end.
   If reset() has not yet been called at least once, this is undefined.

property state_shape
   The shape of the arrays that describe a state.
   If the state is a single array, this returns a tuple giving the shape of that array. If the state is a list of arrays, this returns a list of tuples where each tuple is the shape of one array.

property state_dtype
   The dtypes of the arrays that describe a state.
   If the state is a single array, this returns the dtype of that array. If the state is a list of arrays, this returns a list containing the dtypes of the arrays.

property n_actions
   The number of possible actions that can be performed in this Environment.
   If the environment uses a continuous action space, this returns None.

property action_shape
   The expected shape of NumPy arrays representing actions.
   If the environment uses a discrete action space, this returns None.

reset()
   Initialize the environment in preparation for doing calculations with it.
   This must be called before calling step() or querying the state. You can call it again later to reset the environment back to its original state.

step(action)
   Take a time step by performing an action.
   This causes the “state” and “terminated” properties to be updated.
   Parameters action (object) – an object describing the action to take

   Returns
   • the reward earned by taking the action, represented as a floating point number
   • (higher values are better)

class GymEnvironment(name)
   This is a convenience class for working with environments from OpenAI Gym.

   __init__(name)
   Create an Environment wrapping the OpenAI Gym environment with a specified name.
reset()

Initialize the environment in preparation for doing calculations with it.

This must be called before calling step() or querying the state. You can call it again later to reset the environment back to its original state.

step(action)

Take a time step by performing an action.

This causes the “state” and “terminated” properties to be updated.

Parameters

action (object) – an object describing the action to take

Returns

- the reward earned by taking the action, represented as a floating point number
- (higher values are better)

3.24.2 Policies

class Policy(output_names, rnn_initial_states=[])  

A policy for taking actions within an environment.

A policy is defined by a tf.keras.Model that takes the current state as input and performs the necessary calculations. There are many algorithms for reinforcement learning, and they differ in what values they require a policy to compute. That makes it impossible to define a single interface allowing any policy to be optimized with any algorithm. Instead, this interface just tries to be as flexible and generic as possible. Each algorithm must document what values it expects the model to output.

Special handling is needed for models that include recurrent layers. In that case, the model has its own internal state which the learning algorithm must be able to specify and query. To support this, the Policy must do three things:

1. The Model must take additional inputs that specify the initial states of all its recurrent layers. These will be appended to the list of arrays specifying the environment state.
2. The Model must also return the final states of all its recurrent layers as outputs.
3. The constructor argument rnn_initial_states must be specified to define the states to use for the Model’s recurrent layers at the start of a new rollout.

Policy objects should be written to support pickling. Many algorithms involve creating multiple copies of the Policy, possibly running in different processes or even on different computers.

__init__(output_names, rnn_initial_states=[])  

Subclasses should call the superclass constructor in addition to doing their own initialization.

Parameters

- output_names (list of strings) – the names of the Model’s outputs, in order. It is up to each reinforcement learning algorithm to document what outputs it expects policies to compute. Outputs that return the final states of recurrent layers should have the name ‘rnn_state’.
- rnn_initial_states (list of NumPy arrays) – the initial states of the Model’s recurrent layers at the start of a new rollout
create_model(**kwargs)

Construct and return a tf.keras.Model that computes the policy.

The inputs to the model consist of the arrays representing the current state of the environment, followed
by the initial states for all recurrent layers. Depending on the algorithm being used, other inputs might get
passed as well. It is up to each algorithm to document that.

3.24.3 A2C

class A2C(env, policy, max_rollout_length=20, discount_factor=0.99, advantage_lambda=0.98,
value_weight=1.0, entropy_weight=0.01, optimizer=None, model_dir=None, use_hindsight=False)

Implements the Advantage Actor-Critic (A2C) algorithm for reinforcement learning.

The algorithm is described in Mnih et al., “Asynchronous Methods for Deep Reinforcement Learning” (https:
//arxiv.org/abs/1602.01783). This class supports environments with both discrete and continuous action spaces.
For discrete action spaces, the “action” argument passed to the environment is an integer giving the index of
the action to perform. The policy must output a vector called “action_prob” giving the probability of taking each
action. For continuous action spaces, the action is an array where each element is chosen independently from a
normal distribution. The policy must output two arrays of the same shape: “action_mean” gives the mean value
for each element, and “action_std” gives the standard deviation for each element. In either case, the policy must
also output a scalar called “value” which is an estimate of the value function for the current state.

The algorithm optimizes all outputs at once using a loss that is the sum of three terms:

1. The policy loss, which seeks to maximize the discounted reward for each action.
2. The value loss, which tries to make the value estimate match the actual discounted reward that was attained
   at each step.
3. An entropy term to encourage exploration.

This class supports Generalized Advantage Estimation as described in Schulman et al., “High-Dimensional Con-
tinuous Control Using Generalized Advantage Estimation” (https://arxiv.org/abs/1506.02438). This is a method
of trading off bias and variance in the advantage estimate, which can sometimes improve the rate of convergence.
Use the advantage_lambda parameter to adjust the tradeoff.

This class supports Hindsight Experience Replay as described in Andrychowicz et al., “Hindsight Experience
Replay” (https://arxiv.org/abs/1707.01495). This is a method that can enormously accelerate learning when
rewards are very rare. It requires that the environment state contains information about the goal the agent is
trying to achieve. Each time it generates a rollout, it processes that rollout twice: once using the actual goal the
agent was pursuing while generating it, and again using the final state of that rollout as the goal. This guarantees
that half of all rollouts processed will be ones that achieved their goals, and hence received a reward.

To use this feature, specify use_hindsight=True to the constructor. The environment must have a method defined
as follows:

def apply_hindsight(self, states, actions, goal): ... return new_states, rewards

The method receives the list of states generated during the rollout, the action taken for each one, and a new
goal state. It should generate a new list of states that are identical to the input ones, except specifying the new
goal. It should return that list of states, and the rewards that would have been received for taking the specified
actions from those states. The output arrays may be shorter than the input ones, if the modified rollout would
have terminated sooner.

Note: Using this class on continuous action spaces requires that tensorflow_probability be installed.
__init__(env, policy, max_rollout_length=20, discount_factor=0.99, advantage_lambda=0.98, value_weight=1.0, entropy_weight=0.01, optimizer=None, model_dir=None, use_hindsight=False)

Create an object for optimizing a policy.

Parameters

- **env** ([Environment](#environment)) – the Environment to interact with
- **policy** ([Policy](#policy)) – the Policy to optimize. It must have outputs with the names ‘action_prob’ and ‘value’ (for discrete action spaces) or ‘action_mean’, ‘action_std’, and ‘value’ (for continuous action spaces)
- **max_rollout_length** ([int](#int)) – the maximum length of rollouts to generate
- **discount_factor** ([float](#float)) – the discount factor to use when computing rewards
- **advantage_lambda** ([float](#float)) – the parameter for trading bias vs. variance in Generalized Advantage Estimation
- **value_weight** ([float](#float)) – a scale factor for the value loss term in the loss function
- **entropy_weight** ([float](#float)) – a scale factor for the entropy term in the loss function
- **optimizer** ([Optimizer](#optimizer)) – the optimizer to use. If None, a default optimizer is used.
- **model_dir** ([str](#str)) – the directory in which the model will be saved. If None, a temporary directory will be created.
- **use_hindsight** ([bool](#bool)) – if True, use Hindsight Experience Replay

fit(total_steps, max_checkpoints_to_keep=5, checkpoint_interval=600, restore=False)

Train the policy.

Parameters

- **total_steps** ([int](#int)) – the total number of time steps to perform on the environment, across all rollouts on all threads
- **max_checkpoints_to_keep** ([int](#int)) – the maximum number of checkpoint files to keep. When this number is reached, older files are deleted.
- **checkpoint_interval** ([float](#float)) – the time interval at which to save checkpoints, measured in seconds
- **restore** ([bool](#bool)) – if True, restore the model from the most recent checkpoint and continue training from there. If False, retrain the model from scratch.

predict(state, use_saved_states=True, save_states=True)

Compute the policy’s output predictions for a state.

If the policy involves recurrent layers, this method can preserve their internal states between calls. Use the use_saved_states and save_states arguments to specify how it should behave.

Parameters

- **state** ([array or list of arrays](#array)) – the state of the environment for which to generate predictions
- **use_saved_states** ([bool](#bool)) – if True, the states most recently saved by a previous call to predict() or select_action() will be used as the initial states. If False, the internal states of all recurrent layers will be set to the initial values defined by the policy before computing the predictions.
A2CLossDiscrete

This class computes the loss function for A2C with discrete action spaces.

class A2CLossDiscrete(value_weight, entropy_weight, action_prob_index, value_index)

__init__(value_weight, entropy_weight, action_prob_index, value_index)

3.24.4 PPO

class PPO(env, policy, max_rollout_length=20, optimization_rollouts=8, optimization_epochs=4, batch_size=64, clipping_width=0.2, discount_factor=0.99, advantage_lambda=0.98, value_weight=1.0, entropy_weight=0.01, optimizer=None, model_dir=None, use_hindsight=False)

Implements the Proximal Policy Optimization (PPO) algorithm for reinforcement learning.

The algorithm is described in Schulman et al, “Proximal Policy Optimization Algorithms” (https://openai-public.s3-us-west-2.amazonaws.com/blog/2017-07/ppo/ppo-arxiv.pdf). This class requires the policy to output two quantities: a vector giving the probability of taking each action, and an estimate of the value function for the current state. It optimizes both outputs at once using a loss that is the sum of three terms:

1. The policy loss, which seeks to maximize the discounted reward for each action.
2. The value loss, which tries to make the value estimate match the actual discounted reward that was attained at each step.
3. An entropy term to encourage exploration.
This class only supports environments with discrete action spaces, not continuous ones. The “action” argument passed to the environment is an integer, giving the index of the action to perform.

This class supports Generalized Advantage Estimation as described in Schulman et al., “High-Dimensional Continuous Control Using Generalized Advantage Estimation” (https://arxiv.org/abs/1506.02438). This is a method of trading off bias and variance in the advantage estimate, which can sometimes improve the rate of convergence. Use the advantage_lambda parameter to adjust the tradeoff.

This class supports Hindsight Experience Replay as described in Andrychowicz et al., “Hindsight Experience Replay” (https://arxiv.org/abs/1707.01495). This is a method that can enormously accelerate learning when rewards are very rare. It requires that the environment state contains information about the goal the agent is trying to achieve. Each time it generates a rollout, it processes that rollout twice: once using the actual goal the agent was pursuing while generating it, and again using the final state of that rollout as the goal. This guarantees that half of all rollouts processed will be ones that achieved their goals, and hence received a reward.

To use this feature, specify use_hindsight=True to the constructor. The environment must have a method defined as follows:

```python
def apply_hindsight(self, states, actions, goal): ... return new_states, rewards
```

The method receives the list of states generated during the rollout, the action taken for each one, and a new goal state. It should generate a new list of states that are identical to the input ones, except specifying the new goal. It should return that list of states, and the rewards that would have been received for taking the specified actions from those states. The output arrays may be shorter than the input ones, if the modified rollout would have terminated sooner.

```python
__init__(env, policy, max_rollout_length=20, optimization_rollouts=8, optimization_epochs=4,
 batch_size=64, clipping_width=0.2, discount_factor=0.99, advantage_lambda=0.98,
 value_weight=1.0, entropy_weight=0.01, optimizer=None, model_dir=None,
 use_hindsight=False)
```

Create an object for optimizing a policy.

**Parameters**

- `env (Environment)` – the Environment to interact with
- `policy (Policy)` – the Policy to optimize. It must have outputs with the names `action_prob` and `value`, corresponding to the action probabilities and value estimate
- `max_rollout_length (int)` – the maximum length of rollouts to generate
- `optimization_rollouts (int)` – the number of rollouts to generate for each iteration of optimization
- `optimization_epochs (int)` – the number of epochs of optimization to perform within each iteration
- `batch_size (int)` – the batch size to use during optimization. If this is 0, each rollout will be used as a separate batch.
- `clipping_width (float)` – in computing the PPO loss function, the probability ratio is clipped to the range (1-clipping_width, 1+clipping_width)
- `discount_factor (float)` – the discount factor to use when computing rewards
- `advantage_lambda (float)` – the parameter for trading bias vs. variance in Generalized Advantage Estimation
- `value_weight (float)` – a scale factor for the value loss term in the loss function
- `entropy_weight (float)` – a scale factor for the entropy term in the loss function
- `optimizer (Optimizer)` – the optimizer to use. If None, a default optimizer is used.
• **model_dir** *(str)* – the directory in which the model will be saved. If None, a temporary directory will be created.

• **use_hindsight** *(bool)* – if True, use Hindsight Experience Replay

**fit** *(total_steps, max_checkpoints_to_keep=5, checkpoint_interval=600, restore=False)*

Train the policy.

**Parameters**

• **total_steps** *(int)* – the total number of time steps to perform on the environment, across all rollouts on all threads

• **max_checkpoints_to_keep** *(int)* – the maximum number of checkpoint files to keep. When this number is reached, older files are deleted.

• **checkpoint_interval** *(float)* – the time interval at which to save checkpoints, measured in seconds

• **restore** *(bool)* – if True, restore the model from the most recent checkpoint and continue training from there. If False, retrain the model from scratch.

**predict** *(state, use_saved_states=True, save_states=True)*

Compute the policy’s output predictions for a state.

If the policy involves recurrent layers, this method can preserve their internal states between calls. Use the use_saved_states and save_states arguments to specify how it should behave.

**Parameters**

• **state** *(array or list of arrays)* – the state of the environment for which to generate predictions

• **use_saved_states** *(bool)* – if True, the states most recently saved by a previous call to predict() or select_action() will be used as the initial states. If False, the internal states of all recurrent layers will be set to the initial values defined by the policy before computing the predictions.

• **save_states** *(bool)* – if True, the internal states of all recurrent layers at the end of the calculation will be saved, and any previously saved states will be discarded. If False, the states at the end of the calculation will be discarded, and any previously saved states will be kept.

**Return type** the array of action probabilities, and the estimated value function

**select_action** *(state, deterministic=False, use_saved_states=True, save_states=True)*

Select an action to perform based on the environment’s state.

If the policy involves recurrent layers, this method can preserve their internal states between calls. Use the use_saved_states and save_states arguments to specify how it should behave.

**Parameters**

• **state** *(array or list of arrays)* – the state of the environment for which to select an action

• **deterministic** *(bool)* – if True, always return the best action (that is, the one with highest probability). If False, randomly select an action based on the computed probabilities.

• **use_saved_states** *(bool)* – if True, the states most recently saved by a previous call to predict() or select_action() will be used as the initial states. If False, the internal states of all recurrent layers will be set to the initial values defined by the policy before computing the predictions.
• **save_states** *(bool)* – if True, the internal states of all recurrent layers at the end of the calculation will be saved, and any previously saved states will be discarded. If False, the states at the end of the calculation will be discarded, and any previously saved states will be kept.

**Return type** the index of the selected action

```python
restore()
```

Reload the model parameters from the most recent checkpoint file.

**class** `PPOLoss` *(value_weight: float, entropy_weight: float, clipping_width: float, action_prob_index: float, value_index: float)*

This class computes the loss function for PPO.

```python
__init__(value_weight: float, entropy_weight: float, clipping_width: float, action_prob_index: float, value_index: float)
```

### 3.25 Docking

Thanks to advances in biophysics, we are often able to find the structure of proteins from experimental techniques like Cryo-EM or X-ray crystallography. These structures can be powerful aides in designing small molecules. The technique of Molecular docking performs geometric calculations to find a “binding pose” with the small molecule interacting with the protein in question in a suitable binding pocket (that is, a region on the protein which has a groove in which the small molecule can rest). For more information about docking, check out the Autodock Vina paper:


### 3.25.1 Binding Pocket Discovery

DeepChem has some utilities to help find binding pockets on proteins automatically. For now, these utilities are simple, but we will improve these in future versions of DeepChem.

**class** `BindingPocketFinder`

Abstract superclass for binding pocket detectors

Many times when working with a new protein or other macromolecule, it’s not clear what zones of the macromolecule may be good targets for potential ligands or other molecules to interact with. This abstract class provides a template for child classes that algorithmically locate potential binding pockets that are good potential interaction sites.

Note that potential interactions sites can be found by many different methods, and that this abstract class doesn’t specify the technique to be used.

```python
find_pockets(molecule: Any)
```

Finds potential binding pockets in proteins.

**Parameters**

`molecule` *(object)* – Some representation of a molecule.

**class** `ConvexHullPocketFinder` *(scoring_model: Optional[deepchem.models.models.Model] = None, pad: float = 5.0)*

Implementation that uses convex hull of protein to find pockets.


```python
__init__(scoring_model: Optional[deepchem.models.models.Model] = None, pad: float = 5.0)
```

Initialize the pocket finder.

**Parameters**

`scoring_model` *(deepchem.models.models.Model)* – Scoring model to use for finding pockets.

`pad` *(float)* – Padding to add to the protein to find pockets.
• **scoring_model** *(Model, optional (default None))* – If specified, use this model to prune pockets.

• **pad** *(float, optional (default 5.0))* – The number of angstroms to pad around a binding pocket's atoms to get a binding pocket box.

```python
find_all_pockets(protein_file: str) → List[deepchem.utils.coordinate_box_utils.CoordinateBox]
```

Find list of binding pockets on protein.

**Parameters**

**protein_file** *(str)* – Protein to load in.

**Returns**

List of binding pockets on protein. Each pocket is a `CoordinateBox`

**Return type**

List[`CoordinateBox`]

```python
find_pockets(macromolecule_file: str) → List[deepchem.utils.coordinate_box_utils.CoordinateBox]
```

Find list of suitable binding pockets on protein.

This function computes putative binding pockets on this protein. This class uses the `ConvexHull` to compute binding pockets. Each face of the hull is converted into a coordinate box used for binding.

**Parameters**

**macromolecule_file** *(str)* – Location of the macromolecule file to load

**Returns**

List of pockets. Each pocket is a `CoordinateBox`

**Return type**

List[`CoordinateBox`]

### 3.25.2 Pose Generation

Pose generation is the task of finding a “pose”, that is a geometric configuration of a small molecule interacting with a protein. Pose generation is a complex process, so for now DeepChem relies on external software to perform pose generation. This software is invoked and installed under the hood.

```python
class PoseGenerator
```

A Pose Generator computes low energy conformations for molecular complexes.

Many questions in structural biophysics reduce to that of computing the binding free energy of molecular complexes. A key step towards computing the binding free energy of two complexes is to find low energy “poses”, that is energetically favorable conformations of molecules with respect to each other. One application of this technique is to find low energy poses for protein-ligand interactions.

```python
```

Generates a list of low energy poses for molecular complex

**Parameters**

- **molecular_complexes** *(Tuple[str, str])* – A representation of a molecular complex. This tuple is (protein_file, ligand_file).

- **centroid** *(numpy.ndarray, optional (default None))* – The centroid to dock against. Is computed if not specified.

- **box_dims** *(numpy.ndarray, optional (default None))* – A numpy array of shape (3,) holding the size of the box to dock. If not specified is set to size of molecular complex plus 5 angstroms.

- **exhaustiveness** *(int, optional (default 10))* – Tells pose generator how exhaustive it should be with pose generation.

3.25. Docking
• **num_modes** (*int*, *optional (default 9)*) – Tells pose generator how many binding modes it should generate at each invocation.

• **num_pockets** (*int*, *optional (default None)*) – If specified, `self.pocket_finder` must be set. Will only generate poses for the first `num_pockets` returned by `self.pocket_finder`.

• **out_dir** (*str*, *optional (default None)*) – If specified, write generated poses to this directory.

• **generate_score** (*bool*, *optional (default False)*) – If `True`, the pose generator will return scores for complexes. This is used typically when invoking external docking programs that compute scores.

**Return type** A list of molecular complexes in energetically favorable poses.

```python
class VinaPoseGenerator(pocket_finder: Optional[deepchem.dock.binding_pocket.BindingPocketFinder] = None):

Uses Autodock Vina to generate binding poses.
This class uses Autodock Vina to make predictions of binding poses.

Example

```python
>> import deepchem as dc >> vpg = dc.dock.VinaPoseGenerator(pocket_finder=None) >> protein_file = '1jld_protein.pdb' >> ligand_file = '1jld_ligand.sdf' >> poses, scores = vpg.generate_poses( .. (protein_file, ligand_file), .. exhaustiveness=1, .. num_modes=1, .. out_dir=tmp, .. generate_scores=True)
``` 

Note: This class requires RDKit and vina to be installed. As on 9-March-22, Vina is not available on Windows. Hence, this utility is currently available only on Ubuntu and MacOS.
- **exhaustiveness** (*int, optional (default 10)*) – Tells Autodock Vina how exhaustive it should be with pose generation. A higher value of exhaustiveness implies more computation effort for the docking experiment.

- **num_modes** (*int, optional (default 9)*) – Tells Autodock Vina how many binding modes it should generate at each invocation.

- **num_pockets** (*int, optional (default None)*) – If specified, `self.pocket_finder` must be set. Will only generate poses for the first `num_pockets` returned by `self.pocket_finder`.

- **out_dir** (*str, optional*) – If specified, write generated poses to this directory.

- **generate_score** (*bool, optional (default False)*) – If `True`, the pose generator will return scores for complexes. This is used typically when invoking external docking programs that compute scores.

- **kwargs** – The kwargs - `cpu`, `min_rmsd`, `max_evals`, `energy_range` supported by VINA are as documented in https://autodock-vina.readthedocs.io/en/latest/vina.html

Returns Tuple of `(docked_poses, scores)` or `docked_poses`. `docked_poses` is a list of docked molecular complexes. Each entry in this list contains a `(protein_mol, ligand_mol)` pair of RDKit molecules. `scores` is a list of binding free energies predicted by Vina.

Return type Tuple[`docked_poses`, `scores`] or `docked_poses`

Raises `ValueError` –

class GninaPoseGenerator

Use GNINA to generate binding poses.

This class uses GNINA (a deep learning framework for molecular docking) to generate binding poses. It downloads the GNINA executable to DEEPCHEM_DATA_DIR (an environment variable you set) and invokes the executable to perform pose generation.

GNINA uses pre-trained convolutional neural network (CNN) scoring functions to rank binding poses based on learned representations of 3D protein-ligand interactions. It has been shown to outperform AutoDock Vina in virtual screening applications [1].

If you use the GNINA molecular docking engine, please cite the relevant papers: https://github.com/gnina/gnina#citation The primary citation for GNINA is [1].

References

“Protein–Ligand Scoring with Convolutional Neural Networks.” Journal of chemical information and modeling (2017).

Note:

- GNINA currently only works on Linux operating systems.
- GNINA requires CUDA >= 10.1 for fast CNN scoring.
- Almost all dependencies are included in the most compatible way possible, which reduces performance. Build GNINA from source for production use.

__init__()

Initialize GNINA pose generator.
generate_poses *(molecular_complex: Tuple[str, str], centroid: Optional[numpy.ndarray] = None,*

Generates the docked complex and outputs files for docked complex.

Parameters

- **molecular_complexes** *(Tuple[str, str]) – A representation of a molecular complex.*
 This tuple is (protein_file, ligand_file).

- **centroid** *(np.ndarray, optional (default None)) – The centroid to dock against.*
 Is computed if not specified.

- **box_dims** *(np.ndarray, optional (default None)) – A numpy array of shape (3,) holding the size of the box to dock. If not specified set to size of molecular complex plus 4 angstroms.*

- **exhaustiveness** *(int (default 8)) – Tells GNINA how exhaustive it should be with pose generation.*

- **num_modes** *(int (default 9)) – Tells GNINA how many binding modes it should generate at each invocation.*

- **out_dir** *(str, optional) – If specified, write generated poses to this directory.*

- **generate_scores** *(bool, optional (default True)) – If True, the pose generator will return scores for complexes. This is used typically when invoking external docking programs that compute scores.*

- **kwargs** – Any args supported by GNINA as documented https://github.com/gnina/gnina#usage

Returns

- **Tuple of (docked_poses, scores) or docked_poses. docked_poses is a list of docked molecular complexes. Each entry in this list contains a (protein_mol, ligand_mol) pair of RDKit molecules. scores is an array of binding affinities (kcal/mol), CNN pose scores, and CNN affinities predicted by GNINA.**

Return type

- **Tuple[docked_poses, scores] or docked_poses**

3.25.3 Docking

The dc.dock.docking module provides a generic docking implementation that depends on provide pose generation and pose scoring utilities to perform docking. This implementation is generic.

A generic molecular docking class

This class provides a docking engine which uses provided models for featurization, pose generation, and scoring. Most pieces of docking software are command line tools that are invoked from the shell. The goal of this class is to provide a python clean API for invoking molecular docking programmatically.

The implementation of this class is lightweight and generic. It’s expected that the majority of the heavy lifting will be done by pose generation and scoring classes that are provided to this class.

Builds model.

Parameters

• pose_generator (PoseGenerator) – The pose generator to use for this model

• featurizer (ComplexFeaturizer, optional (default None)) – Featurizer associated with scoring_model

• scoring_model (Model, optional (default None)) – Should make predictions on molecular complex.

Union[Generator[Tuple[Any, Any], None, None], Generator[Tuple[Tuple[Any, Any], float], None, None]]

Generic docking function.

This docking function uses this object’s featurizer, pose generator, and scoring model to make docking predictions. This function is written in generic style so

Parameters

• molecular_complex (Tuple[str, str]) – A representation of a molecular complex. This tuple is (protein_file, ligand_file).

• centroid (np.ndarray, optional (default None)) – The centroid to dock against. Is computed if not specified.

• box_dims (np.ndarray, optional (default None)) – A numpy array of shape (3,) holding the size of the box to dock. If not specified is set to size of molecular complex plus 5 angstroms.

• exhaustiveness (int, optional (default 10)) – Tells pose generator how exhaustive it should be with pose generation.

• num_modes (int, optional (default 9)) – Tells pose generator how many binding modes it should generate at each invocation.

• num_pockets (int, optional (default None)) – If specified, self.pocket_finder must be set. Will only generate poses for the first num_pockets returned by self.pocket_finder.

• out_dir (str, optional (default None)) – If specified, write generated poses to this directory.

• use_pose_generator_scores (bool, optional (default False)) – If True, ask pose generator to generate scores. This cannot be True if self.featurizer and self.scoring_model are set since those will be used to generate scores in that case.

Returns A generator. If use_pose_generator_scores==True or self.scoring_model is set, then will yield tuples (posed_complex, score). Else will yield posed_complex.

Return type Generator[Tuple[posed_complex, score]] or Generator[posed_complex]
3.25.4 Pose Scoring

This module contains some utilities for computing docking scoring functions directly in Python. For now, support for custom pose scoring is limited.

pairwise_distances

```python
def pairwise_distances(coords1: numpy.ndarray, coords2: numpy.ndarray) -> numpy.ndarray
```

Returns matrix of pairwise Euclidean distances.

Parameters

- `coords1` ([np.ndarray](numpy.ndarray)) – A numpy array of shape \((N, 3)\)
- `coords2` ([np.ndarray](numpy.ndarray)) – A numpy array of shape \((M, 3)\)

Returns

A \((N, M)\) array with pairwise distances.

Return type

`np.ndarray`

cutoff_filter

```python
def cutoff_filter(d: numpy.ndarray, x: numpy.ndarray, cutoff=8.0) -> numpy.ndarray
```

Applies a cutoff filter on pairwise distances

Parameters

- `d` ([np.ndarray](numpy.ndarray)) – Pairwise distances matrix. A numpy array of shape \((N, M)\)
- `x` ([np.ndarray](numpy.ndarray)) – Matrix of shape \((N, M)\)
- `cutoff` (float, optional (default 8)) – Cutoff for selection in Angstroms

Returns

A \((N, M)\) array with values where distance is too large thresholded to 0.

Return type

`np.ndarray`

vina_nonlinearity

```python
def vina_nonlinearity(c: numpy.ndarray, w: float, Nrot: int) -> numpy.ndarray
```

Computes non-linearity used in Vina.

Parameters

- `c` ([np.ndarray](numpy.ndarray)) – A numpy array of shape \((N, M)\)
- `w` (float) – Weighting term
- `Nrot` (int) – Number of rotatable bonds in this molecule

Returns

A \((N, M)\) array with activations under a nonlinearity.

Return type

`np.ndarray`

vina_repulsion

```python
def vina_repulsion(d: numpy.ndarray) -> numpy.ndarray
```

Computes Autodock Vina’s repulsion interaction term.

Parameters

- `d` ([np.ndarray](numpy.ndarray)) – A numpy array of shape \((N, M)\).

Returns

A \((N, M)\) array with repulsion terms.

Return type

`np.ndarray`

vina_hydrophobic

```python
def vina_hydrophobic(d: numpy.ndarray) -> numpy.ndarray
```

Computes Autodock Vina’s hydrophobic interaction term.

Here, \(d\) is the set of surface distances as defined in [1].

Parameters

- `d` ([np.ndarray](numpy.ndarray)) – A numpy array of shape \((N, M)\).

Returns

A \((N, M)\) array of hydrophobic interactions in a piecewise linear curve.

Return type

`np.ndarray`
References

vina_hbond(d: numpy.ndarray \rightarrow numpy.ndarray)

Computes Autodock Vina’s hydrogen bond interaction term.

Here, d is the set of surface distances as defined in [1].

Parameters d (np.ndarray) – A numpy array of shape (N, M).

Returns A (N, M) array of hydrophobic interactions in a piecewise linear curve.

Return type np.ndarray

References

vina_gaussian_first(d: numpy.ndarray \rightarrow numpy.ndarray)

Computes Autodock Vina’s first Gaussian interaction term.

Here, d is the set of surface distances as defined in [1].

Parameters d (np.ndarray) – A numpy array of shape (N, M).

Returns A (N, M) array of gaussian interaction terms.

Return type np.ndarray

References

vina_gaussian_second(d: numpy.ndarray \rightarrow numpy.ndarray)

Computes Autodock Vina’s second Gaussian interaction term.

Here, d is the set of surface distances as defined in [1].

Parameters d (np.ndarray) – A numpy array of shape (N, M).

Returns A (N, M) array of gaussian interaction terms.

Return type np.ndarray

References

vina_energy_term(coords1: numpy.ndarray, coords2: numpy.ndarray, weights: numpy.ndarray, wrot: float, Nrot: int) \rightarrow numpy.ndarray

Computes the Vina Energy function for two molecular conformations

Parameters

- coords1 (np.ndarray) – Molecular coordinates of shape $(N, 3)$
- coords2 (np.ndarray) – Molecular coordinates of shape $(M, 3)$
- weights (np.ndarray) – A numpy array of shape $(5,)$. The 5 values are weights for repulsion interaction term, hydrophobic interaction term, hydrogen bond interaction term, first Gaussian interaction term and second Gaussian interaction term.
- wrot (float) – The scaling factor for nonlinearity
- Nrot (int) – Number of rotatable bonds in this calculation

Returns A scalar value with free energy
3.26 Utilities

DeepChem has a broad collection of utility functions. Many of these maybe be of independent interest to users since they deal with some tricky aspects of processing scientific datatypes.

3.26.1 Data Utilities

Array Utilities

pad_array(x: numpy.ndarray, shape: Union[Tuple, int], fill: float = 0.0, both: bool = False) → numpy.ndarray
Pad an array with a fill value.

Parameters

• x (np.ndarray) – A numpy array.
• shape (Tuple or int) – Desired shape. If int, all dimensions are padded to that size.
• fill (float, optional (default 0.0)) – The padded value.
• both (bool, optional (default False)) – If True, split the padding on both sides of each axis. If False, padding is applied to the end of each axis.

Returns A padded numpy array

Return type np.ndarray

Data Directory

The DeepChem data directory is where downloaded MoleculeNet datasets are stored.

get_data_dir() → str
Get the DeepChem data directory.

Returns The default path to store DeepChem data. If you want to change this path, please set your own path to DEEPCHEM_DATA_DIR as an environment variable.

Return type str

URL Handling

download_url(url: str, dest_dir: str = '/tmp', name: Optional[str] = None)
Download a file to disk.

Parameters

• url (str) – The URL to download from
• dest_dir (str) – The directory to save the file in
• name (str) – The file name to save it as. If omitted, it will try to extract a file name from the URL
File Handling

untargz_file *(file: str, dest_dir: str = '/tmp', name: Optional[str] = None)*

Untar and unzip a .tar.gz file to disk.

Parameters

- **file** *(str)* – The filepath to decompress
- **dest_dir** *(str)* – The directory to save the file in
- **name** *(str)* – The file name to save it as. If omitted, it will use the file name

unzip_file *(file: str, dest_dir: str = '/tmp', name: Optional[str] = None)*

Unzip a .zip file to disk.

Parameters

- **file** *(str)* – The filepath to decompress
- **dest_dir** *(str)* – The directory to save the file in
- **name** *(str)* – The directory name to unzip it to. If omitted, it will use the file name

load_data *(input_files: List[str], shard_size: Optional[int] = None) → Iterator[Any]*

Loads data from files.

Parameters

- **input_files** *(List[str])* – List of filenames.
- **shard_size** *(int, default None)* – Size of shard to yield

Returns Iterator which iterates over provided files.

Return type Iterator[Any]

Notes

The supported file types are SDF, CSV and Pickle.

Load SDF file into dataframe.

Parameters

- **input_files** *(List[str])* – List of filenames
- **clean_mols** *(bool, default True)* – Whether to sanitize molecules.
- **tasks** *(List[str], default [])* – Each entry in tasks is treated as a property in the SDF file and is retrieved with `mol.GetProp(str(task))` where `mol` is the RDKit mol loaded from a given SDF entry.
- **shard_size** *(int, default None)* – The shard size to yield at one time.

Returns Generator which yields the dataframe which is the same shard size.

Return type Iterator[pd.DataFrame]
Notes

This function requires RDKit to be installed.

load_csv_files *(input_files: List[str], shard_size: Optional[int] = None) → Iterator[pandas.core.frame.DataFrame]*

Load data as pandas dataframe from CSV files.

Parameters

- **input_files** *(List[str])* – List of filenames
- **shard_size** *(int, default None)* – The shard size to yield at one time.

Returns Generator which yields the dataframe which is the same shard size.

Return type Iterator[pd.DataFrame]

load_json_files *(input_files: List[str], shard_size: Optional[int] = None) → Iterator[pandas.core.frame.DataFrame]*

Load data as pandas dataframe.

Parameters

- **input_files** *(List[str])* – List of json filenames.
- **shard_size** *(int, default None)* – Chunksize for reading json files.

Returns Generator which yields the dataframe which is the same shard size.

Return type Iterator[pd.DataFrame]

Notes

To load shards from a json file into a Pandas dataframe, the file must be originally saved with `df.to_json('filename.json', orient='records', lines=True)`

load_pickle_files *(input_files: List[str]) → Iterator[Any]*

Load dataset from pickle files.

Parameters **input_files** *(List[str])* – The list of filenames of pickle file. This function can load from gzipped pickle file like `XXXX.pkl.gz`.

Returns Generator which yields the objects which is loaded from each pickle file.

Return type Iterator[Any]

load_from_disk *(filename: str) → Any*

Load a dataset from file.

Parameters **filename** *(str)* – A filename you want to load data.

Returns A loaded object from file.

Return type Any

save_to_disk *(dataset: Any, filename: str, compress: int = 3)*

Save a dataset to file.

Parameters

- **dataset** *(str)* – A data saved
- **filename** *(str)* – Path to save data.
compress (*int, default 3*) – The compress option when dumping joblib file.

`load_dataset_from_disk(save_dir: str) -> Tuple[bool, Optional[Tuple[
 deepchem.data.datasets.DiskDataset,
 deepchem.data.datasets.DiskDataset,
 deepchem.data.datasets.DiskDataset]],
 List[transformers.Transformer]]`

Loads MoleculeNet train/valid/test/transformers from disk.

Expects that data was saved using `save_dataset_to_disk` below. Expects the following directory structure for `save_dir`:

```
  └── save_dir/
        └── train_dir/ | └── valid_dir/ | └── test_dir/ | └── transformers.pkl
```

Parameters

- `save_dir (str)` – Directory name to load datasets.

Returns

- `loaded (bool)` – Whether the load succeeded
- `all_dataset (Tuple[DiskDataset, DiskDataset, DiskDataset])` – The train, valid, test datasets
- `transformers (Transformer)` – The transformers used for this dataset

See also:

`save_dataset_to_disk`

`save_dataset_to_disk(save_dir: str, train: deepchem.data.datasets.DiskDataset, valid:
 deepchem.data.datasets.DiskDataset, test: deepchem.data.datasets.DiskDataset,
 transformers: List[transformers.Transformer])`

Utility used by MoleculeNet to save train/valid/test datasets.

This utility function saves a train/valid/test split of a dataset along with transformers in the same directory. The saved datasets will take the following structure: `save_dir`:

```
  └── save_dir/
        └── train_dir/ | └── valid_dir/ | └── test_dir/ | └── transformers.pkl
```

Parameters

- `save_dir (str)` – Directory name to save datasets to.
- `train (DiskDataset)` – Training dataset to save.
- `valid (DiskDataset)` – Validation dataset to save.
- `test (DiskDataset)` – Test dataset to save.
- `transformers (List[Transformer])` – List of transformers to save to disk.

See also:

`load_dataset_from_disk`
3.26.2 Molecular Utilities

```python
class ConformerGenerator(max_conformers: int = 1, rmsd_threshold: float = 0.5, force_field: str = 'uff', pool_multiplier: int = 10)
```

Generate molecule conformers.

Notes

Note that pruning is done _after_ minimization, which differs from the protocol described in the references\(^1\).

References

This class requires RDKit to be installed.

```python
def __init__(self, max_conformers: int = 1, rmsd_threshold: float = 0.5, force_field: str = 'uff', pool_multiplier: int = 10)
```

Parameters

- `max_conformers` (int, optional (default 1)) – Maximum number of conformers to generate (after pruning).
- `rmsd_threshold` (float, optional (default 0.5)) – RMSD threshold for pruning conformers. If None or negative, no pruning is performed.
- `force_field` (str, optional (default 'uff')) – Force field to use for conformer energy calculation and minimization. Options are 'uff', 'mmff94', and 'mmff94s'.
- `pool_multiplier` (int, optional (default 10)) – Factor to multiply by `max_conformers` to generate the initial conformer pool. Since conformers are pruned after energy minimization, increasing the size of the pool increases the chance of identifying `max_conformers` unique conformers.

```python
def generate_conformers(mol: Any) -> Any
```

Generate conformers for a molecule.

This function returns a copy of the original molecule with embedded conformers.

Parameters

- `mol` (rdkit.Chem.rdchem.Mol) – RDKit Mol object

Returns

- `mol` (rdkit.Chem.rdchem.Mol) – A new RDKit Mol object containing the chosen conformers, sorted by increasing energy.

Return type

rdkit.Chem.rdchem.Mol

```python
def embed_molecule(mol: Any) -> Any
```

Generate conformers, possibly with pruning.

Parameters

- `mol` (rdkit.Chem.rdchem.Mol) – RDKit Mol object

Returns

Return type `rdkit.Chem.rdchem.Mol`

get_molecule_force_field(`mol: Any, conf_id: Optional[int] = None, **kwargs`) → Any
Get a force field for a molecule.

Parameters

- `conf_id (int, optional)` – ID of the conformer to associate with the force field.
- `kwargs (dict, optional)` – Keyword arguments for force field constructor.

Returns `ff` – RDKit force field instance for a molecule.

Return type `rdkit.ForceField.rdForceField.ForceField`

minimize_conformers(`mol: Any`) → None
Minimize molecule conformers.

get_conformer_energies(`mol: Any`) → numpy.ndarray
Calculate conformer energies.

Returns `energies` – Minimized conformer energies.

Return type `np.ndarray`

prune_conformers(`mol: Any`) → Any
Prune conformers from a molecule using an RMSD threshold, starting with the lowest energy conformer.

Parameters `mol: rdkit.Chem.rdchem.Mol` – RDKit Mol object

Returns `new_mol` – A new rdkit.Chem.rdchem.Mol containing the chosen conformers, sorted by increasing energy.

Return type `rdkit.Chem.rdchem.Mol`

static get_conformer_rmsd(`mol: Any`) → numpy.ndarray
Calculate conformer-conformer RMSD.

Parameters `mol: rdkit.Chem.rdchem.Mol` – RDKit Mol object

Returns `rmsd` – A conformer-conformer RMSD value. The shape is `(NumConformers, NumConformers)`

Return type `np.ndarray`

class MoleculeLoadException(*args, **kwargs)

__init__(*args, **kwargs)

get_xyz_from_mol(`mol`) Extracts a numpy array of coordinates from a molecule.

Returns a `(N, 3)` numpy array of 3d coords of given rdkit molecule

Parameters `mol (rdkit.Molecule)` – Molecule to extract coordinates for

add_hydrogens_to_mol(mol, is_protein=False)

Add hydrogens to a molecule object

Parameters

• mol (Rdkit Mol) – Molecule to hydrogenate
• is_protein (bool, optional (default False)) – Whether this molecule is a protein.

Return type Rdkit Mol

Note: This function requires RDKit and PDBFixer to be installed.

compute_charges(mol)

Attempt to compute Gasteiger Charges on Mol

This also has the side effect of calculating charges on mol. The mol passed into this function has to already have been sanitized

Parameters mol (rdkit molecule) –

Return type No return since updates in place.

Note: This function requires RDKit to be installed.

load_molecule(molecule_file, add_hydrogens=True, calc_charges=True, sanitize=True, is_protein=False)

Converts molecule file to (xyz-coords, obmol object)

Given molecule_file, returns a tuple of xyz coords of molecule and an rdkit object representing that molecule in that order (xyz, rdkit_mol). This ordering convention is used in the code in a few places.

Parameters

• molecule_file (str) – filename for molecule
• add_hydrogens (bool, optional (default True)) – If True, add hydrogens via pdbfixer
• calc_charges (bool, optional (default True)) – If True, add charges via rdkit
• sanitize (bool, optional (default False)) – If True, sanitize molecules via rdkit
• is_protein (bool, optional (default False)) – If True, this molecule is loaded as a protein. This flag will affect some of the cleanup procedures applied.

Returns

• Tuple (xyz, mol) if file contains single molecule. Else returns a list of the tuples for the separate molecules in this list.

Note: This function requires RDKit to be installed.

write_molecule(mol, outfile, is_protein=False)

Write molecule to a file

This function writes a representation of the provided molecule to the specified outfile. Doesn’t return anything.

Parameters
• mol (rdkit Mol) – Molecule to write
• outfile (str) – Filename to write mol to
• is_protein (bool, optional) – Is this molecule a protein?

Note: This function requires RDKit to be installed.

Raises `ValueError` – if `outfile` isn’t of a supported format.

3.26.3 Molecular Fragment Utilities

It’s often convenient to manipulate subsets of a molecule. The `MolecularFragment` class aids in such manipulations.

```python
class MolecularFragment(atoms: Sequence[Any], coords: numpy.ndarray)

A class that represents a fragment of a molecule.

It’s often convenient to represent a fragment of a molecule. For example, if two molecules form a molecular
complex, it may be useful to create two fragments which represent the subsets of each molecule that’s close to
the other molecule (in the contact region).

Ideally, we’d be able to do this in RDKit direct, but manipulating molecular fragments doesn’t seem to be sup-
ported functionality.

**Examples**

```python
>>> import numpy as np
>>> from rdkit import Chem
>>> mol = Chem.MolFromSmiles("C")
>>> coords = np.array([[0.0, 0.0, 0.0]])
>>> atom = mol.GetAtoms()[0]
>>> fragment = MolecularFragment([atom], coords)
```

**__init__**(atoms: Sequence[Any], coords: numpy.ndarray)

Initialize this object.

**Parameters**

- atoms (Iterable[rdkit.Chem.rdchem.Atom]) – Each entry in this list should be a
  RDKit Atom.
- coords (np.ndarray) – Array of locations for atoms of shape (N, 3) where N ==
  len(atoms).

**GetAtoms** () → List[deepchem.utils.fragment_utils.AtomShim]

Returns the list of atoms

**Returns** list of atoms in this fragment.

**ReturnType** List[AtomShim]

**GetNumAtoms** () → int

Returns the number of atoms

**Returns** Number of atoms in this fragment.
Return type  int

`GetCoords()` → `numpy.ndarray`

Returns 3D coordinates for this fragment as numpy array.

**Returns**  A numpy array of shape \((N, 3)\) with coordinates for this fragment. Here, \(N\) is the number of atoms.

**Return type**  `np.ndarray`

class **AtomShim** (atomic_num: int, partial_charge: float, atom_coords: numpy.ndarray)

This is a shim object wrapping an atom.

We use this class instead of raw RDKit atoms since manipulating a large number of rdkit Atoms seems to result in segfaults. Wrapping the basic information in an AtomShim seems to avoid issues.

**__init__** (atomic_num: int, partial_charge: float, atom_coords: numpy.ndarray)

Initialize this object

**Parameters**

- **atomic_num** (int) – Atomic number for this atom.
- **partial_charge** (float) – The partial Gasteiger charge for this atom
- **atom_coords** (np.ndarray) – Of shape (3,) with the coordinates of this atom

`GetAtomicNum()` → int

Returns atomic number for this atom.

**Returns**  Atomic number for this atom.

**Return type**  int

`GetPartialCharge()` → float

Returns partial charge for this atom.

**Returns**  A partial Gasteiger charge for this atom.

**Return type**  float

`GetCoords()` → `numpy.ndarray`

Returns 3D coordinates for this atom as numpy array.

**Returns**  Numpy array of shape (3,) with coordinates for this atom.

**Return type**  `np.ndarray`


Strip the hydrogens from input molecule

**Parameters**

- **coords** (np.ndarray) – The coords must be of shape (N, 3) and correspond to coordinates of mol.
- **mol** (rdkit.Chem.rdchem.Mol or MolecularFragment) – The molecule to strip

**Returns**  A tuple of (coords, mol_frag) where coords is a numpy array of coordinates with hydrogen coordinates. mol_frag is a MolecularFragment.

**Return type**  Tuple[np.ndarray, MolecularFragment]
This function requires RDKit to be installed.

merge_molecular_fragments(molecules: List[deepchem.utils.fragment_utils.MolecularFragment]) → Optional[deepchem.utils.fragment_utils.MolecularFragment]

Helper method to merge two molecular fragments.

Parameters

molecules (List[MolecularFragment]) – List of MolecularFragment objects.

Returns

Returns a merged MolecularFragment

Return type

Optional[MolecularFragment]

get_contact_atom_indices(fragments: List[Tuple[numpy.ndarray, Any]], cutoff: float = 4.5) → List[List[int]]

Compute that atoms close to contact region.

Molecular complexes can get very large. This can make it unwieldy to compute functions on them. To improve memory usage, it can be very useful to trim out atoms that aren’t close to contact regions. This function computes pairwise distances between all pairs of molecules in the molecular complex. If an atom is within cutoff distance of any atom on another molecule in the complex, it is regarded as a contact atom. Otherwise it is trimmed.

Parameters

• fragments (List[Tuple[np.ndarray, rdkit.Chem.rdchem.Mol]]) – As returned by rdkit_utils.load_complex, a list of tuples of (coords, mol) where coords is a (N_atoms, 3) array and mol is the rdkit molecule object.

• cutoff (float, optional (default 4.5)) – The cutoff distance in angstroms.

Returns

A list of length len(molecular_complex). Each entry in this list is a list of atom indices from that molecule which should be kept, in sorted order.

Return type

List[List[int]]

reduce_molecular_complex_to_contacts(fragments: List[Tuple[numpy.ndarray, Any]], cutoff: float = 4.5) → List[Tuple[numpy.ndarray, MolecularFragment]]

Reduce a molecular complex to only those atoms near a contact.

Molecular complexes can get very large. This can make it unwieldy to compute functions on them. To improve memory usage, it can be very useful to trim out atoms that aren’t close to contact regions. This function takes in a molecular complex and returns a new molecular complex representation that contains only contact atoms. The contact atoms are computed by calling get_contact_atom_indices under the hood.

Parameters

• fragments (List[Tuple[np.ndarray, rdkit.Chem.rdchem.Mol]]) – As returned by rdkit_utils.load_complex, a list of tuples of (coords, mol) where coords is a (N_atoms, 3) array and mol is the rdkit molecule object.

• cutoff (float) – The cutoff distance in angstroms.

Returns

A list of length len(molecular_complex). Each entry in this list is a tuple of (coords, MolecularFragment). The coords is stripped down to (N_contact_atoms, 3) where N_contact_atoms is the number of contact atoms for this complex. MolecularFragment is used since it’s tricky to make a RDKit sub-molecule.

Return type

List[Tuple[np.ndarray, MolecularFragment]]
3.26.4 Coordinate Box Utilities

```python
class CoordinateBox(x_range: Tuple[Union[float, float]], y_range: Tuple[Union[float, float]], z_range: Tuple[Union[float, float]])
 A coordinate box that represents a block in space.

 Molecular complexes are typically represented with atoms as coordinate points. Each complex is naturally associated with a number of different box regions. For example, the bounding box is a box that contains all atoms in the molecular complex. A binding pocket box is a box that focuses in on a binding region of a protein to a ligand. A interface box is the region in which two proteins have a bulk interaction.

 The CoordinateBox class is designed to represent such regions of space. It consists of the coordinates of the box, and the collection of atoms that live in this box alongside their coordinates.

 __init__(x_range: Tuple[Union[float, float]], y_range: Tuple[Union[float, float]], z_range: Tuple[Union[float, float]])
 Initialize this box.

 Parameters
 • x_range (Tuple[Union[float, float]]) – A tuple of (x_min, x_max) with max and min x-coordinates.
 • y_range (Tuple[Union[float, float]]) – A tuple of (y_min, y_max) with max and min y-coordinates.
 • z_range (Tuple[Union[float, float]]) – A tuple of (z_min, z_max) with max and min z-coordinates.

 __contains__(point: Sequence[Union[float, float]]) → bool
 Check whether a point is in this box.

 Parameters
 point (Sequence[Union[float, float]]) – 3-tuple or list of length 3 or np.ndarray of shape (3,).
 The (x, y, z) coordinates of a point in space.

 Returns
 True if other is contained in this box.

 Return type
 bool

 center() → Tuple[Union[float, float, float]]
 Computes the center of this box.

 Returns
 (x, y, z) the coordinates of the center of the box.

 Return type
 Tuple[Union[float, float, float]]

Examples

```3
```3
>>> box = CoordinateBox((0, 1), (0, 1), (0, 1))
>>> box.center()
(0.5, 0.5, 0.5)

volume() → float
 Computes and returns the volume of this box.

 Returns
 The volume of this box. Can be 0 if box is empty

 Return type
 float
Examples

```python
>>> box = CoordinateBox((0, 1), (0, 1), (0, 1))
>>> box.volume()
1
```

`contains` *(other: deepchem.utils.coordinate_box_utils.CoordinateBox) → bool*
Test whether this box contains another.
This method checks whether other is contained in this box.

Parameters
other *(CoordinateBox)* – The box to check is contained in this box.

Returns
True if other is contained in this box.

Return type
bool

Raises
`ValueError`

`intersect_interval` *(interval1: Tuple[float, float], interval2: Tuple[float, float]) → Tuple[float, float]*
Computes the intersection of two intervals.

Parameters

- interval1 *(Tuple[float, float])* – Should be \((x_1, x_1)\)
- interval2 *(Tuple[float, float])* – Should be \((x_2, x_2)\)

Returns
x_intersect – Should be the intersection. If the intersection is empty returns \((0, 0)\) to represent the empty set. Otherwise is \((\max(x_1, x_2), \min(x_1, x_2))\).

Return type
Tuple[float, float]

`union` *(box1: deepchem.utils.coordinate_box_utils.CoordinateBox, box2: deepchem.utils.coordinate_box_utils.CoordinateBox) → deepchem.utils.coordinate_box_utils.CoordinateBox*
Merges provided boxes to find the smallest union box.
This method merges the two provided boxes.

Parameters

- box1 *(CoordinateBox)* – First box to merge in
- box2 *(CoordinateBox)* – Second box to merge into this box

Returns
Smallest CoordinateBox that contains both box1 and box2

Return type
`CoordinateBox`

`merge_overlapping_boxes` *(boxes: List[deepchem.utils.coordinate_box_utils.CoordinateBox], threshold: float = 0.8) → List[deepchem.utils.coordinate_box_utils.CoordinateBox]*
Merge boxes which have an overlap greater than threshold.

Parameters

- boxes *(List[CoordinateBox])* – A list of CoordinateBox objects.
- threshold *(float, default 0.8)* – The volume fraction of the boxes that must overlap for them to be merged together.

Returns
List[CoordinateBox] of merged boxes. This list will have length less than or equal to the length of boxes.
Return type List[CoordinateBox]

get_face_boxes(coords: numpy.ndarray, pad: float = 5.0) →
List[deepchem.utils.coordinate_box_utils.CoordinateBox]

For each face of the convex hull, compute a coordinate box around it.

The convex hull of a macromolecule will have a series of triangular faces. For each such triangular face, we
construct a bounding box around this triangle. Think of this box as attempting to capture some binding interaction
region whose exterior is controlled by the box. Note that this box will likely be a crude approximation, but the
advantage of this technique is that it only uses simple geometry to provide some basic biological insight into the
molecule at hand.

The pad parameter is used to control the amount of padding around the face to be used for the coordinate box.

Parameters

- coords (np.ndarray) – A numpy array of shape (N, 3). The coordinates of a molecule.
- pad (float, optional (default 5.0)) – The number of angstroms to pad.

Returns boxes – List of CoordinateBox

Return type List[CoordinateBox]

Examples

```python
>>> coords = np.array([[0, 0, 0], [1, 0, 0], [0, 1, 0], [0, 0, 1]])
>>> boxes = get_face_boxes(coords, pad=5)
```

3.26.5 Evaluation Utils

class Evaluator(model, dataset: deepchem.data.datasets.Dataset, transformers: List[transformers.Transformer])

Class that evaluates a model on a given dataset.

The evaluator class is used to evaluate a dc.models.Model class on a given dc.data.Dataset object. The evaluator
is aware of dc.trans.Transformer objects so will automatically undo any transformations which have been applied.

Examples

Evaluators allow for a model to be evaluated directly on a Metric for sklearn. Let’s do a bit of setup constructing
our dataset and model.

```python
>>> import deepchem as dc
>>> import numpy as np
>>> X = np.random.rand(10, 5)
>>> y = np.random.rand(10, 1)
>>> dataset = dc.data.NumpyDataset(X, y)
>>> model = dc.models.MultitaskRegressor(1, 5)
>>> transformers = []

Then you can evaluate this model as follows >>> import sklearn >>> evaluator = Evaluator(model, dataset, transformers) >>> multitask_scores = evaluator.compute_model_performance( ... sklearn.metrics.mean_absolute_error)

Evaluators can also be used with dc.metrics.Metric objects as well in case you want to customize your metric
further.
```python
>>> evaluator = Evaluator(model, dataset, transformers)
>>> metric = dc.metrics.Metric(dc.metrics.mae_score)
>>> multitask_scores = evaluator.compute_model_performance(metric)
```

### `_init_` *(model, dataset: deepchem.data.datasets.Dataset, transformers: List[transformers.Transformer]*)

Initialize this evaluator

**Parameters**

- **model** *(Model)* – Model to evaluate. Note that this must be a regression or classification model and not a generative model.
- **dataset** *(Dataset)* – Dataset object to evaluate *model* on.
- **transformers** *(List[Transformer]*) – List of *dc.trans.Transformer* objects. These transformations must have been applied to *dataset* previously. The dataset will be untransformed for metric evaluation.

### `output_statistics`(scores: Dict[str, float], stats_out: str)

Write computed stats to file.

**Parameters**

- **scores** *(dict)* – Dictionary mapping names of metrics to scores.
- **stats_out** *(str)* – Name of file to write scores to.

### `output_predictions`(y_preds: numpy.ndarray, csv_out: str)

Writes predictions to file.

Writes predictions made on *self.dataset* to a specified file on disk. *self.dataset.ids* are used to format predictions.

**Parameters**

- **y_preds** *(np.ndarray)* – Predictions to output
- **csv_out** *(str)* – Name of file to write predictions to.


Computes statistics of model on test data and saves results to csv.

**Parameters**

- **metrics** *(dc.metrics.Metric/list[dc.metrics.Metric]/function)* – The set of metrics provided. This class attempts to do some intelligent handling of input. If a single *dc.metrics.Metric* object is provided or a list is provided, it will evaluate *self.model* on these metrics. If a function is provided, it is assumed to be a metric function that this method will attempt to wrap in a *dc.metrics.Metric* object. A metric function must accept two arguments, *y_true, y_pred* both of which are *np.ndarray* objects and return a floating point score. The metric function may also accept a keyword argument *sample_weight* to account for per-sample weights.
- **csv_out** *(str, optional (DEPRECATED))* – Filename to write CSV of model predictions.
- **stats_out** *(str, optional (DEPRECATED))* – Filename to write computed statistics.
- **per_task_metrics** *(bool, optional)* – If true, return computed metric for each task on multitask dataset.
- **use_sample_weights** *(bool, optional (default False))* – If set, use per-sample weights \( w \).
- **n_classes** *(int, optional (default None))* – If specified, will use \( n\_classes \) as the number of unique classes in \( self\_dataset \). Note that this argument will be ignored for regression metrics.

**Returns**

- **multitask_scores** *(dict)* – Dictionary mapping names of metrics to metric scores.
- **all_task_scores** *(dict, optional)* – If \( per\_task\_metrics == True \), then returns a second dictionary of scores for each task separately.


Evaluate models on a stream of data.

This class is a partner class to \( Evaluator \). Instead of operating over datasets this class operates over a generator which yields batches of data to feed into provided model.

**Examples**

```python
>>> import deepchem as dc
>>> import numpy as np
>>> X = np.random.rand(10, 5)
>>> y = np.random.rand(10, 1)
>>> dataset = dc.data.NumpyDataset(X, y)
>>> model = dc.models.MultitaskRegressor(1, 5)
>>> generator = model.default_generator(dataset, pad_batches=False)
>>> transformers = []

Then you can evaluate this model as follows

```python
>>> evaluator = GeneratorEvaluator(model, generator, transformers)
>>> multitask_scores = evaluator.compute_model_performance(...
...    sklearn.metrics.mean_absolute_error)
```

Evaluators can also be used with \(dc_metrics_Metric \) objects as well in case you want to customize your metric further. (Note that a given generator can only be used once so we have to redefine the generator here.)

```python
>>> generator = model.default_generator(dataset, pad_batches=False)
>>> evaluator = GeneratorEvaluator(model, generator, transformers)
>>> metric = dc.metrics.Metric(dc.metrics.mae_score)
>>> multitask_scores = evaluator.compute_model_performance(metric)
```


Parameters

- **model** *(Model)* – Model to evaluate.
• **generator** ([generator]) – Generator which yields batches to feed into the model. For a KerasModel, it should be a tuple of the form (inputs, labels, weights). The “correct” way to create this generator is to use `model.default_generator` as shown in the example above.

• **transformers** ([List][Transformer]) – Transformers to “undo” when applied to the models outputs

• **labels** ([list of Layer]) – layers which are keys in the generator to compare to outputs

• **weights** ([list of Layer]) – layers which are keys in the generator for weight matrices

Computes statistics of model on test data and saves results to csv.

Parameters

• **metrics** (dc.metrics.Metric/list[dc.metrics.Metric]/function) – The set of metrics provided. This class attempts to do some intelligent handling of input. If a single `dc.metrics.Metric` object is provided or a list is provided, it will evaluate `self.model` on these metrics. If a function is provided, it is assumed to be a metric function that this method will attempt to wrap in a `dc.metrics.Metric` object. A metric function must accept two arguments, `y_true`, `y_pred` both of which are `np.ndarray` objects and return a floating point score.

• **per_task_metrics** (bool, optional) – If true, return computed metric for each task on multitask dataset.

• **use_sample_weights** (bool, optional (default False)) – If set, use per-sample weights `w`.

• **n_classes** (int, optional (default None)) – If specified, will assume that all `metrics` are classification metrics and will use `n_classes` as the number of unique classes in `self.dataset`.

Returns

• **multitask_scores** (dict) – Dictionary mapping names of metrics to metric scores.

• **all_task_scores** (dict, optional) – If `per_task_metrics == True`, then returns a second dictionary of scores for each task separately.

relative_difference(x: numpy.ndarray, y: numpy.ndarray) → numpy.ndarray

Compute the relative difference between `x` and `y`.

The two argument arrays must have the same shape.

Parameters

• **x** (np.ndarray) – First input array

• **y** (np.ndarray) – Second input array

Returns `z` – We will have `z == np.abs(x-y) / np.abs(max(x, y))`.

Return type np.ndarray
3.26.6 Genomic Utilities

seq_one_hot_encode *(sequences, letters: str = 'ATCGN') → numpy.ndarray*

One hot encodes list of genomic sequences.

Sequences encoded have shape (N_sequences, N_letters, sequence_length, 1). These sequences will be processed as images with one color channel.

Parameters

- **sequences** *(np.ndarray or Iterator[Bio.SeqRecord])* – Iterable object of genetic sequences
- **letters** *(str, optional (default "ATCGN"))* – String with the set of possible letters in the sequences.

Raises ValueError: If sequences are of different lengths.

Returns A numpy array of shape *(N_sequences, N_letters, sequence_length, 1)*.

Return type np.ndarray

encode_bio_sequence *(fname: str, file_type: str = 'fasta', letters: str = 'ATCGN') → numpy.ndarray*

Loads a sequence file and returns an array of one-hot sequences.

Parameters

- **fname** *(str)* – Filename of fasta file.
- **file_type** *(str, optional (default "fasta")*) – The type of file encoding to process, e.g. fasta or fastq, this is passed to Biopython.SeqIO.parse.
- **letters** *(str, optional (default "ATCGN"))* – The set of letters that the sequences consist of, e.g. ATCG.

Returns A numpy array of shape *(N_sequences, N_letters, sequence_length, 1)*.

Return type np.ndarray

Notes

This function requires BioPython to be installed.

hhblits *(dataset_path, database=None, data_dir=None, evalue=0.001, num_iterations=2, num_threads=4)*

Run hhblits multisequence alignment search on a dataset. This function requires the hhblits binary to be installed and in the path. This function also requires a Hidden Markov Model reference database to be provided. Both can be found here: https://github.com/soedinglab/hh-suite

The database should be in the deepchem data directory or specified as an argument. To set the deepchem data directory, run this command in your environment:

```
export DEEPCHEM_DATA_DIR=<path to data directory>
```

Parameters

- **dataset_path** *(str)* – Path to single sequence or multiple sequence alignment (MSA) dataset. Results will be saved in this directory.
- **database** *(str)* – Name of database to search against. Note this is not the path, but the name of the database.
- **data_dir** *(str)* – Path to database directory.
deepchem, Release 2.6.1.dev

- `evalue (float)` – E-value cutoff.
- `num_iterations (int)` – Number of iterations.
- `num_threads (int)` – Number of threads.

Returns

- `results (.a3m file)` – MSA file containing the results of the hhblits search.
- `results (.hhr file)` – hhsuite results file containing the results of the hhblits search.

Examples

```python
>>> from deepchem.utils.sequence_utils import hhblits
>>> msa_path = hhblits('test/data/example.fasta', database='example_db', data_dir='test/data/', evalue=0.001, num_iterations=2, num_threads=4)
```

`hhsearch (dataset_path, database=None, data_dir=None, evalue=0.001, num_iterations=2, num_threads=4)`

Run hhsearch multisequence alignment search on a dataset. This function requires the hhblits binary to be installed and in the path. This function also requires a Hidden Markov Model reference database to be provided. Both can be found here: https://github.com/soedinglab/hh-suite

The database should be in the deepchem data directory or specified as an argument. To set the deepchem data directory, run this command in your environment:

 export DEEPCHEM_DATA_DIR=<path to data directory>

Examples

```python
>>> from deepchem.utils.sequence_utils import hhsearch
>>> msa_path = hhsearch('test/data/example.fasta', database='example_db', data_dir='test/data/', evalue=0.001, num_iterations=2, num_threads=4)
```

Parameters

- `dataset_path (str)` – Path to multiple sequence alignment dataset. Results will be saved in this directory.
- `database (str)` – Name of database to search against. Note this is not the path, but the name of the database.
- `data_dir (str)` – Path to database directory.
- `evalue (float)` – E-value cutoff.
- `num_iterations (int)` – Number of iterations.
- `num_threads (int)` – Number of threads.

Returns

- `results (.a3m file)` – MSA file containing the results of the hhblits search.
- `results (.hhr file)` – hhsuite results file containing the results of the hhblits search.

`MSA_to_dataset (msa_path)`

Convert a multiple sequence alignment to a NumpyDataset object.
3.26.7 Geometry Utilities

unit_vector *(vector: numpy.ndarray) → numpy.ndarray*

Returns the unit vector of the vector.

Parameters
- **vector (np.ndarray)** – A numpy array of shape (3,), where 3 is (x,y,z).

Returns
A numpy array of shape (3,). The unit vector of the input vector.

Return type
np.ndarray

angle_between *(vector_i: numpy.ndarray, vector_j: numpy.ndarray) → float*

Returns the angle in radians between vectors “vector_i” and “vector_j”

Note that this function always returns the smaller of the two angles between the vectors (value between 0 and pi).

Parameters
- **vector_i (np.ndarray)** – A numpy array of shape (3,), where 3 is (x,y,z).
- **vector_j (np.ndarray)** – A numpy array of shape (3,), where 3 is (x,y,z).

Returns
The angle in radians between the two vectors.

Return type
np.ndarray

Examples

```python
>>> print("%0.06f" % angle_between((1, 0, 0), (0, 1, 0)))
1.570796
>>> print("%0.06f" % angle_between((1, 0, 0), (1, 0, 0)))
0.000000
>>> print("%0.06f" % angle_between((1, 0, 0), (-1, 0, 0)))
3.141593
```

generate_random_unit_vector() → numpy.ndarray

Generate a random unit vector on the sphere S^2.

Citation: http://mathworld.wolfram.com/SpherePointPicking.html

Pseudocode:

- a. Choose random theta element $[0, 2\cdot\pi]$
- b. Choose random z element $[-1, 1]$
- c. Compute output vector u: $(x,y,z) = (\sqrt{1-z^2}\cdot\cos(\theta), \sqrt{1-z^2}\cdot\sin(\theta), z)$

Returns
u – A numpy array of shape (3,). u is an unit vector

Return type
np.ndarray

generate_random_rotation_matrix() → numpy.ndarray

Generates a random rotation matrix.

1. Generate a random unit vector u, randomly sampled from the unit sphere (see function generate_random_unit_vector() for details)
2. Generate a second random unit vector v
a. If absolute value of $u \cdot v > 0.99$, repeat. (This is important for numerical stability. Intuition: we want them to be as linearly independent as possible or else the orthogonalized version of v will be much shorter in magnitude compared to u. I assume in Stack they took this from Gram-Schmidt orthogonalization?)

b. $v'' = v - (u \cdot v)u$, i.e. subtract out the component of v that’s in u’s direction

c. normalize v'' (this isn’t in Stack but I assume it must be done)

3. find $w = u \times v''$

4. u, v'', and w will form the columns of a rotation matrix, R. The intuition is that u, v'' and w are, respectively, what the standard basis vectors $e_1, e_2,$ and e_3 will be mapped to under the transformation.

Returns R – A numpy array of shape $(3, 3)$. R is a rotation matrix.

Return type np.ndarray

is_angle_within_cutoff(vector_i: numpy.ndarray, vector_j: numpy.ndarray, angle_cutoff: float) → bool

A utility function to compute whether two vectors are within a cutoff from 180 degrees apart.

Parameters
- **vector_i** (np.ndarray) – A numpy array of shape $(3,)$, where 3 is (x,y,z).
- **vector_j** (np.ndarray) – A numpy array of shape $(3,)$, where 3 is (x,y,z).
- **cutoff** (float) – The deviation from 180 (in degrees)

Returns Whether two vectors are within a cutoff from 180 degrees apart

Return type bool

3.26.8 Hash Function Utilities

hash_ecfp(ecfp: str, size: int = 1024) → int

Returns an int \lt size representing given ECFP fragment.

Input must be a string. This utility function is used for various ECFP based fingerprints.

Parameters
- **ecfp** (str) – String to hash. Usually an ECFP fragment.
- **size** (int, optional (default 1024)) – Hash to an int in range $[0, size)$

Returns ecfp_hash – An int \lt size representing given ECFP fragment

Return type int

hash_ecfp_pair(ecfp_pair: Tuple[str, str], size: int = 1024) → int

Returns an int \lt size representing that ECFP pair.

Input must be a tuple of strings. This utility is primarily used for spatial contact featurizers. For example, if a protein and ligand have close contact region, the first string could be the protein’s fragment and the second the ligand’s fragment. The pair could be hashed together to achieve one hash value for this contact region.

Parameters
- **ecfp_pair** (Tuple[str, str]) – Pair of ECFP fragment strings
- **size** (int, optional (default 1024)) – Hash to an int in range $[0, size)$

Returns ecfp_hash – An int \lt size representing given ECFP pair.
Return type int

vectorize(hash_function: Callable[[Any, int, int], feature_dict: Optional[Dict[int, str]] = None, size: int = 1024, feature_list: Optional[List] = None) -> numpy.ndarray

Helper function to vectorize a spatial description from a hash.

Hash functions are used to perform spatial featurizations in DeepChem. However, it’s necessary to convert backwards from the hash function to feature vectors. This function aids in this conversion procedure. It creates a vector of zeros of length size. It then loops through feature_dict, uses hash_function to hash the stored value to an integer in range [0, size) and bumps that index.

Parameters

- **hash_function** (Function, Callable[[str, int], int]) – Should accept two arguments, feature, and size and return a hashed integer. Here feature is the item to hash, and size is an int. For example, if size=1024, then hashed values must fall in range [0, 1024).

- **feature_dict** (Dict, optional (default None)) – Maps unique keys to features computed.

- **size** (int (default 1024)) – Length of generated bit vector

- **feature_list** (List, optional (default None)) – List of features.

Returns feature_vector – A numpy array of shape (size,)

Return type np.ndarray

3.2.6.9 Voxel Utils

convert_atom_to_voxel(coordinates: numpy.ndarray, atom_index: int, box_width: float, voxel_width: float) -> numpy.ndarray

Converts atom coordinates to an i,j,k grid index.

This function offsets molecular atom coordinates by (box_width/2, box_width/2, box_width/2) and then divides by voxel_width to compute the voxel indices.

Parameters

- **coordinates** (np.ndarray) – Array with coordinates of all atoms in the molecule, shape (N, 3).

- **atom_index** (int) – Index of an atom in the molecule.

- **box_width** (float) – Size of the box in Angstroms.

- **voxel_width** (float) – Size of a voxel in Angstroms

Returns indices – A 1D numpy array of length 3 with [i, j, k], the voxel coordinates of specified atom.

Return type np.ndarray

convert_atom_pair_to_voxel(coordinates_tuple: Tuple[numpy.ndarray, numpy.ndarray], atom_index_pair: Tuple[int, int], box_width: float, voxel_width: float) -> numpy.ndarray

Converts a pair of atoms to i,j,k grid indexes.

Parameters

- **coordinates_tuple** (Tuple[np.ndarray, np.ndarray]) – A tuple containing two molecular coordinate arrays of shapes (N, 3) and (M, 3).
• **atom_index_pair (Tuple[int, int])** – A tuple of indices for the atoms in the two molecules.
• **box_width (float)** – Size of the box in Angstroms.
• **voxel_width (float)** – Size of a voxel in Angstroms

Returns indices_list – A numpy array of shape (2, 3), where 3 is \([i, j, k]\) of the voxel coordinates of specified atom.

Return type np.ndarray

```python
voxelize(get_voxels: Callable[..., Any], coordinates: Any, box_width: float = 16.0, voxel_width: float = 1.0, hash_function: Optional[Callable[..., Any]] = None, feature_dict: Optional[Dict[Any, Any]] = None, feature_list: Optional[List[Union[int, Tuple[int]]]] = None, nb_channel: int = 16, dtype: str = 'int') → numpy.ndarray
```

Helper function to voxelize inputs.

This helper function helps convert a hash function which specifies spatial features of a molecular complex into a voxel tensor. This utility is used by various featurizers that generate voxel grids.

Parameters

• **get_voxels (Function)** – Function that voxelize inputs
• **coordinates (Any)** – Contains the 3D coordinates of a molecular system. This should have whatever type get_voxels() expects as its first argument.
• **box_width (float, optional (default 16.0))** – Size of a box in which voxel features are calculated. Box is centered on a ligand centroid.
• **voxel_width (float, optional (default 1.0))** – Size of a 3D voxel in a grid in Angstroms.
• **hash_function (Function)** – Used to map feature choices to voxel channels.
• **feature_dict (Dict, optional (default None))** – Keys are atom indices or tuples of atom indices, the values are computed features. If hash_function is not None, then the values are hashed using the hash function into \([0, nb_channels]\) and this channel at the voxel for the given key is incremented by 1 for each dictionary entry. If hash_function is None, then the value must be a vector of size \((n_channels,)\) which is added to the existing channel values at that voxel grid.
• **feature_list (List, optional (default None))** – List of atom indices or tuples of atom indices. This can only be used if nb_channel==1. Increments the voxels corresponding to these indices by 1 for each entry.
• **nb_channel (int, , optional (default 16))** – The number of feature channels computed per voxel. Should be a power of 2.
• **dtype (str (‘int’ or ‘float’), optional (default ‘int’))** – The type of the nump.ndarray created to hold features.

Returns feature_tensor – The voxel of the input with the shape \((vxels_per_edge, vwels_per_edge, nb_channel)\).

Return type np.ndarray
3.26.10 Graph Convolution Utilities

one_hot_encode(val: Union[int, str], allowable_set: Union[List[str], List[int]], include_unknown_set: bool = False) → List[float]

One hot encoder for elements of a provided set.

Examples

```python
>>> one_hot_encode("a", ["a", "b", "c"])
[1.0, 0.0, 0.0]
>>> one_hot_encode(2, [0, 1, 2])
[0.0, 0.0, 1.0]
>>> one_hot_encode(3, [0, 1, 2])
[0.0, 0.0, 0.0]
>>> one_hot_encode(3, [0, 1, 2], True)
[0.0, 0.0, 1.0]
```

Parameters

- **val**(int or str) – The value must be present in allowable_set.
- **allowable_set**(List[int] or List[str]) – List of allowable quantities.
- **include_unknown_set**(bool, default False) – If true, the index of all values not in allowable_set is len(allowable_set).

Returns An one-hot vector of val. If include_unknown_set is False, the length is len(allowable_set). If include_unknown_set is True, the length is len(allowable_set) + 1.

Return type List[float]

Raises ValueError – If include_unknown_set is False and val is not in allowable_set.

Get an one-hot feature of an atom type.

Parameters

- **atom**(rdkit.Chem.rdchem.Atom) – RDKit atom object
- **include_unknown_set**(bool, default True) – If true, the index of all atom not in allowable_set is len(allowable_set).

Returns An one-hot vector of atom types. If include_unknown_set is False, the length is len(allowable_set). If include_unknown_set is True, the length is len(allowable_set) + 1.

Return type List[float]

Raises ValueError – If include_unknown_set is False and val is not in allowable_set.

construct_hydrogen_bonding_info(mol: Any) → List[Tuple[int, str]]

Construct hydrogen bonding infos about a molecule.

Parameters mol**(rdkit.Chem.rdchem.Mol) – RDKit mol object

Returns A list of tuple (atom_index, hydrogen_bonding_type). The hydrogen_bonding_type value is “Acceptor” or “Donor”.

468 Chapter 3. About Us
Return type List[Tuple[int, str]]

get_atom_hydrogen_bonding_one_hot(atom: Any, hydrogen_bonding: List[Tuple[int, str]]) → List[float]
Get an one-hot feat about whether an atom accepts electrons or donates electrons.

Parameters
• atom (rdkit.Chem.rdchem.Atom) – RDKit atom object
• hydrogen_bonding (List[Tuple[int, str]]) – The return value of construct_hydrogen_bonding_info. The value is a list of tuple (atom_index, hydrogen_bonding) like (1, “Acceptor”).

Returns A one-hot vector of the ring size type. The first element indicates “Donor”, and the second element indicates “Acceptor”.

Return type List[float]

get_atom_is_in_aromatic_one_hot(atomic: Any) → List[float]
Get ans one-hot feature about whether an atom is in aromatic system or not.

Parameters atom (rdkit.Chem.rdchem.Atom) – RDKit atom object

Returns A vector of whether an atom is in aromatic system or not.

Return type List[float]

get_atom_hybridization_one_hot(atom: Any, allowable_set: List[str] = ['SP', 'SP2', 'SP3'], include_unknown_set: bool = False) → List[float]
Get an one-hot feature of hybridization type.

Parameters
• atom (rdkit.Chem.rdchem.Atom) – RDKit atom object
• allowable_set (List[str]) – The hybridization types to consider. The default set is ['SP', 'SP2', 'SP3']
• include_unknown_set (bool, default False) – If true, the index of all types not in allowable_set is len(allowable_set).

Returns An one-hot vector of the hybridization type. If include_unknown_set is False, the length is len(allowable_set). If include_unknown_set is True, the length is len(allowable_set) + 1.

Return type List[float]

get_atom_total_num_Hs_one_hot(atom: Any, allowable_set: List[int] = [0, 1, 2, 3, 4], include_unknown_set: bool = True) → List[float]
Get an one-hot feature of the number of hydrogens which an atom has.

Parameters
• atom (rdkit.Chem.rdchem.Atom) – RDKit atom object
• allowable_set (List[int]) – The number of hydrogens to consider. The default set is [0, 1, 2, 3, 4]
• include_unknown_set (bool, default True) – If true, the index of all types not in allowable_set is len(allowable_set).

Returns A one-hot vector of the number of hydrogens which an atom has. If include_unknown_set is False, the length is len(allowable_set). If include_unknown_set is True, the length is len(allowable_set) + 1.

Return type List[float]
get_atom_chirality_one_hot *(atom: Any) → List[float]*

Get an one-hot feature about an atom chirality type.

- **Parameters**
 - atom *(rdkit.Chem.rdchem.Atom)* – RDKit atom object
- **Returns**
 - A one-hot vector of the chirality type. The first element indicates “R”, and the second element indicates “S”.
- **Return type** *List[float]*

get_atom_formal_charge *(atom: Any) → List[float]*

Get a formal charge of an atom.

- **Parameters**
 - atom *(rdkit.Chem.rdchem.Atom)* – RDKit atom object
- **Returns**
 - A vector of the formal charge.
- **Return type** *List[float]*

get_atom_partial_charge *(atom: Any) → List[float]*

Get a partial charge of an atom.

- **Parameters**
 - atom *(rdkit.Chem.rdchem.Atom)* – RDKit atom object
- **Returns**
 - A vector of the parital charge.
- **Return type** *List[float]*

Notes

Before using this function, you must calculate *GasteigerCharge* like `AllChem.ComputeGasteigerCharges(mol)`.

get_atom_total_degree_one_hot *(atom: Any, allowable_set: List[int] = [0, 1, 2, 3, 4, 5], include_unknown_set: bool = True) → List[float]*

Get an one-hot feature of the degree which an atom has.

- **Parameters**
 - atom *(rdkit.Chem.rdchem.Atom)* – RDKit atom object
 - allowable_set *(List[int]*) – The degree to consider. The default set is [0, 1, ..., 5]
 - include_unknown_set *(bool, default True)* – If true, the index of all types not in `allowable_set` is `len(allowable_set)`.
- **Returns**
 - A one-hot vector of the degree which an atom has. If `include_unknown_set` is False, the length is `len(allowable_set)`. If `include_unknown_set` is True, the length is `len(allowable_set) + 1`.
- **Return type** *List[float]*

get_bond_type_one_hot *(bond: Any, allowable_set: List[str] = ['SINGLE', 'DOUBLE', 'TRIPLE', 'AROMATIC'], include_unknown_set: bool = False) → List[float]*

Get an one-hot feature of bond type.

- **Parameters**
 - bond *(rdkit.Chem.rdchem.Bond)* – RDKit bond object
 - allowable_set *(List[str]*) – The bond types to consider. The default set is [“SINGLE”, “DOUBLE”, “TRIPLE”, “AROMATIC”].
include_unknown_set (bool, default False) – If true, the index of all types not in allowable_set is len(allowable_set).

Returns A one-hot vector of the bond type. If include_unknown_set is False, the length is len(allowable_set). If include_unknown_set is True, the length is len(allowable_set) + 1.

Return type List[float]

get_bond_is_in_same_ring_one_hot (bond: Any) → List[float]

Get an one-hot feature about whether atoms of a bond is in the same ring or not.

Parameters bond (rdkit.Chem.rdchem.Bond) – RDKit bond object

Returns A one-hot vector of whether a bond is in the same ring or not.

Return type List[float]

get_bond_is_conjugated_one_hot (bond: Any) → List[float]

Get an one-hot feature about whether a bond is conjugated or not.

Parameters bond (rdkit.Chem.rdchem.Bond) – RDKit bond object

Returns A one-hot vector of whether a bond is conjugated or not.

Return type List[float]

Get an one-hot feature of the stereo configuration of a bond.

Parameters

• bond (rdkit.Chem.rdchem.Bond) – RDKit bond object

• allowable_set (List[str]) – The stereo configuration types to consider. The default set is ["STEREONONE", "STEREOANY", "STEREoz", "STEREOE"].

• include_unknown_set (bool, default True) – If true, the index of all types not in allowable_set is len(allowable_set).

Returns A one-hot vector of the stereo configuration of a bond. If include_unknown_set is False, the length is len(allowable_set). If include_unknown_set is True, the length is len(allowable_set) + 1.

Return type List[float]

get_bond_graph_distance_one_hot (bond: Any, graph_dist_matrix: numpy.ndarray, allowable_set: List[int] = [1, 2, 3, 4, 5, 6, 7], include_unknown_set: bool = True) → List[float]

Get an one-hot feature of graph distance.

Parameters

• bond (rdkit.Chem.rdchem.Bond) – RDKit bond object

• graph_dist_matrix (np.ndarray) – The return value of Chem.GetDistanceMatrix(mol). The shape is (num_atoms, num_atoms).

• allowable_set (List[int]) – The graph distance types to consider. The default set is [1, 2, ..., 7].

• include_unknown_set (bool, default False) – If true, the index of all types not in allowable_set is len(allowable_set).

Returns A one-hot vector of the graph distance. If include_unknown_set is False, the length is len(allowable_set). If include_unknown_set is True, the length is len(allowable_set) + 1.
Return type List[\text{float}]

3.26.11 Debug Utilities

3.26.12 Docking Utilities

These utilities assist in file preparation and processing for molecular docking.

write_vina_conf

```python
```

Writes Vina configuration file to disk.

Autodock Vina accepts a configuration file which provides options under which Vina is invoked. This utility function writes a vina configuration file which directs Autodock vina to perform docking under the provided options.

Parameters

- **protein_filename** (str) – Filename for protein
- **ligand_filename** (str) – Filename for the ligand
- **centroid** (np.ndarray) – A numpy array with shape (3,) holding centroid of system
- **box_dims** (np.ndarray) – A numpy array of shape (3,) holding the size of the box to dock
- **conf_filename** (str) – Filename to write Autodock Vina configuration to.
- **num_modes** (int, optional (default 9)) – The number of binding modes Autodock Vina should find
- **exhaustiveness** (int, optional) – The exhaustiveness of the search to be performed by Vina

write_gnina_conf

```python
write_gnina_conf(protein_filename: str, ligand_filename: str, conf_filename: str, num_modes: int = 9, exhaustiveness: Optional[int] = None, **kwargs) → None
```

Writes GNINA configuration file to disk.

GNINA accepts a configuration file which provides options under which GNINA is invoked. This utility function writes a configuration file which directs GNINA to perform docking under the provided options.

Parameters

- **protein_filename** (str) – Filename for protein
- **ligand_filename** (str) – Filename for the ligand
- **conf_filename** (str) – Filename to write Autodock Vina configuration to.
- **num_modes** (int, optional (default 9)) – The number of binding modes GNINA should find
- **exhaustiveness** (int, optional) – The exhaustiveness of the search to be performed by GNINA
- **kwargs** – Args supported by GNINA documented here https://github.com/gnina/gnina#usage
This function loads ligands docked by autodock vina.

Autodock vina writes outputs to disk in a PDBQT file format. This PDBQT file can contain multiple docked "poses". Recall that a pose is an energetically favorable 3D conformation of a molecule. This utility function reads and loads the structures for multiple poses from vina’s output file.

Parameters

- `pdbqt_output (str)` – Should be the filename of a file generated by autodock vina’s docking software.

Returns

Tuple of `molecules, scores`. `molecules` is a list of rdkit molecules with 3D information. `scores` is the associated vina score.

Return type

Tuple[List[rdkit.Chem.rdchem.Mol], List[float]]

Notes

This function requires RDKit to be installed.

This prepares protein-ligand complexes for docking.

Autodock Vina requires PDB files for proteins and ligands with sensible inputs. This function uses PDBFixer and RDKit to ensure that inputs are reasonable and ready for docking. Default values are given for convenience, but fixing PDB files is complicated and human judgement is required to produce protein structures suitable for docking. Always inspect the results carefully before trying to perform docking.

Parameters

- `protein (str)` – Filename for protein PDB file or a PDBID.
- `ligand (str)` – Either a filename for a ligand PDB file or a SMILES string.
- `replace_nonstandard_residues (bool (default True))` – Replace nonstandard residues with standard residues.
- `remove_heterogens (bool (default True))` – Removes residues that are not standard amino acids or nucleotides.
- `remove_water (bool (default True))` – Remove water molecules.
- `add_hydrogens (bool (default True))` – Add missing hydrogens at the protonation state given by `pH`.
- `pH (float (default 7.0))` – Most common form of each residue at given `pH` value is used.
- `optimize_ligand (bool (default True))` – If True, optimize ligand with RDKit. Required for SMILES inputs.
- `pdb_name (Optional[str])` – If given, write sanitized protein and ligand to files called “pdb_name.pdb” and “ligand_pdb_name.pdb”

Returns

Tuple of `protein_molecule, ligand_molecule` with 3D information.

Return type

Tuple[RDKitMol, RDKitMol]
Note: This function requires RDKit and OpenMM to be installed. Read more about PDBFixer here: https://github.com/openmm/pdbfixer.

Examples

```python
>>> p, m = prepare_inputs('3cyx', 'CCC')
```

```python
>>> p, m = prepare_inputs('3cyx', 'CCC', remove_heterogens=False)
>>> p.GetNumAtoms()
```

`read_gnina_log(log_file: str) -> numpy.ndarray`

Read GNINA logfile and get docking scores.

GNINA writes computed binding affinities to a logfile.

Parameters

- **log_file** *(str)* – Filename of logfile generated by GNINA.

Returns

- **scores** – Array of binding affinity (kcal/mol), CNN pose score, and CNN affinity for each binding mode.

Return type

np.array, dimension (num_modes, 3)

Print Threshold

The printing threshold controls how many dataset elements are printed when `dc.data.Dataset` objects are converted to strings or represented in the IPython repl.

```python
get_print_threshold() -> int
```

Return the printing threshold for datasets.

The print threshold is the number of elements from ids/tasks to print when printing representations of `Dataset` objects.

- **threshold** *(int)* – Number of elements that will be printed

Return type

int

```python
set_print_threshold(threshold: int)
```

Set print threshold

The print threshold is the number of elements from ids/tasks to print when printing representations of `Dataset` objects.

- **threshold** *(int)* – Number of elements to print.

get_max_print_size() -> int

Return the max print size for a dataset.

If a dataset is large, printing `self.ids` as part of a string representation can be very slow. This field controls the maximum size for a dataset before ids are no longer printed.

- **max_print_size** *(int)* – Maximum length of a dataset for ids to be printed in string representation.

Return type

int
set_max_print_size(max_print_size: int)

Set max_print_size

If a dataset is large, printing self.ids as part of a string representation can be very slow. This field controls the maximum size for a dataset before ids are no longer printed.

Parameters

- **max_print_size** (int) – Maximum length of a dataset for ids to be printed in string representation.

3.26.13 Fake Data Generator

The utilities here are used to generate random sample data which can be used for testing model architectures or other purposes.

class FakeGraphGenerator(min_nodes: int = 10, max_nodes: int = 10, n_node_features: int = 5, avg_degree: int = 4, n_edge_features: int = 3, n_classes: int = 2, task: str = 'graph', **kwargs)

Generates a random graphs which can be used for testing or other purposes.

The generated graph supports both node-level and graph-level labels.

Example

```python
>>> from deepchem.utils.fake_data_generator import FakeGraphGenerator
>>> fgg = FakeGraphGenerator(min_nodes=8, max_nodes=10, n_node_features=5, avg_degree=8, n_edge_features=3, n_classes=2, task='graph', z=5)
>>> graphs = fgg.sample(n_graphs=10)
>>> type(graphs)
<class 'deepchem.data.datasets.NumpyDataset'>
>>> type(graphs.X[0])
<class 'deepchem.feat.graph_data.GraphData'>
>>> len(graphs) == 10  # num_graphs
True
```

Note: The FakeGraphGenerator class is based on torch_geometric.dataset.FakeDataset class.

__init__(min_nodes: int = 10, max_nodes: int = 10, n_node_features: int = 5, avg_degree: int = 4, n_edge_features: int = 3, n_classes: int = 2, task: str = 'graph', **kwargs)

Parameters

- **min_nodes** (int, default 10) – Minimum number of permissible nodes in a graph
- **max_nodes** (int, default 10) – Maximum number of permissible nodes in a graph
- **n_node_features** (int, default 5) – Average number of node features in a graph
- **avg_degree** (int, default 4) – Average degree of the graph (avg_degree should be a positive number greater than the min_nodes)
- **n_edge_features** (int, default 3) – Average number of features in the edge
- **task** (str, default 'graph') – Indicates node-level labels or graph-level labels
- **kwargs** (optional) – Additional graph attributes and their shapes, e.g. global_features = 5
sample(n_graphs: `int = 100`) → `deepchem.data.datasets.NumpyDataset`

Samples graphs

Parameters

- **n_graphs** (`int, default 100`) – Number of graphs to generate

Returns

- **graphs** – Generated Graphs

Return type

`NumpyDataset`

3.26.14 Electron Sampler

The utilities here are used to sample electrons in a given molecule and update it using monte carlo methods, which can be used for methods like Variational Monte Carlo, etc.

class ElectronSampler

```
class ElectronSampler(
    central_value: `numpy.ndarray`,
    f: Callable[[numpy.ndarray], numpy.ndarray],
    batch_no: `int = 10`,
    x: `numpy.ndarray = array([], dtype=float64)`,
    steps: `int = 10`,
    seed: `Optional[int] = None`,
    symmetric: `bool = True`,
    simultaneous: `bool = True`
)
```

This class enables to initialize electron’s position using gauss distribution around a nucleus and update using Markov Chain Monte-Carlo(MCMC) moves.

Using the probability obtained from the square of magnitude of wavefunction of a molecule/atom, MCMC steps can be performed to get the electron’s positions and further update the wavefunction. This method is primarily used in methods like Variational Monte Carlo to sample electrons around the nucleons. Sampling can be done in 2 ways:

- **Simultaneous:** All the electrons’ positions are updated all at once.
- **Single-electron:** MCMC steps are performed only a particular electron, given their index value.

Further these moves can be done in 2 methods:

- **Symmetric:** In this configuration, the standard deviation for all the steps are uniform.
- **Asymmetric:** In this configuration, the standard deviation are not uniform and typically the standard deviation is obtained a function like harmonic distances, etc.

Irrespective of these methods, the initialization is done uniformly around the respective nucleus and the number of electrons specified.

Example

```python
>>> from deepchem.utils.electron_sampler import ElectronSampler
>>> def test_f(x):
...     # dummy function which can be passed as the parameter f. f gives the log
...     return 2*np.log(np.random.uniform(low=0, high=1.0, size=np.shape(x)[0]))
>>> distribution = ElectronSampler(central_value=np.array([[1, 1, 3], [3, 2, 3]]), f=test_f,
...                                seed=0, batch_no=2, steps=1000,)
>>> distribution.gauss_initialize_position(np.array([[1], [2]]))
```

```
[[(1.03528105 1.00800314 3.01957476]
 [3.01900177 1.99697286 2.99793562]]
[[(3.01900177 1.99697286 2.99793562]
 [3.00821197 2.00288087 3.02908547]]
[[(3.01522075 2.0024335 3.00887726]
 [3.00667349 2.02988158 2.99589683]])
```
```python
>>> distribution.move()
0.5115
```

```python
>> print(distribution.x) 
[[[-0.32441754 1.23330263 2.67927645]
 [ 3.42250997 2.23617126 3.55806632]
 [ 3.37491385 1.54374006 3.13575241]]]
[[ 0.49067726 1.03987841 3.70277884]]
[[ 3.5631939 1.68703947 2.56857847]]
[[ 2.84560249 1.73998364 3.41274181]]]
```

__init__

```python
central_value: numpy.ndarray
Contains each nucleus’ coordinates in a 2D array. The shape of the array should be(number_of_nucleus,3). Ex: [[1,2,3],[3,4,5],...]

f: Callable[[numpy.ndarray], numpy.ndarray]
A function that should give the twice the log probability of wave-function of the molecular system when called. Should taken in a 4D array of electron’s positions(x) as argument and return a numpy array containing the log probabilities of each batch.

batch_no: int, optional (default 10)
Number of batches of the electron’s positions to be initialized.

x: numpy.ndarray, optional (default np.ndarray([]))
Contains the electron’s coordinates in a 4D array. The shape of the array should be(batch_no,no_of_electrons,1,3). Can be a 1D empty array, when electron’s positions are yet to be initialized.

steps: int, optional (default 10)
The number of MCMC steps to be performed when the moves are called.

seed: int, optional (default None)
Random seed to use.

**symmetric**: bool, optional (default True)
If true, symmetric moves will be used, else asymmetric moves will be followed.

**simultaneous**: bool, optional (default True)
If true, MCMC steps will be performed on all the electrons, else only a single electron gets updated.
```

harmonic_mean

```python
(y: numpy.ndarray) → numpy.ndarray
```
Calculates the harmonic mean of the value ‘y’ from the self.central value. The numpy array returned is typically scaled up to get the standard deviation matrix.

Parameters

- **y (np.ndarray)** – Containing the data distribution. Shape of y should be (batch,no_of_electron,1,3)

Returns
Contains the harmonic mean of the data distribution of each batch. Shape of the array obtained (batch_no, no_of_electrons,1,1)

Return type
np.ndarray

log_prob_gaussian

```python
(y: numpy.ndarray, mu: numpy.ndarray, sigma: numpy.ndarray) → numpy.ndarray
```
Calculates the log probability of a gaussian distribution, given the mean and standard deviation.

Parameters

- **y (np.ndarray)** – data for which the log normal distribution is to be found
- **mu (np.ndarray)** – Means wrt which the log normal is calculated. Same shape as x or should be broadcastable to x
• **sigma** *(np.ndarray,)* – The standard deviation of the log normal distribution. Same shape as x or should be broadcastable to x

Returns Log probability of gaussian distribution, with the shape - (batch_no,).

Return type np.ndarray

gauss_initialize_position(no_sample: numpy.ndarray, stddev: float = 0.02)

Initializes the position around a central value as mean sampled from a gauss distribution and updates self.x.

Parameters:

- **no_sample:** np.ndarray,
 Contains the number of samples to initialize under each mean. should be in the form [[3],[2],...], where here it means 3 samples and 2 samples around the first entry and second entry, respectively in self.central_value is taken.

- **stddev:** float, optional (default 0.02) contains the stddev with which the electrons’ coordinates are initialized

move(stddev: float = 0.02, asymmetric_func: Optional[Callable[[numpy.ndarray], numpy.ndarray]] = None, index: Optional[int] = None) → float

Performs Metropolis-Hasting move for self.x(electrons). The type of moves to be followed -(simultaneous or single-electron, symmetric or asymmetric) have been specified when calling the class. The self.x array is replaced with a new array at the end of each step containing the new electron’s positions.

- **asymmetric_func:** Callable[[np.ndarray],np.ndarray], optional(default None) Should be specified for an asymmetric move. The function should take in only 1 argument- y: a numpy array wrt to which mean should be calculated. This function should return the mean for the asymmetric proposal. For ferminet, this function is the harmonic mean of the distance between the electron and the nucleus.

- **stddev:** float, optional (default 0.02) Specifies the standard deviation in the case of symmetric moves and the scaling factor of the standard deviation matrix in the case of asymmetric moves.

- **index:** int, optional (default None) Specifies the index of the electron to be updated in the case of a single electron move.

- **float** accepted move ratio of the MCMC steps.

3.27 Licensing and Commercial Uses

DeepChem is licensed under the MIT License. We actively support commercial users. Note that any novel molecules, materials, or other discoveries powered by DeepChem belong entirely to the user and not to DeepChem developers.

That said, we would very much appreciate a citation if you find our tools useful. You can cite DeepChem with the following reference.

```latex
@book{Ramsundar-et-al-2019,
    title={Deep Learning for the Life Sciences},
    author={Bharath Ramsundar and Peter Eastman and Patrick Walters and Vijay Pande and Karl Leswing and Zhenqin Wu},
    publisher={O'Reilly Media},
    year={2019}
}
```
The scientific community in many ways is quite traditional. Students typically learn in apprenticeship from advisors who teach a small number of students directly. This system has endured for centuries and allows for expert scientists to teach their ways of thinking to new students.

For more context, most scientific research today is done in “labs” run in this mostly traditional fashion. A principal investigator (PI) will run the lab and work with undergraduate, graduate, and postdoctoral students who produce research papers. Labs are funded by “grants,” typically from governments and philanthropic agencies. Papers and citations are the critical currencies of this system, and a strong publication record is necessary for any scientist to establish themselves.

This traditional model can find it difficult to fund the development of high quality software for a few reasons. First, students are in a lab for limited periods of time (3-5 years often). This means there’s high turnover, and critical knowledge can be lost when a student moves on. Second, grants for software are still new and not broadly available. A lab might very reasonably choose to focus on scientific discovery rather than on necessary software engineering. (Although, it’s worth noting there are many exceptions that prove the rule! DeepChem was born in an academic lab like many other quality projects.)

We believe that contributing to and using DeepChem can be highly valuable for scientific careers. DeepChem can help maintain new scientific algorithms for the long term, making sure that your discoveries continue to be used after students graduate. We’ve seen too many brilliant projects flounder after students move on, and we’d like to help you make sure that your algorithms have the most impact.

3.28.1 Scientist FAQ

- Wouldn’t it be better for my career to make my own package rather than use DeepChem?
- Is there a DeepChem PI?
- Do I need to add DeepChem team members as co-authors to my paper?
- I want to establish my scientific niche. How can I do that as a DeepChem contributor? Won’t my contribution be lost in the noise?
- I’m an aspiring scientist, not part of a lab. Can I join DeepChem?
- Is there DeepChem Grant Money?
- I’m an industry researcher. Can I participate too?
- What about intellectual property?
- If I use DeepChem on my organization’s data, do I have to release the data?
- What if I want to release data? Can DeepChem help?
- Is MoleculeNet just about molecules?
- Does MoleculeNet allow for releasing data under different licenses?
Wouldn’t it be better for my career to make my own package rather than use DeepChem?

The answer to this really depends on what you’re looking for out of your career! Making and maintaining good software is hard. It requires careful testing and continued maintenance. Your code will bitrot over time without attention. If your focus is on new inventions and you find software engineering less compelling, working with DeepChem may enable you to go further in your career by letting you focus on new algorithms and leveraging the DeepChem Project’s infrastructure to maintain your inventions.

In addition, you may find considerable inspiration from participating in the DeepChem community. Looking at how other scientists solve problems, and connecting with new collaborators across the world can help you look at problems in a new way. Longtime DeepChem contributors find that they often end up writing papers together!

All that said, there may be very solid reasons for you to build your own project! Especially if you want to explore designs that we haven’t or can’t easily. In that case, we’d still love to collaborate with you. DeepChem depends on a broad constellation of scientific packages and we’d love to make your package’s features accessible to our users.

Is there a DeepChem PI?

While DeepChem was born in the Pande lab at Stanford, the project now lives as a “decentralized research organization.” It would be more accurate to say that there are informally multiple “DeepChem PIs,” who use it in their work. You too can be a DeepChem PI!

Do I need to add DeepChem team members as co-authors to my paper?

Our suggestion is to use good judgment and usual scientific etiquette. If a particular DeepChem team member has contributed a lot to your effort, adding them might make sense. If no one person has contributed sufficiently, an acknowledgment or citation would be great!

I want to establish my scientific niche. How can I do that as a DeepChem contributor? Won’t my contribution be lost in the noise?

It’s critically important for a new scientist to establish themselves and their contributions in order to launch a scientific career. We believe that DeepChem can help you do this! If you add a significant set of new features to DeepChem, it might be appropriate for you to write a paper (as lead or corresponding author or however makes sense) that introduces the new feature and your contribution.

As a decentralized research organization, we want to help you launch your careers. We’re very open to other collaboration structures that work for your career needs.

I’m an aspiring scientist, not part of a lab. Can I join DeepChem?

Yes! DeepChem’s core mission is to democratize the use of deep learning for the sciences. This means no barriers, no walls. Anyone is welcome to join and contribute. Join our developer calls, chat one-on-one with our scientists, many of whom are glad to work with new students. You may form connections that help you join a more traditional lab, or you may choose to form your own path. We’re glad to support either.
Is there DeepChem Grant Money?

Not yet, but we’re actively looking into getting grants to support DeepChem researchers. If you’re a PI who wants to collaborate with us, please get in touch!

I’m an industry researcher. Can I participate too?

Yes! The most powerful features of DeepChem is its community. Becoming part of the DeepChem project can let you build a network that lasts across jobs and roles. Lifelong employment at a corporation is less and less common. Joining our community will let you build bonds that cross jobs and could help you do your job today better too!

What about intellectual property?

One of the core goals for DeepChem is to build a shared set of scientific resources and techniques that aren’t locked up by patents. Our hope is to enable your company or organization to leverage techniques with less worry about patent infringement.

We ask in return that you act as a responsible community member and put in as much as you get out. If you find DeepChem very valuable, please consider contributing back some innovations or improvements so others can benefit. If you’re getting a patent on your invention, try to make sure that you don’t infringe on anything in DeepChem. Lots of things sneak past patent review. As an open source community, we don’t have the resources to actively defend ourselves and we rely on your good judgment and help!

If I use DeepChem on my organization’s data, do I have to release the data?

Not at all! DeepChem is released with a permissive MIT license. Any analyses you perform belong entirely to you. You are under no obligation to release your proprietary data or inventions.

What if I want to release data? Can DeepChem help?

If you are interested in open sourcing data, the DeepChem project maintains the [MoleculeNet](https://deepchem.readthedocs.io/en/latest/moleculenet.html) suite of datasets. Adding your dataset to MoleculeNet can be a powerful way to ensure that a broad community of users can access your released data in convenient fashion. It’s important to note that MoleculeNet provides programmatic access to data, which may not be appropriate for all types of data (especially for clinical or patient data which may be governed by regulations/laws). Open source datasets can be a powerful resource, but need to be handled with care.

Is MoleculeNet just about molecules?

Not anymore! Any scientific datasets are welcome in MoleculeNet. At some point in the future, we may rename the effort to avoid confusion, but for now, we emphasize that non-molecular datasets are welcome too.
Does MoleculeNet allow for releasing data under different licenses?

MoleculeNet already supports datasets released under different licenses. We can make work with you to use your license of choice.

3.29 Coding Conventions

3.29.1 Pre-Commit

We use pre-commit to ensure that we’re always keeping up with the best practices when it comes to linting, standard code conventions and type annotations. Although it may seem time consuming at first as to why is one supposed to run all these tests and checks but it helps in identifying simple issues before submission to code review. We’ve already specified a configuration file with a list of hooks that will get executed before every commit.

First you’ll need to setup the git hook scripts by installing them.

```
pre-commit install
```

Now whenever you commit, pre-commit will run the necessary hooks on the modified files.

3.29.2 Code Formatting

We use YAPF to format all of the code in DeepChem. Although it sometimes produces slightly awkward formatting, it does have two major benefits. First, it ensures complete consistency throughout the entire codebase. And second, it avoids disagreements about how a piece of code should be formatted.

Whenever you modify a file, run yapf on it to reformat it before checking it in.

```
yapf -i <modified file>
```

YAPF is run on every pull request to make sure the formatting is correct, so if you forget to do this the continuous integration system will remind you. Because different versions of YAPF can produce different results, it is essential to use the same version that is being run on CI. At present, that is 0.32. We periodically update it to newer versions.

3.29.3 Linting

We use Flake8 to check our code syntax. Lint tools basically provide these benefits.

- Prevent things like syntax errors or typos
- Save our review time (no need to check unused codes or typos)

Whenever you modify a file, run flake8 on it.

```
flake8 <modified file> --count
```

If the command returns 0, it means your code passes the Flake8 check.
3.29.4 Docstrings

All classes and functions should include docstrings describing their purpose and intended usage. When in doubt about how much information to include, always err on the side of including more rather than less. Explain what problem a class is intended to solve, what algorithms it uses, and how to use it correctly. When appropriate, cite the relevant publications.

All docstrings should follow the numpy docstring formatting conventions. To ensure that the code examples in the docstrings are working as expected, run

```
python -m doctest <modified file>
```

3.29.5 Unit Tests

Having an extensive collection of test cases is essential to ensure the code works correctly. If you haven’t written tests for a feature, that means the feature isn’t finished yet. Untested code is code that probably doesn’t work.

Complex numerical code is sometimes challenging to fully test. When an algorithm produces a result, it sometimes is not obvious how to tell whether the result is correct or not. As far as possible, try to find simple examples for which the correct answer is exactly known. Sometimes we rely on stochastic tests which will probably pass if the code is correct and probably fail if the code is broken. This means these tests are expected to fail a small fraction of the time. Such tests can be marked with the `@flaky` annotation. If they fail during continuous integration, they will be run a second time and an error only reported if they fail again.

If possible, each test should run in no more than a few seconds. Occasionally this is not possible. In that case, mark the test with the `@pytest.mark.slow` annotation. Slow tests are skipped during continuous integration, so changes that break them may sometimes slip through and get merged into the repository. We still try to run them regularly, so hopefully the problem will be discovered fairly soon.

The full suite of slow tests can be run from the root directory of the source code as

```
pytest -v -m 'slow' deepchem
```

To test your code locally, you will have to setup a symbolic link to your current development directory. To do this, simply run

```
python setup.py develop
```

while installing the package from source. This will let you see changes that you make to the source code when you import the package and, in particular, it allows you to import the new classes/methods for unit tests.

Ensure that the tests pass locally! Check this by running

```
python -m pytest <modified file>
```

3.29.6 Testing Machine Learning Models

Testing the correctness of a machine learning model can be quite tricky to do in practice. When adding a new machine learning model to DeepChem, you should add at least a few basic types of unit tests:

- Overfitting test: Create a small synthetic dataset and test that your model can learn this dataset with high accuracy. For regression and classification task, this should correspond to low training error on the dataset. For generative tasks, this should correspond to low training loss on the dataset.
- Reloading test: Check that a trained model can be saved to disk and reloaded correctly. This should involve checking that predictions from the saved and reloaded models matching exactly.
Note that unit tests are not sufficient to gauge the real performance of a model. You should benchmark your model on larger datasets as well and report your benchmarking tests in the PR comments.

For testing tensorflow models and pytorch models, we recommend testing in different conda environments. Tensorflow 2.6 supports numpy 1.19 while pytorch supports numpy 1.21. This version mismatch on numpy dependency sometimes causes trouble in installing tensorflow and pytorch backends in the same environment.

For testing tensorflow models of deepchem, we create a tensorflow test environment and then run the test as follows:

```
conda create -n tf-test python=3.8
conda activate tf-test
pip install conda-merge
conda-merge requirements/tensorflow/env_tensorflow.yml requirements/env_test.yml > env.yml
conda env update --file env.yml --prune
pytest -v -m 'tensorflow' deepchem
```

For testing pytorch models of deepchem, first create a pytorch test environment and then run the tests as follows:

```
conda create -n pytorch-test python=3.8
conda activate pytorch-test
pip install conda-merge
conda-merge requirements/torch/env_torch.yml requirements/torch/env_torch.cpu.yml
...requirements/env_test.yml > env.yml
conda env update --file env.yml --prune
pytest -v -m 'torch' deepchem
```

3.29.7 Type Annotations

Type annotations are an important tool for avoiding bugs. All new code should provide type annotations for function arguments and return types. When you make significant changes to existing code that does not have type annotations, please consider adding them at the same time.

We use the mypy static type checker to verify code correctness. It is automatically run on every pull request. If you want to run it locally to make sure you are using types correctly before checking in your code, cd to the top level directory of the repository and execute the command

```
mypy -p deepchem --ignore-missing-imports
```

Because Python is such a dynamic language, it sometimes is not obvious what type to specify. A good rule of thumb is to be permissive about input types and strict about output types. For example, many functions are documented as taking a list as an argument, but actually work just as well with a tuple. In those cases, it is best to specify the input type as `Sequence` to accept either one. But if a function returns a list, specify the type as `List` because we can guarantee the return value will always have that exact type.

Another important case is NumPy arrays. Many functions are documented as taking an array, but actually can accept any array-like object: a list of numbers, a list of lists of numbers, a list of arrays, etc. In that case, specify the type as `Sequence` to accept any of these. On the other hand, if the function truly requires an array and will fail with any other input, specify it as `np.ndarray`.

The `deepchem.utils.typing` module contains definitions of some types that appear frequently in the DeepChem API. You may find them useful when annotating code.
3.30 Understanding DeepChem CI

Continuous Integration (CI) is used to continuously build and run tests for the code in your repository to make sure that the changes introduced by the commits don’t introduce errors. DeepChem runs a number of CI tests (jobs) using workflows provided by Github Actions. When all CI tests in a workflow pass, it implies that the changes introduced by a commit does not introduce any errors.

When creating a PR to master branch or when pushing to master branch, around 35 CI tests are run from the following workflows.

1. **Tests for DeepChem Core** - The jobs are defined in the `.github/workflows/main.yml` file. The following jobs are performed in this workflow:
 - Building and installation of DeepChem in latest Ubuntu OS and Python 3.7 and it checks for import `deepchem`
 - These tests run on Ubuntu latest version using Python 3.7-3.9 and on windows latest version using Python 3.7. The jobs are run for checking coding conventions using yapf, flake8 and mypy. It also includes tests for doctest and code-coverage.
 - Tests for pypi-build and docker-build are also include but they are mostly skipped.

2. **Tests for DeepChem Common** - The jobs are defined in the `.github/workflows/common_setup.yml` file. The following tests are performed in this workflow:
 - For build environments of Python 3.7, 3.8 and 3.9, DeepChem is built and import checking is performed.
 - The tests are run for checking pytest. All pytests which are not marked as jax, tensorflow or pytorch is run on ubuntu latest with Python 3.7, 3.8 and 3.9 and on windows latest, it is run with Python 3.7.

3. **Tests for DeepChem Jax/Tensorflow/PyTorch**
 - Jax - DeepChem with jax backend is installed and import check is performed for deepchem and jax. The tests for pytests with jax markers are run on ubuntu latest with Python 3.7. 3.8 and 3.9.
 - Tensorflow - DeepChem with tensorflow backend is installed and import check is performed for DeepChem and tensorflow. The tests for pytests with tensorflow markers are run on ubuntu latest with Python 3.7-3.9 and on windows latest, it is run with Python 3.7.
 - PyTorch - DeepChem with pytorch backend is installed and import check is performed for DeepChem and torch. The tests for pytests with pytorch markers are run on ubuntu latest with Python 3.7-3.9 and on windows latest, it is run with Python 3.7.

4. **Tests for documents**
 - These tests are used for checking docs build. It is run on ubuntu latest with Python 3.7.

5. **Tests for Release**
 - These tests are run only when pushing a tag. It is run on ubuntu latest with Python 3.7.

General recommendations

1. Handling additional or external files in unittest

When a new feature is added to DeepChem, the respective unittest should included too. Sometimes, this test functions uses an external or additional file. To avoid problems in the CI the absolute path of the file has to be included. For example, for the use of a file called “Test_data_feature.csv”, the unittest function should manage the absolute path as:
import os
current_dir = os.path.dirname(os.path.abspath(__file__))
data_dir = os.path.join(current_dir, "Test_data_feature.csv")
result = newFeature(data_dir)

3.30.1 Notes on Requirement Files

DeepChem’s CI as well as installation procedures use requirement files defined in `requirements` directory. Currently, there are a number of requirement files. Their purposes are listed here.

- `env_common.yml` - this file lists the scientific dependencies used by DeepChem like rdkit.
- `env_ubuntu.yml` and `env_mac.yml` contain scientific dependencies which have OS specific support. Currently, vina
- `env_test.yml` - it is mostly used for the purpose of testing in development purpose. It contains the test dependencies.

The installation files in `tensorflow`, `torch` and `jax` directories contain the installation command for backend deep learning frameworks. For torch and jax, installation command is different for CPU and GPU. Hence, we use different installation files for CPU and GPU respectively.

3.31 Infrastructures

The DeepChem project maintains supporting infrastructure on a number of different services. This infrastructure is maintained by the DeepChem development team.

3.31.1 GitHub

The core DeepChem repositories are maintained in the `deepchem` GitHub organization. And, we use GitHub Actions to build a continuous integration pipeline.

DeepChem developers have write access to the repositories on this repo and technical steering committee members have admin access.

3.31.2 Conda Forge

The DeepChem `feedstock` repo maintains the build recipe for conda-forge.

3.31.3 Docker Hub

DeepChem hosts major releases and nightly docker build instances on Docker Hub.

3.31.4 PyPI

DeepChem hosts major releases and nightly builds on PyPI.
3.31.5 Amazon Web Services

DeepChem’s website infrastructure is all managed on AWS through different AWS services. All DeepChem developers have access to these services through the deepchem-developers IAM role. (An IAM role controls access permissions.) At present, @rbharath is the only developer with admin access to the IAM role, but longer term we should migrate this so other folks have access to the roles.

S3

Amazon’s S3 allows for storage of data on “buckets” (Think of buckets like folders.) There are two core deepchem S3 buckets:

- deepchemdata: This bucket hosts the MoleculeNet datasets, pre-featurized datasets, and pretrained models.
- deepchemforum: This bucket hosts backups for the forums. The bucket is private for security reasons. The forums themselves are hosted on a digital ocean instance that only @rbharath currently has access to. Longer term, we should migrate the forums onto AWS so all DeepChem developers can access the forums. The forums themselves are a discord instance. The forums upload their backups to this S3 bucket once a day. If the forums crash, they can be restored from the backups in this bucket.

Route 53

DNS for the deepchem.io website is handled by Route 53. The “hosted zone” deepchem.io holds all DNS information for the website.

Certificate Manager

The AWS certificate manager issues the SSL/TLS certificate for the *.deepchem.io and deepchem.io domains.

GitHub Pages

We make use of GitHub Pages to serve our static website. GitHub Pages connects to the certificate in Certificate Manager. We set CNAME for www.deepchem.io, and an A-record for deepchem.io.

The GitHub Pages repository is [deepchem/deepchem.github.io](https://github.com/deepchem/deepchem.github.io).

3.31.6 GoDaddy

The deepchem.io domain is registered with GoDaddy. If you change the name servers in AWS Route 53, you will need to update the GoDaddy record. At present, only @rbharath has access to the GoDaddy account that owns the deepchem.io domain name. We should explore how to provide access to the domain name for other DeepChem developers.
3.31.7 Digital Ocean

The forums are hosted on a digital ocean instance. At present, only @rbharath has access to this instance. We should migrate this instance onto AWS so other DeepChem developers can help maintain the forums.
INDEX

Symbols

__contains__() (CoordinateBox method), 456
__init__() (A2C method), 433
__init__() (A2LossDiscrete method), 435
__init__() (ANIFeat method), 357
__init__() (AdaGrad method), 249
__init__() (Adam method), 249
__init__() (AdamW method), 250
__init__() (Affine method), 386
__init__() (AtomShim method), 454
__init__() (AtomicConvFeaturizer method), 130
__init__() (AtomicConvModel method), 284
__init__() (AtomicConvolution method), 352
__init__() (AtomicCoordinates method), 123
__init__() (AttentiveFPModel method), 310
__init__() (AttnLSTMEmbedding method), 342
__init__() (BPSymmetryFunctionInput method), 123
__init__() (BalancingTransformer method), 221
__init__() (BasicMolGANModel method), 275
__init__() (BasicSmilesTokenizer method), 141
__init__() (BertFeaturizer method), 143
__init__() (ButinaSplitter method), 199
__init__() (CDFTransformer method), 216
__init__() (CGCNNFeaturizer method), 135
__init__() (CGCNNModel method), 305
__init__() (CNN method), 298
__init__() (CNNModule method), 376
__init__() (CSVLoader method), 44
__init__() (ChemCeption method), 287
__init__() (CircularFingerprint method), 114
__init__() (ClippingTransformer method), 212
__init__() (CombineMeanStd method), 346
__init__() (ConformerGenerator method), 450
__init__() (ConvMol method), 53
__init__() (ConvMolFeaturizer method), 98
__init__() (ConvexHullPocketFinder method), 438
__init__() (CoordinateBox method), 456
__init__() (CoulombFitTransformer method), 229
__init__() (CoulombMatrix method), 119
__init__() (CoulombMatrixEig method), 121
__init__() (DAGGather method), 370
__init__() (DAGLayer method), 370
__init__() (DAGModel method), 271
__init__() (DAGTransformer method), 234
__init__() (DCLightningModule method), 322
__init__() (DMPNNEncoderLayer method), 391
__init__() (DMPNNFeaturizer method), 105
__init__() (DMPNNModel method), 320
__init__() (DTNNEmbedding method), 367
__init__() (DTNNGather method), 369
__init__() (DTNNSearch method), 270
__init__() (DTNNStep method), 368
__init__() (DataLoader method), 62
__init__() (Dataset method), 57
__init__() (DiskDataset method), 30
__init__() (Docker method), 442
__init__() (DuplicateBalancingTransformer method), 224
__init__() (ElectronSampler method), 477
__init__() (ElementPropertyFingerprint method), 132
__init__() (Environment method), 430
__init__() (Evaluator method), 459
__init__() (ExponentialDecay method), 251
__init__() (FASTLoader method), 50
__init__() (FakeGraphGenerator method), 475
__init__() (FeatureTransformer method), 227
__init__() (GAN method), 280
__init__() (GATModel method), 306
__init__() (GBDModel method), 245
__init__() (GNNModel method), 308
__init__() (GeneratorEvaluator method), 460
__init__() (GninaPoseGenerator method), 441
__init__() (GradientDescent method), 251
__init__() (GraphCNN method), 359
__init__() (GraphConv method), 333
__init__() (GraphConvModel method), 272
__init__() (GraphData method), 56
__init__() (GraphGather method), 336
__init__() (GraphNetwork method), 385
__init__() (GraphPool method), 335
__init__() (GymEnvironment method), 431
__init__() (Highway method), 361
__init__() (HyperparamOpt method), 423
__init__() (IRVTransformer method), 231
__init__() (ImageDataset method), 39
__init__() (ImageLoader method), 47
__init__() (ImageTransformer method), 225
__init__() (InMemoryDataset method), 52
__init__() (InteratomicL2Distances method), 332
__init__() (IterRefLSTMEmbedding method), 343
__init__() (JaxModel method), 326
__init__() (JsonLoader method), 49
__init__() (KerasModel method), 253
__init__() (LCNNFeaturizer method), 138
__init__() (LCNNModel method), 314
__init__() (LSTMStep method), 341
__init__() (Linear method), 393
__init__() (LinearCosineDecay method), 251
__init__() (LogTransformer method), 214
__init__() (MACCSKeysFingerprint method), 112
__init__() (MAML method), 429
__init__() (MATEmbedding method), 382
__init__() (MATEncoderLayer method), 378
__init__() (MATEncoderLayer method), 112
__init__() (MATGenerator method), 383
__init__() (MATModel method), 316
__init__() (MEGNetModel method), 315
__init__() (MPNNModel method), 273, 312
__init__() (MessagePassing method), 371
__init__() (Metric method), 420
__init__() (MinMaxTransformer method), 210
__init__() (Model method), 242
__init__() (Mol2VecFingerprint method), 116
__init__() (MolGANAggregationLayer method), 338
__init__() (MolGANConvolutionLayer method), 337
__init__() (MolGANEncoderLayer method), 341
__init__() (MolGANConvolutionLayer method), 339
__init__() (MolGanFeaturizer method), 100
__init__() (MolGraphConvFeaturizer method), 102
__init__() (MolecularFeaturizer method), 171
__init__() (MolecularFragment method), 453
__init__() (MoleculeLoadException method), 451
__init__() (MordredDescriptors method), 119
__init__() (MultiConv Mol method), 54
__init__() (MultiHeadedMATAttention method), 380
__init__() (MultitaskClassifier method), 303
__init__() (MultitaskFitTransformRegressor method), 302
__init__() (MultitaskRegressor method), 300
__init__() (NeighourList method), 350
__init__() (NormalizationTransformer method), 207
__init__() (NormalizingFlowModel method), 289
__init__() (NumpyDataset method), 23
__init__() (OneHotFeaturizer method), 126
__init__() (Optimizer method), 249
__init__() (PFMFeaturizer method), 142
__init__() (PINNModel method), 331
__init__() (PPO method), 436
__init__() (PPOLoss method), 438
__init__() (PagentModel method), 311
__init__() (PagentGraphFeaturizer method), 104
__init__() (Policy method), 432
__init__() (PolynomialDecay method), 251
__init__() (PositionwiseFeedForward method), 381
__init__() (PowerTransformer method), 218
__init__() (ProgressiveMultitaskClassifier method), 264
__init__() (ProgressiveMultitaskRegressor method), 265
__init__() (PubChemFingerprint method), 115
__init__() (RDKitDescriptors method), 117
__init__() (RMSProp method), 250
__init__() (RandomGroupSplitter method), 177
__init__() (RawFeaturizer method), 128
__init__() (RdkitGridFeaturizer method), 129
__init__() (RealNVPLayer method), 387
__init__() (RobertaFeaturizer method), 144
__init__() (RobustMultitaskClassifier method), 261
__init__() (RobustMultitaskRegressor method), 262
__init__() (RxnFeaturizer method), 169
__init__() (RxnSplitTransformer method), 236
__init__() (SDFLoader method), 50
__init__() (ScScoreModel method), 276
__init__() (ScaleNorm method), 377
__init__() (SeqToSeq method), 278
__init__() (SetGather method), 375
__init__() (SineCoulombMatrix method), 134
__init__() (SingletaskStratifiedSplitter method), 182
__init__() (SklearnModel method), 244
__init__() (Smiles2Vec method), 286
__init__() (SmilesToImage method), 125
__init__() (SmilesToSeq method), 124
__init__() (SmilesTokenizer method), 140
__init__() (SparseAdam method), 250
__init__() (SparseMatrixOneHotFeaturizer method), 127
__init__() (SpecifiedSplitter method), 187
__init__() (SublayerConnection method), 381
__init__() (TaskSplitter method), 189
__init__() (TensorflowMultitaskIRClassifier method), 260
__init__() (TextCNNModel method), 283
__init__() (TorchModel method), 291
__init__() (Transformer method), 238
__init__() (UserCSVLoader method), 46
__init__() (UserDefinedFeaturizer method), 170
__init__() (VinaPoseGenerator method), 440
__init__() (WGAN method), 282
__init__() (WeaveFeaturizer method), 99
__init__() (WeaveGather method), 366
__init__() (WeaveLayer method), 364

490 Index
add_adapter() (ProgressiveMultitaskRegressor method), 265
add_hydrogens_to_mol() (deephchem.utils.rdkit_utils), 451
add_padding_tokens() (SmilesTokenizer method), 140
add_shard() (DiskDataset method), 36
add_special_tokens() (RobertaFeaturizer method), 144
add_special_tokens_ids_sequence_pair() (SmilesTokenizer method), 140
add_special_tokens_ids_single_sequence() (SmilesTokenizer method), 140
 (SmilesTokenizer method), 140
additional_special_tokens (RobertaFeaturizer property), 145
additional_special_tokens_ids (RobertaFeaturizer property), 145
Affine (class in deepchem.models.torch_models.layers), 386
agglomerate_mols() (ConvMol static method), 54
all_special_ids (RobertaFeaturizer property), 145
all_special_tokens (RobertaFeaturizer property), 145
all_special_tokens_extended (RobertaFeaturizer property), 145
AlphaShareLayer (class in deepchem.models.layers), 354
angle_between() (in module deepchem.utils.geometry_utils), 464
angular_symmetry() (ANIFeat method), 358
ANIFeat (class in deepchem.models.layers), 357
as_target_tokenizer() (RobertaFeaturizer method), 145
atom_features() (in module deepchem.feat.graph_features), 109
atom_features() (MATFeaturizer method), 113
atom_to_id() (in module deepchem.feat.graph_features), 109
AtomicConvFeaturizer (class in deepchem.feat), 130
AtomicConvModel (class in deepchem.models), 284
AtomicConvolution (class in deepchem.models.layers), 352
AtomicCoordinates (class in deepchem.feat), 122
AtomShim (class in deepchem.utils.fragment_utils), 454
AttentiveFPModel (class in deepchem.models), 309
AttnLSTMEmbedding (class in deepchem.models.layers), 342
auc() (in module deepchem.metrics), 406

B
backend_tokenizer (RobertaFeaturizer property), 145
balanced_accuracy_score() (in module deepchem.metrics), 414
BalancingTransformer (class in deepchem.trans), 220
BasicMolGANModel (class in deepchem.models), 274
BasicSmilesTokenizer (class in deepchem.feat), 141
batch_decode() (RobertaFeaturizer method), 146
batch_encode_plus() (RobertaFeaturizer method), 146
bedroc_score() (in module deepchem.metrics), 418
BertFeaturizer (class in deepchem.feat), 142
BetaShare (class in deepchem.models.layers), 357
BinaryCrossEntropy (class in deepchem.models.losses), 247
Call() (EdgeNetwork method), 372
Call() (GatedRecurrentUnit method), 374
Call() (GraphCNN method), 360
Call() (GraphConv method), 334
Call() (GraphEmbedPoolLayer method), 359
Call() (GraphGather method), 336
Call() (GraphPool method), 335
Call() (Highway method), 362
Call() (InteratomicL2Distances method), 333
Call() (IterRefLSTMDistances method), 344
Call() (LSTMStep method), 342
Call() (MessagePassing method), 372
Call() (MolGANAggregationLayer method), 338
Call() (MolGANCombinationLayer method), 337
Call() (MolGANEncoderLayer method), 341
Call() (MolGANMultiConvolutionLayer method), 339
Call() (NeighborList method), 350
Call() (SetGather method), 375
Call() (SluiceLoss method), 356
Call() (Stack method), 348
Call() (SwitchedDropout method), 344
Call() (VinaFreeEnergy method), 350
Call() (WeaveGather method), 367
Call() (WeaveLayer method), 365
Call() (WeightedLinearCombo method), 346
CategoricalCrossEntropy (class in deepchem.models.losses), 247
CDFTTransformer (class in deepchem.trans), 216
Center() (CoordinateBox method), 456
CGCNNFeaturizer (class in deepchem.feat), 134
CGCNNModel (class in deepchem.models), 304
ChemCeption (class in deepchem.models), 287
CircularFingerprint (class in deepchem.feat), 113
Clean_up_tokenization() (RobertaFeaturizer static method), 149
ClippingTransformer (class in deepchem.trans), 211
Cls_token (RobertaFeaturizer property), 149
Cls_token_id (RobertaFeaturizer property), 149
CNN (class in deepchem.models), 298
CNNModule (class in deepchem.models.torch_models.layers), 375
CombineMeanStd (class in deepchem.models.layers), 346
Complete_shuffle() (DiskDataset method), 35
ComplexFeaturizer (class in deepchem.feat), 173
Compute_charges() (in module deepchem.utils.rdkit_utils), 452
Compute_features_on_batch() (DTNNModel method), 270
Compute_features_on_batch() (WeaveModel method), 269
Compute_metric() (Metric method), 420
Compute_model() (MetaLearner method), 428
Compute_model_performance() (Evaluator method), 459
compute_model_performance() (GeneratorEvaluator method), 461
compute_nbr_list() (NeighborList method), 351
compute_saliency() (KerasModel method), 258
compute_saliency() (TorchModel method), 295
compute_singletask_metric() (Metric method), 421
concordance_index() (in module deepchem.metrics), 418
configure_optimizers() (DCLightningModule method), 322
ConformerGenerator (class in deepchem.utils.conformers), 450
construct_hydrogen_bonding_info() (in module deepchem.utils.molecule_feature_utils), 468
construct_mol() (MATFeaturizer method), 112
construct_node_features_matrix() (MATFeaturizer method), 113
contains() (CoordinateBox method), 457
convert_atom_pair_to_voxel() (in module deepchem.utils.voxel_utils), 466
convert_atom_to_voxel() (in module deepchem.utils.voxel_utils), 466
convert_ids_to_voxel() (in module deepchem.utils.voxel_utils), 466
convert_ids_to_tokens() (RobertaFeaturizer method), 149
convert_tokens_to_ids() (RobertaFeaturizer method), 150
convert_tokens_to_string() (SmilesTokenizer method), 140
ConvexHullPocketFinder (class in deepchem.dock.binding_pocket), 438
ConvMol (class in deepchem.feat.mol_graphs), 53
ConvMolFeaturizer (class in deepchem.feat), 97
CoordinateBox (class in deepchem.utils.coordinate_box_utils), 456
copy() (DiskDataset method), 31
cosine_dist() (in module deepchem.models.layers), 383
coulomb_matrix() (CoulombMatrix method), 120
coulomb_matrix() (CoulombMatrixEig method), 121
CoulombFitTransformer (class in deepchem.trans), 229
CoulombMatrix (class in deepchem.feat), 119
CoulombMatrixEig (class in deepchem.feat), 121
create_dataset() (CSVLoader method), 45
create_dataset() (DataLoader method), 62
create_dataset() (DiskDataset static method), 30
create_dataset() (FASTALoader method), 51
create_dataset() (ImageLoader method), 47
create_dataset() (InMemoryLoader method), 52
create_dataset() (JsonLoader method), 49
create_dataset() (SDFLoader method), 50
create_dataset() (UserCSVLoader method), 46
create_discriminator() (BasicMolGANModel method), 275
create_discriminator() (GAN method), 280
create_discriminator_loss() (GAN method), 281
create_discriminator_loss() (WGAN method), 282
create_generator() (BasicMolGANModel method), 275
create_generator() (GAN method), 280
create_generator_loss() (GAN method), 280
create_generator_loss() (WGAN method), 282
create_model() (Policy method), 432
create_nll() (NormalizingFlowModel method), 289
create_token_type_ids_from_sequences() (RobertaFeaturizer method), 150
CSVLoader (class in deepchem.data), 44
cutoff_filter() (in module deepchem.dock.pose_scoring), 444
D
DAGGather (class in deepchem.models.layers), 370
DAGLayer (class in deepchem.models.layers), 369
DAGModel (class in deepchem.models), 271
DAGTransformer (class in deepchem.trans), 233
data_dir (DiskDataset attribute), 29
DataLoader (class in deepchem.data), 61
Dataset (class in deepchem.data), 57
DCLightningModule (class in deepchem.models), 322
decode() (RobertaFeaturizer method), 150
decoder (RobertaFeaturizer property), 150
default_generator() (AtomicConvModel method), 285
default_generator() (ChemCeption method), 288
default_generator() (CNN method), 299
default_generator() (DAGModel method), 271
default_generator() (DMPNNModel method), 321
default_generator() (DTNNModel method), 270
default_generator() (GraphConvModel method), 272
default_generator() (JaxModel method), 329
default_generator() (KerasModel method), 259
default_generator() (MATModel method), 318
default_generator() (MPNNModel method), 273
default_generator() (MultitaskClassifier method), 304
default_generator() (MultitaskFitTransformerRegressor method), 302
default_generator() (MultitaskRegressor method), 301
default_generator() (PINNModel method), 331
default_generator() (RobustMultitaskClassifier method), 262
default_generator() (RobustMultitaskRegressor method), 263
default_generator() (ScScoreModel method), 276
find_distance() (in module deepchem.feat.graph_features), 109
find_pockets() (BindingPocketFinder method), 438
find_pockets() (ConvexHullPocketFinder method), 439
FingerprintSplitter (class in deepchem.splits), 201
fit() (A2C method), 434
fit() (GBDTModel method), 246
fit() (JaxModel method), 327
fit() (KerasModel method), 254
fit() (MAML method), 429
fit() (Model method), 242
fit() (PPO method), 437
fit() (ProgressiveMultitaskRegressor method), 265
fit() (SklearnModel method), 244
fit() (TorchModel method), 292
fit_gan() (GAN method), 281
fit_generator() (KerasModel method), 255
fit_on_batch() (Model method), 242
fit_on_batch() (TorchModel method), 293
fit_sequences() (SeqToSeq method), 278
fit_task() (ProgressiveMultitaskRegressor method), 266
fit_with_eval() (GBDTModel method), 246
forward() (Affine method), 386
forward() (CNNModule method), 377
forward() (DMPNNEncoderLayer method), 392
forward() (GraphNetwork method), 385
forward() (MATEmbedding method), 382
forward() (MATEncoderLayer method), 379
forward() (MATGenerator method), 383
forward() (MultiHeadedMATAttention method), 380
forward() (PositionwiseFeedForward method), 382
forward() (RealNVPLayer method), 387
forward() (ScaleNorm method), 377
forward() (SublayerConnection method), 381
from_dataframe() (Dataset static method), 61
from_dataframe() (DiskDataset static method), 37
from_dataframe() (ImageDataset static method), 42
from_dataframe() (NumpyDataset static method), 26
from_DiskDataset() (NumpyDataset static method), 26
from_json() (NumpyDataset static method), 26
from_leaf() (Dataset static method), 33
from_one_hot() (in module deepchem.utils.molecule_feature_utils), 394
from_pretrained() (RobertaFeaturizer class method), 155

G
GAN (class in deepchem.models), 279
GatedRecurrentUnit (class in deepchem.models.layers), 373
GATModel (class in deepchem.models), 305
gauss_initialize_position() (ElectronSampler method), 478
gaussian_distance_matrix() (AtomicConvolution method), 354
gaussian_first() (VinaFreeEnergy method), 349
gaussian_histogram() (WeaveGather method), 367
gaussian_second() (VinaFreeEnergy method), 349
GaussianProcessHyperparamOpt (class in deepchem.models), 426
GBDTModel (class in deepchem.models), 245
GCNModel (class in deepchem.models), 307
generate_conformers() (ConformerGenerator method), 450
generate_pose() (GninaPoseGenerator method), 441
generate_pose() (PoseGenerator method), 439
generate_pose() (VinaPoseGenerator method), 440
generate_random_rotation_matrix() (in module deepchem.utils.geometry_utils), 464
generate_random_unit_vector() (in module deepchem.utils.geometry_utils), 464
generate_scaffolds() (ScaffoldSplitter method), 192
GeneratorEvaluator (class in deepchem.utils.evaluate), 460
get_added_vocab() (RobertaFeaturizer method), 156
get_adjacency_list() (ConvMol method), 54
get_atom_chirality_one_hot() (in module deepchem.utils.molecule_feature_utils), 469
get_atom_features() (ConvMol method), 54
get_atom_features() (MultiConvMol method), 54
get_atom_features() (WeaveMol method), 55
get_atom_formal_charge() (in module deepchem.utils.molecule_feature_utils), 470
get_atom_hybridization_one_hot() (in module deepchem.utils.molecule_feature_utils), 469
get_atom_hydrogen_bonding_one_hot() (in module deepchem.utils.molecule_feature_utils), 469
get_atom_is_in_aromatic_one_hot() (in module deepchem.utils.molecule_feature_utils), 469
get_atom_partial_charge() (in module deepchem.utils.molecule_feature_utils), 470
get_atom_total_degree_one_hot() (in module deepchem.utils.molecule_feature_utils), 470
get_atom_total_num_Hs_one_hot() (in module deepchem.utils.molecule_feature_utils), 470
get_atom_type_one_hot() (in module deepchem.utils.molecule_feature_utils), 470
get_bond_is_conjugated_one_hot() (in module deepchem.utils.molecule_feature_utils), 469
get_bond_graph_distance_one_hot() (in module deepchem.utils.molecule_feature_utils), 470
get_bond_graph_distance() (in module deepchem.utils.molecule_feature_utils), 469
get_bond_is_in_aromatic_one_hot() (in module deepchem.utils.molecule_feature_utils), 469
get_atoms_in_nbrs() (NeighborList method), 53
get_batch() (MetaLearner method), 428
get_batch() (ConvMol method), 53
get_batch() (MetaLearner method), 428
get_bond_graph_distance_one_hot() (in module deepchem.utils.molecule_feature_utils), 471
get_bond_is_conjugated_one_hot() (in module deepchem.utils.molecule_feature_utils), 471
get_max_atom_degree() (in module deepchem.utils.molecule_feature_utils), 469
get_max_atom_degree() (in module deepchem.utils.molecule_feature_utils), 469
get_max_bond_degree() (in module deepchem.utils.molecule_feature_utils), 469
get_max_bond_degree() (in module deepchem.utils.molecule_feature_utils), 469
get_num_atoms() (in module deepchem.utils.geometry_utils), 464
get_num_bonds() (in module deepchem.utils.geometry_utils), 464
get_num heavy atoms() (in module deepchem.utils.molecule_feature_utils), 469
get_num heavy atoms() (in module deepchem.utils.molecule_feature_utils), 469
get_num heavy bonds() (in module deepchem.utils.molecule_feature_utils), 470
get_num heavy bonds() (in module deepchem.utils.molecule_feature_utils), 470
get_num heavy degree() (in module deepchem.utils.molecule_feature_utils), 469
get_num heavy degree() (in module deepchem.utils.molecule_feature_utils), 469
get_num heavy conjugated degree() (in module deepchem.utils.molecule_feature_utils), 469
get_num heavy conjugated degree() (in module deepchem.utils.molecule_feature_utils), 469
get_num heavy conjugating bonds() (in module deepchem.utils.molecule_feature_utils), 470
get_num heavy conjugating bonds() (in module deepchem.utils.molecule_feature_utils), 470
get_num heavy conjugating degree() (in module deepchem.utils.molecule_feature_utils), 469
get_num heavy conjugating degree() (in module deepchem.utils.molecule_feature_utils), 469
get_num heavy conjugating bonds() (in module deepchem.utils.molecule_feature_utils), 470
get_num heavy conjugating bonds() (in module deepchem.utils.molecule_feature_utils), 470
get_num heavy conjugating degree() (in module deepchem.utils.molecule_feature_utils), 469
get_num heavy conjugating degree() (in module deepchem.utils.molecule_feature_utils), 469
get_num heavy conjugating bonds() (in module deepchem.utils.molecule_feature_utils), 470
get_num heavy conjugating bonds() (in module deepchem.utils.molecule_feature_utils), 470
get_num heavy conjugating degree() (in module deepchem.utils.molecule_feature_utils), 469
get_num heavy conjugating degree() (in module deepchem.utils.molecule_feature_utils), 469
get_num heavy conjugating bonds() (in module deepchem.utils.molecule_feature_utils), 470
get_num heavy conjugating bonds() (in module deepchem.utils.molecule_feature_utils), 470
get_num heavy conjugating degree() (in module deepchem.utils.molecule_feature_utils), 469
get_num heavy conjugating degree() (in module deepchem.utils.molecule_feature_utils), 469
get_num heavy conjugating bonds() (in module deepchem.utils.molecule_feature_utils), 470
get_num heavy conjugating bonds() (in module deepchem.utils.molecule_feature_utils), 470
get_num heavy conjugating degree() (in module deepchem.utils.molecule_feature_utils), 469
get_num heavy conjugating degree() (in module deepchem.utils.molecule_feature_utils), 469
get_num heavy conjugating bonds() (in module deepchem.utils.molecule_feature_utils), 470
get_num heavy conjugating bonds() (in module deepchem.utils.molecule_feature_utils), 470
get_num heavy conjugating degree() (in module deepchem.utils.molecule_feature_utils), 469
get_num heavy conjugating degree() (in module deepchem.utils.molecule_feature_utils), 469
get_num heavy conjugating bonds() (in module deepchem.utils.molecule_feature_utils), 470
get_num heavy conjugating bonds() (in module deepchem.utils.molecule_feature_utils), 470
get_num heavy conjugating degree() (in module deepchem.utils.molecule_feature_utils), 469
get_num heavy conjugating degree() (in module deepchem.utils.molecule_feature_utils), 469
get_num heavy conjugating bonds() (in module deepchem.utils.molecule_feature_utils), 470
get_num heavy conjugating bonds() (in module deepchem.utils.molecule_feature_utils), 470
get_num heavy conjugating degree() (in module deepchem.utils.molecule_feature_utils), 469
get_num heavy conjugating degree() (in module deepchem.utils.molecule_feature_utils), 469
get_num heavy conjugating bonds() (in module deepchem.utils.molecule_feature_utils), 470
get_num heavy conjugating bonds() (in module deepchem.utils.molecule_feature_utils), 470
get_num heavy conjugating degree() (in module deepchem.utils.molecule_feature_utils), 469
get_num heavy conjugating degree() (in module deepchem.utils.molecule_feature_utils), 469
get_num heavy conjugating bonds() (in module deepchem.utils.molecule_feature_utils), 470
get_num heavy conjugating bonds() (in module deepchem.utils.molecule_feature_utils), 470
get_num heavy conjugating degree() (in module deepchem.utils.molecule_feature_utils), 469
get_num heavy conjugating degree() (in module deepchem.utils.molecule_feature_utils), 469

get_cells() (in module deepchem.utils.molecule_feature_utils), 470
get_cells_for_atoms() (in module deepchem.utils.molecule_feature_utils), 471
get_cells() (NeighborList method), 352
get_checkpoints() (KerasModel method), 259
get_checkpoints() (TorchModel method), 296
get_closest_atoms() (NeighborList method), 351
get_conditional_input_shapes() (GAN method), 280
get_config() (AlphaShareLayer method), 354
get_config() (ANIFeat method), 358
get_config() (AtomicConvolution method), 352
get_config() (AttnLSTMEmbedding method), 342
get_config() (BetaShare method), 357
get_config() (CombineMeanStd method), 347
get_config() (DAGGather method), 371
get_config() (DAGLayer method), 370
get_config() (DTNNEmbedding method), 367
get_config() (DTNNGather method), 369
get_config() (DTNNStep method), 368
get_config() (EdgeNetwork method), 372
get_config() (GatedRecurrentUnit method), 373
get_config() (GraphCNN method), 360
get_config() (GraphConv method), 333
get_config() (GraphEmbedPoolLayer method), 358
get_config() (GraphGather method), 336
get_config() (GraphPool method), 335
get_config() (Highway method), 361
get_config() (InteratomicL2Distances method), 332
get_config() (IterReflSTMEmbedding method), 343
get_config() (LSTMStep method), 341
get_config() (MessagePassing method), 372
get_config() (MolGANAggregationLayer method), 339
get_config() (MolGANCovarianceLayer method), 338
get_config() (MolGANEncoderLayer method), 341
get_config() (MolGANMultiConvolutionLayer method), 340
get_config() (NeighborList method), 350
get_config() (SetGatherer method), 375
get_config() (SluiceLoss method), 356
get_config() (Stack method), 348
get_config() (SwitchedDropout method), 344
get_config() (VinaFreeEnergy method), 349
get_config() (WeaveGatherer method), 366
get_config() (WeaveLayer method), 365
get_config() (WeightedLinearCombo method), 345
get_conformer_energies() (ConformerGenerator method), 451
get_conformer_rmsd() (ConformerGenerator static method), 451
get_contact_atom_indices() (in module deepchem.utils.fragment_utils), 455
get_data_dir() (in module deepchem.utils.data_utils), 446
get_data_input_shapes() (BasicGanModel method), 275
get_data_input_shapes() (GAN method), 280
get_data_shape() (DiskDataset method), 32
get_deg_adjacency_lists() (ConvMol method), 54
get_deg_adjacency_lists() (MultiConvMol method), 54
get_deg_slice() (ConvMol method), 54
get_face_boxes() (in module deepchem.utils.coordinate_box_utils), 458
get_feature_list() (in module deepchem.feat.graph_features), 108
get_global_step() (JaxModel method), 329
get_global_step() (KerasModel method), 259
get_global_step() (TorchModel method), 297
get_interatomic_distances() (CoulombMatrix static method), 120
get_interatomic_distances() (CoulombMatrixEig static method), 122
get_intervals() (in module deepchem.feat.graph_features), 107
get_label_means() (DiskDataset method), 37
get_label_stds() (DiskDataset method), 37
get_max_print_size() (in module deepchem.utils.debug_utils), 474
get_model_filename() (Model static method), 242
get_molecule_force_field() (ConformerGenerator method), 451
get_motif_scores() (in module deepchem.metrics.genomic_metrics), 418
get_neighbor_cells() (NeighborList method), 352
get_noise_batch() (GAN method), 280
get_noise_input_shape() (BasicGanModel method), 275
get_noise_input_shape() (GAN method), 280
get_null_mol() (ConvMol static method), 54
get_num_atoms() (MultiConvMol method), 54
get_num_atoms() (WeaveMol method), 55
get_num_atoms_with_deg() (ConvMol method), 53
get_num_features() (WeaveMol method), 55
get_num_molecules() (MultiConvMol method), 55
get_num_tasks() (Model method), 243
get_number_shards() (DiskDataset method), 32
get_pair_edges() (WeaveMol method), 55
get_pair_features() (WeaveMol method), 55
get_params_filename() (Model static method), 242
get_print_threshold() (in module deepchem.utils.debug_utils), 474
get_pssm_scores() (in module deepchem.metrics.genomic_metrics), 419
get_shape() (Dataset method), 57
get_shape() (DiskDataset method), 37
get_shape() (ImageDataset method), 40
get_shape() (NumpyDataset method), 24
get_shard() (DiskDataset method), 35
get_shard() (ImageDataset method), 24
get_shard_ids() (DiskDataset method), 36
get_shard_size() (DiskDataset method), 24
get_shard_w() (DiskDataset method), 36
get_shard_y() (DiskDataset method), 36
get_special_tokens_mask() (RobertaFeaturizer method), 157
get_statistics() (Dataset method), 59
get_statistics() (DiskDataset method), 38
get_statistics() (ImageDataset method), 42
get_statistics() (NumpyDataset method), 27
get_task_names() (Dataset method), 57
get_task_names() (DiskDataset method), 31
get_task_names() (ImageDataset method), 40
get_task_names() (NumpyDataset method), 24
get_task_type() (Model method), 243
get_vector() (ElemNetFeaturizer method), 133
get_vocab() (RobertaFeaturizer method), 157
get_xyz_from_mol() (in module deepchem.utils.rdkit_utils), 451
GetAtomicNum() (AtomShim method), 454
GetAtoms() (MolecularFragment method), 453
GetCoords() (AtomShim method), 454
GetCoords() (MolecularFragment method), 454
GetNumAtoms() (MolecularFragment method), 453
GetPartialCharge() (AtomShim method), 454
GninaPoseGenerator (class in deepchem.models.layers), 250
GradientDescent (class in deepchem.models.optimizers), 250
GraphCNN (class in deepchem.models.layers), 359
GraphConv (class in deepchem.models.layers), 333
GraphConvConstants (class deepchem.featurizer.graph_features), 106
GraphConvModel (class in deepchem.models), 272
GraphData (class in deepchem.featurizer.graph_data), 55
GraphEmbedPoolLayer (class in deepchem.models.layers), 358
Graph Gather (class in deepchem.models.layers), 336
GraphNetwork (class in deepchem.models.torch_models.layers), 384
GraphPool (class in deepchem.models.layers), 334
GridHyperparamOpt (class in deepchem.hyper), 424
GymEnvironment (class in deepchem.rl), 431

HarmonicMean() (ElectronSampler method), 477
HashECFP() (in module deepchem.datasets.datasets), 465
HashECFPPair() (in module deepchem.datasets.datasets), 465
Hhblits() (in module deepchem.datasets.sequence), 462
Hhsearch() (in module deepchem.datasets.sequence), 463
Highway (class in deepchem.models.layers), 361
HingeLoss (class in deepchem.models.losses), 246
HuberLoss (class in deepchem.models.losses), 246
HydrogenBond() (VinaFreeEnergy method), 349
Hydrophobic() (VinaFreeEnergy method), 349
HyperparamSearch() (GaussianProcessHyperparamOpt method), 427
HyperparamSearch() (GridHyperparamOpt method), 425
HyperparamSearch() (HyperparamOpt method), 423
HyperparamOpt (class in deepchem.hyper), 423

IdToFeatures() (in module deepchem.featurization.graph_features), 108
Ids (Dataset property), 58
Ids (DiskDataset property), 37
Ids (ImageDataset property), 40
Ids (NumpyDataset property), 24
ImageDataset (class in deepchem.data), 39
ImageLoader (class in deepchem.data), 47
ImageTransformer (class in deepchem.trans), 225
inSilicoMutagenesis() (in module deepchem.metrics.genomic_metrics), 419
IndexSplitter (class in deepchem.splits), 185
InMemoryLoader (class in deepchem.data), 51
InteratomicL2Distances (class in deepchem.models.layers), 332
IntersectInterval() (in module deepchem.datasets.coordinate_box_utils), 457
Intervals() (GraphConvConstants attribute), 106
Inverse() (Affine method), 386
Inverse() (RealNVPLayer method), 388
IRVTransformer (class in deepchem.trans), 231
IsAngleWithinCutoff() (in module deepchem.datasets.geometry_utils), 465
Iterbatches() (Dataset method), 58
Iterbatches() (DiskDataset method), 32
Iterbatches() (ImageDataset method), 40
Iterbatches() (NumpyDataset method), 24
IterRefLSTMEmbedding (class in deepchem.models.layers), 343
Itersamples() (Dataset method), 59
Itersamples() (DiskDataset method), 32
Itersamples() (ImageDataset method), 41
Itersamples() (NumpyDataset method), 24
Loss (class in deepchem.models.losses), 246
LSTMStep (class in deepchem.models.layers), 341

M
MACSKeysFingerprint (class in deepchem.feat), 111
mae_score() (in module deepchem.metrics), 417
make_pytorch_dataset() (Dataset method), 60
make_pytorch_dataset() (DiskDataset method), 33
make_pytorch_dataset() (ImageDataset method), 41
make_pytorch_dataset() (NumpyDataset method), 25
make_tf_dataset() (Dataset method), 60
make_tf_dataset() (DiskDataset method), 38
make_tf_dataset() (ImageDataset method), 42
MAML (class in deepchem.metalearning), 429
mask_token (RobertaFeaturizer property), 157
mask_token_id (RobertaFeaturizer property), 157
MATEmbedding (class in deepchem.models.torch_models.layers), 382
MATEncoderLayer (class in deepchem.models.torch_models.layers), 378
MaterialCompositionFeaturizer (class in deepchem.feat), 172
MaterialStructureFeaturizer (class in deepchem.feat), 173
MATFeaturizer (class in deepchem.feat), 112
MATGenerator (class in deepchem.models.torch_models.layers), 382
MATModel (class in deepchem.models.torch_models), 316
matrix_mul() (IRVTransformer static method), 232
matthews_corrcoef() (in module deepchem.metrics), 396
max_len_sentences_pair (RobertaFeaturizer property), 157
max_len_single_sentence (RobertaFeaturizer property), 157
MinMaxSplitter (class in deepchem.splits), 197
mean_absolute_error() (in module deepchem.metrics), 402
mean_squared_error() (in module deepchem.metrics), 401
MEGNetModel (class in deepchem.models), 315
memory_cache_size (DiskDataset static method), 37
merge() (DiskDataset static method), 34
merge() (NumpyDataset static method), 26
merge_molecular_fragments() (in module deepchem.utils.fragment_utils), 455
merge_overlapping_boxes() (in module deepchem.utils.coordinate_box_utils), 457
MessagePassing (class in deepchem.models.layers), 371
metadata_df (DiskDataset attribute), 29
MetaLearner (class in deepchem.metalearning), 428
Metric (class in deepchem.metrics), 419
minimize_conformers() (ConformerGenerator method), 451
MinMaxTransformer (class in deepchem.trans), 209
Model (class in deepchem.models), 242
Mol2VecFingerprint (class in deepchem.feat), 115
MolecularFeaturizer (class in deepchem.feat), 171
MolecularFragment (class in deepchem.utils.fragment_utils), 453
MolecularWeightSplitter (class in deepchem.splits), 194
MoleculeLoadException (class in deepchem.utils.rdkit_utils), 451
MolGANAggregationLayer (class in deepchem.models.layers), 338
MolGANConvolutionLayer (class in deepchem.models.layers), 336
MolGANEncoderLayer (class in deepchem.models.layers), 340
MolGANFeaturizer (class in deepchem.feat), 100
MolGANMultiConvolutionLayer (class in deepchem.models.layers), 339
MolGraphConvFeaturizer (class in deepchem.feat), 101
MordredDescriptors (class in deepchem.feat), 118
move() (DiskDataset method), 31
move() (ElectronSampler method), 478
MPNNModel (class in deepchem.models), 273
MPNNModel (class in deepchem.models.torch_models), 312
MSA_to_dataset() (in module deepchem.utils.sequence_utils), 463
MultiConvNet (class in deepchem.feat.mol_graphs), 54
MultiHeadedMATAttention (class in deepchem.models.torch_models.layers), 379
MultiTaskClassifier (class in deepchem.models), 303
MultitaskFitTransformerRegressor (class in deepchem.models), 301
MultitaskRegressor (class in deepchem.models), 300
n_actions (Environment property), 431
NeighborList (class in deepchem.models.layers), 350
node_features (GraphData attribute), 55
node_pos_features (GraphData attribute), 55
nonlinearity() (VinaFreeEnergy method), 349
NormalizationTransformer (class in deepchem_trans), 207
normalize() (CoulombFitTransformer method), 229
normalize_labels_shape() (in module deepchem.metrics), 395
normalize_prediction_shape() (in module deepchem.metrics), 395
normalize_weight_shape() (in module deepchem.metrics), 394
NormalizingFlow (class in deepchem.models.torch_models), 318
NormalizingFlowModel (class in deepchem.models.normalizing_flows), 288
num_edges (GraphData attribute), 56
num_edges_features (GraphData attribute), 56
num_node_features (GraphData attribute), 56
num_nodes (GraphData attribute), 55
num_special_tokens_to_add() (RobertaFeaturizer method), 157
NumpyDataset (class in deepchem.data), 23

one_hot_encode() (in module deepchem.utils.molecule_feature_utils), 468
one_of_k_encoding() (in module deepchem.feat.graph_features), 106
one_of_k_encoding_unk() (in module deepchem.feat.graph_features), 107
OneHotFeaturizer (class in deepchem.feat), 126
Optimizer (class in deepchem.models.optimizers), 249
output_predictions() (Evaluator method), 459
output_statistics() (Evaluator method), 459

P
pad() (RobertaFeaturizer method), 158
pad_array() (in module deepchem.utils.data_utils), 446
pad_array() (MATModel method), 317
pad_sequence() (MATModel method), 317
pad_smile() (OneHotFeaturizer method), 127
pad_string() (OneHotFeaturizer method), 127
pad_token (RobertaFeaturizer property), 159
pad_token_id (RobertaFeaturizer property), 159
pad_token_type_id (RobertaFeaturizer property), 159
PagtnModel (class in deepchem.models), 310
PagtnMolGraphFeaturizer (class in deepchem.feat), 103
pair_features() (in module deepchem.feat.graph_features), 110
pairwise_distances() (in module deepchem.doc.pose_scoring), 444
pearson_r2_score() (in module deepchem.metrics), 416
PFMFeaturizer (class in deepchem.feat.sequence_featurizers), 142
PINNModel (class in deepchem.models), 330
pixel_error() (in module deepchem.metrics), 416
PoissonLoss (class in deepchem.models.losses), 246
Policy (class in deepchem.rl), 432
PolynomialDecay (class in deepchem.models.optimizers), 251
PoseGenerator (class in deepchem.doc.pose_generation), 439
PositionwiseFeedForward (class in deepchem.models.torch_models.layers), 381
possible_atom_list (GraphConvConstants attribute), 106
possible_bond_stereo (GraphConvConstants attribute), 106
possible_chirality_list (GraphConvConstants attribute), 106
possible_formal_charge_list (GraphConvConstants attribute), 106
possible_hybridization_list (GraphConvConstants attribute), 106
possible_number_radical_e_list (GraphConvConstants attribute), 106
possible_numH_list (GraphConvConstants attribute), 106
possible_valence_list (GraphConvConstants attribute), 106
PowerTransformer (class in deepchem.trans), 218
PPO (class in deepchem.rl.ppo), 435
PPOLoss (class in deepchem.rl.ppo), 438
prc_auc_score() (in module deepchem.metrics), 417
precision_recall_curve() (in module deepchem.metrics), 405
precision_score() (in module deepchem.metrics), 403
predict() (A2C method), 434
predict() (JaxModel method), 328
predict() (KerasModel method), 257
predict() (Model method), 242
predict() (PPO method), 437
predict() (SklearnModel method), 245
predict() (TorchModel method), 294
predict_embedding() (KerasModel method), 257
predict_embedding() (TorchModel method), 295
predict_embeddings() (SeqToSeq method), 279
predict_from_embeddings() (SeqToSeq method), 279
predict_from_sequences() (SeqToSeq method), 278
predict_gan_generator() (BasicMolGANModel method), 276
predict_gan_generator() (GAN method), 281
predict_on_batch() (JaxModel method), 328
predict_on_batch() (KerasModel method), 256
predict_on_batch() (MAML method), 430
predict_on_batch() (Model method), 242
predict_on_batch() (SklearnModel method), 244
predict_on_batch() (TorchModel method), 294
predict_on_generator() (JaxModel method), 328
predict_on_generator() (KerasModel method), 256
predict_on_generator() (MultitaskFitTransformerRegressor method), 302
predict_on_generator() (TorchModel method), 293
predict_uncertainty() (KerasModel method), 258
predict_uncertainty() (TorchModel method), 295
predict_uncertainty_on_batch() (KerasModel method), 257
predict_uncertainty_on_batch() (TorchModel method), 294
prepare_for_model() (RobertaFeaturizer method), 159
prepare_inputs() (in module deepchem.utils.docking_utils), 473
prepare_seq2seq_batch() (RobertaFeaturizer method), 162
ProgressiveMultitaskClassifier (class in deepchem.models), 264
ProgressiveMultitaskRegressor (class in deepchem.models), 265
prune_conformers() (ConformerGenerator method), 451
PubChemFingerprint (class in deepchem.feat), 115
push_to_hub() (RobertaFeaturizer method), 163
r2_score() (in module deepchem.metrics), 399
radial_cutoff() (AtomicConvolution method), 353
radial_symmetry() (ANIFeat method), 358
radial_symmetry_function() (AtomicConvolution method), 353
RandomGroupSplitter (class in deepchem.splits), 177
randomize_coulomb_matrix() (CoulombMatrix method), 120
randomize_coulomb_matrix() (CoulombMatrixEig method), 122
RandomStratifiedSplitter (class in deepchem.splits), 174
RandomStratifiedSplitter (class in deepchem.splits), 180
RawFeaturizer (class in deepchem.feat), 128
RDKitDescriptors (class in deepchem.feat), 117
RdkitGridFeaturizer (class in deepchem.feat), 129
read_gnina_log() (in module deepchem.utils.docking_utils), 474
realize() (CoulombFitTransformer method), 229
realize() (IRVTTransformer method), 232
RealNVPLayer (class in deepchem.models.torch_models.layers), 387
recall_score() (in module deepchem.metrics), 397
reduce_molecular_complex_to_contacts() (in module deepchem.utils.fragment_utils), 455
reference_lists (GraphConvConstants attribute), 106
register_for_auto_class() (RobertaFeaturizer class method), 164
relative_difference() (in module deepchem.utils.evaluate), 461
reload() (AtomicConvModel method), 286
reload() (Model method), 242
reload() (NormalizingFlowModel method), 289
reload() (SklearnModel method), 245
remove_pad() (SmilesToSeq method), 124
repulsion() (VinaFreeEnergy method), 349
reset() (Environment method), 431
reset() (GymEnvironment method), 431
reshard() (DiskDataset method), 31
restore() (A2C method), 435
restore() (KerasModel method), 259
restore() (MAML method), 429
restore() (PPO method), 438
restore() (TorchModel method), 296
rms_score() (in module deepchem.metrics), 417
RMSProp (class in deepchem.models.optimizers), 250
RobertaFeaturizer (class in deepchem.feat), 143
RobustMultitaskClassifier (class in deepchem.models), 261
RobustMultitaskRegressor (class in deepchem.models), 262
roc_auc_score() (in module deepchem.metrics), 410
RxnFeaturizer (class in deepchem.feat), 168
RxnSplitTransformer (class in deepchem.trans), 235
safe_index() (in module deepchem.feat.graph_features), 107
sample() (FakeGraphGenerator method), 475
sanitize_special_tokens() (RobertaFeaturizer method), 164
save() (AtomicConvModel method), 286
save() (Model method), 242
save() (NormalizingFlowModel method), 289
save() (SklearnModel method), 245
save_checkpoint() (KerasModel method), 259
save_checkpoint() (TorchModel method), 296
save_dataset_to_disk() (in module deepchem.utils.data_utils), 449
save_pretrained() (RobertaFeaturizer method), 164
save_to_disk() (DiskDataset method), 31
save_to_disk() (in module deepchem.utils.data_utils), 448
save vocabulary() (RobertaFeaturizer method), 165
save vocabulary() (SmilesTokenizer method), 141
ScaffoldSplitter (class in deepchem.splits), 191
ScaleNorm (class in deepchem.models.torch_models.layers), 377
ScScoreModel (class in deepchem.models), 276
SDFLoader (class in deepchem.data), 49
select() (Dataset method), 59
select() (DiskDataset method), 36
select() (ImageDataset method), 41
select() (NumpyDataset method), 25
select_action() (A2C method), 435
select_action() (PPO method), 437
select_task() (MetaLearner method), 428
sentences2vec() (Mol2VecFingerprint method), 116

Index 501
sep_token (RobertaFeaturizer property), 165
sep_token_id (RobertaFeaturizer property), 165
seq_one_hot_encode() (in module deepchem.utils.genomics_utils), 462
SeqToSeq (class in deepchem.models), 277
set_max_print_size() (in module deepchem.utils.debug_utils), 474
set_print_threshold() (in module deepchem.utils.debug_utils), 474
set_shard() (DiskDataset method), 35
set_truncation_and_padding() (RobertaFeaturizer method), 165
SetGather (class in deepchem.models.layers), 374
ShannonEntropy (class in deepchem.models.losses), 248
shuffle_each_shard() (DiskDataset method), 35
shuffle_shards() (DiskDataset method), 35
SigmoidCrossEntropy (class in deepchem.models.losses), 247
SineCoulombMatrix (class in deepchem.feat), 133
SingletontaskStratifiedSplitter (class in deepchem.splits), 182
SklearnModel (class in deepchem.models), 244
slow_tokenizer_class (RobertaFeaturizer attribute), 166
Smiles2Vec (class in deepchem.models), 286
smiles_from_seq() (SmilesToSeq method), 124
smiles_to_seq() (TextCNNModel method), 284
smiles_to_seq_batch() (TextCNNModel method), 284
SmilesToImage (class in deepchem.feat), 125
SmilesTokenizer (class in deepchem.feat), 124
SoftmaxCrossEntropy (class in deepchem.models.losses), 247
sparse_shuffle() (DiskDataset method), 35
SparseAdam (class in deepchem.models.optimizers), 250
SparseMatrixOneHotFeaturizer (class in deepchem.feat), 127
SparseSoftmaxCrossEntropy (class in deepchem.models.losses), 247
special_tokens_map (RobertaFeaturizer property), 166
special_tokens_map_extended (RobertaFeaturizer property), 166
SpecifiedSplitter (class in deepchem.splits), 187
split() (ButinaSplitter method), 199
split() (FingerprintSplitter method), 201
split() (IndexSplitter method), 185
split() (MinMaxSplitter method), 197
split() (MolecularWeightSplitter method), 194
split() (RandomGroupSplitter method), 178
split() (RandomSplitter method), 175
split() (RandomStratifiedSplitter method), 180
split() (ScaffoldSplitter method), 191
split() (SingletontaskStratifiedSplitter method), 183
split() (SpecifiedSplitter method), 187
split() (Splitter method), 206
split() (TaskSplitter method), 190
Splitter (class in deepchem.splits), 204
SquaredHingeLoss (class in deepchem.models.losses), 246
Stack (class in deepchem.models.layers), 348
state (Environment property), 431
state_dtype (Environment property), 431
state_shape (Environment property), 431
step() (Environment method), 431
step() (GymEnvironment method), 432
strip_hydrogens() (in module deepchem.utils.fragment_utils), 454
SublayerConnection (class in deepchem.models.torch_models.layers), 380
subset() (DiskDataset method), 34
sum_neigh() (GraphConv method), 334
SwitchedDropout (class in deepchem.models.layers), 344

T

TaskSplitter (class in deepchem.splits), 189
TensorflowMultitaskIRVClassifier (class in deepchem.models), 260
terminated (Environment property), 431
TextCNNModel (class in deepchem.models), 283
to_csv() (Dataset method), 61
to_csv() (DiskDataset method), 39
to_csv() (ImageDataset method), 43
to_csv() (NumpyDataset method), 27
to_dataframe() (Dataset method), 60
to_dataframe() (DiskDataset method), 39
to_dataframe() (ImageDataset method), 43
to_dataframe() (NumpyDataset method), 28
to_dgl_graph() (GraphData method), 57
to_json() (NumpyDataset method), 26
to_one_hot() (in module deepchem.metrics), 394
to_pyg_graph() (GraphData method), 56
to_seq() (SmilesToSeq method), 124
tokenize() (BasicSmilesTokenizer method), 141
tokenize() (RobertaFeaturizer method), 166
top_k_accuracy_score() (in module deepchem.metrics), 415

TorchModel (class in deepchem.models), 290
train_new_from_iterator() (RobertaFeaturizer method), 166
train_on_current_task() (MAML method), 429
train_test_split() (ButinaSplitter method), 200
train_test_split() (FingerprintSplitter method), 203
train_test_split() (IndexSplitter method), 186
train_test_split() (MaxMinSplitter method), 198
train_test_split() (MolecularWeightSplitter method), 195
train_test_split() (RandomGroupSplitter method), 178
train_test_split() (RandomSplitter method), 176
train_valid_test_split() (RandomStratifiedSplitter method), 181
train_test_split() (ScaffoldSplitter method), 193
train_test_split() (SingletaskStratifiedSplitter method), 183
train_test_split() (SpecifiedSplitter method), 188
train_test_split() (Splitter method), 205
train_test_split() (TaskSplitter method), 190
train_valid_test_split() (ButinaSplitter method), 200
train_valid_test_split() (FingerprintSplitter method), 203
train_valid_test_split() (IndexSplitter method), 186
train_valid_test_split() (MaxMinSplitter method), 198
train_valid_test_split() (MolecularWeightSplitter method), 196
train_valid_test_split() (RandomGroupSplitter method), 179
train_valid_test_split() (RandomSplitter method), 176
train_valid_test_split() (RandomStratifiedSplitter method), 181
train_valid_test_split() (ScaffoldSplitter method), 193
train_valid_test_split() (SingletaskStratifiedSplitter method), 184
train_valid_test_split() (SpecifiedSplitter method), 188
train_valid_test_split() (Splitter method), 205
train_valid_test_split() (TaskSplitter method), 189
training_step() (DCLightingModule method), 325
transform() (BalancingTransformer method), 221
transform() (CDFTransformer method), 217
transform() (ClippingTransformer method), 212
transform() (CoulombFitTransformer method), 230
transform() (DAGTransformer method), 234
transform() (Dataset method), 59
transform() (DiskDataset method), 33
transform() (DuplicateBalancingTransformer method), 224
transform() (FeaturizationTransformer method), 227
transform() (ImageDataset method), 41
transform() (ImageTransformer method), 226
transform() (IRVTransformer method), 232
transform() (LogTransformer method), 215
transform() (MinMaxTransformer method), 210
transform() (NormalizationTransformer method), 208
transform() (NumpyDataset method), 25
transform() (PowerTransformer method), 219
transform() (RxnSplitTransformer method), 236
transform() (Transformer method), 238
transform_array() (BalancingTransformer method), 221
transform_array() (CDFTransformer method), 216
transform_array() (ClippingTransformer method), 212
transform_array() (CoulombFitTransformer method), 230
transform_array() (DAGTransformer method), 234
transform_array() (DuplicateBalancingTransformer method), 224
transform_array() (FeaturizationTransformer method), 227
transform_array() (ImageTransformer method), 225
transform_array() (IRVTransformer method), 232
transform_array() (LogTransformer method), 214
transform_array() (MinMaxTransformer method), 210
transform_array() (NormalizationTransformer method), 208
transform_array() (PowerTransformer method), 219
transform_array() (RxnSplitTransformer method), 236
transform_array() (Transformer method), 238
transform_array() (BalancingTransformer method), 222
transform_array() (CDFTransformer method), 217
transform_array() (ClippingTransformer method), 213
transform_array() (CoulombFitTransformer method), 230
transform_array() (DAGTransformer method), 235
transform_array() (DuplicateBalancingTransformer method), 225
transform_array() (FeaturizationTransformer method), 228
transform_array() (ImageTransformer method), 226
transform_array() (IRVTransformer method), 233
transform_array() (LogTransformer method), 215
transform_array() (MinMaxTransformer method), 211
transform_array() (NormalizationTransformer method), 209
transform_array() (PowerTransformer method), 219
transform_array() (RxnSplitTransformer method), 237