

    
      
          
            
  
The DeepChem Project


  
    [image: Fork me on GitHub]
  
  
    
    

    Installation
    

    

    
 
  

    
      
          
            
  
Installation


Stable version

Install deepchem via pip or conda by simply running,

pip install deepchem





or

conda install -c conda-forge deepchem







Nightly build version

The nightly version is built by the HEAD of DeepChem.

For using general utilites like Molnet, Featurisers, Datasets, etc, then, you install deepchem via pip.

pip install --pre deepchem





Deepchem provides support for tensorflow, pytorch, jax and each require
a individual pip Installation.

For using models with tensorflow dependencies, you install using

pip install --pre deepchem[tensorflow]





For using models with Pytorch dependencies, you install using

pip install --pre deepchem[torch]





For using models with Jax dependencies, you install using

pip install --pre deepchem[jax]





If GPU support is required, then make sure CUDA is installed and then install the desired deep learning framework using the links below before installing deepchem


	tensorflow - just cuda installed


	pytorch - https://pytorch.org/get-started/locally/#start-locally


	jax - https://github.com/google/jax#pip-installation-gpu-cuda




In zsh square brackets are used for globbing/pattern matching. This means
you need to escape the square brackets in the above installation. You can do so by
including the dependencies in quotes like pip install --pre 'deepchem[jax]'

Note: Support for jax is not available in windows (jax is not officially supported in windows).



Google Colab

The fastest way to get up and running with DeepChem is to run it on
Google Colab. Check out one of the DeepChem Tutorials [https://github.com/deepchem/deepchem/tree/master/examples/tutorials] or this
forum post [https://forum.deepchem.io/t/getting-deepchem-running-in-colab/81/7] for Colab quick start guides.



Docker

If you want to install using a docker,
you can pull two kinds of images from DockerHub [https://hub.docker.com/repository/docker/deepchemio/deepchem].


	deepchemio/deepchem:x.x.x


	Image built by using a conda (x.x.x is a version of deepchem)


	This image is built when we push x.x.x. tag


	Dockerfile is put in `docker/tag`_ directory






	deepchemio/deepchem:latest


	Image built from source codes


	This image is built every time we commit to the master branch


	Dockerfile is put in `docker/nightly`_ directory








First, you pull the image you want to use.

docker pull deepchemio/deepchem:latest





Then, you create a container based on the image.

docker run --rm -it deepchemio/deepchem:latest





If you want GPU support:

# If nvidia-docker is installed
nvidia-docker run --rm -it deepchemio/deepchem:latest
docker run --runtime nvidia --rm -it deepchemio/deepchem:latest

# If nvidia-container-toolkit is installed
docker run --gpus all --rm -it deepchemio/deepchem:latest





You are now in a docker container which deepchem was installed.
You can start playing with it in the command line.

(deepchem) root@xxxxxxxxxxxxx:~/mydir# python
Python 3.10.13 |Anaconda, Inc.| (default, Aug 24 2023, 12:59:26)
[GCC 7.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import deepchem as dc





If you want to check the tox21 benchmark:

# you can run our tox21 benchmark
(deepchem) root@xxxxxxxxxxxxx:~/mydir# wget https://raw.githubusercontent.com/deepchem/deepchem/master/examples/benchmark.py
(deepchem) root@xxxxxxxxxxxxx:~/mydir# python benchmark.py -d tox21 -m graphconv -s random







Jupyter Notebook

Installing via these steps will allow you to install and import DeepChem into a jupyter notebook within a conda virtual environment.

Prerequisite


	Shell: Bash, Zsh, PowerShell


	Conda: >4.6




First, please create a conda virtual environment (here it’s named “deepchem-test”) and activate it.

conda create --name deepchem-test
conda activate deepchem-test





Install DeepChem, Jupyter and matplotlib into the conda environment.

conda install -y -c conda-forge nb_conda_kernels matplotlib
pip install tensorflow
pip install --pre deepchem





You may need to use pip3 depending on your Python 3 pip installation. Install pip dependencies after deepchem-test is activated.

While the deepchem-test environment is activated, open Jupyter Notebook by running jupyter notebook. Your terminal prompt should be prefixed with (deepchem-test).
Once Jupyter Notebook opens in a browser, select the new button, and select the environment “Python[conda env:deepchem-test].” This will open a notebook running in the deepchem-test conda virtual environment.



From source with conda

Installing via these steps will ensure you are installing from the source.

Prerequisite


	Shell: Bash, Zsh, PowerShell


	Conda: >4.6




First, please clone the deepchem repository from GitHub.

git clone https://github.com/deepchem/deepchem.git
cd deepchem





Then, execute the shell script. The shell scripts require two arguments,
python version and gpu/cpu.

source scripts/install_deepchem_conda.sh 3.10 cpu





If you want GPU support (we supports only CUDA 11.8):

source scripts/install_deepchem_conda.sh 3.10 gpu





If you are using the Windows and the PowerShell:

.\scripts\install_deepchem_conda.ps1 3.10 cpu






Sometimes, PowerShell scripts can’t be executed due to problems in Execution Policies.

In that case, you can either change the Execution policies or use the bypass argument.



powershell -executionpolicy bypass -File .\scripts\install_deepchem_conda.ps1 3.10 cpu






Before activating deepchem environment, make sure conda has been initialized.

Check if there is a (XXXX) in your command line.

If not, use conda init <YOUR_SHELL_NAME> to activate it, then:



conda activate deepchem
pip install -e .
pytest -m "not slow" deepchem # optional







From source lightweight guide

Installing via these steps will ensure you are installing from the source.

Prerequisite


	Shell: Bash, Zsh, PowerShell


	Conda: >4.6




First, please clone the deepchem repository from GitHub.

git clone https://github.com/deepchem/deepchem.git
cd deepchem





We would advise all users to use conda environment, following below-

conda create --name deepchem python=3.10
conda activate deepchem
pip install -e .





DeepChem provides diffrent additional packages depending on usage & contribution
If one also wants to build the tensorflow environment, add this

pip install -e .[tensorflow]





If one also wants to build the Pytorch environment, add this

pip install -e .[torch]





If one also wants to build the Jax environment, add this

pip install -e .[jax]





DeepChem has soft requirements, which can be installed on the fly during development inside the environment
but if you want to install all the soft-dependencies at once, then take a look at
deepchem/requirements [https://github.com/deepchem/deepchem/tree/master/requirements]
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Requirements


Hard requirements

DeepChem officially supports Python 3.8 through 3.10 and requires these packages on any condition.


	joblib [https://pypi.python.org/pypi/joblib]


	NumPy [https://numpy.org/]


	pandas [http://pandas.pydata.org/]


	scikit-learn [https://scikit-learn.org/stable/]


	SymPy [https://www.sympy.org/en/index.html]


	SciPy [https://www.scipy.org/]






Soft requirements

DeepChem has a number of “soft” requirements.



	Package name

	Version

	Location where this package is used
(dc: deepchem)





	BioPython [https://biopython.org/wiki/Documentation]

	latest

	dc.utlis.genomics_utils



	Deep Graph Library [https://www.dgl.ai/]

	0.5.x

	dc.feat.graph_data,
dc.models.torch_models



	DGL-LifeSci [https://github.com/awslabs/dgl-lifesci]

	0.2.x

	dc.models.torch_models



	HuggingFace Transformers [https://huggingface.co/transformers/]

	Not Testing

	dc.feat.smiles_tokenizer



	HuggingFace Tokenizers [https://huggingface.co/docs/tokenizers/index]

	latest

	dc.feat.HuggingFaceVocabularyBuilder



	LightGBM [https://lightgbm.readthedocs.io/en/latest/index.html]

	latest

	dc.models.gbdt_models



	matminer [https://hackingmaterials.lbl.gov/matminer/]

	latest

	dc.feat.materials_featurizers



	MDTraj [http://mdtraj.org/]

	latest

	dc.utils.pdbqt_utils



	Mol2vec [https://github.com/samoturk/mol2vec]

	latest

	dc.utils.molecule_featurizers



	Mordred [http://mordred-descriptor.github.io/documentation/master/]

	latest

	dc.utils.molecule_featurizers



	NetworkX [https://networkx.github.io/documentation/stable/index.html]

	latest

	dc.utils.rdkit_utils



	OpenAI Gym [https://gym.openai.com/]

	Not Testing

	dc.rl



	OpenMM [http://openmm.org/]

	latest

	dc.utils.rdkit_utils



	PDBFixer [https://github.com/pandegroup/pdbfixer]

	latest

	dc.utils.rdkit_utils



	Pillow [https://pypi.org/project/Pillow/]

	latest

	dc.data.data_loader,
dc.trans.transformers



	PubChemPy [https://pubchempy.readthedocs.io/en/latest/]

	latest

	dc.feat.molecule_featurizers



	pyGPGO [https://pygpgo.readthedocs.io/en/latest/]

	latest

	dc.hyper.gaussian_process



	Pymatgen [https://pymatgen.org/]

	latest

	dc.feat.materials_featurizers



	PyTorch [https://pytorch.org/]

	2.2.1

	dc.models.torch_models



	PyTorch Geometric [https://pytorch-geometric.readthedocs.io/en/latest/]

	latest (with
PyTorch 2.2.1)

	dc.feat.graph_data
dc.models.torch_models



	RDKit [http://www.rdkit.org/docs/Install.html]

	latest

	Many modules
(we recommend you to install)



	simdna [https://github.com/kundajelab/simdna]

	latest

	dc.metrics.genomic_metrics,
dc.molnet.dnasim



	TensorFlow [https://www.tensorflow.org/]

	2.15

	dc.models
deepchem>=2.4.0 depends on TensorFlow v2(2.3.x)
deepchem<2.4.0 depends on TensorFlow v1(>=1.14)



	Tensorflow Probability [https://www.tensorflow.org/probability]

	0.23.x

	dc.rl



	Weights & Biases [https://docs.wandb.com/]

	Not Testing

	dc.models.keras_model,
dc.models.callbacks



	XGBoost [https://xgboost.readthedocs.io/en/latest/]

	latest

	dc.models.gbdt_models



	Tensorflow Addons [https://www.tensorflow.org/addons/overview]

	latest

	dc.models.optimizers



	pySCF [https://pyscf.org/install.html]

	latest

	dc.models.torch_models.ferminet



	pysam [https://pysam.readthedocs.io/en/latest/api.html]

	latest

	dc.feat.bio_seq_featurizer
dc.models.data_loader
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Tutorials

If you’re new to DeepChem, you probably want to know the basics. What is DeepChem?
Why should you care about using it? The short answer is that DeepChem is a scientific machine learning library.
(The “Chem” indicates the historical fact that DeepChem initially focused on chemical applications,
but we aim to support all types of scientific applications more broadly).

Why would you want to use DeepChem instead of another machine learning
library? Simply put, DeepChem maintains an extensive collection of utilities
to enable scientific deep learning including classes for loading scientific
datasets, processing them, transforming them, splitting them up, and learning
from them. Behind the scenes DeepChem uses a variety of other machine
learning frameworks such as scikit-learn [https://scikit-learn.org/stable/], TensorFlow [https://www.tensorflow.org/], and XGBoost [https://xgboost.readthedocs.io/en/latest/]. We are
also experimenting with adding additional models implemented in PyTorch [https://pytorch.org/]
and JAX [https://github.com/google/jax]. Our focus is to facilitate scientific experimentation using
whatever tools are available at hand.

In the rest of this tutorials, we’ll provide a rapid fire overview of DeepChem’s API.
DeepChem is a big library so we won’t cover everything, but we should give you enough to get started.


Contents


	Data Handling


	Feature Engineering


	Data Splitting


	Model Training and Evaluating


	More Tutorials






Data Handling

The dc.data module contains utilities to handle Dataset
objects. These Dataset objects are the heart of DeepChem.
A Dataset is an abstraction of a dataset in machine learning. That is,
a collection of features, labels, weights, alongside associated identifiers.
Rather than explaining further, we’ll just show you.

>>> import deepchem as dc
>>> import numpy as np
>>> N_samples = 50
>>> n_features = 10
>>> X = np.random.rand(N_samples, n_features)
>>> y = np.random.rand(N_samples)
>>> dataset = dc.data.NumpyDataset(X, y)
>>> dataset.X.shape
(50, 10)
>>> dataset.y.shape
(50,)





Here we’ve used the NumpyDataset class which stores datasets in memory.
This works fine for smaller datasets and is very convenient for experimentation,
but is less convenient for larger datasets. For that we have the DiskDataset class.

>>> dataset = dc.data.DiskDataset.from_numpy(X, y)
>>> dataset.X.shape
(50, 10)
>>> dataset.y.shape
(50,)





In this example we haven’t specified a data directory, so this DiskDataset is written
to a temporary folder. Note that dataset.X and dataset.y load data
from disk underneath the hood! So this can get very expensive for larger datasets.



Feature Engineering

“Featurizer” is a chunk of code which transforms raw input data into a processed
form suitable for machine learning. The dc.feat module contains an extensive collection
of featurizers for molecules, molecular complexes and inorganic crystals.
We’ll show you the example about the usage of featurizers.

>>> smiles = [
...   'O=Cc1ccc(O)c(OC)c1',
...   'CN1CCC[C@H]1c2cccnc2',
...   'C1CCCCC1',
...   'c1ccccc1',
...   'CC(=O)O',
... ]
>>> properties = [0.4, -1.5, 3.2, -0.2, 1.7]
>>> featurizer = dc.feat.CircularFingerprint(size=1024)
>>> ecfp = featurizer.featurize(smiles)
>>> ecfp.shape
(5, 1024)
>>> dataset = dc.data.NumpyDataset(X=ecfp, y=np.array(properties))
>>> len(dataset)
5





Here, we’ve used the CircularFingerprint and converted SMILES to ECFP.
The ECFP is a fingerprint which is a bit vector made by chemical structure information
and we can use it as the input for various models.

And then, you may have a CSV file which contains SMILES and property like HOMO-LUMO gap.
In such a case, by using DataLoader, you can load and featurize your data at once.

>>> import pandas as pd
>>> # make a dataframe object for creating a CSV file
>>> df = pd.DataFrame(list(zip(smiles, properties)), columns=["SMILES", "property"])
>>> import tempfile
>>> with dc.utils.UniversalNamedTemporaryFile(mode='w') as tmpfile:
...   # dump the CSV file
...   df.to_csv(tmpfile.name)
...   # initizalize the featurizer
...   featurizer = dc.feat.CircularFingerprint(size=1024)
...   # initizalize the dataloader
...   loader = dc.data.CSVLoader(["property"], feature_field="SMILES", featurizer=featurizer)
...   # load and featurize the data from the CSV file
...   dataset = loader.create_dataset(tmpfile.name)
...   len(dataset)
5







Data Splitting

The dc.splits module contains a collection of scientifically aware splitters.
Generally, we need to split the original data to training, validation and test data
in order to tune the model and evaluate the model’s performance.
We’ll show you the example about the usage of splitters.

>>> splitter = dc.splits.RandomSplitter()
>>> # split 5 datapoints in the ratio of train:valid:test = 3:1:1
>>> train_dataset, valid_dataset, test_dataset = splitter.train_valid_test_split(
...   dataset=dataset, frac_train=0.6, frac_valid=0.2, frac_test=0.2
... )
>>> len(train_dataset)
3
>>> len(valid_dataset)
1
>>> len(test_dataset)
1





Here, we’ve used the RandomSplitter and splitted the data randomly
in the ratio of train:valid:test = 3:1:1. But, the random splitting sometimes
overestimates  model’s performance, especially for small data or imbalance data.
Please be careful for model evaluation. The dc.splits provides more methods
and algorithms to evaluate the model’s performance appropriately, like cross validation or
splitting using molecular scaffolds.



Model Training and Evaluating

The dc.models contains an extensive collection of models for scientific applications.
Most of all models inherits  dc.models.Model and we can train them by just calling fit method.
You don’t need to care about how to use specific framework APIs.
We’ll show you the example about the usage of models.

>>> from sklearn.ensemble import RandomForestRegressor
>>> rf = RandomForestRegressor()
>>> model = dc.models.SklearnModel(model=rf)
>>> # model training
>>> model.fit(train_dataset)
>>> valid_preds = model.predict(valid_dataset)
>>> valid_preds.shape
(1,)
>>> test_preds = model.predict(test_dataset)
>>> test_preds.shape
(1,)





Here, we’ve used the SklearnModel and trained the model.
Even if you want to train a deep learning model which is implemented
by TensorFlow or PyTorch, calling fit method is all you need!

And then, if you use dc.metrics.Metric, you can evaluate your model
by just calling evaluate method.

>>> # initialze the metric
>>> metric = dc.metrics.Metric(dc.metrics.mae_score)
>>> # evaluate the model
>>> train_score = model.evaluate(train_dataset, [metric])
>>> valid_score = model.evaluate(valid_dataset, [metric])
>>> test_score = model.evaluate(test_dataset, [metric])







More Tutorials

DeepChem maintains an extensive collection of addition tutorials [https://github.com/deepchem/deepchem/tree/master/examples/tutorials] that are meant to
be run on Google Colab [https://colab.research.google.com/], an online platform that allows you to execute Jupyter notebooks.
Once you’ve finished this introductory tutorial, we recommend working through these more involved tutorials.
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Examples

We show a bunch of examples for DeepChem by the doctest style.


	We match against doctest’s ... wildcard on code where output is usually ignored


	We often use threshold assertions (e.g: score['mean-pearson_r2_score'] > 0.92),
as this is what matters for model training code.





Contents


	Delaney (ESOL)


	MultitaskRegressor


	GraphConvModel






	ChEMBL


	MultitaskRegressor


	GraphConvModel









Before jumping in to examples, we’ll import our libraries and ensure our doctests are reproducible:

>>> import numpy as np
>>> import tensorflow as tf
>>> import deepchem as dc
>>> import random
>>>
>>> # Run before every test for reproducibility
>>> def seed_all():
...     np.random.seed(456)
...     tf.random.set_seed(456)
...     random.seed(456)






Delaney (ESOL)

Examples of training models on the Delaney (ESOL) dataset included in MoleculeNet.

We’ll be using its smiles field to train models to predict its experimentally measured solvation energy (expt).


MultitaskRegressor

First, we’ll load the dataset with load_delaney() and fit a MultitaskRegressor:

>>> seed_all()
>>> # Load dataset with default 'scaffold' splitting
>>> tasks, datasets, transformers = dc.molnet.load_delaney()
>>> tasks
['measured log solubility in mols per litre']
>>> train_dataset, valid_dataset, test_dataset = datasets
>>>
>>> # We want to know the pearson R squared score, averaged across tasks
>>> avg_pearson_r2 = dc.metrics.Metric(dc.metrics.pearson_r2_score, np.mean)
>>>
>>> # We'll train a multitask regressor (fully connected network)
>>> model = dc.models.MultitaskRegressor(
...     len(tasks),
...     n_features=1024,
...     layer_sizes=[500])
>>>
>>> model.fit(train_dataset)
0...
>>>
>>> # We now evaluate our fitted model on our training and validation sets
>>> train_scores = model.evaluate(train_dataset, [avg_pearson_r2], transformers)
>>> assert train_scores['mean-pearson_r2_score'] > 0.7, train_scores
>>>
>>> valid_scores = model.evaluate(valid_dataset, [avg_pearson_r2], transformers)
>>> assert valid_scores['mean-pearson_r2_score'] > 0.3, valid_scores







GraphConvModel

The default featurizer for Delaney is ECFP, short for
“Extended-connectivity fingerprints.”
For a GraphConvModel, we’ll reload our datasets with featurizer='GraphConv':

>>> seed_all()
>>> tasks, datasets, transformers = dc.molnet.load_delaney(featurizer='GraphConv')
>>> train_dataset, valid_dataset, test_dataset = datasets
>>>
>>> model = dc.models.GraphConvModel(len(tasks), mode='regression', dropout=0.5)
>>>
>>> model.fit(train_dataset, nb_epoch=30)
0...
>>>
>>> # We now evaluate our fitted model on our training and validation sets
>>> train_scores = model.evaluate(train_dataset, [avg_pearson_r2], transformers)
>>> assert train_scores['mean-pearson_r2_score'] > 0.5, train_scores
>>>
>>> valid_scores = model.evaluate(valid_dataset, [avg_pearson_r2], transformers)
>>> assert valid_scores['mean-pearson_r2_score'] > 0.3, valid_scores








ChEMBL

Examples of training models on ChEMBL [https://www.ebi.ac.uk/chembl] dataset included in MoleculeNet.

ChEMBL is a manually curated database of bioactive molecules with drug-like properties.
It brings together chemical, bioactivity and genomic data to aid the translation
of genomic information into effective new drugs.


MultitaskRegressor

>>> seed_all()
>>> # Load ChEMBL 5thresh dataset with random splitting
>>> chembl_tasks, datasets, transformers = dc.molnet.load_chembl(
...     shard_size=2000, featurizer="ECFP", set="5thresh", split="random")
>>> train_dataset, valid_dataset, test_dataset = datasets
>>> len(chembl_tasks)
691
>>> f'Compound train/valid/test split: {len(train_dataset)}/{len(valid_dataset)}/{len(test_dataset)}'
'Compound train/valid/test split: 19096/2387/2388'
>>>
>>> # We want to know the RMS, averaged across tasks
>>> avg_rms = dc.metrics.Metric(dc.metrics.rms_score, np.mean)
>>>
>>> # Create our model
>>> n_layers = 3
>>> model = dc.models.MultitaskRegressor(
...     len(chembl_tasks),
...     n_features=1024,
...     layer_sizes=[1000] * n_layers,
...     dropouts=[.25] * n_layers,
...     weight_init_stddevs=[.02] * n_layers,
...     bias_init_consts=[1.] * n_layers,
...     learning_rate=.0003,
...     weight_decay_penalty=.0001,
...     batch_size=100)
>>>
>>> model.fit(train_dataset, nb_epoch=5)
0...
>>>
>>> # We now evaluate our fitted model on our training and validation sets
>>> train_scores = model.evaluate(train_dataset, [avg_rms], transformers)
>>> assert train_scores['mean-rms_score'] < 10.00
>>>
>>> valid_scores = model.evaluate(valid_dataset, [avg_rms], transformers)
>>> assert valid_scores['mean-rms_score'] < 10.00







GraphConvModel

>>> seed_all()
>>> # Load ChEMBL dataset
>>> chembl_tasks, datasets, transformers = dc.molnet.load_chembl(
...    shard_size=2000, featurizer="GraphConv", set="5thresh", split="random")
>>> train_dataset, valid_dataset, test_dataset = datasets
>>>
>>> # RMS, averaged across tasks
>>> avg_rms = dc.metrics.Metric(dc.metrics.rms_score, np.mean)
>>>
>>> model = dc.models.GraphConvModel(
...    len(chembl_tasks), batch_size=128, mode='regression')
>>>
>>> # Fit trained model
>>> model.fit(train_dataset, nb_epoch=5)
0...
>>>
>>> # We now evaluate our fitted model on our training and validation sets
>>> train_scores = model.evaluate(train_dataset, [avg_rms], transformers)
>>> assert train_scores['mean-rms_score'] < 10.00
>>>
>>> valid_scores = model.evaluate(valid_dataset, [avg_rms], transformers)
>>> assert valid_scores['mean-rms_score'] < 10.00
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Known Issues & Limitations


Broken features

A small number of Deepchem features are known to be broken. The Deepchem team
will either fix or deprecate these broken features. It is impossible to
know of every possible bug in a large project like Deepchem, but we hope to
save you some headache by listing features that we know are partially or completely
broken.

Note: This list is likely to be non-exhaustive. If we missed something,
please let us know [here](https://github.com/deepchem/deepchem/issues/2376).



	Feature

	Deepchem response

	Tracker and notes





	ANIFeaturizer/ANIModel

	Low Priority
Likely deprecate

	The Deepchem team recommends using TorchANI
instead.








Experimental features

Deepchem features usually undergo rigorous code review and testing to ensure that
they are ready for production environments. The following Deepchem features have not
been thoroughly tested to the level of other Deepchem modules, and could be
potentially problematic in production environments.

Note: This list is likely to be non-exhaustive. If we missed something,
please let us know [here](https://github.com/deepchem/deepchem/issues/2376).



	Feature

	Tracker and notes





	Mol2 Loading

	Needs more testing.



	Interaction Fingerprints

	Needs more testing.






If you would like to help us address these known issues, please consider contributing to Deepchem!





            

          

      

      

    

  

  
    
    

    Docker Tutorial
    

    

    
 
  

    
      
          
            
  
Docker Tutorial

Docker is a software used for easy building, testing and deploying of software. Docker creates an isolated workspace called containers which can avoid dependency version clashes making development of software faster. Also, software can be modularized in different containers, which allows it to be tested without impacting other components or the host computer. Containers contain all the dependencies and the user need not worry about required packages

This makes it easy for users to access older version of deepchem via docker and to develop with them.

Docker works with the following layers:


	Images:




Images are the instructions for creating docker containers. It specifies all the packages and their version to be installed fo the application to run. Images for deep chem can found at docker Hub.


	Containers:




Containers are live instances of Images and are lightweight isolated work-spaces(it does not put much workload on your PC), where you can run and devlop on previous deepchem versions.


	Docker engine:




It is the main application that manages, runs and build containers and images. It also provides a means to interact with the docker container after its built and when it is run.


	Registries:




It is a hub or place where docker images can be found. For deepchem, the default registry is the Docker Hub.

For docker installation, visit: https://docs.docker.com/engine/install/


Using deepchem with docker:

To work with deepchem in docker, we first have to pull deepchem images from docker hub. It can be done in the following way.

if latest deepchem version is needed, then:-

#if latest:
docker pull deepchemio/deepchem:latest





Else if one wants to work with older version, then the following method should be used:-

docker pull deepchemio/deepchem:x.x.x
#x.x.x refers to the version number





Now, wait for some time until the image gets downloaded. Then we have to create a container using the image.
Then, you have to create a container and use it.

docker run --rm -it deepchemio/deepchem:x.x.x
#x.x.x refers to the version number
#replace "x.x.x" with "latest" if latest version is used





If you want GPU support:

# If nvidia-docker is installed
nvidia-docker run --rm -it deepchemio/deepchem:latest
docker run --runtime nvidia --rm -it deepchemio/deepchem:latest

# If nvidia-container-toolkit is installed
docker run --gpus all --rm -it deepchemio/deepchem:latest





Now, you have successfully entered the container’s bash where you can execute your programs.
To exit the container press “Ctrl+D”. This stops the container and opens host computer’s bash.

To view all the containers present, open up a new terminal/bash of the host computer, then:-

docker ps -a





This gives a containers list like this:

CONTAINER ID   IMAGE                       COMMAND           CREATED       STATUS       PORTS     NAMES





Thus you can see all the created container’s Names and its details.

Now you can develop code in you host computer(development environment) and test it in a container having specific version of the deepchem(testing environment).

To test the program you have written, you should copy the program to the container. Open a new host computer’s terminal:

docker cp host-file-path <container-id>:path-in-container
#container ID should be check in a separate terminal





Similarly if you want to copy files out from a container, then open a new host computer’s terminal:

docker cp <container-id>:path-in-container host-file-path
#container ID should be check in a separate terminal







Hands-on tutorial

Lets create a simple deepchem script and work it out in the docker container of deepchem 2.4.0.

Let the script be named deepchem.py in the host computer’s location: /home/

deepchem.py contents:

import deepchem as dc

print(dc.__version__)





Step 1: pull deepchem 2.4.0 image and wait for it to be dowloaded

$docker pull deepchemio/deepchem:2.4.0





Step 2: Create a container

$docker run --rm -it deepchemio/deepchem:2.4.0
(deepchem) root@51b1d2665016:~/mydir#





Step 3: Open a new terminal/bash and copy deep.py

$docker ps -a
CONTAINER ID   IMAGE                       COMMAND       CREATED         STATUS         PORTS     NAMES
51b1d2665016   deepchemio/deepchem:2.4.0   "/bin/bash"   5 seconds ago   Up 4 seconds             friendly_lehmann
$docker cp /home/deepchem.py 51b1d2665016:/root/mydir/deepchemp.py





step 4: return back to the previous terminal in which container is runing

(deepchem) root@51b1d2665016:~/mydir#python3 deepchem.py>>output.txt
2022-01-12 15:33:27.967170: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcudart.so.10.1





This should have created a output file in the container having the deepchem version number. The you should copy it back to host container.

step 5: In a new terminal execute the following commands.

$docker cp 51b1d2665016:/root/mydir/output.txt ~/output.txt
$cat ~/output.txt
2.4.0





Thus you have successfully executed the program in deepchem 2.4.0!!!
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Documentation Tutorial

This page provides instructions on how to build and test DeepChem documentation.


Building the Documentation

To build the docs, you can use the Makefile that’s been added to
this directory. To generate docs in HTML, run the following commands:

$ pip install -r requirements.txt
$ make html
# Clean build
$ make clean html
$ open build/html/index.html







Testing

To check if the changes to the docs rendered properly, open build/html on a web browser.

If you want to confirm logs in more detail, use the following command:

$ make clean html SPHINXOPTS=-vvv





If you want to confirm the example tests, run:

$ make doctest_examples
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Data

DeepChem dc.data provides APIs for handling your data.

If your data is stored by the file like CSV and SDF, you can use the Data Loaders.
The Data Loaders read your data, convert them to features (ex: SMILES to ECFP) and save the features to Dataset class.
If your data is python objects like Numpy arrays or Pandas DataFrames, you can use the Datasets directly.
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Datasets

DeepChem dc.data.Dataset objects are one of the core building blocks of DeepChem programs.
Dataset objects hold representations of data for machine learning and are widely used throughout DeepChem.

The goal of the Dataset class is to be maximally interoperable
with other common representations of machine learning datasets.
For this reason we provide interconversion methods mapping from Dataset objects
to pandas DataFrames, TensorFlow Datasets, and PyTorch datasets.


NumpyDataset

The dc.data.NumpyDataset class provides an in-memory implementation of the abstract Dataset
which stores its data in numpy.ndarray objects.


	
class NumpyDataset(X: _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes], y: _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes] | None = None, w: _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes] | None = None, ids: _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes] | None = None, n_tasks: int = 1)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L746-L1098]

	A Dataset defined by in-memory numpy arrays.

This subclass of Dataset stores arrays X,y,w,ids in memory as
numpy arrays. This makes it very easy to construct NumpyDataset
objects.

Examples

>>> import numpy as np
>>> dataset = NumpyDataset(X=np.random.rand(5, 3), y=np.random.rand(5,), ids=np.arange(5))






	
__init__(X: _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes], y: _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes] | None = None, w: _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes] | None = None, ids: _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes] | None = None, n_tasks: int = 1) → None[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L759-L804]

	Initialize this object.


	Parameters:

	
	X (np.ndarray) – Input features. A numpy array of shape (n_samples,…).


	y (np.ndarray, optional (default None)) – Labels. A numpy array of shape (n_samples, …). Note that each label can
have an arbitrary shape.


	w (np.ndarray, optional (default None)) – Weights. Should either be 1D array of shape (n_samples,) or if
there’s more than one task, of shape (n_samples, n_tasks).


	ids (np.ndarray, optional (default None)) – Identifiers. A numpy array of shape (n_samples,)


	n_tasks (int, default 1) – Number of learning tasks.













	
__len__() → int[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L806-L808]

	Get the number of elements in the dataset.






	
get_shape() → Tuple[Tuple[int, ...], Tuple[int, ...], Tuple[int, ...], Tuple[int, ...]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L810-L815]

	Get the shape of the dataset.

Returns four tuples, giving the shape of the X, y, w, and ids arrays.






	
get_task_names() → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L817-L821]

	Get the names of the tasks associated with this dataset.






	
property X: ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data.py]

	Get the X vector for this dataset as a single numpy array.






	
property y: ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data.py]

	Get the y vector for this dataset as a single numpy array.






	
property ids: ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data.py]

	Get the ids vector for this dataset as a single numpy array.






	
property w: ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data.py]

	Get the weight vector for this dataset as a single numpy array.






	
iterbatches(batch_size: int | None = None, epochs: int = 1, deterministic: bool = False, pad_batches: bool = False) → Iterator[Tuple[ndarray, ndarray, ndarray, ndarray]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L843-L898]

	Get an object that iterates over minibatches from the dataset.

Each minibatch is returned as a tuple of four numpy arrays:
(X, y, w, ids).


	Parameters:

	
	batch_size (int, optional (default None)) – Number of elements in each batch.


	epochs (int, default 1) – Number of epochs to walk over dataset.


	deterministic (bool, optional (default False)) – If True, follow deterministic order.


	pad_batches (bool, optional (default False)) – If True, pad each batch to batch_size.






	Returns:

	Generator which yields tuples of four numpy arrays (X, y, w, ids).



	Return type:

	Iterator[Batch]










	
itersamples() → Iterator[Tuple[ndarray, ndarray, ndarray, ndarray]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L900-L918]

	Get an object that iterates over the samples in the dataset.


	Returns:

	Iterator which yields tuples of four numpy arrays (X, y, w, ids).



	Return type:

	Iterator[Batch]





Examples

>>> dataset = NumpyDataset(np.ones((2,2)))
>>> for x, y, w, id in dataset.itersamples():
...   print(x.tolist(), y.tolist(), w.tolist(), id)
[1.0, 1.0] [0.0] [0.0] 0
[1.0, 1.0] [0.0] [0.0] 1










	
transform(transformer: Transformer, **args) → NumpyDataset[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L920-L943]

	Construct a new dataset by applying a transformation to every sample in this dataset.

The argument is a function that can be called as follows:
>> newx, newy, neww = fn(x, y, w)

It might be called only once with the whole dataset, or multiple
times with different subsets of the data.  Each time it is called,
it should transform the samples and return the transformed data.


	Parameters:

	transformer (dc.trans.Transformer) – The transformation to apply to each sample in the dataset



	Returns:

	A newly constructed NumpyDataset object



	Return type:

	NumpyDataset










	
select(indices: Sequence[int] | ndarray, select_dir: str | None = None) → NumpyDataset[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L945-L967]

	Creates a new dataset from a selection of indices from self.


	Parameters:

	
	indices (List[int]) – List of indices to select.


	select_dir (str, optional (default None)) – Used to provide same API as DiskDataset. Ignored since
NumpyDataset is purely in-memory.






	Returns:

	A selected NumpyDataset object



	Return type:

	NumpyDataset










	
make_pytorch_dataset(epochs: int = 1, deterministic: bool = False, batch_size: int | None = None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L969-L1008]

	Create a torch.utils.data.IterableDataset that iterates over the data in this Dataset.

Each value returned by the Dataset’s iterator is a tuple of (X, y, w, id)
containing the data for one batch, or for a single sample if batch_size is None.


	Parameters:

	
	epochs (int, default 1) – The number of times to iterate over the Dataset


	deterministic (bool, default False) – If True, the data is produced in order. If False, a different
random permutation of the data is used for each epoch.


	batch_size (int, optional (default None)) – The number of samples to return in each batch. If None, each returned
value is a single sample.






	Returns:

	torch.utils.data.IterableDataset that iterates over the data in
this dataset.



	Return type:

	torch.utils.data.IterableDataset






Note

This method requires PyTorch to be installed.








	
static from_DiskDataset(ds: DiskDataset) → NumpyDataset[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L1010-L1024]

	Convert DiskDataset to NumpyDataset.


	Parameters:

	ds (DiskDataset) – DiskDataset to transform to NumpyDataset.



	Returns:

	A new NumpyDataset created from DiskDataset.



	Return type:

	NumpyDataset










	
to_json(fname: str) → None[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L1026-L1041]

	Dump NumpyDataset to the json file .


	Parameters:

	fname (str) – The name of the json file.










	
static from_json(fname: str) → NumpyDataset[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L1043-L1059]

	Create NumpyDataset from the json file.


	Parameters:

	fname (str) – The name of the json file.



	Returns:

	A new NumpyDataset created from the json file.



	Return type:

	NumpyDataset










	
static merge(datasets: Sequence[Dataset]) → NumpyDataset[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L1061-L1098]

	Merge multiple NumpyDatasets.


	Parameters:

	datasets (List[Dataset]) – List of datasets to merge.



	Returns:

	A single NumpyDataset containing all the samples from all datasets.



	Return type:

	NumpyDataset





Example

>>> X1, y1 = np.random.rand(5, 3), np.random.randn(5, 1)
>>> first_dataset = dc.data.NumpyDataset(X1, y1)
>>> X2, y2 = np.random.rand(5, 3), np.random.randn(5, 1)
>>> second_dataset = dc.data.NumpyDataset(X2, y2)
>>> merged_dataset = dc.data.NumpyDataset.merge([first_dataset, second_dataset])
>>> print(len(merged_dataset) == len(first_dataset) + len(second_dataset))
True










	
static from_dataframe(df: DataFrame, X: str | Sequence[str] | None = None, y: str | Sequence[str] | None = None, w: str | Sequence[str] | None = None, ids: str | None = None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L617-L698]

	Construct a Dataset from the contents of a pandas DataFrame.


	Parameters:

	
	df (pd.DataFrame) – The pandas DataFrame


	X (str or List[str], optional (default None)) – The name of the column or columns containing the X array.  If
this is None, it will look for default column names that match
those produced by to_dataframe().


	y (str or List[str], optional (default None)) – The name of the column or columns containing the y array.  If
this is None, it will look for default column names that match
those produced by to_dataframe().


	w (str or List[str], optional (default None)) – The name of the column or columns containing the w array.  If
this is None, it will look for default column names that match
those produced by to_dataframe().


	ids (str, optional (default None)) – The name of the column containing the ids.  If this is None, it
will look for default column names that match those produced by
to_dataframe().













	
get_statistics(X_stats: bool = True, y_stats: bool = True) → Tuple[ndarray, ...][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L440-L492]

	Compute and return statistics of this dataset.

Uses self.itersamples() to compute means and standard deviations
of the dataset. Can compute on large datasets that don’t fit in
memory.


	Parameters:

	
	X_stats (bool, optional (default True)) – If True, compute feature-level mean and standard deviations.


	y_stats (bool, optional (default True)) – If True, compute label-level mean and standard deviations.






	Returns:

	
	If X_stats == True, returns (X_means, X_stds).


	If y_stats == True, returns (y_means, y_stds).


	If both are true, returns (X_means, X_stds, y_means, y_stds).








	Return type:

	Tuple










	
make_tf_dataset(batch_size: int = 100, epochs: int = 1, deterministic: bool = False, pad_batches: bool = False)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L494-L547]

	Create a tf.data.Dataset that iterates over the data in this Dataset.

Each value returned by the Dataset’s iterator is a tuple of (X, y,
w) for one batch.


	Parameters:

	
	batch_size (int, default 100) – The number of samples to include in each batch.


	epochs (int, default 1) – The number of times to iterate over the Dataset.


	deterministic (bool, default False) – If True, the data is produced in order.  If False, a different
random permutation of the data is used for each epoch.


	pad_batches (bool, default False) – If True, batches are padded as necessary to make the size of
each batch exactly equal batch_size.






	Returns:

	TensorFlow Dataset that iterates over the same data.



	Return type:

	tf.data.Dataset






Note

This class requires TensorFlow to be installed.








	
to_csv(path: str) → None[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L700-L743]

	Write object to a comma-seperated values (CSV) file

Example

>>> import numpy as np
>>> X = np.random.rand(10, 10)
>>> dataset = dc.data.DiskDataset.from_numpy(X)
>>> dataset.to_csv('out.csv')  






	Parameters:

	path (str) – File path or object



	Return type:

	None










	
to_dataframe() → DataFrame[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L581-L615]

	Construct a pandas DataFrame containing the data from this Dataset.


	Returns:

	Pandas dataframe. If there is only a single feature per datapoint,
will have column “X” else will have columns “X1,X2,…” for
features.  If there is only a single label per datapoint, will
have column “y” else will have columns “y1,y2,…” for labels. If
there is only a single weight per datapoint will have column “w”
else will have columns “w1,w2,…”. Will have column “ids” for
identifiers.



	Return type:

	pd.DataFrame















DiskDataset

The dc.data.DiskDataset class allows for the storage of larger
datasets on disk. Each DiskDataset is associated with a
directory in which it writes its contents to disk. Note that a
DiskDataset can be very large, so some of the utility methods
to access fields of a Dataset can be prohibitively expensive.


	
class DiskDataset(data_dir: str)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L1110-L2720]

	A Dataset that is stored as a set of files on disk.

The DiskDataset is the workhorse class of DeepChem that facilitates analyses
on large datasets. Use this class whenever you’re working with a large
dataset that can’t be easily manipulated in RAM.

On disk, a DiskDataset has a simple structure. All files for a given
DiskDataset are stored in a data_dir. The contents of data_dir should
be laid out as follows:


data_dir/


|

—> metadata.csv.gzip

|

—> tasks.json

|

—> shard-0-X.npy

|

—> shard-0-y.npy

|

—> shard-0-w.npy

|

—> shard-0-ids.npy

|

—> shard-1-X.npy

.

.

.





The metadata is constructed by static method
DiskDataset._construct_metadata and saved to disk by
DiskDataset._save_metadata. The metadata itself consists of a csv file
which has columns (‘ids’, ‘X’, ‘y’, ‘w’, ‘ids_shape’, ‘X_shape’, ‘y_shape’,
‘w_shape’). tasks.json consists of a list of task names for this dataset.

The actual data is stored in .npy files (numpy array files) of the form
‘shard-0-X.npy’, ‘shard-0-y.npy’, etc.

The basic structure of DiskDataset is quite robust and will likely serve
you well for datasets up to about 100 GB or larger. However note that
DiskDataset has not been tested for very large datasets at the terabyte
range and beyond. You may be better served by implementing a custom
Dataset class for those use cases.

Examples

Let’s walk through a simple example of constructing a new DiskDataset.

>>> import deepchem as dc
>>> import numpy as np
>>> X = np.random.rand(10, 10)
>>> dataset = dc.data.DiskDataset.from_numpy(X)





If you have already saved a DiskDataset to data_dir, you can reinitialize it with

>> data_dir = “/path/to/my/data”
>> dataset = dc.data.DiskDataset(data_dir)

Once you have a dataset you can access its attributes as follows

>>> X = np.random.rand(10, 10)
>>> y = np.random.rand(10,)
>>> w = np.ones_like(y)
>>> dataset = dc.data.DiskDataset.from_numpy(X)
>>> X, y, w = dataset.X, dataset.y, dataset.w





One thing to beware of is that dataset.X, dataset.y, dataset.w are
loading data from disk! If you have a large dataset, these operations can be
extremely slow. Instead try iterating through the dataset instead.

>>> for (xi, yi, wi, idi) in dataset.itersamples():
...   pass






	
data_dir[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data.py]

	Location of directory where this DiskDataset is stored to disk


	Type:

	str










	
metadata_df[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data.py]

	Pandas Dataframe holding metadata for this DiskDataset


	Type:

	pd.DataFrame










	
legacy_metadata[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data.py]

	Whether this DiskDataset uses legacy format.


	Type:

	bool










Note

DiskDataset originally had a simpler metadata format without shape
information. Older DiskDataset objects had metadata files with columns
(‘ids’, ‘X’, ‘y’, ‘w’) and not additional shape columns. DiskDataset
maintains backwards compatibility with this older metadata format, but we
recommend for performance reasons not using legacy metadata for new
projects.




	
__init__(data_dir: str) → None[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L1204-L1242]

	Load a constructed DiskDataset from disk

Note that this method cannot construct a new disk dataset. Instead use
static methods DiskDataset.create_dataset or DiskDataset.from_numpy
for that purpose. Use this constructor instead to load a DiskDataset
that has already been created on disk.


	Parameters:

	data_dir (str) – Location on disk of an existing DiskDataset.










	
static create_dataset(shard_generator: Iterable[Tuple[ndarray, ndarray, ndarray, ndarray]], data_dir: str | None = None, tasks: _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes] | None = None) → DiskDataset[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L1244-L1287]

	Creates a new DiskDataset


	Parameters:

	
	shard_generator (Iterable[Batch]) – An iterable (either a list or generator) that provides tuples of data
(X, y, w, ids). Each tuple will be written to a separate shard on disk.


	data_dir (str, optional (default None)) – Filename for data directory. Creates a temp directory if none specified.


	tasks (Sequence, optional (default [])) – List of tasks for this dataset.






	Returns:

	A new DiskDataset constructed from the given data



	Return type:

	DiskDataset










	
load_metadata() → Tuple[List[str], DataFrame][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L1289-L1311]

	Helper method that loads metadata from disk.






	
static write_data_to_disk(data_dir: str, basename: str, X: ndarray | None = None, y: ndarray | None = None, w: ndarray | None = None, ids: ndarray | None = None) → List[Any][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L1358-L1427]

	Static helper method to write data to disk.

This helper method is used to write a shard of data to disk.


	Parameters:

	
	data_dir (str) – Data directory to write shard to.


	basename (str) – Basename for the shard in question.


	X (np.ndarray, optional (default None)) – The features array.


	y (np.ndarray, optional (default None)) – The labels array.


	w (np.ndarray, optional (default None)) – The weights array.


	ids (np.ndarray, optional (default None)) – The identifiers array.






	Returns:

	List with values [out_ids, out_X, out_y, out_w, out_ids_shape,
out_X_shape, out_y_shape, out_w_shape] with filenames of locations to
disk which these respective arrays were written.



	Return type:

	List[Optional[str]]










	
save_to_disk() → None[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L1429-L1432]

	Save dataset to disk.






	
move(new_data_dir: str, delete_if_exists: bool | None = True) → None[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L1434-L1462]

	Moves dataset to new directory.


	Parameters:

	
	new_data_dir (str) – The new directory name to move this to dataset to.


	delete_if_exists (bool, optional (default True)) – If this option is set, delete the destination directory if it exists
before moving. This is set to True by default to be backwards compatible
with behavior in earlier versions of DeepChem.









Note

This is a stateful operation! self.data_dir will be moved into
new_data_dir. If delete_if_exists is set to True (by default this is
set True), then new_data_dir is deleted if it’s a pre-existing
directory.








	
copy(new_data_dir: str) → DiskDataset[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L1464-L1485]

	Copies dataset to new directory.


	Parameters:

	new_data_dir (str) – The new directory name to copy this to dataset to.



	Returns:

	A copied DiskDataset object.



	Return type:

	DiskDataset






Note

This is a stateful operation! Any data at new_data_dir will be deleted
and self.data_dir will be deep copied into new_data_dir.








	
get_task_names() → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L1487-L1489]

	Gets learning tasks associated with this dataset.






	
reshard(shard_size: int) → None[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L1491-L1568]

	Reshards data to have specified shard size.


	Parameters:

	shard_size (int) – The size of shard.





Examples

>>> import deepchem as dc
>>> import numpy as np
>>> X = np.random.rand(100, 10)
>>> d = dc.data.DiskDataset.from_numpy(X)
>>> d.reshard(shard_size=10)
>>> d.get_number_shards()
10






Note

If this DiskDataset is in legacy_metadata format, reshard will
convert this dataset to have non-legacy metadata.








	
get_data_shape() → Tuple[int, ...][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L1570-L1581]

	Gets array shape of datapoints in this dataset.






	
get_shard_size() → int[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L1583-L1590]

	Gets size of shards on disk.






	
get_number_shards() → int[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L1598-L1600]

	Returns the number of shards for this dataset.






	
itershards() → Iterator[Tuple[ndarray, ndarray, ndarray, ndarray]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L1602-L1614]

	Return an object that iterates over all shards in dataset.

Datasets are stored in sharded fashion on disk. Each call to next() for the
generator defined by this function returns the data from a particular shard.
The order of shards returned is guaranteed to remain fixed.


	Returns:

	Generator which yields tuples of four numpy arrays (X, y, w, ids).



	Return type:

	Iterator[Batch]










	
iterbatches(batch_size: int | None = None, epochs: int = 1, deterministic: bool = False, pad_batches: bool = False) → Iterator[Tuple[ndarray, ndarray, ndarray, ndarray]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L1616-L1649]

	Get an object that iterates over minibatches from the dataset.

It is guaranteed that the number of batches returned is
math.ceil(len(dataset)/batch_size). Each minibatch is returned as
a tuple of four numpy arrays: (X, y, w, ids).


	Parameters:

	
	batch_size (int, optional (default None)) – Number of elements in a batch. If None, then it yields batches
with size equal to the size of each individual shard.


	epoch (int, default 1) – Number of epochs to walk over dataset


	deterministic (bool, default False) – Whether or not we should should shuffle each shard before
generating the batches.  Note that this is only local in the
sense that it does not ever mix between different shards.


	pad_batches (bool, default False) – Whether or not we should pad the last batch, globally, such that
it has exactly batch_size elements.






	Returns:

	Generator which yields tuples of four numpy arrays (X, y, w, ids).



	Return type:

	Iterator[Batch]










	
itersamples() → Iterator[Tuple[ndarray, ndarray, ndarray, ndarray]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L1768-L1798]

	Get an object that iterates over the samples in the dataset.


	Returns:

	Generator which yields tuples of four numpy arrays (X, y, w, ids).



	Return type:

	Iterator[Batch]





Examples

>>> dataset = DiskDataset.from_numpy(np.ones((2,2)), np.ones((2,1)))
>>> for x, y, w, id in dataset.itersamples():
...   print(x.tolist(), y.tolist(), w.tolist(), id)
[1.0, 1.0] [1.0] [1.0] 0
[1.0, 1.0] [1.0] [1.0] 1










	
transform(transformer: Transformer, parallel: bool = False, out_dir: str | None = None, **args) → DiskDataset[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L1800-L1877]

	Construct a new dataset by applying a transformation to every sample in this dataset.

The argument is a function that can be called as follows:
>> newx, newy, neww = fn(x, y, w)

It might be called only once with the whole dataset, or multiple times
with different subsets of the data.  Each time it is called, it should
transform the samples and return the transformed data.


	Parameters:

	
	transformer (dc.trans.Transformer) – The transformation to apply to each sample in the dataset.


	parallel (bool, default False) – If True, use multiple processes to transform the dataset in parallel.


	out_dir (str, optional (default None)) – The directory to save the new dataset in. If this is omitted, a
temporary directory is created automaticall.






	Returns:

	A newly constructed Dataset object



	Return type:

	DiskDataset










	
make_pytorch_dataset(epochs: int = 1, deterministic: bool = False, batch_size: int | None = None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L1893-L1932]

	Create a torch.utils.data.IterableDataset that iterates over the data in this Dataset.

Each value returned by the Dataset’s iterator is a tuple of (X, y, w, id)
containing the data for one batch, or for a single sample if batch_size is None.


	Parameters:

	
	epochs (int, default 1) – The number of times to iterate over the Dataset


	deterministic (bool, default False) – If True, the data is produced in order. If False, a different
random permutation of the data is used for each epoch.


	batch_size (int, optional (default None)) – The number of samples to return in each batch. If None, each returned
value is a single sample.






	Returns:

	torch.utils.data.IterableDataset that iterates over the data in
this dataset.



	Return type:

	torch.utils.data.IterableDataset






Note

This method requires PyTorch to be installed.








	
static from_numpy(X: _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes], y: _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes] | None = None, w: _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes] | None = None, ids: _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes] | None = None, tasks: _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes] | None = None, data_dir: str | None = None) → DiskDataset[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L1934-L1974]

	Creates a DiskDataset object from specified Numpy arrays.


	Parameters:

	
	X (np.ndarray) – Feature array.


	y (np.ndarray, optional (default None)) – Labels array.


	w (np.ndarray, optional (default None)) – Weights array.


	ids (np.ndarray, optional (default None)) – Identifiers array.


	tasks (Sequence, optional (default None)) – Tasks in this dataset


	data_dir (str, optional (default None)) – The directory to write this dataset to. If none is specified, will use
a temporary directory instead.






	Returns:

	A new DiskDataset constructed from the provided information.



	Return type:

	DiskDataset










	
static merge(datasets: Iterable[Dataset], merge_dir: str | None = None) → DiskDataset[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L1976-L2045]

	Merges provided datasets into a merged dataset.


	Parameters:

	
	datasets (Iterable[Dataset]) – List of datasets to merge.


	merge_dir (str, optional (default None)) – The new directory path to store the merged DiskDataset.






	Returns:

	A merged DiskDataset.



	Return type:

	DiskDataset










	
subset(shard_nums: Sequence[int], subset_dir: str | None = None) → DiskDataset[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L2047-L2080]

	Creates a subset of the original dataset on disk.


	Parameters:

	
	shard_nums (Sequence[int]) – The indices of shard to extract from the original DiskDataset.


	subset_dir (str, optional (default None)) – The new directory path to store the subset DiskDataset.






	Returns:

	A subset DiskDataset.



	Return type:

	DiskDataset










	
sparse_shuffle() → None[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L2082-L2133]

	Shuffling that exploits data sparsity to shuffle large datasets.

If feature vectors are sparse, say circular fingerprints or any other
representation that contains few nonzero values, it can be possible to
exploit the sparsity of the vector to simplify shuffles. This method
implements a sparse shuffle by compressing sparse feature vectors down
into a compressed representation, then shuffles this compressed dataset in
memory and writes the results to disk.


Note

This method only works for 1-dimensional feature vectors (does not work
for tensorial featurizations). Note that this shuffle is performed in
place.








	
complete_shuffle(data_dir: str | None = None) → Dataset[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L2135-L2162]

	Completely shuffle across all data, across all shards.


Note

The algorithm used for this complete shuffle is O(N^2) where N is the
number of shards. It simply constructs each shard of the output dataset
one at a time. Since the complete shuffle can take a long time, it’s
useful to watch the logging output. Each shuffled shard is constructed
using select() which logs as it selects from each original shard. This
will results in O(N^2) logging statements, one for each extraction of
shuffled shard i’s contributions from original shard j.




	Parameters:

	data_dir (Optional[str], (default None)) – Directory to write the shuffled dataset to. If none is specified a
temporary directory will be used.



	Returns:

	A DiskDataset whose data is a randomly shuffled version of this dataset.



	Return type:

	DiskDataset










	
shuffle_each_shard(shard_basenames: List[str] | None = None) → None[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L2164-L2195]

	Shuffles elements within each shard of the dataset.


	Parameters:

	shard_basenames (List[str], optional (default None)) – The basenames for each shard. If this isn’t specified, will assume the
basenames of form “shard-i” used by create_dataset and reshard.










	
shuffle_shards() → None[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L2197-L2202]

	Shuffles the order of the shards for this dataset.






	
get_shard(i: int) → Tuple[ndarray, ndarray, ndarray, ndarray][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L2204-L2270]

	Retrieves data for the i-th shard from disk.


	Parameters:

	i (int) – Shard index for shard to retrieve batch from.



	Returns:

	A batch data for i-th shard.



	Return type:

	Batch










	
get_shard_ids(i: int) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L2272-L2291]

	Retrieves the list of IDs for the i-th shard from disk.


	Parameters:

	i (int) – Shard index for shard to retrieve weights from.



	Returns:

	A numpy array of ids for i-th shard.



	Return type:

	np.ndarray










	
get_shard_y(i: int) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L2293-L2311]

	Retrieves the labels for the i-th shard from disk.


	Parameters:

	i (int) – Shard index for shard to retrieve labels from.



	Returns:

	A numpy array of labels for i-th shard.



	Return type:

	np.ndarray










	
get_shard_w(i: int) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L2313-L2331]

	Retrieves the weights for the i-th shard from disk.


	Parameters:

	i (int) – Shard index for shard to retrieve weights from.



	Returns:

	A numpy array of weights for i-th shard.



	Return type:

	np.ndarray










	
add_shard(X: ndarray, y: ndarray | None = None, w: ndarray | None = None, ids: ndarray | None = None) → None[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L2333-L2358]

	Adds a data shard.


	Parameters:

	
	X (np.ndarray) – Feature array.


	y (np.ndarray, optioanl (default None)) – Labels array.


	w (np.ndarray, optioanl (default None)) – Weights array.


	ids (np.ndarray, optioanl (default None)) – Identifiers array.













	
set_shard(shard_num: int, X: ndarray, y: ndarray | None = None, w: ndarray | None = None, ids: ndarray | None = None) → None[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L2360-L2384]

	Writes data shard to disk.


	Parameters:

	
	shard_num (int) – Shard index for shard to set new data.


	X (np.ndarray) – Feature array.


	y (np.ndarray, optioanl (default None)) – Labels array.


	w (np.ndarray, optioanl (default None)) – Weights array.


	ids (np.ndarray, optioanl (default None)) – Identifiers array.













	
select(indices: Sequence[int] | ndarray, select_dir: str | None = None, select_shard_size: int | None = None, output_numpy_dataset: bool | None = False) → Dataset[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L2386-L2555]

	Creates a new dataset from a selection of indices from self.

Examples

>>> import numpy as np
>>> X = np.random.rand(10, 10)
>>> dataset = dc.data.DiskDataset.from_numpy(X)
>>> selected = dataset.select([1, 3, 4])
>>> len(selected)
3






	Parameters:

	
	indices (Sequence) – List of indices to select.


	select_dir (str, optional (default None)) – Path to new directory that the selected indices will be copied to.


	select_shard_size (Optional[int], (default None)) – If specified, the shard-size to use for output selected DiskDataset.
If not output_numpy_dataset, then this is set to this current dataset’s
shard size if not manually specified.


	output_numpy_dataset (Optional[bool], (default False)) – If True, output an in-memory NumpyDataset instead of a DiskDataset.
Note that select_dir and select_shard_size must be None if this
is True






	Returns:

	A dataset containing the selected samples. The default dataset is DiskDataset.
If output_numpy_dataset is True, the dataset is NumpyDataset.



	Return type:

	Dataset










	
property ids: ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data.py]

	Get the ids vector for this dataset as a single numpy array.






	
property X: ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data.py]

	Get the X vector for this dataset as a single numpy array.






	
property y: ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data.py]

	Get the y vector for this dataset as a single numpy array.






	
property w: ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data.py]

	Get the weight vector for this dataset as a single numpy array.






	
property memory_cache_size: int[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data.py]

	Get the size of the memory cache for this dataset, measured in bytes.






	
__len__() → int[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L2625-L2631]

	Finds number of elements in dataset.






	
get_shape() → Tuple[Tuple[int, ...], Tuple[int, ...], Tuple[int, ...], Tuple[int, ...]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L2667-L2712]

	Finds shape of dataset.

Returns four tuples, giving the shape of the X, y, w, and ids arrays.






	
get_label_means() → DataFrame[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L2714-L2716]

	Return pandas series of label means.






	
get_label_stds() → DataFrame[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L2718-L2720]

	Return pandas series of label stds.






	
static from_dataframe(df: DataFrame, X: str | Sequence[str] | None = None, y: str | Sequence[str] | None = None, w: str | Sequence[str] | None = None, ids: str | None = None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L617-L698]

	Construct a Dataset from the contents of a pandas DataFrame.


	Parameters:

	
	df (pd.DataFrame) – The pandas DataFrame


	X (str or List[str], optional (default None)) – The name of the column or columns containing the X array.  If
this is None, it will look for default column names that match
those produced by to_dataframe().


	y (str or List[str], optional (default None)) – The name of the column or columns containing the y array.  If
this is None, it will look for default column names that match
those produced by to_dataframe().


	w (str or List[str], optional (default None)) – The name of the column or columns containing the w array.  If
this is None, it will look for default column names that match
those produced by to_dataframe().


	ids (str, optional (default None)) – The name of the column containing the ids.  If this is None, it
will look for default column names that match those produced by
to_dataframe().













	
get_statistics(X_stats: bool = True, y_stats: bool = True) → Tuple[ndarray, ...][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L440-L492]

	Compute and return statistics of this dataset.

Uses self.itersamples() to compute means and standard deviations
of the dataset. Can compute on large datasets that don’t fit in
memory.


	Parameters:

	
	X_stats (bool, optional (default True)) – If True, compute feature-level mean and standard deviations.


	y_stats (bool, optional (default True)) – If True, compute label-level mean and standard deviations.






	Returns:

	
	If X_stats == True, returns (X_means, X_stds).


	If y_stats == True, returns (y_means, y_stds).


	If both are true, returns (X_means, X_stds, y_means, y_stds).








	Return type:

	Tuple










	
make_tf_dataset(batch_size: int = 100, epochs: int = 1, deterministic: bool = False, pad_batches: bool = False)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L494-L547]

	Create a tf.data.Dataset that iterates over the data in this Dataset.

Each value returned by the Dataset’s iterator is a tuple of (X, y,
w) for one batch.


	Parameters:

	
	batch_size (int, default 100) – The number of samples to include in each batch.


	epochs (int, default 1) – The number of times to iterate over the Dataset.


	deterministic (bool, default False) – If True, the data is produced in order.  If False, a different
random permutation of the data is used for each epoch.


	pad_batches (bool, default False) – If True, batches are padded as necessary to make the size of
each batch exactly equal batch_size.






	Returns:

	TensorFlow Dataset that iterates over the same data.



	Return type:

	tf.data.Dataset






Note

This class requires TensorFlow to be installed.








	
to_csv(path: str) → None[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L700-L743]

	Write object to a comma-seperated values (CSV) file

Example

>>> import numpy as np
>>> X = np.random.rand(10, 10)
>>> dataset = dc.data.DiskDataset.from_numpy(X)
>>> dataset.to_csv('out.csv')  






	Parameters:

	path (str) – File path or object



	Return type:

	None










	
to_dataframe() → DataFrame[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L581-L615]

	Construct a pandas DataFrame containing the data from this Dataset.


	Returns:

	Pandas dataframe. If there is only a single feature per datapoint,
will have column “X” else will have columns “X1,X2,…” for
features.  If there is only a single label per datapoint, will
have column “y” else will have columns “y1,y2,…” for labels. If
there is only a single weight per datapoint will have column “w”
else will have columns “w1,w2,…”. Will have column “ids” for
identifiers.



	Return type:

	pd.DataFrame















ImageDataset

The dc.data.ImageDataset class is optimized to allow
for convenient processing of image based datasets.


	
class ImageDataset(X: ndarray | List[str], y: ndarray | List[str] | None, w: _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes] | None = None, ids: _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes] | None = None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L2723-L3021]

	A Dataset that loads data from image files on disk.


	
__init__(X: ndarray | List[str], y: ndarray | List[str] | None, w: _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes] | None = None, ids: _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes] | None = None) → None[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L2726-L2774]

	Create a dataset whose X and/or y array is defined by image files on disk.


	Parameters:

	
	X (np.ndarray or List[str]) – The dataset’s input data.  This may be either a single NumPy
array directly containing the data, or a list containing the
paths to the image files


	y (np.ndarray or List[str]) – The dataset’s labels.  This may be either a single NumPy array
directly containing the data, or a list containing the paths to
the image files


	w (np.ndarray, optional (default None)) – a 1D or 2D array containing the weights for each sample or
sample/task pair


	ids (np.ndarray, optional (default None)) – the sample IDs













	
__len__() → int[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L2782-L2784]

	Get the number of elements in the dataset.






	
get_shape() → Tuple[Tuple[int, ...], Tuple[int, ...], Tuple[int, ...], Tuple[int, ...]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L2786-L2791]

	Get the shape of the dataset.

Returns four tuples, giving the shape of the X, y, w, and ids arrays.






	
get_task_names() → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L2793-L2797]

	Get the names of the tasks associated with this dataset.






	
property X: ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data.py]

	Get the X vector for this dataset as a single numpy array.






	
property y: ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data.py]

	Get the y vector for this dataset as a single numpy array.






	
property ids: ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data.py]

	Get the ids vector for this dataset as a single numpy array.






	
property w: ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data.py]

	Get the weight vector for this dataset as a single numpy array.






	
iterbatches(batch_size: int | None = None, epochs: int = 1, deterministic: bool = False, pad_batches: bool = False) → Iterator[Tuple[ndarray, ndarray, ndarray, ndarray]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L2823-L2885]

	Get an object that iterates over minibatches from the dataset.

Each minibatch is returned as a tuple of four numpy arrays:
(X, y, w, ids).


	Parameters:

	
	batch_size (int, optional (default None)) – Number of elements in each batch.


	epochs (int, default 1) – Number of epochs to walk over dataset.


	deterministic (bool, default False) – If True, follow deterministic order.


	pad_batches (bool, default False) – If True, pad each batch to batch_size.






	Returns:

	Generator which yields tuples of four numpy arrays (X, y, w, ids).



	Return type:

	Iterator[Batch]










	
itersamples() → Iterator[Tuple[ndarray, ndarray, ndarray, ndarray]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L2909-L2919]

	Get an object that iterates over the samples in the dataset.


	Returns:

	Iterator which yields tuples of four numpy arrays (X, y, w, ids).



	Return type:

	Iterator[Batch]










	
transform(transformer: Transformer, **args) → NumpyDataset[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L2921-L2948]

	Construct a new dataset by applying a transformation to every sample in this dataset.

The argument is a function that can be called as follows:

>> newx, newy, neww = fn(x, y, w)

It might be called only once with the whole dataset, or multiple times with
different subsets of the data.  Each time it is called, it should transform
the samples and return the transformed data.


	Parameters:

	transformer (dc.trans.Transformer) – The transformation to apply to each sample in the dataset



	Returns:

	A newly constructed NumpyDataset object



	Return type:

	NumpyDataset










	
select(indices: Sequence[int] | ndarray, select_dir: str | None = None) → ImageDataset[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L2950-L2980]

	Creates a new dataset from a selection of indices from self.


	Parameters:

	
	indices (Sequence) – List of indices to select.


	select_dir (str, optional (default None)) – Used to provide same API as DiskDataset. Ignored since
ImageDataset is purely in-memory.






	Returns:

	A selected ImageDataset object



	Return type:

	ImageDataset










	
make_pytorch_dataset(epochs: int = 1, deterministic: bool = False, batch_size: int | None = None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L2982-L3021]

	Create a torch.utils.data.IterableDataset that iterates over the data in this Dataset.

Each value returned by the Dataset’s iterator is a tuple of (X, y, w, id)
containing the data for one batch, or for a single sample if batch_size is None.


	Parameters:

	
	epochs (int, default 1) – The number of times to iterate over the Dataset.


	deterministic (bool, default False) – If True, the data is produced in order. If False, a different
random permutation of the data is used for each epoch.


	batch_size (int, optional (default None)) – The number of samples to return in each batch. If None, each returned
value is a single sample.






	Returns:

	torch.utils.data.IterableDataset that iterates over the data in
this dataset.



	Return type:

	torch.utils.data.IterableDataset






Note

This method requires PyTorch to be installed.








	
static from_dataframe(df: DataFrame, X: str | Sequence[str] | None = None, y: str | Sequence[str] | None = None, w: str | Sequence[str] | None = None, ids: str | None = None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L617-L698]

	Construct a Dataset from the contents of a pandas DataFrame.


	Parameters:

	
	df (pd.DataFrame) – The pandas DataFrame


	X (str or List[str], optional (default None)) – The name of the column or columns containing the X array.  If
this is None, it will look for default column names that match
those produced by to_dataframe().


	y (str or List[str], optional (default None)) – The name of the column or columns containing the y array.  If
this is None, it will look for default column names that match
those produced by to_dataframe().


	w (str or List[str], optional (default None)) – The name of the column or columns containing the w array.  If
this is None, it will look for default column names that match
those produced by to_dataframe().


	ids (str, optional (default None)) – The name of the column containing the ids.  If this is None, it
will look for default column names that match those produced by
to_dataframe().













	
get_statistics(X_stats: bool = True, y_stats: bool = True) → Tuple[ndarray, ...][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L440-L492]

	Compute and return statistics of this dataset.

Uses self.itersamples() to compute means and standard deviations
of the dataset. Can compute on large datasets that don’t fit in
memory.


	Parameters:

	
	X_stats (bool, optional (default True)) – If True, compute feature-level mean and standard deviations.


	y_stats (bool, optional (default True)) – If True, compute label-level mean and standard deviations.






	Returns:

	
	If X_stats == True, returns (X_means, X_stds).


	If y_stats == True, returns (y_means, y_stds).


	If both are true, returns (X_means, X_stds, y_means, y_stds).








	Return type:

	Tuple










	
make_tf_dataset(batch_size: int = 100, epochs: int = 1, deterministic: bool = False, pad_batches: bool = False)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L494-L547]

	Create a tf.data.Dataset that iterates over the data in this Dataset.

Each value returned by the Dataset’s iterator is a tuple of (X, y,
w) for one batch.


	Parameters:

	
	batch_size (int, default 100) – The number of samples to include in each batch.


	epochs (int, default 1) – The number of times to iterate over the Dataset.


	deterministic (bool, default False) – If True, the data is produced in order.  If False, a different
random permutation of the data is used for each epoch.


	pad_batches (bool, default False) – If True, batches are padded as necessary to make the size of
each batch exactly equal batch_size.






	Returns:

	TensorFlow Dataset that iterates over the same data.



	Return type:

	tf.data.Dataset






Note

This class requires TensorFlow to be installed.








	
to_csv(path: str) → None[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L700-L743]

	Write object to a comma-seperated values (CSV) file

Example

>>> import numpy as np
>>> X = np.random.rand(10, 10)
>>> dataset = dc.data.DiskDataset.from_numpy(X)
>>> dataset.to_csv('out.csv')  






	Parameters:

	path (str) – File path or object



	Return type:

	None










	
to_dataframe() → DataFrame[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L581-L615]

	Construct a pandas DataFrame containing the data from this Dataset.


	Returns:

	Pandas dataframe. If there is only a single feature per datapoint,
will have column “X” else will have columns “X1,X2,…” for
features.  If there is only a single label per datapoint, will
have column “y” else will have columns “y1,y2,…” for labels. If
there is only a single weight per datapoint will have column “w”
else will have columns “w1,w2,…”. Will have column “ids” for
identifiers.



	Return type:

	pd.DataFrame
















Data Loaders

Processing large amounts of input data to construct a dc.data.Dataset object can require some amount of hacking.
To simplify this process for you, you can use the dc.data.DataLoader classes.
These classes provide utilities for you to load and process large amounts of data.


CSVLoader


	
class CSVLoader(tasks: List[str], featurizer: Featurizer, feature_field: str | None = None, id_field: str | None = None, smiles_field: str | None = None, log_every_n: int = 1000)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/data_loader.py#L282-L437]

	Creates Dataset objects from input CSV files.

This class provides conveniences to load data from CSV files.
It’s possible to directly featurize data from CSV files using
pandas, but this class may prove useful if you’re processing
large CSV files that you don’t want to manipulate directly in
memory. Note that samples which cannot be featurized are filtered
out in the creation of final dataset.

Examples

Let’s suppose we have some smiles and labels

>>> smiles = ["C", "CCC"]
>>> labels = [1.5, 2.3]





Let’s put these in a dataframe.

>>> import pandas as pd
>>> df = pd.DataFrame(list(zip(smiles, labels)), columns=["smiles", "task1"])





Let’s now write this to disk somewhere. We can now use CSVLoader to
process this CSV dataset.

>>> import tempfile
>>> import deepchem as dc
>>> with dc.utils.UniversalNamedTemporaryFile(mode='w') as tmpfile:
...     df.to_csv(tmpfile.name)
...     loader = dc.data.CSVLoader(["task1"], feature_field="smiles",
...                              featurizer=dc.feat.CircularFingerprint())
...     dataset = loader.create_dataset(tmpfile.name)
>>> len(dataset)
2





Of course in practice you should already have your data in a CSV file if
you’re using CSVLoader. If your data is already in memory, use
InMemoryLoader instead.

Sometimes there will be datasets without specific tasks, for example
datasets which are used in unsupervised learning tasks. Such datasets
can be loaded by leaving the tasks field empty.

Example

>>> x1, x2 = [2, 3, 4], [4, 6, 8]
>>> df = pd.DataFrame({"x1":x1, "x2": x2}).reset_index()
>>> with dc.utils.UniversalNamedTemporaryFile(mode='w') as tmpfile:
...     df.to_csv(tmpfile.name)
...     loader = dc.data.CSVLoader(tasks=[], id_field="index", feature_field=["x1", "x2"],
...                              featurizer=dc.feat.DummyFeaturizer())
...     dataset = loader.create_dataset(tmpfile.name)
>>> len(dataset)
3






	
__init__(tasks: List[str], featurizer: Featurizer, feature_field: str | None = None, id_field: str | None = None, smiles_field: str | None = None, log_every_n: int = 1000)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/data_loader.py#L341-L389]

	Initializes CSVLoader.


	Parameters:

	
	tasks (List[str]) – List of task names


	featurizer (Featurizer) – Featurizer to use to process data.


	feature_field (str, optional (default None)) – Field with data to be featurized.


	id_field (str, optional, (default None)) – CSV column that holds sample identifier


	smiles_field (str, optional (default None) (DEPRECATED)) – Name of field that holds smiles string.


	log_every_n (int, optional (default 1000)) – Writes a logging statement this often.













	
create_dataset(inputs: Any | Sequence[Any], data_dir: str | None = None, shard_size: int | None = 8192) → Dataset[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/data_loader.py#L178-L241]

	Creates and returns a Dataset object by featurizing provided files.

Reads in inputs and uses self.featurizer to featurize the
data in these inputs.  For large files, automatically shards
into smaller chunks of shard_size datapoints for convenience.
Returns a Dataset object that contains the featurized dataset.

This implementation assumes that the helper methods _get_shards
and _featurize_shard are implemented and that each shard
returned by _get_shards is a pandas dataframe.  You may choose
to reuse or override this method in your subclass implementations.


	Parameters:

	
	inputs (List) – List of inputs to process. Entries can be filenames or arbitrary objects.


	data_dir (str, optional (default None)) – Directory to store featurized dataset.


	shard_size (int, optional (default 8192)) – Number of examples stored in each shard.






	Returns:

	A DiskDataset object containing a featurized representation of data
from inputs.



	Return type:

	DiskDataset















UserCSVLoader


	
class UserCSVLoader(tasks: List[str], featurizer: Featurizer, feature_field: str | None = None, id_field: str | None = None, smiles_field: str | None = None, log_every_n: int = 1000)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/data_loader.py#L440-L529]

	Handles loading of CSV files with user-defined features.

This is a convenience class that allows for descriptors already present in a
CSV file to be extracted without any featurization necessary.

Examples

Let’s suppose we have some descriptors and labels. (Imagine that these
descriptors have been computed by an external program.)

>>> desc1 = [1, 43]
>>> desc2 = [-2, -22]
>>> labels = [1.5, 2.3]
>>> ids = ["cp1", "cp2"]





Let’s put these in a dataframe.

>>> import pandas as pd
>>> df = pd.DataFrame(list(zip(ids, desc1, desc2, labels)), columns=["id", "desc1", "desc2", "task1"])





Let’s now write this to disk somewhere. We can now use UserCSVLoader to
process this CSV dataset.

>>> import tempfile
>>> import deepchem as dc
>>> featurizer = dc.feat.UserDefinedFeaturizer(["desc1", "desc2"])
>>> with dc.utils.UniversalNamedTemporaryFile(mode='w') as tmpfile:
...     df.to_csv(tmpfile.name)
...     loader = dc.data.UserCSVLoader(["task1"], id_field="id",
...                              featurizer=featurizer)
...     dataset = loader.create_dataset(tmpfile.name)
>>> len(dataset)
2
>>> dataset.X[0, 0]
1





The difference between UserCSVLoader and CSVLoader is that our
descriptors (our features) have already been computed for us, but are spread
across multiple columns of the CSV file.

Of course in practice you should already have your data in a CSV file if
you’re using UserCSVLoader. If your data is already in memory, use
InMemoryLoader instead.


	
__init__(tasks: List[str], featurizer: Featurizer, feature_field: str | None = None, id_field: str | None = None, smiles_field: str | None = None, log_every_n: int = 1000)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/data_loader.py#L341-L389]

	Initializes CSVLoader.


	Parameters:

	
	tasks (List[str]) – List of task names


	featurizer (Featurizer) – Featurizer to use to process data.


	feature_field (str, optional (default None)) – Field with data to be featurized.


	id_field (str, optional, (default None)) – CSV column that holds sample identifier


	smiles_field (str, optional (default None) (DEPRECATED)) – Name of field that holds smiles string.


	log_every_n (int, optional (default 1000)) – Writes a logging statement this often.













	
create_dataset(inputs: Any | Sequence[Any], data_dir: str | None = None, shard_size: int | None = 8192) → Dataset[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/data_loader.py#L178-L241]

	Creates and returns a Dataset object by featurizing provided files.

Reads in inputs and uses self.featurizer to featurize the
data in these inputs.  For large files, automatically shards
into smaller chunks of shard_size datapoints for convenience.
Returns a Dataset object that contains the featurized dataset.

This implementation assumes that the helper methods _get_shards
and _featurize_shard are implemented and that each shard
returned by _get_shards is a pandas dataframe.  You may choose
to reuse or override this method in your subclass implementations.


	Parameters:

	
	inputs (List) – List of inputs to process. Entries can be filenames or arbitrary objects.


	data_dir (str, optional (default None)) – Directory to store featurized dataset.


	shard_size (int, optional (default 8192)) – Number of examples stored in each shard.






	Returns:

	A DiskDataset object containing a featurized representation of data
from inputs.



	Return type:

	DiskDataset















ImageLoader


	
class ImageLoader(tasks: List[str] | None = None, sorting: bool = True)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/data_loader.py#L1304-L1577]

	Creates Dataset objects from input image files.

This class allows for loading of images in various formats.
For user convenience, also accepts zip-files and directories
of images and uses some limited intelligence to attempt to
traverse subdirectories which contain images.

Currently, only .png and .tif files are supported. If the
inputs or labels are given as a list of files, the list must contain
only image files.

Examples

For this example, we will be using the BBBC001 Dataset. This dataset contains 6 images
of human HT29 colon cancer cells. We will use the images as inputs and we will assign
the labels as integers ranging from 1 to 6 for the sake of simplicity.

To learn more about this dataset, please visit: https://data.broadinstitute.org/bbbc/BBBC001/
and also see our loader for this dataset: deepchem.molnet.loadbbbc001.

Let’s begin by importing the necessary modules and downloading the dataset.
>>> import os
>>> import deepchem as dc
>>> data_dir = dc.utils.data_utils.get_data_dir()
>>> dataset_file = os.path.join(data_dir, “BBBC001_v1_images_tif.zip”)
>>> BBBC1_IMAGE_URL = ‘https://data.broadinstitute.org/bbbc/BBBC001/BBBC001_v1_images_tif.zip’
>>> if not os.path.exists(dataset_file):
…    dc.utils.data_utils.download_url(url=BBBC1_IMAGE_URL, dest_dir=data_dir)

Now that we have the dataset, let’s create a list of labels for each image.

>>> labels = np.array([1,2,3,4,5,6])





Let’s now write this to disk somewhere. We can now use ImageLoader to process
this Image dataset. We do not use a featurizer here, hence the UserDefinedFeaturizer
with an empty list.

>>> featurizer = dc.feat.UserDefinedFeaturizer([])
>>> loader = dc.data.ImageLoader(tasks=['demo-task'], sorting=False)
>>> dataset = loader.create_dataset(inputs=(dataset_file, labels),
...                                 in_memory=False)





We can confirm that we have 6 images in our dataset and 6 labels. The images are
of size 512x512 while the labels are just integers.

>>> len(dataset)
6
>>> dataset.X.shape
(6, 512, 512)
>>> dataset.y.shape
(6,)





The label files can also be images similar to the inputs, in which case we
can provide a list of label files instead of a list of labels.

To show this, we will use the input data as the ground truths, this is often
seen when making autoencoders. Similar to the above example, let’s use ImageLoader
to process this Image dataset.

>>> featurizer = dc.feat.UserDefinedFeaturizer([])
>>> loader = dc.data.ImageLoader(tasks=['demo-task'], sorting=False)
>>> dataset = loader.create_dataset(inputs=(dataset_file, dataset_file),
...                                 in_memory=False)





We can confirm that we have 6 images in our dataset and 6 labels. The images are
of size 512x512 while the labels are also images of size 512x512.

>>> len(dataset)
6
>>> dataset.X.shape
(6, 512, 512)
>>> dataset.y.shape
(6, 512, 512)






	
__init__(tasks: List[str] | None = None, sorting: bool = True)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/data_loader.py#L1380-L1396]

	Initialize image loader.

At present, custom image featurizers aren’t supported by this
loader class.


	Parameters:

	
	tasks (List[str], optional (default None)) – List of task names for image labels.


	sorting (bool, optional (default True)) – Whether to sort image files by filename.













	
create_dataset(inputs: str | Sequence[str] | Tuple[Any] | Tuple[str, Any], data_dir: str | None = None, shard_size: int | None = 8192, in_memory: bool = False) → Dataset[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/data_loader.py#L1398-L1577]

	Creates and returns a Dataset object by featurizing provided image files and labels/weights.


	Parameters:

	
	inputs (Union[OneOrMany[str], Tuple[Any]]) – The inputs provided should be one of the following



	filename


	list of filenames


	Tuple (list of filenames, labels)


	Tuple (list of filenames, list of label filenames)


	Tuple (list of filenames, labels, weights)


	Tuple (list of filenames, list of label filenames, weights)







Each file in a given list of filenames should either be of a supported
image format (.png, .tif only for now) or of a compressed folder of
image files (only .zip for now). If labels or weights are provided,
they must correspond to the sorted order of all filenames provided, with
one label/weight per file. Labels can be filenames too, in which case the
labels are loaded as images.




	data_dir (str, optional (default None)) – Directory to store featurized dataset.


	shard_size (int, optional (default 8192)) – Shard size when loading data.


	in_memory (bool, optioanl (default False)) – If true, return in-memory NumpyDataset. Else return ImageDataset.






	Returns:

	
	if in_memory == False, the return value is ImageDataset.


	if in_memory == True and data_dir is None, the return value is NumpyDataset.


	if in_memory == True and data_dir is not None, the return value is DiskDataset.








	Return type:

	ImageDataset or NumpyDataset or DiskDataset















JsonLoader

JSON is a flexible file format that is human-readable, lightweight,
and more compact than other open standard formats like XML. JSON files
are similar to python dictionaries of key-value pairs. All keys must
be strings, but values can be any of (string, number, object, array,
boolean, or null), so the format is more flexible than CSV. JSON is
used for describing structured data and to serialize objects. It is
conveniently used to read/write Pandas dataframes with the
pandas.read_json and pandas.write_json methods.


	
class JsonLoader(tasks: List[str], feature_field: str, featurizer: Featurizer, label_field: str | None = None, weight_field: str | None = None, id_field: str | None = None, log_every_n: int = 1000)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/data_loader.py#L532-L731]

	Creates Dataset objects from input json files.

This class provides conveniences to load data from json files.
It’s possible to directly featurize data from json files using
pandas, but this class may prove useful if you’re processing
large json files that you don’t want to manipulate directly in
memory.

It is meant to load JSON files formatted as “records” in line
delimited format, which allows for sharding.
list like [{column -> value}, ... , {column -> value}].

Examples

Let’s create the sample dataframe.

>>> composition = ["LiCoO2", "MnO2"]
>>> labels = [1.5, 2.3]
>>> import pandas as pd
>>> df = pd.DataFrame(list(zip(composition, labels)), columns=["composition", "task"])





Dump the dataframe to the JSON file formatted as “records” in line delimited format and
load the json file by JsonLoader.

>>> import tempfile
>>> import deepchem as dc
>>> with dc.utils.UniversalNamedTemporaryFile(mode='w') as tmpfile:
...     df.to_json(tmpfile.name, orient='records', lines=True)
...     featurizer = dc.feat.ElementPropertyFingerprint()
...     loader = dc.data.JsonLoader(["task"], feature_field="composition", featurizer=featurizer)
...     dataset = loader.create_dataset(tmpfile.name)
>>> len(dataset)
2






	
__init__(tasks: List[str], feature_field: str, featurizer: Featurizer, label_field: str | None = None, weight_field: str | None = None, id_field: str | None = None, log_every_n: int = 1000)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/data_loader.py#L569-L608]

	Initializes JsonLoader.


	Parameters:

	
	tasks (List[str]) – List of task names


	feature_field (str) – JSON field with data to be featurized.


	featurizer (Featurizer) – Featurizer to use to process data


	label_field (str, optional (default None)) – Field with target variables.


	weight_field (str, optional (default None)) – Field with weights.


	id_field (str, optional (default None)) – Field for identifying samples.


	log_every_n (int, optional (default 1000)) – Writes a logging statement this often.













	
create_dataset(input_files: str | Sequence[str], data_dir: str | None = None, shard_size: int | None = 8192) → DiskDataset[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/data_loader.py#L610-L679]

	Creates a Dataset from input JSON files.


	Parameters:

	
	input_files (OneOrMany[str]) – List of JSON filenames.


	data_dir (Optional[str], default None) – Name of directory where featurized data is stored.


	shard_size (int, optional (default 8192)) – Shard size when loading data.






	Returns:

	A DiskDataset object containing a featurized representation of data
from input_files.



	Return type:

	DiskDataset















SDFLoader


	
class SDFLoader(tasks: List[str], featurizer: Featurizer, sanitize: bool = False, log_every_n: int = 1000)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/data_loader.py#L734-L920]

	Creates a Dataset object from SDF input files.

This class provides conveniences to load and featurize data from
Structure Data Files (SDFs). SDF is a standard format for structural
information (3D coordinates of atoms and bonds) of molecular compounds.

Examples

>>> import deepchem as dc
>>> import os
>>> current_dir = os.path.dirname(os.path.realpath(__file__))
>>> featurizer = dc.feat.CircularFingerprint(size=16)
>>> loader = dc.data.SDFLoader(["LogP(RRCK)"], featurizer=featurizer, sanitize=True)
>>> dataset = loader.create_dataset(os.path.join(current_dir, "tests", "membrane_permeability.sdf")) 
>>> len(dataset)
2






	
__init__(tasks: List[str], featurizer: Featurizer, sanitize: bool = False, log_every_n: int = 1000)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/data_loader.py#L753-L778]

	Initialize SDF Loader


	Parameters:

	
	tasks (list[str]) – List of tasknames. These will be loaded from the SDF file.


	featurizer (Featurizer) – Featurizer to use to process data


	sanitize (bool, optional (default False)) – Whether to sanitize molecules.


	log_every_n (int, optional (default 1000)) – Writes a logging statement this often.













	
create_dataset(inputs: Any | Sequence[Any], data_dir: str | None = None, shard_size: int | None = 8192) → Dataset[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/data_loader.py#L780-L857]

	Creates and returns a Dataset object by featurizing provided sdf files.


	Parameters:

	
	inputs (List) – List of inputs to process. Entries can be filenames or arbitrary objects.
Each file should be supported format (.sdf) or compressed folder of
.sdf files


	data_dir (str, optional (default None)) – Directory to store featurized dataset.


	shard_size (int, optional (default 8192)) – Number of examples stored in each shard.






	Returns:

	A DiskDataset object containing a featurized representation of data
from inputs.



	Return type:

	DiskDataset















FASTALoader


	
class FASTALoader(featurizer: Featurizer | None = None, auto_add_annotations: bool = False, legacy: bool = True)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/data_loader.py#L923-L1079]

	Handles loading of FASTA files.

FASTA files are commonly used to hold sequence data. This
class provides convenience files to lead FASTA data and
one-hot encode the genomic sequences for use in downstream
learning tasks.


	
__init__(featurizer: Featurizer | None = None, auto_add_annotations: bool = False, legacy: bool = True)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/data_loader.py#L932-L996]

	Initialize FASTALoader.


	Parameters:

	
	featurizer (Featurizer (default: None)) – The Featurizer to be used for the loaded FASTA data.

If featurizer is None and legacy is True, the original featurization
logic is used, creating a one hot encoding of all included FASTA strings
of shape
(number of FASTA sequences, number of channels + 1, sequence length, 1).

If featurizer is None and legacy is False, the featurizer is initialized
as a OneHotFeaturizer object with charset (“A”, “C”, “T”, “G”) and
max_length = None.




	auto_add_annotations (bool (default False)) – Whether create_dataset will automatically add [CLS] and [SEP] annotations
to the sequences it reads in order to assist tokenization.
Keep False if your FASTA file already includes [CLS] and [SEP] annotations.


	legacy (bool (default True)) – Whether to use legacy logic for featurization. Legacy mode will create
a one hot encoding of the FASTA content of shape
(number of FASTA sequences, number of channels + 1, max length, 1).

Legacy mode is only tested for ACTGN charsets, and will be deprecated.















	
create_dataset(input_files: str | Sequence[str], data_dir: str | None = None, shard_size: int | None = None) → DiskDataset[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/data_loader.py#L998-L1079]

	Creates a Dataset from input FASTA files.

At present, FASTA support is limited and doesn’t allow for sharding.


	Parameters:

	
	input_files (List[str]) – List of fasta files.


	data_dir (str, optional (default None)) – Name of directory where featurized data is stored.


	shard_size (int, optional (default None)) – For now, this argument is ignored and each FASTA file gets its
own shard.






	Returns:

	A DiskDataset object containing a featurized representation of data
from input_files.



	Return type:

	DiskDataset















FASTQLoader


	
class FASTQLoader(featurizer: Featurizer | None = None, auto_add_annotations: bool = False, return_quality_scores: bool = False)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/data_loader.py#L1128-L1301]

	Handles loading of FASTQ files.

FASTQ files are commonly used to hold very large sequence data. It is a variant of FASTA format.
This class provides convenience files to load FASTQ data and one-hot encode
the genomic sequences for use in downstream learning tasks.

Example

>>> import os
>>> from deepchem.feat.molecule_featurizers import OneHotFeaturizer
>>> from deepchem.data.data_loader import FASTQLoader
>>> current_dir = os.path.dirname(os.path.abspath(__file__))
>>> input_file = os.path.join(current_dir, "tests", "sample1.fastq")
>>> loader = FASTQLoader()
>>> sequences = loader.create_dataset(input_file)






See also

Info on the structure of FASTQ files <https://support.illumina.com/bulletins/2016/04/fastq-files-explained.html>




	
__init__(featurizer: Featurizer | None = None, auto_add_annotations: bool = False, return_quality_scores: bool = False)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/data_loader.py#L1150-L1186]

	Initialize FASTQLoader.


	Parameters:

	
	featurizer (Featurizer (default: None)) – The Featurizer to be used for the loaded FASTQ data.
The featurizer is initialized as a OneHotFeaturizer object with charset (“A”, “C”, “T”, “G”) and
max_length = None.


	auto_add_annotations (bool (default False)) – Whether create_dataset will automatically add [CLS] and [SEP] annotations
to the sequences it reads in order to assist tokenization.
Keep False if your FASTQ file already includes [CLS] and [SEP] annotations.


	return_quality_scores (bool (default True)) – returns the quality (likelihood) score of the nucleotides in the sequence.













	
create_dataset(input_files: str | Sequence[str], data_dir: str | None = None, shard_size: int | None = 4096) → DiskDataset[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/data_loader.py#L1212-L1301]

	Creates a Dataset from input FASTQ files.


	Parameters:

	
	input_files (List[str]) – List of fastQ files.


	data_dir (str, optional (default None)) – Name of directory where featurized data is stored.
shard_size: int, optional (default 4096)






	Returns:

	A DiskDataset object containing a featurized representation of data
from input_files.



	Return type:

	DiskDataset















InMemoryLoader

The dc.data.InMemoryLoader is designed to facilitate the processing of large datasets
where you already hold the raw data in-memory (say in a pandas dataframe).


	
class InMemoryLoader(tasks: List[str], featurizer: Featurizer, id_field: str | None = None, log_every_n: int = 1000)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/data_loader.py#L1580-L1770]

	Facilitate Featurization of In-memory objects.

When featurizing a dataset, it’s often the case that the initial set of
data (pre-featurization) fits handily within memory. (For example, perhaps
it fits within a column of a pandas DataFrame.) In this case, it would be
convenient to directly be able to featurize this column of data. However,
the process of featurization often generates large arrays which quickly eat
up available memory. This class provides convenient capabilities to process
such in-memory data by checkpointing generated features periodically to
disk.

Example

Here’s an example with only datapoints and no labels or weights.

>>> import deepchem as dc
>>> smiles = ["C", "CC", "CCC", "CCCC"]
>>> featurizer = dc.feat.CircularFingerprint()
>>> loader = dc.data.InMemoryLoader(tasks=["task1"], featurizer=featurizer)
>>> dataset = loader.create_dataset(smiles, shard_size=2)
>>> len(dataset)
4





Here’s an example with both datapoints and labels

>>> import deepchem as dc
>>> smiles = ["C", "CC", "CCC", "CCCC"]
>>> labels = [1, 0, 1, 0]
>>> featurizer = dc.feat.CircularFingerprint()
>>> loader = dc.data.InMemoryLoader(tasks=["task1"], featurizer=featurizer)
>>> dataset = loader.create_dataset(zip(smiles, labels), shard_size=2)
>>> len(dataset)
4





Here’s an example with datapoints, labels, weights and ids all provided.

>>> import deepchem as dc
>>> smiles = ["C", "CC", "CCC", "CCCC"]
>>> labels = [1, 0, 1, 0]
>>> weights = [1.5, 0, 1.5, 0]
>>> ids = ["C", "CC", "CCC", "CCCC"]
>>> featurizer = dc.feat.CircularFingerprint()
>>> loader = dc.data.InMemoryLoader(tasks=["task1"], featurizer=featurizer)
>>> dataset = loader.create_dataset(zip(smiles, labels, weights, ids), shard_size=2)
>>> len(dataset)
4






	
create_dataset(inputs: Sequence[Any], data_dir: str | None = None, shard_size: int | None = 8192) → DiskDataset[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/data_loader.py#L1630-L1685]

	Creates and returns a Dataset object by featurizing provided files.

Reads in inputs and uses self.featurizer to featurize the
data in these input files.  For large files, automatically shards
into smaller chunks of shard_size datapoints for convenience.
Returns a Dataset object that contains the featurized dataset.

This implementation assumes that the helper methods _get_shards
and _featurize_shard are implemented and that each shard
returned by _get_shards is a pandas dataframe.  You may choose
to reuse or override this method in your subclass implementations.


	Parameters:

	
	inputs (Sequence[Any]) – List of inputs to process. Entries can be arbitrary objects so long as
they are understood by self.featurizer


	data_dir (str, optional (default None)) – Directory to store featurized dataset.


	shard_size (int, optional (default 8192)) – Number of examples stored in each shard.






	Returns:

	A DiskDataset object containing a featurized representation of data
from inputs.



	Return type:

	DiskDataset










	
__init__(tasks: List[str], featurizer: Featurizer, id_field: str | None = None, log_every_n: int = 1000)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/data_loader.py#L103-L140]

	Construct a DataLoader object.

This constructor is provided as a template mainly. You
shouldn’t ever call this constructor directly as a user.


	Parameters:

	
	tasks (List[str]) – List of task names


	featurizer (Featurizer) – Featurizer to use to process data.


	id_field (str, optional (default None)) – Name of field that holds sample identifier. Note that the
meaning of “field” depends on the input data type and can have a
different meaning in different subclasses. For example, a CSV
file could have a field as a column, and an SDF file could have
a field as molecular property.


	log_every_n (int, optional (default 1000)) – Writes a logging statement this often.


















Density Functional Theory YAML Loader


	
class DFTYamlLoader[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/data_loader.py#L1773-L1899]

	Creates a Dataset object from YAML input files.

This class provides methods to load and featurize data from a YAML file.
Although, in this class, we only focus on a specfic input format
that can be used to perform Density Functional Theory calculations.

Examples

>>> from deepchem.data.data_loader import DFTYamlLoader
>>> import deepchem as dc
>>> import pytest
>>> inputs = 'deepchem/data/tests/dftdata.yaml'
>>> data = DFTYamlLoader()
>>> output = data.create_dataset(inputs)





Notes

Format (and example) for the YAML file:


	e_type : ‘ae’
true_val : ‘0.09194410469’
systems : [{



‘moldesc’: ‘Li 1.5070 0 0; H -1.5070 0 0’,
‘basis’: ‘6-311++G(3df,3pd)’




}]








Each entry in the YAML file must contain the three parameters : e_type,
true_val and systems in this particular order.
One entry object may contain one or more systems.
This data class does not support/ require an additional featurizer,
since the datapoints are featurized within the methods.
To read more about the parameters and their possible values please refer to
deepchem.feat.dft_data.


	
__init__()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/data_loader.py#L1811-L1814]

	Initialize DFTYAML loader






	
create_dataset(inputs: Any | Sequence[Any], data_dir: str | None = None, shard_size: int | None = 1) → Dataset[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/data_loader.py#L1816-L1849]

	Creates and returns a Dataset object by featurizing provided YAML
files.


	Parameters:

	
	input_files (OneOrMany[str]) – List of YAML filenames.


	data_dir (Optional[str], default None) – Name of directory where featurized data is stored.


	shard_size (int, optional (default 1)) – Shard size when loading data.






	Returns:

	A DiskDataset object containing a featurized representation
of data from inputs.



	Return type:

	DiskDataset















SAM Loader


	
class SAMLoader(featurizer: Featurizer | None = None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/data_loader.py#L1902-L1985]

	Handles loading of SAM files.
Sequence Alignment Map (SAM) is a text-based format used for storing biological sequences
aligned to a reference sequence.It is generally used for storing nucleotide sequences,
generated by next generation sequencing technologies, and unmapped sequences.
SAM files have a header section and an alignment section.Alignment sections have
11 mandatory fields, as well as a variable number of optional fields. Here, we
extract Query Name, Query Sequence, Query Length, Reference Name,
Reference Start, CIGAR and Mapping Quality of each read in the SAM file.
This class provides methods to load and featurize data from SAM files.

Examples

>>> from deepchem.data.data_loader import SAMLoader
>>> import deepchem as dc
>>> inputs = 'deepchem/data/tests/example.sam'
>>> data = SAMLoader()
>>> output = data.create_dataset(inputs)






Note

This class requires pysam to be installed. Pysam can be used with Linux or MacOS X.
To use Pysam on Windows, use Windows Subsystem for Linux(WSL).




	
__init__(featurizer: Featurizer | None = None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/data_loader.py#L1927-L1949]

	Initialize SAMLoader.


	Parameters:

	featurizer (Featurizer (default: None)) – The Featurizer to be used for the loaded SAM data.










	
create_dataset(input_files: str | Sequence[str], data_dir: str | None = None, shard_size: int | None = None) → DiskDataset[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/data_loader.py#L1951-L1985]

	Creates a Dataset from input SAM files.


	Parameters:

	
	input_files (List[str]) – List of SAM files.


	data_dir (str, optional (default None)) – Name of directory where featurized data is stored.


	shard_size (int, optional (default None)) – For now, this argument is ignored and each SAM file gets its
own shard.






	Returns:

	A DiskDataset object containing a featurized representation of
data from input_files.



	Return type:

	DiskDataset















BAM Loader


	
class BAMLoader(featurizer: Featurizer | None = None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/data_loader.py#L1988-L2072]

	Handles loading of BAM files.
Binary Alignment Map (BAM) is the comprehensive raw data of genome
sequencing. It consists of the lossless, compressed binary representation
of the Sequence Alignment Map files. BAM files are smaller and more
efficient to work with than SAM files, saving time and reducing costs of
computation and storage. BAM files store alignment data and often have
corresponding BAM index files.The structure of BAM files include a header
section and an alignment section.
Here, we extract Query Name, Query Sequence, Query Length, Reference Name,
Reference Start, CIGAR and Mapping Quality of each read in the BAM file.
This class provides methods to load and featurize data from BAM files.

Examples

>>> from deepchem.data.data_loader import BAMLoader
>>> import deepchem as dc
>>> inputs = 'deepchem/data/tests/example.bam'
>>> data = BAMLoader()
>>> output = data.create_dataset(inputs)






Note

This class requires pysam to be installed. Pysam can be used with Linux
or MacOS X. To use Pysam on Windows, use Windows Subsystem for Linux(WSL).




	
__init__(featurizer: Featurizer | None = None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/data_loader.py#L2015-L2036]

	Initialize BAMLoader.


	Parameters:

	featurizer (Featurizer (default: None)) – The Featurizer to be used for the loaded BAM data.










	
create_dataset(input_files: str | Sequence[str], data_dir: str | None = None, shard_size: int | None = None) → DiskDataset[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/data_loader.py#L2038-L2072]

	Creates a Dataset from input BAM files.


	Parameters:

	
	input_files (List[str]) – List of BAM files, with their corresponding index files.


	data_dir (str, optional (default None)) – Name of directory where featurized data is stored.


	shard_size (int, optional (default None)) – For now, this argument is ignored and each BAM file gets its
own shard.






	Returns:

	A DiskDataset object containing a featurized representation of
data from input_files.



	Return type:

	DiskDataset















CRAM Loader


	
class CRAMLoader(featurizer: Featurizer | None = None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/data_loader.py#L2075-L2160]

	Handles loading of CRAM files.
Compressed Reference-oriented Alignment Map (CRAM) is a compressed
columnar file format for storing biological sequences aligned to a
reference sequence. CRAM is an efficient reference-based alternative to
the Sequence Alignment Map (SAM) and Binary Alignment Map (BAM) file formats.
The basic structure of a CRAM file has a series of containers, the first of
which holds a compressed copy of the SAM header. Subsequent containers consist
of a container Compression Header followed by a series of slices which hold the
alignment records, formatted as a series of blocks.
Here, we extract Query Name, Query Sequence, Query Length, Reference Name,
Reference Start, CIGAR and Mapping Quality of each read in the CRAM file.
This class provides methods to load and featurize data from CRAM files.

Examples

>>> from deepchem.data.data_loader import CRAMLoader
>>> import deepchem as dc
>>> inputs = 'deepchem/data/tests/example.cram'
>>> data = CRAMLoader()
>>> output = data.create_dataset(inputs)






Note

This class requires pysam to be installed. Pysam can be used with Linux
or MacOS X. To use Pysam on Windows, use Windows Subsystem for Linux(WSL).




	
__init__(featurizer: Featurizer | None = None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/data_loader.py#L2103-L2124]

	Initialize CRAMLoader.


	Parameters:

	featurizer (Featurizer (default: None)) – The Featurizer to be used for the loaded CRAM data.










	
create_dataset(input_files: str | Sequence[str], data_dir: str | None = None, shard_size: int | None = None) → DiskDataset[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/data_loader.py#L2126-L2160]

	Creates a Dataset from input CRAM files.


	Parameters:

	
	input_files (List[str]) – List of CRAM files.


	data_dir (str, optional (default None)) – Name of directory where featurized data is stored.


	shard_size (int, optional (default None)) – For now, this argument is ignored and each CRAM file gets its
own shard.






	Returns:

	A DiskDataset object containing a featurized representation of
data from input_files.



	Return type:

	DiskDataset
















Data Classes

DeepChem featurizers often transform members into “data classes”. These are
classes that hold all the information needed to train a model on that data
point. Models then transform these into the tensors for training in their
default_generator methods.


Graph Data

These classes document the data classes for graph convolutions.
We plan to simplify these classes (ConvMol, MultiConvMol, WeaveMol)
into a joint data representation (GraphData) for all graph convolutions in a future version of DeepChem,
so these APIs may not remain stable.

The graph convolution models which inherit KerasModel depend on ConvMol, MultiConvMol, or WeaveMol.
On the other hand, the graph convolution models which inherit TorchModel depend on GraphData.


	
class ConvMol(atom_features, adj_list, max_deg=10, min_deg=0)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/mol_graphs.py#L41-L349]

	Holds information about a molecules.

Resorts order of atoms internally to be in order of increasing degree. Note
that only heavy atoms (hydrogens excluded) are considered here.


	
__init__(atom_features, adj_list, max_deg=10, min_deg=0)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/mol_graphs.py#L48-L98]

	
	Parameters:

	
	atom_features (np.ndarray) – Has shape (n_atoms, n_feat)


	adj_list (list) – List of length n_atoms, with neighor indices of each atom.


	max_deg (int, optional) – Maximum degree of any atom.


	min_deg (int, optional) – Minimum degree of any atom.













	
get_atoms_with_deg(deg)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/mol_graphs.py#L100-L104]

	Retrieves atom_features with the specific degree






	
get_num_atoms_with_deg(deg)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/mol_graphs.py#L106-L108]

	Returns the number of atoms with the given degree






	
get_atom_features()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/mol_graphs.py#L187-L193]

	Returns canonicalized version of atom features.

Features are sorted by atom degree, with original order maintained when
degrees are same.






	
get_adjacency_list()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/mol_graphs.py#L195-L205]

	Returns a canonicalized adjacency list.

Canonicalized means that the atoms are re-ordered by degree.


	Returns:

	Canonicalized form of adjacency list.



	Return type:

	list










	
get_deg_adjacency_lists()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/mol_graphs.py#L207-L216]

	Returns adjacency lists grouped by atom degree.


	Returns:

	Has length (max_deg+1-min_deg). The element at position deg is
itself a list of the neighbor-lists for atoms with degree deg.



	Return type:

	list










	
get_deg_slice()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/mol_graphs.py#L218-L233]

	Returns degree-slice tensor.

The deg_slice tensor allows indexing into a flattened version of the
molecule’s atoms. Assume atoms are sorted in order of degree. Then
deg_slice[deg][0] is the starting position for atoms of degree deg in
flattened list, and deg_slice[deg][1] is the number of atoms with degree deg.

Note deg_slice has shape (max_deg+1-min_deg, 2).


	Returns:

	deg_slice – Shape (max_deg+1-min_deg, 2)



	Return type:

	np.ndarray










	
static get_null_mol(n_feat, max_deg=10, min_deg=0)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/mol_graphs.py#L236-L254]

	Constructs a null molecules

Get one molecule with one atom of each degree, with all the atoms
connected to themselves, and containing n_feat features.


	Parameters:

	n_feat (int) – number of features for the nodes in the null molecule










	
static agglomerate_mols(mols, max_deg=10, min_deg=0)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/mol_graphs.py#L256-L349]

	
	Concatenates list of ConvMol’s into one mol object that can be used to feed
	into tensorflow placeholders. The indexing of the molecules are preseved during the
combination, but the indexing of the atoms are greatly changed.






	Parameters:

	mols (list) – ConvMol objects to be combined into one molecule.














	
class MultiConvMol(nodes, deg_adj_lists, deg_slice, membership, num_mols)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/mol_graphs.py#L352-L375]

	Holds information about multiple molecules, for use in feeding information
into tensorflow. Generated using the agglomerate_mols function


	
__init__(nodes, deg_adj_lists, deg_slice, membership, num_mols)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/mol_graphs.py#L357-L363]

	




	
get_deg_adjacency_lists()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/mol_graphs.py#L365-L366]

	




	
get_atom_features()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/mol_graphs.py#L368-L369]

	




	
get_num_atoms()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/mol_graphs.py#L371-L372]

	




	
get_num_molecules()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/mol_graphs.py#L374-L375]

	




	
__module__ = 'deepchem.feat.mol_graphs'[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/mol_graphs.py]

	








	
class WeaveMol(nodes, pairs, pair_edges)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/mol_graphs.py#L378-L410]

	Molecular featurization object for weave convolutions.

These objects are produced by WeaveFeaturizer, and feed into
WeaveModel. The underlying implementation is inspired by [1].

References



[1]
Kearnes, Steven, et al. “Molecular graph convolutions: moving beyond fingerprints.” Journal of computer-aided molecular design 30.8 (2016): 595-608.




	
__init__(nodes, pairs, pair_edges)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/mol_graphs.py#L390-L395]

	




	
get_pair_edges()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/mol_graphs.py#L397-L398]

	




	
get_pair_features()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/mol_graphs.py#L400-L401]

	




	
get_atom_features()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/mol_graphs.py#L403-L404]

	




	
get_num_atoms()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/mol_graphs.py#L406-L407]

	




	
get_num_features()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/mol_graphs.py#L409-L410]

	




	
__module__ = 'deepchem.feat.mol_graphs'[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/mol_graphs.py]

	








	
class GraphData(node_features: ndarray, edge_index: ndarray, edge_features: ndarray | None = None, node_pos_features: ndarray | None = None, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/graph_data.py#L6-L315]

	GraphData class

This data class is almost same as torch_geometric.data.Data [https://pytorch-geometric.readthedocs.io/en/latest/modules/data.html#torch_geometric.data.Data].


	
node_features[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/graph_data.py]

	Node feature matrix with shape [num_nodes, num_node_features]


	Type:

	np.ndarray










	
edge_index[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/graph_data.py]

	Graph connectivity in COO format with shape [2, num_edges]


	Type:

	np.ndarray, dtype int










	
edge_features[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/graph_data.py]

	Edge feature matrix with shape [num_edges, num_edge_features]


	Type:

	np.ndarray, optional (default None)










	
node_pos_features[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/graph_data.py]

	Node position matrix with shape [num_nodes, num_dimensions].


	Type:

	np.ndarray, optional (default None)










	
num_nodes[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/graph_data.py]

	The number of nodes in the graph


	Type:

	int










	
num_node_features[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/graph_data.py]

	The number of features per node in the graph


	Type:

	int










	
num_edges[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/graph_data.py]

	The number of edges in the graph


	Type:

	int










	
num_edges_features[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/graph_data.py]

	The number of features per edge in the graph


	Type:

	int, optional (default None)









Examples

>>> import numpy as np
>>> node_features = np.random.rand(5, 10)
>>> edge_index = np.array([[0, 1, 2, 3, 4], [1, 2, 3, 4, 0]], dtype=np.int64)
>>> edge_features = np.random.rand(5, 5)
>>> global_features = np.random.random(5)
>>> graph = GraphData(node_features, edge_index, edge_features, z=global_features)
>>> graph
GraphData(node_features=[5, 10], edge_index=[2, 5], edge_features=[5, 5], z=[5])






	
__init__(node_features: ndarray, edge_index: ndarray, edge_features: ndarray | None = None, node_pos_features: ndarray | None = None, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/graph_data.py#L43-L107]

	
	Parameters:

	
	node_features (np.ndarray) – Node feature matrix with shape [num_nodes, num_node_features]


	edge_index (np.ndarray, dtype int) – Graph connectivity in COO format with shape [2, num_edges]


	edge_features (np.ndarray, optional (default None)) – Edge feature matrix with shape [num_edges, num_edge_features]


	node_pos_features (np.ndarray, optional (default None)) – Node position matrix with shape [num_nodes, num_dimensions].


	kwargs (optional) – Additional attributes and their values













	
to_pyg_graph()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/graph_data.py#L132-L164]

	Convert to PyTorch Geometric graph data instance


	Returns:

	Graph data for PyTorch Geometric



	Return type:

	torch_geometric.data.Data






Note

This method requires PyTorch Geometric to be installed.








	
to_dgl_graph(self_loop: bool = False)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/graph_data.py#L166-L209]

	Convert to DGL graph data instance


	Returns:

	
	dgl.DGLGraph – Graph data for DGL


	self_loop (bool) – Whether to add self loops for the nodes, i.e. edges from nodes
to themselves. Default to False.











Note

This method requires DGL to be installed.








	
numpy_to_torch(device: str = 'cpu')[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/graph_data.py#L211-L258]

	Convert numpy arrays to torch tensors. This may be useful when you are using PyTorch Geometric with GraphData objects.


	Parameters:

	device (str) – Device to store the tensors. Default to ‘cpu’.





Example

>>> num_nodes, num_node_features = 5, 32
>>> num_edges, num_edge_features = 6, 32
>>> node_features = np.random.random_sample((num_nodes, num_node_features))
>>> edge_features = np.random.random_sample((num_edges, num_edge_features))
>>> edge_index = np.random.randint(0, num_nodes, (2, num_edges))
>>> graph_data = GraphData(node_features, edge_index, edge_features)
>>> graph_data = graph_data.numpy_to_torch()
>>> print(type(graph_data.node_features))
<class 'torch.Tensor'>










	
subgraph(nodes)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/graph_data.py#L260-L315]

	Returns a subgraph of nodes indicies.


	Parameters:

	nodes (list, iterable) – A list of node indices to be included in the subgraph.



	Returns:

	subgraph_data – A new GraphData object containing the subgraph induced on nodes.



	Return type:

	GraphData





Example

>>> import numpy as np
>>> from deepchem.feat.graph_data import GraphData
>>> node_features = np.random.rand(5, 10)
>>> edge_index = np.array([[0, 1, 2, 3, 4], [1, 2, 3, 4, 0]], dtype=np.int64)
>>> edge_features = np.random.rand(5, 3)
>>> graph_data = GraphData(node_features, edge_index, edge_features)
>>> nodes = [0, 2, 4]
>>> subgraph_data, node_mapping = graph_data.subgraph(nodes)















Density Functional Theory Data

These Data classes are used to create entry objects for DFT calculations.




Base Classes (for develop)


Dataset

The dc.data.Dataset class is the abstract parent class for all
datasets. This class should never be directly initialized, but
contains a number of useful method implementations.


	
class Dataset[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L221-L743]

	Abstract base class for datasets defined by X, y, w elements.

Dataset objects are used to store representations of a dataset as
used in a machine learning task. Datasets contain features X,
labels y, weights w and identifiers ids. Different subclasses
of Dataset may choose to hold X, y, w, ids in memory or on disk.

The Dataset class attempts to provide for strong interoperability
with other machine learning representations for datasets.
Interconversion methods allow for Dataset objects to be converted
to and from numpy arrays, pandas dataframes, tensorflow datasets,
and pytorch datasets (only to and not from for pytorch at present).

Note that you can never instantiate a Dataset object directly.
Instead you will need to instantiate one of the concrete subclasses.


	
__init__() → None[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L239-L240]

	




	
__len__() → int[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L242-L250]

	Get the number of elements in the dataset.


	Returns:

	The number of elements in the dataset.



	Return type:

	int










	
get_shape() → Tuple[Tuple[int, ...], Tuple[int, ...], Tuple[int, ...], Tuple[int, ...]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L252-L264]

	Get the shape of the dataset.

Returns four tuples, giving the shape of the X, y, w, and ids
arrays.


	Returns:

	The tuple contains four elements, which are the shapes of
the X, y, w, and ids arrays.



	Return type:

	Tuple










	
get_task_names() → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L266-L268]

	Get the names of the tasks associated with this dataset.






	
property X: ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data.py]

	Get the X vector for this dataset as a single numpy array.


	Returns:

	A numpy array of identifiers X.



	Return type:

	np.ndarray






Note

If data is stored on disk, accessing this field may involve loading
data from disk and could potentially be slow. Using
iterbatches() or itersamples() may be more efficient for
larger datasets.








	
property y: ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data.py]

	Get the y vector for this dataset as a single numpy array.


	Returns:

	A numpy array of identifiers y.



	Return type:

	np.ndarray






Note

If data is stored on disk, accessing this field may involve loading
data from disk and could potentially be slow. Using
iterbatches() or itersamples() may be more efficient for
larger datasets.








	
property ids: ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data.py]

	Get the ids vector for this dataset as a single numpy array.


	Returns:

	A numpy array of identifiers ids.



	Return type:

	np.ndarray






Note

If data is stored on disk, accessing this field may involve loading
data from disk and could potentially be slow. Using
iterbatches() or itersamples() may be more efficient for
larger datasets.








	
property w: ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data.py]

	Get the weight vector for this dataset as a single numpy array.


	Returns:

	A numpy array of weights w.



	Return type:

	np.ndarray






Note

If data is stored on disk, accessing this field may involve loading
data from disk and could potentially be slow. Using
iterbatches() or itersamples() may be more efficient for
larger datasets.








	
iterbatches(batch_size: int | None = None, epochs: int = 1, deterministic: bool = False, pad_batches: bool = False) → Iterator[Tuple[ndarray, ndarray, ndarray, ndarray]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L362-L388]

	Get an object that iterates over minibatches from the dataset.

Each minibatch is returned as a tuple of four numpy arrays:
(X, y, w, ids).


	Parameters:

	
	batch_size (int, optional (default None)) – Number of elements in each batch.


	epochs (int, optional (default 1)) – Number of epochs to walk over dataset.


	deterministic (bool, optional (default False)) – If True, follow deterministic order.


	pad_batches (bool, optional (default False)) – If True, pad each batch to batch_size.






	Returns:

	Generator which yields tuples of four numpy arrays (X, y, w, ids).



	Return type:

	Iterator[Batch]










	
itersamples() → Iterator[Tuple[ndarray, ndarray, ndarray, ndarray]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L390-L401]

	Get an object that iterates over the samples in the dataset.

Examples

>>> dataset = NumpyDataset(np.ones((2,2)))
>>> for x, y, w, id in dataset.itersamples():
...   print(x.tolist(), y.tolist(), w.tolist(), id)
[1.0, 1.0] [0.0] [0.0] 0
[1.0, 1.0] [0.0] [0.0] 1










	
transform(transformer: Transformer, **args) → Dataset[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L403-L424]

	Construct a new dataset by applying a transformation to every sample in this dataset.

The argument is a function that can be called as follows:
>> newx, newy, neww = fn(x, y, w)

It might be called only once with the whole dataset, or multiple
times with different subsets of the data.  Each time it is called,
it should transform the samples and return the transformed data.


	Parameters:

	transformer (dc.trans.Transformer) – The transformation to apply to each sample in the dataset.



	Returns:

	A newly constructed Dataset object.



	Return type:

	Dataset










	
select(indices: Sequence[int] | ndarray, select_dir: str | None = None) → Dataset[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L426-L438]

	Creates a new dataset from a selection of indices from self.


	Parameters:

	
	indices (Sequence) – List of indices to select.


	select_dir (str, optional (default None)) – Path to new directory that the selected indices will be copied to.













	
get_statistics(X_stats: bool = True, y_stats: bool = True) → Tuple[ndarray, ...][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L440-L492]

	Compute and return statistics of this dataset.

Uses self.itersamples() to compute means and standard deviations
of the dataset. Can compute on large datasets that don’t fit in
memory.


	Parameters:

	
	X_stats (bool, optional (default True)) – If True, compute feature-level mean and standard deviations.


	y_stats (bool, optional (default True)) – If True, compute label-level mean and standard deviations.






	Returns:

	
	If X_stats == True, returns (X_means, X_stds).


	If y_stats == True, returns (y_means, y_stds).


	If both are true, returns (X_means, X_stds, y_means, y_stds).








	Return type:

	Tuple










	
make_tf_dataset(batch_size: int = 100, epochs: int = 1, deterministic: bool = False, pad_batches: bool = False)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L494-L547]

	Create a tf.data.Dataset that iterates over the data in this Dataset.

Each value returned by the Dataset’s iterator is a tuple of (X, y,
w) for one batch.


	Parameters:

	
	batch_size (int, default 100) – The number of samples to include in each batch.


	epochs (int, default 1) – The number of times to iterate over the Dataset.


	deterministic (bool, default False) – If True, the data is produced in order.  If False, a different
random permutation of the data is used for each epoch.


	pad_batches (bool, default False) – If True, batches are padded as necessary to make the size of
each batch exactly equal batch_size.






	Returns:

	TensorFlow Dataset that iterates over the same data.



	Return type:

	tf.data.Dataset






Note

This class requires TensorFlow to be installed.








	
make_pytorch_dataset(epochs: int = 1, deterministic: bool = False, batch_size: int | None = None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L549-L579]

	Create a torch.utils.data.IterableDataset that iterates over the data in this Dataset.

Each value returned by the Dataset’s iterator is a tuple of (X, y, w, id)
containing the data for one batch, or for a single sample if batch_size is None.


	Parameters:

	
	epochs (int, default 1) – The number of times to iterate over the Dataset.


	deterministic (bool, default False) – If True, the data is produced in order. If False, a different
random permutation of the data is used for each epoch.


	batch_size (int, optional (default None)) – The number of samples to return in each batch. If None, each returned
value is a single sample.






	Returns:

	torch.utils.data.IterableDataset that iterates over the data in
this dataset.



	Return type:

	torch.utils.data.IterableDataset






Note

This class requires PyTorch to be installed.








	
to_dataframe() → DataFrame[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L581-L615]

	Construct a pandas DataFrame containing the data from this Dataset.


	Returns:

	Pandas dataframe. If there is only a single feature per datapoint,
will have column “X” else will have columns “X1,X2,…” for
features.  If there is only a single label per datapoint, will
have column “y” else will have columns “y1,y2,…” for labels. If
there is only a single weight per datapoint will have column “w”
else will have columns “w1,w2,…”. Will have column “ids” for
identifiers.



	Return type:

	pd.DataFrame










	
static from_dataframe(df: DataFrame, X: str | Sequence[str] | None = None, y: str | Sequence[str] | None = None, w: str | Sequence[str] | None = None, ids: str | None = None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L617-L698]

	Construct a Dataset from the contents of a pandas DataFrame.


	Parameters:

	
	df (pd.DataFrame) – The pandas DataFrame


	X (str or List[str], optional (default None)) – The name of the column or columns containing the X array.  If
this is None, it will look for default column names that match
those produced by to_dataframe().


	y (str or List[str], optional (default None)) – The name of the column or columns containing the y array.  If
this is None, it will look for default column names that match
those produced by to_dataframe().


	w (str or List[str], optional (default None)) – The name of the column or columns containing the w array.  If
this is None, it will look for default column names that match
those produced by to_dataframe().


	ids (str, optional (default None)) – The name of the column containing the ids.  If this is None, it
will look for default column names that match those produced by
to_dataframe().













	
to_csv(path: str) → None[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/datasets.py#L700-L743]

	Write object to a comma-seperated values (CSV) file

Example

>>> import numpy as np
>>> X = np.random.rand(10, 10)
>>> dataset = dc.data.DiskDataset.from_numpy(X)
>>> dataset.to_csv('out.csv')  






	Parameters:

	path (str) – File path or object



	Return type:

	None















DataLoader

The dc.data.DataLoader class is the abstract parent class for all
dataloaders. This class should never be directly initialized, but
contains a number of useful method implementations.


	
class DataLoader(tasks: List[str], featurizer: Featurizer, id_field: str | None = None, log_every_n: int = 1000)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/data_loader.py#L73-L279]

	Handles loading/featurizing of data from disk.

The main use of DataLoader and its child classes is to make it
easier to load large datasets into Dataset objects.`

DataLoader is an abstract superclass that provides a
general framework for loading data into DeepChem. This class should
never be instantiated directly.  To load your own type of data, make
a subclass of DataLoader and provide your own implementation for
the create_dataset() method.

To construct a Dataset from input data, first instantiate a
concrete data loader (that is, an object which is an instance of a
subclass of DataLoader) with a given Featurizer object. Then
call the data loader’s create_dataset() method on a list of input
files that hold the source data to process. Note that each subclass
of DataLoader is specialized to handle one type of input data so
you will have to pick the loader class suitable for your input data
type.

Note that it isn’t necessary to use a data loader to process input
data. You can directly use Featurizer objects to featurize
provided input into numpy arrays, but note that this calculation
will be performed in memory, so you will have to write generators
that walk the source files and write featurized data to disk
yourself. DataLoader and its subclasses make this process easier
for you by performing this work under the hood.


	
__init__(tasks: List[str], featurizer: Featurizer, id_field: str | None = None, log_every_n: int = 1000)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/data_loader.py#L103-L140]

	Construct a DataLoader object.

This constructor is provided as a template mainly. You
shouldn’t ever call this constructor directly as a user.


	Parameters:

	
	tasks (List[str]) – List of task names


	featurizer (Featurizer) – Featurizer to use to process data.


	id_field (str, optional (default None)) – Name of field that holds sample identifier. Note that the
meaning of “field” depends on the input data type and can have a
different meaning in different subclasses. For example, a CSV
file could have a field as a column, and an SDF file could have
a field as molecular property.


	log_every_n (int, optional (default 1000)) – Writes a logging statement this often.













	
featurize(inputs: Any | Sequence[Any], data_dir: str | None = None, shard_size: int | None = 8192) → Dataset[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/data_loader.py#L142-L176]

	Featurize provided files and write to specified location.

DEPRECATED: This method is now a wrapper for create_dataset()
and calls that method under the hood.

For large datasets, automatically shards into smaller chunks
for convenience. This implementation assumes that the helper
methods _get_shards and _featurize_shard are implemented and
that each shard returned by _get_shards is a pandas dataframe.
You may choose to reuse or override this method in your subclass
implementations.


	Parameters:

	
	inputs (List) – List of inputs to process. Entries can be filenames or arbitrary objects.


	data_dir (str, default None) – Directory to store featurized dataset.


	shard_size (int, optional (default 8192)) – Number of examples stored in each shard.






	Returns:

	A Dataset object containing a featurized representation of data
from inputs.



	Return type:

	Dataset










	
create_dataset(inputs: Any | Sequence[Any], data_dir: str | None = None, shard_size: int | None = 8192) → Dataset[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/data/data_loader.py#L178-L241]

	Creates and returns a Dataset object by featurizing provided files.

Reads in inputs and uses self.featurizer to featurize the
data in these inputs.  For large files, automatically shards
into smaller chunks of shard_size datapoints for convenience.
Returns a Dataset object that contains the featurized dataset.

This implementation assumes that the helper methods _get_shards
and _featurize_shard are implemented and that each shard
returned by _get_shards is a pandas dataframe.  You may choose
to reuse or override this method in your subclass implementations.


	Parameters:

	
	inputs (List) – List of inputs to process. Entries can be filenames or arbitrary objects.


	data_dir (str, optional (default None)) – Directory to store featurized dataset.


	shard_size (int, optional (default 8192)) – Number of examples stored in each shard.






	Returns:

	A DiskDataset object containing a featurized representation of data
from inputs.



	Return type:

	DiskDataset
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MoleculeNet

The DeepChem library is packaged alongside the MoleculeNet suite of datasets.
One of the most important parts of machine learning applications is finding a suitable dataset.
The MoleculeNet suite has curated a whole range of datasets and loaded them into DeepChem
dc.data.Dataset objects for convenience.


MoleculeNet Cheatsheet

When training a model or performing a benchmark, the user needs specific datasets.
However, at the beginning, this search can be exhaustive and confusing. The
following cheatsheet is aimed at helping DeepChem users identify more easily which
dataset to use depending on their purposes.

Each row reprents a dataset where a brief description is given. Also, the columns
represents the type of the data; depending on molecule properties, images or
materials and how many data points they have. Each dataset is referenced with a
link of the paper. Finally, there are some entries that need further information.

Cheatsheet


MoleculeNet description

	Name

	Description

	Type

	Data Points

	Reference





	BACE (Regression)

	Provides bindings results for a set of inhibitors of human beta-secretase (BACE-1)

	Molecules

	1513

	ref [https://pubs.rsc.org/en/content/articlehtml/2018/sc/c7sc02664a]



	BACE (Classification)

	Provides bindings results for a set of inhibitors of human beta-secretase (BACE-1)

	Molecules

	1513

	ref [https://pubs.rsc.org/en/content/articlehtml/2018/sc/c7sc02664a]



	BBBC (BBBC001)

	Images of HT29 colon cancer cells

	Images

	6

	ref [https://data.broadinstitute.org/bbbc/BBBC001/]



	BBBC (BBBC002)

	Images of Drosophilia Kc167 cells

	Images

	50

	ref [https://data.broadinstitute.org/bbbc/BBBC002/]



	BBBC (BBBC003)

	DIC Images of Mouse Embryos

	Images

	15

	ref [https://data.broadinstitute.org/bbbc/BBBC003/]



	BBBC (BBBC004)

	Synthetic Images of clustered nuclei

	Images

	20

	ref [https://data.broadinstitute.org/bbbc/BBBC004/]



	BBBC (BBBC004)

	Synthetic Images of clustered nuclei

	Images

	19200

	ref [https://data.broadinstitute.org/bbbc/BBBC005/]



	BBBP

	Blood-Brain Barrier Penetration designed for the modeling and prediction of barrier permeability

	Binary labels on permeability properties

	2000

	ref [https://pubs.rsc.org/en/content/articlehtml/2018/sc/c7sc02664a]



	Cell Counting

	Synthetic emulations of fluorescence microscopic images of bacterial cells

	Images

	200

	ref [http://www.robots.ox.ac.uk/~vgg/research/counting/index_org.html.]



	ChEMBL (set = ‘sparse’)

	A sparse subset of ChEMBL with activity data for one target

	Molecules

	244 245

	ref [https://www.ebi.ac.uk/chembl/.]



	ChEMBL (set = ‘5thresh’)

	A subset of ChEMBL with activity data for at least five targets

	Molecules

	23 871

	ref [https://www.ebi.ac.uk/chembl/.]



	ChEMBL25

	
	Molecules

	
	ref [https://www.ebi.ac.uk/chembl/.]



	Clearance

	
	
	
	ref [https://arxiv.org/abs/1703.00564]



	Clintox

	Compares drugs approved by the FDA and drugs that have failed clinical trials for toxicity reasons.

	Molecules

	1491

	ref [https://pubs.rsc.org/en/content/articlehtml/2018/sc/c7sc02664a]



	Delaney

	A regression dataset containing structures and water solubility data

	Molecules

	1128

	ref [https://arxiv.org/abs/1703.00564]



	Factors

	Merck in-house compounds that were measured for IC50 of inhibition on 12 serine proteases

	Molecules

	1500

	


	Freesolv

	A collection of experimental and calculated hydration free energies for small molecules in water

	Molecules

	643

	ref [https://pubs.rsc.org/en/content/articlehtml/2018/sc/c7sc02664a]



	HIV

	A dataset wich tested the ability to inhibit HIV replication

	Molecules

	40 000

	ref [https://pubs.rsc.org/en/content/articlehtml/2018/sc/c7sc02664a]



	HOPV

	Harvard Organic Photovoltaic dataset utilized as p-type materials

	Molecules

	350

	


	HPPB

	Thermosynamic solubility datasets

	
	
	


	KAGGLE

	in-house compounds that were measured on 15 enzyme inhibition and ADME/TOX datasets.

	Molecules

	100 000

	ref [https://pubmed.ncbi.nlm.nih.gov/25635324/]



	KINASE

	In-house compounds that were measured for IC50 of inhibition on 99 protein kinases

	Molecules

	2 500

	


	LIPO

	Experimental results of octanol/water distribution coefficient (logD at pH 7.4)

	Molecules

	4 200

	ref [https://arxiv.org/abs/1703.00564]



	Band Gap

	Experimentally measured band gaps for inorganic crystal structure

	Materials

	4 604

	ref [https://pubs.acs.org/doi/10.1021/acs.jpclett.8b00124]



	Perovskite

	Contains Perovskite structures and their formation energies

	Materials

	18 928

	ref [https://pubs.rsc.org/en/content/articlelanding/2012/ee/c2ee22341d]



	MP Formation Energy

	Contains calculated formation energies and inorganic crystal structures from the Materials Project database

	Materials

	132 752

	ref [https://pubs.aip.org/aip/apm/article/1/1/011002/119685/Commentary-The-Materials-Project-A-materials]



	MP Metallicity

	Contains inorganic crystal structures from the Materials Project database labeled as metals or nonmetals

	Materials

	106 113

	ref [https://pubs.aip.org/aip/apm/article/1/1/011002/119685/Commentary-The-Materials-Project-A-materials]



	MUV

	Benchmark dataset selected from PubChem BioAssay by applying a refined nearest neighbor analysis

	Molecules

	90 000

	ref [https://arxiv.org/abs/1703.00564]



	NCI

	
	
	
	


	PCBA

	Database consisting of biological activities of small molecules generated by high-throughput screening

	Molecules

	400 000

	ref [https://pubs.rsc.org/en/content/articlehtml/2018/sc/c7sc02664a]



	PDBBIND

	Experimental binding affinity data and structures of protein-ligand complexes

	Molecules

	“refined set”  4 852 - “general set” 12 800 - “core set” 193

	ref [https://pubmed.ncbi.nlm.nih.gov/19358517/]



	PPB

	
	
	
	


	QM7

	Subset of GDB-13  containing up to 7 heavy atoms CNOS

	Molecules

	7 165

	ref [https://pubs.rsc.org/en/content/articlehtml/2018/sc/c7sc02664a]



	QM8

	Dataset used in a study on modeling quantum mechanical calculations of electronic spectra and excited state energy of small molecules

	Molecules

	20 000

	ref [https://pubs.rsc.org/en/content/articlehtml/2018/sc/c7sc02664a]



	QM9

	Dataset that provides geometric/energetic/electronic and thermodynamic properties for a subset of GDB-17 database

	Molecules

	134 000

	ref [https://pubs.rsc.org/en/content/articlehtml/2018/sc/c7sc02664a]



	SAMPL

	Similat to FreeSolv dataset which provides experimental and calculated hydration free energy of small molecules in water

	
	
	


	SIDER

	The Side Effect Resource (SIDER) is a database of marketed drugs and adverse drug reactions (ADR)

	Molecules

	1 427

	ref [https://pubs.rsc.org/en/content/articlehtml/2018/sc/c7sc02664a]



	Thermosol

	Thermodynamic solubility datasets

	
	
	


	Tox21

	The “Toxicology in the 21st Century” (Tox21) initiative created a public database measuring the toxicity of compounds

	Molecules

	8 000

	ref [https://pubs.rsc.org/en/content/articlehtml/2018/sc/c7sc02664a]



	Toxcast

	Toxicology data for an extensive library of compounds based on in vitro high-throughput screening

	Molecules

	8 000

	ref [https://pubs.rsc.org/en/content/articlehtml/2018/sc/c7sc02664a]



	USPTO

	Subsets of USPTO dataset of organic chemical reactions extracted from US patents and patent applications

	Chemical reactions SMILES

	MIT  479 000  - STEREO  1 M - 50K  50 000

	ref [https://doi.org/10.6084/m9.figshare.5104873.v1]



	UV

	The UV dataset tests Merck’s internal compounds on 190 absorption wavelengths between 210 and 400 nm

	Molecules

	10 000

	


	ZINC15

	Purchasable compounds for virtual screening of small molecules to identify structures that are likely to bind to drug targets

	Molecules

	250K - 1M - 10M

	ref [http://pubs.acs.org/doi/abs/10.1021/acs.jcim.5b00559.]



	Platinum Adsorption

	Different configurations of Adsorbates (i.e N and NO) on Platinum surface represented as Lattice and their formation energy

	Adsorbate Configurations

	648

	







Contributing a new dataset to MoleculeNet

If you are proposing a new dataset to be included in the
MoleculeNet benchmarking suite, please follow the instructions below.
Please review the datasets already available in MolNet [https://moleculenet.org/datasets-1] before contributing.


	Read the Contribution guidelines [https://github.com/deepchem/deepchem/blob/master/CONTRIBUTING.md].


	Open an issue [https://github.com/deepchem/deepchem/issues] to discuss the dataset you want to add to MolNet.


	Write a DatasetLoader class that inherits from deepchem.molnet.load_function.molnet_loader._MolnetLoader [https://github.com/deepchem/deepchem/blob/master/deepchem/molnet/load_function/molnet_loader.py#L82] and implements a create_dataset method. See the _QM9Loader [https://github.com/deepchem/deepchem/blob/master/deepchem/molnet/load_function/qm9_datasets.py] for a simple example.


	Write a load_dataset function that documents the dataset and add your load function to deepchem.molnet.__init__.py [https://github.com/deepchem/deepchem/blob/master/deepchem/molnet/__init__.py] for easy importing.


	Prepare your dataset as a .tar.gz or .zip file. Accepted filetypes include CSV, JSON, and SDF.


	Ask a member of the technical steering committee to add your .tar.gz or .zip file to the DeepChem AWS bucket. Modify your load function to pull down the dataset from AWS.


	Add documentation for your loader to the MoleculeNet docs [https://github.com/deepchem/deepchem/blob/master/docs/source/api_reference/moleculenet.rst].


	Submit a [WIP] PR (Work in progress pull request) following the PR template [https://github.com/deepchem/deepchem/blob/master/.github/MOLNET_PR_TEMPLATE.md].






Example Usage

Below is an example of how to load a MoleculeNet dataset and featurizer. This approach will work for any dataset in MoleculeNet by changing the load function and featurizer. For more details on the featurizers, see the Featurizers section.

import deepchem as dc
from deepchem.feat.molecule_featurizers import MolGraphConvFeaturizer

featurizer = MolGraphConvFeaturizer(use_edges=True)
dataset_dc = dc.molnet.load_qm9(featurizer=featurizer)
tasks, dataset, transformers = dataset_dc
train, valid, test = dataset

x,y,w,ids = train.X, train.y, train.w, train.ids





Note that the “w” matrix represents the weight of each sample. Some assays may have missing values, in which case the weight is 0. Otherwise, the weight is 1.

Additionally, the environment variable DEEPCHEM_DATA_DIR can be set like os.environ['DEEPCHEM_DATA_DIR'] = path/to/store/featurized/dataset. When the DEEPCHEM_DATA_DIR environment variable is set, molnet loader stores the featurized dataset in the specified directory and when the dataset has to be reloaded the next time, it will be fetched from the data directory directly rather than featurizing the raw dataset from scratch.



BACE Dataset


	
load_bace_classification(featurizer: Featurizer | str = 'ECFP', splitter: Splitter | str | None = 'scaffold', transformers: List[TransformerGenerator | str] = ['balancing'], reload: bool = True, data_dir: str | None = None, save_dir: str | None = None, **kwargs) → Tuple[List[str], Tuple[Dataset, ...], List[Transformer]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/molnet/load_function/bace_datasets.py#L88-L128]

	Load BACE dataset with classification labels.

BACE dataset with classification labels (“class”). The BACE dataset
contains 1513 compounds and the dataset is a binary classification
dataset with labels 0 or 1.


	Parameters:

	
	featurizer (Featurizer or str) – the featurizer to use for processing the data.  Alternatively you can pass
one of the names from dc.molnet.featurizers as a shortcut.


	splitter (Splitter or str) – the splitter to use for splitting the data into training, validation, and
test sets.  Alternatively you can pass one of the names from
dc.molnet.splitters as a shortcut.  If this is None, all the data
will be included in a single dataset.


	transformers (list of TransformerGenerators or strings) – the Transformers to apply to the data.  Each one is specified by a
TransformerGenerator or, as a shortcut, one of the names from
dc.molnet.transformers.


	reload (bool) – if True, the first call for a particular featurizer and splitter will cache
the datasets to disk, and subsequent calls will reload the cached datasets.


	data_dir (str) – a directory to save the raw data in


	save_dir (str) – a directory to save the dataset in













	
load_bace_regression(featurizer: Featurizer | str = 'ECFP', splitter: Splitter | str | None = 'scaffold', transformers: List[TransformerGenerator | str] = ['normalization'], reload: bool = True, data_dir: str | None = None, save_dir: str | None = None, **kwargs) → Tuple[List[str], Tuple[Dataset, ...], List[Transformer]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/molnet/load_function/bace_datasets.py#L28-L85]

	Load BACE dataset, regression labels

The BACE dataset provides quantitative IC50 and qualitative (binary label)
binding results for a set of inhibitors of human beta-secretase 1 (BACE-1).

All data are experimental values reported in scientific literature over the
past decade, some with detailed crystal structures available. A collection
of 1522 compounds is provided, along with the regression labels of IC50. The
number of tasks in the dataset is one.

Scaffold splitting is recommended for this dataset.

The raw data csv file contains columns below:


	“mol” - SMILES representation of the molecular structure


	“pIC50” - Negative log of the IC50 binding affinity


	“class” - Binary labels for inhibitor





	Parameters:

	
	featurizer (Featurizer or str) – the featurizer to use for processing the data.  Alternatively you can pass
one of the names from dc.molnet.featurizers as a shortcut.


	splitter (Splitter or str) – the splitter to use for splitting the data into training, validation, and
test sets.  Alternatively you can pass one of the names from
dc.molnet.splitters as a shortcut.  If this is None, all the data
will be included in a single dataset.


	transformers (list of TransformerGenerators or strings) – the Transformers to apply to the data.  Each one is specified by a
TransformerGenerator or, as a shortcut, one of the names from
dc.molnet.transformers.


	reload (bool) – if True, the first call for a particular featurizer and splitter will cache
the datasets to disk, and subsequent calls will reload the cached datasets.


	data_dir (str) – a directory to save the raw data in


	save_dir (str) – a directory to save the dataset in








References
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BBBC Datasets


	
load_bbbc001(splitter: Splitter | str | None = 'index', transformers: List[TransformerGenerator | str] = [], reload: bool = True, data_dir: str | None = None, save_dir: str | None = None, **kwargs) → Tuple[List[str], Tuple[Dataset, ...], List[Transformer]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/molnet/load_function/bbbc_datasets.py#L59-L96]

	Load BBBC001 dataset

This dataset contains 6 images of human HT29 colon cancer cells. The task is
to learn to predict the cell counts in these images. This dataset is too small
to serve to train algorithms, but might serve as a good test dataset.
https://data.broadinstitute.org/bbbc/BBBC001/


	Parameters:

	
	splitter (Splitter or str) – the splitter to use for splitting the data into training, validation, and
test sets.  Alternatively you can pass one of the names from
dc.molnet.splitters as a shortcut.  If this is None, all the data
will be included in a single dataset.


	transformers (list of TransformerGenerators or strings) – the Transformers to apply to the data.  Each one is specified by a
TransformerGenerator or, as a shortcut, one of the names from
dc.molnet.transformers.


	reload (bool) – if True, the first call for a particular featurizer and splitter will cache
the datasets to disk, and subsequent calls will reload the cached datasets.


	data_dir (str) – a directory to save the raw data in


	save_dir (str) – a directory to save the dataset in













	
load_bbbc002(splitter: Splitter | str | None = 'index', transformers: List[TransformerGenerator | str] = [], reload: bool = True, data_dir: str | None = None, save_dir: str | None = None, **kwargs) → Tuple[List[str], Tuple[Dataset, ...], List[Transformer]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/molnet/load_function/bbbc_datasets.py#L126-L164]

	Load BBBC002 dataset

This dataset contains data corresponding to 5 samples of Drosophilia Kc167
cells. There are 10 fields of view for each sample, each an image of size
512x512. Ground truth labels contain cell counts for this dataset. Full
details about this dataset are present at
https://data.broadinstitute.org/bbbc/BBBC002/.


	Parameters:

	
	splitter (Splitter or str) – the splitter to use for splitting the data into training, validation, and
test sets.  Alternatively you can pass one of the names from
dc.molnet.splitters as a shortcut.  If this is None, all the data
will be included in a single dataset.


	transformers (list of TransformerGenerators or strings) – the Transformers to apply to the data.  Each one is specified by a
TransformerGenerator or, as a shortcut, one of the names from
dc.molnet.transformers.


	reload (bool) – if True, the first call for a particular featurizer and splitter will cache
the datasets to disk, and subsequent calls will reload the cached datasets.


	data_dir (str) – a directory to save the raw data in


	save_dir (str) – a directory to save the dataset in













	
load_bbbc003(load_segmentation_mask: bool = False, splitter: Splitter | str | None = 'index', transformers: List[TransformerGenerator | str] = [], reload: bool = True, data_dir: str | None = None, save_dir: str | None = None, **kwargs) → Tuple[List[str], Tuple[Dataset, ...], List[Transformer]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/molnet/load_function/bbbc_datasets.py#L207-L318]

	Load BBBC003 dataset

This dataset contains data corresponding to 15 samples of Mouse embryos with DIC.
Each image is of size 640x480. Ground truth labels contain cell counts and
segmentation masks for this dataset. Full details about this dataset are present at
https://data.broadinstitute.org/bbbc/BBBC003/.


	Parameters:

	
	load_segmentation_mask (bool) – if True, the dataset will contain segmentation masks as labels. Otherwise,
the dataset will contain cell counts as labels.


	splitter (Splitter or str) – the splitter to use for splitting the data into training, validation, and
test sets.  Alternatively you can pass one of the names from
dc.molnet.splitters as a shortcut.  If this is None, all the data
will be included in a single dataset.


	transformers (list of TransformerGenerators or strings) – the Transformers to apply to the data.  Each one is specified by a
TransformerGenerator or, as a shortcut, one of the names from
dc.molnet.transformers.


	reload (bool) – if True, the first call for a particular featurizer and splitter will cache
the datasets to disk, and subsequent calls will reload the cached datasets.


	data_dir (str) – a directory to save the raw data in


	save_dir (str) – a directory to save the dataset in








Examples

Importing necessary modules

>>> import deepchem as dc
>>> import numpy as np





We can load the BBBC003 dataset with 2 types of labels: segmentation masks and
cell counts. We will first load the dataset with cell counts as labels.

>>> loader = dc.molnet.load_bbbc003(load_segmentation_mask=False)
>>> tasks, dataset, transformers = loader
>>> train, val, test = dataset





We now have a dataset with 15 samples, each with 300 cells. The images are of
size 640x480. The labels are cell counts. We can verify this as follows:

>>> train.X.shape
(12,)
>>> train.y.shape
(12,)





We will now load the dataset with segmentation masks as labels.

>>> loader = dc.molnet.load_bbbc003(load_segmentation_mask=True)
>>> tasks, dataset, transformers = loader
>>> train, val, test = dataset





We now have a dataset with 15 samples, each with 300 cells. The images are of
size 640x480. The labels are segmentation masks. We can verify this as follows:

>>> print(train.X.shape)
(12,)
>>> print(train.y.shape)
(12,)





Note: The image labelled ‘7_19_M2E15.tif’ is transposed to 480x640 in the source file along with it’s
segementation mask. To match it with the other images, we need to transpose it back to 640x480.

This image is found at index 6 in the train dataset (Assuming no shuffling has taken place).

First, we load the dataset as usual and split it into X, y, w and ids. Here, X is the list
of input images, y is the list of labels, w is the list of weights and ids is the list of
IDs for each sample.

>>> train_x, train_y, train_w, train_ids = train.X, train.y, train.w, train.ids





We can now transpose the image at index 6 in the input data (train_x):
>>> train_x[6] = train_x[6].T

We can now verify that the image is of size 640x480:
>>> print(train_x[6].shape)
(640, 480)

This is also seen in the segmentation mask with the same filename and index, in which
case, we transpose the label (train_y) instead of the input data:

>>> train_y[6] = train_y[6].T





We can now verify that the image is of size 640x480:
>>> train_y[6].shape
(640, 480)






	
load_bbbc004(overlap_probability: float = 0.0, load_segmentation_mask: bool = False, splitter: Splitter | str | None = 'index', transformers: List[TransformerGenerator | str] = [], reload: bool = True, data_dir: str | None = None, save_dir: str | None = None, **kwargs) → Tuple[List[str], Tuple[Dataset, ...], List[Transformer]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/molnet/load_function/bbbc_datasets.py#L406-L496]

	Load BBBC004 dataset

This dataset contains data corresponding to 20 samples of synthetically generated
fluorescent cell population images. There are 300 cells in each sample, each an image
of size 950x950. Ground truth labels contain cell counts and segmentation masks for
this dataset. Full details about this dataset are present at
https://data.broadinstitute.org/bbbc/BBBC004/.


	Parameters:

	
	overlap_probability (float from list {0.0, 0.15, 0.3, 0.45, 0.6}) – the overlap probability of the synthetic cells in the images


	load_segmentation_mask (bool) – if True, the dataset will contain segmentation masks as labels. Otherwise,
the dataset will contain cell counts as labels.


	splitter (Splitter or str) – the splitter to use for splitting the data into training, validation, and
test sets.  Alternatively you can pass one of the names from
dc.molnet.splitters as a shortcut.  If this is None, all the data
will be included in a single dataset.


	transformers (list of TransformerGenerators or strings) – the Transformers to apply to the data.  Each one is specified by a
TransformerGenerator or, as a shortcut, one of the names from
dc.molnet.transformers.


	reload (bool) – if True, the first call for a particular featurizer and splitter will cache
the datasets to disk, and subsequent calls will reload the cached datasets.


	data_dir (str) – a directory to save the raw data in


	save_dir (str) – a directory to save the dataset in








Examples

Importing necessary modules

>>> import deepchem as dc
>>> import numpy as np





We can load the BBBC004 dataset with 2 types of labels: segmentation masks and
cell counts. We will first load the dataset with cell counts as labels.

>>> loader = dc.molnet.load_bbbc004(overlap_probability=0.0, load_segmentation_mask=False)
>>> tasks, dataset, transformers = loader
>>> train, val, test = dataset





We now have a dataset with 20 samples, each with 300 cells. The images are of
size 950x950. The labels are cell counts. We can verify this as follows:

>>> train.X.shape
(16, 950, 950)
>>> train.y.shape
(16,)





We will now load the dataset with segmentation masks as labels.

>>> loader = dc.molnet.load_bbbc004(overlap_probability=0.0, load_segmentation_mask=True)
>>> tasks, dataset, transformers = loader
>>> train, val, test = dataset





We now have a dataset with 20 samples, each with 300 cells. The images are of
size 950x950. The labels are segmentation masks. We can verify this as follows:

>>> train.X.shape
(16, 950, 950)
>>> train.y.shape
(16, 950, 950, 3)










	
load_bbbc005(splitter: Splitter | str | None = 'index', transformers: List[TransformerGenerator | str] = [], reload: bool = True, data_dir: str | None = None, save_dir: str | None = None, **kwargs) → Tuple[List[str], Tuple[Dataset, ...], List[Transformer]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/molnet/load_function/bbbc_datasets.py#L528-L592]

	Load BBBC005 dataset

This dataset contains data corresponding to 19,200 samples of synthetically generated
fluorescent cell population images. These images were simulated for a given cell count
with a clustering probablity of 25% and a CCD noise variance of 0.0001. Focus blur
was simulated by applying varying Guassian filters to the images. Each image is of
size 520x696. Ground truth labels contain cell counts for this dataset. Full details
about this dataset are present at
https://data.broadinstitute.org/bbbc/BBBC005/.


	Parameters:

	
	splitter (Splitter or str) – the splitter to use for splitting the data into training, validation, and
test sets.  Alternatively you can pass one of the names from
dc.molnet.splitters as a shortcut.  If this is None, all the data
will be included in a single dataset.


	transformers (list of TransformerGenerators or strings) – the Transformers to apply to the data.  Each one is specified by a
TransformerGenerator or, as a shortcut, one of the names from
dc.molnet.transformers.


	reload (bool) – if True, the first call for a particular featurizer and splitter will cache
the datasets to disk, and subsequent calls will reload the cached datasets.


	data_dir (str) – a directory to save the raw data in


	save_dir (str) – a directory to save the dataset in








Examples

Importing necessary modules

>> import deepchem as dc
>> import numpy as np

We will now load the BBBC005 dataset with cell counts as labels.

>> loader = dc.molnet.load_bbbc005()
>> tasks, dataset, transformers = loader
>> train, val, test = dataset

We now have a dataset with a total of 19,200 samples with cell counts in
the range of 1-100. The images are of size 520x696. The labels are cell
counts. We have a train-val-test split of 80:10:10. We can verify this as follows:

>> train.X.shape
(15360, 520, 696)
>> train.y.shape
(15360,)







BBBP Datasets

BBBP stands for Blood-Brain-Barrier Penetration


	
load_bbbp(featurizer: Featurizer | str = 'ECFP', splitter: Splitter | str | None = 'scaffold', transformers: List[TransformerGenerator | str] = ['balancing'], reload: bool = True, data_dir: str | None = None, save_dir: str | None = None, **kwargs) → Tuple[List[str], Tuple[Dataset, ...], List[Transformer]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/molnet/load_function/bbbp_datasets.py#L27-L86]

	Load BBBP dataset

The blood-brain barrier penetration (BBBP) dataset is designed for the
modeling and prediction of barrier permeability. As a membrane separating
circulating blood and brain extracellular fluid, the blood-brain barrier
blocks most drugs, hormones and neurotransmitters. Thus penetration of the
barrier forms a long-standing issue in development of drugs targeting
central nervous system.

This dataset includes binary labels for over 2000 compounds on their
permeability properties.

Scaffold splitting is recommended for this dataset.

The raw data csv file contains columns below:


	“name” - Name of the compound


	“smiles” - SMILES representation of the molecular structure


	“p_np” - Binary labels for penetration/non-penetration





	Parameters:

	
	featurizer (Featurizer or str) – the featurizer to use for processing the data.  Alternatively you can pass
one of the names from dc.molnet.featurizers as a shortcut.


	splitter (Splitter or str) – the splitter to use for splitting the data into training, validation, and
test sets.  Alternatively you can pass one of the names from
dc.molnet.splitters as a shortcut.  If this is None, all the data
will be included in a single dataset.


	transformers (list of TransformerGenerators or strings) – the Transformers to apply to the data.  Each one is specified by a
TransformerGenerator or, as a shortcut, one of the names from
dc.molnet.transformers.


	reload (bool) – if True, the first call for a particular featurizer and splitter will cache
the datasets to disk, and subsequent calls will reload the cached datasets.


	data_dir (str) – a directory to save the raw data in


	save_dir (str) – a directory to save the dataset in
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Cell Counting Datasets


	
load_cell_counting(splitter: Splitter | str | None = None, transformers: List[TransformerGenerator | str] = [], reload: bool = True, data_dir: str | None = None, save_dir: str | None = None, **kwargs) → Tuple[List[str], Tuple[Dataset, ...], List[Transformer]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/molnet/load_function/cell_counting_datasets.py#L29-L64]

	Load Cell Counting dataset.

Loads the cell counting dataset from http://www.robots.ox.ac.uk/~vgg/research/counting/index_org.html.


	Parameters:

	
	splitter (Splitter or str) – the splitter to use for splitting the data into training, validation, and
test sets.  Alternatively you can pass one of the names from
dc.molnet.splitters as a shortcut.  If this is None, all the data
will be included in a single dataset.


	transformers (list of TransformerGenerators or strings) – the Transformers to apply to the data.  Each one is specified by a
TransformerGenerator or, as a shortcut, one of the names from
dc.molnet.transformers.


	reload (bool) – if True, the first call for a particular featurizer and splitter will cache
the datasets to disk, and subsequent calls will reload the cached datasets.


	data_dir (str) – a directory to save the raw data in


	save_dir (str) – a directory to save the dataset in














Chembl Datasets


	
load_chembl(featurizer: Featurizer | str = 'ECFP', splitter: Splitter | str | None = 'scaffold', transformers: List[TransformerGenerator | str] = ['normalization'], set: str = '5thresh', reload: bool = True, data_dir: str | None = None, save_dir: str | None = None, **kwargs) → Tuple[List[str], Tuple[Dataset, ...], List[Transformer]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/molnet/load_function/chembl_datasets.py#L33-L86]

	Load the ChEMBL dataset.

This dataset is based on release 22.1 of the data from https://www.ebi.ac.uk/chembl/.
Two subsets of the data are available, depending on the “set” argument.  “sparse”
is a large dataset with 244,245 compounds.  As the name suggests, the data is
extremely sparse, with most compounds having activity data for only one target.
“5thresh” is a much smaller set (23,871 compounds) that includes only compounds
with activity data for at least five targets.


	Parameters:

	
	featurizer (Featurizer or str) – the featurizer to use for processing the data.  Alternatively you can pass
one of the names from dc.molnet.featurizers as a shortcut.


	splitter (Splitter or str) – the splitter to use for splitting the data into training, validation, and
test sets.  Alternatively you can pass one of the names from
dc.molnet.splitters as a shortcut.  If this is None, all the data
will be included in a single dataset.


	transformers (list of TransformerGenerators or strings) – the Transformers to apply to the data.  Each one is specified by a
TransformerGenerator or, as a shortcut, one of the names from
dc.molnet.transformers.


	set (str) – the subset to load, either “sparse” or “5thresh”


	reload (bool) – if True, the first call for a particular featurizer and splitter will cache
the datasets to disk, and subsequent calls will reload the cached datasets.


	data_dir (str) – a directory to save the raw data in


	save_dir (str) – a directory to save the dataset in














Chembl25 Datasets


	
load_chembl25(featurizer: Featurizer | str = 'ECFP', splitter: Splitter | str | None = 'scaffold', transformers: List[TransformerGenerator | str] = ['normalization'], reload: bool = True, data_dir: str | None = None, save_dir: str | None = None, **kwargs) → Tuple[List[str], Tuple[Dataset, ...], List[Transformer]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/molnet/load_function/chembl25_datasets.py#L49-L84]

	Loads the ChEMBL25 dataset, featurizes it, and does a split.


	Parameters:

	
	featurizer (Featurizer or str) – the featurizer to use for processing the data.  Alternatively you can pass
one of the names from dc.molnet.featurizers as a shortcut.


	splitter (Splitter or str) – the splitter to use for splitting the data into training, validation, and
test sets.  Alternatively you can pass one of the names from
dc.molnet.splitters as a shortcut.  If this is None, all the data
will be included in a single dataset.


	transformers (list of TransformerGenerators or strings) – the Transformers to apply to the data.  Each one is specified by a
TransformerGenerator or, as a shortcut, one of the names from
dc.molnet.transformers.


	reload (bool) – if True, the first call for a particular featurizer and splitter will cache
the datasets to disk, and subsequent calls will reload the cached datasets.


	data_dir (str) – a directory to save the raw data in


	save_dir (str) – a directory to save the dataset in














Clearance Datasets


	
load_clearance(featurizer: Featurizer | str = 'ECFP', splitter: Splitter | str | None = 'scaffold', transformers: List[TransformerGenerator | str] = ['log'], reload: bool = True, data_dir: str | None = None, save_dir: str | None = None, **kwargs) → Tuple[List[str], Tuple[Dataset, ...], List[Transformer]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/molnet/load_function/clearance_datasets.py#L27-L63]

	Load clearance datasets.


	Parameters:

	
	featurizer (Featurizer or str) – the featurizer to use for processing the data.  Alternatively you can pass
one of the names from dc.molnet.featurizers as a shortcut.


	splitter (Splitter or str) – the splitter to use for splitting the data into training, validation, and
test sets.  Alternatively you can pass one of the names from
dc.molnet.splitters as a shortcut.  If this is None, all the data
will be included in a single dataset.


	transformers (list of TransformerGenerators or strings) – the Transformers to apply to the data.  Each one is specified by a
TransformerGenerator or, as a shortcut, one of the names from
dc.molnet.transformers.


	reload (bool) – if True, the first call for a particular featurizer and splitter will cache
the datasets to disk, and subsequent calls will reload the cached datasets.


	data_dir (str) – a directory to save the raw data in


	save_dir (str) – a directory to save the dataset in














Clintox Datasets


	
load_clintox(featurizer: Featurizer | str = 'ECFP', splitter: Splitter | str | None = 'scaffold', transformers: List[TransformerGenerator | str] = ['balancing'], reload: bool = True, data_dir: str | None = None, save_dir: str | None = None, **kwargs) → Tuple[List[str], Tuple[Dataset, ...], List[Transformer]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/molnet/load_function/clintox_datasets.py#L28-L99]

	Load ClinTox dataset

The ClinTox dataset compares drugs approved by the FDA and
drugs that have failed clinical trials for toxicity reasons.
The dataset includes two classification tasks for 1491 drug
compounds with known chemical structures:


	clinical trial toxicity (or absence of toxicity)


	FDA approval status.




List of FDA-approved drugs are compiled from the SWEETLEAD
database, and list of drugs that failed clinical trials for
toxicity reasons are compiled from the Aggregate Analysis of
ClinicalTrials.gov(AACT) database.

Random splitting is recommended for this dataset.

The raw data csv file contains columns below:


	“smiles” - SMILES representation of the molecular structure


	“FDA_APPROVED” - FDA approval status


	“CT_TOX” - Clinical trial results





	Parameters:

	
	featurizer (Featurizer or str) – the featurizer to use for processing the data.  Alternatively you can pass
one of the names from dc.molnet.featurizers as a shortcut.


	splitter (Splitter or str) – the splitter to use for splitting the data into training, validation, and
test sets.  Alternatively you can pass one of the names from
dc.molnet.splitters as a shortcut.  If this is None, all the data
will be included in a single dataset.


	transformers (list of TransformerGenerators or strings) – the Transformers to apply to the data.  Each one is specified by a
TransformerGenerator or, as a shortcut, one of the names from
dc.molnet.transformers.


	reload (bool) – if True, the first call for a particular featurizer and splitter will cache
the datasets to disk, and subsequent calls will reload the cached datasets.


	data_dir (str) – a directory to save the raw data in


	save_dir (str) – a directory to save the dataset in
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Delaney Datasets


	
load_delaney(featurizer: Featurizer | str = 'ECFP', splitter: Splitter | str | None = 'scaffold', transformers: List[TransformerGenerator | str] = ['normalization'], reload: bool = True, data_dir: str | None = None, save_dir: str | None = None, **kwargs) → Tuple[List[str], Tuple[Dataset, ...], List[Transformer]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/molnet/load_function/delaney_datasets.py#L27-L82]

	Load Delaney dataset

The Delaney (ESOL) dataset a regression dataset containing structures and
water solubility data for 1128 compounds. The dataset is widely used to
validate machine learning models on estimating solubility directly from
molecular structures (as encoded in SMILES strings).

Scaffold splitting is recommended for this dataset.

The raw data csv file contains columns below:


	“Compound ID” - Name of the compound


	“smiles” - SMILES representation of the molecular structure


	
	“measured log solubility in mols per litre” - Log-scale water solubility
	of the compound, used as label










	Parameters:

	
	featurizer (Featurizer or str) – the featurizer to use for processing the data.  Alternatively you can pass
one of the names from dc.molnet.featurizers as a shortcut.


	splitter (Splitter or str) – the splitter to use for splitting the data into training, validation, and
test sets.  Alternatively you can pass one of the names from
dc.molnet.splitters as a shortcut.  If this is None, all the data
will be included in a single dataset.


	transformers (list of TransformerGenerators or strings) – the Transformers to apply to the data.  Each one is specified by a
TransformerGenerator or, as a shortcut, one of the names from
dc.molnet.transformers.


	reload (bool) – if True, the first call for a particular featurizer and splitter will cache
the datasets to disk, and subsequent calls will reload the cached datasets.


	data_dir (str) – a directory to save the raw data in


	save_dir (str) – a directory to save the dataset in
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Factors Datasets


	
load_factors(shard_size=2000, featurizer=None, split=None, reload=True)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/molnet/load_function/factors_datasets.py#L121-L190]

	Loads FACTOR dataset; does not do train/test split

The Factors dataset is an in-house dataset from Merck that was first introduced in the following paper:
Ramsundar, Bharath, et al. “Is multitask deep learning practical for pharma?.” Journal of chemical information and modeling 57.8 (2017): 2068-2076.

It contains 1500 Merck in-house compounds that were measured
for IC50 of inhibition on 12 serine proteases. Unlike most of
the other datasets featured in MoleculeNet, the Factors
collection does not have structures for the compounds tested
since they were proprietary Merck compounds. However, the
collection does feature pre-computed descriptors for these
compounds.

Note that the original train/valid/test split from the source
data was preserved here, so this function doesn’t allow for
alternate modes of splitting. Similarly, since the source data
came pre-featurized, it is not possible to apply alternative
featurizations.


	Parameters:

	
	shard_size (int, optional) – Size of the DiskDataset shards to write on disk


	featurizer (optional) – Ignored since featurization pre-computed


	split (optional) – Ignored since split pre-computed


	reload (bool, optional) – Whether to automatically re-load from disk














Freesolv Dataset


	
load_freesolv(featurizer: ~deepchem.feat.base_classes.Featurizer | str = MATFeaturizer[], splitter: ~deepchem.splits.splitters.Splitter | str | None = 'random', transformers: ~typing.List[~deepchem.molnet.load_function.molnet_loader.TransformerGenerator | str] = ['normalization'], reload: bool = True, data_dir: str | None = None, save_dir: str | None = None, **kwargs) → Tuple[List[str], Tuple[Dataset, ...], List[Transformer]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/molnet/load_function/freesolv_dataset.py#L27-L83]

	Load Freesolv dataset

The FreeSolv dataset is a collection of experimental and calculated hydration
free energies for small molecules in water, along with their experiemental values.
Here, we are using a modified version of the dataset with the molecule smile string
and the corresponding experimental hydration free energies.

Random splitting is recommended for this dataset.

The raw data csv file contains columns below:


	“mol” - SMILES representation of the molecular structure


	“y” - Experimental hydration free energy





	Parameters:

	
	featurizer (Featurizer or str) – the featurizer to use for processing the data.  Alternatively you can pass
one of the names from dc.molnet.featurizers as a shortcut.


	splitter (Splitter or str) – the splitter to use for splitting the data into training, validation, and
test sets.  Alternatively you can pass one of the names from
dc.molnet.splitters as a shortcut.  If this is None, all the data
will be included in a single dataset.


	transformers (list of TransformerGenerators or strings) – the Transformers to apply to the data.  Each one is specified by a
TransformerGenerator or, as a shortcut, one of the names from
dc.molnet.transformers.


	reload (bool) – if True, the first call for a particular featurizer and splitter will cache
the datasets to disk, and subsequent calls will reload the cached datasets.


	data_dir (str) – a directory to save the raw data in


	save_dir (str) – a directory to save the dataset in
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HIV Datasets


	
load_hiv(featurizer: Featurizer | str = 'ECFP', splitter: Splitter | str | None = 'scaffold', transformers: List[TransformerGenerator | str] = ['balancing'], reload: bool = True, data_dir: str | None = None, save_dir: str | None = None, **kwargs) → Tuple[List[str], Tuple[Dataset, ...], List[Transformer]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/molnet/load_function/hiv_datasets.py#L27-L84]

	Load HIV dataset

The HIV dataset was introduced by the Drug Therapeutics
Program (DTP) AIDS Antiviral Screen, which tested the ability
to inhibit HIV replication for over 40,000 compounds.
Screening results were evaluated and placed into three
categories: confirmed inactive (CI),confirmed active (CA) and
confirmed moderately active (CM). We further combine the
latter two labels, making it a classification task between
inactive (CI) and active (CA and CM).

Scaffold splitting is recommended for this dataset.

The raw data csv file contains columns below:


	“smiles”: SMILES representation of the molecular structure


	“activity”: Three-class labels for screening results: CI/CM/CA


	“HIV_active”: Binary labels for screening results: 1 (CA/CM) and 0 (CI)





	Parameters:

	
	featurizer (Featurizer or str) – the featurizer to use for processing the data.  Alternatively you can pass
one of the names from dc.molnet.featurizers as a shortcut.


	splitter (Splitter or str) – the splitter to use for splitting the data into training, validation, and
test sets.  Alternatively you can pass one of the names from
dc.molnet.splitters as a shortcut.  If this is None, all the data
will be included in a single dataset.


	transformers (list of TransformerGenerators or strings) – the Transformers to apply to the data.  Each one is specified by a
TransformerGenerator or, as a shortcut, one of the names from
dc.molnet.transformers.


	reload (bool) – if True, the first call for a particular featurizer and splitter will cache
the datasets to disk, and subsequent calls will reload the cached datasets.


	data_dir (str) – a directory to save the raw data in


	save_dir (str) – a directory to save the dataset in
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HOPV Datasets

HOPV stands for the Harvard Organic Photovoltaic Dataset.


	
load_hopv(featurizer: Featurizer | str = 'ECFP', splitter: Splitter | str | None = 'scaffold', transformers: List[TransformerGenerator | str] = ['normalization'], reload: bool = True, data_dir: str | None = None, save_dir: str | None = None, **kwargs) → Tuple[List[str], Tuple[Dataset, ...], List[Transformer]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/molnet/load_function/hopv_datasets.py#L32-L79]

	Load HOPV datasets. Does not do train/test split

The HOPV datasets consist of the “Harvard Organic
Photovoltaic Dataset. This dataset includes 350 small
molecules and polymers that were utilized as p-type materials
in OPVs. Experimental properties include: HOMO [a.u.], LUMO
[a.u.], Electrochemical gap [a.u.], Optical gap [a.u.], Power
conversion efficiency [%], Open circuit potential [V], Short
circuit current density [mA/cm^2], and fill factor [%].
Theoretical calculations in the original dataset have been
removed (for now).

Lopez, Steven A., et al. “The Harvard organic photovoltaic dataset.” Scientific data 3.1 (2016): 1-7.


	Parameters:

	
	featurizer (Featurizer or str) – the featurizer to use for processing the data.  Alternatively you can pass
one of the names from dc.molnet.featurizers as a shortcut.


	splitter (Splitter or str) – the splitter to use for splitting the data into training, validation, and
test sets.  Alternatively you can pass one of the names from
dc.molnet.splitters as a shortcut.  If this is None, all the data
will be included in a single dataset.


	transformers (list of TransformerGenerators or strings) – the Transformers to apply to the data.  Each one is specified by a
TransformerGenerator or, as a shortcut, one of the names from
dc.molnet.transformers.


	reload (bool) – if True, the first call for a particular featurizer and splitter will cache
the datasets to disk, and subsequent calls will reload the cached datasets.


	data_dir (str) – a directory to save the raw data in


	save_dir (str) – a directory to save the dataset in














HPPB Datasets


	
load_hppb(featurizer: Featurizer | str = 'ECFP', splitter: Splitter | str | None = 'scaffold', transformers: List[TransformerGenerator | str] = ['log'], reload: bool = True, data_dir: str | None = None, save_dir: str | None = None, **kwargs) → Tuple[List[str], Tuple[Dataset, ...], List[Transformer]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/molnet/load_function/hppb_datasets.py#L30-L65]

	Loads the thermodynamic solubility datasets.


	Parameters:

	
	featurizer (Featurizer or str) – the featurizer to use for processing the data.  Alternatively you can pass
one of the names from dc.molnet.featurizers as a shortcut.


	splitter (Splitter or str) – the splitter to use for splitting the data into training, validation, and
test sets.  Alternatively you can pass one of the names from
dc.molnet.splitters as a shortcut.  If this is None, all the data
will be included in a single dataset.


	transformers (list of TransformerGenerators or strings) – the Transformers to apply to the data.  Each one is specified by a
TransformerGenerator or, as a shortcut, one of the names from
dc.molnet.transformers.


	reload (bool) – if True, the first call for a particular featurizer and splitter will cache
the datasets to disk, and subsequent calls will reload the cached datasets.


	data_dir (str) – a directory to save the raw data in


	save_dir (str) – a directory to save the dataset in














KAGGLE Datasets


	
load_kaggle(shard_size=2000, featurizer=None, split=None, reload=True)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/molnet/load_function/kaggle_datasets.py#L103-L163]

	Loads kaggle datasets. Generates if not stored already.

The Kaggle dataset is an in-house dataset from Merck that was first introduced in the following paper:

Ma, Junshui, et al. “Deep neural nets as a method for quantitative structure–activity relationships.” Journal of chemical information and modeling 55.2 (2015): 263-274.

It contains 100,000 unique Merck in-house compounds that were
measured on 15 enzyme inhibition and ADME/TOX datasets.
Unlike most of the other datasets featured in MoleculeNet,
the Kaggle collection does not have structures for the
compounds tested since they were proprietary Merck compounds.
However, the collection does feature pre-computed descriptors
for these compounds.

Note that the original train/valid/test split from the source
data was preserved here, so this function doesn’t allow for
alternate modes of splitting. Similarly, since the source data
came pre-featurized, it is not possible to apply alternative
featurizations.


	Parameters:

	
	shard_size (int, optional) – Size of the DiskDataset shards to write on disk


	featurizer (optional) – Ignored since featurization pre-computed


	split (optional) – Ignored since split pre-computed


	reload (bool, optional) – Whether to automatically re-load from disk














Kinase Datasets


	
load_kinase(shard_size=2000, featurizer=None, split=None, reload=True)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/molnet/load_function/kinase_datasets.py#L128-L211]

	Loads Kinase datasets, does not do train/test split

The Kinase dataset is an in-house dataset from Merck that was first introduced in the following paper:
Ramsundar, Bharath, et al. “Is multitask deep learning practical for pharma?.” Journal of chemical information and modeling 57.8 (2017): 2068-2076.

It contains 2500 Merck in-house compounds that were measured
for IC50 of inhibition on 99 protein kinases. Unlike most of
the other datasets featured in MoleculeNet, the Kinase
collection does not have structures for the compounds tested
since they were proprietary Merck compounds. However, the
collection does feature pre-computed descriptors for these
compounds.

Note that the original train/valid/test split from the source
data was preserved here, so this function doesn’t allow for
alternate modes of splitting. Similarly, since the source data
came pre-featurized, it is not possible to apply alternative
featurizations.


	Parameters:

	
	shard_size (int, optional) – Size of the DiskDataset shards to write on disk


	featurizer (optional) – Ignored since featurization pre-computed


	split (optional) – Ignored since split pre-computed


	reload (bool, optional) – Whether to automatically re-load from disk














Lipo Datasets


	
load_lipo(featurizer: Featurizer | str = 'ECFP', splitter: Splitter | str | None = 'scaffold', transformers: List[TransformerGenerator | str] = ['normalization'], reload: bool = True, data_dir: str | None = None, save_dir: str | None = None, **kwargs) → Tuple[List[str], Tuple[Dataset, ...], List[Transformer]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/molnet/load_function/lipo_datasets.py#L27-L80]

	Load Lipophilicity dataset

Lipophilicity is an important feature of drug molecules that affects both
membrane permeability and solubility. The lipophilicity dataset, curated
from ChEMBL database, provides experimental results of octanol/water
distribution coefficient (logD at pH 7.4) of 4200 compounds.

Scaffold splitting is recommended for this dataset.

The raw data csv file contains columns below:


	“smiles” - SMILES representation of the molecular structure


	
	“exp” - Measured octanol/water distribution coefficient (logD) of the
	compound, used as label










	Parameters:

	
	featurizer (Featurizer or str) – the featurizer to use for processing the data.  Alternatively you can pass
one of the names from dc.molnet.featurizers as a shortcut.


	splitter (Splitter or str) – the splitter to use for splitting the data into training, validation, and
test sets.  Alternatively you can pass one of the names from
dc.molnet.splitters as a shortcut.  If this is None, all the data
will be included in a single dataset.


	transformers (list of TransformerGenerators or strings) – the Transformers to apply to the data.  Each one is specified by a
TransformerGenerator or, as a shortcut, one of the names from
dc.molnet.transformers.


	reload (bool) – if True, the first call for a particular featurizer and splitter will cache
the datasets to disk, and subsequent calls will reload the cached datasets.


	data_dir (str) – a directory to save the raw data in


	save_dir (str) – a directory to save the dataset in
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Materials Datasets

Materials datasets include inorganic crystal structures, chemical
compositions, and target properties like formation energies and band
gaps. Machine learning problems in materials science commonly include
predicting the value of a continuous (regression) or categorical
(classification) property of a material based on its chemical composition
or crystal structure. “Inverse design” is also of great interest, in which
ML methods generate crystal structures that have a desired property.
Other areas where ML is applicable in materials include: discovering new
or modified phenomenological models that describe material behavior


	
load_bandgap(featurizer: ~deepchem.feat.base_classes.Featurizer | str = ElementPropertyFingerprint[data_source='matminer'], splitter: ~deepchem.splits.splitters.Splitter | str | None = 'random', transformers: ~typing.List[~deepchem.molnet.load_function.molnet_loader.TransformerGenerator | str] = ['normalization'], reload: bool = True, data_dir: str | None = None, save_dir: str | None = None, **kwargs) → Tuple[List[str], Tuple[Dataset, ...], List[Transformer]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/molnet/load_function/material_datasets/load_bandgap.py#L31-L105]

	Load band gap dataset.

Contains 4604 experimentally measured band gaps for inorganic
crystal structure compositions. In benchmark studies, random forest
models achieved a mean average error of 0.45 eV during five-fold
nested cross validation on this dataset.

For more details on the dataset see [1]_. For more details
on previous benchmarks for this dataset, see [2]_.


	Parameters:

	
	featurizer (Featurizer or str) – the featurizer to use for processing the data.  Alternatively you can pass
one of the names from dc.molnet.featurizers as a shortcut.


	splitter (Splitter or str) – the splitter to use for splitting the data into training, validation, and
test sets.  Alternatively you can pass one of the names from
dc.molnet.splitters as a shortcut.  If this is None, all the data
will be included in a single dataset.


	transformers (list of TransformerGenerators or strings) – the Transformers to apply to the data.  Each one is specified by a
TransformerGenerator or, as a shortcut, one of the names from
dc.molnet.transformers.


	reload (bool) – if True, the first call for a particular featurizer and splitter will cache
the datasets to disk, and subsequent calls will reload the cached datasets.


	data_dir (str) – a directory to save the raw data in


	save_dir (str) – a directory to save the dataset in






	Returns:

	tasks, datasets, transformers –


	taskslist
	Column names corresponding to machine learning target variables.



	datasetstuple
	train, validation, test splits of data as
deepchem.data.datasets.Dataset instances.



	transformerslist
	deepchem.trans.transformers.Transformer instances applied
to dataset.









	Return type:

	tuple
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Examples

>>>
>> import deepchem as dc
>> tasks, datasets, transformers = dc.molnet.load_bandgap()
>> train_dataset, val_dataset, test_dataset = datasets
>> n_tasks = len(tasks)
>> n_features = train_dataset.get_data_shape()[0]
>> model = dc.models.MultitaskRegressor(n_tasks, n_features)










	
load_perovskite(featurizer: ~deepchem.feat.base_classes.Featurizer | str = DummyFeaturizer[], splitter: ~deepchem.splits.splitters.Splitter | str | None = 'random', transformers: ~typing.List[~deepchem.molnet.load_function.molnet_loader.TransformerGenerator | str] = ['normalization'], reload: bool = True, data_dir: str | None = None, save_dir: str | None = None, **kwargs) → Tuple[List[str], Tuple[Dataset, ...], List[Transformer]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/molnet/load_function/material_datasets/load_perovskite.py#L31-L103]

	Load perovskite dataset.

Contains 18928 perovskite structures and their formation energies.
In benchmark studies, random forest models and crystal graph
neural networks achieved mean average error of 0.23 and 0.05 eV/atom,
respectively, during five-fold nested cross validation on this
dataset.

For more details on the dataset see [1]_. For more details
on previous benchmarks for this dataset, see [2]_.


	Parameters:

	
	featurizer (Featurizer or str) – the featurizer to use for processing the data.  Alternatively you can pass
one of the names from dc.molnet.featurizers as a shortcut.


	splitter (Splitter or str) – the splitter to use for splitting the data into training, validation, and
test sets.  Alternatively you can pass one of the names from
dc.molnet.splitters as a shortcut.  If this is None, all the data
will be included in a single dataset.


	transformers (list of TransformerGenerators or strings) – the Transformers to apply to the data.  Each one is specified by a
TransformerGenerator or, as a shortcut, one of the names from
dc.molnet.transformers.


	reload (bool) – if True, the first call for a particular featurizer and splitter will cache
the datasets to disk, and subsequent calls will reload the cached datasets.


	data_dir (str) – a directory to save the raw data in


	save_dir (str) – a directory to save the dataset in






	Returns:

	tasks, datasets, transformers –


	taskslist
	Column names corresponding to machine learning target variables.



	datasetstuple
	train, validation, test splits of data as
deepchem.data.datasets.Dataset instances.



	transformerslist
	deepchem.trans.transformers.Transformer instances applied
to dataset.









	Return type:

	tuple
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Examples

>>> import deepchem as dc
>>> tasks, datasets, transformers = dc.molnet.load_perovskite()
>>> train_dataset, val_dataset, test_dataset = datasets
>>> model = dc.models.CGCNNModel(mode='regression', batch_size=32, learning_rate=0.001)










	
load_mp_formation_energy(featurizer: ~deepchem.feat.base_classes.Featurizer | str = SineCoulombMatrix[max_atoms=100, flatten=True], splitter: ~deepchem.splits.splitters.Splitter | str | None = 'random', transformers: ~typing.List[~deepchem.molnet.load_function.molnet_loader.TransformerGenerator | str] = ['normalization'], reload: bool = True, data_dir: str | None = None, save_dir: str | None = None, **kwargs) → Tuple[List[str], Tuple[Dataset, ...], List[Transformer]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/molnet/load_function/material_datasets/load_mp_formation_energy.py#L31-L106]

	Load mp formation energy dataset.

Contains 132752 calculated formation energies and inorganic
crystal structures from the Materials Project database. In benchmark
studies, random forest models achieved a mean average error of
0.116 eV/atom during five-folded nested cross validation on this
dataset.

For more details on the dataset see [1]_. For more details
on previous benchmarks for this dataset, see [2]_.


	Parameters:

	
	featurizer (Featurizer or str) – the featurizer to use for processing the data.  Alternatively you can pass
one of the names from dc.molnet.featurizers as a shortcut.


	splitter (Splitter or str) – the splitter to use for splitting the data into training, validation, and
test sets.  Alternatively you can pass one of the names from
dc.molnet.splitters as a shortcut.  If this is None, all the data
will be included in a single dataset.


	transformers (list of TransformerGenerators or strings) – the Transformers to apply to the data.  Each one is specified by a
TransformerGenerator or, as a shortcut, one of the names from
dc.molnet.transformers.


	reload (bool) – if True, the first call for a particular featurizer and splitter will cache
the datasets to disk, and subsequent calls will reload the cached datasets.


	data_dir (str) – a directory to save the raw data in


	save_dir (str) – a directory to save the dataset in






	Returns:

	tasks, datasets, transformers –


	taskslist
	Column names corresponding to machine learning target variables.



	datasetstuple
	train, validation, test splits of data as
deepchem.data.datasets.Dataset instances.



	transformerslist
	deepchem.trans.transformers.Transformer instances applied
to dataset.









	Return type:

	tuple





References



[1]
A. Jain*, S.P. Ong*, et al. (*=equal contributions) The Materials Project:
A materials genome approach to accelerating materials innovation APL Materials,
2013, 1(1), 011002. doi:10.1063/1.4812323 (2013).



[2]
Dunn, A. et al. “Benchmarking Materials Property Prediction Methods: The Matbench
Test Set and Automatminer Reference Algorithm.” https://arxiv.org/abs/2005.00707 (2020)



Examples

>>>
>> import deepchem as dc
>> tasks, datasets, transformers = dc.molnet.load_mp_formation_energy()
>> train_dataset, val_dataset, test_dataset = datasets
>> n_tasks = len(tasks)
>> n_features = train_dataset.get_data_shape()[0]
>> model = dc.models.MultitaskRegressor(n_tasks, n_features)










	
load_mp_metallicity(featurizer: ~deepchem.feat.base_classes.Featurizer | str = SineCoulombMatrix[max_atoms=100, flatten=True], splitter: ~deepchem.splits.splitters.Splitter | str | None = 'random', transformers: ~typing.List[~deepchem.molnet.load_function.molnet_loader.TransformerGenerator | str] = ['balancing'], reload: bool = True, data_dir: str | None = None, save_dir: str | None = None, **kwargs) → Tuple[List[str], Tuple[Dataset, ...], List[Transformer]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/molnet/load_function/material_datasets/load_mp_metallicity.py#L31-L106]

	Load mp formation energy dataset.

Contains 106113 inorganic crystal structures from the Materials
Project database labeled as metals or nonmetals. In benchmark
studies, random forest models achieved a mean ROC-AUC of
0.9 during five-folded nested cross validation on this
dataset.

For more details on the dataset see [1]_. For more details
on previous benchmarks for this dataset, see [2]_.


	Parameters:

	
	featurizer (Featurizer or str) – the featurizer to use for processing the data.  Alternatively you can pass
one of the names from dc.molnet.featurizers as a shortcut.


	splitter (Splitter or str) – the splitter to use for splitting the data into training, validation, and
test sets.  Alternatively you can pass one of the names from
dc.molnet.splitters as a shortcut.  If this is None, all the data
will be included in a single dataset.


	transformers (list of TransformerGenerators or strings) – the Transformers to apply to the data.  Each one is specified by a
TransformerGenerator or, as a shortcut, one of the names from
dc.molnet.transformers.


	reload (bool) – if True, the first call for a particular featurizer and splitter will cache
the datasets to disk, and subsequent calls will reload the cached datasets.


	data_dir (str) – a directory to save the raw data in


	save_dir (str) – a directory to save the dataset in






	Returns:

	tasks, datasets, transformers –


	taskslist
	Column names corresponding to machine learning target variables.



	datasetstuple
	train, validation, test splits of data as
deepchem.data.datasets.Dataset instances.



	transformerslist
	deepchem.trans.transformers.Transformer instances applied
to dataset.









	Return type:

	tuple





References
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Test Set and Automatminer Reference Algorithm.” https://arxiv.org/abs/2005.00707 (2020)



Examples

>>>
>> import deepchem as dc
>> tasks, datasets, transformers = dc.molnet.load_mp_metallicity()
>> train_dataset, val_dataset, test_dataset = datasets
>> n_tasks = len(tasks)
>> n_features = train_dataset.get_data_shape()[0]
>> model = dc.models.MultitaskRegressor(n_tasks, n_features)











MUV Datasets


	
load_muv(featurizer: Featurizer | str = 'ECFP', splitter: Splitter | str | None = 'scaffold', transformers: List[TransformerGenerator | str] = ['balancing'], reload: bool = True, data_dir: str | None = None, save_dir: str | None = None, **kwargs) → Tuple[List[str], Tuple[Dataset, ...], List[Transformer]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/molnet/load_function/muv_datasets.py#L31-L87]

	Load MUV dataset

The Maximum Unbiased Validation (MUV) group is a benchmark dataset selected
from PubChem BioAssay by applying a refined nearest neighbor analysis.

The MUV dataset contains 17 challenging tasks for around 90 thousand
compounds and is specifically designed for validation of virtual screening
techniques.

Scaffold splitting is recommended for this dataset.

The raw data csv file contains columns below:


	“mol_id” - PubChem CID of the compound


	“smiles” - SMILES representation of the molecular structure


	“MUV-XXX” - Measured results (Active/Inactive) for bioassays





	Parameters:

	
	featurizer (Featurizer or str) – the featurizer to use for processing the data.  Alternatively you can pass
one of the names from dc.molnet.featurizers as a shortcut.


	splitter (Splitter or str) – the splitter to use for splitting the data into training, validation, and
test sets.  Alternatively you can pass one of the names from
dc.molnet.splitters as a shortcut.  If this is None, all the data
will be included in a single dataset.


	transformers (list of TransformerGenerators or strings) – the Transformers to apply to the data.  Each one is specified by a
TransformerGenerator or, as a shortcut, one of the names from
dc.molnet.transformers.


	reload (bool) – if True, the first call for a particular featurizer and splitter will cache
the datasets to disk, and subsequent calls will reload the cached datasets.


	data_dir (str) – a directory to save the raw data in


	save_dir (str) – a directory to save the dataset in








References
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NCI Datasets


	
load_nci(featurizer: Featurizer | str = 'ECFP', splitter: Splitter | str | None = 'random', transformers: List[TransformerGenerator | str] = ['normalization'], reload: bool = True, data_dir: str | None = None, save_dir: str | None = None, **kwargs) → Tuple[List[str], Tuple[Dataset, ...], List[Transformer]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/molnet/load_function/nci_datasets.py#L39-L74]

	Load NCI dataset.


	Parameters:

	
	featurizer (Featurizer or str) – the featurizer to use for processing the data.  Alternatively you can pass
one of the names from dc.molnet.featurizers as a shortcut.


	splitter (Splitter or str) – the splitter to use for splitting the data into training, validation, and
test sets.  Alternatively you can pass one of the names from
dc.molnet.splitters as a shortcut.  If this is None, all the data
will be included in a single dataset.


	transformers (list of TransformerGenerators or strings) – the Transformers to apply to the data.  Each one is specified by a
TransformerGenerator or, as a shortcut, one of the names from
dc.molnet.transformers.


	reload (bool) – if True, the first call for a particular featurizer and splitter will cache
the datasets to disk, and subsequent calls will reload the cached datasets.


	data_dir (str) – a directory to save the raw data in


	save_dir (str) – a directory to save the dataset in














PCBA Datasets


	
load_pcba(featurizer: Featurizer | str = 'ECFP', splitter: Splitter | str | None = 'scaffold', transformers: List[TransformerGenerator | str] = ['balancing'], reload: bool = True, data_dir: str | None = None, save_dir: str | None = None, **kwargs) → Tuple[List[str], Tuple[Dataset, ...], List[Transformer]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/molnet/load_function/pcba_datasets.py#L66-L122]

	Load PCBA dataset

PubChem BioAssay (PCBA) is a database consisting of biological activities of
small molecules generated by high-throughput screening. We use a subset of
PCBA, containing 128 bioassays measured over 400 thousand compounds,
used by previous work to benchmark machine learning methods.

Random splitting is recommended for this dataset.

The raw data csv file contains columns below:


	“mol_id” - PubChem CID of the compound


	“smiles” - SMILES representation of the molecular structure


	
	“PCBA-XXX” - Measured results (Active/Inactive) for bioassays:
	search for the assay ID at
https://pubchem.ncbi.nlm.nih.gov/search/#collection=bioassays
for details










	Parameters:

	
	featurizer (Featurizer or str) – the featurizer to use for processing the data.  Alternatively you can pass
one of the names from dc.molnet.featurizers as a shortcut.


	splitter (Splitter or str) – the splitter to use for splitting the data into training, validation, and
test sets.  Alternatively you can pass one of the names from
dc.molnet.splitters as a shortcut.  If this is None, all the data
will be included in a single dataset.


	transformers (list of TransformerGenerators or strings) – the Transformers to apply to the data.  Each one is specified by a
TransformerGenerator or, as a shortcut, one of the names from
dc.molnet.transformers.


	reload (bool) – if True, the first call for a particular featurizer and splitter will cache
the datasets to disk, and subsequent calls will reload the cached datasets.


	data_dir (str) – a directory to save the raw data in


	save_dir (str) – a directory to save the dataset in








References
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PDBBIND Datasets


	
load_pdbbind(featurizer: ComplexFeaturizer, splitter: Splitter | str | None = 'random', transformers: List[TransformerGenerator | str] = ['normalization'], reload: bool = True, data_dir: str | None = None, save_dir: str | None = None, pocket: bool = True, set_name: str = 'core', **kwargs) → Tuple[List[str], Tuple[Dataset, ...], List[Transformer]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/molnet/load_function/pdbbind_datasets.py#L116-L206]

	Load PDBBind dataset.

The PDBBind dataset includes experimental binding affinity data
and structures for 4852 protein-ligand complexes from the “refined set”
and 12800 complexes from the “general set” in PDBBind v2019 and 193
complexes from the “core set” in PDBBind v2013.
The refined set removes data with obvious problems
in 3D structure, binding data, or other aspects and should therefore
be a better starting point for docking/scoring studies. Details on
the criteria used to construct the refined set can be found in [4]_.
The general set does not include the refined set. The core set is
a subset of the refined set that is not updated annually.

Random splitting is recommended for this dataset.

The raw dataset contains the columns below:


	“ligand” - SDF of the molecular structure


	“protein” - PDB of the protein structure


	“CT_TOX” - Clinical trial results





	Parameters:

	
	featurizer (ComplexFeaturizer or str) – the complex featurizer to use for processing the data.
Alternatively you can pass one of the names from
dc.molnet.featurizers as a shortcut.


	splitter (Splitter or str) – the splitter to use for splitting the data into training, validation, and
test sets.  Alternatively you can pass one of the names from
dc.molnet.splitters as a shortcut.  If this is None, all the data
will be included in a single dataset.


	transformers (list of TransformerGenerators or strings) – the Transformers to apply to the data.  Each one is specified by a
TransformerGenerator or, as a shortcut, one of the names from
dc.molnet.transformers.


	reload (bool) – if True, the first call for a particular featurizer and splitter will cache
the datasets to disk, and subsequent calls will reload the cached datasets.


	data_dir (str) – a directory to save the raw data in


	save_dir (str) – a directory to save the dataset in


	pocket (bool (default True)) – If true, use only the binding pocket for featurization.


	set_name (str (default 'core')) – Name of dataset to download. ‘refined’, ‘general’, and ‘core’ are supported.






	Returns:

	tasks, datasets, transformers –


	tasks: list
	Column names corresponding to machine learning target variables.



	datasets: tuple
	train, validation, test splits of data as
deepchem.data.datasets.Dataset instances.



	transformers: list
	deepchem.trans.transformers.Transformer instances applied
to dataset.









	Return type:

	tuple
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PPB Datasets


	
load_ppb(featurizer: Featurizer | str = 'ECFP', splitter: Splitter | str | None = 'scaffold', transformers: List[TransformerGenerator | str] = ['normalization'], reload: bool = True, data_dir: str | None = None, save_dir: str | None = None, **kwargs) → Tuple[List[str], Tuple[Dataset, ...], List[Transformer]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/molnet/load_function/ppb_datasets.py#L27-L62]

	Load PPB datasets.


	Parameters:

	
	featurizer (Featurizer or str) – the featurizer to use for processing the data.  Alternatively you can pass
one of the names from dc.molnet.featurizers as a shortcut.


	splitter (Splitter or str) – the splitter to use for splitting the data into training, validation, and
test sets.  Alternatively you can pass one of the names from
dc.molnet.splitters as a shortcut.  If this is None, all the data
will be included in a single dataset.


	transformers (list of TransformerGenerators or strings) – the Transformers to apply to the data.  Each one is specified by a
TransformerGenerator or, as a shortcut, one of the names from
dc.molnet.transformers.


	reload (bool) – if True, the first call for a particular featurizer and splitter will cache
the datasets to disk, and subsequent calls will reload the cached datasets.


	data_dir (str) – a directory to save the raw data in


	save_dir (str) – a directory to save the dataset in














QM7 Datasets


	
load_qm7(featurizer: ~deepchem.feat.base_classes.Featurizer | str = CoulombMatrix[max_atoms=23, remove_hydrogens=False, randomize=False, upper_tri=False, n_samples=1, seed=None], splitter: ~deepchem.splits.splitters.Splitter | str | None = 'random', transformers: ~typing.List[~deepchem.molnet.load_function.molnet_loader.TransformerGenerator | str] = ['normalization'], reload: bool = True, data_dir: str | None = None, save_dir: str | None = None, **kwargs) → Tuple[List[str], Tuple[Dataset, ...], List[Transformer]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/molnet/load_function/qm7_datasets.py#L32-L109]

	Load QM7 dataset

QM7 is a subset of GDB-13 (a database of nearly 1 billion
stable and synthetically accessible organic molecules)
containing up to 7 heavy atoms C, N, O, and S. The 3D
Cartesian coordinates of the most stable conformations and
their atomization energies were determined using ab-initio
density functional theory (PBE0/tier2 basis set). This dataset
also provided Coulomb matrices as calculated in [Rupp et al.
PRL, 2012]:

Stratified splitting is recommended for this dataset.

The data file (.mat format, we recommend using scipy.io.loadmat
for python users to load this original data) contains five arrays:


	“X” - (7165 x 23 x 23), Coulomb matrices


	“T” - (7165), atomization energies (unit: kcal/mol)


	
	“P” - (5 x 1433), cross-validation splits as used in [Montavon et al.
	NIPS, 2012]







	“Z” - (7165 x 23), atomic charges


	
	“R” - (7165 x 23 x 3), cartesian coordinate (unit: Bohr) of each atom in
	the molecules










	Parameters:

	
	featurizer (Featurizer or str) – the featurizer to use for processing the data.  Alternatively you can pass
one of the names from dc.molnet.featurizers as a shortcut.


	splitter (Splitter or str) – the splitter to use for splitting the data into training, validation, and
test sets.  Alternatively you can pass one of the names from
dc.molnet.splitters as a shortcut.  If this is None, all the data
will be included in a single dataset.


	transformers (list of TransformerGenerators or strings) – the Transformers to apply to the data.  Each one is specified by a
TransformerGenerator or, as a shortcut, one of the names from
dc.molnet.transformers.


	reload (bool) – if True, the first call for a particular featurizer and splitter will cache
the datasets to disk, and subsequent calls will reload the cached datasets.


	data_dir (str) – a directory to save the raw data in


	save_dir (str) – a directory to save the dataset in









Note

DeepChem 2.4.0 has turned on sanitization for this dataset by
default.  For the QM7 dataset, this means that calling this
function will return 6838 compounds instead of 7160 in the source
dataset file.  This appears to be due to valence specification
mismatches in the dataset that weren’t caught in earlier more lax
versions of RDKit.  Note that this may subtly affect benchmarking
results on this
dataset.
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QM8 Datasets


	
load_qm8(featurizer: ~deepchem.feat.base_classes.Featurizer | str = CoulombMatrix[max_atoms=26, remove_hydrogens=False, randomize=False, upper_tri=False, n_samples=1, seed=None], splitter: ~deepchem.splits.splitters.Splitter | str | None = 'random', transformers: ~typing.List[~deepchem.molnet.load_function.molnet_loader.TransformerGenerator | str] = ['normalization'], reload: bool = True, data_dir: str | None = None, save_dir: str | None = None, **kwargs) → Tuple[List[str], Tuple[Dataset, ...], List[Transformer]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/molnet/load_function/qm8_datasets.py#L34-L118]

	Load QM8 dataset

QM8 is the dataset used in a study on modeling quantum
mechanical calculations of electronic spectra and excited
state energy of small molecules. Multiple methods, including
time-dependent density functional theories (TDDFT) and
second-order approximate coupled-cluster (CC2), are applied to
a collection of molecules that include up to eight heavy atoms
(also a subset of the GDB-17 database). In our collection,
there are four excited state properties calculated by four
different methods on 22 thousand samples:

S0 -> S1 transition energy E1 and the corresponding oscillator strength f1

S0 -> S2 transition energy E2 and the corresponding oscillator strength f2

E1, E2, f1, f2 are in atomic units. f1, f2 are in length representation

Random splitting is recommended for this dataset.

The source data contain:


	qm8.sdf: molecular structures


	qm8.sdf.csv: tables for molecular properties


	Column 1: Molecule ID (gdb9 index) mapping to the .sdf file


	Columns 2-5: RI-CC2/def2TZVP


	Columns 6-9: LR-TDPBE0/def2SVP


	Columns 10-13: LR-TDPBE0/def2TZVP


	Columns 14-17: LR-TDCAM-B3LYP/def2TZVP





	Parameters:

	
	featurizer (Featurizer or str) – the featurizer to use for processing the data.  Alternatively you can pass
one of the names from dc.molnet.featurizers as a shortcut.


	splitter (Splitter or str) – the splitter to use for splitting the data into training, validation, and
test sets.  Alternatively you can pass one of the names from
dc.molnet.splitters as a shortcut.  If this is None, all the data
will be included in a single dataset.


	transformers (list of TransformerGenerators or strings) – the Transformers to apply to the data.  Each one is specified by a
TransformerGenerator or, as a shortcut, one of the names from
dc.molnet.transformers.


	reload (bool) – if True, the first call for a particular featurizer and splitter will cache
the datasets to disk, and subsequent calls will reload the cached datasets.


	data_dir (str) – a directory to save the raw data in


	save_dir (str) – a directory to save the dataset in









Note

DeepChem 2.4.0 has turned on sanitization for this dataset by
default.  For the QM8 dataset, this means that calling this
function will return 21747 compounds instead of 21786 in the source
dataset file.  This appears to be due to valence specification
mismatches in the dataset that weren’t caught in earlier more lax
versions of RDKit.  Note that this may subtly affect benchmarking
results on this dataset.
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QM9 Datasets


	
load_qm9(featurizer: ~deepchem.feat.base_classes.Featurizer | str = CoulombMatrix[max_atoms=29, remove_hydrogens=False, randomize=False, upper_tri=False, n_samples=1, seed=None], splitter: ~deepchem.splits.splitters.Splitter | str | None = 'random', transformers: ~typing.List[~deepchem.molnet.load_function.molnet_loader.TransformerGenerator | str] = ['normalization'], reload: bool = True, data_dir: str | None = None, save_dir: str | None = None, **kwargs) → Tuple[List[str], Tuple[Dataset, ...], List[Transformer]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/molnet/load_function/qm9_datasets.py#L33-L125]

	Load QM9 dataset

QM9 is a comprehensive dataset that provides geometric, energetic,
electronic and thermodynamic properties for a subset of GDB-17
database, comprising 134 thousand stable organic molecules with up
to 9 heavy atoms.  All molecules are modeled using density
functional theory (B3LYP/6-31G(2df,p) based DFT).

Random splitting is recommended for this dataset.

The source data contain:


	qm9.sdf: molecular structures


	qm9.sdf.csv: tables for molecular properties


	“mol_id” - Molecule ID (gdb9 index) mapping to the .sdf file


	“A” - Rotational constant (unit: GHz)


	“B” - Rotational constant (unit: GHz)


	“C” - Rotational constant (unit: GHz)


	“mu” - Dipole moment (unit: D)


	“alpha” - Isotropic polarizability (unit: Bohr^3)


	“homo” - Highest occupied molecular orbital energy (unit: Hartree)


	“lumo” - Lowest unoccupied molecular orbital energy (unit: Hartree)


	“gap” - Gap between HOMO and LUMO (unit: Hartree)


	“r2” - Electronic spatial extent (unit: Bohr^2)


	“zpve” - Zero point vibrational energy (unit: Hartree)


	“u0” - Internal energy at 0K (unit: Hartree)


	“u298” - Internal energy at 298.15K (unit: Hartree)


	“h298” - Enthalpy at 298.15K (unit: Hartree)


	“g298” - Free energy at 298.15K (unit: Hartree)


	“cv” - Heat capavity at 298.15K (unit: cal/(mol*K))


	“u0_atom” - Atomization energy at 0K (unit: kcal/mol)


	“u298_atom” - Atomization energy at 298.15K (unit: kcal/mol)


	“h298_atom” - Atomization enthalpy at 298.15K (unit: kcal/mol)


	“g298_atom” - Atomization free energy at 298.15K (unit: kcal/mol)




“u0_atom” ~ “g298_atom” (used in MoleculeNet) are calculated from the
differences between “u0” ~ “g298” and sum of reference energies of all
atoms in the molecules, as given in
https://figshare.com/articles/Atomref%3A_Reference_thermochemical_energies_of_H%2C_C%2C_N%2C_O%2C_F_atoms./1057643


	Parameters:

	
	featurizer (Featurizer or str) – the featurizer to use for processing the data.  Alternatively you can pass
one of the names from dc.molnet.featurizers as a shortcut.


	splitter (Splitter or str) – the splitter to use for splitting the data into training, validation, and
test sets.  Alternatively you can pass one of the names from
dc.molnet.splitters as a shortcut.  If this is None, all the data
will be included in a single dataset.


	transformers (list of TransformerGenerators or strings) – the Transformers to apply to the data.  Each one is specified by a
TransformerGenerator or, as a shortcut, one of the names from
dc.molnet.transformers.


	reload (bool) – if True, the first call for a particular featurizer and splitter will cache
the datasets to disk, and subsequent calls will reload the cached datasets.


	data_dir (str) – a directory to save the raw data in


	save_dir (str) – a directory to save the dataset in









Note

DeepChem 2.4.0 has turned on sanitization for this dataset by
default.  For the QM9 dataset, this means that calling this
function will return 132480 compounds instead of 133885 in the
source dataset file. This appears to be due to valence
specification mismatches in the dataset that weren’t caught in
earlier more lax versions of RDKit. Note that this may subtly
affect benchmarking results on this dataset.
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SAMPL Datasets


	
load_sampl(featurizer: Featurizer | str = 'ECFP', splitter: Splitter | str | None = 'scaffold', transformers: List[TransformerGenerator | str] = ['normalization'], reload: bool = True, data_dir: str | None = None, save_dir: str | None = None, **kwargs) → Tuple[List[str], Tuple[Dataset, ...], List[Transformer]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/molnet/load_function/sampl_datasets.py#L27-L84]

	Load SAMPL(FreeSolv) dataset

The Free Solvation Database, FreeSolv(SAMPL), provides experimental and
calculated hydration free energy of small molecules in water. The calculated
values are derived from alchemical free energy calculations using molecular
dynamics simulations. The experimental values are included in the benchmark
collection.

Random splitting is recommended for this dataset.

The raw data csv file contains columns below:


	“iupac” - IUPAC name of the compound


	“smiles” - SMILES representation of the molecular structure


	
	“expt” - Measured solvation energy (unit: kcal/mol) of the compound,
	used as label







	“calc” - Calculated solvation energy (unit: kcal/mol) of the compound





	Parameters:

	
	featurizer (Featurizer or str) – the featurizer to use for processing the data.  Alternatively you can pass
one of the names from dc.molnet.featurizers as a shortcut.


	splitter (Splitter or str) – the splitter to use for splitting the data into training, validation, and
test sets.  Alternatively you can pass one of the names from
dc.molnet.splitters as a shortcut.  If this is None, all the data
will be included in a single dataset.


	transformers (list of TransformerGenerators or strings) – the Transformers to apply to the data.  Each one is specified by a
TransformerGenerator or, as a shortcut, one of the names from
dc.molnet.transformers.


	reload (bool) – if True, the first call for a particular featurizer and splitter will cache
the datasets to disk, and subsequent calls will reload the cached datasets.


	data_dir (str) – a directory to save the raw data in


	save_dir (str) – a directory to save the dataset in
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SIDER Datasets


	
load_sider(featurizer: Featurizer | str = 'ECFP', splitter: Splitter | str | None = 'scaffold', transformers: List[TransformerGenerator | str] = ['balancing'], reload: bool = True, data_dir: str | None = None, save_dir: str | None = None, **kwargs) → Tuple[List[str], Tuple[Dataset, ...], List[Transformer]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/molnet/load_function/sider_datasets.py#L44-L102]

	Load SIDER dataset

The Side Effect Resource (SIDER) is a database of marketed
drugs and adverse drug reactions (ADR). The version of the
SIDER dataset in DeepChem has grouped drug side effects into
27 system organ classes following MedDRA classifications
measured for 1427 approved drugs.

Random splitting is recommended for this dataset.

The raw data csv file contains columns below:


	“smiles”: SMILES representation of the molecular structure


	
	“Hepatobiliary disorders” ~ “Injury, poisoning and procedural
	complications”: Recorded side effects for the drug. Please refer
to http://sideeffects.embl.de/se/?page=98 for details on ADRs.










	Parameters:

	
	featurizer (Featurizer or str) – the featurizer to use for processing the data.  Alternatively you can pass
one of the names from dc.molnet.featurizers as a shortcut.


	splitter (Splitter or str) – the splitter to use for splitting the data into training, validation, and
test sets.  Alternatively you can pass one of the names from
dc.molnet.splitters as a shortcut.  If this is None, all the data
will be included in a single dataset.


	transformers (list of TransformerGenerators or strings) – the Transformers to apply to the data.  Each one is specified by a
TransformerGenerator or, as a shortcut, one of the names from
dc.molnet.transformers.


	reload (bool) – if True, the first call for a particular featurizer and splitter will cache
the datasets to disk, and subsequent calls will reload the cached datasets.


	data_dir (str) – a directory to save the raw data in


	save_dir (str) – a directory to save the dataset in
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Thermosol Datasets


	
load_thermosol(featurizer: Featurizer | str = 'ECFP', splitter: Splitter | str | None = 'scaffold', transformers: List[TransformerGenerator | str] = [], reload: bool = True, data_dir: str | None = None, save_dir: str | None = None, **kwargs) → Tuple[List[str], Tuple[Dataset, ...], List[Transformer]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/molnet/load_function/thermosol_datasets.py#L27-L62]

	Loads the thermodynamic solubility datasets.


	Parameters:

	
	featurizer (Featurizer or str) – the featurizer to use for processing the data.  Alternatively you can pass
one of the names from dc.molnet.featurizers as a shortcut.


	splitter (Splitter or str) – the splitter to use for splitting the data into training, validation, and
test sets.  Alternatively you can pass one of the names from
dc.molnet.splitters as a shortcut.  If this is None, all the data
will be included in a single dataset.


	transformers (list of TransformerGenerators or strings) – the Transformers to apply to the data.  Each one is specified by a
TransformerGenerator or, as a shortcut, one of the names from
dc.molnet.transformers.


	reload (bool) – if True, the first call for a particular featurizer and splitter will cache
the datasets to disk, and subsequent calls will reload the cached datasets.


	data_dir (str) – a directory to save the raw data in


	save_dir (str) – a directory to save the dataset in














Tox21 Datasets


	
load_tox21(featurizer: Featurizer | str = 'ECFP', splitter: Splitter | str | None = 'scaffold', transformers: List[TransformerGenerator | str] = ['balancing'], reload: bool = True, data_dir: str | None = None, save_dir: str | None = None, tasks: List[str] = ['NR-AR', 'NR-AR-LBD', 'NR-AhR', 'NR-Aromatase', 'NR-ER', 'NR-ER-LBD', 'NR-PPAR-gamma', 'SR-ARE', 'SR-ATAD5', 'SR-HSE', 'SR-MMP', 'SR-p53'], **kwargs) → Tuple[List[str], Tuple[Dataset, ...], List[Transformer]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/molnet/load_function/tox21_datasets.py#L30-L90]

	Load Tox21 dataset

The “Toxicology in the 21st Century” (Tox21) initiative created a public
database measuring toxicity of compounds, which has been used in the 2014
Tox21 Data Challenge. This dataset contains qualitative toxicity measurements
for 8k compounds on 12 different targets, including nuclear receptors and
stress response pathways.

Random splitting is recommended for this dataset.

The raw data csv file contains columns below:


	“smiles” - SMILES representation of the molecular structure


	“NR-XXX” - Nuclear receptor signaling bioassays results


	“SR-XXX” - Stress response bioassays results




please refer to https://tripod.nih.gov/tox21/challenge/data.jsp for details.


	Parameters:

	
	featurizer (Featurizer or str) – the featurizer to use for processing the data.  Alternatively you can pass
one of the names from dc.molnet.featurizers as a shortcut.


	splitter (Splitter or str) – the splitter to use for splitting the data into training, validation, and
test sets.  Alternatively you can pass one of the names from
dc.molnet.splitters as a shortcut.  If this is None, all the data
will be included in a single dataset.


	transformers (list of TransformerGenerators or strings) – the Transformers to apply to the data.  Each one is specified by a
TransformerGenerator or, as a shortcut, one of the names from
dc.molnet.transformers.


	reload (bool) – if True, the first call for a particular featurizer and splitter will cache
the datasets to disk, and subsequent calls will reload the cached datasets.


	data_dir (str) – a directory to save the raw data in


	save_dir (str) – a directory to save the dataset in


	tasks (List[str], (optional)) – Specify the set of tasks to load. If no task is specified, then it loads


	NR-AR (the default set of tasks which are) – 


	NR-AR-LBD – 


	NR-AhR – 


	NR-Aromatase – 


	NR-ER – 








:param :
:param NR-ER-LBD:
:param NR-PPAR-gamma:
:param SR-ARE:
:param SR-ATAD5:
:param SR-HSE:
:param SR-MMP:
:param SR-p53.:

References



[1]
Tox21 Challenge. https://tripod.nih.gov/tox21/challenge/









Toxcast Datasets


	
load_toxcast(featurizer: Featurizer | str = 'ECFP', splitter: Splitter | str | None = 'scaffold', transformers: List[TransformerGenerator | str] = ['balancing'], reload: bool = True, data_dir: str | None = None, save_dir: str | None = None, **kwargs) → Tuple[List[str], Tuple[Dataset, ...], List[Transformer]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/molnet/load_function/toxcast_datasets.py#L252-L309]

	Load Toxcast dataset

ToxCast is an extended data collection from the same
initiative as Tox21, providing toxicology data for a large
library of compounds based on in vitro high-throughput
screening. The processed collection includes qualitative
results of over 600 experiments on 8k compounds.

Random splitting is recommended for this dataset.

The raw data csv file contains columns below:


	“smiles”: SMILES representation of the molecular structure


	
	“ACEA_T47D_80hr_Negative” ~ “Tanguay_ZF_120hpf_YSE_up”: Bioassays results.
	Please refer to the section “high-throughput assay information” at
https://www.epa.gov/chemical-research/toxicity-forecaster-toxcasttm-data
for details.










	Parameters:

	
	featurizer (Featurizer or str) – the featurizer to use for processing the data.  Alternatively you can pass
one of the names from dc.molnet.featurizers as a shortcut.


	splitter (Splitter or str) – the splitter to use for splitting the data into training, validation, and
test sets.  Alternatively you can pass one of the names from
dc.molnet.splitters as a shortcut.  If this is None, all the data
will be included in a single dataset.


	transformers (list of TransformerGenerators or strings) – the Transformers to apply to the data.  Each one is specified by a
TransformerGenerator or, as a shortcut, one of the names from
dc.molnet.transformers.


	reload (bool) – if True, the first call for a particular featurizer and splitter will cache
the datasets to disk, and subsequent calls will reload the cached datasets.


	data_dir (str) – a directory to save the raw data in


	save_dir (str) – a directory to save the dataset in
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USPTO Datasets


	
load_uspto(featurizer: Featurizer | str = 'RxnFeaturizer', splitter: Splitter | str | None = None, transformers: List[TransformerGenerator | str] = [], reload: bool = True, data_dir: str | None = None, save_dir: str | None = None, subset: str = 'MIT', sep_reagent: bool = True, **kwargs) → Tuple[List[str], Tuple[Dataset, ...], List[Transformer]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/molnet/load_function/uspto_datasets.py#L75-L180]

	Load USPTO Datasets.

The USPTO dataset consists of over 1.8 Million organic chemical reactions
extracted from US patents and patent applications. The dataset contains the
reactions in the form of reaction SMILES, which have the general format:
reactant>reagent>product.

Molnet provides ability to load subsets of the USPTO dataset namely MIT,
STEREO and 50K. The MIT dataset contains around 479K reactions, curated by
jin et al. The STEREO dataset contains around 1 Million Reactions, it does
not have duplicates and the reactions include stereochemical information.
The 50K dataset contatins 50,000 reactions and is the benchmark for
retrosynthesis predictions. The reactions are additionally classified into 10
reaction classes. The canonicalized version of the dataset used by the loader
is the same as that used by Somnath et. al.

The loader uses the SpecifiedSplitter to use the same splits as specified
by Schwaller et. al and Dai et. al. Custom splitters could also be used. There
is a toggle in the loader to skip the source/target transformation needed for
seq2seq tasks. There is an additional toggle to load the dataset with the
reagents and reactants separated or mixed. This alters the entries in source
by replacing the ‘>’ with ‘.’ , effectively loading them as an unified
SMILES string.


	Parameters:

	
	featurizer (Featurizer or str) – the featurizer to use for processing the data.  Alternatively you can pass
one of the names from dc.molnet.featurizers as a shortcut.


	splitter (Splitter or str) – the splitter to use for splitting the data into training, validation, and
test sets.  Alternatively you can pass one of the names from
dc.molnet.splitters as a shortcut. If this is None, all the data
will be included in a single dataset.


	transformers (list of TransformerGenerators or strings) – the Transformers to apply to the data. Each one is specified by a
TransformerGenerator or, as a shortcut, one of the names from
dc.molnet.transformers.


	reload (bool) – if True, the first call for a particular featurizer and splitter will cache
the datasets to disk, and subsequent calls will reload the cached datasets.


	data_dir (str) – a directory to save the raw data in


	save_dir (str) – a directory to save the dataset in


	subset (str (default 'MIT')) – Subset of dataset to download. ‘FULL’, ‘MIT’, ‘STEREO’, and ‘50K’ are supported.


	sep_reagent (bool (default True)) – Toggle to load dataset with reactants and reagents either separated or mixed.


	skip_transform (bool (default True)) – Toggle to skip the source/target transformation.






	Returns:

	tasks, datasets, transformers –


	taskslist
	Column names corresponding to machine learning target variables.



	datasetstuple
	train, validation, test splits of data as
deepchem.data.datasets.Dataset instances.



	transformerslist
	deepchem.trans.transformers.Transformer instances applied
to dataset.









	Return type:

	tuple
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UV Datasets


	
load_uv(shard_size=2000, featurizer=None, split=None, reload=True)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/molnet/load_function/uv_datasets.py#L120-L182]

	Load UV dataset; does not do train/test split

The UV dataset is an in-house dataset from Merck that was first introduced in the following paper:
Ramsundar, Bharath, et al. “Is multitask deep learning practical for pharma?.” Journal of chemical information and modeling 57.8 (2017): 2068-2076.

The UV dataset tests 10,000 of Merck’s internal compounds on
190 absorption wavelengths between 210 and 400 nm. Unlike
most of the other datasets featured in MoleculeNet, the UV
collection does not have structures for the compounds tested
since they were proprietary Merck compounds. However, the
collection does feature pre-computed descriptors for these
compounds.

Note that the original train/valid/test split from the source
data was preserved here, so this function doesn’t allow for
alternate modes of splitting. Similarly, since the source data
came pre-featurized, it is not possible to apply alternative
featurizations.


	Parameters:

	
	shard_size (int, optional) – Size of the DiskDataset shards to write on disk


	featurizer (optional) – Ignored since featurization pre-computed


	split (optional) – Ignored since split pre-computed


	reload (bool, optional) – Whether to automatically re-load from disk














ZINC15 Datasets


	
load_zinc15(featurizer: Featurizer | str = 'OneHot', splitter: Splitter | str | None = 'random', transformers: List[TransformerGenerator | str] = ['normalization'], reload: bool = True, data_dir: str | None = None, save_dir: str | None = None, dataset_size: str = '250K', dataset_dimension: str = '2D', tasks: List[str] = ['mwt', 'logp', 'reactive'], **kwargs) → Tuple[List[str], Tuple[Dataset, ...], List[Transformer]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/molnet/load_function/zinc15_datasets.py#L55-L152]

	Load zinc15.

ZINC15 is a dataset of over 230 million purchasable compounds for
virtual screening of small molecules to identify structures that
are likely to bind to drug targets. ZINC15 data is currently available
in 2D (SMILES string) format.

MolNet provides subsets of 250K, 1M, and 10M “lead-like” compounds
from ZINC15. The full dataset of 270M “goldilocks” compounds is also
available. Compounds in ZINC15 are labeled by their molecular weight
and LogP (solubility) values. Each compound also has information about how
readily available (purchasable) it is and its reactivity. Lead-like
compounds have molecular weight between 300 and 350 Daltons and LogP
between -1 and 3.5. Goldilocks compounds are lead-like compounds with
LogP values further restricted to between 2 and 3.

If reload = True and data_dir (save_dir) is specified, the loader
will attempt to load the raw dataset (featurized dataset) from disk.
Otherwise, the dataset will be downloaded from the DeepChem AWS bucket.

For more information on ZINC15, please see [1]_ and
https://zinc15.docking.org/.


	Parameters:

	
	featurizer (Featurizer or str) – the featurizer to use for processing the data.  Alternatively you can pass
one of the names from dc.molnet.featurizers as a shortcut.


	splitter (Splitter or str) – the splitter to use for splitting the data into training, validation, and
test sets.  Alternatively you can pass one of the names from
dc.molnet.splitters as a shortcut.  If this is None, all the data
will be included in a single dataset.


	transformers (list of TransformerGenerators or strings) – the Transformers to apply to the data.  Each one is specified by a
TransformerGenerator or, as a shortcut, one of the names from
dc.molnet.transformers.


	reload (bool) – if True, the first call for a particular featurizer and splitter will cache
the datasets to disk, and subsequent calls will reload the cached datasets.


	data_dir (str) – a directory to save the raw data in


	save_dir (str) – a directory to save the dataset in


	size (str (default '250K')) – Size of dataset to download. ‘250K’, ‘1M’, ‘10M’, and ‘270M’ are supported.


	format (str (default '2D')) – Format of data to download. 2D SMILES strings or 3D SDF files.


	tasks (List[str], (optional) default: [‘molwt’, ‘logp’, ‘reactive’]) – Specify the set of tasks to load. If no task is specified, then it loads


	molwt (the default set of tasks which are) – 


	logp – 


	reactive. – 






	Returns:

	tasks, datasets, transformers –


	taskslist
	Column names corresponding to machine learning target variables.



	datasetstuple
	train, validation, test splits of data as
deepchem.data.datasets.Dataset instances.



	transformerslist
	deepchem.trans.transformers.Transformer instances applied
to dataset.









	Return type:

	tuple





Notes

The total ZINC dataset with SMILES strings contains hundreds of millions
of compounds and is over 100GB! ZINC250K is recommended for experimentation.
The full set of 270M goldilocks compounds is 23GB.
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Platinum Adsorption Dataset


	
load_Platinum_Adsorption(featurizer: ~deepchem.feat.base_classes.Featurizer | str = SineCoulombMatrix[max_atoms=100, flatten=True], splitter: ~deepchem.splits.splitters.Splitter | str | None = 'random', transformers: ~typing.List[~deepchem.molnet.load_function.molnet_loader.TransformerGenerator | str] = [], reload: bool = True, data_dir: str | None = None, save_dir: str | None = None, **kwargs) → Tuple[List[str], Tuple[Dataset, ...], List[Transformer]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/molnet/load_function/material_datasets/load_Pt_NO_surface_adsorbate_energy.py#L52-L115]

	Load Platinum Adsorption Dataset

The dataset consist of diffrent configurations of Adsorbates (i.e N and NO)
on Platinum surface represented as Lattice and their formation energy. There
are 648 diffrent adsorbate configuration in this datasets represented as Pymatgen
Structure objects.


	
	Pymatgen structure object with site_properties with following key value.
	
	
	“SiteTypes”, mentioning if it is a active site “A1” or spectator
	site “S1”.







	“oss”, diffrent occupational sites. For spectator sites make it -1.













	Parameters:

	
	featurizer (Featurizer (default LCNNFeaturizer)) – the featurizer to use for processing the data. Reccomended to use
the LCNNFeaturiser.


	splitter (Splitter (default RandomSplitter)) – the splitter to use for splitting the data into training, validation, and
test sets.  Alternatively you can pass one of the names from
dc.molnet.splitters as a shortcut.  If this is None, all the data will
be included in a single dataset.


	transformers (list of TransformerGenerators or strings. the Transformers to) – apply to the data and appropritate featuriser. Does’nt require any
transformation for LCNN_featuriser


	reload (bool) – if True, the first call for a particular featurizer and splitter will cache
the datasets to disk, and subsequent calls will reload the cached datasets.


	data_dir (str) – a directory to save the raw data in


	save_dir (str, optional (default None)) – a directory to save the dataset in
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Examples

>>>
>> import deepchem as dc
>> tasks, datasets, transformers = load_Platinum_Adsorption(
>>    reload=True,
>>    data_dir=data_path,
>>    save_dir=data_path,
>>    featurizer_kwargs=feat_args)
>> train_dataset, val_dataset, test_dataset = datasets
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Featurizers

DeepChem contains an extensive collection of featurizers. If you
haven’t run into this terminology before, a “featurizer” is chunk of
code which transforms raw input data into a processed form suitable
for machine learning. Machine learning methods often need data to be
pre-chewed for them to process. Think of this like a mama penguin
chewing up food so the baby penguin can digest it easily.

Now if you’ve watched a few introductory deep learning lectures, you
might ask, why do we need something like a featurizer? Isn’t part of
the promise of deep learning that we can learn patterns directly from
raw data?

Unfortunately it turns out that deep learning techniques need
featurizers just like normal machine learning methods do. Arguably,
they are less dependent on sophisticated featurizers and more capable
of learning sophisticated patterns from simpler data. But
nevertheless, deep learning systems can’t simply chew up raw files.
For this reason, deepchem provides an extensive collection of
featurization methods which we will review on this page.


Contents


	Molecule Featurizers


	Graph Convolution Featurizers


	ConvMolFeaturizer


	WeaveFeaturizer


	MolGanFeaturizer


	MolGraphConvFeaturizer


	PagtnMolGraphFeaturizer


	DMPNNFeaturizer


	GroverFeaturizer


	RDKitConformerFeaturizer


	MXMNetFeaturizer


	Utilities






	MACCSKeysFingerprint


	MATFeaturizer


	CircularFingerprint


	PubChemFingerprint


	Mol2VecFingerprint


	RDKitDescriptors


	MordredDescriptors


	CoulombMatrix


	CoulombMatrixEig


	AtomCoordinates


	BPSymmetryFunctionInput


	SmilesToSeq


	SmilesToImage


	OneHotFeaturizer


	SparseMatrixOneHotFeaturizer


	RawFeaturizer


	SNAPFeaturizer






	Molecular Complex Featurizers


	RdkitGridFeaturizer


	AtomicConvFeaturizer






	Inorganic Crystal Featurizers


	MaterialCompositionFeaturizer


	ElementPropertyFingerprint


	ElemNetFeaturizer






	MaterialStructureFeaturizer


	SineCoulombMatrix


	CGCNNFeaturizer






	LCNNFeaturizer






	Biological Sequence Featurizers


	SAMFeaturizer


	BAMFeaturizer


	CRAMFeaturizer






	Molecule Tokenizers


	SmilesTokenizer


	BasicSmilesTokenizer


	HuggingFaceFeaturizer


	GroverAtomVocabTokenizer


	GroverBondVocabTokenizer






	Vocabulary Builders


	Sequence Featurizers


	PFMFeaturizer






	Other Featurizers


	BertFeaturizer


	RobertaFeaturizer


	RxnFeaturizer


	BindingPocketFeaturizer


	UserDefinedFeaturizer


	DummyFeaturizer






	Base Featurizers (for develop)


	Featurizer


	MolecularFeaturizer
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	MaterialStructureFeaturizer


	ComplexFeaturizer


	VocabularyBuilder


	HuggingFaceVocabularyBuilder










Molecule Featurizers

These featurizers work with datasets of molecules.


Graph Convolution Featurizers

We are simplifying our graph convolution models by a joint data representation (GraphData)
in a future version of DeepChem, so we provide several featurizers.

ConvMolFeaturizer and WeaveFeaturizer are used
with graph convolution models  which inherited KerasModel.
ConvMolFeaturizer is used with graph convolution models
except WeaveModel. WeaveFeaturizer are only used with WeaveModel.
On the other hand, MolGraphConvFeaturizer is used
with graph convolution models which inherited TorchModel.
MolGanFeaturizer will be used with MolGAN model,
a GAN model for generation of small molecules.


ConvMolFeaturizer


	
class ConvMolFeaturizer(master_atom: bool = False, use_chirality: bool = False, atom_properties: Iterable[str] = [], per_atom_fragmentation: bool = False)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/graph_features.py#L698-L928]

	This class implements the featurization to implement Duvenaud graph convolutions.

Duvenaud graph convolutions [1]_ construct a vector of descriptors for each
atom in a molecule. The featurizer computes that vector of local descriptors.

Examples

>>> import deepchem as dc
>>> smiles = ["C", "CCC"]
>>> featurizer=dc.feat.ConvMolFeaturizer(per_atom_fragmentation=False)
>>> f = featurizer.featurize(smiles)
>>> # Using ConvMolFeaturizer to create featurized fragments derived from molecules of interest.
... # This is used only in the context of performing interpretation of models using atomic
... # contributions (atom-based model interpretation)
... smiles = ["C", "CCC"]
>>> featurizer=dc.feat.ConvMolFeaturizer(per_atom_fragmentation=True)
>>> f = featurizer.featurize(smiles)
>>> len(f) # contains 2 lists with  featurized fragments from 2 mols
2






See also

Detailed



References



[1]
Duvenaud, David K., et al. “Convolutional networks on graphs for
learning molecular fingerprints.” Advances in neural information
processing systems. 2015.




Note

This class requires RDKit to be installed.




	
__init__(master_atom: bool = False, use_chirality: bool = False, atom_properties: Iterable[str] = [], per_atom_fragmentation: bool = False)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/graph_features.py#L736-L779]

	
	Parameters:

	
	master_atom (Boolean) – if true create a fake atom with bonds to every other atom.
the initialization is the mean of the other atom features in
the molecule.  This technique is briefly discussed in
Neural Message Passing for Quantum Chemistry
https://arxiv.org/pdf/1704.01212.pdf


	use_chirality (Boolean) – if true then make the resulting atom features aware of the
chirality of the molecules in question


	atom_properties (list of string or None) – properties in the RDKit Mol object to use as additional
atom-level features in the larger molecular feature.  If None,
then no atom-level properties are used.  Properties should be in the
RDKit mol object should be in the form
atom XXXXXXXX NAME
where XXXXXXXX is a zero-padded 8 digit number coresponding to the
zero-indexed atom index of each atom and NAME is the name of the property
provided in atom_properties.  So “atom 00000000 sasa” would be the
name of the molecule level property in mol where the solvent
accessible surface area of atom 0 would be stored.


	per_atom_fragmentation (Boolean) – If True, then multiple “atom-depleted” versions of each molecule will be created (using featurize() method).
For each molecule, atoms are removed one at a time and the resulting molecule is featurized.
The result is a list of ConvMol objects,
one with each heavy atom removed. This is useful for subsequent model interpretation: finding atoms
favorable/unfavorable for (modelled) activity. This option is typically used in combination
with a FlatteningTransformer to split the lists into separate samples.

Since ConvMol is an object and not a numpy array, need to set dtype to
object.















	
featurize(datapoints: Any | str | Iterable[Any] | Iterable[str], log_every_n: int = 1000, **kwargs) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/graph_features.py#L781-L821]

	Override parent: aim is to add handling atom-depleted molecules featurization


	Parameters:

	
	datapoints (rdkit.Chem.rdchem.Mol / SMILES string / iterable) – RDKit Mol, or SMILES string or iterable sequence of RDKit mols/SMILES
strings.


	log_every_n (int, default 1000) – Logging messages reported every log_every_n samples.






	Returns:

	features – A numpy array containing a featurized representation of datapoints.



	Return type:

	np.ndarray















WeaveFeaturizer


	
class WeaveFeaturizer(graph_distance: bool = True, explicit_H: bool = False, use_chirality: bool = False, max_pair_distance: int | None = None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/graph_features.py#L931-L1057]

	This class implements the featurization to implement Weave convolutions.

Weave convolutions were introduced in [1]_. Unlike Duvenaud graph
convolutions, weave convolutions require a quadratic matrix of interaction
descriptors for each pair of atoms. These extra descriptors may provide for
additional descriptive power but at the cost of a larger featurized dataset.

Examples

>>> import deepchem as dc
>>> mols = ["CCC"]
>>> featurizer = dc.feat.WeaveFeaturizer()
>>> features = featurizer.featurize(mols)
>>> type(features[0])
<class 'deepchem.feat.mol_graphs.WeaveMol'>
>>> features[0].get_num_atoms() # 3 atoms in compound
3
>>> features[0].get_num_features() # feature size
75
>>> type(features[0].get_atom_features())
<class 'numpy.ndarray'>
>>> features[0].get_atom_features().shape
(3, 75)
>>> type(features[0].get_pair_features())
<class 'numpy.ndarray'>
>>> features[0].get_pair_features().shape
(9, 14)





References



[1]
Kearnes, Steven, et al. “Molecular graph convolutions: moving beyond
fingerprints.” Journal of computer-aided molecular design 30.8 (2016):
595-608.




Note

This class requires RDKit to be installed.




	
featurize(datapoints, log_every_n=1000, **kwargs) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/base_classes.py#L254-L325]

	Calculate features for molecules.


	Parameters:

	
	datapoints (rdkit.Chem.rdchem.Mol / SMILES string / iterable) – RDKit Mol, or SMILES string or iterable sequence of RDKit mols/SMILES
strings.


	log_every_n (int, default 1000) – Logging messages reported every log_every_n samples.






	Returns:

	features – A numpy array containing a featurized representation of datapoints.



	Return type:

	np.ndarray










	
__init__(graph_distance: bool = True, explicit_H: bool = False, use_chirality: bool = False, max_pair_distance: int | None = None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/graph_features.py#L975-L1018]

	Initialize this featurizer with set parameters.


	Parameters:

	
	graph_distance (bool, (default True)) – If True, use graph distance for distance features. Otherwise, use
Euclidean distance. Note that this means that molecules that this
featurizer is invoked on must have valid conformer information if this
option is set.


	explicit_H (bool, (default False)) – If true, model hydrogens in the molecule.


	use_chirality (bool, (default False)) – If true, use chiral information in the featurization


	max_pair_distance (Optional[int], (default None)) – This value can be a positive integer or None. This
parameter determines the maximum graph distance at which pair
features are computed. For example, if max_pair_distance==2,
then pair features are computed only for atoms at most graph
distance 2 apart. If max_pair_distance is None, all pairs are
considered (effectively infinite max_pair_distance)


















MolGanFeaturizer


	
class MolGanFeaturizer(max_atom_count: int = 9, kekulize: bool = True, bond_labels: List[Any] | None = None, atom_labels: List[int] | None = None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/molecule_featurizers/molgan_featurizer.py#L35-L288]

	Featurizer for MolGAN de-novo molecular generation [1]_.
The default representation is in form of GraphMatrix object.
It is wrapper for two matrices containing atom and bond type information.
The class also provides reverse capabilities.

Examples

>>> import deepchem as dc
>>> from rdkit import Chem
>>> rdkit_mol, smiles_mol = Chem.MolFromSmiles('CCC'), 'C1=CC=CC=C1'
>>> molecules = [rdkit_mol, smiles_mol]
>>> featurizer = dc.feat.MolGanFeaturizer()
>>> features = featurizer.featurize(molecules)
>>> len(features) # 2 molecules
2
>>> type(features[0])
<class 'deepchem.feat.molecule_featurizers.molgan_featurizer.GraphMatrix'>
>>> molecules = featurizer.defeaturize(features) # defeaturization
>>> type(molecules[0])
<class 'rdkit.Chem.rdchem.Mol'>






	
__init__(max_atom_count: int = 9, kekulize: bool = True, bond_labels: List[Any] | None = None, atom_labels: List[int] | None = None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/molecule_featurizers/molgan_featurizer.py#L60-L120]

	
	Parameters:

	
	max_atom_count (int, default 9) – Maximum number of atoms used for creation of adjacency matrix.
Molecules cannot have more atoms than this number
Implicit hydrogens do not count.


	kekulize (bool, default True) – Should molecules be kekulized.
Solves number of issues with defeaturization when used.


	bond_labels (List[RDKitBond]) – List of types of bond used for generation of adjacency matrix


	atom_labels (List[int]) – List of atomic numbers used for generation of node features








References



[1]
Nicola De Cao et al. “MolGAN: An implicit generative model for
small molecular graphs” (2018), https://arxiv.org/abs/1805.11973








	
featurize(datapoints, log_every_n=1000, **kwargs) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/base_classes.py#L254-L325]

	Calculate features for molecules.


	Parameters:

	
	datapoints (rdkit.Chem.rdchem.Mol / SMILES string / iterable) – RDKit Mol, or SMILES string or iterable sequence of RDKit mols/SMILES
strings.


	log_every_n (int, default 1000) – Logging messages reported every log_every_n samples.






	Returns:

	features – A numpy array containing a featurized representation of datapoints.



	Return type:

	np.ndarray










	
defeaturize(graphs: GraphMatrix | Sequence[GraphMatrix], log_every_n: int = 1000) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/molecule_featurizers/molgan_featurizer.py#L245-L288]

	Calculates molecules from corresponding GraphMatrix objects.


	Parameters:

	
	graphs (GraphMatrix / iterable) – GraphMatrix object or corresponding iterable


	log_every_n (int, default 1000) – Logging messages reported every log_every_n samples.






	Returns:

	features – A numpy array containing RDKitMol objext.



	Return type:

	np.ndarray















MolGraphConvFeaturizer


	
class MolGraphConvFeaturizer(use_edges: bool = False, use_chirality: bool = False, use_partial_charge: bool = False)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/molecule_featurizers/mol_graph_conv_featurizer.py#L98-L261]

	This class is a featurizer of general graph convolution networks for molecules.

The default node(atom) and edge(bond) representations are based on
WeaveNet paper [https://arxiv.org/abs/1603.00856]. If you want to use your own representations,
you could use this class as a guide to define your original Featurizer. In many cases, it’s enough
to modify return values of construct_atom_feature or construct_bond_feature.

The default node representation are constructed by concatenating the following values,
and the feature length is 30.


	Atom type: A one-hot vector of this atom, “C”, “N”, “O”, “F”, “P”, “S”, “Cl”, “Br”, “I”, “other atoms”.


	Formal charge: Integer electronic charge.


	Hybridization: A one-hot vector of “sp”, “sp2”, “sp3”.


	Hydrogen bonding: A one-hot vector of whether this atom is a hydrogen bond donor or acceptor.


	Aromatic: A one-hot vector of whether the atom belongs to an aromatic ring.


	Degree: A one-hot vector of the degree (0-5) of this atom.


	Number of Hydrogens: A one-hot vector of the number of hydrogens (0-4) that this atom connected.


	Chirality: A one-hot vector of the chirality, “R” or “S”. (Optional)


	Partial charge: Calculated partial charge. (Optional)




The default edge representation are constructed by concatenating the following values,
and the feature length is 11.


	Bond type: A one-hot vector of the bond type, “single”, “double”, “triple”, or “aromatic”.


	Same ring: A one-hot vector of whether the atoms in the pair are in the same ring.


	Conjugated: A one-hot vector of whether this bond is conjugated or not.


	Stereo: A one-hot vector of the stereo configuration of a bond.




If you want to know more details about features, please check the paper [1]_ and
utilities in deepchem.utils.molecule_feature_utils.py.

Examples

>>> smiles = ["C1CCC1", "C1=CC=CN=C1"]
>>> featurizer = MolGraphConvFeaturizer(use_edges=True)
>>> out = featurizer.featurize(smiles)
>>> type(out[0])
<class 'deepchem.feat.graph_data.GraphData'>
>>> out[0].num_node_features
30
>>> out[0].num_edge_features
11





References



[1]
Kearnes, Steven, et al. “Molecular graph convolutions: moving beyond fingerprints.”
Journal of computer-aided molecular design 30.8 (2016):595-608.




Note

This class requires RDKit to be installed.




	
__init__(use_edges: bool = False, use_chirality: bool = False, use_partial_charge: bool = False)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/molecule_featurizers/mol_graph_conv_featurizer.py#L153-L173]

	
	Parameters:

	
	use_edges (bool, default False) – Whether to use edge features or not.


	use_chirality (bool, default False) – Whether to use chirality information or not.
If True, featurization becomes slow.


	use_partial_charge (bool, default False) – Whether to use partial charge data or not.
If True, this featurizer computes gasteiger charges.
Therefore, there is a possibility to fail to featurize for some molecules
and featurization becomes slow.













	
featurize(datapoints, log_every_n=1000, **kwargs) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/base_classes.py#L254-L325]

	Calculate features for molecules.


	Parameters:

	
	datapoints (rdkit.Chem.rdchem.Mol / SMILES string / iterable) – RDKit Mol, or SMILES string or iterable sequence of RDKit mols/SMILES
strings.


	log_every_n (int, default 1000) – Logging messages reported every log_every_n samples.






	Returns:

	features – A numpy array containing a featurized representation of datapoints.



	Return type:

	np.ndarray















PagtnMolGraphFeaturizer


	
class PagtnMolGraphFeaturizer(max_length=5)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/molecule_featurizers/mol_graph_conv_featurizer.py#L264-L497]

	This class is a featuriser of PAGTN graph networks for molecules.

The featurization is based on PAGTN model [https://arxiv.org/abs/1905.12712]. It is
slightly more computationally intensive than default Graph Convolution Featuriser, but it
builds a Molecular Graph connecting all atom pairs accounting for interactions of an atom with
every other atom in the Molecule. According to the paper, interactions between two pairs
of atom are dependent on the relative distance between them and and hence, the function needs
to calculate the shortest path between them.

The default node representation is constructed by concatenating the following values,
and the feature length is 94.


	Atom type: One hot encoding of the atom type. It consists of the most possible elements in a chemical compound.


	Formal charge: One hot encoding of formal charge of the atom.


	Degree: One hot encoding of the atom degree


	
	Explicit Valence: One hot encoding of explicit valence of an atom. The supported possibilities
	include 0 - 6.







	
	Implicit Valence: One hot encoding of implicit valence of an atom. The supported possibilities
	include 0 - 5.







	Aromaticity: Boolean representing if an atom is aromatic.




The default edge representation is constructed by concatenating the following values,
and the feature length is 42. It builds a complete graph where each node is connected to
every other node. The edge representations are calculated based on the shortest path between two nodes
(choose any one if multiple exist). Each bond encountered in the shortest path is used to
calculate edge features.


	Bond type: A one-hot vector of the bond type, “single”, “double”, “triple”, or “aromatic”.


	Conjugated: A one-hot vector of whether this bond is conjugated or not.


	Same ring: A one-hot vector of whether the atoms in the pair are in the same ring.


	Ring Size and Aromaticity: One hot encoding of atoms in pair based on ring size and aromaticity.


	Distance: One hot encoding of the distance between pair of atoms.




Examples

>>> from deepchem.feat import PagtnMolGraphFeaturizer
>>> smiles = ["C1CCC1", "C1=CC=CN=C1"]
>>> featurizer = PagtnMolGraphFeaturizer(max_length=5)
>>> out = featurizer.featurize(smiles)
>>> type(out[0])
<class 'deepchem.feat.graph_data.GraphData'>
>>> out[0].num_node_features
94
>>> out[0].num_edge_features
42





References



[1]
Chen, Barzilay, Jaakkola “Path-Augmented Graph Transformer Network”
10.26434/chemrxiv.8214422.




Note

This class requires RDKit to be installed.




	
__init__(max_length=5)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/molecule_featurizers/mol_graph_conv_featurizer.py#L322-L344]

	
	Parameters:

	max_length (int) – Maximum distance up to which shortest paths must be considered.
Paths shorter than max_length will be padded and longer will be
truncated, default to 5.










	
featurize(datapoints, log_every_n=1000, **kwargs) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/base_classes.py#L254-L325]

	Calculate features for molecules.


	Parameters:

	
	datapoints (rdkit.Chem.rdchem.Mol / SMILES string / iterable) – RDKit Mol, or SMILES string or iterable sequence of RDKit mols/SMILES
strings.


	log_every_n (int, default 1000) – Logging messages reported every log_every_n samples.






	Returns:

	features – A numpy array containing a featurized representation of datapoints.



	Return type:

	np.ndarray















DMPNNFeaturizer


	
class DMPNNFeaturizer(features_generators: List[str] | None = None, is_adding_hs: bool = False, use_original_atom_ranks: bool = False)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/molecule_featurizers/dmpnn_featurizer.py#L353-L537]

	This class is a featurizer for Directed Message Passing Neural Network (D-MPNN) implementation

The default node(atom) and edge(bond) representations are based on
Analyzing Learned Molecular Representations for Property Prediction paper [https://arxiv.org/pdf/1904.01561.pdf].

The default node representation are constructed by concatenating the following values,
and the feature length is 133.


	Atomic num: A one-hot vector of this atom, in a range of first 100 atoms.


	Degree: A one-hot vector of the degree (0-5) of this atom.


	Formal charge: Integer electronic charge, -1, -2, 1, 2, 0.


	Chirality: A one-hot vector of the chirality tag (0-3) of this atom.


	Number of Hydrogens: A one-hot vector of the number of hydrogens (0-4) that this atom connected.


	Hybridization: A one-hot vector of “SP”, “SP2”, “SP3”, “SP3D”, “SP3D2”.


	Aromatic: A one-hot vector of whether the atom belongs to an aromatic ring.


	Mass: Atomic mass * 0.01




The default edge representation are constructed by concatenating the following values,
and the feature length is 14.


	Bond type: A one-hot vector of the bond type, “single”, “double”, “triple”, or “aromatic”.


	Same ring: A one-hot vector of whether the atoms in the pair are in the same ring.


	Conjugated: A one-hot vector of whether this bond is conjugated or not.


	Stereo: A one-hot vector of the stereo configuration (0-5) of a bond.




If you want to know more details about features, please check the paper [1]_ and
utilities in deepchem.utils.molecule_feature_utils.py.

Examples

>>> smiles = ["C1=CC=CN=C1", "C1CCC1"]
>>> featurizer = DMPNNFeaturizer()
>>> out = featurizer.featurize(smiles)
>>> type(out[0])
<class 'deepchem.feat.graph_data.GraphData'>
>>> out[0].num_nodes
6
>>> out[0].num_node_features
133
>>> out[0].node_features.shape
(6, 133)
>>> out[0].num_edge_features
14
>>> out[0].num_edges
12
>>> out[0].edge_features.shape
(12, 14)





References



[1]
Kearnes, Steven, et al. “Molecular graph convolutions: moving beyond fingerprints.”
Journal of computer-aided molecular design 30.8 (2016):595-608.




Note

This class requires RDKit to be installed.




	
__init__(features_generators: List[str] | None = None, is_adding_hs: bool = False, use_original_atom_ranks: bool = False)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/molecule_featurizers/dmpnn_featurizer.py#L413-L430]

	
	Parameters:

	
	features_generator (List[str], default None) – List of global feature generators to be used.


	is_adding_hs (bool, default False) – Whether to add Hs or not.


	use_original_atom_ranks (bool, default False) – Whether to use original atom mapping or canonical atom mapping













	
featurize(datapoints, log_every_n=1000, **kwargs) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/base_classes.py#L254-L325]

	Calculate features for molecules.


	Parameters:

	
	datapoints (rdkit.Chem.rdchem.Mol / SMILES string / iterable) – RDKit Mol, or SMILES string or iterable sequence of RDKit mols/SMILES
strings.


	log_every_n (int, default 1000) – Logging messages reported every log_every_n samples.






	Returns:

	features – A numpy array containing a featurized representation of datapoints.



	Return type:

	np.ndarray















GroverFeaturizer


	
class GroverFeaturizer(features_generator: MolecularFeaturizer | None = None, bond_drop_rate: float = 0.0)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/molecule_featurizers/grover_featurizer.py#L38-L203]

	Featurizer for GROVER Model

The Grover Featurizer is used to compute features suitable for grover model.
It accepts an rdkit molecule of type rdkit.Chem.rdchem.Mol or a SMILES string
as input and computes the following sets of features:



	a molecular graph from the input molecule


	functional groups which are used only during pretraining


	additional features which can only be used during finetuning








	Parameters:

	
	additional_featurizer (dc.feat.Featurizer) – Given a molecular dataset, it is possible to extract additional molecular features in order


	can (to train and finetune from the existing pretrained model. The additional_featurizer) – 


	molecule. (be used to generate additional features for the) – 








References



[1]
Rong, Yu, et al. “Self-supervised graph transformer on large-scale
molecular data.” NeurIPS, 2020



Examples

>>> import deepchem as dc
>>> from deepchem.feat import GroverFeaturizer
>>> feat = GroverFeaturizer(features_generator = dc.feat.CircularFingerprint())
>>> out = feat.featurize('CCC')






Note

This class requires RDKit to be installed.




	
__init__(features_generator: MolecularFeaturizer | None = None, bond_drop_rate: float = 0.0)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/molecule_featurizers/grover_featurizer.py#L73-L79]

	
	Parameters:

	use_original_atoms_order (bool, default False) – Whether to use original atom ordering or canonical ordering (default)















RDKitConformerFeaturizer


	
class RDKitConformerFeaturizer(use_original_atoms_order=False)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/molecule_featurizers/conformer_featurizer.py#L84-L256]

	A featurizer that featurizes an RDKit mol object as a GraphData object with 3D coordinates. The 3D coordinates are represented in the node_pos_features attribute of the GraphData object of shape [num_atoms * num_conformers, 3].

The ETKDGv2 algorithm is used to generate 3D coordinates for the molecule.
The RDKit source for this algorithm can be found in RDkit/Code/GraphMol/DistGeomHelpers/Embedder.cpp
The documentation can be found here:
https://rdkit.org/docs/source/rdkit.Chem.rdDistGeom.html#rdkit.Chem.rdDistGeom.ETKDGv2

This featurization requires RDKit.

Examples

>>> from deepchem.feat.molecule_featurizers.conformer_featurizer import RDKitConformerFeaturizer
>>> featurizer = RDKitConformerFeaturizer()
>>> molecule = "CCO"
>>> conformer = featurizer.featurize(molecule)
>>> print (type(conformer[0]))
<class 'deepchem.feat.graph_data.GraphData'>






	
atom_to_feature_vector(atom)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/molecule_featurizers/conformer_featurizer.py#L121-L155]

	Converts an RDKit atom object to a feature list of indices.


	Parameters:

	atom (Chem.rdchem.Atom) – RDKit atom object.



	Returns:

	List of feature indices for the given atom.



	Return type:

	List[int]










	
bond_to_feature_vector(bond)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/molecule_featurizers/conformer_featurizer.py#L157-L179]

	Converts an RDKit bond object to a feature list of indices.


	Parameters:

	bond (Chem.rdchem.Bond) – RDKit bond object.



	Returns:

	List of feature indices for the given bond.



	Return type:

	List[int]















MXMNetFeaturizer


	
class MXMNetFeaturizer(is_adding_hs: bool = False)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/molecule_featurizers/mxmnet_featurizer.py#L27-L157]

	This class is a featurizer for Multiplex Molecular Graph Neural Network (MXMNet) implementation.

The atomic numbers(indices) of atoms will be used later to generate randomly initialized trainable embeddings to be the input node embeddings.

This featurizer is based on
Molecular Mechanics-Driven Graph Neural Network with Multiplex Graph for Molecular Structures [https://arxiv.org/pdf/2011.07457.pdf].

Examples

>>> smiles = ["C1=CC=CN=C1", "C1CCC1"]
>>> featurizer = MXMNetFeaturizer()
>>> out = featurizer.featurize(smiles)
>>> type(out[0])
<class 'deepchem.feat.graph_data.GraphData'>
>>> out[0].num_nodes
6
>>> out[0].num_node_features
1
>>> out[0].node_features.shape
(6, 1)
>>> out[0].num_edges
12






Note

We are not explitly handling hydrogen atoms for now. We only support ‘H’, ‘C’, ‘N’, ‘O’ and ‘F’ atoms to be present in the smiles at this point for MXMNet Model.




	
__init__(is_adding_hs: bool = False)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/molecule_featurizers/mxmnet_featurizer.py#L57-L66]

	
	Parameters:

	is_adding_hs (bool, default False) – Whether to add Hs or not.










	
featurize(datapoints, log_every_n=1000, **kwargs) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/base_classes.py#L254-L325]

	Calculate features for molecules.


	Parameters:

	
	datapoints (rdkit.Chem.rdchem.Mol / SMILES string / iterable) – RDKit Mol, or SMILES string or iterable sequence of RDKit mols/SMILES
strings.


	log_every_n (int, default 1000) – Logging messages reported every log_every_n samples.






	Returns:

	features – A numpy array containing a featurized representation of datapoints.



	Return type:

	np.ndarray















Utilities

Here are some constants that are used by the graph convolutional featurizers for molecules.


	
class GraphConvConstants[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/graph_features.py#L117-L147]

	This class defines a collection of constants which are useful for graph convolutions on molecules.


	
possible_atom_list = ['C', 'N', 'O', 'S', 'F', 'P', 'Cl', 'Mg', 'Na', 'Br', 'Fe', 'Ca', 'Cu', 'Mc', 'Pd', 'Pb', 'K', 'I', 'Al', 'Ni', 'Mn'][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/graph_features.py]

	Allowed Numbers of Hydrogens






	
possible_numH_list = [0, 1, 2, 3, 4][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/graph_features.py]

	Allowed Valences for Atoms






	
possible_valence_list = [0, 1, 2, 3, 4, 5, 6][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/graph_features.py]

	Allowed Formal Charges for Atoms






	
possible_formal_charge_list = [-3, -2, -1, 0, 1, 2, 3][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/graph_features.py]

	This is a placeholder for documentation. These will be replaced with corresponding values of the rdkit HybridizationType






	
possible_hybridization_list = ['SP', 'SP2', 'SP3', 'SP3D', 'SP3D2'][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/graph_features.py]

	Allowed number of radical electrons.






	
possible_number_radical_e_list = [0, 1, 2][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/graph_features.py]

	Allowed types of Chirality






	
possible_chirality_list = ['R', 'S'][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/graph_features.py]

	The set of all values allowed.






	
reference_lists = [['C', 'N', 'O', 'S', 'F', 'P', 'Cl', 'Mg', 'Na', 'Br', 'Fe', 'Ca', 'Cu', 'Mc', 'Pd', 'Pb', 'K', 'I', 'Al', 'Ni', 'Mn'], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4, 5, 6], [-3, -2, -1, 0, 1, 2, 3], [0, 1, 2], ['SP', 'SP2', 'SP3', 'SP3D', 'SP3D2'], ['R', 'S']][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/graph_features.py]

	The number of different values that can be taken. See get_intervals()






	
intervals = [1, 6, 48, 384, 1536, 9216, 27648][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/graph_features.py]

	Possible stereochemistry. We use E-Z notation for stereochemistry
https://en.wikipedia.org/wiki/E%E2%80%93Z_notation






	
possible_bond_stereo = ['STEREONONE', 'STEREOANY', 'STEREOZ', 'STEREOE'][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/graph_features.py]

	Number of different bond types not counting stereochemistry.






	
bond_fdim_base = 6[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/graph_features.py]

	




	
__module__ = 'deepchem.feat.graph_features'[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/graph_features.py]

	







There are a number of helper methods used by the graph convolutional classes which we document here.


	
one_of_k_encoding(x, allowable_set)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/graph_features.py#L14-L37]

	Encodes elements of a provided set as integers.


	Parameters:

	
	x (object) – Must be present in allowable_set.


	allowable_set (list) – List of allowable quantities.








Example

>>> import deepchem as dc
>>> dc.feat.graph_features.one_of_k_encoding("a", ["a", "b", "c"])
[True, False, False]






	Raises:

	ValueError – 










	
one_of_k_encoding_unk(x, allowable_set)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/graph_features.py#L40-L61]

	Maps inputs not in the allowable set to the last element.

Unlike one_of_k_encoding, if x is not in allowable_set, this method
pretends that x is the last element of allowable_set.


	Parameters:

	
	x (object) – Must be present in allowable_set.


	allowable_set (list) – List of allowable quantities.








Examples

>>> dc.feat.graph_features.one_of_k_encoding_unk("s", ["a", "b", "c"])
[False, False, True]










	
get_intervals(l)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/graph_features.py#L64-L90]

	For list of lists, gets the cumulative products of the lengths

Note that we add 1 to the lengths of all lists (to avoid an empty list
propagating a 0).


	Parameters:

	l (list of lists) – Returns the cumulative product of these lengths.





Examples

>>> dc.feat.graph_features.get_intervals([[1], [1, 2], [1, 2, 3]])
[1, 3, 12]





>>> dc.feat.graph_features.get_intervals([[1], [], [1, 2], [1, 2, 3]])
[1, 1, 3, 12]










	
safe_index(l, e)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/graph_features.py#L93-L114]

	Gets the index of e in l, providing an index of len(l) if not found


	Parameters:

	
	l (list) – List of values


	e (object) – Object to check whether e is in l








Examples

>>> dc.feat.graph_features.safe_index([1, 2, 3], 1)
0
>>> dc.feat.graph_features.safe_index([1, 2, 3], 7)
3










	
get_feature_list(atom)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/graph_features.py#L150-L209]

	Returns a list of possible features for this atom.


	Parameters:

	atom (RDKit.Chem.rdchem.Atom) – Atom to get features for





Examples

>>> from rdkit import Chem
>>> mol = Chem.MolFromSmiles("C")
>>> atom = mol.GetAtoms()[0]
>>> features = dc.feat.graph_features.get_feature_list(atom)
>>> type(features)
<class 'list'>
>>> len(features)
6






Note

This method requires RDKit to be installed.




	Returns:

	features – List of length 6. The i-th value in this list provides the index of the
atom in the corresponding feature value list. The 6 feature values lists
for this function are [GraphConvConstants.possible_atom_list,
GraphConvConstants.possible_numH_list,
GraphConvConstants.possible_valence_list,
GraphConvConstants.possible_formal_charge_list,
GraphConvConstants.possible_num_radical_e_list].



	Return type:

	list










	
features_to_id(features, intervals)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/graph_features.py#L212-L233]

	Convert list of features into index using spacings provided in intervals


	Parameters:

	
	features (list) – List of features as returned by get_feature_list()


	intervals (list) – List of intervals as returned by get_intervals()






	Returns:

	id – The index in a feature vector given by the given set of features.



	Return type:

	int










	
id_to_features(id, intervals)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/graph_features.py#L236-L262]

	Given an index in a feature vector, return the original set of features.


	Parameters:

	
	id (int) – The index in a feature vector given by the given set of features.


	intervals (list) – List of intervals as returned by get_intervals()






	Returns:

	features – List of features as returned by get_feature_list()



	Return type:

	list










	
atom_to_id(atom)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/graph_features.py#L265-L279]

	Return a unique id corresponding to the atom type


	Parameters:

	atom (RDKit.Chem.rdchem.Atom) – Atom to convert to ids.



	Returns:

	id – The index in a feature vector given by the given set of features.



	Return type:

	int









This function helps compute distances between atoms from a given base atom.


	
find_distance(a1: Any, num_atoms: int, bond_adj_list, max_distance=7) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/graph_features.py#L654-L695]

	Computes distances from provided atom.


	Parameters:

	
	a1 (RDKit atom) – The source atom to compute distances from.


	num_atoms (int) – The total number of atoms.


	bond_adj_list (list of lists) – bond_adj_list[i] is a list of the atom indices that atom i shares a
bond with. This list is symmetrical so if j in bond_adj_list[i] then i in
bond_adj_list[j].


	max_distance (int, optional (default 7)) – The max distance to search.






	Returns:

	distances – Of shape (num_atoms, max_distance). Provides a one-hot encoding of the
distances. That is, distances[i] is a one-hot encoding of the distance
from a1 to atom i.



	Return type:

	np.ndarray









This function is important and computes per-atom feature vectors used by
graph convolutional featurizers.


	
atom_features(atom, bool_id_feat=False, explicit_H=False, use_chirality=False)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/graph_features.py#L282-L391]

	Helper method used to compute per-atom feature vectors.

Many different featurization methods compute per-atom features such as ConvMolFeaturizer, WeaveFeaturizer. This method computes such features.


	Parameters:

	
	atom (RDKit.Chem.rdchem.Atom) – Atom to compute features on.


	bool_id_feat (bool, optional) – Return an array of unique identifiers corresponding to atom type.


	explicit_H (bool, optional) – If true, model hydrogens explicitly


	use_chirality (bool, optional) – If true, use chirality information.






	Returns:

	features – An array of per-atom features.



	Return type:

	np.ndarray





Examples

>>> from rdkit import Chem
>>> mol = Chem.MolFromSmiles('CCC')
>>> atom = mol.GetAtoms()[0]
>>> features = dc.feat.graph_features.atom_features(atom)
>>> type(features)
<class 'numpy.ndarray'>
>>> features.shape
(75,)









This function computes the bond features used by graph convolutional
featurizers.


	
bond_features(bond, use_chirality=False, use_extended_chirality=False)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/graph_features.py#L394-L459]

	Helper method used to compute bond feature vectors.

Many different featurization methods compute bond features
such as WeaveFeaturizer. This method computes such features.


	Parameters:

	
	bond (rdkit.Chem.rdchem.Bond) – Bond to compute features on.


	use_chirality (bool, optional) – If true, use chirality information.


	use_extended_chirality (bool, optional) – If true, use chirality information with upto 6 different types.









Note

This method requires RDKit to be installed.




	Returns:

	
	bond_feats (np.ndarray) – Array of bond features. This is a 1-D array of length 6 if use_chirality
is False else of length 10 with chirality encoded.


	bond_feats (Sequence[Union[bool, int, float]]) – List of bond features returned if use_extended_chirality is True.










Examples

>>> from rdkit import Chem
>>> mol = Chem.MolFromSmiles('CCC')
>>> bond = mol.GetBonds()[0]
>>> bond_features = dc.feat.graph_features.bond_features(bond)
>>> type(bond_features)
<class 'numpy.ndarray'>
>>> bond_features.shape
(6,)






Note

This method requires RDKit to be installed.







This function computes atom-atom features (for atom pairs which may not have bonds between them.)


	
pair_features(mol: Any, bond_features_map: dict, bond_adj_list: List, bt_len: int = 6, graph_distance: bool = True, max_pair_distance: int | None = None) → Tuple[ndarray, ndarray][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/graph_features.py#L531-L651]

	Helper method used to compute atom pair feature vectors.

Many different featurization methods compute atom pair features
such as WeaveFeaturizer. Note that atom pair features could be
for pairs of atoms which aren’t necessarily bonded to one
another.


	Parameters:

	
	mol (RDKit Mol) – Molecule to compute features on.


	bond_features_map (dict) – Dictionary that maps pairs of atom ids (say (2, 3) for a bond between
atoms 2 and 3) to the features for the bond between them.


	bond_adj_list (list of lists) – bond_adj_list[i] is a list of the atom indices that atom i shares a
bond with . This list is symmetrical so if j in bond_adj_list[i] then i
in bond_adj_list[j].


	bt_len (int, optional (default 6)) – The number of different bond types to consider.


	graph_distance (bool, optional (default True)) – If true, use graph distance between molecules. Else use euclidean
distance. The specified mol must have a conformer. Atomic
positions will be retrieved by calling mol.getConformer(0).


	max_pair_distance (Optional[int], (default None)) – This value can be a positive integer or None. This
parameter determines the maximum graph distance at which pair
features are computed. For example, if max_pair_distance==2,
then pair features are computed only for atoms at most graph
distance 2 apart. If max_pair_distance is None, all pairs are
considered (effectively infinite max_pair_distance)









Note

This method requires RDKit to be installed.




	Returns:

	
	features (np.ndarray) – Of shape (N_edges, bt_len + max_distance + 1). This is the array
of pairwise features for all atom pairs, where N_edges is the
number of edges within max_pair_distance of one another in this
molecules.


	pair_edges (np.ndarray) – Of shape (2, num_pairs) where num_pairs is the total number of
pairs within max_pair_distance of one another.

















MACCSKeysFingerprint


	
class MACCSKeysFingerprint[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/molecule_featurizers/maccs_keys_fingerprint.py#L7-L68]

	MACCS Keys Fingerprint.

The MACCS (Molecular ACCess System) keys are one of the most commonly used structural keys.
Please confirm the details in [1]_, [2]_.

Examples

>>> import deepchem as dc
>>> smiles = 'CC(=O)OC1=CC=CC=C1C(=O)O'
>>> featurizer = dc.feat.MACCSKeysFingerprint()
>>> features = featurizer.featurize([smiles])
>>> type(features[0])
<class 'numpy.ndarray'>
>>> features[0].shape
(167,)





References



[1]
Durant, Joseph L., et al. “Reoptimization of MDL keys for use in drug discovery.”
Journal of chemical information and computer sciences 42.6 (2002): 1273-1280.



[2]
https://github.com/rdkit/rdkit/blob/master/rdkit/Chem/MACCSkeys.py




Note

This class requires RDKit to be installed.




	
__init__()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/molecule_featurizers/maccs_keys_fingerprint.py#L36-L38]

	Initialize this featurizer.











MATFeaturizer


	
class MATFeaturizer[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/molecule_featurizers/mat_featurizer.py#L31-L249]

	This class is a featurizer for the Molecule Attention Transformer [1]_.
The returned value is a numpy array which consists of molecular graph descriptions:



	Node Features


	Adjacency Matrix


	Distance Matrix







References



[1]
Lukasz Maziarka et al. “Molecule Attention Transformer`<https://arxiv.org/abs/2002.08264>`”



Examples

>>> import deepchem as dc
>>> feat = dc.feat.MATFeaturizer()
>>> out = feat.featurize("CCC")






Note

This class requires RDKit to be installed.




	
__init__()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/molecule_featurizers/mat_featurizer.py#L55-L56]

	
	Parameters:

	use_original_atoms_order (bool, default False) – Whether to use original atom ordering or canonical ordering (default)










	
construct_mol(mol: Any) → Any[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/molecule_featurizers/mat_featurizer.py#L58-L86]

	Processes an input RDKitMol further to be able to extract id-specific Conformers from it using mol.GetConformer().


	Parameters:

	mol (RDKitMol) – RDKit Mol object.



	Returns:

	mol – A processed RDKitMol object which is embedded, UFF Optimized and has Hydrogen atoms removed. If the former conditions are not met and there is a value error, then 2D Coordinates are computed instead.



	Return type:

	RDKitMol










	
atom_features(atom: Any) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/molecule_featurizers/mat_featurizer.py#L88-L115]

	Deepchem already contains an atom_features function, however we are defining a new one here due to the need to handle features specific to MAT.
Since we need new features like Atom GetNeighbors and IsInRing, and the number of features required for MAT is a fraction of what the Deepchem atom_features function computes, we can speed up computation by defining a custom function.


	Parameters:

	atom (RDKitAtom) – RDKit Atom object.



	Returns:

	Numpy array containing atom features.



	Return type:

	ndarray










	
construct_node_features_matrix(mol: Any) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/molecule_featurizers/mat_featurizer.py#L117-L131]

	This function constructs a matrix of atom features for all atoms in a given molecule using the atom_features function.


	Parameters:

	mol (RDKitMol) – RDKit Mol object.



	Returns:

	Atom_features – Numpy array containing atom features.



	Return type:

	ndarray










	
featurize(datapoints, log_every_n=1000, **kwargs) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/base_classes.py#L254-L325]

	Calculate features for molecules.


	Parameters:

	
	datapoints (rdkit.Chem.rdchem.Mol / SMILES string / iterable) – RDKit Mol, or SMILES string or iterable sequence of RDKit mols/SMILES
strings.


	log_every_n (int, default 1000) – Logging messages reported every log_every_n samples.






	Returns:

	features – A numpy array containing a featurized representation of datapoints.



	Return type:

	np.ndarray















CircularFingerprint


	
class CircularFingerprint(radius: int = 2, size: int = 2048, chiral: bool = False, bonds: bool = True, features: bool = False, sparse: bool = False, smiles: bool = False, is_counts_based: bool = False)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/molecule_featurizers/circular_fingerprint.py#L12-L176]

	Circular (Morgan) fingerprints.

Extended Connectivity Circular Fingerprints compute a bag-of-words style
representation of a molecule by breaking it into local neighborhoods and
hashing into a bit vector of the specified size. It is used specifically
for structure-activity modelling. See [1]_ for more details.

References



[1]
Rogers, David, and Mathew Hahn. “Extended-connectivity fingerprints.”
Journal of chemical information and modeling 50.5 (2010): 742-754.




Note

This class requires RDKit to be installed.



Examples

>>> import deepchem as dc
>>> from rdkit import Chem
>>> smiles = ['C1=CC=CC=C1']
>>> # Example 1: (size = 2048, radius = 4)
>>> featurizer = dc.feat.CircularFingerprint(size=2048, radius=4)
>>> features = featurizer.featurize(smiles)
>>> type(features[0])
<class 'numpy.ndarray'>
>>> features[0].shape
(2048,)





>>> # Example 2: (size = 2048, radius = 4, sparse = True, smiles = True)
>>> featurizer = dc.feat.CircularFingerprint(size=2048, radius=8,
...                                          sparse=True, smiles=True)
>>> features = featurizer.featurize(smiles)
>>> type(features[0]) # dict containing fingerprints
<class 'dict'>






	
__init__(radius: int = 2, size: int = 2048, chiral: bool = False, bonds: bool = True, features: bool = False, sparse: bool = False, smiles: bool = False, is_counts_based: bool = False)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/molecule_featurizers/circular_fingerprint.py#L51-L91]

	
	Parameters:

	
	radius (int, optional (default 2)) – Fingerprint radius.


	size (int, optional (default 2048)) – Length of generated bit vector.


	chiral (bool, optional (default False)) – Whether to consider chirality in fingerprint generation.


	bonds (bool, optional (default True)) – Whether to consider bond order in fingerprint generation.


	features (bool, optional (default False)) – Whether to use feature information instead of atom information; see
RDKit docs for more info.


	sparse (bool, optional (default False)) – Whether to return a dict for each molecule containing the sparse
fingerprint.


	smiles (bool, optional (default False)) – Whether to calculate SMILES strings for fragment IDs (only applicable
when calculating sparse fingerprints).


	is_counts_based (bool, optional (default False)) – Whether to generates a counts-based fingerprint.













	
featurize(datapoints, log_every_n=1000, **kwargs) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/base_classes.py#L254-L325]

	Calculate features for molecules.


	Parameters:

	
	datapoints (rdkit.Chem.rdchem.Mol / SMILES string / iterable) – RDKit Mol, or SMILES string or iterable sequence of RDKit mols/SMILES
strings.


	log_every_n (int, default 1000) – Logging messages reported every log_every_n samples.






	Returns:

	features – A numpy array containing a featurized representation of datapoints.



	Return type:

	np.ndarray















PubChemFingerprint


	
class PubChemFingerprint[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/molecule_featurizers/pubchem_fingerprint.py#L7-L75]

	PubChem Fingerprint.

The PubChem fingerprint is a 881 bit structural key,
which is used by PubChem for similarity searching.
Please confirm the details in [1]_.

References



[1]
ftp://ftp.ncbi.nlm.nih.gov/pubchem/specifications/pubchem_fingerprints.pdf




Note

This class requires RDKit and PubChemPy to be installed.
PubChemPy use REST API to get the fingerprint, so you need the internet access.



Examples

>>> import deepchem as dc
>>> smiles = ['CCC']
>>> featurizer = dc.feat.PubChemFingerprint()
>>> features = featurizer.featurize(smiles)
>>> type(features[0])
<class 'numpy.ndarray'>
>>> features[0].shape
(881,)






	
__init__()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/molecule_featurizers/pubchem_fingerprint.py#L36-L44]

	Initialize this featurizer.











Mol2VecFingerprint


	
class Mol2VecFingerprint(pretrain_model_path: str | None = None, radius: int = 1, unseen: str = 'UNK')[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/molecule_featurizers/mol2vec_fingerprint.py#L60-L203]

	Mol2Vec fingerprints.

This class convert molecules to vector representations by using Mol2Vec.
Mol2Vec is an unsupervised machine learning approach to learn vector representations
of molecular substructures and the algorithm is based on Word2Vec, which is
one of the most popular technique to learn word embeddings using neural network in NLP.
Please see the details from [1]_.

The Mol2Vec requires the pretrained model, so we use the model which is put on the mol2vec
github repository [2]_. The default model was trained on 20 million compounds downloaded
from ZINC using the following paramters.


	radius 1


	UNK to replace all identifiers that appear less than 4 times


	skip-gram and window size of 10


	embeddings size 300




References



[1]
Jaeger, Sabrina, Simone Fulle, and Samo Turk. “Mol2vec: unsupervised machine learning
approach with chemical intuition.” Journal of chemical information and modeling 58.1 (2018): 27-35.



[2]
https://github.com/samoturk/mol2vec/




Note

This class requires mol2vec to be installed.



Examples

>>> import deepchem as dc
>>> from rdkit import Chem
>>> smiles = ['CCC']
>>> featurizer = dc.feat.Mol2VecFingerprint()
>>> features = featurizer.featurize(smiles)
>>> type(features)
<class 'numpy.ndarray'>
>>> features[0].shape
(300,)






	
__init__(pretrain_model_path: str | None = None, radius: int = 1, unseen: str = 'UNK')[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/molecule_featurizers/mol2vec_fingerprint.py#L102-L139]

	
	Parameters:

	
	pretrain_file (str, optional) – The path for pretrained model. If this value is None, we use the model which is put on
github repository (https://github.com/samoturk/mol2vec/tree/master/examples/models).
The model is trained on 20 million compounds downloaded from ZINC.


	radius (int, optional (default 1)) – The fingerprint radius. The default value was used to train the model which is put on
github repository.


	unseen (str, optional (default 'UNK')) – The string to used to replace uncommon words/identifiers while training.













	
sentences2vec(sentences: list, model, unseen=None) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/molecule_featurizers/mol2vec_fingerprint.py#L141-L178]

	Generate vectors for each sentence (list) in a list of sentences. Vector is simply a
sum of vectors for individual words.


	Parameters:

	
	sentences (list, array) – List with sentences


	model (word2vec.Word2Vec) – Gensim word2vec model


	unseen (None, str) – Keyword for unseen words. If None, those words are skipped.
https://stats.stackexchange.com/questions/163005/how-to-set-the-dictionary-for-text-analysis-using-neural-networks/163032#163032






	Return type:

	np.array










	
featurize(datapoints, log_every_n=1000, **kwargs) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/base_classes.py#L254-L325]

	Calculate features for molecules.


	Parameters:

	
	datapoints (rdkit.Chem.rdchem.Mol / SMILES string / iterable) – RDKit Mol, or SMILES string or iterable sequence of RDKit mols/SMILES
strings.


	log_every_n (int, default 1000) – Logging messages reported every log_every_n samples.






	Returns:

	features – A numpy array containing a featurized representation of datapoints.



	Return type:

	np.ndarray















RDKitDescriptors


	
class RDKitDescriptors(descriptors: List[str] = [], is_normalized: bool = False, use_fragment: bool = True, ipc_avg: bool = True, use_bcut2d: bool = True, labels_only: bool = False)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/molecule_featurizers/rdkit_descriptors.py#L17-L232]

	RDKit descriptors.

This class computes a list of chemical descriptors like
molecular weight, number of valence electrons, maximum and
minimum partial charge, etc using RDKit.

This class can also compute normalized descriptors, if required.
(The implementation for normalization is based on RDKit2DNormalized() method
in ‘descriptastorus’ library.)

When the is_normalized option is set as True, descriptor values are normalized across the sample
by fitting a cumulative density function. CDFs were used as opposed to simpler scaling algorithms
mainly because CDFs have the useful property that ‘each value has the same meaning: the percentage
of the population observed below the raw feature value.’

Warning: Currently, the normalizing cdf parameters are not available for BCUT2D descriptors.
(BCUT2D_MWHI, BCUT2D_MWLOW, BCUT2D_CHGHI, BCUT2D_CHGLO, BCUT2D_LOGPHI, BCUT2D_LOGPLOW, BCUT2D_MRHI, BCUT2D_MRLOW)


Note

This class requires RDKit to be installed.



Examples

>>> import deepchem as dc
>>> smiles = ['CC(=O)OC1=CC=CC=C1C(=O)O']
>>> featurizer = dc.feat.RDKitDescriptors()
>>> features = featurizer.featurize(smiles)
>>> type(features[0])
<class 'numpy.ndarray'>
>>> features[0].shape
(210,)






	
__init__(descriptors: List[str] = [], is_normalized: bool = False, use_fragment: bool = True, ipc_avg: bool = True, use_bcut2d: bool = True, labels_only: bool = False)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/molecule_featurizers/rdkit_descriptors.py#L54-L127]

	Initialize this featurizer.


	Parameters:

	
	descriptors (List[str] (default None)) – List of RDKit descriptors to compute properties. When None, computes values


	arguments. (for descriptors which are chosen based on options set in other) – 


	use_fragment (bool, optional (default True)) – If True, the return value includes the fragment binary descriptors like ‘fr_XXX’.


	ipc_avg (bool, optional (default True)) – If True, the IPC descriptor calculates with avg=True option.
Please see this issue: https://github.com/rdkit/rdkit/issues/1527.


	is_normalized (bool, optional (default False)) – If True, the return value contains normalized features.


	use_bcut2d (bool, optional (default True)) – If True, the return value includes the descriptors like ‘BCUT2D_XXX’.


	labels_only (bool, optional (default False)) – Returns only the presence or absence of a group.








Notes


	
	If both labels_only and is_normalized are True, then is_normalized takes
	precendence and labels_only will not be applied.














	
featurize(datapoints, log_every_n=1000, **kwargs) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/base_classes.py#L254-L325]

	Calculate features for molecules.


	Parameters:

	
	datapoints (rdkit.Chem.rdchem.Mol / SMILES string / iterable) – RDKit Mol, or SMILES string or iterable sequence of RDKit mols/SMILES
strings.


	log_every_n (int, default 1000) – Logging messages reported every log_every_n samples.






	Returns:

	features – A numpy array containing a featurized representation of datapoints.



	Return type:

	np.ndarray















MordredDescriptors


	
class MordredDescriptors(ignore_3D: bool = True)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/molecule_featurizers/mordred_descriptors.py#L8-L92]

	Mordred descriptors.

This class computes a list of chemical descriptors using Mordred.
Please see the details about all descriptors from [1]_, [2]_.


	
descriptors[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat.py]

	List of Mordred descriptor names used in this class.


	Type:

	List[str]









References



[1]
Moriwaki, Hirotomo, et al. “Mordred: a molecular descriptor calculator.”
Journal of cheminformatics 10.1 (2018): 4.



[2]
http://mordred-descriptor.github.io/documentation/master/descriptors.html




Note

This class requires Mordred to be installed.



Examples

>>> import deepchem as dc
>>> smiles = ['CC(=O)OC1=CC=CC=C1C(=O)O']
>>> featurizer = dc.feat.MordredDescriptors(ignore_3D=True)
>>> features = featurizer.featurize(smiles)
>>> type(features[0])
<class 'numpy.ndarray'>
>>> features[0].shape
(1613,)






	
__init__(ignore_3D: bool = True)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/molecule_featurizers/mordred_descriptors.py#L42-L52]

	
	Parameters:

	ignore_3D (bool, optional (default True)) – Whether to use 3D information or not.










	
featurize(datapoints, log_every_n=1000, **kwargs) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/base_classes.py#L254-L325]

	Calculate features for molecules.


	Parameters:

	
	datapoints (rdkit.Chem.rdchem.Mol / SMILES string / iterable) – RDKit Mol, or SMILES string or iterable sequence of RDKit mols/SMILES
strings.


	log_every_n (int, default 1000) – Logging messages reported every log_every_n samples.






	Returns:

	features – A numpy array containing a featurized representation of datapoints.



	Return type:

	np.ndarray















CoulombMatrix


	
class CoulombMatrix(max_atoms: int, remove_hydrogens: bool = False, randomize: bool = False, upper_tri: bool = False, n_samples: int = 1, seed: int | None = None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/molecule_featurizers/coulomb_matrices.py#L15-L223]

	Calculate Coulomb matrices for molecules.

Coulomb matrices provide a representation of the electronic structure of
a molecule. For a molecule with N atoms, the Coulomb matrix is a
N X N matrix where each element gives the strength of the
electrostatic interaction between two atoms. The method is described
in more detail in [1]_.

Examples

>>> import deepchem as dc
>>> featurizers = dc.feat.CoulombMatrix(max_atoms=23)
>>> input_file = 'deepchem/feat/tests/data/water.sdf' # really backed by water.sdf.csv
>>> tasks = ["atomization_energy"]
>>> loader = dc.data.SDFLoader(tasks, featurizer=featurizers)
>>> dataset = loader.create_dataset(input_file)





References



[1]
Montavon, Grégoire, et al. “Learning invariant representations of
molecules for atomization energy prediction.” Advances in neural information
processing systems. 2012.




Note

This class requires RDKit to be installed.




	
__init__(max_atoms: int, remove_hydrogens: bool = False, randomize: bool = False, upper_tri: bool = False, n_samples: int = 1, seed: int | None = None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/molecule_featurizers/coulomb_matrices.py#L45-L78]

	Initialize this featurizer.


	Parameters:

	
	max_atoms (int) – The maximum number of atoms expected for molecules this featurizer will
process.


	remove_hydrogens (bool, optional (default False)) – If True, remove hydrogens before processing them.


	randomize (bool, optional (default False)) – If True, use method randomize_coulomb_matrices to randomize Coulomb matrices.


	upper_tri (bool, optional (default False)) – Generate only upper triangle part of Coulomb matrices.


	n_samples (int, optional (default 1)) – If randomize is set to True, the number of random samples to draw.


	seed (int, optional (default None)) – Random seed to use.













	
coulomb_matrix(mol: Any) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/molecule_featurizers/coulomb_matrices.py#L117-L160]

	Generate Coulomb matrices for each conformer of the given molecule.


	Parameters:

	mol (rdkit.Chem.rdchem.Mol) – RDKit Mol object



	Returns:

	The coulomb matrices of the given molecule



	Return type:

	np.ndarray










	
randomize_coulomb_matrix(m: ndarray) → List[ndarray][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/molecule_featurizers/coulomb_matrices.py#L162-L194]

	Randomize a Coulomb matrix as decribed in [1]_:


	Compute row norms for M in a vector row_norms.


	
	Sample a zero-mean unit-variance noise vector e with dimension
	equal to row_norms.







	
	Permute the rows and columns of M with the permutation that
	sorts row_norms + e.










	Parameters:

	m (np.ndarray) – Coulomb matrix.



	Returns:

	List of the random coulomb matrix



	Return type:

	List[np.ndarray]





References



[1]
Montavon et al., New Journal of Physics, 15, (2013), 095003








	
static get_interatomic_distances(conf: Any) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/molecule_featurizers/coulomb_matrices.py#L196-L223]

	Get interatomic distances for atoms in a molecular conformer.


	Parameters:

	conf (rdkit.Chem.rdchem.Conformer) – Molecule conformer.



	Returns:

	The distances matrix for all atoms in a molecule



	Return type:

	np.ndarray










	
featurize(datapoints, log_every_n=1000, **kwargs) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/base_classes.py#L254-L325]

	Calculate features for molecules.


	Parameters:

	
	datapoints (rdkit.Chem.rdchem.Mol / SMILES string / iterable) – RDKit Mol, or SMILES string or iterable sequence of RDKit mols/SMILES
strings.


	log_every_n (int, default 1000) – Logging messages reported every log_every_n samples.






	Returns:

	features – A numpy array containing a featurized representation of datapoints.



	Return type:

	np.ndarray















CoulombMatrixEig


	
class CoulombMatrixEig(max_atoms: int, remove_hydrogens: bool = False, randomize: bool = False, n_samples: int = 1, seed: int | None = None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/molecule_featurizers/coulomb_matrices.py#L226-L319]

	Calculate the eigenvalues of Coulomb matrices for molecules.

This featurizer computes the eigenvalues of the Coulomb matrices for provided
molecules. Coulomb matrices are described in [1]_.

Examples

>>> import deepchem as dc
>>> featurizers = dc.feat.CoulombMatrixEig(max_atoms=23)
>>> input_file = 'deepchem/feat/tests/data/water.sdf' # really backed by water.sdf.csv
>>> tasks = ["atomization_energy"]
>>> loader = dc.data.SDFLoader(tasks, featurizer=featurizers)
>>> dataset = loader.create_dataset(input_file)





References



[1]
Montavon, Grégoire, et al. “Learning invariant representations of
molecules for atomization energy prediction.” Advances in neural information
processing systems. 2012.




	
__init__(max_atoms: int, remove_hydrogens: bool = False, randomize: bool = False, n_samples: int = 1, seed: int | None = None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/molecule_featurizers/coulomb_matrices.py#L249-L278]

	Initialize this featurizer.


	Parameters:

	
	max_atoms (int) – The maximum number of atoms expected for molecules this featurizer will
process.


	remove_hydrogens (bool, optional (default False)) – If True, remove hydrogens before processing them.


	randomize (bool, optional (default False)) – If True, use method randomize_coulomb_matrices to randomize Coulomb matrices.


	n_samples (int, optional (default 1)) – If randomize is set to True, the number of random samples to draw.


	seed (int, optional (default None)) – Random seed to use.













	
coulomb_matrix(mol: Any) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/molecule_featurizers/coulomb_matrices.py#L117-L160]

	Generate Coulomb matrices for each conformer of the given molecule.


	Parameters:

	mol (rdkit.Chem.rdchem.Mol) – RDKit Mol object



	Returns:

	The coulomb matrices of the given molecule



	Return type:

	np.ndarray










	
featurize(datapoints, log_every_n=1000, **kwargs) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/base_classes.py#L254-L325]

	Calculate features for molecules.


	Parameters:

	
	datapoints (rdkit.Chem.rdchem.Mol / SMILES string / iterable) – RDKit Mol, or SMILES string or iterable sequence of RDKit mols/SMILES
strings.


	log_every_n (int, default 1000) – Logging messages reported every log_every_n samples.






	Returns:

	features – A numpy array containing a featurized representation of datapoints.



	Return type:

	np.ndarray










	
static get_interatomic_distances(conf: Any) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/molecule_featurizers/coulomb_matrices.py#L196-L223]

	Get interatomic distances for atoms in a molecular conformer.


	Parameters:

	conf (rdkit.Chem.rdchem.Conformer) – Molecule conformer.



	Returns:

	The distances matrix for all atoms in a molecule



	Return type:

	np.ndarray










	
randomize_coulomb_matrix(m: ndarray) → List[ndarray][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/molecule_featurizers/coulomb_matrices.py#L162-L194]

	Randomize a Coulomb matrix as decribed in [1]_:


	Compute row norms for M in a vector row_norms.


	
	Sample a zero-mean unit-variance noise vector e with dimension
	equal to row_norms.







	
	Permute the rows and columns of M with the permutation that
	sorts row_norms + e.










	Parameters:

	m (np.ndarray) – Coulomb matrix.



	Returns:

	List of the random coulomb matrix



	Return type:

	List[np.ndarray]





References



[1]
Montavon et al., New Journal of Physics, 15, (2013), 095003













AtomCoordinates


	
class AtomicCoordinates(use_bohr: bool = False)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/molecule_featurizers/atomic_coordinates.py#L10-L98]

	Calculate atomic coordinates.

Examples

>>> import deepchem as dc
>>> from rdkit import Chem
>>> mol = Chem.MolFromSmiles('C1C=CC=CC=1')
>>> n_atoms = len(mol.GetAtoms())
>>> n_atoms
6
>>> featurizer = dc.feat.AtomicCoordinates(use_bohr=False)
>>> features = featurizer.featurize([mol])
>>> type(features[0])
<class 'numpy.ndarray'>
>>> features[0].shape # (n_atoms, 3)
(6, 3)






Note

This class requires RDKit to be installed.




	
__init__(use_bohr: bool = False)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/molecule_featurizers/atomic_coordinates.py#L35-L43]

	
	Parameters:

	use_bohr (bool, optional (default False)) – Whether to use bohr or angstrom as a coordinate unit.










	
featurize(datapoints, log_every_n=1000, **kwargs) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/base_classes.py#L254-L325]

	Calculate features for molecules.


	Parameters:

	
	datapoints (rdkit.Chem.rdchem.Mol / SMILES string / iterable) – RDKit Mol, or SMILES string or iterable sequence of RDKit mols/SMILES
strings.


	log_every_n (int, default 1000) – Logging messages reported every log_every_n samples.






	Returns:

	features – A numpy array containing a featurized representation of datapoints.



	Return type:

	np.ndarray















BPSymmetryFunctionInput


	
class BPSymmetryFunctionInput(max_atoms: int)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/molecule_featurizers/bp_symmetry_function_input.py#L9-L75]

	Calculate symmetry function for each atom in the molecules

This method is described in [1]_.

Examples

>>> import deepchem as dc
>>> smiles = ['C1C=CC=CC=1']
>>> featurizer = dc.feat.BPSymmetryFunctionInput(max_atoms=10)
>>> features = featurizer.featurize(smiles)
>>> type(features[0])
<class 'numpy.ndarray'>
>>> features[0].shape  # (max_atoms, 4)
(10, 4)





References



[1]
Behler, Jörg, and Michele Parrinello. “Generalized neural-network
representation of high-dimensional potential-energy surfaces.” Physical
review letters 98.14 (2007): 146401.




Note

This class requires RDKit to be installed.




	
__init__(max_atoms: int)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/molecule_featurizers/bp_symmetry_function_input.py#L37-L48]

	Initialize this featurizer.


	Parameters:

	max_atoms (int) – The maximum number of atoms expected for molecules this featurizer will
process.










	
featurize(datapoints, log_every_n=1000, **kwargs) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/base_classes.py#L254-L325]

	Calculate features for molecules.


	Parameters:

	
	datapoints (rdkit.Chem.rdchem.Mol / SMILES string / iterable) – RDKit Mol, or SMILES string or iterable sequence of RDKit mols/SMILES
strings.


	log_every_n (int, default 1000) – Logging messages reported every log_every_n samples.






	Returns:

	features – A numpy array containing a featurized representation of datapoints.



	Return type:

	np.ndarray















SmilesToSeq


	
class SmilesToSeq(char_to_idx: Dict[str, int], max_len: int = 250, pad_len: int = 10)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/molecule_featurizers/smiles_to_seq.py#L49-L163]

	SmilesToSeq Featurizer takes a SMILES string, and turns it into a sequence.
Details taken from [1]_.

SMILES strings smaller than a specified max length (max_len) are padded using
the PAD token while those larger than the max length are not considered. Based
on the paper, there is also the option to add extra padding (pad_len) on both
sides of the string after length normalization. Using a character to index (char_to_idx)
mapping, the SMILES characters are turned into indices and the
resulting sequence of indices serves as the input for an embedding layer.

References



[1]
Goh, Garrett B., et al. “Using rule-based labels for weak supervised
learning: a ChemNet for transferable chemical property prediction.”
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. 2018.




Note

This class requires RDKit to be installed.




	
__init__(char_to_idx: Dict[str, int], max_len: int = 250, pad_len: int = 10)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/molecule_featurizers/smiles_to_seq.py#L74-L95]

	Initialize this class.


	Parameters:

	
	char_to_idx (Dict) – Dictionary containing character to index mappings for unique characters


	max_len (int, default 250) – Maximum allowed length of the SMILES string.


	pad_len (int, default 10) – Amount of padding to add on either side of the SMILES seq













	
to_seq(smile: List[str]) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/molecule_featurizers/smiles_to_seq.py#L97-L104]

	Turns list of smiles characters into array of indices






	
remove_pad(characters: List[str]) → List[str][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/molecule_featurizers/smiles_to_seq.py#L106-L114]

	Removes PAD_TOKEN from the character list.






	
smiles_from_seq(seq: List[int]) → str[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/molecule_featurizers/smiles_to_seq.py#L116-L122]

	Reconstructs SMILES string from sequence.






	
featurize(datapoints, log_every_n=1000, **kwargs) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/base_classes.py#L254-L325]

	Calculate features for molecules.


	Parameters:

	
	datapoints (rdkit.Chem.rdchem.Mol / SMILES string / iterable) – RDKit Mol, or SMILES string or iterable sequence of RDKit mols/SMILES
strings.


	log_every_n (int, default 1000) – Logging messages reported every log_every_n samples.






	Returns:

	features – A numpy array containing a featurized representation of datapoints.



	Return type:

	np.ndarray















SmilesToImage


	
class SmilesToImage(img_size: int = 80, res: float = 0.5, max_len: int = 250, img_spec: str = 'std')[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/molecule_featurizers/smiles_to_image.py#L12-L194]

	Convert SMILES string to an image.

SmilesToImage Featurizer takes a SMILES string, and turns it into an image.
Details taken from [1]_.

The default size of for the image is 80 x 80. Two image modes are currently
supported - std & engd. std is the gray scale specification,
with atomic numbers as pixel values for atom positions and a constant value of
2 for bond positions. engd is a 4-channel specification, which uses atom
properties like hybridization, valency, charges in addition to atomic number.
Bond type is also used for the bonds.

The coordinates of all atoms are computed, and lines are drawn between atoms
to indicate bonds. For the respective channels, the atom and bond positions are
set to the property values as mentioned in the paper.

Examples

>>> import deepchem as dc
>>> smiles = ['CC(=O)OC1=CC=CC=C1C(=O)O']
>>> featurizer = dc.feat.SmilesToImage(img_size=80, img_spec='std')
>>> images = featurizer.featurize(smiles)
>>> type (images[0])
<class 'numpy.ndarray'>
>>> images[0].shape # (img_size, img_size, 1)
(80, 80, 1)





References



[1]
Goh, Garrett B., et al. “Using rule-based labels for weak supervised
learning: a ChemNet for transferable chemical property prediction.”
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. 2018.




Note

This class requires RDKit to be installed.




	
__init__(img_size: int = 80, res: float = 0.5, max_len: int = 250, img_spec: str = 'std')[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/molecule_featurizers/smiles_to_image.py#L53-L80]

	
	Parameters:

	
	img_size (int, default 80) – Size of the image tensor


	res (float, default 0.5) – Displays the resolution of each pixel in Angstrom


	max_len (int, default 250) – Maximum allowed length of SMILES string


	img_spec (str, default std) – Indicates the channel organization of the image tensor













	
featurize(datapoints, log_every_n=1000, **kwargs) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/base_classes.py#L254-L325]

	Calculate features for molecules.


	Parameters:

	
	datapoints (rdkit.Chem.rdchem.Mol / SMILES string / iterable) – RDKit Mol, or SMILES string or iterable sequence of RDKit mols/SMILES
strings.


	log_every_n (int, default 1000) – Logging messages reported every log_every_n samples.






	Returns:

	features – A numpy array containing a featurized representation of datapoints.



	Return type:

	np.ndarray















OneHotFeaturizer


	
class OneHotFeaturizer(charset: List[str] = ['#', ')', '(', '+', '-', '/', '1', '3', '2', '5', '4', '7', '6', '8', '=', '@', 'C', 'B', 'F', 'I', 'H', 'O', 'N', 'S', '[', ']', '\\', 'c', 'l', 'o', 'n', 'p', 's', 'r'], max_length: int | None = 100)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/molecule_featurizers/one_hot_featurizer.py#L20-L208]

	Encodes any arbitrary string or molecule as a one-hot array.

This featurizer encodes the characters within any given string as a one-hot
array. It also works with RDKit molecules: it can convert RDKit molecules to
SMILES strings and then one-hot encode the characters in said strings.

Standalone Usage:

>>> import deepchem as dc
>>> featurizer = dc.feat.OneHotFeaturizer()
>>> smiles = ['CCC']
>>> encodings = featurizer.featurize(smiles)
>>> type(encodings[0])
<class 'numpy.ndarray'>
>>> encodings[0].shape
(100, 35)
>>> featurizer.untransform(encodings[0])
'CCC'






Note

This class needs RDKit to be installed in order to accept RDKit molecules as
inputs.

It does not need RDKit to be installed to work with arbitrary strings.




	
__init__(charset: List[str] = ['#', ')', '(', '+', '-', '/', '1', '3', '2', '5', '4', '7', '6', '8', '=', '@', 'C', 'B', 'F', 'I', 'H', 'O', 'N', 'S', '[', ']', '\\', 'c', 'l', 'o', 'n', 'p', 's', 'r'], max_length: int | None = 100)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/molecule_featurizers/one_hot_featurizer.py#L49-L72]

	Initialize featurizer.


	Parameters:

	
	charset (List[str] (default ZINC_CHARSET)) – A list of strings, where each string is length 1 and unique.


	max_length (Optional[int], optional (default 100)) – The max length for string. If the length of string is shorter than
max_length, the string is padded using space.


	None (If max_length is) – 


	length (no padding is performed and arbitrary) – 


	allowed. (strings are) – 













	
featurize(datapoints: Iterable[Any], log_every_n: int = 1000, **kwargs) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/molecule_featurizers/one_hot_featurizer.py#L74-L92]

	Featurize strings or mols.


	Parameters:

	
	datapoints (list) – A list of either strings (str or numpy.str_) or RDKit molecules.


	log_every_n (int, optional (default 1000)) – How many elements are featurized every time a featurization is logged.













	
pad_smile(smiles: str) → str[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/molecule_featurizers/one_hot_featurizer.py#L152-L166]

	Pad SMILES string to self.pad_length


	Parameters:

	smiles (str) – The SMILES string to be padded.



	Returns:

	SMILES string space padded to self.pad_length



	Return type:

	str










	
pad_string(string: str) → str[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/molecule_featurizers/one_hot_featurizer.py#L168-L185]

	Pad string to self.pad_length


	Parameters:

	string (str) – The string to be padded.



	Returns:

	String space padded to self.pad_length



	Return type:

	str










	
untransform(one_hot_vectors: ndarray) → str[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/molecule_featurizers/one_hot_featurizer.py#L187-L208]

	Convert from one hot representation back to original string


	Parameters:

	one_hot_vectors (np.ndarray) – An array of one hot encoded features.



	Returns:

	Original string for an one hot encoded array.



	Return type:

	str















SparseMatrixOneHotFeaturizer


	
class SparseMatrixOneHotFeaturizer(charset: List[str] = ['A', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'K', 'L', 'M', 'N', 'P', 'Q', 'R', 'S', 'T', 'V', 'W', 'Y', 'X', 'Z', 'B', 'U', 'O'])[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/molecule_featurizers/sparse_matrix_one_hot_featurizer.py#L15-L108]

	Encodes any arbitrary string as a one-hot array.

This featurizer uses the sklearn OneHotEncoder to create
sparse matrix representation of a one-hot array of any string.
It is expected to be used in large datasets that produces memory overload
using standard featurizer such as OneHotFeaturizer. For example: SwissprotDataset

Examples

>>> import deepchem as dc
>>> featurizer = dc.feat.SparseMatrixOneHotFeaturizer()
>>> sequence = "MMMQLA"
>>> encodings = featurizer.featurize([sequence])
>>> encodings[0].shape
(6, 25)






	
__init__(charset: List[str] = ['A', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'K', 'L', 'M', 'N', 'P', 'Q', 'R', 'S', 'T', 'V', 'W', 'Y', 'X', 'Z', 'B', 'U', 'O'])[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/molecule_featurizers/sparse_matrix_one_hot_featurizer.py#L35-L49]

	Initialize featurizer.


	Parameters:

	charset (List[str] (default code)) – A list of strings, where each string is length 1 and unique.










	
featurize(datapoints: Iterable[Any], log_every_n: int = 1000, **kwargs) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/molecule_featurizers/sparse_matrix_one_hot_featurizer.py#L51-L66]

	Featurize strings.


	Parameters:

	
	datapoints (list) – A list of either strings (str or numpy.str_)


	log_every_n (int, optional (default 1000)) – How many elements are featurized every time a featurization is logged.













	
untransform(one_hot_vectors: spmatrix) → str[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/molecule_featurizers/sparse_matrix_one_hot_featurizer.py#L90-L108]

	Convert from one hot representation back to original string


	Parameters:

	one_hot_vectors (np.ndarray) – An array of one hot encoded features.



	Returns:

	Original string for an one hot encoded array.



	Return type:

	str















RawFeaturizer


	
class RawFeaturizer(smiles: bool = False)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/molecule_featurizers/raw_featurizer.py#L7-L58]

	Encodes a molecule as a SMILES string or RDKit mol.

This featurizer can be useful when you’re trying to transform a large
collection of RDKit mol objects as Smiles strings, or alternatively as a
“no-op” featurizer in your molecular pipeline.


Note

This class requires RDKit to be installed.




	
__init__(smiles: bool = False)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/molecule_featurizers/raw_featurizer.py#L20-L29]

	Initialize this featurizer.


	Parameters:

	smiles (bool, optional (default False)) – If True, encode this molecule as a SMILES string. Else as a RDKit mol.










	
featurize(datapoints, log_every_n=1000, **kwargs) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/base_classes.py#L254-L325]

	Calculate features for molecules.


	Parameters:

	
	datapoints (rdkit.Chem.rdchem.Mol / SMILES string / iterable) – RDKit Mol, or SMILES string or iterable sequence of RDKit mols/SMILES
strings.


	log_every_n (int, default 1000) – Logging messages reported every log_every_n samples.






	Returns:

	features – A numpy array containing a featurized representation of datapoints.



	Return type:

	np.ndarray















SNAPFeaturizer


	
class SNAPFeaturizer(use_original_atoms_order=False)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/molecule_featurizers/snap_featurizer.py#L37-L117]

	This featurizer is based on the SNAP featurizer used in the paper [1].

Example

>>> smiles = ["CC(=O)C"]
>>> featurizer = SNAPFeaturizer()
>>> print(featurizer.featurize(smiles))
[GraphData(node_features=[4, 2], edge_index=[2, 6], edge_features=[6, 2])]





References



[1]
Hu, W. et al. Strategies for Pre-training Graph Neural Networks. Preprint at https://doi.org/10.48550/arXiv.1905.12265 (2020).




	
__init__(use_original_atoms_order=False)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/base_classes.py#L245-L252]

	
	Parameters:

	use_original_atoms_order (bool, default False) – Whether to use original atom ordering or canonical ordering (default)










	
featurize(datapoints, log_every_n=1000, **kwargs) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/base_classes.py#L254-L325]

	Calculate features for molecules.


	Parameters:

	
	datapoints (rdkit.Chem.rdchem.Mol / SMILES string / iterable) – RDKit Mol, or SMILES string or iterable sequence of RDKit mols/SMILES
strings.


	log_every_n (int, default 1000) – Logging messages reported every log_every_n samples.






	Returns:

	features – A numpy array containing a featurized representation of datapoints.



	Return type:

	np.ndarray
















Molecular Complex Featurizers

These featurizers work with three dimensional molecular complexes.


RdkitGridFeaturizer


	
class RdkitGridFeaturizer(nb_rotations=0, feature_types=None, ecfp_degree=2, ecfp_power=3, splif_power=3, box_width=16.0, voxel_width=1.0, flatten=False, verbose=True, sanitize=False, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/complex_featurizers/rdkit_grid_featurizer.py#L20-L474]

	Featurizes protein-ligand complex using flat features or a 3D grid (in which
each voxel is described with a vector of features).


	
__init__(nb_rotations=0, feature_types=None, ecfp_degree=2, ecfp_power=3, splif_power=3, box_width=16.0, voxel_width=1.0, flatten=False, verbose=True, sanitize=False, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/complex_featurizers/rdkit_grid_featurizer.py#L25-L224]

	
	Parameters:

	
	nb_rotations (int, optional (default 0)) – Number of additional random rotations of a complex to generate.


	feature_types (list, optional (default ['ecfp'])) – 
	Types of features to calculate. Available types are
	flat features -> ‘ecfp_ligand’, ‘ecfp_hashed’, ‘splif_hashed’, ‘hbond_count’
voxel features -> ‘ecfp’, ‘splif’, ‘sybyl’, ‘salt_bridge’, ‘charge’, ‘hbond’, ‘pi_stack, ‘cation_pi’



	There are also 3 predefined sets of features
	’flat_combined’, ‘voxel_combined’, and ‘all_combined’.





Calculated features are concatenated and their order is preserved
(features in predefined sets are in alphabetical order).




	ecfp_degree (int, optional (default 2)) – ECFP radius.


	ecfp_power (int, optional (default 3)) – Number of bits to store ECFP features (resulting vector will be
2^ecfp_power long)


	splif_power (int, optional (default 3)) – Number of bits to store SPLIF features (resulting vector will be
2^splif_power long)


	box_width (float, optional (default 16.0)) – Size of a box in which voxel features are calculated. Box is centered on a
ligand centroid.


	voxel_width (float, optional (default 1.0)) – Size of a 3D voxel in a grid.


	flatten (bool, optional (defaul False)) – Indicate whether calculated features should be flattened. Output is always
flattened if flat features are specified in feature_types.


	verbose (bool, optional (defaul True)) – Verbolity for logging


	sanitize (bool, optional (defaul False)) – If set to True molecules will be sanitized. Note that calculating some
features (e.g. aromatic interactions) require sanitized molecules.


	**kwargs (dict, optional) – Keyword arguments can be usaed to specify custom cutoffs and bins (see
default values below).


	bins (Default cutoffs and) – 


	------------------------ – 


	hbond_dist_bins ([(2.2, 2.5), (2.5, 3.2), (3.2, 4.0)]) – 


	hbond_angle_cutoffs ([5, 50, 90]) – 


	splif_contact_bins ([(0, 2.0), (2.0, 3.0), (3.0, 4.5)]) – 


	ecfp_cutoff (4.5) – 


	sybyl_cutoff (7.0) – 


	salt_bridges_cutoff (5.0) – 


	pi_stack_dist_cutoff (4.4) – 


	pi_stack_angle_cutoff (30.0) – 


	cation_pi_dist_cutoff (6.5) – 


	cation_pi_angle_cutoff (30.0) – 













	
featurize(datapoints: Iterable[Tuple[str, str]] | None = None, log_every_n: int = 100, **kwargs) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/base_classes.py#L160-L213]

	Calculate features for mol/protein complexes.
:param datapoints: List of filenames (PDB, SDF, etc.) for ligand molecules and proteins.


Each element should be a tuple of the form (ligand_filename,
protein_filename).





	Returns:

	features – Array of features



	Return type:

	np.ndarray















AtomicConvFeaturizer


	
class AtomicConvFeaturizer(frag1_num_atoms, frag2_num_atoms, complex_num_atoms, max_num_neighbors, neighbor_cutoff, strip_hydrogens=True)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/complex_featurizers/complex_atomic_coordinates.py#L148-L309]

	This class computes the featurization that corresponds to AtomicConvModel.

This class computes featurizations needed for AtomicConvModel.
Given two molecular structures, it computes a number of useful
geometric features. In particular, for each molecule and the global
complex, it computes a coordinates matrix of size (N_atoms, 3)
where N_atoms is the number of atoms. It also computes a
neighbor-list, a dictionary with N_atoms elements where
neighbor-list[i] is a list of the atoms the i-th atom has as
neighbors. In addition, it computes a z-matrix for the molecule
which is an array of shape (N_atoms,) that contains the atomic
number of that atom.

Since the featurization computes these three quantities for each of
the two molecules and the complex, a total of 9 quantities are
returned for each complex. Note that for efficiency, fragments of
the molecules can be provided rather than the full molecules
themselves.


	
__init__(frag1_num_atoms, frag2_num_atoms, complex_num_atoms, max_num_neighbors, neighbor_cutoff, strip_hydrogens=True)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/complex_featurizers/complex_atomic_coordinates.py#L170-L205]

	
	Parameters:

	
	frag1_num_atoms (int) – Maximum number of atoms in fragment 1.


	frag2_num_atoms (int) – Maximum number of atoms in fragment 2.


	complex_num_atoms (int) – Maximum number of atoms in complex of frag1/frag2 together.


	max_num_neighbors (int) – Maximum number of atoms considered as neighbors.


	neighbor_cutoff (float) – Maximum distance (angstroms) for two atoms to be considered as
neighbors. If more than max_num_neighbors atoms fall within
this cutoff, the closest max_num_neighbors will be used.


	strip_hydrogens (bool (default True)) – Remove hydrogens before computing featurization.













	
featurize(datapoints: Iterable[Tuple[str, str]] | None = None, log_every_n: int = 100, **kwargs) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/base_classes.py#L160-L213]

	Calculate features for mol/protein complexes.
:param datapoints: List of filenames (PDB, SDF, etc.) for ligand molecules and proteins.


Each element should be a tuple of the form (ligand_filename,
protein_filename).





	Returns:

	features – Array of features



	Return type:

	np.ndarray
















Inorganic Crystal Featurizers

These featurizers work with datasets of inorganic crystals.


MaterialCompositionFeaturizer

Material Composition Featurizers are those that work with datasets of crystal
compositions with periodic boundary conditions.
For inorganic crystal structures, these featurizers operate on chemical
compositions (e.g. “MoS2”). They should be applied on systems that have
periodic boundary conditions. Composition featurizers are not designed
to work with molecules.


ElementPropertyFingerprint


	
class ElementPropertyFingerprint(data_source: str = 'matminer')[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/material_featurizers/element_property_fingerprint.py#L8-L98]

	Fingerprint of elemental properties from composition.

Based on the data source chosen, returns properties and statistics
(min, max, range, mean, standard deviation, mode) for a compound
based on elemental stoichiometry. E.g., the average electronegativity
of atoms in a crystal structure. The chemical fingerprint is a
vector of these statistics. For a full list of properties and statistics,
see matminer.featurizers.composition.ElementProperty(data_source).feature_labels().

This featurizer requires the optional dependencies pymatgen and
matminer. It may be useful when only crystal compositions are available
(and not 3D coordinates).

See references [1]_, [2]_, [3], [4] for more details.

References



[1]
MagPie data: Ward, L. et al. npj Comput Mater 2, 16028 (2016).
https://doi.org/10.1038/npjcompumats.2016.28



[2]
Deml data: Deml, A. et al. Physical Review B 93, 085142 (2016).
10.1103/PhysRevB.93.085142



[3]
Matminer: Ward, L. et al. Comput. Mater. Sci. 152, 60-69 (2018).



[4]
Pymatgen: Ong, S.P. et al. Comput. Mater. Sci. 68, 314-319 (2013).



Examples

>>> import deepchem as dc
>>> import pymatgen as mg
>>> comp = mg.core.Composition("Fe2O3")
>>> featurizer = dc.feat.ElementPropertyFingerprint()
>>> features = featurizer.featurize([comp])
>>> type(features[0])
<class 'numpy.ndarray'>
>>> features[0].shape
(65,)






Note

This class requires matminer and Pymatgen to be installed.
NaN feature values are automatically converted to 0 by this featurizer.




	
__init__(data_source: str = 'matminer')[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/material_featurizers/element_property_fingerprint.py#L52-L60]

	
	Parameters:

	data_source (str of "matminer", "magpie" or "deml" (default "matminer")) – Source for element property data.










	
featurize(datapoints: Iterable[str] | None = None, log_every_n: int = 1000, **kwargs) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/base_classes.py#L430-L477]

	Calculate features for crystal compositions.


	Parameters:

	
	datapoints (Iterable[str]) – Iterable sequence of composition strings, e.g. “MoS2”.


	log_every_n (int, default 1000) – Logging messages reported every log_every_n samples.






	Returns:

	features – A numpy array containing a featurized representation of
compositions.



	Return type:

	np.ndarray















ElemNetFeaturizer


	
class ElemNetFeaturizer[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/material_featurizers/elemnet_featurizer.py#L18-L94]

	Fixed size vector of length 86 containing raw fractional elemental
compositions in the compound. The 86 chosen elements are based on the
original implementation at https://github.com/NU-CUCIS/ElemNet.

Returns a vector containing fractional compositions of each element
in the compound.

References



[1]
Jha, D., Ward, L., Paul, A. et al. Sci Rep 8, 17593 (2018).
https://doi.org/10.1038/s41598-018-35934-y



Examples

>>> import deepchem as dc
>>> comp = "Fe2O3"
>>> featurizer = dc.feat.ElemNetFeaturizer()
>>> features = featurizer.featurize([comp])
>>> type(features[0])
<class 'numpy.ndarray'>
>>> features[0].shape
(86,)
>>> round(sum(features[0]))
1






Note

This class requires Pymatgen to be installed.




	
get_vector(comp: DefaultDict) → ndarray | None[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/material_featurizers/elemnet_featurizer.py#L50-L69]

	Converts a dictionary containing element names and corresponding
compositional fractions into a vector of fractions.


	Parameters:

	comp (collections.defaultdict object) – Dictionary mapping element names to fractional compositions.



	Returns:

	fractions – Vector of fractional compositions of each element.



	Return type:

	np.ndarray
















MaterialStructureFeaturizer

Material Structure Featurizers are those that work with datasets of crystals with
periodic boundary conditions. For inorganic crystal structures, these
featurizers operate on pymatgen.Structure objects, which include a
lattice and 3D coordinates that specify a periodic crystal structure.
They should be applied on systems that have periodic boundary conditions.
Structure featurizers are not designed to work with molecules.


SineCoulombMatrix


	
class SineCoulombMatrix(max_atoms: int = 100, flatten: bool = True)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/material_featurizers/sine_coulomb_matrix.py#L9-L113]

	Calculate sine Coulomb matrix for crystals.

A variant of Coulomb matrix for periodic crystals.

The sine Coulomb matrix is identical to the Coulomb matrix, except
that the inverse distance function is replaced by the inverse of
sin**2 of the vector between sites which are periodic in the
dimensions of the crystal lattice.

Features are flattened into a vector of matrix eigenvalues by default
for ML-readiness. To ensure that all feature vectors are equal
length, the maximum number of atoms (eigenvalues) in the input
dataset must be specified.

This featurizer requires the optional dependencies pymatgen and
matminer. It may be useful when crystal structures with 3D coordinates
are available.

See [1]_ for more details.

References



[1]
Faber et al. “Crystal Structure Representations for Machine
Learning Models of Formation Energies”, Inter. J. Quantum Chem.
115, 16, 2015. https://arxiv.org/abs/1503.07406



Examples

>>> import deepchem as dc
>>> import pymatgen as mg
>>> lattice = mg.core.Lattice.cubic(4.2)
>>> structure = mg.core.Structure(lattice, ["Cs", "Cl"], [[0, 0, 0], [0.5, 0.5, 0.5]])
>>> featurizer = dc.feat.SineCoulombMatrix(max_atoms=2)
>>> features = featurizer.featurize([structure])
>>> type(features[0])
<class 'numpy.ndarray'>
>>> features[0].shape # (max_atoms,)
(2,)






Note

This class requires matminer and Pymatgen to be installed.




	
__init__(max_atoms: int = 100, flatten: bool = True)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/material_featurizers/sine_coulomb_matrix.py#L56-L68]

	
	Parameters:

	
	max_atoms (int (default 100)) – Maximum number of atoms for any crystal in the dataset. Used to
pad the Coulomb matrix.


	flatten (bool (default True)) – Return flattened vector of matrix eigenvalues.













	
featurize(datapoints: Iterable[Dict[str, Any] | Any] | None = None, log_every_n: int = 1000, **kwargs) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/base_classes.py#L351-L404]

	Calculate features for crystal structures.


	Parameters:

	
	datapoints (Iterable[Union[Dict, pymatgen.core.Structure]]) – Iterable sequence of pymatgen structure dictionaries
or pymatgen.core.Structure. Please confirm the dictionary representations
of pymatgen.core.Structure from https://pymatgen.org/pymatgen.core.structure.html.


	log_every_n (int, default 1000) – Logging messages reported every log_every_n samples.






	Returns:

	features – A numpy array containing a featurized representation of
datapoints.



	Return type:

	np.ndarray















CGCNNFeaturizer


	
class CGCNNFeaturizer(radius: float = 8.0, max_neighbors: float = 12, step: float = 0.2)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/material_featurizers/cgcnn_featurizer.py#L16-L204]

	Calculate structure graph features for crystals.

Based on the implementation in Crystal Graph Convolutional
Neural Networks (CGCNN). The method constructs a crystal graph
representation including atom features and bond features (neighbor
distances). Neighbors are determined by searching in a sphere around
atoms in the unit cell. A Gaussian filter is applied to neighbor distances.
All units are in angstrom.

This featurizer requires the optional dependency pymatgen. It may
be useful when 3D coordinates are available and when using graph
network models and crystal graph convolutional networks.

See [1]_ for more details.

References



[1]
T. Xie and J. C. Grossman, “Crystal graph convolutional
neural networks for an accurate and interpretable prediction
of material properties”, Phys. Rev. Lett. 120, 2018,
https://arxiv.org/abs/1710.10324



Examples

>>> import deepchem as dc
>>> import pymatgen as mg
>>> featurizer = dc.feat.CGCNNFeaturizer()
>>> lattice = mg.core.Lattice.cubic(4.2)
>>> structure = mg.core.Structure(lattice, ["Cs", "Cl"], [[0, 0, 0], [0.5, 0.5, 0.5]])
>>> features = featurizer.featurize([structure])
>>> feature = features[0]
>>> print(type(feature))
<class 'deepchem.feat.graph_data.GraphData'>






Note

This class requires Pymatgen to be installed.




	
__init__(radius: float = 8.0, max_neighbors: float = 12, step: float = 0.2)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/material_featurizers/cgcnn_featurizer.py#L57-L92]

	
	Parameters:

	
	radius (float (default 8.0)) – Radius of sphere for finding neighbors of atoms in unit cell.


	max_neighbors (int (default 12)) – Maximum number of neighbors to consider when constructing graph.


	step (float (default 0.2)) – Step size for Gaussian filter. This value is used when building edge features.













	
featurize(datapoints: Iterable[Dict[str, Any] | Any] | None = None, log_every_n: int = 1000, **kwargs) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/base_classes.py#L351-L404]

	Calculate features for crystal structures.


	Parameters:

	
	datapoints (Iterable[Union[Dict, pymatgen.core.Structure]]) – Iterable sequence of pymatgen structure dictionaries
or pymatgen.core.Structure. Please confirm the dictionary representations
of pymatgen.core.Structure from https://pymatgen.org/pymatgen.core.structure.html.


	log_every_n (int, default 1000) – Logging messages reported every log_every_n samples.






	Returns:

	features – A numpy array containing a featurized representation of
datapoints.



	Return type:

	np.ndarray
















LCNNFeaturizer


	
class LCNNFeaturizer(structure: Any, aos: List[str], pbc: List[bool], ns: int = 1, na: int = 1, cutoff: float = 6.0)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/material_featurizers/lcnn_featurizer.py#L12-L187]

	Calculates the 2-D Surface graph features in 6 different permutations-

Based on the implementation of Lattice Graph Convolution Neural
Network (LCNN). This method produces the Atom wise features ( One Hot Encoding)
and Adjacent neighbour in the specified order of permutations. Neighbors are
determined by first extracting a site local environment from the primitive cell,
and perform graph matching and distance matching to find neighbors.
First, the template of the Primitive cell needs to be defined along with periodic
boundary conditions and active and spectator site details. structure(Data Point
i.e different configuration of adsorbate atoms) is passed for featurization.

This particular featurization produces a regular-graph (equal number of Neighbors)
along with its permutation in 6 symmetric axis. This transformation can be
applied when orderering of neighboring of nodes around a site play an important role
in the propert predictions. Due to consideration of local neighbor environment,
this current implementation would be fruitful in finding neighbors for calculating
formation energy of adbsorption tasks where the local. Adsorption turns out to be important
in many applications such as catalyst and semiconductor design.

The permuted neighbors are calculated using the Primitive cells i.e periodic cells
in all the data points are built via lattice transformation of the primitive cell.

Primitive cell Format:


	
	Pymatgen structure object with site_properties key value
	
	
	“SiteTypes” mentioning if it is a active site “A1” or spectator
	site “S1”.















	ns , the number of spectator types elements. For “S1” its 1.


	na , the number of active types elements. For “A1” its 1.


	aos, the different species of active elements “A1”.


	pbc, the periodic boundary conditions.




Data point Structure Format(Configuration of Atoms):


	
	Pymatgen structure object with site_properties with following key value.
	
	
	“SiteTypes”, mentioning if it is a active site “A1” or spectator
	site “S1”.







	“oss”, different occupational sites. For spectator sites make it -1.












It is highly recommended that cells of data are directly redefined from
the primitive cell, specifically, the relative coordinates between sites
are consistent so that the lattice is non-deviated.

References



[1]
Jonathan Lym and Geun Ho Gu, J. Phys. Chem. C 2019, 123, 18951−18959



Examples

>>> import deepchem as dc
>>> from pymatgen.core import Structure
>>> import numpy as np
>>> PRIMITIVE_CELL = {
...   "lattice": [[2.818528, 0.0, 0.0],
...               [-1.409264, 2.440917, 0.0],
...               [0.0, 0.0, 25.508255]],
...   "coords": [[0.66667, 0.33333, 0.090221],
...              [0.33333, 0.66667, 0.18043936],
...              [0.0, 0.0, 0.27065772],
...              [0.66667, 0.33333, 0.36087608],
...              [0.33333, 0.66667, 0.45109444],
...              [0.0, 0.0, 0.49656991]],
...   "species": ['H', 'H', 'H', 'H', 'H', 'He'],
...   "site_properties": {'SiteTypes': ['S1', 'S1', 'S1', 'S1', 'S1', 'A1']}
... }
>>> PRIMITIVE_CELL_INF0 = {
...    "cutoff": np.around(6.00),
...    "structure": Structure(**PRIMITIVE_CELL),
...    "aos": ['1', '0', '2'],
...    "pbc": [True, True, False],
...    "ns": 1,
...    "na": 1
... }
>>> DATA_POINT = {
...   "lattice": [[1.409264, -2.440917, 0.0],
...               [4.227792, 2.440917, 0.0],
...               [0.0, 0.0, 23.17559]],
...   "coords": [[0.0, 0.0, 0.099299],
...              [0.0, 0.33333, 0.198598],
...              [0.5, 0.16667, 0.297897],
...              [0.0, 0.0, 0.397196],
...              [0.0, 0.33333, 0.496495],
...              [0.5, 0.5, 0.099299],
...              [0.5, 0.83333, 0.198598],
...              [0.0, 0.66667, 0.297897],
...              [0.5, 0.5, 0.397196],
...              [0.5, 0.83333, 0.496495],
...              [0.0, 0.66667, 0.54654766],
...              [0.5, 0.16667, 0.54654766]],
...   "species": ['H', 'H', 'H', 'H', 'H', 'H',
...               'H', 'H', 'H', 'H', 'He', 'He'],
...   "site_properties": {
...     "SiteTypes": ['S1', 'S1', 'S1', 'S1', 'S1',
...                   'S1', 'S1', 'S1', 'S1', 'S1',
...                   'A1', 'A1'],
...     "oss": ['-1', '-1', '-1', '-1', '-1', '-1',
...             '-1', '-1', '-1', '-1', '0', '2']
...                   }
... }
>>> featuriser = dc.feat.LCNNFeaturizer(**PRIMITIVE_CELL_INF0)
>>> print(type(featuriser._featurize(Structure(**DATA_POINT))))
<class 'deepchem.feat.graph_data.GraphData'>





Notes

This Class requires pymatgen , networkx , scipy installed.


	
__init__(structure: Any, aos: List[str], pbc: List[bool], ns: int = 1, na: int = 1, cutoff: float = 6.0)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/material_featurizers/lcnn_featurizer.py#L122-L159]

	
	Parameters:

	
	structure (: PymatgenStructure) – Pymatgen Structure object of the primitive cell used for calculating
neighbors from lattice transformations.It also requires site_properties
attribute with “Sitetypes”(Active or spectator site).


	aos (List[str]) – A list of all the active site species. For the Pt, N, NO configuration
set it as [‘0’, ‘1’, ‘2’]


	pbc (List[bool]) – Periodic Boundary Condition


	ns (int (default 1)) – The number of spectator types elements. For “S1” its 1.


	na (int (default 1)) – the number of active types elements. For “A1” its 1.


	cutoff (float (default 6.00)) – Cutoff of radius for getting local environment.Only
used down to 2 digits.













	
featurize(datapoints: Iterable[Dict[str, Any] | Any] | None = None, log_every_n: int = 1000, **kwargs) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/base_classes.py#L351-L404]

	Calculate features for crystal structures.


	Parameters:

	
	datapoints (Iterable[Union[Dict, pymatgen.core.Structure]]) – Iterable sequence of pymatgen structure dictionaries
or pymatgen.core.Structure. Please confirm the dictionary representations
of pymatgen.core.Structure from https://pymatgen.org/pymatgen.core.structure.html.


	log_every_n (int, default 1000) – Logging messages reported every log_every_n samples.






	Returns:

	features – A numpy array containing a featurized representation of
datapoints.



	Return type:

	np.ndarray
















Biological Sequence Featurizers

These featurizers work with biological sequences.


SAMFeaturizer


	
class SAMFeaturizer(max_records=None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/bio_seq_featurizer.py#L5-L98]

	Featurizes SAM files, that store biological sequences aligned to a reference
sequence. This class extracts Query Name, Query Sequence, Query Length,
Reference Name,Reference Start, CIGAR and Mapping Quality of each read in
a SAM file.

This is the default featurizer used by SAMLoader, and it extracts the following
fields from each read in each SAM file in the given order:-
- Column 0: Query Name
- Column 1: Query Sequence
- Column 2: Query Length
- Column 3: Reference Name
- Column 4: Reference Start
- Column 5: CIGAR
- Column 6: Mapping Quality

Examples

>>> from deepchem.data.data_loader import SAMLoader
>>> import deepchem as dc
>>> inputs = 'deepchem/data/tests/example.sam'
>>> featurizer = dc.feat.SAMFeaturizer()
>>> features = featurizer.featurize(inputs)
>>> type(features[0])
<class 'numpy.ndarray'>






Note

This class requires pysam to be installed. Pysam can be used with Linux or MacOS X.
To use Pysam on Windows, use Windows Subsystem for Linux(WSL).




	
__init__(max_records=None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/bio_seq_featurizer.py#L39-L49]

	Initialize SAMFeaturizer.


	Parameters:

	max_records (int or None, optional) – The maximum number of records to extract from the SAM file. If None, all records will be extracted.










	
featurize(datapoints: Iterable[Any], log_every_n: int = 1000, **kwargs) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/base_classes.py#L26-L58]

	Calculate features for datapoints.


	Parameters:

	
	datapoints (Iterable[Any]) – A sequence of objects that you’d like to featurize. Subclassses of
Featurizer should instantiate the _featurize method that featurizes
objects in the sequence.


	log_every_n (int, default 1000) – Logs featurization progress every log_every_n steps.






	Returns:

	A numpy array containing a featurized representation of datapoints.



	Return type:

	np.ndarray















BAMFeaturizer


	
class BAMFeaturizer(max_records=None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/bio_seq_featurizer.py#L101-L188]

	Featurizes BAM files, that are compressed binary representations of SAM
(Sequence Alignment Map) files. This class extracts Query Name, Query
Sequence, Query Length, Reference Name, Reference Start, CIGAR and Mapping
Quality of the alignment in the BAM file.

This is the default featurizer used by BAMLoader, and it extracts the following
fields from each read in each BAM file in the given order:-
- Column 0: Query Name
- Column 1: Query Sequence
- Column 2: Query Length
- Column 3: Reference Name
- Column 4: Reference Start
- Column 5: CIGAR
- Column 6: Mapping Quality

Examples

>>> from deepchem.data.data_loader import BAMLoader
>>> import deepchem as dc
>>> inputs = 'deepchem/data/tests/example.bam'
>>> featurizer = dc.feat.BAMFeaturizer()
>>> features = featurizer.featurize(inputs)
>>> type(features[0])
<class 'numpy.ndarray'>






Note

This class requires pysam to be installed. Pysam can be used with Linux or MacOS X.
To use Pysam on Windows, use Windows Subsystem for Linux(WSL).




	
__init__(max_records=None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/bio_seq_featurizer.py#L135-L146]

	Initialize BAMFeaturizer.


	Parameters:

	max_records (int or None, optional) – The maximum number of records to extract from the BAM file. If None, all
records will be extracted.










	
featurize(datapoints: Iterable[Any], log_every_n: int = 1000, **kwargs) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/base_classes.py#L26-L58]

	Calculate features for datapoints.


	Parameters:

	
	datapoints (Iterable[Any]) – A sequence of objects that you’d like to featurize. Subclassses of
Featurizer should instantiate the _featurize method that featurizes
objects in the sequence.


	log_every_n (int, default 1000) – Logs featurization progress every log_every_n steps.






	Returns:

	A numpy array containing a featurized representation of datapoints.



	Return type:

	np.ndarray















CRAMFeaturizer


	
class CRAMFeaturizer(max_records=None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/bio_seq_featurizer.py#L191-L277]

	Featurizes CRAM files, that are compressed columnar file format for storing
biological sequences aligned to a reference sequence. This class extracts Query Name, Query
Sequence, Query Length, Reference Name, Reference Start, CIGAR and Mapping
Quality of the alignment in the CRAM file.

This is the default featurizer used by CRAMLoader, and it extracts the following
fields from each read in each CRAM file in the given order:-
- Column 0: Query Name
- Column 1: Query Sequence
- Column 2: Query Length
- Column 3: Reference Name
- Column 4: Reference Start
- Column 5: CIGAR
- Column 6: Mapping Quality

Examples

>>> from deepchem.data.data_loader import CRAMLoader
>>> import deepchem as dc
>>> inputs = 'deepchem/data/tests/example.cram'
>>> featurizer = dc.feat.CRAMFeaturizer()
>>> features = featurizer.featurize(inputs)
>>> type(features[0])
<class 'numpy.ndarray'>






Note

This class requires pysam to be installed. Pysam can be used with Linux or MacOS X.
To use Pysam on Windows, use Windows Subsystem for Linux(WSL).




	
__init__(max_records=None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/bio_seq_featurizer.py#L225-L236]

	Initialize CRAMFeaturizer.


	Parameters:

	max_records (int or None, optional) – The maximum number of records to extract from the CRAM file. If None, all
records will be extracted.










	
featurize(datapoints: Iterable[Any], log_every_n: int = 1000, **kwargs) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/base_classes.py#L26-L58]

	Calculate features for datapoints.


	Parameters:

	
	datapoints (Iterable[Any]) – A sequence of objects that you’d like to featurize. Subclassses of
Featurizer should instantiate the _featurize method that featurizes
objects in the sequence.


	log_every_n (int, default 1000) – Logs featurization progress every log_every_n steps.






	Returns:

	A numpy array containing a featurized representation of datapoints.



	Return type:

	np.ndarray
















Molecule Tokenizers

A tokenizer is in charge of preparing the inputs for a natural language processing model.
For many scientific applications, it is possible to treat inputs as “words”/”sentences” and
use NLP methods to make meaningful predictions. For example, SMILES strings or DNA sequences
have grammatical structure and can be usefully modeled with NLP techniques. DeepChem provides
some scientifically relevant tokenizers for use in different applications. These tokenizers are
based on those from the Huggingface transformers library (which DeepChem tokenizers inherit from).

The base classes PreTrainedTokenizer and PreTrainedTokenizerFast implements the common methods
for encoding string inputs in model inputs and instantiating/saving python tokenizers
either from a local file or directory or from a pretrained tokenizer provided by the library
(downloaded from HuggingFace’s AWS S3 repository).

PreTrainedTokenizer (transformers.PreTrainedTokenizer) [https://huggingface.co/transformers/main_classes/tokenizer.html#transformers.PreTrainedTokenizer] thus implements
the main methods for using all the tokenizers:


	Tokenizing (spliting strings in sub-word token strings), converting tokens strings to ids and back, and encoding/decoding (i.e. tokenizing + convert to integers)


	Adding new tokens to the vocabulary in a way that is independent of the underlying structure (BPE, SentencePiece…)


	Managing special tokens like mask, beginning-of-sentence, etc tokens (adding them, assigning them to attributes in the tokenizer for easy access and making sure they are not split during tokenization)




BatchEncoding holds the output of the tokenizer’s encoding methods
(__call__, encode_plus and batch_encode_plus) and is derived from a Python dictionary.
When the tokenizer is a pure python tokenizer, this class behave just like a standard python dictionary
and hold the various model inputs computed by these methodes (input_ids, attention_mask…).
For more details on the base tokenizers which the DeepChem tokenizers inherit from,
please refer to the following: HuggingFace tokenizers docs [https://huggingface.co/transformers/main_classes/tokenizer.html]

Tokenization methods on string-based corpuses in the life sciences are
becoming increasingly popular for NLP-based applications to chemistry and biology.
One such example is ChemBERTa, a transformer for molecular property prediction.
DeepChem offers a tutorial for utilizing ChemBERTa using an alternate tokenizer,
a Byte-Piece Encoder, which can be found here. [https://github.com/deepchem/deepchem/blob/master/examples/tutorials/22_Transfer_Learning_With_HuggingFace_tox21.ipynb]


SmilesTokenizer

The dc.feat.SmilesTokenizer module inherits from the BertTokenizer class in transformers.
It runs a WordPiece tokenization algorithm over SMILES strings using the tokenisation SMILES regex developed by Schwaller et. al.

The SmilesTokenizer employs an atom-wise tokenization strategy using the following Regex expression:

SMI_REGEX_PATTERN = "(\[[^\]]+]|Br?|Cl?|N|O|S|P|F|I|b|c|n|o|s|p|\(|\)|\.|=|#||\+|\\\\\/|:||@|\?|>|\*|\$|\%[0–9]{2}|[0–9])"





To use, please install the transformers package using the following pip command:

pip install transformers





References:


	RXN Mapper: Unsupervised Attention-Guided Atom-Mapping [https://chemrxiv.org/articles/Unsupervised_Attention-Guided_Atom-Mapping/12298559]


	Molecular Transformer: Unsupervised Attention-Guided Atom-Mapping [https://pubs.acs.org/doi/10.1021/acscentsci.9b00576]





	
class SmilesTokenizer(vocab_file: str = '', **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/smiles_tokenizer.py#L37-L273]

	Creates the SmilesTokenizer class. The tokenizer heavily inherits from the BertTokenizer
implementation found in Huggingface’s transformers library. It runs a WordPiece tokenization
algorithm over SMILES strings using the tokenisation SMILES regex developed by Schwaller et. al.

Please see https://github.com/huggingface/transformers
and https://github.com/rxn4chemistry/rxnfp for more details.

Examples

>>> from deepchem.feat.smiles_tokenizer import SmilesTokenizer
>>> current_dir = os.path.dirname(os.path.realpath(__file__))
>>> vocab_path = os.path.join(current_dir, 'tests/data', 'vocab.txt')
>>> tokenizer = SmilesTokenizer(vocab_path)
>>> print(tokenizer.encode("CC(=O)OC1=CC=CC=C1C(=O)O"))
[12, 16, 16, 17, 22, 19, 18, 19, 16, 20, 22, 16, 16, 22, 16, 16, 22, 16, 20, 16, 17, 22, 19, 18, 19, 13]





References



[1]
Schwaller, Philippe; Probst, Daniel; Vaucher, Alain C.; Nair, Vishnu H; Kreutter, David;
Laino, Teodoro; et al. (2019): Mapping the Space of Chemical Reactions using Attention-Based Neural
Networks. ChemRxiv. Preprint. https://doi.org/10.26434/chemrxiv.9897365.v3




Note

This class requires huggingface’s transformers and tokenizers libraries to be installed.




	
__init__(vocab_file: str = '', **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/smiles_tokenizer.py#L68-L99]

	Constructs a SmilesTokenizer.


	Parameters:

	vocab_file (str) – Path to a SMILES character per line vocabulary file.
Default vocab file is found in deepchem/feat/tests/data/vocab.txt










	
property vocab_size[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat.py]

	Size of the base vocabulary (without the added tokens).


	Type:

	int










	
convert_tokens_to_string(tokens: List[str])[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/smiles_tokenizer.py#L147-L162]

	Converts a sequence of tokens (string) in a single string.


	Parameters:

	tokens (List[str]) – List of tokens for a given string sequence.



	Returns:

	out_string – Single string from combined tokens.



	Return type:

	str










	
add_special_tokens_ids_single_sequence(token_ids: List[int | None])[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/smiles_tokenizer.py#L164-L176]

	Adds special tokens to the a sequence for sequence classification tasks.

A BERT sequence has the following format: [CLS] X [SEP]


	Parameters:

	token_ids (list[int]) – list of tokenized input ids. Can be obtained using the encode or encode_plus methods.










	
add_special_tokens_single_sequence(tokens: List[str])[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/smiles_tokenizer.py#L178-L187]

	Adds special tokens to the a sequence for sequence classification tasks.
A BERT sequence has the following format: [CLS] X [SEP]


	Parameters:

	tokens (List[str]) – List of tokens for a given string sequence.










	
add_special_tokens_ids_sequence_pair(token_ids_0: List[int | None], token_ids_1: List[int | None]) → List[int | None][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/smiles_tokenizer.py#L189-L206]

	Adds special tokens to a sequence pair for sequence classification tasks.
A BERT sequence pair has the following format: [CLS] A [SEP] B [SEP]


	Parameters:

	
	token_ids_0 (List[int]) – List of ids for the first string sequence in the sequence pair (A).


	token_ids_1 (List[int]) – List of tokens for the second string sequence in the sequence pair (B).













	
add_padding_tokens(token_ids: List[int | None], length: int, right: bool = True) → List[int | None][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/smiles_tokenizer.py#L208-L234]

	Adds padding tokens to return a sequence of length max_length.
By default padding tokens are added to the right of the sequence.


	Parameters:

	
	token_ids (list[optional[int]]) – list of tokenized input ids. Can be obtained using the encode or encode_plus methods.


	length (int) – TODO


	right (bool, default True) – TODO






	Returns:

	TODO



	Return type:

	List[int]










	
save_vocabulary(save_directory: str, filename_prefix: str | None = None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/smiles_tokenizer.py#L236-L273]

	Save the tokenizer vocabulary to a file.


	Parameters:

	vocab_path (obj: str) – The directory in which to save the SMILES character per line vocabulary file.
Default vocab file is found in deepchem/feat/tests/data/vocab.txt



	Returns:

	vocab_file – Paths to the files saved.
typle with string to a SMILES character per line vocabulary file.
Default vocab file is found in deepchem/feat/tests/data/vocab.txt



	Return type:

	Tuple















BasicSmilesTokenizer

The dc.feat.BasicSmilesTokenizer module uses a regex tokenization pattern to tokenise SMILES strings.
The regex is developed by Schwaller et. al. The tokenizer is to be used on SMILES in cases
where the user wishes to not rely on the transformers API.

References:


	Molecular Transformer: Unsupervised Attention-Guided Atom-Mapping [https://pubs.acs.org/doi/10.1021/acscentsci.9b00576]





	
class BasicSmilesTokenizer(regex_pattern: str = '(\\[[^\\]]+]|Br?|Cl?|N|O|S|P|F|I|b|c|n|o|s|p|\\(|\\)|\\.|=|#|-|\\+|\\\\|\\/|:|~|@|\\?|>>?|\\*|\\$|\\%[0-9]{2}|[0-9])')[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/smiles_tokenizer.py#L276-L311]

	Run basic SMILES tokenization using a regex pattern developed by Schwaller et. al.
This tokenizer is to be used when a tokenizer that does not require the transformers library by HuggingFace is required.

Examples

>>> from deepchem.feat.smiles_tokenizer import BasicSmilesTokenizer
>>> tokenizer = BasicSmilesTokenizer()
>>> print(tokenizer.tokenize("CC(=O)OC1=CC=CC=C1C(=O)O"))
['C', 'C', '(', '=', 'O', ')', 'O', 'C', '1', '=', 'C', 'C', '=', 'C', 'C', '=', 'C', '1', 'C', '(', '=', 'O', ')', 'O']





References



[1]
Philippe Schwaller, Teodoro Laino, Théophile Gaudin, Peter Bolgar, Christopher A. Hunter, Costas Bekas, and Alpha A. Lee
ACS Central Science 2019 5 (9): Molecular Transformer: A Model for Uncertainty-Calibrated Chemical Reaction Prediction
1572-1583 DOI: 10.1021/acscentsci.9b00576




	
__init__(regex_pattern: str = '(\\[[^\\]]+]|Br?|Cl?|N|O|S|P|F|I|b|c|n|o|s|p|\\(|\\)|\\.|=|#|-|\\+|\\\\|\\/|:|~|@|\\?|>>?|\\*|\\$|\\%[0-9]{2}|[0-9])')[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/smiles_tokenizer.py#L296-L305]

	Constructs a BasicSMILESTokenizer.


	Parameters:

	regex (string) – SMILES token regex










	
tokenize(text)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/smiles_tokenizer.py#L307-L311]

	Basic Tokenization of a SMILES.











HuggingFaceFeaturizer


	
class HuggingFaceFeaturizer(tokenizer: transformers.tokenization_utils_fast.PreTrainedTokenizerFast)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/huggingface_featurizer.py#L8-L40]

	Wrapper class that wraps HuggingFace tokenizers as DeepChem featurizers

The HuggingFaceFeaturizer wrapper provides a wrapper
around Hugging Face tokenizers allowing them to be used as DeepChem
featurizers. This might be useful in scenarios where user needs to use
a hugging face tokenizer when loading a dataset.

Example

>>> from deepchem.feat import HuggingFaceFeaturizer
>>> from transformers import RobertaTokenizerFast
>>> hf_tokenizer = RobertaTokenizerFast.from_pretrained("seyonec/PubChem10M_SMILES_BPE_60k")
>>> featurizer = HuggingFaceFeaturizer(tokenizer=hf_tokenizer)
>>> result = featurizer.featurize(['CC(=O)C'])






	
__init__(tokenizer: transformers.tokenization_utils_fast.PreTrainedTokenizerFast)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/huggingface_featurizer.py#L25-L36]

	Initializes a tokenizer wrapper


	Parameters:

	tokenizer (transformers.tokenization_utils_fast.PreTrainedTokenizerFast) – The tokenizer to use for featurization










	
featurize(datapoints: Iterable[Any], log_every_n: int = 1000, **kwargs) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/base_classes.py#L26-L58]

	Calculate features for datapoints.


	Parameters:

	
	datapoints (Iterable[Any]) – A sequence of objects that you’d like to featurize. Subclassses of
Featurizer should instantiate the _featurize method that featurizes
objects in the sequence.


	log_every_n (int, default 1000) – Logs featurization progress every log_every_n steps.






	Returns:

	A numpy array containing a featurized representation of datapoints.



	Return type:

	np.ndarray















GroverAtomVocabTokenizer


	
class GroverAtomVocabTokenizer(fname: str)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/vocabulary_builders/grover_vocab.py#L513-L544]

	Grover Atom Vocabulary Tokenizer

The Grover Atom vocab tokenizer is used for tokenizing an atom using a
vocabulary generated by GroverAtomVocabularyBuilder.

Example

>>> import tempfile
>>> import deepchem as dc
>>> from deepchem.feat.vocabulary_builders.grover_vocab import GroverAtomVocabularyBuilder
>>> file = tempfile.NamedTemporaryFile()
>>> dataset = dc.data.NumpyDataset(X=[['CC(=O)C'], ['CCC']])
>>> vocab = GroverAtomVocabularyBuilder()
>>> vocab.build(dataset)
>>> vocab.save(file.name)  # build and save the vocabulary
>>> atom_tokenizer = GroverAtomVocabTokenizer(file.name)
>>> mol = Chem.MolFromSmiles('CC(=O)C')
>>> atom_tokenizer.featurize([(mol, mol.GetAtomWithIdx(0))])[0]
2






	Parameters:

	fname (str) – Filename of vocabulary generated by GroverAtomVocabularyBuilder






	
__init__(fname: str)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/vocabulary_builders/grover_vocab.py#L540-L541]

	









GroverBondVocabTokenizer


	
class GroverBondVocabTokenizer(fname: str)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/vocabulary_builders/grover_vocab.py#L547-L578]

	Grover Bond Vocabulary Tokenizer

The Grover Bond vocab tokenizer is used for tokenizing a bond using a
vocabulary generated by GroverBondVocabularyBuilder.

Example

>>> import tempfile
>>> import deepchem as dc
>>> from deepchem.feat.vocabulary_builders.grover_vocab import GroverBondVocabularyBuilder
>>> file = tempfile.NamedTemporaryFile()
>>> dataset = dc.data.NumpyDataset(X=[['CC(=O)C'], ['CCC']])
>>> vocab = GroverBondVocabularyBuilder()
>>> vocab.build(dataset)
>>> vocab.save(file.name)  # build and save the vocabulary
>>> bond_tokenizer = GroverBondVocabTokenizer(file.name)
>>> mol = Chem.MolFromSmiles('CC(=O)C')
>>> bond_tokenizer.featurize([(mol, mol.GetBondWithIdx(0))])[0]
2






	Parameters:

	fname (str) – Filename of vocabulary generated by GroverAtomVocabularyBuilder






	
__init__(fname: str)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/vocabulary_builders/grover_vocab.py#L574-L575]

	










Vocabulary Builders

Tokenizers uses a vocabulary to tokenize the datapoint. To build a vocabulary, an algorithm which generates vocabulary from a corpus is required. A corpus is usually a collection of molecules, DNA sequences etc. DeepChem provides the following algorithms to build vocabulary from a corpus. A vocabulary builder is not a featurizer. It is an utility which helps the tokenizers to featurize datapoints.


	
class GroverAtomVocabularyBuilder(max_size: int | None = None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/vocabulary_builders/grover_vocab.py#L16-L246]

	Atom Vocabulary Builder for Grover

This module can be used to generate atom vocabulary from SMILES strings for
the GROVER pretraining task. For each atom in a molecule, the vocabulary context is the
node-edge-count of the atom where node is the neighboring atom, edge is the type of bond (single
bond or double bound) and count is the number of such node-edge pairs for the atom in its
neighborhood. For example, for the molecule ‘CC(=O)C’, the context of the first carbon atom is
C-SINGLE1 because it’s neighbor is C atom, the type of bond is SINGLE bond and the count of such
bonds is 1. The context of the second carbon atom is C-SINGLE2 and O-DOUBLE1 because
it is connected to two carbon atoms by a single bond and 1 O atom by a double bond.
The vocabulary of an atom is then computed as the atom-symbol_contexts where the contexts
are sorted in alphabetical order when there are multiple contexts. For example, the
vocabulary of second C is C_C-SINGLE2_O-DOUBLE1. The algorithm enumerates vocabulary of all atoms
in the dataset and makes a vocabulary to index mapping by sorting the vocabulary
by frequency and then alphabetically.

The algorithm enumerates vocabulary of all atoms in the dataset and makes a vocabulary to
index mapping by sorting the vocabulary by frequency and then alphabetically. The max_size
parameter can be used for setting the size of the vocabulary. When this parameter is set,
the algorithm stops adding new words to the index when the vocabulary size reaches max_size.


	Parameters:

	max_size (int (optional)) – Maximum size of vocabulary





Example

>>> import tempfile
>>> import deepchem as dc
>>> from rdkit import Chem
>>> file = tempfile.NamedTemporaryFile()
>>> dataset = dc.data.NumpyDataset(X=[['CCC'], ['CC(=O)C']])
>>> vocab = GroverAtomVocabularyBuilder()
>>> vocab.build(dataset)
>>> vocab.stoi
{'<pad>': 0, '<other>': 1, 'C_C-SINGLE1': 2, 'C_C-SINGLE2': 3, 'C_C-SINGLE2_O-DOUBLE1': 4, 'O_C-DOUBLE1': 5}
>>> vocab.save(file.name)
>>> loaded_vocab = GroverAtomVocabularyBuilder.load(file.name)
>>> mol = Chem.MolFromSmiles('CC(=O)C')
>>> loaded_vocab.encode(mol, mol.GetAtomWithIdx(1))
4






Reference


	
__init__(max_size: int | None = None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/vocabulary_builders/grover_vocab.py#L65-L72]

	




	
build(dataset: Dataset, log_every_n: int = 1000) → None[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/vocabulary_builders/grover_vocab.py#L74-L111]

	Builds vocabulary


	Parameters:

	
	dataset (dc.data.Dataset) – A dataset object with SMILEs strings in X attribute.


	log_every_n (int, default 1000) – Logs vocabulary building progress every log_every_n steps.













	
build_from_csv(csv_path: str, smiles_field: str, log_every_n: int = 1000) → None[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/vocabulary_builders/grover_vocab.py#L113-L154]

	Builds vocabulary from csv file


	Parameters:

	
	csv_path (str) – Path to csv file containing smiles string


	smiles_field (str) – Name of column containing smiles string


	log_every_n (int, default 1000) – Logs vocabulary building progress every log_every_n steps.













	
save(fname: str) → None[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/vocabulary_builders/grover_vocab.py#L156-L166]

	Saves a vocabulary in json format


Parameter


	fname: str
	Filename to save vocabulary











	
classmethod load(fname: str) → GroverAtomVocabularyBuilder[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/vocabulary_builders/grover_vocab.py#L168-L187]

	Loads vocabulary from the specified json file


	Parameters:

	fname (str) – JSON file containing vocabulary



	Returns:

	vocab – A grover atom vocabulary builder which can be used for encoding



	Return type:

	GroverAtomVocabularyBuilder










	
static atom_to_vocab(mol: Any, atom: Any) → str[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/vocabulary_builders/grover_vocab.py#L189-L226]

	Convert atom to vocabulary.


	Parameters:

	
	mol (RDKitMol) – an molecule object


	atom (RDKitAtom) – the target atom.






	Returns:

	vocab – The generated atom vocabulary with its contexts.



	Return type:

	str





Example

>>> from rdkit import Chem
>>> mol = Chem.MolFromSmiles('[C@@H](C)C(=O)O')
>>> GroverAtomVocabularyBuilder.atom_to_vocab(mol, mol.GetAtomWithIdx(0))
'C_C-SINGLE2'
>>> GroverAtomVocabularyBuilder.atom_to_vocab(mol, mol.GetAtomWithIdx(3))
'O_C-DOUBLE1'










	
encode(mol: Any, atom: Any) → str[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/vocabulary_builders/grover_vocab.py#L231-L246]

	Encodes an atom in a molecule


Parameter


	mol: RDKitMol
	An RDKitMol object



	atom: RDKitAtom
	An atom in the molecule






	returns:

	vocab – The vocabulary of the atom in the molecule.



	rtype:

	str
















	
class GroverAtomVocabularyBuilder(max_size: int | None = None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/vocabulary_builders/grover_vocab.py#L16-L246]

	Atom Vocabulary Builder for Grover

This module can be used to generate atom vocabulary from SMILES strings for
the GROVER pretraining task. For each atom in a molecule, the vocabulary context is the
node-edge-count of the atom where node is the neighboring atom, edge is the type of bond (single
bond or double bound) and count is the number of such node-edge pairs for the atom in its
neighborhood. For example, for the molecule ‘CC(=O)C’, the context of the first carbon atom is
C-SINGLE1 because it’s neighbor is C atom, the type of bond is SINGLE bond and the count of such
bonds is 1. The context of the second carbon atom is C-SINGLE2 and O-DOUBLE1 because
it is connected to two carbon atoms by a single bond and 1 O atom by a double bond.
The vocabulary of an atom is then computed as the atom-symbol_contexts where the contexts
are sorted in alphabetical order when there are multiple contexts. For example, the
vocabulary of second C is C_C-SINGLE2_O-DOUBLE1. The algorithm enumerates vocabulary of all atoms
in the dataset and makes a vocabulary to index mapping by sorting the vocabulary
by frequency and then alphabetically.

The algorithm enumerates vocabulary of all atoms in the dataset and makes a vocabulary to
index mapping by sorting the vocabulary by frequency and then alphabetically. The max_size
parameter can be used for setting the size of the vocabulary. When this parameter is set,
the algorithm stops adding new words to the index when the vocabulary size reaches max_size.


	Parameters:

	max_size (int (optional)) – Maximum size of vocabulary





Example

>>> import tempfile
>>> import deepchem as dc
>>> from rdkit import Chem
>>> file = tempfile.NamedTemporaryFile()
>>> dataset = dc.data.NumpyDataset(X=[['CCC'], ['CC(=O)C']])
>>> vocab = GroverAtomVocabularyBuilder()
>>> vocab.build(dataset)
>>> vocab.stoi
{'<pad>': 0, '<other>': 1, 'C_C-SINGLE1': 2, 'C_C-SINGLE2': 3, 'C_C-SINGLE2_O-DOUBLE1': 4, 'O_C-DOUBLE1': 5}
>>> vocab.save(file.name)
>>> loaded_vocab = GroverAtomVocabularyBuilder.load(file.name)
>>> mol = Chem.MolFromSmiles('CC(=O)C')
>>> loaded_vocab.encode(mol, mol.GetAtomWithIdx(1))
4






Reference


	
__init__(max_size: int | None = None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/vocabulary_builders/grover_vocab.py#L65-L72]

	




	
build(dataset: Dataset, log_every_n: int = 1000) → None[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/vocabulary_builders/grover_vocab.py#L74-L111]

	Builds vocabulary


	Parameters:

	
	dataset (dc.data.Dataset) – A dataset object with SMILEs strings in X attribute.


	log_every_n (int, default 1000) – Logs vocabulary building progress every log_every_n steps.













	
build_from_csv(csv_path: str, smiles_field: str, log_every_n: int = 1000) → None[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/vocabulary_builders/grover_vocab.py#L113-L154]

	Builds vocabulary from csv file


	Parameters:

	
	csv_path (str) – Path to csv file containing smiles string


	smiles_field (str) – Name of column containing smiles string


	log_every_n (int, default 1000) – Logs vocabulary building progress every log_every_n steps.













	
save(fname: str) → None[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/vocabulary_builders/grover_vocab.py#L156-L166]

	Saves a vocabulary in json format


Parameter


	fname: str
	Filename to save vocabulary











	
classmethod load(fname: str) → GroverAtomVocabularyBuilder[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/vocabulary_builders/grover_vocab.py#L168-L187]

	Loads vocabulary from the specified json file


	Parameters:

	fname (str) – JSON file containing vocabulary



	Returns:

	vocab – A grover atom vocabulary builder which can be used for encoding



	Return type:

	GroverAtomVocabularyBuilder










	
static atom_to_vocab(mol: Any, atom: Any) → str[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/vocabulary_builders/grover_vocab.py#L189-L226]

	Convert atom to vocabulary.


	Parameters:

	
	mol (RDKitMol) – an molecule object


	atom (RDKitAtom) – the target atom.






	Returns:

	vocab – The generated atom vocabulary with its contexts.



	Return type:

	str





Example

>>> from rdkit import Chem
>>> mol = Chem.MolFromSmiles('[C@@H](C)C(=O)O')
>>> GroverAtomVocabularyBuilder.atom_to_vocab(mol, mol.GetAtomWithIdx(0))
'C_C-SINGLE2'
>>> GroverAtomVocabularyBuilder.atom_to_vocab(mol, mol.GetAtomWithIdx(3))
'O_C-DOUBLE1'










	
encode(mol: Any, atom: Any) → str[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/vocabulary_builders/grover_vocab.py#L231-L246]

	Encodes an atom in a molecule


Parameter


	mol: RDKitMol
	An RDKitMol object



	atom: RDKitAtom
	An atom in the molecule






	returns:

	vocab – The vocabulary of the atom in the molecule.



	rtype:

	str

















Sequence Featurizers


PFMFeaturizer

The dc.feat.PFMFeaturizer module implements a featurizer for position frequency matrices.
This takes in a list of multisequence alignments and returns a list of position frequency matrices.


	
class PFMFeaturizer(charset: List[str] = ['A', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'K', 'L', 'M', 'N', 'P', 'Q', 'R', 'S', 'T', 'V', 'W', 'Y', 'X', 'Z', 'B', 'U', 'O'], max_length: int | None = 100)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/sequence_featurizers/position_frequency_matrix_featurizer.py#L12-L80]

	Encodes a list position frequency matrices for a given list of multiple sequence alignments

The default character set is 25 amino acids. If you want to use a different character set, such as nucleotides, simply pass in
a list of character strings in the featurizer constructor.

The max_length parameter is the maximum length of the sequences to be featurized. If you want to featurize longer sequences, modify the
max_length parameter in the featurizer constructor.

The final row in the position frequency matrix is the unknown set, if there are any characters which are not included in the charset.

Examples

>>> from deepchem.feat.sequence_featurizers import PFMFeaturizer
>>> from deepchem.data import NumpyDataset
>>> msa = NumpyDataset(X=[['ABC','BCD'],['AAA','AAB']], ids=[['seq01','seq02'],['seq11','seq12']])
>>> seqs = msa.X
>>> featurizer = PFMFeaturizer()
>>> pfm = featurizer.featurize(seqs)
>>> pfm.shape
(2, 26, 100)






	
__init__(charset: List[str] = ['A', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'K', 'L', 'M', 'N', 'P', 'Q', 'R', 'S', 'T', 'V', 'W', 'Y', 'X', 'Z', 'B', 'U', 'O'], max_length: int | None = 100)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/sequence_featurizers/position_frequency_matrix_featurizer.py#L37-L53]

	Initialize featurizer.


	Parameters:

	
	charset (List[str] (default CHARSET)) – A list of strings, where each string is length 1 and unique.


	max_length (int, optional (default 25)) – Maximum length of sequences to be featurized.



















Other Featurizers


BertFeaturizer


	
class BertFeaturizer(tokenizer: BertTokenizerFast)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/bert_tokenizer.py#L11-L57]

	Bert Featurizer.

Bert Featurizer.
The Bert Featurizer is a wrapper class for HuggingFace’s BertTokenizerFast.
This class intends to allow users to use the BertTokenizer API while
remaining inside the DeepChem ecosystem.

Examples

>>> from deepchem.feat import BertFeaturizer
>>> from transformers import BertTokenizerFast
>>> tokenizer = BertTokenizerFast.from_pretrained("Rostlab/prot_bert", do_lower_case=False)
>>> featurizer = BertFeaturizer(tokenizer)
>>> feats = featurizer.featurize(['D L I P [MASK] L V T'])





Notes

Examples are based on RostLab’s ProtBert documentation.


	
__init__(tokenizer: BertTokenizerFast)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/bert_tokenizer.py#L32-L38]

	




	
featurize(datapoints: Iterable[Any], log_every_n: int = 1000, **kwargs) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/base_classes.py#L26-L58]

	Calculate features for datapoints.


	Parameters:

	
	datapoints (Iterable[Any]) – A sequence of objects that you’d like to featurize. Subclassses of
Featurizer should instantiate the _featurize method that featurizes
objects in the sequence.


	log_every_n (int, default 1000) – Logs featurization progress every log_every_n steps.






	Returns:

	A numpy array containing a featurized representation of datapoints.



	Return type:

	np.ndarray















RobertaFeaturizer


	
class RobertaFeaturizer(**kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/roberta_tokenizer.py#L11-L64]

	Roberta Featurizer.

The Roberta Featurizer is a wrapper class of the Roberta Tokenizer,
which is used by Huggingface’s transformers library for tokenizing large corpuses for Roberta Models.
Please confirm the details in [1]_.

Please see https://github.com/huggingface/transformers
and https://github.com/seyonechithrananda/bert-loves-chemistry for more details.

Examples

>>> from deepchem.feat import RobertaFeaturizer
>>> smiles = ["Cn1c(=O)c2c(ncn2C)n(C)c1=O", "CC(=O)N1CN(C(C)=O)C(O)C1O"]
>>> featurizer = RobertaFeaturizer.from_pretrained("seyonec/SMILES_tokenized_PubChem_shard00_160k")
>>> out = featurizer(smiles, add_special_tokens=True, truncation=True)





References



[1]
Chithrananda, Seyone, Grand, Gabriel, and Ramsundar, Bharath (2020): “Chemberta: Large-scale self-supervised
pretraining for molecular property prediction.” arXiv. preprint. arXiv:2010.09885.




Note

This class requires transformers to be installed.
RobertaFeaturizer uses dual inheritance with RobertaTokenizerFast in Huggingface for rapid tokenization,
as well as DeepChem’s MolecularFeaturizer class.




	
__init__(**kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/roberta_tokenizer.py#L41-L43]

	




	
__len__() → int[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/../../../envs/2.8.0/lib/python3.9/site-packages/transformers/tokenization_utils_fast.py#L247-L251]

	Size of the full vocabulary with the added tokens.






	
add_special_tokens(special_tokens_dict: Dict[str, str | AddedToken], replace_additional_special_tokens=True) → int[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/../../../envs/2.8.0/lib/python3.9/site-packages/transformers/tokenization_utils_base.py#L884-L984]

	Add a dictionary of special tokens (eos, pad, cls, etc.) to the encoder and link them to class attributes. If
special tokens are NOT in the vocabulary, they are added to it (indexed starting from the last index of the
current vocabulary).

When adding new tokens to the vocabulary, you should make sure to also resize the token embedding matrix of the
model so that its embedding matrix matches the tokenizer.

In order to do that, please use the [~PreTrainedModel.resize_token_embeddings] method.

Using add_special_tokens will ensure your special tokens can be used in several ways:


	Special tokens can be skipped when decoding using skip_special_tokens = True.


	Special tokens are carefully handled by the tokenizer (they are never split), similar to AddedTokens.


	You can easily refer to special tokens using tokenizer class attributes like tokenizer.cls_token. This
makes it easy to develop model-agnostic training and fine-tuning scripts.




When possible, special tokens are already registered for provided pretrained models (for instance
[BertTokenizer] cls_token is already registered to be :obj*’[CLS]’* and XLM’s one is also registered to be
‘</s>’).


	Parameters:

	
	special_tokens_dict (dictionary str to str or tokenizers.AddedToken) – Keys should be in the list of predefined special attributes: [bos_token, eos_token, unk_token,
sep_token, pad_token, cls_token, mask_token, additional_special_tokens].

Tokens are only added if they are not already in the vocabulary (tested by checking if the tokenizer
assign the index of the unk_token to them).




	replace_additional_special_tokens (bool, optional,, defaults to True) – If True, the existing list of additional special tokens will be replaced by the list provided in
special_tokens_dict. Otherwise, self._additional_special_tokens is just extended. In the former
case, the tokens will NOT be removed from the tokenizer’s full vocabulary - they are only being flagged
as non-special tokens. Remember, this only affects which tokens are skipped during decoding, not the
added_tokens_encoder and added_tokens_decoder. This means that the previous
additional_special_tokens are still added tokens, and will not be split by the model.






	Returns:

	Number of tokens added to the vocabulary.



	Return type:

	int





Examples:

```python
# Let’s see how to add a new classification token to GPT-2
tokenizer = GPT2Tokenizer.from_pretrained(“openai-community/gpt2”)
model = GPT2Model.from_pretrained(“openai-community/gpt2”)

special_tokens_dict = {“cls_token”: “<CLS>”}

num_added_toks = tokenizer.add_special_tokens(special_tokens_dict)
print(“We have added”, num_added_toks, “tokens”)
# Notice: resize_token_embeddings expect to receive the full size of the new vocabulary, i.e., the length of the tokenizer.
model.resize_token_embeddings(len(tokenizer))

assert tokenizer.cls_token == “<CLS>”
```






	
add_tokens(new_tokens: str | AddedToken | List[str | AddedToken], special_tokens: bool = False) → int[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/../../../envs/2.8.0/lib/python3.9/site-packages/transformers/tokenization_utils_base.py#L986-L1033]

	Add a list of new tokens to the tokenizer class. If the new tokens are not in the vocabulary, they are added to
it with indices starting from length of the current vocabulary and and will be isolated before the tokenization
algorithm is applied. Added tokens and tokens from the vocabulary of the tokenization algorithm are therefore
not treated in the same way.

Note, when adding new tokens to the vocabulary, you should make sure to also resize the token embedding matrix
of the model so that its embedding matrix matches the tokenizer.

In order to do that, please use the [~PreTrainedModel.resize_token_embeddings] method.


	Parameters:

	
	new_tokens (str, tokenizers.AddedToken or a list of str or tokenizers.AddedToken) – Tokens are only added if they are not already in the vocabulary. tokenizers.AddedToken wraps a string
token to let you personalize its behavior: whether this token should only match against a single word,
whether this token should strip all potential whitespaces on the left side, whether this token should
strip all potential whitespaces on the right side, etc.


	special_tokens (bool, optional, defaults to False) – Can be used to specify if the token is a special token. This mostly change the normalization behavior
(special tokens like CLS or [MASK] are usually not lower-cased for instance).

See details for tokenizers.AddedToken in HuggingFace tokenizers library.








	Returns:

	Number of tokens added to the vocabulary.



	Return type:

	int





Examples:

```python
# Let’s see how to increase the vocabulary of Bert model and tokenizer
tokenizer = BertTokenizerFast.from_pretrained(“google-bert/bert-base-uncased”)
model = BertModel.from_pretrained(“google-bert/bert-base-uncased”)

num_added_toks = tokenizer.add_tokens([“new_tok1”, “my_new-tok2”])
print(“We have added”, num_added_toks, “tokens”)
# Notice: resize_token_embeddings expect to receive the full size of the new vocabulary, i.e., the length of the tokenizer.
model.resize_token_embeddings(len(tokenizer))
```






	
property added_tokens_decoder: Dict[int, AddedToken][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat.py]

	Returns the added tokens in the vocabulary as a dictionary of index to AddedToken.


	Returns:

	The added tokens.



	Return type:

	Dict[str, int]










	
property added_tokens_encoder: Dict[str, int][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat.py]

	Returns the sorted mapping from string to index. The added tokens encoder is cached for performance
optimisation in self._added_tokens_encoder for the slow tokenizers.






	
property additional_special_tokens: List[str][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat.py]

	All the additional special tokens you may want to use. Log an error if used while not having been
set.


	Type:

	List[str]










	
property additional_special_tokens_ids: List[int][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat.py]

	Ids of all the additional special tokens in the vocabulary. Log an error if used while not having
been set.


	Type:

	List[int]










	
property all_special_ids: List[int][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat.py]

	List the ids of the special tokens(‘<unk>’, ‘<cls>’, etc.) mapped to class attributes.


	Type:

	List[int]










	
property all_special_tokens: List[str][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat.py]

	A list of the unique special tokens (‘<unk>’, ‘<cls>’, …, etc.).

Convert tokens of tokenizers.AddedToken type to string.


	Type:

	List[str]










	
property all_special_tokens_extended: List[str | AddedToken][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat.py]

	All the special tokens (‘<unk>’, ‘<cls>’, etc.), the order has
nothing to do with the index of each tokens. If you want to know the correct indices, check
self.added_tokens_encoder. We can’t create an order anymore as the keys are AddedTokens and not Strings.

Don’t convert tokens of tokenizers.AddedToken type to string so they can be used to control more finely how
special tokens are tokenized.


	Type:

	List[Union[str, tokenizers.AddedToken]]










	
apply_chat_template(conversation: List[Dict[str, str]] | Conversation, chat_template: str | None = None, add_generation_prompt: bool = False, tokenize: bool = True, padding: bool = False, truncation: bool = False, max_length: int | None = None, return_tensors: str | TensorType | None = None, return_dict: bool = False, tokenizer_kwargs: Dict[str, Any] | None = None, **kwargs) → str | List[int][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/../../../envs/2.8.0/lib/python3.9/site-packages/transformers/tokenization_utils_base.py#L1693-L1811]

	Converts a Conversation object or a list of dictionaries with “role” and “content” keys to a list of token
ids. This method is intended for use with chat models, and will read the tokenizer’s chat_template attribute to
determine the format and control tokens to use when converting. When chat_template is None, it will fall back
to the default_chat_template specified at the class level.


	Parameters:

	
	conversation (Union[List[Dict[str, str]], "Conversation"]) – A Conversation object or list of dicts
with “role” and “content” keys, representing the chat history so far.


	chat_template (str, optional) – A Jinja template to use for this conversion. If
this is not passed, the model’s default chat template will be used instead.


	add_generation_prompt (bool, optional) – Whether to end the prompt with the token(s) that indicate
the start of an assistant message. This is useful when you want to generate a response from the model.
Note that this argument will be passed to the chat template, and so it must be supported in the
template for this argument to have any effect.


	tokenize (bool, defaults to True) – Whether to tokenize the output. If False, the output will be a string.


	padding (bool, defaults to False) – Whether to pad sequences to the maximum length. Has no effect if tokenize is False.


	truncation (bool, defaults to False) – Whether to truncate sequences at the maximum length. Has no effect if tokenize is False.


	max_length (int, optional) – Maximum length (in tokens) to use for padding or truncation. Has no effect if tokenize is False. If
not specified, the tokenizer’s max_length attribute will be used as a default.


	return_tensors (str or [~utils.TensorType], optional) – If set, will return tensors of a particular framework. Has no effect if tokenize is False. Acceptable
values are:
- ‘tf’: Return TensorFlow tf.Tensor objects.
- ‘pt’: Return PyTorch torch.Tensor objects.
- ‘np’: Return NumPy np.ndarray objects.
- ‘jax’: Return JAX jnp.ndarray objects.


	return_dict (bool, optional, defaults to False) – Whether to return a dictionary with named outputs. Has no effect if tokenize is False.


	(`Dict[str (tokenizer_kwargs) – Any]`, optional): Additional kwargs to pass to the tokenizer.




	**kwargs – Additional kwargs to pass to the template renderer. Will be accessible by the chat template.






	Returns:

	A list of token ids representing the tokenized chat so far, including control tokens. This
output is ready to pass to the model, either directly or via methods like generate().



	Return type:

	List[int]










	
as_target_tokenizer()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/../../../../../../../.asdf/installs/python/3.9.18/lib/python3.9/contextlib.py#L3929-L3944]

	Temporarily sets the tokenizer for encoding the targets. Useful for tokenizer associated to
sequence-to-sequence models that need a slightly different processing for the labels.






	
property backend_tokenizer: Tokenizer[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat.py]

	The Rust tokenizer used as a backend.


	Type:

	tokenizers.implementations.BaseTokenizer










	
batch_decode(sequences: List[int] | List[List[int]] | np.ndarray | torch.Tensor | tf.Tensor, skip_special_tokens: bool = False, clean_up_tokenization_spaces: bool = None, **kwargs) → List[str][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/../../../envs/2.8.0/lib/python3.9/site-packages/transformers/tokenization_utils_base.py#L3761-L3793]

	Convert a list of lists of token ids into a list of strings by calling decode.


	Parameters:

	
	sequences (Union[List[int], List[List[int]], np.ndarray, torch.Tensor, tf.Tensor]) – List of tokenized input ids. Can be obtained using the __call__ method.


	skip_special_tokens (bool, optional, defaults to False) – Whether or not to remove special tokens in the decoding.


	clean_up_tokenization_spaces (bool, optional) – Whether or not to clean up the tokenization spaces. If None, will default to
self.clean_up_tokenization_spaces.


	kwargs (additional keyword arguments, optional) – Will be passed to the underlying model specific decode method.






	Returns:

	The list of decoded sentences.



	Return type:

	List[str]










	
batch_encode_plus(batch_text_or_text_pairs: List[str] | List[Tuple[str, str]] | List[List[str]] | List[Tuple[List[str], List[str]]] | List[List[int]] | List[Tuple[List[int], List[int]]], add_special_tokens: bool = True, padding: bool | str | PaddingStrategy = False, truncation: bool | str | TruncationStrategy | None = None, max_length: int | None = None, stride: int = 0, is_split_into_words: bool = False, pad_to_multiple_of: int | None = None, return_tensors: str | TensorType | None = None, return_token_type_ids: bool | None = None, return_attention_mask: bool | None = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs) → BatchEncoding[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/../../../envs/2.8.0/lib/python3.9/site-packages/transformers/tokenization_utils_base.py#L3095-L3167]

	Tokenize and prepare for the model a list of sequences or a list of pairs of sequences.

<Tip warning={true}>

This method is deprecated, __call__ should be used instead.

</Tip>


	Parameters:

	
	batch_text_or_text_pairs (List[str], List[Tuple[str, str]], List[List[str]], List[Tuple[List[str], List[str]]], and for not-fast tokenizers, also List[List[int]], List[Tuple[List[int], List[int]]]) – Batch of sequences or pair of sequences to be encoded. This can be a list of
string/string-sequences/int-sequences or a list of pair of string/string-sequences/int-sequence (see
details in encode_plus).


	add_special_tokens (bool, optional, defaults to True) – Whether or not to add special tokens when encoding the sequences. This will use the underlying
PretrainedTokenizerBase.build_inputs_with_special_tokens function, which defines which tokens are
automatically added to the input ids. This is usefull if you want to add bos or eos tokens
automatically.


	padding (bool, str or [~utils.PaddingStrategy], optional, defaults to False) – Activates and controls padding. Accepts the following values:


	True or ‘longest’: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).


	’max_length’: Pad to a maximum length specified with the argument max_length or to the maximum
acceptable input length for the model if that argument is not provided.


	False or ‘do_not_pad’ (default): No padding (i.e., can output a batch with sequences of different
lengths).







	truncation (bool, str or [~tokenization_utils_base.TruncationStrategy], optional, defaults to False) – Activates and controls truncation. Accepts the following values:


	True or ‘longest_first’: Truncate to a maximum length specified with the argument max_length or
to the maximum acceptable input length for the model if that argument is not provided. This will
truncate token by token, removing a token from the longest sequence in the pair if a pair of
sequences (or a batch of pairs) is provided.


	’only_first’: Truncate to a maximum length specified with the argument max_length or to the
maximum acceptable input length for the model if that argument is not provided. This will only
truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided.


	’only_second’: Truncate to a maximum length specified with the argument max_length or to the
maximum acceptable input length for the model if that argument is not provided. This will only
truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.


	False or ‘do_not_truncate’ (default): No truncation (i.e., can output batch with sequence lengths
greater than the model maximum admissible input size).







	max_length (int, optional) – Controls the maximum length to use by one of the truncation/padding parameters.

If left unset or set to None, this will use the predefined model maximum length if a maximum length
is required by one of the truncation/padding parameters. If the model has no specific maximum input
length (like XLNet) truncation/padding to a maximum length will be deactivated.




	stride (int, optional, defaults to 0) – If set to a number along with max_length, the overflowing tokens returned when
return_overflowing_tokens=True will contain some tokens from the end of the truncated sequence
returned to provide some overlap between truncated and overflowing sequences. The value of this
argument defines the number of overlapping tokens.


	is_split_into_words (bool, optional, defaults to False) – Whether or not the input is already pre-tokenized (e.g., split into words). If set to True, the
tokenizer assumes the input is already split into words (for instance, by splitting it on whitespace)
which it will tokenize. This is useful for NER or token classification.


	pad_to_multiple_of (int, optional) – If set will pad the sequence to a multiple of the provided value. Requires padding to be activated.
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
>= 7.5 (Volta).


	return_tensors (str or [~utils.TensorType], optional) – If set, will return tensors instead of list of python integers. Acceptable values are:


	’tf’: Return TensorFlow tf.constant objects.


	’pt’: Return PyTorch torch.Tensor objects.


	’np’: Return Numpy np.ndarray objects.







	return_token_type_ids (bool, optional) – Whether to return token type IDs. If left to the default, will return the token type IDs according to
the specific tokenizer’s default, defined by the return_outputs attribute.

[What are token type IDs?](../glossary#token-type-ids)




	return_attention_mask (bool, optional) – Whether to return the attention mask. If left to the default, will return the attention mask according
to the specific tokenizer’s default, defined by the return_outputs attribute.

[What are attention masks?](../glossary#attention-mask)




	return_overflowing_tokens (bool, optional, defaults to False) – Whether or not to return overflowing token sequences. If a pair of sequences of input ids (or a batch
of pairs) is provided with truncation_strategy = longest_first or True, an error is raised instead
of returning overflowing tokens.


	return_special_tokens_mask (bool, optional, defaults to False) – Whether or not to return special tokens mask information.


	return_offsets_mapping (bool, optional, defaults to False) – Whether or not to return (char_start, char_end) for each token.

This is only available on fast tokenizers inheriting from [PreTrainedTokenizerFast], if using
Python’s tokenizer, this method will raise NotImplementedError.




	return_length (bool, optional, defaults to False) – Whether or not to return the lengths of the encoded inputs.


	verbose (bool, optional, defaults to True) – Whether or not to print more information and warnings.


	**kwargs – passed to the self.tokenize() method






	Returns:

	A [BatchEncoding] with the following fields:


	input_ids – List of token ids to be fed to a model.

[What are input IDs?](../glossary#input-ids)



	token_type_ids – List of token type ids to be fed to a model (when return_token_type_ids=True or
if “token_type_ids” is in self.model_input_names).

[What are token type IDs?](../glossary#token-type-ids)



	attention_mask – List of indices specifying which tokens should be attended to by the model (when
return_attention_mask=True or if “attention_mask” is in self.model_input_names).

[What are attention masks?](../glossary#attention-mask)



	overflowing_tokens – List of overflowing tokens sequences (when a max_length is specified and
return_overflowing_tokens=True).


	num_truncated_tokens – Number of tokens truncated (when a max_length is specified and
return_overflowing_tokens=True).


	special_tokens_mask – List of 0s and 1s, with 1 specifying added special tokens and 0 specifying
regular sequence tokens (when add_special_tokens=True and return_special_tokens_mask=True).


	length – The length of the inputs (when return_length=True)








	Return type:

	[BatchEncoding]










	
property bos_token: str[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat.py]

	Beginning of sentence token. Log an error if used while not having been set.


	Type:

	str










	
property bos_token_id: int | None[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat.py]

	Id of the beginning of sentence token in the vocabulary. Returns None if the token has not
been set.


	Type:

	Optional[int]










	
build_inputs_with_special_tokens(token_ids_0, token_ids_1=None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/../../../envs/2.8.0/lib/python3.9/site-packages/transformers/models/roberta/tokenization_roberta_fast.py#L286-L291]

	Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens.

This implementation does not add special tokens and this method should be overridden in a subclass.


	Parameters:

	
	token_ids_0 (List[int]) – The first tokenized sequence.


	token_ids_1 (List[int], optional) – The second tokenized sequence.






	Returns:

	The model input with special tokens.



	Return type:

	List[int]










	
property can_save_slow_tokenizer: bool[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat.py]

	Whether or not the slow tokenizer can be saved. Usually for sentencepiece based slow tokenizer, this
can only be True if the original “sentencepiece.model” was not deleted.


	Type:

	bool










	
static clean_up_tokenization(out_string: str) → str[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/../../../envs/2.8.0/lib/python3.9/site-packages/transformers/tokenization_utils_base.py#L3872-L3895]

	Clean up a list of simple English tokenization artifacts like spaces before punctuations and abbreviated forms.


	Parameters:

	out_string (str) – The text to clean up.



	Returns:

	The cleaned-up string.



	Return type:

	str










	
property cls_token: str[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat.py]

	Classification token, to extract a summary of an input sequence leveraging self-attention along the full
depth of the model. Log an error if used while not having been set.


	Type:

	str










	
property cls_token_id: int | None[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat.py]

	Id of the classification token in the vocabulary, to extract a summary of an input sequence
leveraging self-attention along the full depth of the model.

Returns None if the token has not been set.


	Type:

	Optional[int]










	
convert_ids_to_tokens(ids: int | List[int], skip_special_tokens: bool = False) → str | List[str][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/../../../envs/2.8.0/lib/python3.9/site-packages/transformers/tokenization_utils_fast.py#L369-L393]

	Converts a single index or a sequence of indices in a token or a sequence of tokens, using the vocabulary and
added tokens.


	Parameters:

	
	ids (int or List[int]) – The token id (or token ids) to convert to tokens.


	skip_special_tokens (bool, optional, defaults to False) – Whether or not to remove special tokens in the decoding.






	Returns:

	The decoded token(s).



	Return type:

	str or List[str]










	
convert_tokens_to_ids(tokens: str | List[str]) → int | List[int][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/../../../envs/2.8.0/lib/python3.9/site-packages/transformers/tokenization_utils_fast.py#L314-L331]

	Converts a token string (or a sequence of tokens) in a single integer id (or a sequence of ids), using the
vocabulary.


	Parameters:

	tokens (str or List[str]) – One or several token(s) to convert to token id(s).



	Returns:

	The token id or list of token ids.



	Return type:

	int or List[int]










	
convert_tokens_to_string(tokens: List[str]) → str[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/../../../envs/2.8.0/lib/python3.9/site-packages/transformers/tokenization_utils_fast.py#L611-L612]

	Converts a sequence of tokens in a single string. The most simple way to do it is “ “.join(tokens) but we
often want to remove sub-word tokenization artifacts at the same time.


	Parameters:

	tokens (List[str]) – The token to join in a string.



	Returns:

	The joined tokens.



	Return type:

	str










	
create_token_type_ids_from_sequences(token_ids_0: List[int], token_ids_1: List[int] | None = None) → List[int][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/../../../envs/2.8.0/lib/python3.9/site-packages/transformers/models/roberta/tokenization_roberta_fast.py#L293-L314]

	Create a mask from the two sequences passed to be used in a sequence-pair classification task. RoBERTa does not
make use of token type ids, therefore a list of zeros is returned.


	Parameters:

	
	token_ids_0 (List[int]) – List of IDs.


	token_ids_1 (List[int], optional) – Optional second list of IDs for sequence pairs.






	Returns:

	List of zeros.



	Return type:

	List[int]










	
decode(token_ids: int | List[int] | np.ndarray | torch.Tensor | tf.Tensor, skip_special_tokens: bool = False, clean_up_tokenization_spaces: bool = None, **kwargs) → str[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/../../../envs/2.8.0/lib/python3.9/site-packages/transformers/tokenization_utils_base.py#L3795-L3830]

	Converts a sequence of ids in a string, using the tokenizer and vocabulary with options to remove special
tokens and clean up tokenization spaces.

Similar to doing self.convert_tokens_to_string(self.convert_ids_to_tokens(token_ids)).


	Parameters:

	
	token_ids (Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]) – List of tokenized input ids. Can be obtained using the __call__ method.


	skip_special_tokens (bool, optional, defaults to False) – Whether or not to remove special tokens in the decoding.


	clean_up_tokenization_spaces (bool, optional) – Whether or not to clean up the tokenization spaces. If None, will default to
self.clean_up_tokenization_spaces.


	kwargs (additional keyword arguments, optional) – Will be passed to the underlying model specific decode method.






	Returns:

	The decoded sentence.



	Return type:

	str










	
property decoder: Decoder[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat.py]

	The Rust decoder for this tokenizer.


	Type:

	tokenizers.decoders.Decoder










	
property default_chat_template[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat.py]

	This template formats inputs in the standard ChatML format. See
https://github.com/openai/openai-python/blob/main/chatml.md






	
encode(text: str | List[str] | List[int], text_pair: str | List[str] | List[int] | None = None, add_special_tokens: bool = True, padding: bool | str | PaddingStrategy = False, truncation: bool | str | TruncationStrategy | None = None, max_length: int | None = None, stride: int = 0, return_tensors: str | TensorType | None = None, **kwargs) → List[int][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/../../../envs/2.8.0/lib/python3.9/site-packages/transformers/tokenization_utils_base.py#L2606-L2655]

	Converts a string to a sequence of ids (integer), using the tokenizer and vocabulary.

Same as doing self.convert_tokens_to_ids(self.tokenize(text)).


	Parameters:

	
	text (str, List[str] or List[int]) – The first sequence to be encoded. This can be a string, a list of strings (tokenized string using the
tokenize method) or a list of integers (tokenized string ids using the convert_tokens_to_ids
method).


	text_pair (str, List[str] or List[int], optional) – Optional second sequence to be encoded. This can be a string, a list of strings (tokenized string using
the tokenize method) or a list of integers (tokenized string ids using the convert_tokens_to_ids
method).


	add_special_tokens (bool, optional, defaults to True) – Whether or not to add special tokens when encoding the sequences. This will use the underlying
PretrainedTokenizerBase.build_inputs_with_special_tokens function, which defines which tokens are
automatically added to the input ids. This is usefull if you want to add bos or eos tokens
automatically.


	padding (bool, str or [~utils.PaddingStrategy], optional, defaults to False) – Activates and controls padding. Accepts the following values:


	True or ‘longest’: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).


	’max_length’: Pad to a maximum length specified with the argument max_length or to the maximum
acceptable input length for the model if that argument is not provided.


	False or ‘do_not_pad’ (default): No padding (i.e., can output a batch with sequences of different
lengths).







	truncation (bool, str or [~tokenization_utils_base.TruncationStrategy], optional, defaults to False) – Activates and controls truncation. Accepts the following values:


	True or ‘longest_first’: Truncate to a maximum length specified with the argument max_length or
to the maximum acceptable input length for the model if that argument is not provided. This will
truncate token by token, removing a token from the longest sequence in the pair if a pair of
sequences (or a batch of pairs) is provided.


	’only_first’: Truncate to a maximum length specified with the argument max_length or to the
maximum acceptable input length for the model if that argument is not provided. This will only
truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided.


	’only_second’: Truncate to a maximum length specified with the argument max_length or to the
maximum acceptable input length for the model if that argument is not provided. This will only
truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.


	False or ‘do_not_truncate’ (default): No truncation (i.e., can output batch with sequence lengths
greater than the model maximum admissible input size).







	max_length (int, optional) – Controls the maximum length to use by one of the truncation/padding parameters.

If left unset or set to None, this will use the predefined model maximum length if a maximum length
is required by one of the truncation/padding parameters. If the model has no specific maximum input
length (like XLNet) truncation/padding to a maximum length will be deactivated.




	stride (int, optional, defaults to 0) – If set to a number along with max_length, the overflowing tokens returned when
return_overflowing_tokens=True will contain some tokens from the end of the truncated sequence
returned to provide some overlap between truncated and overflowing sequences. The value of this
argument defines the number of overlapping tokens.


	is_split_into_words (bool, optional, defaults to False) – Whether or not the input is already pre-tokenized (e.g., split into words). If set to True, the
tokenizer assumes the input is already split into words (for instance, by splitting it on whitespace)
which it will tokenize. This is useful for NER or token classification.


	pad_to_multiple_of (int, optional) – If set will pad the sequence to a multiple of the provided value. Requires padding to be activated.
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
>= 7.5 (Volta).


	return_tensors (str or [~utils.TensorType], optional) – If set, will return tensors instead of list of python integers. Acceptable values are:


	’tf’: Return TensorFlow tf.constant objects.


	’pt’: Return PyTorch torch.Tensor objects.


	’np’: Return Numpy np.ndarray objects.







	**kwargs – Passed along to the .tokenize() method.






	Returns:

	The tokenized ids of the text.



	Return type:

	List[int], torch.Tensor, tf.Tensor or np.ndarray










	
encode_plus(text: str | List[str] | List[int], text_pair: str | List[str] | List[int] | None = None, add_special_tokens: bool = True, padding: bool | str | PaddingStrategy = False, truncation: bool | str | TruncationStrategy | None = None, max_length: int | None = None, stride: int = 0, is_split_into_words: bool = False, pad_to_multiple_of: int | None = None, return_tensors: str | TensorType | None = None, return_token_type_ids: bool | None = None, return_attention_mask: bool | None = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs) → BatchEncoding[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/../../../envs/2.8.0/lib/python3.9/site-packages/transformers/tokenization_utils_base.py#L2999-L3070]

	Tokenize and prepare for the model a sequence or a pair of sequences.

<Tip warning={true}>

This method is deprecated, __call__ should be used instead.

</Tip>


	Parameters:

	
	text (str, List[str] or List[int] (the latter only for not-fast tokenizers)) – The first sequence to be encoded. This can be a string, a list of strings (tokenized string using the
tokenize method) or a list of integers (tokenized string ids using the convert_tokens_to_ids
method).


	text_pair (str, List[str] or List[int], optional) – Optional second sequence to be encoded. This can be a string, a list of strings (tokenized string using
the tokenize method) or a list of integers (tokenized string ids using the convert_tokens_to_ids
method).


	add_special_tokens (bool, optional, defaults to True) – Whether or not to add special tokens when encoding the sequences. This will use the underlying
PretrainedTokenizerBase.build_inputs_with_special_tokens function, which defines which tokens are
automatically added to the input ids. This is usefull if you want to add bos or eos tokens
automatically.


	padding (bool, str or [~utils.PaddingStrategy], optional, defaults to False) – Activates and controls padding. Accepts the following values:


	True or ‘longest’: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).


	’max_length’: Pad to a maximum length specified with the argument max_length or to the maximum
acceptable input length for the model if that argument is not provided.


	False or ‘do_not_pad’ (default): No padding (i.e., can output a batch with sequences of different
lengths).







	truncation (bool, str or [~tokenization_utils_base.TruncationStrategy], optional, defaults to False) – Activates and controls truncation. Accepts the following values:


	True or ‘longest_first’: Truncate to a maximum length specified with the argument max_length or
to the maximum acceptable input length for the model if that argument is not provided. This will
truncate token by token, removing a token from the longest sequence in the pair if a pair of
sequences (or a batch of pairs) is provided.


	’only_first’: Truncate to a maximum length specified with the argument max_length or to the
maximum acceptable input length for the model if that argument is not provided. This will only
truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided.


	’only_second’: Truncate to a maximum length specified with the argument max_length or to the
maximum acceptable input length for the model if that argument is not provided. This will only
truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.


	False or ‘do_not_truncate’ (default): No truncation (i.e., can output batch with sequence lengths
greater than the model maximum admissible input size).







	max_length (int, optional) – Controls the maximum length to use by one of the truncation/padding parameters.

If left unset or set to None, this will use the predefined model maximum length if a maximum length
is required by one of the truncation/padding parameters. If the model has no specific maximum input
length (like XLNet) truncation/padding to a maximum length will be deactivated.




	stride (int, optional, defaults to 0) – If set to a number along with max_length, the overflowing tokens returned when
return_overflowing_tokens=True will contain some tokens from the end of the truncated sequence
returned to provide some overlap between truncated and overflowing sequences. The value of this
argument defines the number of overlapping tokens.


	is_split_into_words (bool, optional, defaults to False) – Whether or not the input is already pre-tokenized (e.g., split into words). If set to True, the
tokenizer assumes the input is already split into words (for instance, by splitting it on whitespace)
which it will tokenize. This is useful for NER or token classification.


	pad_to_multiple_of (int, optional) – If set will pad the sequence to a multiple of the provided value. Requires padding to be activated.
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
>= 7.5 (Volta).


	return_tensors (str or [~utils.TensorType], optional) – If set, will return tensors instead of list of python integers. Acceptable values are:


	’tf’: Return TensorFlow tf.constant objects.


	’pt’: Return PyTorch torch.Tensor objects.


	’np’: Return Numpy np.ndarray objects.







	return_token_type_ids (bool, optional) – Whether to return token type IDs. If left to the default, will return the token type IDs according to
the specific tokenizer’s default, defined by the return_outputs attribute.

[What are token type IDs?](../glossary#token-type-ids)




	return_attention_mask (bool, optional) – Whether to return the attention mask. If left to the default, will return the attention mask according
to the specific tokenizer’s default, defined by the return_outputs attribute.

[What are attention masks?](../glossary#attention-mask)




	return_overflowing_tokens (bool, optional, defaults to False) – Whether or not to return overflowing token sequences. If a pair of sequences of input ids (or a batch
of pairs) is provided with truncation_strategy = longest_first or True, an error is raised instead
of returning overflowing tokens.


	return_special_tokens_mask (bool, optional, defaults to False) – Whether or not to return special tokens mask information.


	return_offsets_mapping (bool, optional, defaults to False) – Whether or not to return (char_start, char_end) for each token.

This is only available on fast tokenizers inheriting from [PreTrainedTokenizerFast], if using
Python’s tokenizer, this method will raise NotImplementedError.




	return_length (bool, optional, defaults to False) – Whether or not to return the lengths of the encoded inputs.


	verbose (bool, optional, defaults to True) – Whether or not to print more information and warnings.


	**kwargs – passed to the self.tokenize() method






	Returns:

	A [BatchEncoding] with the following fields:


	input_ids – List of token ids to be fed to a model.

[What are input IDs?](../glossary#input-ids)



	token_type_ids – List of token type ids to be fed to a model (when return_token_type_ids=True or
if “token_type_ids” is in self.model_input_names).

[What are token type IDs?](../glossary#token-type-ids)



	attention_mask – List of indices specifying which tokens should be attended to by the model (when
return_attention_mask=True or if “attention_mask” is in self.model_input_names).

[What are attention masks?](../glossary#attention-mask)



	overflowing_tokens – List of overflowing tokens sequences (when a max_length is specified and
return_overflowing_tokens=True).


	num_truncated_tokens – Number of tokens truncated (when a max_length is specified and
return_overflowing_tokens=True).


	special_tokens_mask – List of 0s and 1s, with 1 specifying added special tokens and 0 specifying
regular sequence tokens (when add_special_tokens=True and return_special_tokens_mask=True).


	length – The length of the inputs (when return_length=True)








	Return type:

	[BatchEncoding]










	
property eos_token: str[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat.py]

	End of sentence token. Log an error if used while not having been set.


	Type:

	str










	
property eos_token_id: int | None[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat.py]

	Id of the end of sentence token in the vocabulary. Returns None if the token has not been
set.


	Type:

	Optional[int]










	
featurize(datapoints: Iterable[Any], log_every_n: int = 1000, **kwargs) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/base_classes.py#L26-L58]

	Calculate features for datapoints.


	Parameters:

	
	datapoints (Iterable[Any]) – A sequence of objects that you’d like to featurize. Subclassses of
Featurizer should instantiate the _featurize method that featurizes
objects in the sequence.


	log_every_n (int, default 1000) – Logs featurization progress every log_every_n steps.






	Returns:

	A numpy array containing a featurized representation of datapoints.



	Return type:

	np.ndarray










	
classmethod from_pretrained(pretrained_model_name_or_path: str | PathLike, *init_inputs, cache_dir: str | PathLike | None = None, force_download: bool = False, local_files_only: bool = False, token: bool | str | None = None, revision: str = 'main', trust_remote_code=False, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/../../../envs/2.8.0/lib/python3.9/site-packages/transformers/tokenization_utils_base.py#L1855-L2098]

	Instantiate a [~tokenization_utils_base.PreTrainedTokenizerBase] (or a derived class) from a predefined
tokenizer.


	Parameters:

	
	pretrained_model_name_or_path (str or os.PathLike) – Can be either:


	A string, the model id of a predefined tokenizer hosted inside a model repo on huggingface.co.


	A path to a directory containing vocabulary files required by the tokenizer, for instance saved
using the [~tokenization_utils_base.PreTrainedTokenizerBase.save_pretrained] method, e.g.,
./my_model_directory/.


	(Deprecated, not applicable to all derived classes) A path or url to a single saved vocabulary
file (if and only if the tokenizer only requires a single vocabulary file like Bert or XLNet), e.g.,
./my_model_directory/vocab.txt.







	cache_dir (str or os.PathLike, optional) – Path to a directory in which a downloaded predefined tokenizer vocabulary files should be cached if the
standard cache should not be used.


	force_download (bool, optional, defaults to False) – Whether or not to force the (re-)download the vocabulary files and override the cached versions if they
exist.


	resume_download (bool, optional, defaults to False) – Whether or not to delete incompletely received files. Attempt to resume the download if such a file
exists.


	proxies (Dict[str, str], optional) – A dictionary of proxy servers to use by protocol or endpoint, e.g., {‘http’: ‘foo.bar:3128’,
‘http://hostname’: ‘foo.bar:4012’}. The proxies are used on each request.


	token (str or bool, optional) – The token to use as HTTP bearer authorization for remote files. If True, will use the token generated
when running huggingface-cli login (stored in ~/.huggingface).


	local_files_only (bool, optional, defaults to False) – Whether or not to only rely on local files and not to attempt to download any files.


	revision (str, optional, defaults to “main”) – The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
git-based system for storing models and other artifacts on huggingface.co, so revision can be any
identifier allowed by git.


	subfolder (str, optional) – In case the relevant files are located inside a subfolder of the model repo on huggingface.co (e.g. for
facebook/rag-token-base), specify it here.


	inputs (additional positional arguments, optional) – Will be passed along to the Tokenizer __init__ method.


	trust_remote_code (bool, optional, defaults to False) – Whether or not to allow for custom models defined on the Hub in their own modeling files. This option
should only be set to True for repositories you trust and in which you have read the code, as it will
execute code present on the Hub on your local machine.


	kwargs (additional keyword arguments, optional) – Will be passed to the Tokenizer __init__ method. Can be used to set special tokens like bos_token,
eos_token, unk_token, sep_token, pad_token, cls_token, mask_token,
additional_special_tokens. See parameters in the __init__ for more details.








<Tip>

Passing token=True is required when you want to use a private model.

</Tip>

Examples:

```python
# We can’t instantiate directly the base class PreTrainedTokenizerBase so let’s show our examples on a derived class: BertTokenizer
# Download vocabulary from huggingface.co and cache.
tokenizer = BertTokenizer.from_pretrained(“google-bert/bert-base-uncased”)

# Download vocabulary from huggingface.co (user-uploaded) and cache.
tokenizer = BertTokenizer.from_pretrained(“dbmdz/bert-base-german-cased”)

# If vocabulary files are in a directory (e.g. tokenizer was saved using save_pretrained(‘./test/saved_model/’))
tokenizer = BertTokenizer.from_pretrained(“./test/saved_model/”)

# If the tokenizer uses a single vocabulary file, you can point directly to this file
tokenizer = BertTokenizer.from_pretrained(“./test/saved_model/my_vocab.txt”)

# You can link tokens to special vocabulary when instantiating
tokenizer = BertTokenizer.from_pretrained(“google-bert/bert-base-uncased”, unk_token=”<unk>”)
# You should be sure ‘<unk>’ is in the vocabulary when doing that.
# Otherwise use tokenizer.add_special_tokens({‘unk_token’: ‘<unk>’}) instead)
assert tokenizer.unk_token == “<unk>”
```






	
get_added_vocab() → Dict[str, int][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/../../../envs/2.8.0/lib/python3.9/site-packages/transformers/tokenization_utils_fast.py#L238-L245]

	Returns the added tokens in the vocabulary as a dictionary of token to index.


	Returns:

	The added tokens.



	Return type:

	Dict[str, int]










	
get_special_tokens_mask(token_ids_0: List[int], token_ids_1: List[int] | None = None, already_has_special_tokens: bool = False) → List[int][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/../../../envs/2.8.0/lib/python3.9/site-packages/transformers/tokenization_utils_base.py#L3841-L3870]

	Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer prepare_for_model or encode_plus methods.


	Parameters:

	
	token_ids_0 (List[int]) – List of ids of the first sequence.


	token_ids_1 (List[int], optional) – List of ids of the second sequence.


	already_has_special_tokens (bool, optional, defaults to False) – Whether or not the token list is already formatted with special tokens for the model.






	Returns:

	1 for a special token, 0 for a sequence token.



	Return type:

	A list of integers in the range [0, 1]










	
get_vocab() → Dict[str, int][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/../../../envs/2.8.0/lib/python3.9/site-packages/transformers/tokenization_utils_fast.py#L213-L214]

	Returns the vocabulary as a dictionary of token to index.

tokenizer.get_vocab()[token] is equivalent to tokenizer.convert_tokens_to_ids(token) when token is in the
vocab.


	Returns:

	The vocabulary.



	Return type:

	Dict[str, int]










	
property mask_token: str[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat.py]

	Mask token, to use when training a model with masked-language modeling. Log an error if used while not
having been set.

Roberta tokenizer has a special mask token to be usable in the fill-mask pipeline. The mask token will greedily
comprise the space before the <mask>.


	Type:

	str










	
property mask_token_id: int | None[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat.py]

	Id of the mask token in the vocabulary, used when training a model with masked-language
modeling. Returns None if the token has not been set.


	Type:

	Optional[int]










	
property max_len_sentences_pair: int[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat.py]

	The maximum combined length of a pair of sentences that can be fed to the model.


	Type:

	int










	
property max_len_single_sentence: int[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat.py]

	The maximum length of a sentence that can be fed to the model.


	Type:

	int










	
num_special_tokens_to_add(pair: bool = False) → int[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/../../../envs/2.8.0/lib/python3.9/site-packages/transformers/tokenization_utils_fast.py#L348-L367]

	Returns the number of added tokens when encoding a sequence with special tokens.

<Tip>

This encodes a dummy input and checks the number of added tokens, and is therefore not efficient. Do not put
this inside your training loop.

</Tip>


	Parameters:

	pair (bool, optional, defaults to False) – Whether the number of added tokens should be computed in the case of a sequence pair or a single
sequence.



	Returns:

	Number of special tokens added to sequences.



	Return type:

	int










	
pad(encoded_inputs: BatchEncoding | List[BatchEncoding] | Dict[str, List[int]] | Dict[str, List[List[int]]] | List[Dict[str, List[int]]], padding: bool | str | PaddingStrategy = True, max_length: int | None = None, pad_to_multiple_of: int | None = None, return_attention_mask: bool | None = None, return_tensors: str | TensorType | None = None, verbose: bool = True) → BatchEncoding[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/../../../envs/2.8.0/lib/python3.9/site-packages/transformers/tokenization_utils_base.py#L3198-L3369]

	Pad a single encoded input or a batch of encoded inputs up to predefined length or to the max sequence length
in the batch.

Padding side (left/right) padding token ids are defined at the tokenizer level (with self.padding_side,
self.pad_token_id and self.pad_token_type_id).

Please note that with a fast tokenizer, using the __call__ method is faster than using a method to encode the
text followed by a call to the pad method to get a padded encoding.

<Tip>

If the encoded_inputs passed are dictionary of numpy arrays, PyTorch tensors or TensorFlow tensors, the
result will use the same type unless you provide a different tensor type with return_tensors. In the case of
PyTorch tensors, you will lose the specific device of your tensors however.

</Tip>


	Parameters:

	
	encoded_inputs ([BatchEncoding], list of [BatchEncoding], Dict[str, List[int]], Dict[str, List[List[int]] or List[Dict[str, List[int]]]) – Tokenized inputs. Can represent one input ([BatchEncoding] or Dict[str, List[int]]) or a batch of
tokenized inputs (list of [BatchEncoding], Dict[str, List[List[int]]] or List[Dict[str,
List[int]]]) so you can use this method during preprocessing as well as in a PyTorch Dataloader
collate function.

Instead of List[int] you can have tensors (numpy arrays, PyTorch tensors or TensorFlow tensors), see
the note above for the return type.




	padding (bool, str or [~utils.PaddingStrategy], optional, defaults to True) – 
	Select a strategy to pad the returned sequences (according to the model’s padding side and padding
	index) among:






	True or ‘longest’: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).


	’max_length’: Pad to a maximum length specified with the argument max_length or to the maximum
acceptable input length for the model if that argument is not provided.


	False or ‘do_not_pad’ (default): No padding (i.e., can output a batch with sequences of different
lengths).







	max_length (int, optional) – Maximum length of the returned list and optionally padding length (see above).


	pad_to_multiple_of (int, optional) – If set will pad the sequence to a multiple of the provided value.

This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
>= 7.5 (Volta).




	return_attention_mask (bool, optional) – Whether to return the attention mask. If left to the default, will return the attention mask according
to the specific tokenizer’s default, defined by the return_outputs attribute.

[What are attention masks?](../glossary#attention-mask)




	return_tensors (str or [~utils.TensorType], optional) – If set, will return tensors instead of list of python integers. Acceptable values are:


	’tf’: Return TensorFlow tf.constant objects.


	’pt’: Return PyTorch torch.Tensor objects.


	’np’: Return Numpy np.ndarray objects.







	verbose (bool, optional, defaults to True) – Whether or not to print more information and warnings.













	
property pad_token: str[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat.py]

	Padding token. Log an error if used while not having been set.


	Type:

	str










	
property pad_token_id: int | None[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat.py]

	Id of the padding token in the vocabulary. Returns None if the token has not been set.


	Type:

	Optional[int]










	
property pad_token_type_id: int[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat.py]

	Id of the padding token type in the vocabulary.


	Type:

	int










	
prepare_for_model(ids: List[int], pair_ids: List[int] | None = None, add_special_tokens: bool = True, padding: bool | str | PaddingStrategy = False, truncation: bool | str | TruncationStrategy | None = None, max_length: int | None = None, stride: int = 0, pad_to_multiple_of: int | None = None, return_tensors: str | TensorType | None = None, return_token_type_ids: bool | None = None, return_attention_mask: bool | None = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, prepend_batch_axis: bool = False, **kwargs) → BatchEncoding[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/../../../envs/2.8.0/lib/python3.9/site-packages/transformers/tokenization_utils_base.py#L3411-L3545]

	Prepares a sequence of input id, or a pair of sequences of inputs ids so that it can be used by the model. It
adds special tokens, truncates sequences if overflowing while taking into account the special tokens and
manages a moving window (with user defined stride) for overflowing tokens. Please Note, for pair_ids
different than None and truncation_strategy = longest_first or True, it is not possible to return
overflowing tokens. Such a combination of arguments will raise an error.


	Parameters:

	
	ids (List[int]) – Tokenized input ids of the first sequence. Can be obtained from a string by chaining the tokenize and
convert_tokens_to_ids methods.


	pair_ids (List[int], optional) – Tokenized input ids of the second sequence. Can be obtained from a string by chaining the tokenize
and convert_tokens_to_ids methods.


	add_special_tokens (bool, optional, defaults to True) – Whether or not to add special tokens when encoding the sequences. This will use the underlying
PretrainedTokenizerBase.build_inputs_with_special_tokens function, which defines which tokens are
automatically added to the input ids. This is usefull if you want to add bos or eos tokens
automatically.


	padding (bool, str or [~utils.PaddingStrategy], optional, defaults to False) – Activates and controls padding. Accepts the following values:


	True or ‘longest’: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).


	’max_length’: Pad to a maximum length specified with the argument max_length or to the maximum
acceptable input length for the model if that argument is not provided.


	False or ‘do_not_pad’ (default): No padding (i.e., can output a batch with sequences of different
lengths).







	truncation (bool, str or [~tokenization_utils_base.TruncationStrategy], optional, defaults to False) – Activates and controls truncation. Accepts the following values:


	True or ‘longest_first’: Truncate to a maximum length specified with the argument max_length or
to the maximum acceptable input length for the model if that argument is not provided. This will
truncate token by token, removing a token from the longest sequence in the pair if a pair of
sequences (or a batch of pairs) is provided.


	’only_first’: Truncate to a maximum length specified with the argument max_length or to the
maximum acceptable input length for the model if that argument is not provided. This will only
truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided.


	’only_second’: Truncate to a maximum length specified with the argument max_length or to the
maximum acceptable input length for the model if that argument is not provided. This will only
truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.


	False or ‘do_not_truncate’ (default): No truncation (i.e., can output batch with sequence lengths
greater than the model maximum admissible input size).







	max_length (int, optional) – Controls the maximum length to use by one of the truncation/padding parameters.

If left unset or set to None, this will use the predefined model maximum length if a maximum length
is required by one of the truncation/padding parameters. If the model has no specific maximum input
length (like XLNet) truncation/padding to a maximum length will be deactivated.




	stride (int, optional, defaults to 0) – If set to a number along with max_length, the overflowing tokens returned when
return_overflowing_tokens=True will contain some tokens from the end of the truncated sequence
returned to provide some overlap between truncated and overflowing sequences. The value of this
argument defines the number of overlapping tokens.


	is_split_into_words (bool, optional, defaults to False) – Whether or not the input is already pre-tokenized (e.g., split into words). If set to True, the
tokenizer assumes the input is already split into words (for instance, by splitting it on whitespace)
which it will tokenize. This is useful for NER or token classification.


	pad_to_multiple_of (int, optional) – If set will pad the sequence to a multiple of the provided value. Requires padding to be activated.
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
>= 7.5 (Volta).


	return_tensors (str or [~utils.TensorType], optional) – If set, will return tensors instead of list of python integers. Acceptable values are:


	’tf’: Return TensorFlow tf.constant objects.


	’pt’: Return PyTorch torch.Tensor objects.


	’np’: Return Numpy np.ndarray objects.







	return_token_type_ids (bool, optional) – Whether to return token type IDs. If left to the default, will return the token type IDs according to
the specific tokenizer’s default, defined by the return_outputs attribute.

[What are token type IDs?](../glossary#token-type-ids)




	return_attention_mask (bool, optional) – Whether to return the attention mask. If left to the default, will return the attention mask according
to the specific tokenizer’s default, defined by the return_outputs attribute.

[What are attention masks?](../glossary#attention-mask)




	return_overflowing_tokens (bool, optional, defaults to False) – Whether or not to return overflowing token sequences. If a pair of sequences of input ids (or a batch
of pairs) is provided with truncation_strategy = longest_first or True, an error is raised instead
of returning overflowing tokens.


	return_special_tokens_mask (bool, optional, defaults to False) – Whether or not to return special tokens mask information.


	return_offsets_mapping (bool, optional, defaults to False) – Whether or not to return (char_start, char_end) for each token.

This is only available on fast tokenizers inheriting from [PreTrainedTokenizerFast], if using
Python’s tokenizer, this method will raise NotImplementedError.




	return_length (bool, optional, defaults to False) – Whether or not to return the lengths of the encoded inputs.


	verbose (bool, optional, defaults to True) – Whether or not to print more information and warnings.


	**kwargs – passed to the self.tokenize() method






	Returns:

	A [BatchEncoding] with the following fields:


	input_ids – List of token ids to be fed to a model.

[What are input IDs?](../glossary#input-ids)



	token_type_ids – List of token type ids to be fed to a model (when return_token_type_ids=True or
if “token_type_ids” is in self.model_input_names).

[What are token type IDs?](../glossary#token-type-ids)



	attention_mask – List of indices specifying which tokens should be attended to by the model (when
return_attention_mask=True or if “attention_mask” is in self.model_input_names).

[What are attention masks?](../glossary#attention-mask)



	overflowing_tokens – List of overflowing tokens sequences (when a max_length is specified and
return_overflowing_tokens=True).


	num_truncated_tokens – Number of tokens truncated (when a max_length is specified and
return_overflowing_tokens=True).


	special_tokens_mask – List of 0s and 1s, with 1 specifying added special tokens and 0 specifying
regular sequence tokens (when add_special_tokens=True and return_special_tokens_mask=True).


	length – The length of the inputs (when return_length=True)








	Return type:

	[BatchEncoding]










	
prepare_seq2seq_batch(src_texts: List[str], tgt_texts: List[str] | None = None, max_length: int | None = None, max_target_length: int | None = None, padding: str = 'longest', return_tensors: str | None = None, truncation: bool = True, **kwargs) → BatchEncoding[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/../../../envs/2.8.0/lib/python3.9/site-packages/transformers/tokenization_utils_base.py#L3972-L4092]

	Prepare model inputs for translation. For best performance, translate one sentence at a time.


	Parameters:

	
	src_texts (List[str]) – List of documents to summarize or source language texts.


	tgt_texts (list, optional) – List of summaries or target language texts.


	max_length (int, optional) – Controls the maximum length for encoder inputs (documents to summarize or source language texts) If
left unset or set to None, this will use the predefined model maximum length if a maximum length is
required by one of the truncation/padding parameters. If the model has no specific maximum input length
(like XLNet) truncation/padding to a maximum length will be deactivated.


	max_target_length (int, optional) – Controls the maximum length of decoder inputs (target language texts or summaries) If left unset or set
to None, this will use the max_length value.


	padding (bool, str or [~utils.PaddingStrategy], optional, defaults to False) – Activates and controls padding. Accepts the following values:


	True or ‘longest’: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).


	’max_length’: Pad to a maximum length specified with the argument max_length or to the maximum
acceptable input length for the model if that argument is not provided.


	False or ‘do_not_pad’ (default): No padding (i.e., can output a batch with sequences of different
lengths).







	return_tensors (str or [~utils.TensorType], optional) – If set, will return tensors instead of list of python integers. Acceptable values are:


	’tf’: Return TensorFlow tf.constant objects.


	’pt’: Return PyTorch torch.Tensor objects.


	’np’: Return Numpy np.ndarray objects.







	truncation (bool, str or [~tokenization_utils_base.TruncationStrategy], optional, defaults to True) – Activates and controls truncation. Accepts the following values:


	True or ‘longest_first’: Truncate to a maximum length specified with the argument max_length or
to the maximum acceptable input length for the model if that argument is not provided. This will
truncate token by token, removing a token from the longest sequence in the pair if a pair of
sequences (or a batch of pairs) is provided.


	’only_first’: Truncate to a maximum length specified with the argument max_length or to the
maximum acceptable input length for the model if that argument is not provided. This will only
truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided.


	’only_second’: Truncate to a maximum length specified with the argument max_length or to the
maximum acceptable input length for the model if that argument is not provided. This will only
truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.


	False or ‘do_not_truncate’ (default): No truncation (i.e., can output batch with sequence lengths
greater than the model maximum admissible input size).







	**kwargs – Additional keyword arguments passed along to self.__call__.






	Returns:

	A [BatchEncoding] with the following fields:


	input_ids – List of token ids to be fed to the encoder.


	attention_mask – List of indices specifying which tokens should be attended to by the model.


	labels – List of token ids for tgt_texts.




The full set of keys [input_ids, attention_mask, labels], will only be returned if tgt_texts is passed.
Otherwise, input_ids, attention_mask will be the only keys.





	Return type:

	[BatchEncoding]










	
push_to_hub(repo_id: str, use_temp_dir: bool | None = None, commit_message: str | None = None, private: bool | None = None, token: bool | str | None = None, max_shard_size: int | str | None = '5GB', create_pr: bool = False, safe_serialization: bool = True, revision: str | None = None, commit_description: str | None = None, tags: List[str] | None = None, **deprecated_kwargs) → str[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/../../../envs/2.8.0/lib/python3.9/site-packages/transformers/utils/hub.py#L768-L903]

	Upload the tokenizer files to the 🤗 Model Hub.


	Parameters:

	
	repo_id (str) – The name of the repository you want to push your tokenizer to. It should contain your organization name
when pushing to a given organization.


	use_temp_dir (bool, optional) – Whether or not to use a temporary directory to store the files saved before they are pushed to the Hub.
Will default to True if there is no directory named like repo_id, False otherwise.


	commit_message (str, optional) – Message to commit while pushing. Will default to “Upload tokenizer”.


	private (bool, optional) – Whether or not the repository created should be private.


	token (bool or str, optional) – The token to use as HTTP bearer authorization for remote files. If True, will use the token generated
when running huggingface-cli login (stored in ~/.huggingface). Will default to True if repo_url
is not specified.


	max_shard_size (int or str, optional, defaults to “5GB”) – Only applicable for models. The maximum size for a checkpoint before being sharded. Checkpoints shard
will then be each of size lower than this size. If expressed as a string, needs to be digits followed
by a unit (like “5MB”). We default it to “5GB” so that users can easily load models on free-tier
Google Colab instances without any CPU OOM issues.


	create_pr (bool, optional, defaults to False) – Whether or not to create a PR with the uploaded files or directly commit.


	safe_serialization (bool, optional, defaults to True) – Whether or not to convert the model weights in safetensors format for safer serialization.


	revision (str, optional) – Branch to push the uploaded files to.


	commit_description (str, optional) – The description of the commit that will be created


	tags (List[str], optional) – List of tags to push on the Hub.








Examples:

```python
from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained(“google-bert/bert-base-cased”)

# Push the tokenizer to your namespace with the name “my-finetuned-bert”.
tokenizer.push_to_hub(“my-finetuned-bert”)

# Push the tokenizer to an organization with the name “my-finetuned-bert”.
tokenizer.push_to_hub(“huggingface/my-finetuned-bert”)
```






	
classmethod register_for_auto_class(auto_class='AutoTokenizer')[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/../../../envs/2.8.0/lib/python3.9/site-packages/transformers/tokenization_utils_base.py#L3946-L3970]

	Register this class with a given auto class. This should only be used for custom tokenizers as the ones in the
library are already mapped with AutoTokenizer.

<Tip warning={true}>

This API is experimental and may have some slight breaking changes in the next releases.

</Tip>


	Parameters:

	auto_class (str or type, optional, defaults to “AutoTokenizer”) – The auto class to register this new tokenizer with.










	
sanitize_special_tokens() → int[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/../../../envs/2.8.0/lib/python3.9/site-packages/transformers/tokenization_utils_base.py#L876-L882]

	The sanitize_special_tokens is now deprecated kept for backward compatibility and will be removed in
transformers v5.






	
save_pretrained(save_directory: str | PathLike, legacy_format: bool | None = None, filename_prefix: str | None = None, push_to_hub: bool = False, **kwargs) → Tuple[str][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/../../../envs/2.8.0/lib/python3.9/site-packages/transformers/tokenization_utils_base.py#L2366-L2531]

	Save the full tokenizer state.

This method make sure the full tokenizer can then be re-loaded using the
[~tokenization_utils_base.PreTrainedTokenizer.from_pretrained] class method..

Warning,None This won’t save modifications you may have applied to the tokenizer after the instantiation (for
instance, modifying tokenizer.do_lower_case after creation).


	Parameters:

	
	save_directory (str or os.PathLike) – The path to a directory where the tokenizer will be saved.


	legacy_format (bool, optional) – Only applicable for a fast tokenizer. If unset (default), will save the tokenizer in the unified JSON
format as well as in legacy format if it exists, i.e. with tokenizer specific vocabulary and a separate
added_tokens files.

If False, will only save the tokenizer in the unified JSON format. This format is incompatible with
“slow” tokenizers (not powered by the tokenizers library), so the tokenizer will not be able to be
loaded in the corresponding “slow” tokenizer.

If True, will save the tokenizer in legacy format. If the “slow” tokenizer doesn’t exits, a value
error is raised.




	filename_prefix (str, optional) – A prefix to add to the names of the files saved by the tokenizer.


	push_to_hub (bool, optional, defaults to False) – Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the
repository you want to push to with repo_id (will default to the name of save_directory in your
namespace).


	kwargs (Dict[str, Any], optional) – Additional key word arguments passed along to the [~utils.PushToHubMixin.push_to_hub] method.






	Returns:

	The files saved.



	Return type:

	A tuple of str










	
save_vocabulary(save_directory: str, filename_prefix: str | None = None) → Tuple[str][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/../../../envs/2.8.0/lib/python3.9/site-packages/transformers/models/roberta/tokenization_roberta_fast.py#L282-L284]

	Save only the vocabulary of the tokenizer (vocabulary + added tokens).

This method won’t save the configuration and special token mappings of the tokenizer. Use
[~PreTrainedTokenizerFast._save_pretrained] to save the whole state of the tokenizer.


	Parameters:

	
	save_directory (str) – The directory in which to save the vocabulary.


	filename_prefix (str, optional) – An optional prefix to add to the named of the saved files.






	Returns:

	Paths to the files saved.



	Return type:

	Tuple(str)










	
property sep_token: str[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat.py]

	Separation token, to separate context and query in an input sequence. Log an error if used while not
having been set.


	Type:

	str










	
property sep_token_id: int | None[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat.py]

	Id of the separation token in the vocabulary, to separate context and query in an input
sequence. Returns None if the token has not been set.


	Type:

	Optional[int]










	
set_truncation_and_padding(padding_strategy: PaddingStrategy, truncation_strategy: TruncationStrategy, max_length: int, stride: int, pad_to_multiple_of: int | None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/../../../envs/2.8.0/lib/python3.9/site-packages/transformers/tokenization_utils_fast.py#L398-L467]

	Define the truncation and the padding strategies for fast tokenizers (provided by HuggingFace tokenizers
library) and restore the tokenizer settings afterwards.

The provided tokenizer has no padding / truncation strategy before the managed section. If your tokenizer set a
padding / truncation strategy before, then it will be reset to no padding / truncation when exiting the managed
section.


	Parameters:

	
	padding_strategy ([~utils.PaddingStrategy]) – The kind of padding that will be applied to the input


	truncation_strategy ([~tokenization_utils_base.TruncationStrategy]) – The kind of truncation that will be applied to the input


	max_length (int) – The maximum size of a sequence.


	stride (int) – The stride to use when handling overflow.


	pad_to_multiple_of (int, optional) – If set will pad the sequence to a multiple of the provided value. This is especially useful to enable
the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta).













	
slow_tokenizer_class[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/../../../envs/2.8.0/lib/python3.9/site-packages/transformers/models/roberta/tokenization_roberta.py#L107-L433]

	alias of RobertaTokenizer






	
property special_tokens_map: Dict[str, str | List[str]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat.py]

	A dictionary mapping special token class attributes (cls_token,
unk_token, etc.) to their values (‘<unk>’, ‘<cls>’, etc.).

Convert potential tokens of tokenizers.AddedToken type to string.


	Type:

	Dict[str, Union[str, List[str]]]










	
property special_tokens_map_extended: Dict[str, str | AddedToken | List[str | AddedToken]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat.py]

	A dictionary mapping
special token class attributes (cls_token, unk_token, etc.) to their values (‘<unk>’, ‘<cls>’, etc.).

Don’t convert tokens of tokenizers.AddedToken type to string so they can be used to control more finely how
special tokens are tokenized.


	Type:

	Dict[str, Union[str, tokenizers.AddedToken, List[Union[str, tokenizers.AddedToken]]]]










	
tokenize(text: str, pair: str | None = None, add_special_tokens: bool = False, **kwargs) → List[str][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/../../../envs/2.8.0/lib/python3.9/site-packages/transformers/tokenization_utils_fast.py#L395-L396]

	Converts a string into a sequence of tokens, replacing unknown tokens with the unk_token.


	Parameters:

	
	text (str) – The sequence to be encoded.


	pair (str, optional) – A second sequence to be encoded with the first.


	add_special_tokens (bool, optional, defaults to False) – Whether or not to add the special tokens associated with the corresponding model.


	kwargs (additional keyword arguments, optional) – Will be passed to the underlying model specific encode method. See details in
[~PreTrainedTokenizerBase.__call__]






	Returns:

	The list of tokens.



	Return type:

	List[str]










	
train_new_from_iterator(text_iterator, vocab_size, length=None, new_special_tokens=None, special_tokens_map=None, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/../../../envs/2.8.0/lib/python3.9/site-packages/transformers/tokenization_utils_fast.py#L687-L846]

	Trains a tokenizer on a new corpus with the same defaults (in terms of special tokens or tokenization pipeline)
as the current one.


	Parameters:

	
	text_iterator (generator of List[str]) – The training corpus. Should be a generator of batches of texts, for instance a list of lists of texts
if you have everything in memory.


	vocab_size (int) – The size of the vocabulary you want for your tokenizer.


	length (int, optional) – The total number of sequences in the iterator. This is used to provide meaningful progress tracking


	new_special_tokens (list of str or AddedToken, optional) – A list of new special tokens to add to the tokenizer you are training.


	special_tokens_map (Dict[str, str], optional) – If you want to rename some of the special tokens this tokenizer uses, pass along a mapping old special
token name to new special token name in this argument.


	kwargs (Dict[str, Any], optional) – Additional keyword arguments passed along to the trainer from the 🤗 Tokenizers library.






	Returns:

	A new tokenizer of the same type as the original one, trained on
text_iterator.



	Return type:

	[PreTrainedTokenizerFast]










	
truncate_sequences(ids: List[int], pair_ids: List[int] | None = None, num_tokens_to_remove: int = 0, truncation_strategy: str | TruncationStrategy = 'longest_first', stride: int = 0) → Tuple[List[int], List[int], List[int]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/../../../envs/2.8.0/lib/python3.9/site-packages/transformers/tokenization_utils_base.py#L3547-L3669]

	Truncates a sequence pair in-place following the strategy.


	Parameters:

	
	ids (List[int]) – Tokenized input ids of the first sequence. Can be obtained from a string by chaining the tokenize and
convert_tokens_to_ids methods.


	pair_ids (List[int], optional) – Tokenized input ids of the second sequence. Can be obtained from a string by chaining the tokenize
and convert_tokens_to_ids methods.


	num_tokens_to_remove (int, optional, defaults to 0) – Number of tokens to remove using the truncation strategy.


	truncation_strategy (str or [~tokenization_utils_base.TruncationStrategy], optional, defaults to False) – The strategy to follow for truncation. Can be:


	’longest_first’: Truncate to a maximum length specified with the argument max_length or to the
maximum acceptable input length for the model if that argument is not provided. This will truncate
token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a
batch of pairs) is provided.


	’only_first’: Truncate to a maximum length specified with the argument max_length or to the
maximum acceptable input length for the model if that argument is not provided. This will only
truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided.


	’only_second’: Truncate to a maximum length specified with the argument max_length or to the
maximum acceptable input length for the model if that argument is not provided. This will only
truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.


	’do_not_truncate’ (default): No truncation (i.e., can output batch with sequence lengths greater
than the model maximum admissible input size).







	stride (int, optional, defaults to 0) – If set to a positive number, the overflowing tokens returned will contain some tokens from the main
sequence returned. The value of this argument defines the number of additional tokens.






	Returns:

	The truncated ids, the truncated pair_ids and the list of
overflowing tokens. Note: The longest_first strategy returns empty list of overflowing tokens if a pair
of sequences (or a batch of pairs) is provided.



	Return type:

	Tuple[List[int], List[int], List[int]]










	
property unk_token: str[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat.py]

	Unknown token. Log an error if used while not having been set.


	Type:

	str










	
property unk_token_id: int | None[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat.py]

	Id of the unknown token in the vocabulary. Returns None if the token has not been set.


	Type:

	Optional[int]










	
property vocab_size: int[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat.py]

	Size of the base vocabulary (without the added tokens).


	Type:

	int















RxnFeaturizer


	
class RxnFeaturizer(tokenizer: RobertaTokenizerFast, sep_reagent: bool, max_length: int = 100)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/reaction_featurizer.py#L14-L125]

	Reaction Featurizer.

RxnFeaturizer is a wrapper class for HuggingFace’s RobertaTokenizerFast,
that is intended for featurizing chemical reaction datasets. The featurizer
computes the source and target required for a seq2seq task and applies the
RobertaTokenizer on them separately. Additionally, it can also separate or
mix the reactants and reagents before tokenizing.

Examples

>>> from deepchem.feat import RxnFeaturizer
>>> from transformers import RobertaTokenizerFast
>>> tokenizer = RobertaTokenizerFast.from_pretrained("seyonec/PubChem10M_SMILES_BPE_450k")
>>> featurizer = RxnFeaturizer(tokenizer, sep_reagent=True)
>>> feats = featurizer.featurize(['CCS(=O)(=O)Cl.OCCBr>CCN(CC)CC.CCOCC>CCS(=O)(=O)OCCBr'])





Notes


	The featurize method expects a List of reactions.


	
	Use the sep_reagent toggle to enable/disable reagent separation.
	
	True - Separate the reactants and reagents


	False - Mix the reactants and reagents













	
__init__(tokenizer: RobertaTokenizerFast, sep_reagent: bool, max_length: int = 100)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/reaction_featurizer.py#L39-L61]

	Initialize a ReactionFeaturizer object.


	Parameters:

	
	tokenizer (RobertaTokenizerFast) – HuggingFace Tokenizer to be used for featurization.


	sep_reagent (bool) – Toggle to separate or mix the reactants and reagents.


	max_length (int, default 100) – Maximum length of padding













	
featurize(datapoints: Iterable[Any], log_every_n: int = 1000, **kwargs) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/base_classes.py#L26-L58]

	Calculate features for datapoints.


	Parameters:

	
	datapoints (Iterable[Any]) – A sequence of objects that you’d like to featurize. Subclassses of
Featurizer should instantiate the _featurize method that featurizes
objects in the sequence.


	log_every_n (int, default 1000) – Logs featurization progress every log_every_n steps.






	Returns:

	A numpy array containing a featurized representation of datapoints.



	Return type:

	np.ndarray















BindingPocketFeaturizer


	
class BindingPocketFeaturizer[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/binding_pocket_features.py#L47-L123]

	Featurizes binding pockets with information about chemical
environments.

In many applications, it’s desirable to look at binding pockets on
macromolecules which may be good targets for potential ligands or
other molecules to interact with. A BindingPocketFeaturizer
expects to be given a macromolecule, and a list of pockets to
featurize on that macromolecule. These pockets should be of the form
produced by a dc.dock.BindingPocketFinder, that is as a list of
dc.utils.CoordinateBox objects.

The base featurization in this class’s featurization is currently
very simple and counts the number of residues of each type present
in the pocket. It’s likely that you’ll want to overwrite this
implementation for more sophisticated downstream usecases. Note that
this class’s implementation will only work for proteins and not for
other macromolecules


Note

This class requires mdtraj to be installed.




	
featurize(protein_file: str, pockets: List[CoordinateBox]) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/binding_pocket_features.py#L80-L123]

	Calculate atomic coodinates.


	Parameters:

	
	protein_file (str) – Location of PDB file. Will be loaded by MDTraj


	pockets (List[CoordinateBox]) – List of dc.utils.CoordinateBox objects.






	Returns:

	A numpy array of shale (len(pockets), n_residues)



	Return type:

	np.ndarray















UserDefinedFeaturizer


	
class UserDefinedFeaturizer(feature_fields)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/base_classes.py#L480-L485]

	Directs usage of user-computed featurizations.


	
__init__(feature_fields)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/base_classes.py#L483-L485]

	Creates user-defined-featurizer.






	
featurize(datapoints: Iterable[Any], log_every_n: int = 1000, **kwargs) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/base_classes.py#L26-L58]

	Calculate features for datapoints.


	Parameters:

	
	datapoints (Iterable[Any]) – A sequence of objects that you’d like to featurize. Subclassses of
Featurizer should instantiate the _featurize method that featurizes
objects in the sequence.


	log_every_n (int, default 1000) – Logs featurization progress every log_every_n steps.






	Returns:

	A numpy array containing a featurized representation of datapoints.



	Return type:

	np.ndarray















DummyFeaturizer


	
class DummyFeaturizer[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/base_classes.py#L488-L524]

	Class that implements a no-op featurization.
This is useful when the raw dataset has to be used without featurizing the
examples. The Molnet loader requires a featurizer input and such datasets
can be used in their original form by passing the raw featurizer.

Examples

>>> import deepchem as dc
>>> smi_map = [["N#C[S-].O=C(CBr)c1ccc(C(F)(F)F)cc1>CCO.[K+]", "N#CSCC(=O)c1ccc(C(F)(F)F)cc1"], ["C1COCCN1.FCC(Br)c1cccc(Br)n1>CCN(C(C)C)C(C)C.CN(C)C=O.O", "FCC(c1cccc(Br)n1)N1CCOCC1"]]
>>> Featurizer = dc.feat.DummyFeaturizer()
>>> smi_feat = Featurizer.featurize(smi_map)
>>> smi_feat
array([['N#C[S-].O=C(CBr)c1ccc(C(F)(F)F)cc1>CCO.[K+]',
        'N#CSCC(=O)c1ccc(C(F)(F)F)cc1'],
       ['C1COCCN1.FCC(Br)c1cccc(Br)n1>CCN(C(C)C)C(C)C.CN(C)C=O.O',
        'FCC(c1cccc(Br)n1)N1CCOCC1']], dtype='<U55')






	
featurize(datapoints: Iterable[Any], log_every_n: int = 1000, **kwargs) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/base_classes.py#L507-L524]

	Passes through dataset, and returns the datapoint.


	Parameters:

	datapoints (Iterable[Any]) – A sequence of objects that you’d like to featurize.



	Returns:

	datapoints – A numpy array containing a featurized representation of
the datapoints.



	Return type:

	np.ndarray
















Base Featurizers (for develop)


Featurizer

The dc.feat.Featurizer class is the abstract parent class for all featurizers.


	
class Featurizer[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/base_classes.py#L15-L152]

	Abstract class for calculating a set of features for a datapoint.

This class is abstract and cannot be invoked directly. You’ll
likely only interact with this class if you’re a developer. In
that case, you might want to make a child class which
implements the _featurize method for calculating features for
a single datapoints if you’d like to make a featurizer for a
new datatype.


	
featurize(datapoints: Iterable[Any], log_every_n: int = 1000, **kwargs) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/base_classes.py#L26-L58]

	Calculate features for datapoints.


	Parameters:

	
	datapoints (Iterable[Any]) – A sequence of objects that you’d like to featurize. Subclassses of
Featurizer should instantiate the _featurize method that featurizes
objects in the sequence.


	log_every_n (int, default 1000) – Logs featurization progress every log_every_n steps.






	Returns:

	A numpy array containing a featurized representation of datapoints.



	Return type:

	np.ndarray















MolecularFeaturizer

If you’re creating a new featurizer that featurizes molecules,
you will want to inherit from the abstract MolecularFeaturizer base class.
This featurizer can take RDKit mol objects or SMILES as inputs.


	
class MolecularFeaturizer(use_original_atoms_order=False)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/base_classes.py#L227-L325]

	Abstract class for calculating a set of features for a
molecule.


The defining feature of a MolecularFeaturizer is that it
uses SMILES strings and RDKit molecule objects to represent
small molecules. All other featurizers which are subclasses of
this class should plan to process input which comes as smiles
strings or RDKit molecules.

Child classes need to implement the _featurize method for
calculating features for a single molecule.

The subclasses of this class require RDKit to be installed.





	
__init__(use_original_atoms_order=False)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/base_classes.py#L245-L252]

	
	Parameters:

	use_original_atoms_order (bool, default False) – Whether to use original atom ordering or canonical ordering (default)










	
featurize(datapoints, log_every_n=1000, **kwargs) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/base_classes.py#L254-L325]

	Calculate features for molecules.


	Parameters:

	
	datapoints (rdkit.Chem.rdchem.Mol / SMILES string / iterable) – RDKit Mol, or SMILES string or iterable sequence of RDKit mols/SMILES
strings.


	log_every_n (int, default 1000) – Logging messages reported every log_every_n samples.






	Returns:

	features – A numpy array containing a featurized representation of datapoints.



	Return type:

	np.ndarray















MaterialCompositionFeaturizer

If you’re creating a new featurizer that featurizes compositional formulas,
you will want to inherit from the abstract MaterialCompositionFeaturizer base class.


	
class MaterialCompositionFeaturizer[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/base_classes.py#L407-L477]

	Abstract class for calculating a set of features for an
inorganic crystal composition.

The defining feature of a MaterialCompositionFeaturizer is that it
operates on 3D crystal chemical compositions.
Inorganic crystal compositions are represented by Pymatgen composition
objects. Featurizers for inorganic crystal compositions that are
subclasses of this class should plan to process input which comes as
Pymatgen composition objects.

This class is abstract and cannot be invoked directly. You’ll
likely only interact with this class if you’re a developer. Child
classes need to implement the _featurize method for calculating
features for a single crystal composition.


Note

Some subclasses of this class will require pymatgen and matminer to be
installed.




	
featurize(datapoints: Iterable[str] | None = None, log_every_n: int = 1000, **kwargs) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/base_classes.py#L430-L477]

	Calculate features for crystal compositions.


	Parameters:

	
	datapoints (Iterable[str]) – Iterable sequence of composition strings, e.g. “MoS2”.


	log_every_n (int, default 1000) – Logging messages reported every log_every_n samples.






	Returns:

	features – A numpy array containing a featurized representation of
compositions.



	Return type:

	np.ndarray















MaterialStructureFeaturizer

If you’re creating a new featurizer that featurizes inorganic crystal structure,
you will want to inherit from the abstract MaterialCompositionFeaturizer base class.
This featurizer can take pymatgen structure objects or dictionaries as inputs.


	
class MaterialStructureFeaturizer[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/base_classes.py#L328-L404]

	Abstract class for calculating a set of features for an
inorganic crystal structure.

The defining feature of a MaterialStructureFeaturizer is that it
operates on 3D crystal structures with periodic boundary conditions.
Inorganic crystal structures are represented by Pymatgen structure
objects. Featurizers for inorganic crystal structures that are subclasses of
this class should plan to process input which comes as pymatgen
structure objects.

This class is abstract and cannot be invoked directly. You’ll
likely only interact with this class if you’re a developer. Child
classes need to implement the _featurize method for calculating
features for a single crystal structure.


Note

Some subclasses of this class will require pymatgen and matminer to be
installed.




	
featurize(datapoints: Iterable[Dict[str, Any] | Any] | None = None, log_every_n: int = 1000, **kwargs) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/base_classes.py#L351-L404]

	Calculate features for crystal structures.


	Parameters:

	
	datapoints (Iterable[Union[Dict, pymatgen.core.Structure]]) – Iterable sequence of pymatgen structure dictionaries
or pymatgen.core.Structure. Please confirm the dictionary representations
of pymatgen.core.Structure from https://pymatgen.org/pymatgen.core.structure.html.


	log_every_n (int, default 1000) – Logging messages reported every log_every_n samples.






	Returns:

	features – A numpy array containing a featurized representation of
datapoints.



	Return type:

	np.ndarray















ComplexFeaturizer

If you’re creating a new featurizer that featurizes a pair of ligand molecules and proteins,
you will want to inherit from the abstract ComplexFeaturizer base class.
This featurizer can take a pair of PDB or SDF files which contain ligand molecules and proteins.


	
class ComplexFeaturizer[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/base_classes.py#L155-L224]

	”
Abstract class for calculating features for mol/protein complexes.


	
featurize(datapoints: Iterable[Tuple[str, str]] | None = None, log_every_n: int = 100, **kwargs) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/base_classes.py#L160-L213]

	Calculate features for mol/protein complexes.
:param datapoints: List of filenames (PDB, SDF, etc.) for ligand molecules and proteins.


Each element should be a tuple of the form (ligand_filename,
protein_filename).





	Returns:

	features – Array of features



	Return type:

	np.ndarray















VocabularyBuilder

If you’re creating a vocabulary builder for generating vocabulary from a corpus or input data,
the vocabulary builder must inhere from VocabularyBuilder base class.


	
class VocabularyBuilder[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/vocabulary_builders/vocabulary_builder.py#L4-L46]

	Abstract class for building a vocabulary from a dataset.


	
build(dataset: Dataset)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/vocabulary_builders/vocabulary_builder.py#L7-L15]

	Builds vocabulary from a dataset


	Parameters:

	dataset (Dataset) – dataset to build vocabulary from.










	
classmethod load(fname: str)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/vocabulary_builders/vocabulary_builder.py#L17-L26]

	Loads vocabulary from the specified file


	Parameters:

	fname (str) – Path containing pre-build vocabulary.










	
save(fname: str)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/vocabulary_builders/vocabulary_builder.py#L28-L36]

	Dump vocabulary to the specified file.


	Parameters:

	fname (str) – A json file fname to save vocabulary.










	
extend(dataset: Dataset)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/vocabulary_builders/vocabulary_builder.py#L38-L46]

	Extends vocabulary from a dataset


	Parameters:

	dataset (Dataset) – dataset used for extending vocabulary















HuggingFaceVocabularyBuilder

A wrapper class for building vocabulary from algorithms implemented in tokenizers [https://huggingface.co/docs/tokenizers/index] library.


	
hf_vocab[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/feat/vocabulary_builders/hf_vocab.py#L0-L73]

	alias of <module ‘deepchem.feat.vocabulary_builders.hf_vocab’ from ‘/home/docs/checkouts/readthedocs.org/user_builds/deepchem/checkouts/2.8.0/deepchem/feat/vocabulary_builders/hf_vocab.py’>
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Splitters

DeepChem dc.splits.Splitter objects are a tool to meaningfully
split DeepChem datasets for machine learning testing. The core idea is
that when evaluating a machine learning model, it’s useful to creating
training, validation and test splits of your source data. The training
split is used to train models, the validation is used to benchmark
different model architectures. The test is ideally held out till the
very end when it’s used to gauge a final estimate of the model’s
performance.

The dc.splits module contains a collection of scientifically
aware splitters. In many cases, we want to evaluate scientific deep
learning models more rigorously than standard deep models since we’re
looking for the ability to generalize to new domains. Some of the
implemented splitters here may help.


Contents


	General Splitters


	RandomSplitter


	RandomGroupSplitter


	RandomStratifiedSplitter


	SingletaskStratifiedSplitter


	IndexSplitter


	SpecifiedSplitter


	TaskSplitter






	Molecule Splitters


	ScaffoldSplitter


	MolecularWeightSplitter


	MaxMinSplitter


	ButinaSplitter


	FingerprintSplitter






	Base Splitter (for develop)






General Splitters


RandomSplitter


	
class RandomSplitter[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/splitters.py#L328-L388]

	Class for doing random data splits.

Examples

>>> import numpy as np
>>> import deepchem as dc
>>> # Creating a dummy NumPy dataset
>>> X, y = np.random.randn(5), np.random.randn(5)
>>> dataset = dc.data.NumpyDataset(X, y)
>>> # Creating a RandomSplitter object
>>> splitter = dc.splits.RandomSplitter()
>>> # Splitting dataset into train and test datasets
>>> train_dataset, test_dataset = splitter.train_test_split(dataset)






	
split(dataset: Dataset, frac_train: float = 0.8, frac_valid: float = 0.1, frac_test: float = 0.1, seed: int | None = None, log_every_n: int | None = None) → Tuple[ndarray, ndarray, ndarray][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/splitters.py#L345-L388]

	Splits internal compounds randomly into train/validation/test.


	Parameters:

	
	dataset (Dataset) – Dataset to be split.


	seed (int, optional (default None)) – Random seed to use.


	frac_train (float, optional (default 0.8)) – The fraction of data to be used for the training split.


	frac_valid (float, optional (default 0.1)) – The fraction of data to be used for the validation split.


	frac_test (float, optional (default 0.1)) – The fraction of data to be used for the test split.


	seed – Random seed to use.


	log_every_n (int, optional (default None)) – Log every n examples (not currently used).






	Returns:

	A tuple of train indices, valid indices, and test indices.
Each indices is a numpy array.



	Return type:

	Tuple[np.ndarray, np.ndarray, np.ndarray]










	
__repr__() → str[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/splitters.py#L298-L325]

	Convert self to repr representation.


	Returns:

	The string represents the class.



	Return type:

	str





Examples

>>> import deepchem as dc
>>> dc.splits.RandomSplitter()
RandomSplitter[]










	
__str__() → str[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/splitters.py#L259-L296]

	Convert self to str representation.


	Returns:

	The string represents the class.



	Return type:

	str





Examples

>>> import deepchem as dc
>>> str(dc.splits.RandomSplitter())
'RandomSplitter'










	
__weakref__[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits.py]

	list of weak references to the object (if defined)






	
k_fold_split(dataset: Dataset, k: int, directories: List[str] | None = None, **kwargs) → List[Tuple[Dataset, Dataset]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/splitters.py#L45-L105]

	
	Parameters:

	
	dataset (Dataset) – Dataset to do a k-fold split


	k (int) – Number of folds to split dataset into.


	directories (List[str], optional (default None)) – List of length 2*k filepaths to save the result disk-datasets.






	Returns:

	List of length k tuples of (train, cv) where train and cv are both Dataset.



	Return type:

	List[Tuple[Dataset, Dataset]]










	
train_test_split(dataset: Dataset, train_dir: str | None = None, test_dir: str | None = None, frac_train: float = 0.8, seed: int | None = None, **kwargs) → Tuple[Dataset, Dataset][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/splitters.py#L178-L224]

	Splits self into train/test sets.

Returns Dataset objects for train/test.


	Parameters:

	
	dataset (data like object) – Dataset to be split.


	train_dir (str, optional (default None)) – If specified, the directory in which the generated
training dataset should be stored. This is only
considered if isinstance(dataset, dc.data.DiskDataset)
is True.


	test_dir (str, optional (default None)) – If specified, the directory in which the generated
test dataset should be stored. This is only
considered if isinstance(dataset, dc.data.DiskDataset)
is True.


	frac_train (float, optional (default 0.8)) – The fraction of data to be used for the training split.


	seed (int, optional (default None)) – Random seed to use.






	Returns:

	A tuple of train and test datasets as dc.data.Dataset objects.



	Return type:

	Tuple[Dataset, Dataset]










	
train_valid_test_split(dataset: Dataset, train_dir: str | None = None, valid_dir: str | None = None, test_dir: str | None = None, frac_train: float = 0.8, frac_valid: float = 0.1, frac_test: float = 0.1, seed: int | None = None, log_every_n: int = 1000, **kwargs) → Tuple[Dataset, Dataset, Dataset][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/splitters.py#L107-L176]

	Splits self into train/validation/test sets.

Returns Dataset objects for train, valid, test.


	Parameters:

	
	dataset (Dataset) – Dataset to be split.


	train_dir (str, optional (default None)) – If specified, the directory in which the generated
training dataset should be stored. This is only
considered if isinstance(dataset, dc.data.DiskDataset)


	valid_dir (str, optional (default None)) – If specified, the directory in which the generated
valid dataset should be stored. This is only
considered if isinstance(dataset, dc.data.DiskDataset)
is True.


	test_dir (str, optional (default None)) – If specified, the directory in which the generated
test dataset should be stored. This is only
considered if isinstance(dataset, dc.data.DiskDataset)
is True.


	frac_train (float, optional (default 0.8)) – The fraction of data to be used for the training split.


	frac_valid (float, optional (default 0.1)) – The fraction of data to be used for the validation split.


	frac_test (float, optional (default 0.1)) – The fraction of data to be used for the test split.


	seed (int, optional (default None)) – Random seed to use.


	log_every_n (int, optional (default 1000)) – Controls the logger by dictating how often logger outputs
will be produced.






	Returns:

	A tuple of train, valid and test datasets as dc.data.Dataset objects.



	Return type:

	Tuple[Dataset, Optional[Dataset], Dataset]















RandomGroupSplitter


	
class RandomGroupSplitter(groups: Sequence)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/splitters.py#L391-L500]

	Random split based on groupings.

A splitter class that splits on groupings. An example use case is when
there are multiple conformations of the same molecule that share the same
topology.  This splitter subsequently guarantees that resulting splits
preserve groupings.

Note that it doesn’t do any dynamic programming or something fancy to try
to maximize the choice such that frac_train, frac_valid, or frac_test is
maximized.  It simply permutes the groups themselves. As such, use with
caution if the number of elements per group varies significantly.

Examples

>>> import deepchem as dc
>>> import numpy as np
>>> X=np.arange(12)
>>> groups = [0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3]
>>> splitter = dc.splits.RandomGroupSplitter(groups=groups)
>>> dataset = dc.data.NumpyDataset(X)   # 12 elements
>>> train, test = splitter.train_test_split(dataset, frac_train=0.75, seed=0)
>>> print (train.ids) #array([6, 7, 8, 9, 10, 11, 3, 4, 5], dtype=object)
[6 7 8 9 10 11 3 4 5]






	
__init__(groups: Sequence)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/splitters.py#L417-L436]

	Initialize this object.


	Parameters:

	groups (Sequence) – An array indicating the group of each item.
The length is equals to len(dataset.X)






Note

The examples of groups is the following.


groups    : 3 2 2 0 1 1 2 4 3

dataset.X : 0 1 2 3 4 5 6 7 8




groups    : a b b e q x a a r

dataset.X : 0 1 2 3 4 5 6 7 8










	
split(dataset: Dataset, frac_train: float = 0.8, frac_valid: float = 0.1, frac_test: float = 0.1, seed: int | None = None, log_every_n: int | None = None) → Tuple[List[int], List[int], List[int]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/splitters.py#L438-L500]

	Return indices for specified split


	Parameters:

	
	dataset (Dataset) – Dataset to be split.


	frac_train (float, optional (default 0.8)) – The fraction of data to be used for the training split.


	frac_valid (float, optional (default 0.1)) – The fraction of data to be used for the validation split.


	frac_test (float, optional (default 0.1)) – The fraction of data to be used for the test split.


	seed (int, optional (default None)) – Random seed to use.


	log_every_n (int, optional (default None)) – Log every n examples (not currently used).






	Returns:

	A tuple (train_inds, valid_inds, test_inds of the indices (integers) for
the various splits.



	Return type:

	Tuple[List[int], List[int], List[int]]










	
k_fold_split(dataset: Dataset, k: int, directories: List[str] | None = None, **kwargs) → List[Tuple[Dataset, Dataset]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/splitters.py#L45-L105]

	
	Parameters:

	
	dataset (Dataset) – Dataset to do a k-fold split


	k (int) – Number of folds to split dataset into.


	directories (List[str], optional (default None)) – List of length 2*k filepaths to save the result disk-datasets.






	Returns:

	List of length k tuples of (train, cv) where train and cv are both Dataset.



	Return type:

	List[Tuple[Dataset, Dataset]]










	
train_test_split(dataset: Dataset, train_dir: str | None = None, test_dir: str | None = None, frac_train: float = 0.8, seed: int | None = None, **kwargs) → Tuple[Dataset, Dataset][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/splitters.py#L178-L224]

	Splits self into train/test sets.

Returns Dataset objects for train/test.


	Parameters:

	
	dataset (data like object) – Dataset to be split.


	train_dir (str, optional (default None)) – If specified, the directory in which the generated
training dataset should be stored. This is only
considered if isinstance(dataset, dc.data.DiskDataset)
is True.


	test_dir (str, optional (default None)) – If specified, the directory in which the generated
test dataset should be stored. This is only
considered if isinstance(dataset, dc.data.DiskDataset)
is True.


	frac_train (float, optional (default 0.8)) – The fraction of data to be used for the training split.


	seed (int, optional (default None)) – Random seed to use.






	Returns:

	A tuple of train and test datasets as dc.data.Dataset objects.



	Return type:

	Tuple[Dataset, Dataset]










	
train_valid_test_split(dataset: Dataset, train_dir: str | None = None, valid_dir: str | None = None, test_dir: str | None = None, frac_train: float = 0.8, frac_valid: float = 0.1, frac_test: float = 0.1, seed: int | None = None, log_every_n: int = 1000, **kwargs) → Tuple[Dataset, Dataset, Dataset][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/splitters.py#L107-L176]

	Splits self into train/validation/test sets.

Returns Dataset objects for train, valid, test.


	Parameters:

	
	dataset (Dataset) – Dataset to be split.


	train_dir (str, optional (default None)) – If specified, the directory in which the generated
training dataset should be stored. This is only
considered if isinstance(dataset, dc.data.DiskDataset)


	valid_dir (str, optional (default None)) – If specified, the directory in which the generated
valid dataset should be stored. This is only
considered if isinstance(dataset, dc.data.DiskDataset)
is True.


	test_dir (str, optional (default None)) – If specified, the directory in which the generated
test dataset should be stored. This is only
considered if isinstance(dataset, dc.data.DiskDataset)
is True.


	frac_train (float, optional (default 0.8)) – The fraction of data to be used for the training split.


	frac_valid (float, optional (default 0.1)) – The fraction of data to be used for the validation split.


	frac_test (float, optional (default 0.1)) – The fraction of data to be used for the test split.


	seed (int, optional (default None)) – Random seed to use.


	log_every_n (int, optional (default 1000)) – Controls the logger by dictating how often logger outputs
will be produced.






	Returns:

	A tuple of train, valid and test datasets as dc.data.Dataset objects.



	Return type:

	Tuple[Dataset, Optional[Dataset], Dataset]















RandomStratifiedSplitter


	
class RandomStratifiedSplitter[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/splitters.py#L503-L633]

	RandomStratified Splitter class.

For sparse multitask datasets, a standard split offers no guarantees
that the splits will have any active compounds. This class tries to
arrange that each split has a proportional number of the actives for each
task. This is strictly guaranteed only for single-task datasets, but for
sparse multitask datasets it usually manages to produces a fairly accurate
division of the actives for each task.


Note

This splitter is primarily designed for boolean labeled data. It considers
only whether a label is zero or non-zero. When labels can take on multiple
non-zero values, it does not try to give each split a proportional fraction
of the samples with each value.



Examples

>>> import deepchem as dc
>>> import numpy as np
>>> from typing import Sequence
>>> # creation of demo data set with some smiles strings
>>> smiles= ['C', 'CC', 'CCC', 'CCCC', 'CCCCC']
>>> Xs = np.zeros(len(smiles))
>>> # creation of a deepchem dataset with the smile codes in the ids field
>>> dataset = dc.data.DiskDataset.from_numpy(X=Xs,ids=smiles)
>>> randomstratifiedsplitter = dc.splits.RandomStratifiedSplitter()
>>> train_dataset, test_dataset = randomstratifiedsplitter.train_test_split(dataset)






	
split(dataset: Dataset, frac_train: float = 0.8, frac_valid: float = 0.1, frac_test: float = 0.1, seed: int | None = None, log_every_n: int | None = None) → Tuple[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/splitters.py#L535-L633]

	Return indices for specified split


	Parameters:

	
	dataset (dc.data.Dataset) – Dataset to be split.


	seed (int, optional (default None)) – Random seed to use.


	frac_train (float, optional (default 0.8)) – The fraction of data to be used for the training split.


	frac_valid (float, optional (default 0.1)) – The fraction of data to be used for the validation split.


	frac_test (float, optional (default 0.1)) – The fraction of data to be used for the test split.


	log_every_n (int, optional (default None)) – Controls the logger by dictating how often logger outputs
will be produced.






	Returns:

	A tuple (train_inds, valid_inds, test_inds) of the indices (integers) for
the various splits.



	Return type:

	Tuple










	
__repr__() → str[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/splitters.py#L298-L325]

	Convert self to repr representation.


	Returns:

	The string represents the class.



	Return type:

	str





Examples

>>> import deepchem as dc
>>> dc.splits.RandomSplitter()
RandomSplitter[]










	
__str__() → str[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/splitters.py#L259-L296]

	Convert self to str representation.


	Returns:

	The string represents the class.



	Return type:

	str





Examples

>>> import deepchem as dc
>>> str(dc.splits.RandomSplitter())
'RandomSplitter'










	
__weakref__[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits.py]

	list of weak references to the object (if defined)






	
k_fold_split(dataset: Dataset, k: int, directories: List[str] | None = None, **kwargs) → List[Tuple[Dataset, Dataset]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/splitters.py#L45-L105]

	
	Parameters:

	
	dataset (Dataset) – Dataset to do a k-fold split


	k (int) – Number of folds to split dataset into.


	directories (List[str], optional (default None)) – List of length 2*k filepaths to save the result disk-datasets.






	Returns:

	List of length k tuples of (train, cv) where train and cv are both Dataset.



	Return type:

	List[Tuple[Dataset, Dataset]]










	
train_test_split(dataset: Dataset, train_dir: str | None = None, test_dir: str | None = None, frac_train: float = 0.8, seed: int | None = None, **kwargs) → Tuple[Dataset, Dataset][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/splitters.py#L178-L224]

	Splits self into train/test sets.

Returns Dataset objects for train/test.


	Parameters:

	
	dataset (data like object) – Dataset to be split.


	train_dir (str, optional (default None)) – If specified, the directory in which the generated
training dataset should be stored. This is only
considered if isinstance(dataset, dc.data.DiskDataset)
is True.


	test_dir (str, optional (default None)) – If specified, the directory in which the generated
test dataset should be stored. This is only
considered if isinstance(dataset, dc.data.DiskDataset)
is True.


	frac_train (float, optional (default 0.8)) – The fraction of data to be used for the training split.


	seed (int, optional (default None)) – Random seed to use.






	Returns:

	A tuple of train and test datasets as dc.data.Dataset objects.



	Return type:

	Tuple[Dataset, Dataset]










	
train_valid_test_split(dataset: Dataset, train_dir: str | None = None, valid_dir: str | None = None, test_dir: str | None = None, frac_train: float = 0.8, frac_valid: float = 0.1, frac_test: float = 0.1, seed: int | None = None, log_every_n: int = 1000, **kwargs) → Tuple[Dataset, Dataset, Dataset][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/splitters.py#L107-L176]

	Splits self into train/validation/test sets.

Returns Dataset objects for train, valid, test.


	Parameters:

	
	dataset (Dataset) – Dataset to be split.


	train_dir (str, optional (default None)) – If specified, the directory in which the generated
training dataset should be stored. This is only
considered if isinstance(dataset, dc.data.DiskDataset)


	valid_dir (str, optional (default None)) – If specified, the directory in which the generated
valid dataset should be stored. This is only
considered if isinstance(dataset, dc.data.DiskDataset)
is True.


	test_dir (str, optional (default None)) – If specified, the directory in which the generated
test dataset should be stored. This is only
considered if isinstance(dataset, dc.data.DiskDataset)
is True.


	frac_train (float, optional (default 0.8)) – The fraction of data to be used for the training split.


	frac_valid (float, optional (default 0.1)) – The fraction of data to be used for the validation split.


	frac_test (float, optional (default 0.1)) – The fraction of data to be used for the test split.


	seed (int, optional (default None)) – Random seed to use.


	log_every_n (int, optional (default 1000)) – Controls the logger by dictating how often logger outputs
will be produced.






	Returns:

	A tuple of train, valid and test datasets as dc.data.Dataset objects.



	Return type:

	Tuple[Dataset, Optional[Dataset], Dataset]















SingletaskStratifiedSplitter


	
class SingletaskStratifiedSplitter(task_number: int = 0)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/splitters.py#L636-L780]

	Class for doing data splits by stratification on a single task.

Examples

>>> n_samples = 100
>>> n_features = 10
>>> n_tasks = 10
>>> X = np.random.rand(n_samples, n_features)
>>> y = np.random.rand(n_samples, n_tasks)
>>> w = np.ones_like(y)
>>> dataset = DiskDataset.from_numpy(np.ones((100,n_tasks)), np.ones((100,n_tasks)))
>>> splitter = SingletaskStratifiedSplitter(task_number=5)
>>> train_dataset, test_dataset = splitter.train_test_split(dataset)






	
__init__(task_number: int = 0)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/splitters.py#L652-L661]

	Creates splitter object.


	Parameters:

	task_number (int, optional (default 0)) – Task number for stratification.










	
k_fold_split(dataset: Dataset, k: int, directories: List[str] | None = None, seed: int | None = None, log_every_n: int | None = None, **kwargs) → List[Dataset][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/splitters.py#L664-L710]

	Splits compounds into k-folds using stratified sampling.
Overriding base class k_fold_split.


	Parameters:

	
	dataset (Dataset) – Dataset to be split.


	k (int) – Number of folds to split dataset into.


	directories (List[str], optional (default None)) – List of length k filepaths to save the result disk-datasets.


	seed (int, optional (default None)) – Random seed to use.


	log_every_n (int, optional (default None)) – Log every n examples (not currently used).






	Returns:

	fold_datasets – List of dc.data.Dataset objects



	Return type:

	List[Dataset]










	
split(dataset: Dataset, frac_train: float = 0.8, frac_valid: float = 0.1, frac_test: float = 0.1, seed: int | None = None, log_every_n: int | None = None) → Tuple[ndarray, ndarray, ndarray][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/splitters.py#L712-L780]

	Splits compounds into train/validation/test using stratified sampling.


	Parameters:

	
	dataset (Dataset) – Dataset to be split.


	frac_train (float, optional (default 0.8)) – Fraction of dataset put into training data.


	frac_valid (float, optional (default 0.1)) – Fraction of dataset put into validation data.


	frac_test (float, optional (default 0.1)) – Fraction of dataset put into test data.


	seed (int, optional (default None)) – Random seed to use.


	log_every_n (int, optional (default None)) – Log every n examples (not currently used).






	Returns:

	A tuple of train indices, valid indices, and test indices.
Each indices is a numpy array.



	Return type:

	Tuple[np.ndarray, np.ndarray, np.ndarray]










	
train_test_split(dataset: Dataset, train_dir: str | None = None, test_dir: str | None = None, frac_train: float = 0.8, seed: int | None = None, **kwargs) → Tuple[Dataset, Dataset][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/splitters.py#L178-L224]

	Splits self into train/test sets.

Returns Dataset objects for train/test.


	Parameters:

	
	dataset (data like object) – Dataset to be split.


	train_dir (str, optional (default None)) – If specified, the directory in which the generated
training dataset should be stored. This is only
considered if isinstance(dataset, dc.data.DiskDataset)
is True.


	test_dir (str, optional (default None)) – If specified, the directory in which the generated
test dataset should be stored. This is only
considered if isinstance(dataset, dc.data.DiskDataset)
is True.


	frac_train (float, optional (default 0.8)) – The fraction of data to be used for the training split.


	seed (int, optional (default None)) – Random seed to use.






	Returns:

	A tuple of train and test datasets as dc.data.Dataset objects.



	Return type:

	Tuple[Dataset, Dataset]










	
train_valid_test_split(dataset: Dataset, train_dir: str | None = None, valid_dir: str | None = None, test_dir: str | None = None, frac_train: float = 0.8, frac_valid: float = 0.1, frac_test: float = 0.1, seed: int | None = None, log_every_n: int = 1000, **kwargs) → Tuple[Dataset, Dataset, Dataset][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/splitters.py#L107-L176]

	Splits self into train/validation/test sets.

Returns Dataset objects for train, valid, test.


	Parameters:

	
	dataset (Dataset) – Dataset to be split.


	train_dir (str, optional (default None)) – If specified, the directory in which the generated
training dataset should be stored. This is only
considered if isinstance(dataset, dc.data.DiskDataset)


	valid_dir (str, optional (default None)) – If specified, the directory in which the generated
valid dataset should be stored. This is only
considered if isinstance(dataset, dc.data.DiskDataset)
is True.


	test_dir (str, optional (default None)) – If specified, the directory in which the generated
test dataset should be stored. This is only
considered if isinstance(dataset, dc.data.DiskDataset)
is True.


	frac_train (float, optional (default 0.8)) – The fraction of data to be used for the training split.


	frac_valid (float, optional (default 0.1)) – The fraction of data to be used for the validation split.


	frac_test (float, optional (default 0.1)) – The fraction of data to be used for the test split.


	seed (int, optional (default None)) – Random seed to use.


	log_every_n (int, optional (default 1000)) – Controls the logger by dictating how often logger outputs
will be produced.






	Returns:

	A tuple of train, valid and test datasets as dc.data.Dataset objects.



	Return type:

	Tuple[Dataset, Optional[Dataset], Dataset]















IndexSplitter


	
class IndexSplitter[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/splitters.py#L783-L848]

	Class for simple order based splits.

Use this class when the Dataset you have is already ordered sa you would
like it to be processed. Then the first frac_train proportion is used for
training, the next frac_valid for validation, and the final frac_test for
testing. This class may make sense to use your Dataset is already time
ordered (for example).

Examples

>>> import deepchem as dc
>>> import numpy as np
>>> n_samples = 5
>>> n_features = 2
>>> X = np.random.rand(n_samples, n_features)
>>> y = np.random.rand(n_samples)
>>> indexsplitter = dc.splits.IndexSplitter()
>>> dataset = dc.data.NumpyDataset(X, y)
>>> train_dataset, test_dataset = indexsplitter.train_test_split(dataset)
>>> print(train_dataset.ids)
[0 1 2 3]
>>> print (test_dataset.ids)
[4]






	
split(dataset: Dataset, frac_train: float = 0.8, frac_valid: float = 0.1, frac_test: float = 0.1, seed: int | None = None, log_every_n: int | None = None) → Tuple[ndarray, ndarray, ndarray][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/splitters.py#L810-L848]

	Splits internal compounds into train/validation/test in provided order.


	Parameters:

	
	dataset (Dataset) – Dataset to be split.


	frac_train (float, optional (default 0.8)) – The fraction of data to be used for the training split.


	frac_valid (float, optional (default 0.1)) – The fraction of data to be used for the validation split.


	frac_test (float, optional (default 0.1)) – The fraction of data to be used for the test split.


	seed (int, optional (default None)) – Random seed to use.


	log_every_n (int, optional) – Log every n examples (not currently used).






	Returns:

	A tuple of train indices, valid indices, and test indices.
Each indices is a numpy array.



	Return type:

	Tuple[np.ndarray, np.ndarray, np.ndarray]










	
__repr__() → str[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/splitters.py#L298-L325]

	Convert self to repr representation.


	Returns:

	The string represents the class.



	Return type:

	str





Examples

>>> import deepchem as dc
>>> dc.splits.RandomSplitter()
RandomSplitter[]










	
__str__() → str[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/splitters.py#L259-L296]

	Convert self to str representation.


	Returns:

	The string represents the class.



	Return type:

	str





Examples

>>> import deepchem as dc
>>> str(dc.splits.RandomSplitter())
'RandomSplitter'










	
__weakref__[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits.py]

	list of weak references to the object (if defined)






	
k_fold_split(dataset: Dataset, k: int, directories: List[str] | None = None, **kwargs) → List[Tuple[Dataset, Dataset]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/splitters.py#L45-L105]

	
	Parameters:

	
	dataset (Dataset) – Dataset to do a k-fold split


	k (int) – Number of folds to split dataset into.


	directories (List[str], optional (default None)) – List of length 2*k filepaths to save the result disk-datasets.






	Returns:

	List of length k tuples of (train, cv) where train and cv are both Dataset.



	Return type:

	List[Tuple[Dataset, Dataset]]










	
train_test_split(dataset: Dataset, train_dir: str | None = None, test_dir: str | None = None, frac_train: float = 0.8, seed: int | None = None, **kwargs) → Tuple[Dataset, Dataset][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/splitters.py#L178-L224]

	Splits self into train/test sets.

Returns Dataset objects for train/test.


	Parameters:

	
	dataset (data like object) – Dataset to be split.


	train_dir (str, optional (default None)) – If specified, the directory in which the generated
training dataset should be stored. This is only
considered if isinstance(dataset, dc.data.DiskDataset)
is True.


	test_dir (str, optional (default None)) – If specified, the directory in which the generated
test dataset should be stored. This is only
considered if isinstance(dataset, dc.data.DiskDataset)
is True.


	frac_train (float, optional (default 0.8)) – The fraction of data to be used for the training split.


	seed (int, optional (default None)) – Random seed to use.






	Returns:

	A tuple of train and test datasets as dc.data.Dataset objects.



	Return type:

	Tuple[Dataset, Dataset]










	
train_valid_test_split(dataset: Dataset, train_dir: str | None = None, valid_dir: str | None = None, test_dir: str | None = None, frac_train: float = 0.8, frac_valid: float = 0.1, frac_test: float = 0.1, seed: int | None = None, log_every_n: int = 1000, **kwargs) → Tuple[Dataset, Dataset, Dataset][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/splitters.py#L107-L176]

	Splits self into train/validation/test sets.

Returns Dataset objects for train, valid, test.


	Parameters:

	
	dataset (Dataset) – Dataset to be split.


	train_dir (str, optional (default None)) – If specified, the directory in which the generated
training dataset should be stored. This is only
considered if isinstance(dataset, dc.data.DiskDataset)


	valid_dir (str, optional (default None)) – If specified, the directory in which the generated
valid dataset should be stored. This is only
considered if isinstance(dataset, dc.data.DiskDataset)
is True.


	test_dir (str, optional (default None)) – If specified, the directory in which the generated
test dataset should be stored. This is only
considered if isinstance(dataset, dc.data.DiskDataset)
is True.


	frac_train (float, optional (default 0.8)) – The fraction of data to be used for the training split.


	frac_valid (float, optional (default 0.1)) – The fraction of data to be used for the validation split.


	frac_test (float, optional (default 0.1)) – The fraction of data to be used for the test split.


	seed (int, optional (default None)) – Random seed to use.


	log_every_n (int, optional (default 1000)) – Controls the logger by dictating how often logger outputs
will be produced.






	Returns:

	A tuple of train, valid and test datasets as dc.data.Dataset objects.



	Return type:

	Tuple[Dataset, Optional[Dataset], Dataset]















SpecifiedSplitter


	
class SpecifiedSplitter(valid_indices: List[int] | None = None, test_indices: List[int] | None = None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/splitters.py#L851-L943]

	Split data in the fashion specified by user.

For some applications, you will already know how you’d like to split the
dataset. In this splitter, you simplify specify valid_indices and
test_indices and the datapoints at those indices are pulled out of the
dataset. Note that this is different from IndexSplitter which only splits
based on the existing dataset ordering, while this SpecifiedSplitter can
split on any specified ordering.

Examples

>>> import deepchem as dc
>>> import numpy as np
>>> n_samples = 10
>>> n_features = 3
>>> n_tasks = 1
>>> X = np.random.rand(n_samples, n_features)
>>> y = np.random.rand(n_samples, n_tasks)
>>> splitter = dc.splits.SpecifiedSplitter(valid_indices=[1,3,5], test_indices=[0,2,7,9])
>>> dataset = dc.data.NumpyDataset(X, y)
>>> train_dataset, valid_dataset, test_dataset = splitter.train_valid_test_split(dataset)
>>> print(train_dataset.ids)
[4 6 8]
>>> print(valid_dataset.ids)
[1 3 5]
>>> print(test_dataset.ids)
[0 2 7 9]






	
__init__(valid_indices: List[int] | None = None, test_indices: List[int] | None = None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/splitters.py#L882-L894]

	
	Parameters:

	
	valid_indices (List[int]) – List of indices of samples in the valid set


	test_indices (List[int]) – List of indices of samples in the test set













	
split(dataset: Dataset, frac_train: float = 0.8, frac_valid: float = 0.1, frac_test: float = 0.1, seed: int | None = None, log_every_n: int | None = None) → Tuple[ndarray, ndarray, ndarray][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/splitters.py#L896-L943]

	Splits internal compounds into train/validation/test in designated order.


	Parameters:

	
	dataset (Dataset) – Dataset to be split.


	frac_train (float, optional (default 0.8)) – Fraction of dataset put into training data.


	frac_valid (float, optional (default 0.1)) – Fraction of dataset put into validation data.


	frac_test (float, optional (default 0.1)) – Fraction of dataset put into test data.


	seed (int, optional (default None)) – Random seed to use.


	log_every_n (int, optional (default None)) – Log every n examples (not currently used).






	Returns:

	A tuple of train indices, valid indices, and test indices.
Each indices is a numpy array.



	Return type:

	Tuple[np.ndarray, np.ndarray, np.ndarray]










	
k_fold_split(dataset: Dataset, k: int, directories: List[str] | None = None, **kwargs) → List[Tuple[Dataset, Dataset]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/splitters.py#L45-L105]

	
	Parameters:

	
	dataset (Dataset) – Dataset to do a k-fold split


	k (int) – Number of folds to split dataset into.


	directories (List[str], optional (default None)) – List of length 2*k filepaths to save the result disk-datasets.






	Returns:

	List of length k tuples of (train, cv) where train and cv are both Dataset.



	Return type:

	List[Tuple[Dataset, Dataset]]










	
train_test_split(dataset: Dataset, train_dir: str | None = None, test_dir: str | None = None, frac_train: float = 0.8, seed: int | None = None, **kwargs) → Tuple[Dataset, Dataset][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/splitters.py#L178-L224]

	Splits self into train/test sets.

Returns Dataset objects for train/test.


	Parameters:

	
	dataset (data like object) – Dataset to be split.


	train_dir (str, optional (default None)) – If specified, the directory in which the generated
training dataset should be stored. This is only
considered if isinstance(dataset, dc.data.DiskDataset)
is True.


	test_dir (str, optional (default None)) – If specified, the directory in which the generated
test dataset should be stored. This is only
considered if isinstance(dataset, dc.data.DiskDataset)
is True.


	frac_train (float, optional (default 0.8)) – The fraction of data to be used for the training split.


	seed (int, optional (default None)) – Random seed to use.






	Returns:

	A tuple of train and test datasets as dc.data.Dataset objects.



	Return type:

	Tuple[Dataset, Dataset]










	
train_valid_test_split(dataset: Dataset, train_dir: str | None = None, valid_dir: str | None = None, test_dir: str | None = None, frac_train: float = 0.8, frac_valid: float = 0.1, frac_test: float = 0.1, seed: int | None = None, log_every_n: int = 1000, **kwargs) → Tuple[Dataset, Dataset, Dataset][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/splitters.py#L107-L176]

	Splits self into train/validation/test sets.

Returns Dataset objects for train, valid, test.


	Parameters:

	
	dataset (Dataset) – Dataset to be split.


	train_dir (str, optional (default None)) – If specified, the directory in which the generated
training dataset should be stored. This is only
considered if isinstance(dataset, dc.data.DiskDataset)


	valid_dir (str, optional (default None)) – If specified, the directory in which the generated
valid dataset should be stored. This is only
considered if isinstance(dataset, dc.data.DiskDataset)
is True.


	test_dir (str, optional (default None)) – If specified, the directory in which the generated
test dataset should be stored. This is only
considered if isinstance(dataset, dc.data.DiskDataset)
is True.


	frac_train (float, optional (default 0.8)) – The fraction of data to be used for the training split.


	frac_valid (float, optional (default 0.1)) – The fraction of data to be used for the validation split.


	frac_test (float, optional (default 0.1)) – The fraction of data to be used for the test split.


	seed (int, optional (default None)) – Random seed to use.


	log_every_n (int, optional (default 1000)) – Controls the logger by dictating how often logger outputs
will be produced.






	Returns:

	A tuple of train, valid and test datasets as dc.data.Dataset objects.



	Return type:

	Tuple[Dataset, Optional[Dataset], Dataset]















TaskSplitter


	
class TaskSplitter[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/task_splitter.py#L32-L112]

	Provides a simple interface for splitting datasets task-wise.

For some learning problems, the training and test datasets should
have different tasks entirely. This is a different paradigm from the
usual Splitter, which ensures that split datasets have different
datapoints, not different tasks.


	
__init__()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/task_splitter.py#L41-L43]

	Creates Task Splitter object.






	
train_valid_test_split(dataset, frac_train=0.8, frac_valid=0.1, frac_test=0.1)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/task_splitter.py#L45-L77]

	Performs a train/valid/test split of the tasks for dataset.

If split is uneven, spillover goes to test.


	Parameters:

	
	dataset (dc.data.Dataset) – Dataset to be split


	frac_train (float, optional) – Proportion of tasks to be put into train. Rounded to nearest int.


	frac_valid (float, optional) – Proportion of tasks to be put into valid. Rounded to nearest int.


	frac_test (float, optional) – Proportion of tasks to be put into test. Rounded to nearest int.













	
k_fold_split(dataset, K)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/task_splitter.py#L79-L112]

	Performs a K-fold split of the tasks for dataset.

If split is uneven, spillover goes to last fold.


	Parameters:

	
	dataset (dc.data.Dataset) – Dataset to be split


	K (int) – Number of splits to be made













	
split(dataset: Dataset, frac_train: float = 0.8, frac_valid: float = 0.1, frac_test: float = 0.1, seed: int | None = None, log_every_n: int | None = None) → Tuple[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/splitters.py#L226-L257]

	Return indices for specified split


	Parameters:

	
	dataset (dc.data.Dataset) – Dataset to be split.


	seed (int, optional (default None)) – Random seed to use.


	frac_train (float, optional (default 0.8)) – The fraction of data to be used for the training split.


	frac_valid (float, optional (default 0.1)) – The fraction of data to be used for the validation split.


	frac_test (float, optional (default 0.1)) – The fraction of data to be used for the test split.


	log_every_n (int, optional (default None)) – Controls the logger by dictating how often logger outputs
will be produced.






	Returns:

	A tuple (train_inds, valid_inds, test_inds) of the indices (integers) for
the various splits.



	Return type:

	Tuple










	
train_test_split(dataset: Dataset, train_dir: str | None = None, test_dir: str | None = None, frac_train: float = 0.8, seed: int | None = None, **kwargs) → Tuple[Dataset, Dataset][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/splitters.py#L178-L224]

	Splits self into train/test sets.

Returns Dataset objects for train/test.


	Parameters:

	
	dataset (data like object) – Dataset to be split.


	train_dir (str, optional (default None)) – If specified, the directory in which the generated
training dataset should be stored. This is only
considered if isinstance(dataset, dc.data.DiskDataset)
is True.


	test_dir (str, optional (default None)) – If specified, the directory in which the generated
test dataset should be stored. This is only
considered if isinstance(dataset, dc.data.DiskDataset)
is True.


	frac_train (float, optional (default 0.8)) – The fraction of data to be used for the training split.


	seed (int, optional (default None)) – Random seed to use.






	Returns:

	A tuple of train and test datasets as dc.data.Dataset objects.



	Return type:

	Tuple[Dataset, Dataset]
















Molecule Splitters


ScaffoldSplitter


	
class ScaffoldSplitter[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/splitters.py#L1481-L1615]

	Class for doing data splits based on the scaffold of small molecules.

Group  molecules  based on  the Bemis-Murcko scaffold representation, which identifies rings,
linkers, frameworks (combinations between linkers and rings) and atomic properties  such as
atom type, hibridization and bond order in a dataset of molecules. Then split the groups by
the number of molecules in each group in decreasing order.

It is necessary to add the smiles representation in the ids field during the
DiskDataset creation.

Examples

>>> import deepchem as dc
>>> # creation of demo data set with some smiles strings
... data_test= ["CC(C)Cl" , "CCC(C)CO" ,  "CCCCCCCO" , "CCCCCCCC(=O)OC" , "c3ccc2nc1ccccc1cc2c3" , "Nc2cccc3nc1ccccc1cc23" , "C1CCCCCC1" ]
>>> Xs = np.zeros(len(data_test))
>>> Ys = np.ones(len(data_test))
>>> # creation of a deepchem dataset with the smile codes in the ids field
... dataset = dc.data.DiskDataset.from_numpy(X=Xs,y=Ys,w=np.zeros(len(data_test)),ids=data_test)
>>> scaffoldsplitter = dc.splits.ScaffoldSplitter()
>>> train,test = scaffoldsplitter.train_test_split(dataset)
>>> train
<DiskDataset X.shape: (5,), y.shape: (5,), w.shape: (5,), ids: ['CC(C)Cl' 'CCC(C)CO' 'CCCCCCCO' 'CCCCCCCC(=O)OC' 'C1CCCCCC1'], task_names: [0]>





References



[1]
Bemis, Guy W., and Mark A. Murcko. “The properties of known drugs.
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Notes


	This class requires RDKit to be installed.


	When a SMILES representation of a molecule is invalid, the splitter skips processing




the datapoint i.e it will not include the molecule in any splits.


	
split(dataset: Dataset, frac_train: float = 0.8, frac_valid: float = 0.1, frac_test: float = 0.1, seed: int | None = None, log_every_n: int | None = 1000) → Tuple[List[int], List[int], List[int]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/splitters.py#L1519-L1572]

	Splits internal compounds into train/validation/test by scaffold.


	Parameters:

	
	dataset (Dataset) – Dataset to be split.


	frac_train (float, optional (default 0.8)) – The fraction of data to be used for the training split.


	frac_valid (float, optional (default 0.1)) – The fraction of data to be used for the validation split.


	frac_test (float, optional (default 0.1)) – The fraction of data to be used for the test split.


	seed (int, optional (default None)) – Random seed to use.


	log_every_n (int, optional (default 1000)) – Controls the logger by dictating how often logger outputs
will be produced.






	Returns:

	A tuple of train indices, valid indices, and test indices.
Each indices is a list of integers.



	Return type:

	Tuple[List[int], List[int], List[int]]










	
generate_scaffolds(dataset: Dataset, log_every_n: int = 1000) → List[List[int]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/splitters.py#L1574-L1615]

	Returns all scaffolds from the dataset.


	Parameters:

	
	dataset (Dataset) – Dataset to be split.


	log_every_n (int, optional (default 1000)) – Controls the logger by dictating how often logger outputs
will be produced.






	Returns:

	scaffold_sets – List of indices of each scaffold in the dataset.



	Return type:

	List[List[int]]










	
__repr__() → str[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/splitters.py#L298-L325]

	Convert self to repr representation.


	Returns:

	The string represents the class.



	Return type:

	str





Examples

>>> import deepchem as dc
>>> dc.splits.RandomSplitter()
RandomSplitter[]










	
__str__() → str[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/splitters.py#L259-L296]

	Convert self to str representation.


	Returns:

	The string represents the class.



	Return type:

	str





Examples

>>> import deepchem as dc
>>> str(dc.splits.RandomSplitter())
'RandomSplitter'










	
__weakref__[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits.py]

	list of weak references to the object (if defined)






	
k_fold_split(dataset: Dataset, k: int, directories: List[str] | None = None, **kwargs) → List[Tuple[Dataset, Dataset]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/splitters.py#L45-L105]

	
	Parameters:

	
	dataset (Dataset) – Dataset to do a k-fold split


	k (int) – Number of folds to split dataset into.


	directories (List[str], optional (default None)) – List of length 2*k filepaths to save the result disk-datasets.






	Returns:

	List of length k tuples of (train, cv) where train and cv are both Dataset.



	Return type:

	List[Tuple[Dataset, Dataset]]










	
train_test_split(dataset: Dataset, train_dir: str | None = None, test_dir: str | None = None, frac_train: float = 0.8, seed: int | None = None, **kwargs) → Tuple[Dataset, Dataset][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/splitters.py#L178-L224]

	Splits self into train/test sets.

Returns Dataset objects for train/test.


	Parameters:

	
	dataset (data like object) – Dataset to be split.


	train_dir (str, optional (default None)) – If specified, the directory in which the generated
training dataset should be stored. This is only
considered if isinstance(dataset, dc.data.DiskDataset)
is True.


	test_dir (str, optional (default None)) – If specified, the directory in which the generated
test dataset should be stored. This is only
considered if isinstance(dataset, dc.data.DiskDataset)
is True.


	frac_train (float, optional (default 0.8)) – The fraction of data to be used for the training split.


	seed (int, optional (default None)) – Random seed to use.






	Returns:

	A tuple of train and test datasets as dc.data.Dataset objects.



	Return type:

	Tuple[Dataset, Dataset]










	
train_valid_test_split(dataset: Dataset, train_dir: str | None = None, valid_dir: str | None = None, test_dir: str | None = None, frac_train: float = 0.8, frac_valid: float = 0.1, frac_test: float = 0.1, seed: int | None = None, log_every_n: int = 1000, **kwargs) → Tuple[Dataset, Dataset, Dataset][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/splitters.py#L107-L176]

	Splits self into train/validation/test sets.

Returns Dataset objects for train, valid, test.


	Parameters:

	
	dataset (Dataset) – Dataset to be split.


	train_dir (str, optional (default None)) – If specified, the directory in which the generated
training dataset should be stored. This is only
considered if isinstance(dataset, dc.data.DiskDataset)


	valid_dir (str, optional (default None)) – If specified, the directory in which the generated
valid dataset should be stored. This is only
considered if isinstance(dataset, dc.data.DiskDataset)
is True.


	test_dir (str, optional (default None)) – If specified, the directory in which the generated
test dataset should be stored. This is only
considered if isinstance(dataset, dc.data.DiskDataset)
is True.


	frac_train (float, optional (default 0.8)) – The fraction of data to be used for the training split.


	frac_valid (float, optional (default 0.1)) – The fraction of data to be used for the validation split.


	frac_test (float, optional (default 0.1)) – The fraction of data to be used for the test split.


	seed (int, optional (default None)) – Random seed to use.


	log_every_n (int, optional (default 1000)) – Controls the logger by dictating how often logger outputs
will be produced.






	Returns:

	A tuple of train, valid and test datasets as dc.data.Dataset objects.



	Return type:

	Tuple[Dataset, Optional[Dataset], Dataset]















MolecularWeightSplitter


	
class MolecularWeightSplitter[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/splitters.py#L951-L1034]

	Class for doing data splits by molecular weight.


Note

This class requires RDKit to be installed.



Examples

>>> import deepchem as dc
>>> import numpy as np
>>> # creation of demo data set with some smiles strings
>>> smiles= ['C', 'CC', 'CCC', 'CCCC', 'CCCCC']
>>> Xs = np.zeros(len(smiles))
>>> # creation of a deepchem dataset with the smile codes in the ids field
>>> dataset = dc.data.DiskDataset.from_numpy(X=Xs,ids=smiles)
>>> molecularweightsplitter = dc.splits.MolecularWeightSplitter()
>>> train_dataset, test_dataset = molecularweightsplitter.train_test_split(dataset)
>>> print(train_dataset.ids)
['C' 'CC' 'CCC' 'CCCC']
>>> print(test_dataset.ids)
['CCCCC']






	
split(dataset: Dataset, frac_train: float = 0.8, frac_valid: float = 0.1, frac_test: float = 0.1, seed: int | None = None, log_every_n: int | None = None) → Tuple[ndarray, ndarray, ndarray][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/splitters.py#L977-L1034]

	Splits on molecular weight.

Splits internal compounds into train/validation/test using the MW
calculated by SMILES string.


	Parameters:

	
	dataset (Dataset) – Dataset to be split.


	frac_train (float, optional (default 0.8)) – The fraction of data to be used for the training split.


	frac_valid (float, optional (default 0.1)) – The fraction of data to be used for the validation split.


	frac_test (float, optional (default 0.1)) – The fraction of data to be used for the test split.


	seed (int, optional (default None)) – Random seed to use.


	log_every_n (int, optional (default None)) – Log every n examples (not currently used).






	Returns:

	A tuple of train indices, valid indices, and test indices.
Each indices is a numpy array.



	Return type:

	Tuple[np.ndarray, np.ndarray, np.ndarray]










	
__repr__() → str[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/splitters.py#L298-L325]

	Convert self to repr representation.


	Returns:

	The string represents the class.



	Return type:

	str





Examples

>>> import deepchem as dc
>>> dc.splits.RandomSplitter()
RandomSplitter[]










	
__str__() → str[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/splitters.py#L259-L296]

	Convert self to str representation.


	Returns:

	The string represents the class.



	Return type:

	str





Examples

>>> import deepchem as dc
>>> str(dc.splits.RandomSplitter())
'RandomSplitter'










	
__weakref__[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits.py]

	list of weak references to the object (if defined)






	
k_fold_split(dataset: Dataset, k: int, directories: List[str] | None = None, **kwargs) → List[Tuple[Dataset, Dataset]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/splitters.py#L45-L105]

	
	Parameters:

	
	dataset (Dataset) – Dataset to do a k-fold split


	k (int) – Number of folds to split dataset into.


	directories (List[str], optional (default None)) – List of length 2*k filepaths to save the result disk-datasets.






	Returns:

	List of length k tuples of (train, cv) where train and cv are both Dataset.



	Return type:

	List[Tuple[Dataset, Dataset]]










	
train_test_split(dataset: Dataset, train_dir: str | None = None, test_dir: str | None = None, frac_train: float = 0.8, seed: int | None = None, **kwargs) → Tuple[Dataset, Dataset][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/splitters.py#L178-L224]

	Splits self into train/test sets.

Returns Dataset objects for train/test.


	Parameters:

	
	dataset (data like object) – Dataset to be split.


	train_dir (str, optional (default None)) – If specified, the directory in which the generated
training dataset should be stored. This is only
considered if isinstance(dataset, dc.data.DiskDataset)
is True.


	test_dir (str, optional (default None)) – If specified, the directory in which the generated
test dataset should be stored. This is only
considered if isinstance(dataset, dc.data.DiskDataset)
is True.


	frac_train (float, optional (default 0.8)) – The fraction of data to be used for the training split.


	seed (int, optional (default None)) – Random seed to use.






	Returns:

	A tuple of train and test datasets as dc.data.Dataset objects.



	Return type:

	Tuple[Dataset, Dataset]










	
train_valid_test_split(dataset: Dataset, train_dir: str | None = None, valid_dir: str | None = None, test_dir: str | None = None, frac_train: float = 0.8, frac_valid: float = 0.1, frac_test: float = 0.1, seed: int | None = None, log_every_n: int = 1000, **kwargs) → Tuple[Dataset, Dataset, Dataset][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/splitters.py#L107-L176]

	Splits self into train/validation/test sets.

Returns Dataset objects for train, valid, test.


	Parameters:

	
	dataset (Dataset) – Dataset to be split.


	train_dir (str, optional (default None)) – If specified, the directory in which the generated
training dataset should be stored. This is only
considered if isinstance(dataset, dc.data.DiskDataset)


	valid_dir (str, optional (default None)) – If specified, the directory in which the generated
valid dataset should be stored. This is only
considered if isinstance(dataset, dc.data.DiskDataset)
is True.


	test_dir (str, optional (default None)) – If specified, the directory in which the generated
test dataset should be stored. This is only
considered if isinstance(dataset, dc.data.DiskDataset)
is True.


	frac_train (float, optional (default 0.8)) – The fraction of data to be used for the training split.


	frac_valid (float, optional (default 0.1)) – The fraction of data to be used for the validation split.


	frac_test (float, optional (default 0.1)) – The fraction of data to be used for the test split.


	seed (int, optional (default None)) – Random seed to use.


	log_every_n (int, optional (default 1000)) – Controls the logger by dictating how often logger outputs
will be produced.






	Returns:

	A tuple of train, valid and test datasets as dc.data.Dataset objects.



	Return type:

	Tuple[Dataset, Optional[Dataset], Dataset]















MaxMinSplitter


	
class MaxMinSplitter[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/splitters.py#L1037-L1151]

	Chemical diversity splitter.

Class for doing splits based on the MaxMin diversity algorithm. Intuitively,
the test set is comprised of the most diverse compounds of the entire dataset.
Furthermore, the validation set is comprised of diverse compounds under
the test set.


Note

This class requires RDKit to be installed.



Examples

>>> import deepchem as dc
>>> import numpy as np
>>> # creation of demo data set with some smiles strings
>>> smiles= ['C', 'CC', 'CCC', 'CCCC', 'CCCCC']
>>> Xs = np.zeros(len(smiles))
>>> # creation of a deepchem dataset with the smile codes in the ids field
>>> dataset = dc.data.DiskDataset.from_numpy(X=Xs,ids=smiles)
>>> maxminsplitter = dc.splits.MaxMinSplitter()
>>> train_dataset, test_dataset = maxminsplitter.train_test_split(dataset)






	
split(dataset: Dataset, frac_train: float = 0.8, frac_valid: float = 0.1, frac_test: float = 0.1, seed: int | None = None, log_every_n: int | None = None) → Tuple[List[int], List[int], List[int]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/splitters.py#L1063-L1151]

	Splits internal compounds into train/validation/test using the MaxMin diversity algorithm.


	Parameters:

	
	dataset (Dataset) – Dataset to be split.


	frac_train (float, optional (default 0.8)) – The fraction of data to be used for the training split.


	frac_valid (float, optional (default 0.1)) – The fraction of data to be used for the validation split.


	frac_test (float, optional (default 0.1)) – The fraction of data to be used for the test split.


	seed (int, optional (default None)) – Random seed to use.


	log_every_n (int, optional (default None)) – Log every n examples (not currently used).






	Returns:

	A tuple of train indices, valid indices, and test indices.
Each indices is a list of integers.



	Return type:

	Tuple[List[int], List[int], List[int]]










	
__repr__() → str[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/splitters.py#L298-L325]

	Convert self to repr representation.


	Returns:

	The string represents the class.



	Return type:

	str





Examples

>>> import deepchem as dc
>>> dc.splits.RandomSplitter()
RandomSplitter[]










	
__str__() → str[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/splitters.py#L259-L296]

	Convert self to str representation.


	Returns:

	The string represents the class.



	Return type:

	str





Examples

>>> import deepchem as dc
>>> str(dc.splits.RandomSplitter())
'RandomSplitter'










	
__weakref__[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits.py]

	list of weak references to the object (if defined)






	
k_fold_split(dataset: Dataset, k: int, directories: List[str] | None = None, **kwargs) → List[Tuple[Dataset, Dataset]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/splitters.py#L45-L105]

	
	Parameters:

	
	dataset (Dataset) – Dataset to do a k-fold split


	k (int) – Number of folds to split dataset into.


	directories (List[str], optional (default None)) – List of length 2*k filepaths to save the result disk-datasets.






	Returns:

	List of length k tuples of (train, cv) where train and cv are both Dataset.



	Return type:

	List[Tuple[Dataset, Dataset]]










	
train_test_split(dataset: Dataset, train_dir: str | None = None, test_dir: str | None = None, frac_train: float = 0.8, seed: int | None = None, **kwargs) → Tuple[Dataset, Dataset][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/splitters.py#L178-L224]

	Splits self into train/test sets.

Returns Dataset objects for train/test.


	Parameters:

	
	dataset (data like object) – Dataset to be split.


	train_dir (str, optional (default None)) – If specified, the directory in which the generated
training dataset should be stored. This is only
considered if isinstance(dataset, dc.data.DiskDataset)
is True.


	test_dir (str, optional (default None)) – If specified, the directory in which the generated
test dataset should be stored. This is only
considered if isinstance(dataset, dc.data.DiskDataset)
is True.


	frac_train (float, optional (default 0.8)) – The fraction of data to be used for the training split.


	seed (int, optional (default None)) – Random seed to use.






	Returns:

	A tuple of train and test datasets as dc.data.Dataset objects.



	Return type:

	Tuple[Dataset, Dataset]










	
train_valid_test_split(dataset: Dataset, train_dir: str | None = None, valid_dir: str | None = None, test_dir: str | None = None, frac_train: float = 0.8, frac_valid: float = 0.1, frac_test: float = 0.1, seed: int | None = None, log_every_n: int = 1000, **kwargs) → Tuple[Dataset, Dataset, Dataset][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/splitters.py#L107-L176]

	Splits self into train/validation/test sets.

Returns Dataset objects for train, valid, test.


	Parameters:

	
	dataset (Dataset) – Dataset to be split.


	train_dir (str, optional (default None)) – If specified, the directory in which the generated
training dataset should be stored. This is only
considered if isinstance(dataset, dc.data.DiskDataset)


	valid_dir (str, optional (default None)) – If specified, the directory in which the generated
valid dataset should be stored. This is only
considered if isinstance(dataset, dc.data.DiskDataset)
is True.


	test_dir (str, optional (default None)) – If specified, the directory in which the generated
test dataset should be stored. This is only
considered if isinstance(dataset, dc.data.DiskDataset)
is True.


	frac_train (float, optional (default 0.8)) – The fraction of data to be used for the training split.


	frac_valid (float, optional (default 0.1)) – The fraction of data to be used for the validation split.


	frac_test (float, optional (default 0.1)) – The fraction of data to be used for the test split.


	seed (int, optional (default None)) – Random seed to use.


	log_every_n (int, optional (default 1000)) – Controls the logger by dictating how often logger outputs
will be produced.






	Returns:

	A tuple of train, valid and test datasets as dc.data.Dataset objects.



	Return type:

	Tuple[Dataset, Optional[Dataset], Dataset]















ButinaSplitter


	
class ButinaSplitter(cutoff: float = 0.6)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/splitters.py#L1154-L1273]

	Class for doing data splits based on the butina clustering of a bulk tanimoto
fingerprint matrix.


Note

This class requires RDKit to be installed.



Examples

>>> import deepchem as dc
>>> import numpy as np
>>> # creation of demo data set with some smiles strings
>>> smiles= ['C', 'CC', 'CCC', 'CCCC', 'CCCCC']
>>> Xs = np.zeros(len(smiles))
>>> # creation of a deepchem dataset with the smile codes in the ids field
>>> dataset = dc.data.DiskDataset.from_numpy(X=Xs,ids=smiles)
>>> butinasplitter = dc.splits.ButinaSplitter()
>>> train_dataset, test_dataset = butinasplitter.train_test_split(dataset)
>>> print(train_dataset.ids)
['CCCC' 'CCC' 'CCCCC' 'CC']
>>> print(test_dataset.ids)
['C']






	
__init__(cutoff: float = 0.6)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/splitters.py#L1180-L1190]

	Create a ButinaSplitter.


	Parameters:

	cutoff (float (default 0.6)) – The cutoff value for tanimoto similarity.  Molecules that are more similar
than this will tend to be put in the same dataset.










	
split(dataset: Dataset, frac_train: float = 0.8, frac_valid: float = 0.1, frac_test: float = 0.1, seed: int | None = None, log_every_n: int | None = None) → Tuple[List[int], List[int], List[int]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/splitters.py#L1192-L1273]

	Splits internal compounds into train and validation based on the butina
clustering algorithm. This splitting algorithm has an O(N^2) run time, where N
is the number of elements in the dataset. The dataset is expected to be a classification
dataset.

This algorithm is designed to generate validation data that are novel chemotypes.
Setting a small cutoff value will generate smaller, finer clusters of high similarity,
whereas setting a large cutoff value will generate larger, coarser clusters of low similarity.


	Parameters:

	
	dataset (Dataset) – Dataset to be split.


	frac_train (float, optional (default 0.8)) – The fraction of data to be used for the training split.


	frac_valid (float, optional (default 0.1)) – The fraction of data to be used for the validation split.


	frac_test (float, optional (default 0.1)) – The fraction of data to be used for the test split.


	seed (int, optional (default None)) – Random seed to use.


	log_every_n (int, optional (default None)) – Log every n examples (not currently used).






	Returns:

	A tuple of train indices, valid indices, and test indices.



	Return type:

	Tuple[List[int], List[int], List[int]]










	
k_fold_split(dataset: Dataset, k: int, directories: List[str] | None = None, **kwargs) → List[Tuple[Dataset, Dataset]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/splitters.py#L45-L105]

	
	Parameters:

	
	dataset (Dataset) – Dataset to do a k-fold split


	k (int) – Number of folds to split dataset into.


	directories (List[str], optional (default None)) – List of length 2*k filepaths to save the result disk-datasets.






	Returns:

	List of length k tuples of (train, cv) where train and cv are both Dataset.



	Return type:

	List[Tuple[Dataset, Dataset]]










	
train_test_split(dataset: Dataset, train_dir: str | None = None, test_dir: str | None = None, frac_train: float = 0.8, seed: int | None = None, **kwargs) → Tuple[Dataset, Dataset][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/splitters.py#L178-L224]

	Splits self into train/test sets.

Returns Dataset objects for train/test.


	Parameters:

	
	dataset (data like object) – Dataset to be split.


	train_dir (str, optional (default None)) – If specified, the directory in which the generated
training dataset should be stored. This is only
considered if isinstance(dataset, dc.data.DiskDataset)
is True.


	test_dir (str, optional (default None)) – If specified, the directory in which the generated
test dataset should be stored. This is only
considered if isinstance(dataset, dc.data.DiskDataset)
is True.


	frac_train (float, optional (default 0.8)) – The fraction of data to be used for the training split.


	seed (int, optional (default None)) – Random seed to use.






	Returns:

	A tuple of train and test datasets as dc.data.Dataset objects.



	Return type:

	Tuple[Dataset, Dataset]










	
train_valid_test_split(dataset: Dataset, train_dir: str | None = None, valid_dir: str | None = None, test_dir: str | None = None, frac_train: float = 0.8, frac_valid: float = 0.1, frac_test: float = 0.1, seed: int | None = None, log_every_n: int = 1000, **kwargs) → Tuple[Dataset, Dataset, Dataset][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/splitters.py#L107-L176]

	Splits self into train/validation/test sets.

Returns Dataset objects for train, valid, test.


	Parameters:

	
	dataset (Dataset) – Dataset to be split.


	train_dir (str, optional (default None)) – If specified, the directory in which the generated
training dataset should be stored. This is only
considered if isinstance(dataset, dc.data.DiskDataset)


	valid_dir (str, optional (default None)) – If specified, the directory in which the generated
valid dataset should be stored. This is only
considered if isinstance(dataset, dc.data.DiskDataset)
is True.


	test_dir (str, optional (default None)) – If specified, the directory in which the generated
test dataset should be stored. This is only
considered if isinstance(dataset, dc.data.DiskDataset)
is True.


	frac_train (float, optional (default 0.8)) – The fraction of data to be used for the training split.


	frac_valid (float, optional (default 0.1)) – The fraction of data to be used for the validation split.


	frac_test (float, optional (default 0.1)) – The fraction of data to be used for the test split.


	seed (int, optional (default None)) – Random seed to use.


	log_every_n (int, optional (default 1000)) – Controls the logger by dictating how often logger outputs
will be produced.






	Returns:

	A tuple of train, valid and test datasets as dc.data.Dataset objects.



	Return type:

	Tuple[Dataset, Optional[Dataset], Dataset]















FingerprintSplitter


	
class FingerprintSplitter[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/splitters.py#L1322-L1427]

	Class for doing data splits based on the Tanimoto similarity between ECFP4
fingerprints.

This class tries to split the data such that the molecules in each dataset are
as different as possible from the ones in the other datasets.  This makes it a
very stringent test of models.  Predicting the test and validation sets may
require extrapolating far outside the training data.

The running time for this splitter scales as O(n^2) in the number of samples.
Splitting large datasets can take a long time.


Note

This class requires RDKit to be installed.



Examples

>>> import deepchem as dc
>>> import numpy as np
>>> # creation of demo data set with some smiles strings
>>> smiles= ['C', 'CC', 'CCC', 'CCCC', 'CCCCC']
>>> Xs = np.zeros(len(smiles))
>>> # creation of a deepchem dataset with the smile codes in the ids field
>>> dataset = dc.data.DiskDataset.from_numpy(X=Xs,ids=smiles)
>>> fingerprintsplitter = dc.splits.FingerprintSplitter()
>>> train_dataset, test_dataset = fingerprintsplitter.train_test_split(dataset)
>>> print(train_dataset.ids)
['C' 'CCCCC' 'CCCC' 'CCC']
>>> print(test_dataset.ids)
['CC']






	
split(dataset: Dataset, frac_train: float = 0.8, frac_valid: float = 0.1, frac_test: float = 0.1, seed: int | None = None, log_every_n: int | None = None) → Tuple[List[int], List[int], List[int]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/splitters.py#L1360-L1427]

	Splits compounds into training, validation, and test sets based on the
Tanimoto similarity of their ECFP4 fingerprints. This splitting algorithm
has an O(N^2) run time, where N is the number of elements in the dataset.


	Parameters:

	
	dataset (Dataset) – Dataset to be split.


	frac_train (float, optional (default 0.8)) – The fraction of data to be used for the training split.


	frac_valid (float, optional (default 0.1)) – The fraction of data to be used for the validation split.


	frac_test (float, optional (default 0.1)) – The fraction of data to be used for the test split.


	seed (int, optional (default None)) – Random seed to use (ignored since this algorithm is deterministic).


	log_every_n (int, optional (default None)) – Log every n examples (not currently used).






	Returns:

	A tuple of train indices, valid indices, and test indices.



	Return type:

	Tuple[List[int], List[int], List[int]]










	
__repr__() → str[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/splitters.py#L298-L325]

	Convert self to repr representation.


	Returns:

	The string represents the class.



	Return type:

	str





Examples

>>> import deepchem as dc
>>> dc.splits.RandomSplitter()
RandomSplitter[]










	
__str__() → str[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/splitters.py#L259-L296]

	Convert self to str representation.


	Returns:

	The string represents the class.



	Return type:

	str





Examples

>>> import deepchem as dc
>>> str(dc.splits.RandomSplitter())
'RandomSplitter'










	
__weakref__[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits.py]

	list of weak references to the object (if defined)






	
k_fold_split(dataset: Dataset, k: int, directories: List[str] | None = None, **kwargs) → List[Tuple[Dataset, Dataset]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/splitters.py#L45-L105]

	
	Parameters:

	
	dataset (Dataset) – Dataset to do a k-fold split


	k (int) – Number of folds to split dataset into.


	directories (List[str], optional (default None)) – List of length 2*k filepaths to save the result disk-datasets.






	Returns:

	List of length k tuples of (train, cv) where train and cv are both Dataset.



	Return type:

	List[Tuple[Dataset, Dataset]]










	
train_test_split(dataset: Dataset, train_dir: str | None = None, test_dir: str | None = None, frac_train: float = 0.8, seed: int | None = None, **kwargs) → Tuple[Dataset, Dataset][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/splitters.py#L178-L224]

	Splits self into train/test sets.

Returns Dataset objects for train/test.


	Parameters:

	
	dataset (data like object) – Dataset to be split.


	train_dir (str, optional (default None)) – If specified, the directory in which the generated
training dataset should be stored. This is only
considered if isinstance(dataset, dc.data.DiskDataset)
is True.


	test_dir (str, optional (default None)) – If specified, the directory in which the generated
test dataset should be stored. This is only
considered if isinstance(dataset, dc.data.DiskDataset)
is True.


	frac_train (float, optional (default 0.8)) – The fraction of data to be used for the training split.


	seed (int, optional (default None)) – Random seed to use.






	Returns:

	A tuple of train and test datasets as dc.data.Dataset objects.



	Return type:

	Tuple[Dataset, Dataset]










	
train_valid_test_split(dataset: Dataset, train_dir: str | None = None, valid_dir: str | None = None, test_dir: str | None = None, frac_train: float = 0.8, frac_valid: float = 0.1, frac_test: float = 0.1, seed: int | None = None, log_every_n: int = 1000, **kwargs) → Tuple[Dataset, Dataset, Dataset][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/splitters.py#L107-L176]

	Splits self into train/validation/test sets.

Returns Dataset objects for train, valid, test.


	Parameters:

	
	dataset (Dataset) – Dataset to be split.


	train_dir (str, optional (default None)) – If specified, the directory in which the generated
training dataset should be stored. This is only
considered if isinstance(dataset, dc.data.DiskDataset)


	valid_dir (str, optional (default None)) – If specified, the directory in which the generated
valid dataset should be stored. This is only
considered if isinstance(dataset, dc.data.DiskDataset)
is True.


	test_dir (str, optional (default None)) – If specified, the directory in which the generated
test dataset should be stored. This is only
considered if isinstance(dataset, dc.data.DiskDataset)
is True.


	frac_train (float, optional (default 0.8)) – The fraction of data to be used for the training split.


	frac_valid (float, optional (default 0.1)) – The fraction of data to be used for the validation split.


	frac_test (float, optional (default 0.1)) – The fraction of data to be used for the test split.


	seed (int, optional (default None)) – Random seed to use.


	log_every_n (int, optional (default 1000)) – Controls the logger by dictating how often logger outputs
will be produced.






	Returns:

	A tuple of train, valid and test datasets as dc.data.Dataset objects.



	Return type:

	Tuple[Dataset, Optional[Dataset], Dataset]
















Base Splitter (for develop)

The dc.splits.Splitter class is the abstract parent class for
all splitters. This class should never be directly instantiated.


	
class Splitter[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/splitters.py#L31-L325]

	Splitters split up Datasets into pieces for training/validation/testing.

In machine learning applications, it’s often necessary to split up a dataset
into training/validation/test sets. Or to k-fold split a dataset (that is,
divide into k equal subsets) for cross-validation. The Splitter class is
an abstract superclass for all splitters that captures the common API across
splitter classes.

Note that Splitter is an abstract superclass. You won’t want to
instantiate this class directly. Rather you will want to use a concrete
subclass for your application.


	
k_fold_split(dataset: Dataset, k: int, directories: List[str] | None = None, **kwargs) → List[Tuple[Dataset, Dataset]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/splitters.py#L45-L105]

	
	Parameters:

	
	dataset (Dataset) – Dataset to do a k-fold split


	k (int) – Number of folds to split dataset into.


	directories (List[str], optional (default None)) – List of length 2*k filepaths to save the result disk-datasets.






	Returns:

	List of length k tuples of (train, cv) where train and cv are both Dataset.



	Return type:

	List[Tuple[Dataset, Dataset]]










	
train_valid_test_split(dataset: Dataset, train_dir: str | None = None, valid_dir: str | None = None, test_dir: str | None = None, frac_train: float = 0.8, frac_valid: float = 0.1, frac_test: float = 0.1, seed: int | None = None, log_every_n: int = 1000, **kwargs) → Tuple[Dataset, Dataset, Dataset][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/splitters.py#L107-L176]

	Splits self into train/validation/test sets.

Returns Dataset objects for train, valid, test.


	Parameters:

	
	dataset (Dataset) – Dataset to be split.


	train_dir (str, optional (default None)) – If specified, the directory in which the generated
training dataset should be stored. This is only
considered if isinstance(dataset, dc.data.DiskDataset)


	valid_dir (str, optional (default None)) – If specified, the directory in which the generated
valid dataset should be stored. This is only
considered if isinstance(dataset, dc.data.DiskDataset)
is True.


	test_dir (str, optional (default None)) – If specified, the directory in which the generated
test dataset should be stored. This is only
considered if isinstance(dataset, dc.data.DiskDataset)
is True.


	frac_train (float, optional (default 0.8)) – The fraction of data to be used for the training split.


	frac_valid (float, optional (default 0.1)) – The fraction of data to be used for the validation split.


	frac_test (float, optional (default 0.1)) – The fraction of data to be used for the test split.


	seed (int, optional (default None)) – Random seed to use.


	log_every_n (int, optional (default 1000)) – Controls the logger by dictating how often logger outputs
will be produced.






	Returns:

	A tuple of train, valid and test datasets as dc.data.Dataset objects.



	Return type:

	Tuple[Dataset, Optional[Dataset], Dataset]










	
train_test_split(dataset: Dataset, train_dir: str | None = None, test_dir: str | None = None, frac_train: float = 0.8, seed: int | None = None, **kwargs) → Tuple[Dataset, Dataset][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/splitters.py#L178-L224]

	Splits self into train/test sets.

Returns Dataset objects for train/test.


	Parameters:

	
	dataset (data like object) – Dataset to be split.


	train_dir (str, optional (default None)) – If specified, the directory in which the generated
training dataset should be stored. This is only
considered if isinstance(dataset, dc.data.DiskDataset)
is True.


	test_dir (str, optional (default None)) – If specified, the directory in which the generated
test dataset should be stored. This is only
considered if isinstance(dataset, dc.data.DiskDataset)
is True.


	frac_train (float, optional (default 0.8)) – The fraction of data to be used for the training split.


	seed (int, optional (default None)) – Random seed to use.






	Returns:

	A tuple of train and test datasets as dc.data.Dataset objects.



	Return type:

	Tuple[Dataset, Dataset]










	
split(dataset: Dataset, frac_train: float = 0.8, frac_valid: float = 0.1, frac_test: float = 0.1, seed: int | None = None, log_every_n: int | None = None) → Tuple[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/splits/splitters.py#L226-L257]

	Return indices for specified split


	Parameters:

	
	dataset (dc.data.Dataset) – Dataset to be split.


	seed (int, optional (default None)) – Random seed to use.


	frac_train (float, optional (default 0.8)) – The fraction of data to be used for the training split.


	frac_valid (float, optional (default 0.1)) – The fraction of data to be used for the validation split.


	frac_test (float, optional (default 0.1)) – The fraction of data to be used for the test split.


	log_every_n (int, optional (default None)) – Controls the logger by dictating how often logger outputs
will be produced.






	Returns:

	A tuple (train_inds, valid_inds, test_inds) of the indices (integers) for
the various splits.



	Return type:

	Tuple
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Transformers

DeepChem dc.trans.Transformer objects are another core
building block of DeepChem programs. Often times, machine learning
systems are very delicate. They need their inputs and outputs to fit
within a pre-specified range or follow a clean mathematical
distribution. Real data of course is wild and hard to control. What do
you do if you have a crazy dataset and need to bring its statistics to
heel? Fear not for you have Transformer objects.


Contents


	General Transformers


	NormalizationTransformer


	MinMaxTransformer


	ClippingTransformer


	LogTransformer


	CDFTransformer


	PowerTransformer


	BalancingTransformer


	DuplicateBalancingTransformer


	ImageTransformer


	FeaturizationTransformer






	Specified Usecase Transformers


	CoulombFitTransformer


	IRVTransformer


	DAGTransformer


	RxnSplitTransformer






	Base Transformer (for develop)






General Transformers


NormalizationTransformer


	
class NormalizationTransformer(transform_X: bool = False, transform_y: bool = False, transform_w: bool = False, dataset: Dataset | None = None, transform_gradients: bool = False, move_mean: bool = True)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L426-L610]

	Normalizes dataset to have zero mean and unit standard deviation

This transformer transforms datasets to have zero mean and unit standard
deviation.

Examples

>>> n_samples = 10
>>> n_features = 3
>>> n_tasks = 1
>>> ids = np.arange(n_samples)
>>> X = np.random.rand(n_samples, n_features)
>>> y = np.random.rand(n_samples, n_tasks)
>>> w = np.ones((n_samples, n_tasks))
>>> dataset = dc.data.NumpyDataset(X, y, w, ids)
>>> transformer = dc.trans.NormalizationTransformer(transform_y=True, dataset=dataset)
>>> dataset = transformer.transform(dataset)






Note

This class can only transform X or y and not w. So only one of
transform_X or transform_y can be set.




	Raises:

	ValueError – if transform_X and transform_y are both set.






	
__init__(transform_X: bool = False, transform_y: bool = False, transform_w: bool = False, dataset: Dataset | None = None, transform_gradients: bool = False, move_mean: bool = True)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L457-L505]

	Initialize normalization transformation.


	Parameters:

	
	transform_X (bool, optional (default False)) – Whether to transform X


	transform_y (bool, optional (default False)) – Whether to transform y


	transform_w (bool, optional (default False)) – Whether to transform w


	dataset (dc.data.Dataset object, optional (default None)) – Dataset to be transformed













	
transform_array(X: ndarray, y: ndarray, w: ndarray, ids: ndarray) → Tuple[ndarray, ndarray, ndarray, ndarray][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L507-L544]

	Transform the data in a set of (X, y, w) arrays.


	Parameters:

	
	X (np.ndarray) – Array of features


	y (np.ndarray) – Array of labels


	w (np.ndarray) – Array of weights.


	ids (np.ndarray) – Array of ids.






	Returns:

	
	Xtrans (np.ndarray) – Transformed array of features


	ytrans (np.ndarray) – Transformed array of labels


	wtrans (np.ndarray) – Transformed array of weights


	idstrans (np.ndarray) – Transformed array of ids















	
untransform(z: ndarray) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L546-L586]

	Undo transformation on provided data.


	Parameters:

	z (np.ndarray) – Array to transform back



	Returns:

	z_out – Array with normalization undone.



	Return type:

	np.ndarray










	
untransform_grad(grad, tasks)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L588-L610]

	DEPRECATED. DO NOT USE.






	
transform(dataset: Dataset, parallel: bool = False, out_dir: str | None = None, **kwargs) → Dataset[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L164-L202]

	Transforms all internally stored data in dataset.

This method transforms all internal data in the provided dataset by using
the Dataset.transform method. Note that this method adds X-transform,
y-transform columns to metadata. Specified keyword arguments are passed on
to Dataset.transform.


	Parameters:

	
	dataset (dc.data.Dataset) – Dataset object to be transformed.


	parallel (bool, optional (default False)) – if True, use multiple processes to transform the dataset in parallel.
For large datasets, this might be faster.


	out_dir (str, optional) – If out_dir is specified in kwargs and dataset is a DiskDataset,
the output dataset will be written to the specified directory.






	Returns:

	A newly transformed Dataset object



	Return type:

	Dataset










	
transform_on_array(X: ndarray, y: ndarray, w: ndarray, ids: ndarray) → Tuple[ndarray, ndarray, ndarray, ndarray][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L204-L238]

	Transforms numpy arrays X, y, and w

DEPRECATED. Use transform_array instead.


	Parameters:

	
	X (np.ndarray) – Array of features


	y (np.ndarray) – Array of labels


	w (np.ndarray) – Array of weights.


	ids (np.ndarray) – Array of identifiers.






	Returns:

	
	Xtrans (np.ndarray) – Transformed array of features


	ytrans (np.ndarray) – Transformed array of labels


	wtrans (np.ndarray) – Transformed array of weights


	idstrans (np.ndarray) – Transformed array of ids




















MinMaxTransformer


	
class MinMaxTransformer(transform_X: bool = False, transform_y: bool = False, dataset: Dataset | None = None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L272-L423]

	Ensure each value rests between 0 and 1 by using the min and max.

MinMaxTransformer transforms the dataset by shifting each axis of X or y
(depending on whether transform_X or transform_y is True), except the first
one by the minimum value along the axis and dividing the result by the range
(maximum value - minimum value) along the axis. This ensures each axis is
between 0 and 1. In case of multi-task learning, it ensures each task is
given equal importance.

Given original array A, the transformed array can be written as:

>>> import numpy as np
>>> A = np.random.rand(10, 10)
>>> A_min = np.min(A, axis=0)
>>> A_max = np.max(A, axis=0)
>>> A_t = np.nan_to_num((A - A_min)/(A_max - A_min))





Examples

>>> n_samples = 10
>>> n_features = 3
>>> n_tasks = 1
>>> ids = np.arange(n_samples)
>>> X = np.random.rand(n_samples, n_features)
>>> y = np.random.rand(n_samples, n_tasks)
>>> w = np.ones((n_samples, n_tasks))
>>> dataset = dc.data.NumpyDataset(X, y, w, ids)
>>> transformer = dc.trans.MinMaxTransformer(transform_y=True, dataset=dataset)
>>> dataset = transformer.transform(dataset)






Note

This class can only transform X or y and not w. So only one of
transform_X or transform_y can be set.




	Raises:

	ValueError – if transform_X and transform_y are both set.






	
__init__(transform_X: bool = False, transform_y: bool = False, dataset: Dataset | None = None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L315-L344]

	Initialization of MinMax transformer.


	Parameters:

	
	transform_X (bool, optional (default False)) – Whether to transform X


	transform_y (bool, optional (default False)) – Whether to transform y


	dataset (dc.data.Dataset object, optional (default None)) – Dataset to be transformed













	
transform_array(X: ndarray, y: ndarray, w: ndarray, ids: ndarray) → Tuple[ndarray, ndarray, ndarray, ndarray][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L346-L385]

	Transform the data in a set of (X, y, w, ids) arrays.


	Parameters:

	
	X (np.ndarray) – Array of features


	y (np.ndarray) – Array of labels


	w (np.ndarray) – Array of weights.


	ids (np.ndarray) – Array of ids.






	Returns:

	
	Xtrans (np.ndarray) – Transformed array of features


	ytrans (np.ndarray) – Transformed array of labels


	wtrans (np.ndarray) – Transformed array of weights


	idstrans (np.ndarray) – Transformed array of ids















	
untransform(z: ndarray) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L387-L423]

	Undo transformation on provided data.


	Parameters:

	z (np.ndarray) – Transformed X or y array



	Returns:

	Array with min-max scaling undone.



	Return type:

	np.ndarray










	
transform(dataset: Dataset, parallel: bool = False, out_dir: str | None = None, **kwargs) → Dataset[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L164-L202]

	Transforms all internally stored data in dataset.

This method transforms all internal data in the provided dataset by using
the Dataset.transform method. Note that this method adds X-transform,
y-transform columns to metadata. Specified keyword arguments are passed on
to Dataset.transform.


	Parameters:

	
	dataset (dc.data.Dataset) – Dataset object to be transformed.


	parallel (bool, optional (default False)) – if True, use multiple processes to transform the dataset in parallel.
For large datasets, this might be faster.


	out_dir (str, optional) – If out_dir is specified in kwargs and dataset is a DiskDataset,
the output dataset will be written to the specified directory.






	Returns:

	A newly transformed Dataset object



	Return type:

	Dataset










	
transform_on_array(X: ndarray, y: ndarray, w: ndarray, ids: ndarray) → Tuple[ndarray, ndarray, ndarray, ndarray][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L204-L238]

	Transforms numpy arrays X, y, and w

DEPRECATED. Use transform_array instead.


	Parameters:

	
	X (np.ndarray) – Array of features


	y (np.ndarray) – Array of labels


	w (np.ndarray) – Array of weights.


	ids (np.ndarray) – Array of identifiers.






	Returns:

	
	Xtrans (np.ndarray) – Transformed array of features


	ytrans (np.ndarray) – Transformed array of labels


	wtrans (np.ndarray) – Transformed array of weights


	idstrans (np.ndarray) – Transformed array of ids




















ClippingTransformer


	
class ClippingTransformer(transform_X: bool = False, transform_y: bool = False, dataset: Dataset | None = None, x_max: float = 5.0, y_max: float = 500.0)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L613-L708]

	Clip large values in datasets.

Examples

Let’s clip values from a synthetic dataset

>>> n_samples = 10
>>> n_features = 3
>>> n_tasks = 1
>>> ids = np.arange(n_samples)
>>> X = np.random.rand(n_samples, n_features)
>>> y = np.zeros((n_samples, n_tasks))
>>> w = np.ones((n_samples, n_tasks))
>>> dataset = dc.data.NumpyDataset(X, y, w, ids)
>>> transformer = dc.trans.ClippingTransformer(transform_X=True)
>>> dataset = transformer.transform(dataset)






	
__init__(transform_X: bool = False, transform_y: bool = False, dataset: Dataset | None = None, x_max: float = 5.0, y_max: float = 500.0)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L632-L668]

	Initialize clipping transformation.


	Parameters:

	
	transform_X (bool, optional (default False)) – Whether to transform X


	transform_y (bool, optional (default False)) – Whether to transform y


	dataset (dc.data.Dataset object, optional) – Dataset to be transformed


	x_max (float, optional) – Maximum absolute value for X


	y_max (float, optional) – Maximum absolute value for y









Note

This transformer can transform X and y jointly, but does not transform
w.




	Raises:

	ValueError – if transform_w is set.










	
transform_array(X: ndarray, y: ndarray, w: ndarray, ids: ndarray) → Tuple[ndarray, ndarray, ndarray, ndarray][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L670-L703]

	Transform the data in a set of (X, y, w) arrays.


	Parameters:

	
	X (np.ndarray) – Array of Features


	y (np.ndarray) – Array of labels


	w (np.ndarray) – Array of weights


	ids (np.ndarray) – Array of ids.






	Returns:

	
	X (np.ndarray) – Transformed features


	y (np.ndarray) – Transformed tasks


	w (np.ndarray) – Transformed weights


	idstrans (np.ndarray) – Transformed array of ids















	
untransform(z: ndarray) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L705-L708]

	Not implemented.






	
transform(dataset: Dataset, parallel: bool = False, out_dir: str | None = None, **kwargs) → Dataset[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L164-L202]

	Transforms all internally stored data in dataset.

This method transforms all internal data in the provided dataset by using
the Dataset.transform method. Note that this method adds X-transform,
y-transform columns to metadata. Specified keyword arguments are passed on
to Dataset.transform.


	Parameters:

	
	dataset (dc.data.Dataset) – Dataset object to be transformed.


	parallel (bool, optional (default False)) – if True, use multiple processes to transform the dataset in parallel.
For large datasets, this might be faster.


	out_dir (str, optional) – If out_dir is specified in kwargs and dataset is a DiskDataset,
the output dataset will be written to the specified directory.






	Returns:

	A newly transformed Dataset object



	Return type:

	Dataset










	
transform_on_array(X: ndarray, y: ndarray, w: ndarray, ids: ndarray) → Tuple[ndarray, ndarray, ndarray, ndarray][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L204-L238]

	Transforms numpy arrays X, y, and w

DEPRECATED. Use transform_array instead.


	Parameters:

	
	X (np.ndarray) – Array of features


	y (np.ndarray) – Array of labels


	w (np.ndarray) – Array of weights.


	ids (np.ndarray) – Array of identifiers.






	Returns:

	
	Xtrans (np.ndarray) – Transformed array of features


	ytrans (np.ndarray) – Transformed array of labels


	wtrans (np.ndarray) – Transformed array of weights


	idstrans (np.ndarray) – Transformed array of ids




















LogTransformer


	
class LogTransformer(transform_X: bool = False, transform_y: bool = False, features: List[int] | None = None, tasks: List[str] | None = None, dataset: Dataset | None = None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L711-L867]

	Computes a logarithmic transformation

This transformer computes the transformation given by

>>> import numpy as np
>>> A = np.random.rand(10, 10)
>>> A = np.log(A + 1)





Assuming that tasks/features are not specified. If specified, then
transformations are only performed on specified tasks/features.

Examples

>>> n_samples = 10
>>> n_features = 3
>>> n_tasks = 1
>>> ids = np.arange(n_samples)
>>> X = np.random.rand(n_samples, n_features)
>>> y = np.zeros((n_samples, n_tasks))
>>> w = np.ones((n_samples, n_tasks))
>>> dataset = dc.data.NumpyDataset(X, y, w, ids)
>>> transformer = dc.trans.LogTransformer(transform_X=True)
>>> dataset = transformer.transform(dataset)






Note

This class can only transform X or y and not w. So only one of
transform_X or transform_y can be set.




	Raises:

	ValueError – if transform_w is set or transform_X and transform_y are both set.






	
__init__(transform_X: bool = False, transform_y: bool = False, features: List[int] | None = None, tasks: List[str] | None = None, dataset: Dataset | None = None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L747-L774]

	Initialize log transformer.


	Parameters:

	
	transform_X (bool, optional (default False)) – Whether to transform X


	transform_y (bool, optional (default False)) – Whether to transform y


	features (list[Int]) – List of features indices to transform


	tasks (list[str]) – List of task names to transform.


	dataset (dc.data.Dataset object, optional (default None)) – Dataset to be transformed













	
transform_array(X: ndarray, y: ndarray, w: ndarray, ids: ndarray) → Tuple[ndarray, ndarray, ndarray, ndarray][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L776-L826]

	Transform the data in a set of (X, y, w) arrays.


	Parameters:

	
	X (np.ndarray) – Array of features


	y (np.ndarray) – Array of labels


	w (np.ndarray) – Array of weights.


	ids (np.ndarray) – Array of weights.






	Returns:

	
	Xtrans (np.ndarray) – Transformed array of features


	ytrans (np.ndarray) – Transformed array of labels


	wtrans (np.ndarray) – Transformed array of weights


	idstrans (np.ndarray) – Transformed array of ids















	
untransform(z: ndarray) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L828-L867]

	Undo transformation on provided data.


	Parameters:

	z (np.ndarray,) – Transformed X or y array



	Returns:

	Array with a logarithmic transformation undone.



	Return type:

	np.ndarray










	
transform(dataset: Dataset, parallel: bool = False, out_dir: str | None = None, **kwargs) → Dataset[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L164-L202]

	Transforms all internally stored data in dataset.

This method transforms all internal data in the provided dataset by using
the Dataset.transform method. Note that this method adds X-transform,
y-transform columns to metadata. Specified keyword arguments are passed on
to Dataset.transform.


	Parameters:

	
	dataset (dc.data.Dataset) – Dataset object to be transformed.


	parallel (bool, optional (default False)) – if True, use multiple processes to transform the dataset in parallel.
For large datasets, this might be faster.


	out_dir (str, optional) – If out_dir is specified in kwargs and dataset is a DiskDataset,
the output dataset will be written to the specified directory.






	Returns:

	A newly transformed Dataset object



	Return type:

	Dataset










	
transform_on_array(X: ndarray, y: ndarray, w: ndarray, ids: ndarray) → Tuple[ndarray, ndarray, ndarray, ndarray][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L204-L238]

	Transforms numpy arrays X, y, and w

DEPRECATED. Use transform_array instead.


	Parameters:

	
	X (np.ndarray) – Array of features


	y (np.ndarray) – Array of labels


	w (np.ndarray) – Array of weights.


	ids (np.ndarray) – Array of identifiers.






	Returns:

	
	Xtrans (np.ndarray) – Transformed array of features


	ytrans (np.ndarray) – Transformed array of labels


	wtrans (np.ndarray) – Transformed array of weights


	idstrans (np.ndarray) – Transformed array of ids




















CDFTransformer


	
class CDFTransformer(transform_X: bool = False, transform_y: bool = False, dataset: Dataset | None = None, bins: int = 2)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L1118-L1233]

	Histograms the data and assigns values based on sorted list.

Acts like a Cumulative Distribution Function (CDF). If given a dataset of
samples from a continuous distribution computes the CDF of this dataset and
replaces values with their corresponding CDF values.

Examples

Let’s look at an example where we transform only features.

>>> N = 10
>>> n_feat = 5
>>> n_bins = 100





Note that we’re using 100 bins for our CDF histogram

>>> import numpy as np
>>> X = np.random.normal(size=(N, n_feat))
>>> y = np.random.randint(2, size=(N,))
>>> dataset = dc.data.NumpyDataset(X, y)
>>> cdftrans = dc.trans.CDFTransformer(transform_X=True, dataset=dataset, bins=n_bins)
>>> dataset = cdftrans.transform(dataset)





Note that you can apply this transformation to y as well

>>> X = np.random.normal(size=(N, n_feat))
>>> y = np.random.normal(size=(N,))
>>> dataset = dc.data.NumpyDataset(X, y)
>>> cdftrans = dc.trans.CDFTransformer(transform_y=True, dataset=dataset, bins=n_bins)
>>> dataset = cdftrans.transform(dataset)






	
__init__(transform_X: bool = False, transform_y: bool = False, dataset: Dataset | None = None, bins: int = 2)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L1151-L1176]

	Initialize this transformer.


	Parameters:

	
	transform_X (bool, optional (default False)) – Whether to transform X


	transform_y (bool, optional (default False)) – Whether to transform y


	dataset (dc.data.Dataset object, optional (default None)) – Dataset to be transformed


	bins (int, optional (default 2)) – Number of bins to use when computing histogram.













	
transform_array(X: ndarray, y: ndarray, w: ndarray, ids: ndarray) → Tuple[ndarray, ndarray, ndarray, ndarray][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L1178-L1212]

	Performs CDF transform on data.


	Parameters:

	
	X (np.ndarray) – Array of features


	y (np.ndarray) – Array of labels


	w (np.ndarray) – Array of weights.


	ids (np.ndarray) – Array of identifiers






	Returns:

	
	Xtrans (np.ndarray) – Transformed array of features


	ytrans (np.ndarray) – Transformed array of labels


	wtrans (np.ndarray) – Transformed array of weights


	idstrans (np.ndarray) – Transformed array of ids















	
untransform(z: ndarray) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L1214-L1233]

	Undo transformation on provided data.

Note that this transformation is only undone for y.


	Parameters:

	z (np.ndarray,) – Transformed y array



	Returns:

	Array with the transformation undone.



	Return type:

	np.ndarray










	
transform(dataset: Dataset, parallel: bool = False, out_dir: str | None = None, **kwargs) → Dataset[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L164-L202]

	Transforms all internally stored data in dataset.

This method transforms all internal data in the provided dataset by using
the Dataset.transform method. Note that this method adds X-transform,
y-transform columns to metadata. Specified keyword arguments are passed on
to Dataset.transform.


	Parameters:

	
	dataset (dc.data.Dataset) – Dataset object to be transformed.


	parallel (bool, optional (default False)) – if True, use multiple processes to transform the dataset in parallel.
For large datasets, this might be faster.


	out_dir (str, optional) – If out_dir is specified in kwargs and dataset is a DiskDataset,
the output dataset will be written to the specified directory.






	Returns:

	A newly transformed Dataset object



	Return type:

	Dataset










	
transform_on_array(X: ndarray, y: ndarray, w: ndarray, ids: ndarray) → Tuple[ndarray, ndarray, ndarray, ndarray][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L204-L238]

	Transforms numpy arrays X, y, and w

DEPRECATED. Use transform_array instead.


	Parameters:

	
	X (np.ndarray) – Array of features


	y (np.ndarray) – Array of labels


	w (np.ndarray) – Array of weights.


	ids (np.ndarray) – Array of identifiers.






	Returns:

	
	Xtrans (np.ndarray) – Transformed array of features


	ytrans (np.ndarray) – Transformed array of labels


	wtrans (np.ndarray) – Transformed array of weights


	idstrans (np.ndarray) – Transformed array of ids




















PowerTransformer


	
class PowerTransformer(transform_X: bool = False, transform_y: bool = False, dataset: Dataset | None = None, powers: List[int] = [1])[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L1273-L1395]

	Takes power n transforms of the data based on an input vector.

Computes the specified powers of the dataset. This can be useful if you’re
looking to add higher order features of the form x_i^2, x_i^3 etc. to
your dataset.

Examples

Let’s look at an example where we transform only X.

>>> N = 10
>>> n_feat = 5
>>> powers = [1, 2, 0.5]





So in this example, we’re taking the identity, squares, and square roots.
Now let’s construct our matrices

>>> import numpy as np
>>> X = np.random.rand(N, n_feat)
>>> y = np.random.normal(size=(N,))
>>> dataset = dc.data.NumpyDataset(X, y)
>>> trans = dc.trans.PowerTransformer(transform_X=True, dataset=dataset, powers=powers)
>>> dataset = trans.transform(dataset)





Let’s now look at an example where we transform y. Note that the y
transform expands out the feature dimensions of y the same way it does for
X so this transform is only well defined for singletask datasets.

>>> import numpy as np
>>> X = np.random.rand(N, n_feat)
>>> y = np.random.rand(N)
>>> dataset = dc.data.NumpyDataset(X, y)
>>> trans = dc.trans.PowerTransformer(transform_y=True, dataset=dataset, powers=powers)
>>> dataset = trans.transform(dataset)






	
__init__(transform_X: bool = False, transform_y: bool = False, dataset: Dataset | None = None, powers: List[int] = [1])[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L1310-L1331]

	Initialize this transformer


	Parameters:

	
	transform_X (bool, optional (default False)) – Whether to transform X


	transform_y (bool, optional (default False)) – Whether to transform y


	dataset (dc.data.Dataset object, optional (default None)) – Dataset to be transformed. Note that this argument is ignored since


	specified. (PowerTransformer doesn't require it to be) – powers: list[int], optional (default [1])
The list of powers of features/labels to compute.













	
transform_array(X: ndarray, y: ndarray, w: ndarray, ids: ndarray) → Tuple[ndarray, ndarray, ndarray, ndarray][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L1333-L1376]

	Performs power transform on data.


	Parameters:

	
	X (np.ndarray) – Array of features


	y (np.ndarray) – Array of labels


	w (np.ndarray) – Array of weights.


	ids (np.ndarray) – Array of identifiers.






	Returns:

	
	Xtrans (np.ndarray) – Transformed array of features


	ytrans (np.ndarray) – Transformed array of labels


	wtrans (np.ndarray) – Transformed array of weights


	idstrans (np.ndarray) – Transformed array of ids















	
untransform(z: ndarray) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L1378-L1395]

	Undo transformation on provided data.


	Parameters:

	z (np.ndarray,) – Transformed y array



	Returns:

	Array with the power transformation undone.



	Return type:

	np.ndarray










	
transform(dataset: Dataset, parallel: bool = False, out_dir: str | None = None, **kwargs) → Dataset[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L164-L202]

	Transforms all internally stored data in dataset.

This method transforms all internal data in the provided dataset by using
the Dataset.transform method. Note that this method adds X-transform,
y-transform columns to metadata. Specified keyword arguments are passed on
to Dataset.transform.


	Parameters:

	
	dataset (dc.data.Dataset) – Dataset object to be transformed.


	parallel (bool, optional (default False)) – if True, use multiple processes to transform the dataset in parallel.
For large datasets, this might be faster.


	out_dir (str, optional) – If out_dir is specified in kwargs and dataset is a DiskDataset,
the output dataset will be written to the specified directory.






	Returns:

	A newly transformed Dataset object



	Return type:

	Dataset










	
transform_on_array(X: ndarray, y: ndarray, w: ndarray, ids: ndarray) → Tuple[ndarray, ndarray, ndarray, ndarray][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L204-L238]

	Transforms numpy arrays X, y, and w

DEPRECATED. Use transform_array instead.


	Parameters:

	
	X (np.ndarray) – Array of features


	y (np.ndarray) – Array of labels


	w (np.ndarray) – Array of weights.


	ids (np.ndarray) – Array of identifiers.






	Returns:

	
	Xtrans (np.ndarray) – Transformed array of features


	ytrans (np.ndarray) – Transformed array of labels


	wtrans (np.ndarray) – Transformed array of weights


	idstrans (np.ndarray) – Transformed array of ids




















BalancingTransformer


	
class BalancingTransformer(dataset: Dataset)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L870-L1018]

	Balance positive and negative (or multiclass) example weights.

This class balances the sample weights so that the sum of all example
weights from all classes is the same. This can be useful when you’re
working on an imbalanced dataset where there are far fewer examples of some
classes than others.

Examples

Here’s an example for a binary dataset.

>>> n_samples = 10
>>> n_features = 3
>>> n_tasks = 1
>>> n_classes = 2
>>> ids = np.arange(n_samples)
>>> X = np.random.rand(n_samples, n_features)
>>> y = np.random.randint(n_classes, size=(n_samples, n_tasks))
>>> w = np.ones((n_samples, n_tasks))
>>> dataset = dc.data.NumpyDataset(X, y, w, ids)
>>> transformer = dc.trans.BalancingTransformer(dataset=dataset)
>>> dataset = transformer.transform(dataset)





And here’s a multiclass dataset example.

>>> n_samples = 50
>>> n_features = 3
>>> n_tasks = 1
>>> n_classes = 5
>>> ids = np.arange(n_samples)
>>> X = np.random.rand(n_samples, n_features)
>>> y = np.random.randint(n_classes, size=(n_samples, n_tasks))
>>> w = np.ones((n_samples, n_tasks))
>>> dataset = dc.data.NumpyDataset(X, y, w, ids)
>>> transformer = dc.trans.BalancingTransformer(dataset=dataset)
>>> dataset = transformer.transform(dataset)






See also


	deepchem.trans.DuplicateBalancingTransformer
	Balance by duplicating samples.








Note

This transformer is only meaningful for classification datasets where y
takes on a limited set of values. This class can only transform w and does
not transform X or y.




	Raises:

	ValueError – if transform_X or transform_y are set. Also raises or if y or w aren’t of shape (N,) or (N, n_tasks).






	
__init__(dataset: Dataset)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L926-L966]

	Initializes transformation based on dataset statistics.


	Parameters:

	
	transform_X (bool, optional (default False)) – Whether to transform X


	transform_y (bool, optional (default False)) – Whether to transform y


	transform_w (bool, optional (default False)) – Whether to transform w


	transform_ids (bool, optional (default False)) – Whether to transform ids


	dataset (dc.data.Dataset object, optional (default None)) – Dataset to be transformed













	
transform_array(X: ndarray, y: ndarray, w: ndarray, ids: ndarray) → Tuple[ndarray, ndarray, ndarray, ndarray][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L968-L1018]

	Transform the data in a set of (X, y, w) arrays.


	Parameters:

	
	X (np.ndarray) – Array of features


	y (np.ndarray) – Array of labels


	w (np.ndarray) – Array of weights.


	ids (np.ndarray) – Array of weights.






	Returns:

	
	Xtrans (np.ndarray) – Transformed array of features


	ytrans (np.ndarray) – Transformed array of labels


	wtrans (np.ndarray) – Transformed array of weights


	idstrans (np.ndarray) – Transformed array of ids















	
transform(dataset: Dataset, parallel: bool = False, out_dir: str | None = None, **kwargs) → Dataset[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L164-L202]

	Transforms all internally stored data in dataset.

This method transforms all internal data in the provided dataset by using
the Dataset.transform method. Note that this method adds X-transform,
y-transform columns to metadata. Specified keyword arguments are passed on
to Dataset.transform.


	Parameters:

	
	dataset (dc.data.Dataset) – Dataset object to be transformed.


	parallel (bool, optional (default False)) – if True, use multiple processes to transform the dataset in parallel.
For large datasets, this might be faster.


	out_dir (str, optional) – If out_dir is specified in kwargs and dataset is a DiskDataset,
the output dataset will be written to the specified directory.






	Returns:

	A newly transformed Dataset object



	Return type:

	Dataset










	
transform_on_array(X: ndarray, y: ndarray, w: ndarray, ids: ndarray) → Tuple[ndarray, ndarray, ndarray, ndarray][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L204-L238]

	Transforms numpy arrays X, y, and w

DEPRECATED. Use transform_array instead.


	Parameters:

	
	X (np.ndarray) – Array of features


	y (np.ndarray) – Array of labels


	w (np.ndarray) – Array of weights.


	ids (np.ndarray) – Array of identifiers.






	Returns:

	
	Xtrans (np.ndarray) – Transformed array of features


	ytrans (np.ndarray) – Transformed array of labels


	wtrans (np.ndarray) – Transformed array of weights


	idstrans (np.ndarray) – Transformed array of ids















	
untransform(transformed: ndarray) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L149-L162]

	Reverses stored transformation on provided data.

Depending on whether transform_X or transform_y or transform_w was
set, this will perform different un-transformations. Note that this method
may not always be defined since some transformations aren’t 1-1.


	Parameters:

	transformed (np.ndarray) – Array which was previously transformed by this class.















DuplicateBalancingTransformer


	
class DuplicateBalancingTransformer(dataset: Dataset)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/duplicate.py#L10-L171]

	Balance binary or multiclass datasets by duplicating rarer class samples.

This class balances a dataset by duplicating samples of the rarer class so
that the sum of all example weights from all classes is the same. (Up to
integer rounding of course). This can be useful when you’re working on an
imabalanced dataset where there are far fewer examples of some classes than
others.

This class differs from BalancingTransformer in that it actually
duplicates rarer class samples rather than just increasing their sample
weights. This may be more friendly for models that are numerically fragile
and can’t handle imbalanced example weights.

Examples

Here’s an example for a binary dataset.

>>> n_samples = 10
>>> n_features = 3
>>> n_tasks = 1
>>> n_classes = 2
>>> import deepchem as dc
>>> import numpy as np
>>> ids = np.arange(n_samples)
>>> X = np.random.rand(n_samples, n_features)
>>> y = np.random.randint(n_classes, size=(n_samples, n_tasks))
>>> w = np.ones((n_samples, n_tasks))
>>> dataset = dc.data.NumpyDataset(X, y, w, ids)
>>> transformer = dc.trans.DuplicateBalancingTransformer(dataset=dataset)
>>> dataset = transformer.transform(dataset)





And here’s a multiclass dataset example.

>>> n_samples = 50
>>> n_features = 3
>>> n_tasks = 1
>>> n_classes = 5
>>> ids = np.arange(n_samples)
>>> X = np.random.rand(n_samples, n_features)
>>> y = np.random.randint(n_classes, size=(n_samples, n_tasks))
>>> w = np.ones((n_samples, n_tasks))
>>> dataset = dc.data.NumpyDataset(X, y, w, ids)
>>> transformer = dc.trans.DuplicateBalancingTransformer(dataset=dataset)
>>> dataset = transformer.transform(dataset)






See also


	deepchem.trans.BalancingTransformer
	Balance by changing sample weights.








Note

This transformer is only well-defined for singletask datasets. (Since
examples are actually duplicated, there’s no meaningful way to duplicate
across multiple tasks in a way that preserves the balance.)

This transformer is only meaningful for classification datasets where y
takes on a limited set of values. This class transforms all of X, y,
w, ids.




	Raises:

	ValueError – 






	
__init__(dataset: Dataset)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/duplicate.py#L75-L115]

	Initializes transformation based on dataset statistics.


	Parameters:

	
	transform_X (bool, optional (default False)) – Whether to transform X


	transform_y (bool, optional (default False)) – Whether to transform y


	transform_w (bool, optional (default False)) – Whether to transform w


	transform_ids (bool, optional (default False)) – Whether to transform ids


	dataset (dc.data.Dataset object, optional (default None)) – Dataset to be transformed













	
transform_array(X: ndarray, y: ndarray, w: ndarray, ids: ndarray) → Tuple[ndarray, ndarray, ndarray, ndarray][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/duplicate.py#L117-L171]

	Transform the data in a set of (X, y, w, id) arrays.


	Parameters:

	
	X (np.ndarray) – Array of features


	y (np.ndarray) – Array of labels


	w (np.ndarray) – Array of weights.


	ids (np.ndarray) – Array of identifiers






	Returns:

	
	Xtrans (np.ndarray) – Transformed array of features


	ytrans (np.ndarray) – Transformed array of labels


	wtrans (np.ndarray) – Transformed array of weights


	idtrans (np.ndarray) – Transformed array of identifiers















	
transform(dataset: Dataset, parallel: bool = False, out_dir: str | None = None, **kwargs) → Dataset[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L164-L202]

	Transforms all internally stored data in dataset.

This method transforms all internal data in the provided dataset by using
the Dataset.transform method. Note that this method adds X-transform,
y-transform columns to metadata. Specified keyword arguments are passed on
to Dataset.transform.


	Parameters:

	
	dataset (dc.data.Dataset) – Dataset object to be transformed.


	parallel (bool, optional (default False)) – if True, use multiple processes to transform the dataset in parallel.
For large datasets, this might be faster.


	out_dir (str, optional) – If out_dir is specified in kwargs and dataset is a DiskDataset,
the output dataset will be written to the specified directory.






	Returns:

	A newly transformed Dataset object



	Return type:

	Dataset










	
transform_on_array(X: ndarray, y: ndarray, w: ndarray, ids: ndarray) → Tuple[ndarray, ndarray, ndarray, ndarray][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L204-L238]

	Transforms numpy arrays X, y, and w

DEPRECATED. Use transform_array instead.


	Parameters:

	
	X (np.ndarray) – Array of features


	y (np.ndarray) – Array of labels


	w (np.ndarray) – Array of weights.


	ids (np.ndarray) – Array of identifiers.






	Returns:

	
	Xtrans (np.ndarray) – Transformed array of features


	ytrans (np.ndarray) – Transformed array of labels


	wtrans (np.ndarray) – Transformed array of weights


	idstrans (np.ndarray) – Transformed array of ids















	
untransform(transformed: ndarray) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L149-L162]

	Reverses stored transformation on provided data.

Depending on whether transform_X or transform_y or transform_w was
set, this will perform different un-transformations. Note that this method
may not always be defined since some transformations aren’t 1-1.


	Parameters:

	transformed (np.ndarray) – Array which was previously transformed by this class.















ImageTransformer


	
class ImageTransformer(size: Tuple[int, int])[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L1945-L1995]

	Convert an image into width, height, channel


Note

This class require Pillow to be installed.




	
__init__(size: Tuple[int, int])[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L1953-L1962]

	Initializes ImageTransformer.


	Parameters:

	size (Tuple[int, int]) – The image size, a tuple of (width, height).










	
transform_array(X, y, w)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L1964-L1995]

	Transform the data in a set of (X, y, w, ids) arrays.


	Parameters:

	
	X (np.ndarray) – Array of features


	y (np.ndarray) – Array of labels


	w (np.ndarray) – Array of weights.


	ids (np.ndarray) – Array of identifiers.






	Returns:

	
	Xtrans (np.ndarray) – Transformed array of features


	ytrans (np.ndarray) – Transformed array of labels


	wtrans (np.ndarray) – Transformed array of weights


	idstrans (np.ndarray) – Transformed array of ids















	
transform(dataset: Dataset, parallel: bool = False, out_dir: str | None = None, **kwargs) → Dataset[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L164-L202]

	Transforms all internally stored data in dataset.

This method transforms all internal data in the provided dataset by using
the Dataset.transform method. Note that this method adds X-transform,
y-transform columns to metadata. Specified keyword arguments are passed on
to Dataset.transform.


	Parameters:

	
	dataset (dc.data.Dataset) – Dataset object to be transformed.


	parallel (bool, optional (default False)) – if True, use multiple processes to transform the dataset in parallel.
For large datasets, this might be faster.


	out_dir (str, optional) – If out_dir is specified in kwargs and dataset is a DiskDataset,
the output dataset will be written to the specified directory.






	Returns:

	A newly transformed Dataset object



	Return type:

	Dataset










	
transform_on_array(X: ndarray, y: ndarray, w: ndarray, ids: ndarray) → Tuple[ndarray, ndarray, ndarray, ndarray][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L204-L238]

	Transforms numpy arrays X, y, and w

DEPRECATED. Use transform_array instead.


	Parameters:

	
	X (np.ndarray) – Array of features


	y (np.ndarray) – Array of labels


	w (np.ndarray) – Array of weights.


	ids (np.ndarray) – Array of identifiers.






	Returns:

	
	Xtrans (np.ndarray) – Transformed array of features


	ytrans (np.ndarray) – Transformed array of labels


	wtrans (np.ndarray) – Transformed array of weights


	idstrans (np.ndarray) – Transformed array of ids















	
untransform(transformed: ndarray) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L149-L162]

	Reverses stored transformation on provided data.

Depending on whether transform_X or transform_y or transform_w was
set, this will perform different un-transformations. Note that this method
may not always be defined since some transformations aren’t 1-1.


	Parameters:

	transformed (np.ndarray) – Array which was previously transformed by this class.















FeaturizationTransformer


	
class FeaturizationTransformer(dataset: Dataset | None = None, featurizer: Featurizer | None = None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L2200-L2263]

	A transformer which runs a featurizer over the X values of a dataset.

Datasets used by this transformer must be compatible with the internal
featurizer. The idea of this transformer is that it allows for the
application of a featurizer to an existing dataset.

Examples

>>> smiles = ["C", "CC"]
>>> X = np.array(smiles)
>>> y = np.array([1, 0])
>>> dataset = dc.data.NumpyDataset(X, y)
>>> trans = dc.trans.FeaturizationTransformer(dataset, dc.feat.CircularFingerprint())
>>> dataset = trans.transform(dataset)






	
__init__(dataset: Dataset | None = None, featurizer: Featurizer | None = None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L2217-L2233]

	Initialization of FeaturizationTransformer


	Parameters:

	
	dataset (dc.data.Dataset object, optional (default None)) – Dataset to be transformed


	featurizer (dc.feat.Featurizer object, optional (default None)) – Featurizer applied to perform transformations.













	
transform_array(X: ndarray, y: ndarray, w: ndarray, ids: ndarray) → Tuple[ndarray, ndarray, ndarray, ndarray][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L2235-L2263]

	Transforms arrays of rdkit mols using internal featurizer.


	Parameters:

	
	X (np.ndarray) – Array of features


	y (np.ndarray) – Array of labels


	w (np.ndarray) – Array of weights.


	ids (np.ndarray) – Array of identifiers.






	Returns:

	
	Xtrans (np.ndarray) – Transformed array of features


	ytrans (np.ndarray) – Transformed array of labels


	wtrans (np.ndarray) – Transformed array of weights


	idstrans (np.ndarray) – Transformed array of ids















	
transform(dataset: Dataset, parallel: bool = False, out_dir: str | None = None, **kwargs) → Dataset[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L164-L202]

	Transforms all internally stored data in dataset.

This method transforms all internal data in the provided dataset by using
the Dataset.transform method. Note that this method adds X-transform,
y-transform columns to metadata. Specified keyword arguments are passed on
to Dataset.transform.


	Parameters:

	
	dataset (dc.data.Dataset) – Dataset object to be transformed.


	parallel (bool, optional (default False)) – if True, use multiple processes to transform the dataset in parallel.
For large datasets, this might be faster.


	out_dir (str, optional) – If out_dir is specified in kwargs and dataset is a DiskDataset,
the output dataset will be written to the specified directory.






	Returns:

	A newly transformed Dataset object



	Return type:

	Dataset










	
transform_on_array(X: ndarray, y: ndarray, w: ndarray, ids: ndarray) → Tuple[ndarray, ndarray, ndarray, ndarray][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L204-L238]

	Transforms numpy arrays X, y, and w

DEPRECATED. Use transform_array instead.


	Parameters:

	
	X (np.ndarray) – Array of features


	y (np.ndarray) – Array of labels


	w (np.ndarray) – Array of weights.


	ids (np.ndarray) – Array of identifiers.






	Returns:

	
	Xtrans (np.ndarray) – Transformed array of features


	ytrans (np.ndarray) – Transformed array of labels


	wtrans (np.ndarray) – Transformed array of weights


	idstrans (np.ndarray) – Transformed array of ids















	
untransform(transformed: ndarray) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L149-L162]

	Reverses stored transformation on provided data.

Depending on whether transform_X or transform_y or transform_w was
set, this will perform different un-transformations. Note that this method
may not always be defined since some transformations aren’t 1-1.


	Parameters:

	transformed (np.ndarray) – Array which was previously transformed by this class.
















Specified Usecase Transformers


CoulombFitTransformer


	
class CoulombFitTransformer(dataset: Dataset)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L1398-L1552]

	Performs randomization and binarization operations on batches of Coulomb Matrix features during fit.

Examples

>>> n_samples = 10
>>> n_features = 3
>>> n_tasks = 1
>>> ids = np.arange(n_samples)
>>> X = np.random.rand(n_samples, n_features, n_features)
>>> y = np.zeros((n_samples, n_tasks))
>>> w = np.ones((n_samples, n_tasks))
>>> dataset = dc.data.NumpyDataset(X, y, w, ids)
>>> fit_transformers = [dc.trans.CoulombFitTransformer(dataset)]
>>> model = dc.models.MultitaskFitTransformRegressor(n_tasks,
...    [n_features, n_features], batch_size=n_samples, fit_transformers=fit_transformers, n_evals=1)
>>> print(model.n_features)
12






	
__init__(dataset: Dataset)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L1418-L1439]

	Initializes CoulombFitTransformer.


	Parameters:

	dataset (dc.data.Dataset) – Dataset object to be transformed.










	
realize(X: ndarray) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L1441-L1463]

	Randomize features.


	Parameters:

	X (np.ndarray) – Features



	Returns:

	X – Randomized features



	Return type:

	np.ndarray










	
normalize(X: ndarray) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L1465-L1478]

	Normalize features.


	Parameters:

	X (np.ndarray) – Features



	Returns:

	X – Normalized features



	Return type:

	np.ndarray










	
expand(X: ndarray) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L1480-L1500]

	Binarize features.


	Parameters:

	X (np.ndarray) – Features



	Returns:

	X – Binarized features



	Return type:

	np.ndarray










	
X_transform(X: ndarray) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L1502-L1517]

	Perform Coulomb Fit transform on features.


	Parameters:

	X (np.ndarray) – Features



	Returns:

	X – Transformed features



	Return type:

	np.ndarray










	
transform_array(X: ndarray, y: ndarray, w: ndarray, ids: ndarray) → Tuple[ndarray, ndarray, ndarray, ndarray][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L1519-L1547]

	Performs randomization and binarization operations on data.


	Parameters:

	
	X (np.ndarray) – Array of features


	y (np.ndarray) – Array of labels


	w (np.ndarray) – Array of weights.


	ids (np.ndarray) – Array of identifiers.






	Returns:

	
	Xtrans (np.ndarray) – Transformed array of features


	ytrans (np.ndarray) – Transformed array of labels


	wtrans (np.ndarray) – Transformed array of weights


	idstrans (np.ndarray) – Transformed array of ids















	
untransform(z: ndarray) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L1549-L1552]

	Not implemented.






	
transform(dataset: Dataset, parallel: bool = False, out_dir: str | None = None, **kwargs) → Dataset[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L164-L202]

	Transforms all internally stored data in dataset.

This method transforms all internal data in the provided dataset by using
the Dataset.transform method. Note that this method adds X-transform,
y-transform columns to metadata. Specified keyword arguments are passed on
to Dataset.transform.


	Parameters:

	
	dataset (dc.data.Dataset) – Dataset object to be transformed.


	parallel (bool, optional (default False)) – if True, use multiple processes to transform the dataset in parallel.
For large datasets, this might be faster.


	out_dir (str, optional) – If out_dir is specified in kwargs and dataset is a DiskDataset,
the output dataset will be written to the specified directory.






	Returns:

	A newly transformed Dataset object



	Return type:

	Dataset










	
transform_on_array(X: ndarray, y: ndarray, w: ndarray, ids: ndarray) → Tuple[ndarray, ndarray, ndarray, ndarray][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L204-L238]

	Transforms numpy arrays X, y, and w

DEPRECATED. Use transform_array instead.


	Parameters:

	
	X (np.ndarray) – Array of features


	y (np.ndarray) – Array of labels


	w (np.ndarray) – Array of weights.


	ids (np.ndarray) – Array of identifiers.






	Returns:

	
	Xtrans (np.ndarray) – Transformed array of features


	ytrans (np.ndarray) – Transformed array of labels


	wtrans (np.ndarray) – Transformed array of weights


	idstrans (np.ndarray) – Transformed array of ids




















IRVTransformer


	
class IRVTransformer(K: int, n_tasks: int, dataset: Dataset)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L1555-L1769]

	Performs transform from ECFP to IRV features(K nearest neighbors).

This transformer is required by MultitaskIRVClassifier as a preprocessing
step before training.

Examples

Let’s start by defining the parameters of the dataset we’re about to
transform.

>>> n_feat = 128
>>> N = 20
>>> n_tasks = 2





Let’s now make our dataset object

>>> import numpy as np
>>> import deepchem as dc
>>> X = np.random.randint(2, size=(N, n_feat))
>>> y = np.zeros((N, n_tasks))
>>> w = np.ones((N, n_tasks))
>>> dataset = dc.data.NumpyDataset(X, y, w)





And let’s apply our transformer with 10 nearest neighbors.

>>> K = 10
>>> trans = dc.trans.IRVTransformer(K, n_tasks, dataset)
>>> dataset = trans.transform(dataset)






Note

This class requires TensorFlow to be installed.




	
__init__(K: int, n_tasks: int, dataset: Dataset)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L1590-L1607]

	Initializes IRVTransformer.


	Parameters:

	
	K (int) – number of nearest neighbours being count


	n_tasks (int) – number of tasks


	dataset (dc.data.Dataset object) – train_dataset













	
realize(similarity: ndarray, y: ndarray, w: ndarray) → List[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L1609-L1664]

	find samples with top ten similarity values in the reference dataset


	Parameters:

	
	similarity (np.ndarray) – similarity value between target dataset and reference dataset
should have size of (n_samples_in_target, n_samples_in_reference)


	y (np.array) – labels for a single task


	w (np.array) – weights for a single task






	Returns:

	features – n_samples * np.array of size (2*K,)
each array includes K similarity values and corresponding labels



	Return type:

	list










	
X_transform(X_target: ndarray) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L1666-L1695]

	
	Calculate similarity between target dataset(X_target) and
	reference dataset(X): #(1 in intersection)/#(1 in union)





similarity = (X_target intersect X)/(X_target union X)


	Parameters:

	X_target (np.ndarray) – fingerprints of target dataset
should have same length with X in the second axis



	Returns:

	X_target – features of size(batch_size, 2*K*n_tasks)



	Return type:

	np.ndarray










	
static matrix_mul(X1, X2, shard_size=5000)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L1697-L1731]

	Calculate matrix multiplication for big matrix,
X1 and X2 are sliced into pieces with shard_size rows(columns)
then multiplied together and concatenated to the proper size






	
transform(dataset: Dataset, parallel: bool = False, out_dir: str | None = None, **kwargs) → DiskDataset | NumpyDataset[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L1733-L1764]

	Transforms a given dataset


	Parameters:

	
	dataset (Dataset) – Dataset to transform


	parallel (bool, optional, (default False)) – Whether to parallelize this transformation. Currently ignored.


	out_dir (str, optional (default None)) – Directory to write resulting dataset.






	Returns:

	
	DiskDataset or NumpyDataset


	Dataset object that is transformed.















	
untransform(z: ndarray) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L1766-L1769]

	Not implemented.






	
transform_array(X: ndarray, y: ndarray, w: ndarray, ids: ndarray) → Tuple[ndarray, ndarray, ndarray, ndarray][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L118-L147]

	Transform the data in a set of (X, y, w, ids) arrays.


	Parameters:

	
	X (np.ndarray) – Array of features


	y (np.ndarray) – Array of labels


	w (np.ndarray) – Array of weights.


	ids (np.ndarray) – Array of identifiers.






	Returns:

	
	Xtrans (np.ndarray) – Transformed array of features


	ytrans (np.ndarray) – Transformed array of labels


	wtrans (np.ndarray) – Transformed array of weights


	idstrans (np.ndarray) – Transformed array of ids















	
transform_on_array(X: ndarray, y: ndarray, w: ndarray, ids: ndarray) → Tuple[ndarray, ndarray, ndarray, ndarray][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L204-L238]

	Transforms numpy arrays X, y, and w

DEPRECATED. Use transform_array instead.


	Parameters:

	
	X (np.ndarray) – Array of features


	y (np.ndarray) – Array of labels


	w (np.ndarray) – Array of weights.


	ids (np.ndarray) – Array of identifiers.






	Returns:

	
	Xtrans (np.ndarray) – Transformed array of features


	ytrans (np.ndarray) – Transformed array of labels


	wtrans (np.ndarray) – Transformed array of weights


	idstrans (np.ndarray) – Transformed array of ids




















DAGTransformer


	
class DAGTransformer(max_atoms: int = 50)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L1772-L1942]

	Performs transform from ConvMol adjacency lists to DAG calculation orders

This transformer is used by DAGModel before training to transform its
inputs to the correct shape. This expansion turns a molecule with n atoms
into n DAGs, each with root at a different atom in the molecule.

Examples

Let’s transform a small dataset of molecules.

>>> N = 10
>>> n_feat = 5
>>> import numpy as np
>>> feat = dc.feat.ConvMolFeaturizer()
>>> X = feat(["C", "CC"])
>>> y = np.random.rand(N)
>>> dataset = dc.data.NumpyDataset(X, y)
>>> trans = dc.trans.DAGTransformer(max_atoms=5)
>>> dataset = trans.transform(dataset)






	
__init__(max_atoms: int = 50)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L1794-L1803]

	Initializes DAGTransformer.


	Parameters:

	max_atoms (int, optional (Default 50)) – Maximum number of atoms to allow










	
transform_array(X: ndarray, y: ndarray, w: ndarray, ids: ndarray) → Tuple[ndarray, ndarray, ndarray, ndarray][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L1805-L1834]

	Transform the data in a set of (X, y, w, ids) arrays.


	Parameters:

	
	X (np.ndarray) – Array of features


	y (np.ndarray) – Array of labels


	w (np.ndarray) – Array of weights.


	ids (np.ndarray) – Array of identifiers.






	Returns:

	
	Xtrans (np.ndarray) – Transformed array of features


	ytrans (np.ndarray) – Transformed array of labels


	wtrans (np.ndarray) – Transformed array of weights


	idstrans (np.ndarray) – Transformed array of ids















	
untransform(z: ndarray) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L1836-L1839]

	Not implemented.






	
UG_to_DAG(sample: ConvMol) → List[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L1841-L1942]

	This function generates the DAGs for a molecule


	Parameters:

	sample (ConvMol) – Molecule to transform



	Returns:

	List of parent adjacency matrices



	Return type:

	List










	
transform(dataset: Dataset, parallel: bool = False, out_dir: str | None = None, **kwargs) → Dataset[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L164-L202]

	Transforms all internally stored data in dataset.

This method transforms all internal data in the provided dataset by using
the Dataset.transform method. Note that this method adds X-transform,
y-transform columns to metadata. Specified keyword arguments are passed on
to Dataset.transform.


	Parameters:

	
	dataset (dc.data.Dataset) – Dataset object to be transformed.


	parallel (bool, optional (default False)) – if True, use multiple processes to transform the dataset in parallel.
For large datasets, this might be faster.


	out_dir (str, optional) – If out_dir is specified in kwargs and dataset is a DiskDataset,
the output dataset will be written to the specified directory.






	Returns:

	A newly transformed Dataset object



	Return type:

	Dataset










	
transform_on_array(X: ndarray, y: ndarray, w: ndarray, ids: ndarray) → Tuple[ndarray, ndarray, ndarray, ndarray][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L204-L238]

	Transforms numpy arrays X, y, and w

DEPRECATED. Use transform_array instead.


	Parameters:

	
	X (np.ndarray) – Array of features


	y (np.ndarray) – Array of labels


	w (np.ndarray) – Array of weights.


	ids (np.ndarray) – Array of identifiers.






	Returns:

	
	Xtrans (np.ndarray) – Transformed array of features


	ytrans (np.ndarray) – Transformed array of labels


	wtrans (np.ndarray) – Transformed array of weights


	idstrans (np.ndarray) – Transformed array of ids




















RxnSplitTransformer


	
class RxnSplitTransformer(sep_reagent: bool = True, dataset: Dataset | None = None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L2497-L2603]

	Splits the reaction SMILES input into the source and target strings
required for machine translation tasks.

The input is expected to be in the form reactant>reagent>product. The source
string would be reactants>reagents and the target string would be the products.

The transformer can also separate the reagents from the reactants for a mixed
training mode. During mixed training, the source string is transformed from
reactants>reagent to reactants.reagent> . This can be toggled (default True)
by setting the value of sep_reagent while calling the transformer.

Examples

>>> # When mixed training is toggled.
>>> import numpy as np
>>> from deepchem.trans.transformers import RxnSplitTransformer
>>> reactions = np.array(["CC(C)C[Mg+].CON(C)C(=O)c1ccc(O)nc1>C1CCOC1.[Cl-]>CC(C)CC(=O)c1ccc(O)nc1","CCn1cc(C(=O)O)c(=O)c2cc(F)c(-c3ccc(N)cc3)cc21.O=CO>>CCn1cc(C(=O)O)c(=O)c2cc(F)c(-c3ccc(NC=O)cc3)cc21"], dtype=object)
>>> trans = RxnSplitTransformer(sep_reagent=True)
>>> split_reactions = trans.transform_array(X=reactions, y=np.array([]), w=np.array([]), ids=np.array([]))
>>> split_reactions
(array([['CC(C)C[Mg+].CON(C)C(=O)c1ccc(O)nc1>C1CCOC1.[Cl-]',
        'CC(C)CC(=O)c1ccc(O)nc1'],
       ['CCn1cc(C(=O)O)c(=O)c2cc(F)c(-c3ccc(N)cc3)cc21.O=CO>',
        'CCn1cc(C(=O)O)c(=O)c2cc(F)c(-c3ccc(NC=O)cc3)cc21']], dtype='<U51'), array([], dtype=float64), array([], dtype=float64), array([], dtype=float64))





When mixed training is disabled, you get the following outputs:

>>> trans_disable = RxnSplitTransformer(sep_reagent=False)
>>> split_reactions = trans_disable.transform_array(X=reactions, y=np.array([]), w=np.array([]), ids=np.array([]))
>>> split_reactions
(array([['CC(C)C[Mg+].CON(C)C(=O)c1ccc(O)nc1.C1CCOC1.[Cl-]>',
        'CC(C)CC(=O)c1ccc(O)nc1'],
       ['CCn1cc(C(=O)O)c(=O)c2cc(F)c(-c3ccc(N)cc3)cc21.O=CO>',
        'CCn1cc(C(=O)O)c(=O)c2cc(F)c(-c3ccc(NC=O)cc3)cc21']], dtype='<U51'), array([], dtype=float64), array([], dtype=float64), array([], dtype=float64))






Note

This class only transforms the feature field of a reaction dataset like USPTO.




	
__init__(sep_reagent: bool = True, dataset: Dataset | None = None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L2538-L2553]

	Initializes the Reaction split Transformer.


	Parameters:

	
	sep_reagent (bool, optional (default True)) – To separate the reagent and reactants for training.


	dataset (dc.data.Dataset object, optional (default None)) – Dataset to be transformed.













	
transform_array(X: ndarray, y: ndarray, w: ndarray, ids: ndarray) → Tuple[ndarray, ndarray, ndarray, ndarray][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L2555-L2599]

	Transform the data in a set of (X, y, w, ids) arrays.


	Parameters:

	
	X (np.ndarray) – Array of features(the reactions)


	y (np.ndarray) – Array of labels


	w (np.ndarray) – Array of weights.


	ids (np.ndarray) – Array of weights.






	Returns:

	
	Xtrans (np.ndarray) – Transformed array of features


	ytrans (np.ndarray) – Transformed array of labels


	wtrans (np.ndarray) – Transformed array of weights


	idstrans (np.ndarray) – Transformed array of ids















	
transform(dataset: Dataset, parallel: bool = False, out_dir: str | None = None, **kwargs) → Dataset[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L164-L202]

	Transforms all internally stored data in dataset.

This method transforms all internal data in the provided dataset by using
the Dataset.transform method. Note that this method adds X-transform,
y-transform columns to metadata. Specified keyword arguments are passed on
to Dataset.transform.


	Parameters:

	
	dataset (dc.data.Dataset) – Dataset object to be transformed.


	parallel (bool, optional (default False)) – if True, use multiple processes to transform the dataset in parallel.
For large datasets, this might be faster.


	out_dir (str, optional) – If out_dir is specified in kwargs and dataset is a DiskDataset,
the output dataset will be written to the specified directory.






	Returns:

	A newly transformed Dataset object



	Return type:

	Dataset










	
transform_on_array(X: ndarray, y: ndarray, w: ndarray, ids: ndarray) → Tuple[ndarray, ndarray, ndarray, ndarray][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L204-L238]

	Transforms numpy arrays X, y, and w

DEPRECATED. Use transform_array instead.


	Parameters:

	
	X (np.ndarray) – Array of features


	y (np.ndarray) – Array of labels


	w (np.ndarray) – Array of weights.


	ids (np.ndarray) – Array of identifiers.






	Returns:

	
	Xtrans (np.ndarray) – Transformed array of features


	ytrans (np.ndarray) – Transformed array of labels


	wtrans (np.ndarray) – Transformed array of weights


	idstrans (np.ndarray) – Transformed array of ids















	
untransform(z)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L2601-L2603]

	Not Implemented.












Base Transformer (for develop)

The dc.trans.Transformer class is the abstract parent class
for all transformers. This class should never be directly initialized,
but contains a number of useful method implementations.


	
class Transformer(transform_X: bool = False, transform_y: bool = False, transform_w: bool = False, transform_ids: bool = False, dataset: Dataset | None = None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans.py]

	Abstract base class for different data transformation techniques.

A transformer is an object that applies a transformation to a given
dataset. Think of a transformation as a mathematical operation which
makes the source dataset more amenable to learning. For example, one
transformer could normalize the features for a dataset (ensuring
they have zero mean and unit standard deviation). Another
transformer could for example threshold values in a dataset so that
values outside a given range are truncated. Yet another transformer
could act as a data augmentation routine, generating multiple
different images from each source datapoint (a transformation need
not necessarily be one to one).

Transformers are designed to be chained, since data pipelines often
chain multiple different transformations to a dataset. Transformers
are also designed to be scalable and can be applied to
large dc.data.Dataset objects. Not that Transformers are not
usually thread-safe so you will have to be careful in processing
very large datasets.

This class is an abstract superclass that isn’t meant to be directly
instantiated. Instead, you will want to instantiate one of the
subclasses of this class inorder to perform concrete
transformations.


	
__init__(transform_X: bool = False, transform_y: bool = False, transform_w: bool = False, transform_ids: bool = False, dataset: Dataset | None = None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L86-L116]

	Initializes transformation based on dataset statistics.


	Parameters:

	
	transform_X (bool, optional (default False)) – Whether to transform X


	transform_y (bool, optional (default False)) – Whether to transform y


	transform_w (bool, optional (default False)) – Whether to transform w


	transform_ids (bool, optional (default False)) – Whether to transform ids


	dataset (dc.data.Dataset object, optional (default None)) – Dataset to be transformed













	
transform(dataset: Dataset, parallel: bool = False, out_dir: str | None = None, **kwargs) → Dataset[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L164-L202]

	Transforms all internally stored data in dataset.

This method transforms all internal data in the provided dataset by using
the Dataset.transform method. Note that this method adds X-transform,
y-transform columns to metadata. Specified keyword arguments are passed on
to Dataset.transform.


	Parameters:

	
	dataset (dc.data.Dataset) – Dataset object to be transformed.


	parallel (bool, optional (default False)) – if True, use multiple processes to transform the dataset in parallel.
For large datasets, this might be faster.


	out_dir (str, optional) – If out_dir is specified in kwargs and dataset is a DiskDataset,
the output dataset will be written to the specified directory.






	Returns:

	A newly transformed Dataset object



	Return type:

	Dataset










	
transform_array(X: ndarray, y: ndarray, w: ndarray, ids: ndarray) → Tuple[ndarray, ndarray, ndarray, ndarray][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L118-L147]

	Transform the data in a set of (X, y, w, ids) arrays.


	Parameters:

	
	X (np.ndarray) – Array of features


	y (np.ndarray) – Array of labels


	w (np.ndarray) – Array of weights.


	ids (np.ndarray) – Array of identifiers.






	Returns:

	
	Xtrans (np.ndarray) – Transformed array of features


	ytrans (np.ndarray) – Transformed array of labels


	wtrans (np.ndarray) – Transformed array of weights


	idstrans (np.ndarray) – Transformed array of ids















	
transform_on_array(X: ndarray, y: ndarray, w: ndarray, ids: ndarray) → Tuple[ndarray, ndarray, ndarray, ndarray][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L204-L238]

	Transforms numpy arrays X, y, and w

DEPRECATED. Use transform_array instead.


	Parameters:

	
	X (np.ndarray) – Array of features


	y (np.ndarray) – Array of labels


	w (np.ndarray) – Array of weights.


	ids (np.ndarray) – Array of identifiers.






	Returns:

	
	Xtrans (np.ndarray) – Transformed array of features


	ytrans (np.ndarray) – Transformed array of labels


	wtrans (np.ndarray) – Transformed array of weights


	idstrans (np.ndarray) – Transformed array of ids















	
untransform(transformed: ndarray) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/trans/transformers.py#L149-L162]

	Reverses stored transformation on provided data.

Depending on whether transform_X or transform_y or transform_w was
set, this will perform different un-transformations. Note that this method
may not always be defined since some transformations aren’t 1-1.


	Parameters:

	transformed (np.ndarray) – Array which was previously transformed by this class.
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Model Classes

DeepChem maintains an extensive collection of models for scientific
applications. DeepChem’s focus is on facilitating scientific applications, so
we support a broad range of different machine learning frameworks (currently
scikit-learn, xgboost, TensorFlow, and PyTorch) since different frameworks are
more and less suited for different scientific applications.


Model Cheatsheet

If you’re just getting started with DeepChem, you’re probably interested in the
basics. The place to get started is this “model cheatsheet” that lists various
types of custom DeepChem models. Note that some wrappers like SklearnModel
and GBDTModel which wrap external machine learning libraries are excluded,
but this table should otherwise be complete.

As a note about how to read these tables: Each row describes what’s needed to
invoke a given model. Some models must be applied with given Transformer or
Featurizer objects. Most models can be trained calling model.fit,
otherwise the name of the fit_method is given in the Comment column.
In order to run the models, make sure that the backend (Keras and tensorflow
or Pytorch or Jax) is installed.
You can thus read off what’s needed to train the model from the table below.

General purpose


General purpose models

	Model

	Reference

	Classifier/Regressor

	Acceptable Featurizers

	Backend

	Comment





	CNN

	
	Classifier/ Regressor

	
	Keras

	


	MultitaskClassifier

	
	Classifier

	CircularFingerprint RDKitDescriptors CoulombMatrixEig RdkitGridFeaturizer BindingPocketFeaturizer ElementPropertyFingerprint

	PyTorch

	


	MultitaskFitTransformRegressor

	
	Regressor

	CircularFingerprint RDKitDescriptors CoulombMatrixEig RdkitGridFeaturizer BindingPocketFeaturizer ElementPropertyFingerprint

	PyTorch

	any Transformer can be used



	MultitaskIRVClassifier

	
	Classifier

	CircularFingerprint RDKitDescriptors CoulombMatrixEig RdkitGridFeaturizer BindingPocketFeaturizer ElementPropertyFingerprint

	Keras

	use IRVTransformer



	MultitaskRegressor

	
	Regressor

	CircularFingerprint RDKitDescriptors CoulombMatrixEig RdkitGridFeaturizer BindingPocketFeaturizer ElementPropertyFingerprint

	Torch

	


	ProgressiveMultitaskClassifier

	ref [https://arxiv.org/abs/1606.04671]

	Classifier

	CircularFingerprint RDKitDescriptors CoulombMatrixEig RdkitGridFeaturizer BindingPocketFeaturizer ElementPropertyFingerprint

	Keras

	


	ProgressiveMultitaskRegressor

	ref [https://arxiv.org/abs/1606.04671]

	Regressor

	CircularFingerprint RDKitDescriptors CoulombMatrixEig RdkitGridFeaturizer BindingPocketFeaturizer ElementPropertyFingerprint

	Keras

	


	RobustMultitaskClassifier

	ref [https://pubs.acs.org/doi/abs/10.1021/acs.jcim.7b00146]

	Classifier

	CircularFingerprint RDKitDescriptors CoulombMatrixEig RdkitGridFeaturizer BindingPocketFeaturizer ElementPropertyFingerprint

	Keras

	


	RobustMultitaskRegressor

	ref [https://pubs.acs.org/doi/abs/10.1021/acs.jcim.7b00146]

	Regressor

	CircularFingerprint RDKitDescriptors CoulombMatrixEig RdkitGridFeaturizer BindingPocketFeaturizer ElementPropertyFingerprint

	Keras

	


	SeqToSeq

	ref [https://arxiv.org/abs/1409.3215]

	
	
	PyTorch

	fit method: fit_sequences



	WGAN

	ref [https://arxiv.org/abs/1701.07875]

	Adversarial

	
	Keras

	fit method: fit_gan






Molecules

Many models implemented in DeepChem were designed for small to medium-sized organic molecules,
most often drug-like compounds.
If your data is very different (e.g. molecules contain ‘exotic’ elements not present in the original dataset)
or cannot be represented well using SMILES (e.g. metal complexes, crystals), some adaptations to the
featurization and/or model might be needed to get reasonable results.


Molecular models

	Model

	Reference

	Type

	Acceptable Featurizers

	Backend

	Comment

	




	ScScoreModel

	ref [https://pubs.acs.org/doi/abs/10.1021/acs.jcim.7b00622]

	Classifier

	CircularFingerprint

	Keras

	
	


	AtomicConvModel

	ref [https://arxiv.org/abs/1703.10603]

	Classifier/ Regressor

	ComplexNeighborListFragmentAtomicCoordinates

	Keras

	
	


	AttentiveFPModel

	ref [https://pubs.acs.org/doi/10.1021/acs.jmedchem.9b00959]

	Classifier/ Regressor

	MolGraphConvFeaturizer

	PyTorch

	
	


	ChemCeption

	ref [https://arxiv.org/abs/1706.06689]

	Classifier/ Regressor

	SmilesToImage

	Keras

	
	


	DAGModel

	ref [https://pubs.acs.org/doi/abs/10.1021/ci400187y]

	Classifier/ Regressor

	ConvMolFeaturizer

	Keras

	use DAGTransformer

	


	GATModel

	ref [https://arxiv.org/abs/1710.10903]

	Classifier/ Regressor

	MolGraphConvFeaturizer

	DGL/PyTorch

	
	


	GCNModel

	ref [https://arxiv.org/abs/1609.02907]

	Classifier/ Regressor

	MolGraphConvFeaturizer

	DGL/PyTorch

	
	


	GraphConvModel

	ref [https://arxiv.org/abs/1509.09292]

	Classifier/ Regressor

	ConvMolFeaturizer

	Keras

	
	


	MEGNetModel

	ref [https://arxiv.org/abs/1812.05055]

	Classifier/ Regressor

	
	PyTorch/PyTorch Geometric

	
	


	MPNNModel

	ref [https://arxiv.org/abs/1704.01212]

	Classifier/ Regressor

	MolGraphConvFeaturizer

	DGL/PyTorch

	
	


	PagtnModel

	ref [https://arxiv.org/abs/1905.12712]

	Classifier/ Regressor

	PagtnMolGraphFeaturizer MolGraphConvFeaturizer

	DGL/PyTorch

	
	


	Smiles2Vec

	ref [https://arxiv.org/abs/1712.02034]

	Classifier/ Regressor

	SmilesToSeq

	Keras

	
	


	TextCNNModel

	ref [https://arxiv.org/abs/1705.10843]

	Classifier/ Regressor

	
	Keras/PyTorch

	
	


	DTNNModel

	ref [https://arxiv.org/abs/1609.08259]

	Regressor

	CoulombMatrix

	PyTorch

	
	


	MATModel

	ref [https://arxiv.org/abs/2002.08264]

	Regressor

	MATFeaturizer

	PyTorch

	
	


	WeaveModel

	ref [https://arxiv.org/abs/1603.00856]

	Regressor

	WeaveFeaturizer

	Keras

	
	


	BasicMolGANModel

	ref [https://arxiv.org/abs/1805.11973]

	Generator

	MolGanFeaturizer

	Keras

	fit method: fit_gan

	


	DMPNNModel

	ref [https://arxiv.org/pdf/1904.01561.pdf]

	Classifier/ Regressor

	DMPNNFeaturizer

	PyTorch

	
	


	InfoGraph

	ref [https://arxiv.org/abs/1908.01000]

	Classifier/ Regressor

	MolGraphConvFeaturizer

	PyTorch

	
	


	InfoGraphStar

	ref [https://arxiv.org/abs/1908.01000]

	Classifier/ Regressor

	MolGraphConvFeaturizer

	PyTorch

	
	


	GNNModular

	ref [https://arxiv.org/abs/1905.12265]

	Classifier/ Regressor

	SNAPFeaturizer

	PyTorch

	
	


	InfoMax3DModular

	ref [https://arxiv.org/abs/2110.04126]

	Unsupervised

	RDKitConformerFeaturizer

	PyTorch

	
	


	Chemberta

	ref [https://arxiv.org/abs/2209.01712]

	Classifier/ Regressor

	RobertaTokenizer

	PyTorch

	
	


	ProgressiveMultitaskModel

	ref [https://arxiv.org/abs/1606.04671]

	Classifier/ Regressor

	CircularFingerprint RDKitDescriptors CoulombMatrixEig RdkitGridFeaturizer BindingPocketFeaturizer ElementPropertyFingerprint

	PyTorch

	
	





Materials

The following models were designed specifically for (inorganic) materials.


Material models

	Model

	Reference

	Type

	Acceptable Featurizers

	Backend

	Comment





	CGCNNModel

	ref [https://arxiv.org/abs/1710.10324]

	Classifier/Regressor

	CGCNNFEaturizer

	DGL/PTorch

	crystal graph CNN



	MEGNetModel

	ref [https://arxiv.org/abs/1812.05055]

	Classifier/Regressor

	
	PyTorch/PyTorch Geometric

	


	LCNNModel

	ref [https://pubs.acs.org/doi/10.1021/acs.jpcc.9b03370]

	Regressor

	LCNNFeaturizer

	PyTorch

	lattice CNN








Model


	
class Model(model=None, model_dir: str | None = None, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/models.py#L22-L235]

	Abstract base class for DeepChem models.


	
__init__(model=None, model_dir: str | None = None, **kwargs) → None[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/models.py#L27-L58]

	Abstract class for all models.

This is intended only for convenience of subclass implementations
and should not be invoked directly.


	Parameters:

	
	model (object) – Wrapper around ScikitLearn/Keras/Tensorflow model object.


	model_dir (str, optional (default None)) – Path to directory where model will be stored. If not specified,
model will be stored in a temporary directory.













	
fit_on_batch(X: Sequence, y: Sequence, w: Sequence)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/models.py#L64-L77]

	Perform a single step of training.


	Parameters:

	
	X (np.ndarray) – the inputs for the batch


	y (np.ndarray) – the labels for the batch


	w (np.ndarray) – the weights for the batch













	
predict_on_batch(X: _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes])[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/models.py#L79-L89]

	Makes predictions on given batch of new data.


	Parameters:

	X (np.ndarray) – Features










	
reload() → None[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/models.py#L91-L96]

	Reload trained model from disk.






	
static get_model_filename(model_dir: str) → str[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/models.py#L98-L103]

	Given model directory, obtain filename for the model itself.






	
static get_params_filename(model_dir: str) → str[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/models.py#L105-L110]

	Given model directory, obtain filename for the model itself.






	
save() → None[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/models.py#L112-L117]

	Dispatcher function for saving.

Each subclass is responsible for overriding this method.






	
fit(dataset: Dataset)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/models.py#L119-L129]

	Fits a model on data in a Dataset object.


	Parameters:

	dataset (Dataset) – the Dataset to train on










	
predict(dataset: Dataset, transformers: List[Transformer] = []) → ndarray | Sequence[ndarray][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/models.py#L131-L160]

	Uses self to make predictions on provided Dataset object.


	Parameters:

	
	dataset (Dataset) – Dataset to make prediction on


	transformers (List[Transformer]) – Transformers that the input data has been transformed by. The output
is passed through these transformers to undo the transformations.






	Returns:

	A numpy array of predictions the model produces.



	Return type:

	np.ndarray










	
evaluate(dataset: Dataset, metrics: List[Metric], transformers: List[Transformer] = [], per_task_metrics: bool = False, use_sample_weights: bool = False, n_classes: int = 2)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/models.py#L162-L223]

	Evaluates the performance of this model on specified dataset.

This function uses Evaluator under the hood to perform model
evaluation. As a result, it inherits the same limitations of
Evaluator. Namely, that only regression and classification
models can be evaluated in this fashion. For generator models, you
will need to overwrite this method to perform a custom evaluation.

Keyword arguments specified here will be passed to
Evaluator.compute_model_performance.


	Parameters:

	
	dataset (Dataset) – Dataset object.


	metrics (Metric / List[Metric] / function) – The set of metrics provided. This class attempts to do some
intelligent handling of input. If a single dc.metrics.Metric
object is provided or a list is provided, it will evaluate
self.model on these metrics. If a function is provided, it is
assumed to be a metric function that this method will attempt to
wrap in a dc.metrics.Metric object. A metric function must
accept two arguments, y_true, y_pred both of which are
np.ndarray objects and return a floating point score. The
metric function may also accept a keyword argument
sample_weight to account for per-sample weights.


	transformers (List[Transformer]) – List of dc.trans.Transformer objects. These transformations
must have been applied to dataset previously. The dataset will
be untransformed for metric evaluation.


	per_task_metrics (bool, optional (default False)) – If true, return computed metric for each task on multitask dataset.


	use_sample_weights (bool, optional (default False)) – If set, use per-sample weights w.


	n_classes (int, optional (default None)) – If specified, will use n_classes as the number of unique classes
in self.dataset. Note that this argument will be ignored for
regression metrics.






	Returns:

	
	multitask_scores (dict) – Dictionary mapping names of metrics to metric scores.


	all_task_scores (dict, optional) – If per_task_metrics == True is passed as a keyword argument,
then returns a second dictionary of scores for each task
separately.















	
get_task_type() → str[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/models.py#L225-L229]

	Currently models can only be classifiers or regressors.






	
get_num_tasks() → int[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/models.py#L231-L235]

	Get number of tasks.












Scikit-Learn Models

Scikit-learn’s models can be wrapped so that they can interact conveniently
with DeepChem. Oftentimes scikit-learn models are more robust and easier to
train and are a nice first model to train.


SklearnModel


	
class SklearnModel(model: BaseEstimator, model_dir: str | None = None, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/sklearn_models/sklearn_model.py#L20-L152]

	Wrapper class that wraps scikit-learn models as DeepChem models.

When you’re working with scikit-learn and DeepChem, at times it can
be useful to wrap a scikit-learn model as a DeepChem model. The
reason for this might be that you want to do an apples-to-apples
comparison of a scikit-learn model to another DeepChem model, or
perhaps you want to use the hyperparameter tuning capabilities in
dc.hyper. The SklearnModel class provides a wrapper around scikit-learn
models that allows scikit-learn models to be trained on Dataset objects
and evaluated with the same metrics as other DeepChem models.

Example

>>> import deepchem as dc
>>> import numpy as np
>>> from sklearn.linear_model import LinearRegression
>>> # Generating a random data and creating a dataset
>>> X, y = np.random.randn(5, 1), np.random.randn(5)
>>> dataset = dc.data.NumpyDataset(X, y)
>>> # Wrapping a Sklearn Linear Regression model using DeepChem models API
>>> sklearn_model = LinearRegression()
>>> dc_model = dc.models.SklearnModel(sklearn_model)
>>> dc_model.fit(dataset)  # fitting dataset





Notes

All SklearnModels perform learning solely in memory. This means that it
may not be possible to train SklearnModel on large `Dataset`s.


	
__init__(model: BaseEstimator, model_dir: str | None = None, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/sklearn_models/sklearn_model.py#L51-L92]

	
	Parameters:

	
	model (BaseEstimator) – The model instance which inherits a scikit-learn BaseEstimator Class.


	model_dir (str, optional (default None)) – If specified the model will be stored in this directory. Else, a
temporary directory will be used.


	model_instance (BaseEstimator (DEPRECATED)) – The model instance which inherits a scikit-learn BaseEstimator Class.


	kwargs (dict) – kwargs[‘use_weights’] is a bool which determines if we pass weights into
self.model.fit().













	
fit(dataset: Dataset) → None[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/sklearn_models/sklearn_model.py#L94-L109]

	Fits scikit-learn model to data.


	Parameters:

	dataset (Dataset) – The Dataset to train this model on.










	
predict_on_batch(X: _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes]) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/sklearn_models/sklearn_model.py#L111-L129]

	Makes predictions on batch of data.


	Parameters:

	X (np.ndarray) – A numpy array of features.



	Returns:

	The value is a return value of predict_proba or predict method
of the scikit-learn model. If the scikit-learn model has both methods,
the value is always a return value of predict_proba.



	Return type:

	np.ndarray










	
predict(X: Dataset, transformers: List[Transformer] = []) → ndarray | Sequence[ndarray][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/sklearn_models/sklearn_model.py#L131-L144]

	Makes predictions on dataset.


	Parameters:

	
	dataset (Dataset) – Dataset to make prediction on.


	transformers (List[Transformer]) – Transformers that the input data has been transformed by. The output
is passed through these transformers to undo the transformations.













	
save()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/sklearn_models/sklearn_model.py#L146-L148]

	Saves scikit-learn model to disk using joblib.






	
reload()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/sklearn_models/sklearn_model.py#L150-L152]

	Loads scikit-learn model from joblib file on disk.












Gradient Boosting Models

Gradient Boosting Models (LightGBM and XGBoost) can be wrapped so they can interact with DeepChem.


GBDTModel


	
class GBDTModel(model: BaseEstimator, model_dir: str | None = None, early_stopping_rounds: int = 50, eval_metric: Callable | str | None = None, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/gbdt_models/gbdt_model.py#L21-L175]

	Wrapper class that wraps GBDT models as DeepChem models.

This class supports LightGBM/XGBoost models.


	
__init__(model: BaseEstimator, model_dir: str | None = None, early_stopping_rounds: int = 50, eval_metric: Callable | str | None = None, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/gbdt_models/gbdt_model.py#L27-L89]

	
	Parameters:

	
	model (BaseEstimator) – The model instance of scikit-learn wrapper LightGBM/XGBoost models.


	model_dir (str, optional (default None)) – Path to directory where model will be stored.


	early_stopping_rounds (int, optional (default 50)) – Activates early stopping. Validation metric needs to improve at least once
in every early_stopping_rounds round(s) to continue training.


	eval_metric (Union[str, Callable]) – If string, it should be a built-in evaluation metric to use.
If callable, it should be a custom evaluation metric, see official note for more details.













	
fit(dataset: Dataset)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/gbdt_models/gbdt_model.py#L103-L149]

	Fits GDBT model with all data.

First, this function splits all data into train and valid data (8:2),
and finds the best n_estimators. And then, we retrain all data using
best n_estimators * 1.25.


	Parameters:

	dataset (Dataset) – The Dataset to train this model on.










	
fit_with_eval(train_dataset: Dataset, valid_dataset: Dataset)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/gbdt_models/gbdt_model.py#L151-L175]

	Fits GDBT model with valid data.


	Parameters:

	
	train_dataset (Dataset) – The Dataset to train this model on.


	valid_dataset (Dataset) – The Dataset to validate this model on.



















Deep Learning Infrastructure

DeepChem maintains a lightweight layer of common deep learning model
infrastructure that can be used for models built with different underlying
frameworks. The losses and optimizers can be used for both TensorFlow and
PyTorch models.


Losses


	
class Loss[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/losses.py#L4-L30]

	A loss function for use in training models.






	
class L1Loss[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/losses.py#L33-L49]

	The absolute difference between the true and predicted values.






	
class HuberLoss[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/losses.py#L52-L73]

	Modified version of L1 Loss, also known as Smooth L1 loss.
Less sensitive to small errors, linear for larger errors.
Huber loss is generally better for cases where are are both large outliers as well as small, as compared to the L1 loss.
By default, Delta = 1.0 and reduction = ‘none’.






	
class L2Loss[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/losses.py#L76-L94]

	The squared difference between the true and predicted values.






	
class HingeLoss[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/losses.py#L97-L116]

	The hinge loss function.

The ‘output’ argument should contain logits, and all elements of ‘labels’
should equal 0 or 1.






	
class SquaredHingeLoss[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/losses.py#L119-L139]

	The Squared Hinge loss function.

Defined as the square of the hinge loss between y_true and y_pred. The Squared Hinge Loss is differentiable.






	
class PoissonLoss[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/losses.py#L142-L160]

	The Poisson loss function is defined as the mean of the elements of y_pred - (y_true * log(y_pred) for an input of (y_true, y_pred).
Poisson loss is generally used for regression tasks where the data follows the poisson






	
class BinaryCrossEntropy[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/losses.py#L163-L184]

	The cross entropy between pairs of probabilities.

The arguments should each have shape (batch_size) or (batch_size, tasks) and
contain probabilities.






	
class CategoricalCrossEntropy[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/losses.py#L187-L208]

	The cross entropy between two probability distributions.

The arguments should each have shape (batch_size, classes) or
(batch_size, tasks, classes), and represent a probability distribution over
classes.






	
class SigmoidCrossEntropy[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/losses.py#L211-L233]

	The cross entropy between pairs of probabilities.

The arguments should each have shape (batch_size) or (batch_size, tasks).  The
labels should be probabilities, while the outputs should be logits that are
converted to probabilities using a sigmoid function.






	
class SoftmaxCrossEntropy[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/losses.py#L236-L259]

	The cross entropy between two probability distributions.

The arguments should each have shape (batch_size, classes) or
(batch_size, tasks, classes).  The labels should be probabilities, while the
outputs should be logits that are converted to probabilities using a softmax
function.






	
class SparseSoftmaxCrossEntropy[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/losses.py#L262-L296]

	The cross entropy between two probability distributions.

The labels should have shape (batch_size) or (batch_size, tasks), and be
integer class labels.  The outputs have shape (batch_size, classes) or
(batch_size, tasks, classes) and be logits that are converted to probabilities
using a softmax function.






	
class VAE_ELBO[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/losses.py#L299-L360]

	The Variational AutoEncoder loss, KL Divergence Regularize + marginal log-likelihood.

This losses based on _[1].
ELBO(Evidence lower bound) lexically replaced Variational lower bound.
BCE means marginal log-likelihood, and KLD means KL divergence with normal distribution.
Added hyper parameter ‘kl_scale’ for KLD.

The logvar and mu should have shape (batch_size, hidden_space).
The x and reconstruction_x should have (batch_size, attribute).
The kl_scale should be float.

Examples

Examples for calculating loss using constant tensor.

batch_size = 2,
hidden_space = 2,
num of original attribute = 3
>>> import numpy as np
>>> import torch
>>> import tensorflow as tf
>>> logvar = np.array([[1.0,1.3],[0.6,1.2]])
>>> mu = np.array([[0.2,0.7],[1.2,0.4]])
>>> x = np.array([[0.9,0.4,0.8],[0.3,0,1]])
>>> reconstruction_x = np.array([[0.8,0.3,0.7],[0.2,0,0.9]])

Case tensorflow
>>> VAE_ELBO()._compute_tf_loss(tf.constant(logvar), tf.constant(mu), tf.constant(x), tf.constant(reconstruction_x))
<tf.Tensor: shape=(2,), dtype=float64, numpy=array([0.70165154, 0.76238271])>

Case pytorch
>>> (VAE_ELBO()._create_pytorch_loss())(torch.tensor(logvar), torch.tensor(mu), torch.tensor(x), torch.tensor(reconstruction_x))
tensor([0.7017, 0.7624], dtype=torch.float64)

References



[1]
Kingma, Diederik P., and Max Welling. “Auto-encoding variational bayes.” arXiv preprint arXiv:1312.6114 (2013).








	
class VAE_KLDivergence[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/losses.py#L363-L416]

	The KL_divergence between hidden distribution and normal distribution.

This loss represents KL divergence losses between normal distribution(using parameter of distribution)
based on  _[1].

The logvar should have shape (batch_size, hidden_space) and each term represents
standard deviation of hidden distribution. The mean shuold have
(batch_size, hidden_space) and each term represents mean of hidden distribtuon.

Examples

Examples for calculating loss using constant tensor.

batch_size = 2,
hidden_space = 2,
>>> import numpy as np
>>> import torch
>>> import tensorflow as tf
>>> logvar = np.array([[1.0,1.3],[0.6,1.2]])
>>> mu = np.array([[0.2,0.7],[1.2,0.4]])

Case tensorflow
>>> VAE_KLDivergence()._compute_tf_loss(tf.constant(logvar), tf.constant(mu))
<tf.Tensor: shape=(2,), dtype=float64, numpy=array([0.17381787, 0.51425203])>

Case pytorch
>>> (VAE_KLDivergence()._create_pytorch_loss())(torch.tensor(logvar), torch.tensor(mu))
tensor([0.1738, 0.5143], dtype=torch.float64)

References



[1]
Kingma, Diederik P., and Max Welling. “Auto-encoding variational bayes.” arXiv preprint arXiv:1312.6114 (2013).








	
class ShannonEntropy[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/losses.py#L419-L468]

	The ShannonEntropy of discrete-distribution.

This loss represents shannon entropy based on _[1].

The inputs should have shape (batch size, num of variable) and represents
probabilites distribution.

Examples

Examples for calculating loss using constant tensor.

batch_size = 2,
num_of variable = variable,
>>> import numpy as np
>>> import torch
>>> import tensorflow as tf
>>> inputs = np.array([[0.7,0.3],[0.9,0.1]])

Case tensorflow
>>> ShannonEntropy()._compute_tf_loss(tf.constant(inputs))
<tf.Tensor: shape=(2,), dtype=float64, numpy=array([0.30543215, 0.16254149])>

Case pytorch
>>> (ShannonEntropy()._create_pytorch_loss())(torch.tensor(inputs))
tensor([0.3054, 0.1625], dtype=torch.float64)

References



[1]
Chen, Ricky Xiaofeng. “A Brief Introduction to Shannon’s Information Theory.” arXiv preprint arXiv:1612.09316 (2016).








	
class GlobalMutualInformationLoss[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/losses.py#L471-L543]

	Global-global encoding loss (comparing two full graphs).

Compares the encodings of two molecular graphs and returns the loss between them based on the measure specified.
The encodings are generated by two separate encoders in order to maximize the mutual information between the two encodings.


	Parameters:

	
	global_enc (torch.Tensor) – Features from a graph convolutional encoder.


	global_enc2 (torch.Tensor) – Another set of features from a graph convolutional encoder.


	measure (str) – The divergence measure to use for the unsupervised loss. Options are ‘GAN’, ‘JSD’, ‘KL’, ‘RKL’, ‘X2’, ‘DV’, ‘H2’, or ‘W1’.


	average_loss (bool) – Whether to average the loss over the batch






	Returns:

	loss – Measure of mutual information between the encodings of the two graphs.



	Return type:

	torch.Tensor





References



[1]
F.-Y. Sun, J. Hoffmann, V. Verma, and J. Tang, “InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Maximization.” arXiv, Jan. 17, 2020. http://arxiv.org/abs/1908.01000



Examples

>>> import numpy as np
>>> import deepchem.models.losses as losses
>>> from deepchem.feat.graph_data import BatchGraphData, GraphData
>>> from deepchem.models.torch_models.infograph import InfoGraphEncoder
>>> from deepchem.models.torch_models.layers import MultilayerPerceptron
>>> graph_list = []
>>> for i in range(3):
...     node_features = np.random.rand(5, 10)
...     edge_index = np.array([[0, 1, 2, 3, 4], [1, 2, 3, 4, 0]], dtype=np.int64)
...     edge_features = np.random.rand(5, 5)
...     graph_list.append(GraphData(node_features, edge_index, edge_features))
>>> batch = BatchGraphData(graph_list).numpy_to_torch()
>>> num_feat = 10
>>> edge_dim = 5
>>> dim = 4
>>> encoder = InfoGraphEncoder(num_feat, edge_dim, dim)
>>> encoding, feature_map = encoder(batch)
>>> g_enc = MultilayerPerceptron(2 * dim, dim)(encoding)
>>> g_enc2 = MultilayerPerceptron(2 * dim, dim)(encoding)
>>> globalloss = losses.GlobalMutualInformationLoss()
>>> loss = globalloss._create_pytorch_loss()(g_enc, g_enc2).detach().numpy()










	
class LocalMutualInformationLoss[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/losses.py#L546-L627]

	Local-global encoding loss (comparing a subgraph to the full graph).

Compares the encodings of two molecular graphs and returns the loss between them based on the measure specified.
The encodings are generated by two separate encoders in order to maximize the mutual information between the two encodings.


	Parameters:

	
	local_enc (torch.Tensor) – Features from a graph convolutional encoder.


	global_enc (torch.Tensor) – Another set of features from a graph convolutional encoder.


	batch_graph_index (graph_index: np.ndarray or torch.tensor, dtype int) – This vector indicates which graph the node belongs with shape [num_nodes,]. Only present in BatchGraphData, not in GraphData objects.


	measure (str) – The divergence measure to use for the unsupervised loss. Options are ‘GAN’, ‘JSD’, ‘KL’, ‘RKL’, ‘X2’, ‘DV’, ‘H2’, or ‘W1’.


	average_loss (bool) – Whether to average the loss over the batch






	Returns:

	loss – Measure of mutual information between the encodings of the two graphs.



	Return type:

	torch.Tensor





References



[1]
F.-Y. Sun, J. Hoffmann, V. Verma, and J. Tang, “InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Maximization.” arXiv, Jan. 17, 2020. http://arxiv.org/abs/1908.01000



Example

>>> import numpy as np
>>> import deepchem.models.losses as losses
>>> from deepchem.feat.graph_data import BatchGraphData, GraphData
>>> from deepchem.models.torch_models.infograph import InfoGraphEncoder
>>> from deepchem.models.torch_models.layers import MultilayerPerceptron
>>> graph_list = []
>>> for i in range(3):
...     node_features = np.random.rand(5, 10)
...     edge_index = np.array([[0, 1, 2, 3, 4], [1, 2, 3, 4, 0]], dtype=np.int64)
...     edge_features = np.random.rand(5, 5)
...     graph_list.append(GraphData(node_features, edge_index, edge_features))





>>> batch = BatchGraphData(graph_list).numpy_to_torch()
>>> num_feat = 10
>>> edge_dim = 5
>>> dim = 4
>>> encoder = InfoGraphEncoder(num_feat, edge_dim, dim)
>>> encoding, feature_map = encoder(batch)
>>> g_enc = MultilayerPerceptron(2 * dim, dim)(encoding)
>>> l_enc = MultilayerPerceptron(dim, dim)(feature_map)
>>> localloss = losses.LocalMutualInformationLoss()
>>> loss = localloss._create_pytorch_loss()(l_enc, g_enc, batch.graph_index).detach().numpy()










	
class GroverPretrainLoss[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/losses.py#L765-L909]

	The Grover Pretraining consists learning of atom embeddings and bond embeddings for
a molecule. To this end, the learning consists of three tasks:



	Learning of atom vocabulary from atom embeddings and bond embeddings


	Learning of bond vocabulary from atom embeddings and bond embeddings


	Learning to predict functional groups from atom embedings readout and bond embeddings readout







The loss function accepts atom vocabulary labels, bond vocabulary labels and functional group
predictions produced by Grover model during pretraining as a dictionary and applies negative
log-likelihood loss for atom vocabulary and bond vocabulary predictions and Binary Cross Entropy
loss for functional group prediction and sums these to get overall loss.

Example

>>> import torch
>>> from deepchem.models.losses import GroverPretrainLoss
>>> loss = GroverPretrainLoss()
>>> loss_fn = loss._create_pytorch_loss()
>>> batch_size = 3
>>> output_dim = 10
>>> fg_size = 8
>>> atom_vocab_task_target = torch.ones(batch_size).type(torch.int64)
>>> bond_vocab_task_target = torch.ones(batch_size).type(torch.int64)
>>> fg_task_target = torch.ones(batch_size, fg_size)
>>> atom_vocab_task_atom_pred = torch.zeros(batch_size, output_dim)
>>> bond_vocab_task_atom_pred = torch.zeros(batch_size, output_dim)
>>> atom_vocab_task_bond_pred = torch.zeros(batch_size, output_dim)
>>> bond_vocab_task_bond_pred = torch.zeros(batch_size, output_dim)
>>> fg_task_atom_from_atom = torch.zeros(batch_size, fg_size)
>>> fg_task_atom_from_bond = torch.zeros(batch_size, fg_size)
>>> fg_task_bond_from_atom = torch.zeros(batch_size, fg_size)
>>> fg_task_bond_from_bond = torch.zeros(batch_size, fg_size)
>>> result = loss_fn(atom_vocab_task_atom_pred, atom_vocab_task_bond_pred,
...     bond_vocab_task_atom_pred, bond_vocab_task_bond_pred, fg_task_atom_from_atom,
...     fg_task_atom_from_bond, fg_task_bond_from_atom, fg_task_bond_from_bond,
...     atom_vocab_task_target, bond_vocab_task_target, fg_task_target)






Reference







	
class EdgePredictionLoss[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/losses.py#L912-L976]

	EdgePredictionLoss is an unsupervised graph edge prediction loss function that calculates the loss based on the similarity between node embeddings for positive and negative edge pairs. This loss function is designed for graph neural networks and is particularly useful for pre-training tasks.

This loss function encourages the model to learn node embeddings that can effectively distinguish between true edges (positive samples) and false edges (negative samples) in the graph.

The loss is computed by comparing the similarity scores (dot product) of node embeddings for positive and negative edge pairs. The goal is to maximize the similarity for positive pairs and minimize it for negative pairs.

To use this loss function, the input must be a BatchGraphData object transformed by the negative_edge_sampler. The loss function takes the node embeddings and the input graph data (with positive and negative edge pairs) as inputs and returns the edge prediction loss.

Examples

>>> from deepchem.models.losses import EdgePredictionLoss
>>> from deepchem.feat.graph_data import BatchGraphData, GraphData
>>> from deepchem.models.torch_models.gnn import negative_edge_sampler
>>> import torch
>>> import numpy as np
>>> emb_dim = 8
>>> num_nodes_list, num_edge_list = [3, 4, 5], [2, 4, 5]
>>> num_node_features, num_edge_features = 32, 32
>>> edge_index_list = [
...     np.array([[0, 1], [1, 2]]),
...     np.array([[0, 1, 2, 3], [1, 2, 0, 2]]),
...     np.array([[0, 1, 2, 3, 4], [1, 2, 3, 4, 0]]),
... ]
>>> graph_list = [
...     GraphData(node_features=np.random.random_sample(
...         (num_nodes_list[i], num_node_features)),
...               edge_index=edge_index_list[i],
...               edge_features=np.random.random_sample(
...                   (num_edge_list[i], num_edge_features)),
...               node_pos_features=None) for i in range(len(num_edge_list))
... ]
>>> batched_graph = BatchGraphData(graph_list)
>>> batched_graph = batched_graph.numpy_to_torch()
>>> neg_sampled = negative_edge_sampler(batched_graph)
>>> embedding = np.random.random((sum(num_nodes_list), emb_dim))
>>> embedding = torch.from_numpy(embedding)
>>> loss_func = EdgePredictionLoss()._create_pytorch_loss()
>>> loss = loss_func(embedding, neg_sampled)





References



[1]
Hu, W. et al. Strategies for Pre-training Graph Neural Networks. Preprint at https://doi.org/10.48550/arXiv.1905.12265 (2020).








	
class GraphNodeMaskingLoss[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/losses.py#L979-L1048]

	GraphNodeMaskingLoss is an unsupervised graph node masking loss function that calculates the loss based on the predicted node labels and true node labels. This loss function is designed for graph neural networks and is particularly useful for pre-training tasks.

This loss function encourages the model to learn node embeddings that can effectively predict the masked node labels in the graph.

The loss is computed using the CrossEntropyLoss between the predicted node labels and the true node labels.

To use this loss function, the input must be a BatchGraphData object transformed by the mask_nodes function. The loss function takes the predicted node labels, predicted edge labels, and the input graph data (with masked node labels) as inputs and returns the node masking loss.


	Parameters:

	
	pred_node (torch.Tensor) – Predicted node labels


	pred_edge (Optional(torch.Tensor)) – Predicted edge labels


	inputs (BatchGraphData) – Input graph data with masked node and edge labels








Examples

>>> from deepchem.models.losses import GraphNodeMaskingLoss
>>> from deepchem.feat.graph_data import BatchGraphData, GraphData
>>> from deepchem.models.torch_models.gnn import mask_nodes
>>> import torch
>>> import numpy as np
>>> num_nodes_list, num_edge_list = [3, 4, 5], [2, 4, 5]
>>> num_node_features, num_edge_features = 32, 32
>>> edge_index_list = [
...     np.array([[0, 1], [1, 2]]),
...     np.array([[0, 1, 2, 3], [1, 2, 0, 2]]),
...     np.array([[0, 1, 2, 3, 4], [1, 2, 3, 4, 0]]),
... ]
>>> graph_list = [
...     GraphData(node_features=np.random.random_sample(
...         (num_nodes_list[i], num_node_features)),
...               edge_index=edge_index_list[i],
...               edge_features=np.random.random_sample(
...                   (num_edge_list[i], num_edge_features)),
...               node_pos_features=None) for i in range(len(num_edge_list))
... ]
>>> batched_graph = BatchGraphData(graph_list)
>>> batched_graph = batched_graph.numpy_to_torch()
>>> masked_graph = mask_nodes(batched_graph, 0.1)
>>> pred_node = torch.randn((sum(num_nodes_list), num_node_features))
>>> pred_edge = torch.randn((sum(num_edge_list), num_edge_features))
>>> loss_func = GraphNodeMaskingLoss()._create_pytorch_loss()
>>> loss = loss_func(pred_node[masked_graph.masked_node_indices],
...                  pred_edge[masked_graph.connected_edge_indices], masked_graph)





References
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class GraphEdgeMaskingLoss[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/losses.py#L1051-L1112]

	GraphEdgeMaskingLoss is an unsupervised graph edge masking loss function that calculates the loss based on the predicted edge labels and true edge labels. This loss function is designed for graph neural networks and is particularly useful for pre-training tasks.

This loss function encourages the model to learn node embeddings that can effectively predict the masked edge labels in the graph.

The loss is computed using the CrossEntropyLoss between the predicted edge labels and the true edge labels.

To use this loss function, the input must be a BatchGraphData object transformed by the mask_edges function. The loss function takes the predicted edge labels and the true edge labels as inputs and returns the edge masking loss.


	Parameters:

	
	pred_edge (torch.Tensor) – Predicted edge labels.


	inputs (BatchGraphData) – Input graph data (with masked edge labels).








Examples

>>> from deepchem.models.losses import GraphEdgeMaskingLoss
>>> from deepchem.feat.graph_data import BatchGraphData, GraphData
>>> from deepchem.models.torch_models.gnn import mask_edges
>>> import torch
>>> import numpy as np
>>> num_nodes_list, num_edge_list = [3, 4, 5], [2, 4, 5]
>>> num_node_features, num_edge_features = 32, 32
>>> edge_index_list = [
...     np.array([[0, 1], [1, 2]]),
...     np.array([[0, 1, 2, 3], [1, 2, 0, 2]]),
...     np.array([[0, 1, 2, 3, 4], [1, 2, 3, 4, 0]]),
... ]
>>> graph_list = [
...     GraphData(node_features=np.random.random_sample(
...         (num_nodes_list[i], num_node_features)),
...               edge_index=edge_index_list[i],
...               edge_features=np.random.random_sample(
...                   (num_edge_list[i], num_edge_features)),
...               node_pos_features=None) for i in range(len(num_edge_list))
... ]
>>> batched_graph = BatchGraphData(graph_list)
>>> batched_graph = batched_graph.numpy_to_torch()
>>> masked_graph = mask_edges(batched_graph, .1)
>>> pred_edge = torch.randn((sum(num_edge_list), num_edge_features))
>>> loss_func = GraphEdgeMaskingLoss()._create_pytorch_loss()
>>> loss = loss_func(pred_edge[masked_graph.masked_edge_idx], masked_graph)





References
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class DeepGraphInfomaxLoss[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/losses.py#L1115-L1168]

	Loss that maximizes mutual information between local node representations and a pooled global graph representation. This is to encourage nearby nodes to have similar embeddings.


	Parameters:

	
	positive_score (torch.Tensor) – Positive score. This score measures the similarity between the local node embeddings (node_emb) and the global graph representation (positive_expanded_summary_emb) derived from the same graph.
The goal is to maximize this score, as it indicates that the local node embeddings and the global graph representation are highly correlated, capturing the mutual information between them.


	negative_score (torch.Tensor) – Negative score. This score measures the similarity between the local node embeddings (node_emb) and the global graph representation (negative_expanded_summary_emb) derived from a different graph (shifted by one position in this case).
The goal is to minimize this score, as it indicates that the local node embeddings and the global graph representation from different graphs are not correlated, ensuring that the model learns meaningful representations that are specific to each graph.








Examples

>>> import torch
>>> import numpy as np
>>> from deepchem.feat.graph_data import GraphData
>>> from torch_geometric.nn import global_mean_pool
>>> from deepchem.models.losses import DeepGraphInfomaxLoss
>>> x = np.array([[1, 0], [0, 1], [1, 1], [0, 0]])
>>> edge_index = np.array([[0, 1, 2, 0, 3], [1, 0, 1, 3, 2]])
>>> graph_index = np.array([0, 0, 1, 1])
>>> data = GraphData(node_features=x, edge_index=edge_index, graph_index=graph_index).numpy_to_torch()
>>> graph_infomax_loss = DeepGraphInfomaxLoss()._create_pytorch_loss()
>>> # Initialize node_emb randomly
>>> num_nodes = data.num_nodes
>>> embedding_dim = 8
>>> node_emb = torch.randn(num_nodes, embedding_dim)
>>> # Compute the global graph representation
>>> summary_emb = global_mean_pool(node_emb, data.graph_index)
>>> # Compute positive and negative scores
>>> positive_score = torch.matmul(node_emb, summary_emb.t())
>>> negative_score = torch.matmul(node_emb, summary_emb.roll(1, dims=0).t())
>>> loss = graph_infomax_loss(positive_score, negative_score)





References
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class GraphContextPredLoss[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/losses.py#L1171-L1263]

	GraphContextPredLoss is a loss function designed for graph neural networks that aims to predict the context of a node given its substructure. The context of a node is essentially the ring of nodes around it outside of an inner k1-hop diameter and inside an outer k2-hop diameter.

This loss compares the representation of a node’s neighborhood with the representation of the node’s context. It then uses negative sampling to compare the representation of the node’s neighborhood with the representation of a random node’s context.


	Parameters:

	
	mode (str) – The mode of the model. It can be either “cbow” (continuous bag of words) or “skipgram”.


	neg_samples (int) – The number of negative samples to use for negative sampling.








Examples

>>> import torch
>>> from deepchem.models.losses import GraphContextPredLoss
>>> substruct_rep = torch.randn(4, 8)
>>> overlapped_node_rep = torch.randn(8, 8)
>>> context_rep = torch.randn(4, 8)
>>> neg_context_rep = torch.randn(2 * 4, 8)
>>> overlapped_context_size = torch.tensor([2, 2, 2, 2])
>>> mode = "cbow"
>>> neg_samples = 2
>>> graph_context_pred_loss = GraphContextPredLoss()._create_pytorch_loss(mode, neg_samples)
>>> loss = graph_context_pred_loss(substruct_rep, overlapped_node_rep, context_rep, neg_context_rep, overlapped_context_size)










	
class DensityProfileLoss[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/losses.py#L1266-L1316]

	Loss for the density profile entry type for Quantum Chemistry calculations.
It is an integration of the squared difference between ground truth and calculated
values, at all spaces in the integration grid.

Examples

>>> from deepchem.models.losses import DensityProfileLoss
>>> import torch
>>> volume = torch.Tensor([2.0])
>>> output = torch.Tensor([3.0])
>>> labels = torch.Tensor([4.0])
>>> loss = (DensityProfileLoss()._create_pytorch_loss(volume))(output, labels)
>>> # Generating volume tensor for an entry object:
>>> from deepchem.feat.dft_data import DFTEntry
>>> e_type = 'dens'
>>> true_val = 0
>>> systems =[{'moldesc': 'H 0.86625 0 0; F -0.86625 0 0','basis' : '6-311++G(3df,3pd)'}]
>>> dens_entry_for_HF = DFTEntry.create(e_type, true_val, systems)
>>> grid = (dens_entry_for_HF).get_integration_grid()





The 6-311++G(3df,3pd) basis for atomz 1 does not exist, but we will download it
Downloaded to /usr/share/miniconda3/envs/deepchem/lib/python3.8/site-packages/dqc/api/.database/6-311ppg_3df_3pd_/01.gaussian94
The 6-311++G(3df,3pd) basis for atomz 9 does not exist, but we will download it
Downloaded to /usr/share/miniconda3/envs/deepchem/lib/python3.8/site-packages/dqc/api/.database/6-311ppg_3df_3pd_/09.gaussian94

>>> volume = grid.get_dvolume()





References

Kasim, Muhammad F., and Sam M. Vinko. “Learning the exchange-correlation
functional from nature with fully differentiable density functional
theory.” Physical Review Letters 127.12 (2021): 126403.
https://github.com/deepchem/deepchem/blob/0bc3139bb99ae7700ba2325a6756e33b6c327842/deepchem/models/dft/dftxc.py






	
class NTXentMultiplePositives(norm: bool = True, tau: float = 0.5, uniformity_reg=0, variance_reg=0, covariance_reg=0, conformer_variance_reg=0)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/losses.py#L1319-L1493]

	This is a modification of the NTXent loss function from Chen [1]_. This loss is designed for contrastive learning of molecular representations, comparing the similarity of a molecule’s latent representation to positive and negative samples.

The modifications proposed in [2]_ enable multiple conformers to be used as positive samples.

This loss function is designed for graph neural networks and is particularly useful for unsupervised pre-training tasks.


	Parameters:

	
	norm (bool, optional (default=True)) – Whether to normalize the similarity matrix.


	tau (float, optional (default=0.5)) – Temperature parameter for the similarity matrix.


	uniformity_reg (float, optional (default=0)) – Regularization weight for the uniformity loss.


	variance_reg (float, optional (default=0)) – Regularization weight for the variance loss.


	covariance_reg (float, optional (default=0)) – Regularization weight for the covariance loss.


	conformer_variance_reg (float, optional (default=0)) – Regularization weight for the conformer variance loss.








Examples

>>> import torch
>>> from deepchem.models.losses import NTXentMultiplePositives
>>> z1 = torch.randn(4, 8)
>>> z2 = torch.randn(4 * 3, 8)
>>> ntxent_loss = NTXentMultiplePositives(norm=True, tau=0.5)
>>> loss_fn = ntxent_loss._create_pytorch_loss()
>>> loss = loss_fn(z1, z2)
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__init__(norm: bool = True, tau: float = 0.5, uniformity_reg=0, variance_reg=0, covariance_reg=0, conformer_variance_reg=0) → None[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/losses.py#L1359-L1372]

	









Optimizers


	
class Optimizer(learning_rate: float | LearningRateSchedule)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/optimizers.py#L8-L59]

	An algorithm for optimizing a model.

This is an abstract class.  Subclasses represent specific optimization algorithms.


	
__init__(learning_rate: float | LearningRateSchedule)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/optimizers.py#L14-L22]

	This constructor should only be called by subclasses.


	Parameters:

	learning_rate (float or LearningRateSchedule) – the learning rate to use for optimization














	
class LearningRateSchedule[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/optimizers.py#L62-L108]

	A schedule for changing the learning rate over the course of optimization.

This is an abstract class.  Subclasses represent specific schedules.






	
class AdaGrad(learning_rate: float | LearningRateSchedule = 0.001, initial_accumulator_value: float = 0.1, epsilon: float = 1e-07)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/optimizers.py#L111-L183]

	The AdaGrad optimization algorithm.

Adagrad is an optimizer with parameter-specific learning rates, which are
adapted relative to how frequently a parameter gets updated during training.
The more updates a parameter receives, the smaller the updates. See [1]_ for
a full reference for the algorithm.

References



[1]
Duchi, John, Elad Hazan, and Yoram Singer. “Adaptive subgradient
methods for online learning and stochastic optimization.” Journal of machine
learning research 12.7 (2011).




	
__init__(learning_rate: float | LearningRateSchedule = 0.001, initial_accumulator_value: float = 0.1, epsilon: float = 1e-07)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/optimizers.py#L126-L143]

	Construct an AdaGrad optimizer.
:param learning_rate: the learning rate to use for optimization
:type learning_rate: float or LearningRateSchedule
:param initial_accumulator_value: a parameter of the AdaGrad algorithm
:type initial_accumulator_value: float
:param epsilon: a parameter of the AdaGrad algorithm
:type epsilon: float










	
class Adam(learning_rate: float | LearningRateSchedule = 0.001, beta1: float = 0.9, beta2: float = 0.999, epsilon: float = 1e-08, weight_decay: float = 0)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/optimizers.py#L186-L253]

	The Adam optimization algorithm.


	
__init__(learning_rate: float | LearningRateSchedule = 0.001, beta1: float = 0.9, beta2: float = 0.999, epsilon: float = 1e-08, weight_decay: float = 0)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/optimizers.py#L189-L214]

	Construct an Adam optimizer.


	Parameters:

	
	learning_rate (float or LearningRateSchedule) – the learning rate to use for optimization


	beta1 (float) – a parameter of the Adam algorithm


	beta2 (float) – a parameter of the Adam algorithm


	epsilon (float) – a parameter of the Adam algorithm


	weight_decay (float) – L2 penalty - a parameter of the Adam algorithm

















	
class AdamW(learning_rate: float | LearningRateSchedule = 0.001, weight_decay: float | LearningRateSchedule = 0.01, beta1: float = 0.9, beta2: float = 0.999, epsilon: float = 1e-08, amsgrad: bool = False)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/optimizers.py#L306-L383]

	The AdamW optimization algorithm.
AdamW is a variant of Adam, with improved weight decay.
In Adam, weight decay is implemented as: weight_decay (float, optional) – weight decay (L2 penalty) (default: 0)
In AdamW, weight decay is implemented as: weight_decay (float, optional) – weight decay coefficient (default: 1e-2)


	
__init__(learning_rate: float | LearningRateSchedule = 0.001, weight_decay: float | LearningRateSchedule = 0.01, beta1: float = 0.9, beta2: float = 0.999, epsilon: float = 1e-08, amsgrad: bool = False)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/optimizers.py#L313-L341]

	Construct an AdamW optimizer.
:param learning_rate: the learning rate to use for optimization
:type learning_rate: float or LearningRateSchedule
:param weight_decay: weight decay coefficient for AdamW
:type weight_decay: float or LearningRateSchedule
:param beta1: a parameter of the Adam algorithm
:type beta1: float
:param beta2: a parameter of the Adam algorithm
:type beta2: float
:param epsilon: a parameter of the Adam algorithm
:type epsilon: float
:param amsgrad: If True, will use the AMSGrad variant of AdamW (from “On the Convergence of Adam and Beyond”), else will use the original algorithm.
:type amsgrad: bool










	
class SparseAdam(learning_rate: float | LearningRateSchedule = 0.001, beta1: float = 0.9, beta2: float = 0.999, epsilon: float = 1e-08)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/optimizers.py#L256-L303]

	The Sparse Adam optimization algorithm, also known as Lazy Adam.
Sparse Adam is suitable for sparse tensors. It handles sparse updates more efficiently.
It only updates moving-average accumulators for sparse variable indices that appear in the current batch, rather than updating the accumulators for all indices.


	
__init__(learning_rate: float | LearningRateSchedule = 0.001, beta1: float = 0.9, beta2: float = 0.999, epsilon: float = 1e-08)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/optimizers.py#L262-L283]

	Construct an Adam optimizer.


	Parameters:

	
	learning_rate (float or LearningRateSchedule) – the learning rate to use for optimization


	beta1 (float) – a parameter of the SparseAdam algorithm


	beta2 (float) – a parameter of the SparseAdam algorithm


	epsilon (float) – a parameter of the SparseAdam algorithm

















	
class RMSProp(learning_rate: float | LearningRateSchedule = 0.001, momentum: float = 0.0, decay: float = 0.9, epsilon: float = 1e-10)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/optimizers.py#L386-L453]

	RMSProp Optimization algorithm.


	
__init__(learning_rate: float | LearningRateSchedule = 0.001, momentum: float = 0.0, decay: float = 0.9, epsilon: float = 1e-10)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/optimizers.py#L389-L410]

	Construct an RMSProp Optimizer.


	Parameters:

	
	learning_rate (float or LearningRateSchedule) – the learning_rate used for optimization


	momentum (float, default 0.0) – a parameter of the RMSProp algorithm


	decay (float, default 0.9) – a parameter of the RMSProp algorithm


	epsilon (float, default 1e-10) – a parameter of the RMSProp algorithm

















	
class GradientDescent(learning_rate: float | LearningRateSchedule = 0.001)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/optimizers.py#L456-L497]

	The gradient descent optimization algorithm.


	
__init__(learning_rate: float | LearningRateSchedule = 0.001)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/optimizers.py#L459-L468]

	Construct a gradient descent optimizer.


	Parameters:

	learning_rate (float or LearningRateSchedule) – the learning rate to use for optimization














	
class ExponentialDecay(initial_rate: float, decay_rate: float, decay_steps: int, staircase: bool = True)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/optimizers.py#L500-L550]

	A learning rate that decreases exponentially with the number of training steps.


	
__init__(initial_rate: float, decay_rate: float, decay_steps: int, staircase: bool = True)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/optimizers.py#L503-L527]

	Create an exponentially decaying learning rate.

The learning rate starts as initial_rate.  Every decay_steps training steps, it is multiplied by decay_rate.


	Parameters:

	
	initial_rate (float) – the initial learning rate


	decay_rate (float) – the base of the exponential


	decay_steps (int) – the number of training steps over which the rate decreases by decay_rate


	staircase (bool) – if True, the learning rate decreases by discrete jumps every decay_steps.
if False, the learning rate decreases smoothly every step

















	
class PolynomialDecay(initial_rate: float, final_rate: float, decay_steps: int, power: float = 1.0)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/optimizers.py#L553-L606]

	A learning rate that decreases from an initial value to a final value over a fixed number of training steps.


	
__init__(initial_rate: float, final_rate: float, decay_steps: int, power: float = 1.0)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/optimizers.py#L556-L581]

	Create a smoothly decaying learning rate.

The learning rate starts as initial_rate.  It smoothly decreases to final_rate over decay_steps training steps.
It decays as a function of (1-step/decay_steps)**power.  Once the final rate is reached, it remains there for
the rest of optimization.


	Parameters:

	
	initial_rate (float) – the initial learning rate


	final_rate (float) – the final learning rate


	decay_steps (int) – the number of training steps over which the rate decreases from initial_rate to final_rate


	power (float) – the exponent controlling the shape of the decay

















	
class LinearCosineDecay(initial_rate: float, decay_steps: int, alpha: float = 0.0, beta: float = 0.001, num_periods: float = 0.5)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/optimizers.py#L609-L661]

	Applies linear cosine decay to the learning rate


	
__init__(initial_rate: float, decay_steps: int, alpha: float = 0.0, beta: float = 0.001, num_periods: float = 0.5)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/optimizers.py#L612-L632]

	
	Parameters:

	
	learning_rate (float) – 


	rate (initial learning) – 


	decay_steps (int) – 


	over (number of steps to decay) – 


	num_periods (number of periods in the cosine part of the decay) – 



















Keras Models

DeepChem extensively uses Keras [https://keras.io/] to build deep learning models.


KerasModel

Training loss and validation metrics can be automatically logged to Weights & Biases [http://docs.wandb.com/] with the following commands:

# Install wandb in shell
pip install wandb

# Login in shell (required only once)
wandb login
# Login in notebook (required only once)
import wandb
wandb.login()

# Initialize a WandbLogger
logger = WandbLogger(…)

# Set `wandb_logger` when creating `KerasModel`
import deepchem as dc
# Log training loss to wandb
model = dc.models.KerasModel(…, wandb_logger=logger)
model.fit(…)

# Log validation metrics to wandb using ValidationCallback
import deepchem as dc
vc = dc.models.ValidationCallback(…)
model = KerasModel(…, wandb_logger=logger)
model.fit(…, callbacks=[vc])
logger.finish()






	
class KerasModel(model: Model, loss: Loss | Callable[[List, List, List], Any], output_types: List[str] | None = None, batch_size: int = 100, model_dir: str | None = None, learning_rate: float | LearningRateSchedule = 0.001, optimizer: Optimizer | None = None, tensorboard: bool = False, wandb: bool = False, log_frequency: int = 100, wandb_logger: WandbLogger | None = None, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/keras_model.py#L37-L1273]

	This is a DeepChem model implemented by a Keras model.

This class provides several advantages over using the Keras
model’s fitting and prediction methods directly.


	
	It provides better integration with the rest of DeepChem,
	such as direct support for Datasets and Transformers.







	
	It defines the loss in a more flexible way.  In particular,
	Keras does not support multidimensional weight matrices,
which makes it impossible to implement most multitask
models with Keras.







	
	It provides various additional features not found in the
	Keras model class, such as uncertainty prediction and
saliency mapping.









Here is a simple example of code that uses KerasModel to train
a Keras model on a DeepChem dataset.

>> keras_model = tf.keras.Sequential([
>>    tf.keras.layers.Dense(1000, activation=’tanh’),
>>    tf.keras.layers.Dense(1)
>> ])
>> model = KerasModel(keras_model, loss=dc.models.losses.L2Loss())
>> model.fit(dataset)

The loss function for a model can be defined in two different
ways.  For models that have only a single output and use a
standard loss function, you can simply provide a
dc.models.losses.Loss object.  This defines the loss for each
sample or sample/task pair.  The result is automatically
multiplied by the weights and averaged over the batch.  Any
additional losses computed by model layers, such as weight
decay penalties, are also added.

For more complicated cases, you can instead provide a function
that directly computes the total loss.  It must be of the form
f(outputs, labels, weights), taking the list of outputs from
the model, the expected values, and any weight matrices.  It
should return a scalar equal to the value of the loss function
for the batch.  No additional processing is done to the
result; it is up to you to do any weighting, averaging, adding
of penalty terms, etc.

You can optionally provide an output_types argument, which
describes how to interpret the model’s outputs.  This should
be a list of strings, one for each output. You can use an
arbitrary output_type for a output, but some output_types are
special and will undergo extra processing:


	
	‘prediction’: This is a normal output, and will be returned by predict().
	If output types are not specified, all outputs are assumed
to be of this type.







	
	‘loss’: This output will be used in place of the normal
	outputs for computing the loss function.  For example,
models that output probability distributions usually do it
by computing unbounded numbers (the logits), then passing
them through a softmax function to turn them into
probabilities.  When computing the cross entropy, it is more
numerically stable to use the logits directly rather than
the probabilities.  You can do this by having the model
produce both probabilities and logits as outputs, then
specifying output_types=[‘prediction’, ‘loss’].  When
predict() is called, only the first output (the
probabilities) will be returned.  But during training, it is
the second output (the logits) that will be passed to the
loss function.







	
	‘variance’: This output is used for estimating the
	uncertainty in another output.  To create a model that can
estimate uncertainty, there must be the same number of
‘prediction’ and ‘variance’ outputs.  Each variance output
must have the same shape as the corresponding prediction
output, and each element is an estimate of the variance in
the corresponding prediction.  Also be aware that if a model
supports uncertainty, it MUST use dropout on every layer,
and dropout most be enabled during uncertainty prediction.
Otherwise, the uncertainties it computes will be inaccurate.







	
	other: Arbitrary output_types can be used to extract outputs
	produced by the model, but will have no additional
processing performed.










	
__init__(model: Model, loss: Loss | Callable[[List, List, List], Any], output_types: List[str] | None = None, batch_size: int = 100, model_dir: str | None = None, learning_rate: float | LearningRateSchedule = 0.001, optimizer: Optimizer | None = None, tensorboard: bool = False, wandb: bool = False, log_frequency: int = 100, wandb_logger: WandbLogger | None = None, **kwargs) → None[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/keras_model.py#L124-L262]

	Create a new KerasModel.


	Parameters:

	
	model (tf.keras.Model) – the Keras model implementing the calculation


	loss (dc.models.losses.Loss or function) – a Loss or function defining how to compute the training loss for each
batch, as described above


	output_types (list of strings) – the type of each output from the model, as described above


	batch_size (int) – default batch size for training and evaluating


	model_dir (str) – the directory on disk where the model will be stored.  If this is None,
a temporary directory is created.


	learning_rate (float or LearningRateSchedule) – the learning rate to use for fitting.  If optimizer is specified, this is
ignored.


	optimizer (Optimizer) – the optimizer to use for fitting.  If this is specified, learning_rate is
ignored.


	tensorboard (bool) – whether to log progress to TensorBoard during training


	wandb (bool) – whether to log progress to Weights & Biases during training (deprecated)


	log_frequency (int) – The frequency at which to log data. Data is logged using
logging by default. If tensorboard is set, data is also
logged to TensorBoard. If wandb is set, data is also logged
to Weights & Biases. Logging happens at global steps. Roughly,
a global step corresponds to one batch of training. If you’d
like a printout every 10 batch steps, you’d set
log_frequency=10 for example.


	wandb_logger (WandbLogger) – the Weights & Biases logger object used to log data and metrics













	
fit(dataset: Dataset, nb_epoch: int = 10, max_checkpoints_to_keep: int = 5, checkpoint_interval: int = 1000, deterministic: bool = False, restore: bool = False, variables: List[Variable] | None = None, loss: Callable[[List, List, List], Any] | None = None, callbacks: Callable | List[Callable] = [], all_losses: List[float] | None = None) → float[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/keras_model.py#L309-L364]

	Train this model on a dataset.


	Parameters:

	
	dataset (Dataset) – the Dataset to train on


	nb_epoch (int) – the number of epochs to train for


	max_checkpoints_to_keep (int) – the maximum number of checkpoints to keep.  Older checkpoints are discarded.


	checkpoint_interval (int) – the frequency at which to write checkpoints, measured in training steps.
Set this to 0 to disable automatic checkpointing.


	deterministic (bool) – if True, the samples are processed in order.  If False, a different random
order is used for each epoch.


	restore (bool) – if True, restore the model from the most recent checkpoint and continue training
from there.  If False, retrain the model from scratch.


	variables (list of tf.Variable) – the variables to train.  If None (the default), all trainable variables in
the model are used.


	loss (function) – a function of the form f(outputs, labels, weights) that computes the loss
for each batch.  If None (the default), the model’s standard loss function
is used.


	callbacks (function or list of functions) – one or more functions of the form f(model, step) that will be invoked after
every step.  This can be used to perform validation, logging, etc.


	all_losses (Optional[List[float]], optional (default None)) – If specified, all logged losses are appended into this list. Note that
you can call fit() repeatedly with the same list and losses will
continue to be appended.






	Returns:

	The average loss over the most recent checkpoint interval



	Return type:

	float










	
fit_generator(generator: Iterable[Tuple[Any, Any, Any]], max_checkpoints_to_keep: int = 5, checkpoint_interval: int = 1000, restore: bool = False, variables: List[Variable] | None = None, loss: Callable[[List, List, List], Any] | None = None, callbacks: Callable | List[Callable] = [], all_losses: List[float] | None = None) → float[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/keras_model.py#L366-L497]

	Train this model on data from a generator.


	Parameters:

	
	generator (generator) – this should generate batches, each represented as a tuple of the form
(inputs, labels, weights).


	max_checkpoints_to_keep (int) – the maximum number of checkpoints to keep.  Older checkpoints are discarded.


	checkpoint_interval (int) – the frequency at which to write checkpoints, measured in training steps.
Set this to 0 to disable automatic checkpointing.


	restore (bool) – if True, restore the model from the most recent checkpoint and continue training
from there.  If False, retrain the model from scratch.


	variables (list of tf.Variable) – the variables to train.  If None (the default), all trainable variables in
the model are used.


	loss (function) – a function of the form f(outputs, labels, weights) that computes the loss
for each batch.  If None (the default), the model’s standard loss function
is used.


	callbacks (function or list of functions) – one or more functions of the form f(model, step) that will be invoked after
every step.  This can be used to perform validation, logging, etc.


	all_losses (Optional[List[float]], optional (default None)) – If specified, all logged losses are appended into this list. Note that
you can call fit() repeatedly with the same list and losses will
continue to be appended.






	Returns:

	The average loss over the most recent checkpoint interval



	Return type:

	float










	
fit_on_batch(X: Sequence, y: Sequence, w: Sequence, variables: List[Variable] | None = None, loss: Callable[[List, List, List], Any] | None = None, callbacks: Callable | List[Callable] = [], checkpoint: bool = True, max_checkpoints_to_keep: int = 5) → float[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/keras_model.py#L526-L574]

	Perform a single step of training.


	Parameters:

	
	X (ndarray) – the inputs for the batch


	y (ndarray) – the labels for the batch


	w (ndarray) – the weights for the batch


	variables (list of tf.Variable) – the variables to train.  If None (the default), all trainable variables in
the model are used.


	loss (function) – a function of the form f(outputs, labels, weights) that computes the loss
for each batch.  If None (the default), the model’s standard loss function
is used.


	callbacks (function or list of functions) – one or more functions of the form f(model, step) that will be invoked after
every step.  This can be used to perform validation, logging, etc.


	checkpoint (bool) – if true, save a checkpoint after performing the training step


	max_checkpoints_to_keep (int) – the maximum number of checkpoints to keep.  Older checkpoints are discarded.






	Returns:

	the loss on the batch



	Return type:

	float










	
predict_on_generator(generator: Iterable[Tuple[Any, Any, Any]], transformers: List[Transformer] = [], outputs: Tensor | Sequence[Tensor] | None = None, output_types: str | Sequence[str] | None = None) → ndarray | Sequence[ndarray][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/keras_model.py#L717-L752]

	
	Parameters:

	
	generator (generator) – this should generate batches, each represented as a tuple of the form
(inputs, labels, weights).


	transformers (list of dc.trans.Transformers) – Transformers that the input data has been transformed by.  The output
is passed through these transformers to undo the transformations.


	outputs (Tensor or list of Tensors) – The outputs to return.  If this is None, the model’s
standard prediction outputs will be returned.
Alternatively one or more Tensors within the model may be
specified, in which case the output of those Tensors will
be returned. If outputs is specified, output_types must be
None.


	output_types (String or list of Strings) – If specified, all outputs of this type will be retrieved
from the model. If output_types is specified, outputs must
be None.






	Returns:

	a NumPy array of the model produces a single output, or a list of arrays
if it produces multiple outputs



	Return type:

	OneOrMany[np.ndarray]










	
predict_on_batch(X: _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes], transformers: List[Transformer] = [], outputs: Tensor | Sequence[Tensor] | None = None) → ndarray | Sequence[ndarray][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/keras_model.py#L754-L782]

	Generates predictions for input samples, processing samples in a batch.


	Parameters:

	
	X (ndarray) – the input data, as a Numpy array.


	transformers (list of dc.trans.Transformers) – Transformers that the input data has been transformed by.  The output
is passed through these transformers to undo the transformations.


	outputs (Tensor or list of Tensors) – The outputs to return.  If this is None, the model’s standard prediction
outputs will be returned.  Alternatively one or more Tensors within the
model may be specified, in which case the output of those Tensors will be
returned.






	Returns:

	a NumPy array of the model produces a single output, or a list of arrays
if it produces multiple outputs



	Return type:

	OneOrMany[np.ndarray]










	
predict_uncertainty_on_batch(X: Sequence, masks: int = 50) → Tuple[ndarray, ndarray] | Sequence[Tuple[ndarray, ndarray]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/keras_model.py#L784-L814]

	Predict the model’s outputs, along with the uncertainty in each one.

The uncertainty is computed as described in https://arxiv.org/abs/1703.04977.
It involves repeating the prediction many times with different dropout masks.
The prediction is computed as the average over all the predictions.  The
uncertainty includes both the variation among the predicted values (epistemic
uncertainty) and the model’s own estimates for how well it fits the data
(aleatoric uncertainty).  Not all models support uncertainty prediction.


	Parameters:

	
	X (ndarray) – the input data, as a Numpy array.


	masks (int) – the number of dropout masks to average over






	Returns:

	
	OneOrMany[Tuple[y_pred, y_std]]


	y_pred (np.ndarray) – predicted value of the output


	y_std (np.ndarray) – standard deviation of the corresponding element of y_pred















	
predict(dataset: Dataset, transformers: List[Transformer] = [], outputs: Tensor | Sequence[Tensor] | None = None, output_types: List[str] | None = None) → ndarray | Sequence[ndarray][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/keras_model.py#L816-L854]

	Uses self to make predictions on provided Dataset object.


	Parameters:

	
	dataset (dc.data.Dataset) – Dataset to make prediction on


	transformers (list of dc.trans.Transformers) – Transformers that the input data has been transformed by.  The output
is passed through these transformers to undo the transformations.


	outputs (Tensor or list of Tensors) – The outputs to return.  If this is None, the model’s standard prediction
outputs will be returned.  Alternatively one or more Tensors within the
model may be specified, in which case the output of those Tensors will be
returned.


	output_types (String or list of Strings) – If specified, all outputs of this type will be retrieved
from the model. If output_types is specified, outputs must
be None.






	Returns:

	
	a NumPy array of the model produces a single output, or a list of arrays


	if it produces multiple outputs















	
predict_embedding(dataset: Dataset) → ndarray | Sequence[ndarray][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/keras_model.py#L856-L875]

	Predicts embeddings created by underlying model if any exist.
An embedding must be specified to have output_type of
‘embedding’ in the model definition.


	Parameters:

	dataset (dc.data.Dataset) – Dataset to make prediction on



	Returns:

	
	a NumPy array of the embeddings model produces, or a list


	of arrays if it produces multiple embeddings















	
predict_uncertainty(dataset: Dataset, masks: int = 50) → Tuple[ndarray, ndarray] | Sequence[Tuple[ndarray, ndarray]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/keras_model.py#L877-L932]

	Predict the model’s outputs, along with the uncertainty in each one.

The uncertainty is computed as described in https://arxiv.org/abs/1703.04977.
It involves repeating the prediction many times with different dropout masks.
The prediction is computed as the average over all the predictions.  The
uncertainty includes both the variation among the predicted values (epistemic
uncertainty) and the model’s own estimates for how well it fits the data
(aleatoric uncertainty).  Not all models support uncertainty prediction.


	Parameters:

	
	dataset (dc.data.Dataset) – Dataset to make prediction on


	masks (int) – the number of dropout masks to average over






	Returns:

	
	for each output, a tuple (y_pred, y_std) where y_pred is the predicted


	value of the output, and each element of y_std estimates the standard


	deviation of the corresponding element of y_pred















	
evaluate_generator(generator: Iterable[Tuple[Any, Any, Any]], metrics: List[Metric], transformers: List[Transformer] = [], per_task_metrics: bool = False)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/keras_model.py#L934-L960]

	Evaluate the performance of this model on the data produced by a generator.


	Parameters:

	
	generator (generator) – this should generate batches, each represented as a tuple of the form
(inputs, labels, weights).


	metric (list of deepchem.metrics.Metric) – Evaluation metric


	transformers (list of dc.trans.Transformers) – Transformers that the input data has been transformed by.  The output
is passed through these transformers to undo the transformations.


	per_task_metrics (bool) – If True, return per-task scores.






	Returns:

	Maps tasks to scores under metric.



	Return type:

	dict










	
compute_saliency(X: ndarray) → ndarray | Sequence[ndarray][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/keras_model.py#L962-L1010]

	Compute the saliency map for an input sample.

This computes the Jacobian matrix with the derivative of each output element
with respect to each input element.  More precisely,


	
	If this model has a single output, it returns a matrix of shape
	(output_shape, input_shape) with the derivatives.







	
	If this model has multiple outputs, it returns a list of matrices, one
	for each output.









This method cannot be used on models that take multiple inputs.


	Parameters:

	X (ndarray) – the input data for a single sample



	Return type:

	the Jacobian matrix, or a list of matrices










	
default_generator(dataset: Dataset, epochs: int = 1, mode: str = 'fit', deterministic: bool = True, pad_batches: bool = True) → Iterable[Tuple[List, List, List]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/keras_model.py#L1041-L1079]

	Create a generator that iterates batches for a dataset.

Subclasses may override this method to customize how model inputs are
generated from the data.


	Parameters:

	
	dataset (Dataset) – the data to iterate


	epochs (int) – the number of times to iterate over the full dataset


	mode (str) – allowed values are ‘fit’ (called during training), ‘predict’ (called
during prediction), and ‘uncertainty’ (called during uncertainty
prediction)


	deterministic (bool) – whether to iterate over the dataset in order, or randomly shuffle the
data for each epoch


	pad_batches (bool) – whether to pad each batch up to this model’s preferred batch size






	Returns:

	
	a generator that iterates batches, each represented as a tuple of lists


	([inputs], [outputs], [weights])















	
save_checkpoint(max_checkpoints_to_keep: int = 5, model_dir: str | None = None) → None[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/keras_model.py#L1081-L1104]

	Save a checkpoint to disk.

Usually you do not need to call this method, since fit() saves checkpoints
automatically.  If you have disabled automatic checkpointing during fitting,
this can be called to manually write checkpoints.


	Parameters:

	
	max_checkpoints_to_keep (int) – the maximum number of checkpoints to keep.  Older checkpoints are discarded.


	model_dir (str, default None) – Model directory to save checkpoint to. If None, revert to self.model_dir













	
get_checkpoints(model_dir: str | None = None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/keras_model.py#L1106-L1118]

	Get a list of all available checkpoint files.


	Parameters:

	model_dir (str, default None) – Directory to get list of checkpoints from. Reverts to self.model_dir if None










	
restore(checkpoint: str | None = None, model_dir: str | None = None) → None[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/keras_model.py#L1120-L1141]

	Reload the values of all variables from a checkpoint file.


	Parameters:

	
	checkpoint (str) – the path to the checkpoint file to load.  If this is None, the most recent
checkpoint will be chosen automatically.  Call get_checkpoints() to get a
list of all available checkpoints.


	model_dir (str, default None) – Directory to restore checkpoint from. If None, use self.model_dir.













	
get_global_step() → int[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/keras_model.py#L1143-L1145]

	Get the number of steps of fitting that have been performed.






	
load_from_pretrained(source_model: KerasModel, assignment_map: Dict[Any, Any] | None = None, value_map: Dict[Any, Any] | None = None, checkpoint: str | None = None, model_dir: str | None = None, include_top: bool = True, inputs: Sequence[Any] | None = None, **kwargs) → None[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/keras_model.py#L1204-L1273]

	Copies variable values from a pretrained model. source_model can either
be a pretrained model or a model with the same architecture. value_map
is a variable-value dictionary. If no value_map is provided, the variable
values are restored to the source_model from a checkpoint and a default
value_map is created. assignment_map is a dictionary mapping variables
from the source_model to the current model. If no assignment_map is
provided, one is made from scratch and assumes the model is composed of
several different layers, with the final one being a dense layer. include_top
is used to control whether or not the final dense layer is used. The default
assignment map is useful in cases where the type of task is different
(classification vs regression) and/or number of tasks in the setting.


	Parameters:

	
	source_model (dc.KerasModel, required) – source_model can either be the pretrained model or a dc.KerasModel with
the same architecture as the pretrained model. It is used to restore from
a checkpoint, if value_map is None and to create a default assignment map
if assignment_map is None


	assignment_map (Dict, default None) – Dictionary mapping the source_model variables and current model variables


	value_map (Dict, default None) – Dictionary containing source_model trainable variables mapped to numpy
arrays. If value_map is None, the values are restored and a default
variable map is created using the restored values


	checkpoint (str, default None) – the path to the checkpoint file to load.  If this is None, the most recent
checkpoint will be chosen automatically.  Call get_checkpoints() to get a
list of all available checkpoints


	model_dir (str, default None) – Restore model from custom model directory if needed


	include_top (bool, default True) – if True, copies the weights and bias associated with the final dense
layer. Used only when assignment map is None


	inputs (List, input tensors for model) – if not None, then the weights are built for both the source and self.
This option is useful only for models that are built by
subclassing tf.keras.Model, and not using the functional API by tf.keras


















TensorflowMultitaskIRVClassifier


	
class TensorflowMultitaskIRVClassifier(*args, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/IRV.py#L134-L142]

	
	
__init__(*args, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/IRV.py#L136-L142]

	Initialize MultitaskIRVClassifier


	Parameters:

	
	n_tasks (int) – Number of tasks


	K (int) – Number of nearest neighbours used in classification


	penalty (float) – Amount of penalty (l2 or l1 applied)


















RobustMultitaskClassifier


	
class RobustMultitaskClassifier(n_tasks, n_features, layer_sizes=[1000], weight_init_stddevs=0.02, bias_init_consts=1.0, weight_decay_penalty=0.0, weight_decay_penalty_type='l2', dropouts=0.5, activation_fns=<function relu>, n_classes=2, bypass_layer_sizes=[100], bypass_weight_init_stddevs=[0.02], bypass_bias_init_consts=[1.0], bypass_dropouts=[0.5], **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/robust_multitask.py#L15-L205]

	Implements a neural network for robust multitasking.

The key idea of this model is to have bypass layers that feed
directly from features to task output. This might provide some
flexibility toroute around challenges in multitasking with
destructive interference.

References

This technique was introduced in [1]_



[1]
Ramsundar, Bharath, et al. “Is multitask deep learning practical for pharma?.” Journal of chemical information and modeling 57.8 (2017): 2068-2076.




	
__init__(n_tasks, n_features, layer_sizes=[1000], weight_init_stddevs=0.02, bias_init_consts=1.0, weight_decay_penalty=0.0, weight_decay_penalty_type='l2', dropouts=0.5, activation_fns=<function relu>, n_classes=2, bypass_layer_sizes=[100], bypass_weight_init_stddevs=[0.02], bypass_bias_init_consts=[1.0], bypass_dropouts=[0.5], **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/robust_multitask.py#L31-L176]

	Create a RobustMultitaskClassifier.


	Parameters:

	
	n_tasks (int) – number of tasks


	n_features (int) – number of features


	layer_sizes (list) – the size of each dense layer in the network.  The length of this list determines the number of layers.


	weight_init_stddevs (list or float) – the standard deviation of the distribution to use for weight initialization of each layer.  The length
of this list should equal len(layer_sizes).  Alternatively this may be a single value instead of a list,
in which case the same value is used for every layer.


	bias_init_consts (list or loat) – the value to initialize the biases in each layer to.  The length of this list should equal len(layer_sizes).
Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.


	weight_decay_penalty (float) – the magnitude of the weight decay penalty to use


	weight_decay_penalty_type (str) – the type of penalty to use for weight decay, either ‘l1’ or ‘l2’


	dropouts (list or float) – the dropout probablity to use for each layer.  The length of this list should equal len(layer_sizes).
Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.


	activation_fns (list or object) – the Tensorflow activation function to apply to each layer.  The length of this list should equal
len(layer_sizes).  Alternatively this may be a single value instead of a list, in which case the
same value is used for every layer.


	n_classes (int) – the number of classes


	bypass_layer_sizes (list) – the size of each dense layer in the bypass network. The length of this list determines the number of bypass layers.


	bypass_weight_init_stddevs (list or float) – the standard deviation of the distribution to use for weight initialization of bypass layers.
same requirements as weight_init_stddevs


	bypass_bias_init_consts (list or float) – the value to initialize the biases in bypass layers
same requirements as bias_init_consts


	bypass_dropouts (list or float) – the dropout probablity to use for bypass layers.
same requirements as dropouts













	
default_generator(dataset, epochs=1, mode='fit', deterministic=True, pad_batches=True)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/robust_multitask.py#L178-L192]

	Create a generator that iterates batches for a dataset.

Subclasses may override this method to customize how model inputs are
generated from the data.


	Parameters:

	
	dataset (Dataset) – the data to iterate


	epochs (int) – the number of times to iterate over the full dataset


	mode (str) – allowed values are ‘fit’ (called during training), ‘predict’ (called
during prediction), and ‘uncertainty’ (called during uncertainty
prediction)


	deterministic (bool) – whether to iterate over the dataset in order, or randomly shuffle the
data for each epoch


	pad_batches (bool) – whether to pad each batch up to this model’s preferred batch size






	Returns:

	
	a generator that iterates batches, each represented as a tuple of lists


	([inputs], [outputs], [weights])




















RobustMultitaskRegressor


	
class RobustMultitaskRegressor(n_tasks, n_features, layer_sizes=[1000], weight_init_stddevs=0.02, bias_init_consts=1.0, weight_decay_penalty=0.0, weight_decay_penalty_type='l2', dropouts=0.5, activation_fns=<function relu>, bypass_layer_sizes=[100], bypass_weight_init_stddevs=[0.02], bypass_bias_init_consts=[1.0], bypass_dropouts=[0.5], **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/robust_multitask.py#L208-L376]

	Implements a neural network for robust multitasking.

The key idea of this model is to have bypass layers that feed
directly from features to task output. This might provide some
flexibility to route around challenges in multitasking with
destructive interference.

References



[1]
Ramsundar, Bharath, et al. “Is multitask deep learning practical for pharma?.” Journal of chemical information and modeling 57.8 (2017): 2068-2076.




	
__init__(n_tasks, n_features, layer_sizes=[1000], weight_init_stddevs=0.02, bias_init_consts=1.0, weight_decay_penalty=0.0, weight_decay_penalty_type='l2', dropouts=0.5, activation_fns=<function relu>, bypass_layer_sizes=[100], bypass_weight_init_stddevs=[0.02], bypass_bias_init_consts=[1.0], bypass_dropouts=[0.5], **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/robust_multitask.py#L222-L362]

	Create a RobustMultitaskRegressor.


	Parameters:

	
	n_tasks (int) – number of tasks


	n_features (int) – number of features


	layer_sizes (list) – the size of each dense layer in the network.  The length of this list determines the number of layers.


	weight_init_stddevs (list or float) – the standard deviation of the distribution to use for weight initialization of each layer.  The length
of this list should equal len(layer_sizes).  Alternatively this may be a single value instead of a list,
in which case the same value is used for every layer.


	bias_init_consts (list or loat) – the value to initialize the biases in each layer to.  The length of this list should equal len(layer_sizes).
Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.


	weight_decay_penalty (float) – the magnitude of the weight decay penalty to use


	weight_decay_penalty_type (str) – the type of penalty to use for weight decay, either ‘l1’ or ‘l2’


	dropouts (list or float) – the dropout probablity to use for each layer.  The length of this list should equal len(layer_sizes).
Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.


	activation_fns (list or object) – the Tensorflow activation function to apply to each layer.  The length of this list should equal
len(layer_sizes).  Alternatively this may be a single value instead of a list, in which case the
same value is used for every layer.


	bypass_layer_sizes (list) – the size of each dense layer in the bypass network. The length of this list determines the number of bypass layers.


	bypass_weight_init_stddevs (list or float) – the standard deviation of the distribution to use for weight initialization of bypass layers.
same requirements as weight_init_stddevs


	bypass_bias_init_consts (list or float) – the value to initialize the biases in bypass layers
same requirements as bias_init_consts


	bypass_dropouts (list or float) – the dropout probablity to use for bypass layers.
same requirements as dropouts













	
default_generator(dataset: Dataset, epochs: int = 1, mode: str = 'fit', deterministic: bool = True, pad_batches: bool = True) → Iterable[Tuple[List, List, List]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/robust_multitask.py#L364-L376]

	Create a generator that iterates batches for a dataset.

Subclasses may override this method to customize how model inputs are
generated from the data.


	Parameters:

	
	dataset (Dataset) – the data to iterate


	epochs (int) – the number of times to iterate over the full dataset


	mode (str) – allowed values are ‘fit’ (called during training), ‘predict’ (called
during prediction), and ‘uncertainty’ (called during uncertainty
prediction)


	deterministic (bool) – whether to iterate over the dataset in order, or randomly shuffle the
data for each epoch


	pad_batches (bool) – whether to pad each batch up to this model’s preferred batch size






	Returns:

	
	a generator that iterates batches, each represented as a tuple of lists


	([inputs], [outputs], [weights])




















ProgressiveMultitaskClassifier


	
class ProgressiveMultitaskClassifier(n_tasks, n_features, alpha_init_stddevs=0.02, layer_sizes=[1000], weight_init_stddevs=0.02, bias_init_consts=1.0, weight_decay_penalty=0.0, weight_decay_penalty_type='l2', dropouts=0.5, activation_fns=<function relu>, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/progressive_multitask.py#L262-L304]

	Implements a progressive multitask neural network for classification.

Progressive Networks: https://arxiv.org/pdf/1606.04671v3.pdf

Progressive networks allow for multitask learning where each task
gets a new column of weights. As a result, there is no exponential
forgetting where previous tasks are ignored.


	
__init__(n_tasks, n_features, alpha_init_stddevs=0.02, layer_sizes=[1000], weight_init_stddevs=0.02, bias_init_consts=1.0, weight_decay_penalty=0.0, weight_decay_penalty_type='l2', dropouts=0.5, activation_fns=<function relu>, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/progressive_multitask.py#L273-L298]

	Creates a progressive network.

Only listing parameters specific to progressive networks here.


	Parameters:

	
	n_tasks (int) – Number of tasks


	n_features (int) – Number of input features


	alpha_init_stddevs (list) – List of standard-deviations for alpha in adapter layers.


	layer_sizes (list) – the size of each dense layer in the network.  The length of this list determines the number of layers.


	weight_init_stddevs (list or float) – the standard deviation of the distribution to use for weight initialization of each layer.  The length
of this list should equal len(layer_sizes)+1.  The final element corresponds to the output layer.
Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.


	bias_init_consts (list or float) – the value to initialize the biases in each layer to.  The length of this list should equal len(layer_sizes)+1.
The final element corresponds to the output layer.  Alternatively this may be a single value instead of a list,
in which case the same value is used for every layer.


	weight_decay_penalty (float) – the magnitude of the weight decay penalty to use


	weight_decay_penalty_type (str) – the type of penalty to use for weight decay, either ‘l1’ or ‘l2’


	dropouts (list or float) – the dropout probablity to use for each layer.  The length of this list should equal len(layer_sizes).
Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.


	activation_fns (list or object) – the Tensorflow activation function to apply to each layer.  The length of this list should equal
len(layer_sizes).  Alternatively this may be a single value instead of a list, in which case the
same value is used for every layer.


















ProgressiveMultitaskRegressor


	
class ProgressiveMultitaskRegressor(n_tasks, n_features, alpha_init_stddevs=0.02, layer_sizes=[1000], weight_init_stddevs=0.02, bias_init_consts=1.0, weight_decay_penalty=0.0, weight_decay_penalty_type='l2', dropouts=0.5, activation_fns=<function relu>, n_outputs=1, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/progressive_multitask.py#L14-L259]

	Implements a progressive multitask neural network for regression.

Progressive networks allow for multitask learning where each task
gets a new column of weights. As a result, there is no exponential
forgetting where previous tasks are ignored.

References

See [1]_ for a full description of the progressive architecture



[1]
Rusu, Andrei A., et al. “Progressive neural networks.” arXiv preprint
arXiv:1606.04671 (2016).




	
__init__(n_tasks, n_features, alpha_init_stddevs=0.02, layer_sizes=[1000], weight_init_stddevs=0.02, bias_init_consts=1.0, weight_decay_penalty=0.0, weight_decay_penalty_type='l2', dropouts=0.5, activation_fns=<function relu>, n_outputs=1, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/progressive_multitask.py#L29-L159]

	Creates a progressive network.

Only listing parameters specific to progressive networks here.


	Parameters:

	
	n_tasks (int) – Number of tasks


	n_features (int) – Number of input features


	alpha_init_stddevs (list) – List of standard-deviations for alpha in adapter layers.


	layer_sizes (list) – the size of each dense layer in the network.  The length of this list determines the number of layers.


	weight_init_stddevs (list or float) – the standard deviation of the distribution to use for weight initialization of each layer.  The length
of this list should equal len(layer_sizes)+1.  The final element corresponds to the output layer.
Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.


	bias_init_consts (list or float) – the value to initialize the biases in each layer to.  The length of this list should equal len(layer_sizes)+1.
The final element corresponds to the output layer.  Alternatively this may be a single value instead of a list,
in which case the same value is used for every layer.


	weight_decay_penalty (float) – the magnitude of the weight decay penalty to use


	weight_decay_penalty_type (str) – the type of penalty to use for weight decay, either ‘l1’ or ‘l2’


	dropouts (list or float) – the dropout probablity to use for each layer.  The length of this list should equal len(layer_sizes).
Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.


	activation_fns (list or object) – the Tensorflow activation function to apply to each layer.  The length of this list should equal
len(layer_sizes).  Alternatively this may be a single value instead of a list, in which case the
same value is used for every layer.













	
add_adapter(all_layers, task, layer_num)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/progressive_multitask.py#L167-L214]

	Add an adapter connection for given task/layer combo






	
fit(dataset, nb_epoch=10, max_checkpoints_to_keep=5, checkpoint_interval=1000, deterministic=False, restore=False, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/progressive_multitask.py#L216-L232]

	Train this model on a dataset.


	Parameters:

	
	dataset (Dataset) – the Dataset to train on


	nb_epoch (int) – the number of epochs to train for


	max_checkpoints_to_keep (int) – the maximum number of checkpoints to keep.  Older checkpoints are discarded.


	checkpoint_interval (int) – the frequency at which to write checkpoints, measured in training steps.
Set this to 0 to disable automatic checkpointing.


	deterministic (bool) – if True, the samples are processed in order.  If False, a different random
order is used for each epoch.


	restore (bool) – if True, restore the model from the most recent checkpoint and continue training
from there.  If False, retrain the model from scratch.


	variables (list of tf.Variable) – the variables to train.  If None (the default), all trainable variables in
the model are used.


	loss (function) – a function of the form f(outputs, labels, weights) that computes the loss
for each batch.  If None (the default), the model’s standard loss function
is used.


	callbacks (function or list of functions) – one or more functions of the form f(model, step) that will be invoked after
every step.  This can be used to perform validation, logging, etc.


	all_losses (Optional[List[float]], optional (default None)) – If specified, all logged losses are appended into this list. Note that
you can call fit() repeatedly with the same list and losses will
continue to be appended.






	Returns:

	The average loss over the most recent checkpoint interval



	Return type:

	float










	
fit_task(dataset, task, nb_epoch=10, max_checkpoints_to_keep=5, checkpoint_interval=1000, deterministic=False, restore=False, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/progressive_multitask.py#L234-L259]

	Fit one task.











WeaveModel


	
class WeaveModel(n_tasks: int, n_atom_feat: int | ~typing.Sequence[int] = 75, n_pair_feat: int | ~typing.Sequence[int] = 14, n_hidden: int = 50, n_graph_feat: int = 128, n_weave: int = 2, fully_connected_layer_sizes: ~typing.List[int] = [2000, 100], conv_weight_init_stddevs: float | ~typing.Sequence[float] = 0.03, weight_init_stddevs: float | ~typing.Sequence[float] = 0.01, bias_init_consts: float | ~typing.Sequence[float] = 0.0, weight_decay_penalty: float = 0.0, weight_decay_penalty_type: str = 'l2', dropouts: float | ~typing.Sequence[float] = 0.25, final_conv_activation_fn: ~typing.Callable | str | None = <function tanh>, activation_fns: ~typing.Callable | str | ~typing.Sequence[~typing.Callable | str] = <function relu>, batch_normalize: bool = True, batch_normalize_kwargs: ~typing.Dict = {'fused': False, 'renorm': True}, gaussian_expand: bool = True, compress_post_gaussian_expansion: bool = False, mode: str = 'classification', n_classes: int = 2, batch_size: int = 100, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/graph_models.py#L32-L402]

	Implements Google-style Weave Graph Convolutions

This model implements the Weave style graph convolutions
from [1]_.

The biggest difference between WeaveModel style convolutions
and GraphConvModel style convolutions is that Weave
convolutions model bond features explicitly. This has the
side effect that it needs to construct a NxN matrix
explicitly to model bond interactions. This may cause
scaling issues, but may possibly allow for better modeling
of subtle bond effects.

Note that [1]_ introduces a whole variety of different architectures for
Weave models. The default settings in this class correspond to the W2N2
variant from [1]_ which is the most commonly used variant..

Examples

Here’s an example of how to fit a WeaveModel on a tiny sample dataset.

>>> import numpy as np
>>> import deepchem as dc
>>> featurizer = dc.feat.WeaveFeaturizer()
>>> X = featurizer(["C", "CC"])
>>> y = np.array([1, 0])
>>> dataset = dc.data.NumpyDataset(X, y)
>>> model = dc.models.WeaveModel(n_tasks=1, n_weave=2, fully_connected_layer_sizes=[2000, 1000], mode="classification")
>>> loss = model.fit(dataset)






Note

In general, the use of batch normalization can cause issues with NaNs. If
you’re having trouble with NaNs while using this model, consider setting
batch_normalize_kwargs={“trainable”: False} or turning off batch
normalization entirely with batch_normalize=False.



References



[1]
Kearnes, Steven, et al. “Molecular graph convolutions: moving beyond
fingerprints.” Journal of computer-aided molecular design 30.8 (2016):
595-608.




	
__init__(n_tasks: int, n_atom_feat: int | ~typing.Sequence[int] = 75, n_pair_feat: int | ~typing.Sequence[int] = 14, n_hidden: int = 50, n_graph_feat: int = 128, n_weave: int = 2, fully_connected_layer_sizes: ~typing.List[int] = [2000, 100], conv_weight_init_stddevs: float | ~typing.Sequence[float] = 0.03, weight_init_stddevs: float | ~typing.Sequence[float] = 0.01, bias_init_consts: float | ~typing.Sequence[float] = 0.0, weight_decay_penalty: float = 0.0, weight_decay_penalty_type: str = 'l2', dropouts: float | ~typing.Sequence[float] = 0.25, final_conv_activation_fn: ~typing.Callable | str | None = <function tanh>, activation_fns: ~typing.Callable | str | ~typing.Sequence[~typing.Callable | str] = <function relu>, batch_normalize: bool = True, batch_normalize_kwargs: ~typing.Dict = {'fused': False, 'renorm': True}, gaussian_expand: bool = True, compress_post_gaussian_expansion: bool = False, mode: str = 'classification', n_classes: int = 2, batch_size: int = 100, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/graph_models.py#L79-L299]

	
	Parameters:

	
	n_tasks (int) – Number of tasks


	n_atom_feat (int, optional (default 75)) – Number of features per atom. Note this is 75 by default and should be 78
if chirality is used by WeaveFeaturizer.


	n_pair_feat (int, optional (default 14)) – Number of features per pair of atoms.


	n_hidden (int, optional (default 50)) – Number of units(convolution depths) in corresponding hidden layer


	n_graph_feat (int, optional (default 128)) – Number of output features for each molecule(graph)


	n_weave (int, optional (default 2)) – The number of weave layers in this model.


	fully_connected_layer_sizes (list (default [2000, 100])) – The size of each dense layer in the network.  The length of
this list determines the number of layers.


	conv_weight_init_stddevs (list or float (default 0.03)) – The standard deviation of the distribution to use for weight
initialization of each convolutional layer. The length of this lisst
should equal n_weave. Alternatively, this may be a single value instead
of a list, in which case the same value is used for each layer.


	weight_init_stddevs (list or float (default 0.01)) – The standard deviation of the distribution to use for weight
initialization of each fully connected layer.  The length of this list
should equal len(layer_sizes).  Alternatively this may be a single value
instead of a list, in which case the same value is used for every layer.


	bias_init_consts (list or float (default 0.0)) – The value to initialize the biases in each fully connected layer.  The
length of this list should equal len(layer_sizes).
Alternatively this may be a single value instead of a list, in
which case the same value is used for every layer.


	weight_decay_penalty (float (default 0.0)) – The magnitude of the weight decay penalty to use


	weight_decay_penalty_type (str (default "l2")) – The type of penalty to use for weight decay, either ‘l1’ or ‘l2’


	dropouts (list or float (default 0.25)) – The dropout probablity to use for each fully connected layer.  The length of this list
should equal len(layer_sizes).  Alternatively this may be a single value
instead of a list, in which case the same value is used for every layer.


	final_conv_activation_fn (Optional[ActivationFn] (default tf.nn.tanh)) – The Tensorflow activation funcntion to apply to the final
convolution at the end of the weave convolutions. If None, then no
activate is applied (hence linear).


	activation_fns (list or object (default tf.nn.relu)) – The Tensorflow activation function to apply to each fully connected layer.  The length
of this list should equal len(layer_sizes).  Alternatively this may be a
single value instead of a list, in which case the same value is used for
every layer.


	batch_normalize (bool, optional (default True)) – If this is turned on, apply batch normalization before applying
activation functions on convolutional and fully connected layers.


	batch_normalize_kwargs (Dict, optional (default {“renorm”=True, “fused”: False})) – Batch normalization is a complex layer which has many potential
argumentswhich change behavior. This layer accepts user-defined
parameters which are passed to all BatchNormalization layers in
WeaveModel, WeaveLayer, and WeaveGather.


	gaussian_expand (boolean, optional (default True)) – Whether to expand each dimension of atomic features by gaussian
histogram


	compress_post_gaussian_expansion (bool, optional (default False)) – If True, compress the results of the Gaussian expansion back to the
original dimensions of the input.


	mode (str (default "classification")) – Either “classification” or “regression” for type of model.


	n_classes (int (default 2)) – Number of classes to predict (only used in classification mode)


	batch_size (int (default 100)) – Batch size used by this model for training.













	
compute_features_on_batch(X_b)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/graph_models.py#L301-L363]

	Compute tensors that will be input into the model from featurized representation.

The featurized input to WeaveModel is instances of WeaveMol created by
WeaveFeaturizer. This method converts input WeaveMol objects into
tensors used by the Keras implementation to compute WeaveModel outputs.


	Parameters:

	X_b (np.ndarray) – A numpy array with dtype=object where elements are WeaveMol objects.



	Returns:

	
	atom_feat (np.ndarray) – Of shape (N_atoms, N_atom_feat).


	pair_feat (np.ndarray) – Of shape (N_pairs, N_pair_feat). Note that N_pairs will depend on
the number of pairs being considered. If max_pair_distance is
None, then this will be N_atoms**2. Else it will be the number
of pairs within the specifed graph distance.


	pair_split (np.ndarray) – Of shape (N_pairs,). The i-th entry in this array will tell you the
originating atom for this pair (the “source”). Note that pairs are
symmetric so for a pair (a, b), both a and b will separately be
sources at different points in this array.


	atom_split (np.ndarray) – Of shape (N_atoms,). The i-th entry in this array will be the molecule
with the i-th atom belongs to.


	atom_to_pair (np.ndarray) – Of shape (N_pairs, 2). The i-th row in this array will be the array
[a, b] if (a, b) is a pair to be considered. (Note by symmetry, this
implies some other row will contain [b, a].















	
default_generator(dataset: Dataset, epochs: int = 1, mode: str = 'fit', deterministic: bool = True, pad_batches: bool = True) → Iterable[Tuple[List, List, List]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/graph_models.py#L365-L402]

	Convert a dataset into the tensors needed for learning.


	Parameters:

	
	dataset (dc.data.Dataset) – Dataset to convert


	epochs (int, optional (Default 1)) – Number of times to walk over dataset


	mode (str, optional (Default 'fit')) – Ignored in this implementation.


	deterministic (bool, optional (Default True)) – Whether the dataset should be walked in a deterministic fashion


	pad_batches (bool, optional (Default True)) – If true, each returned batch will have size self.batch_size.






	Return type:

	Iterator which walks over the batches















DTNNModel


	
class DTNNModel(n_tasks, n_embedding=30, n_hidden=100, n_distance=100, distance_min=-1, distance_max=18, output_activation=True, mode='regression', dropout=0.0, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/graph_models.py#L405-L567]

	Deep Tensor Neural Networks

This class implements deep tensor neural networks as first defined in [1]_

References
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__init__(n_tasks, n_embedding=30, n_hidden=100, n_distance=100, distance_min=-1, distance_max=18, output_activation=True, mode='regression', dropout=0.0, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/graph_models.py#L416-L508]

	
	Parameters:

	
	n_tasks (int) – Number of tasks


	n_embedding (int, optional) – Number of features per atom.


	n_hidden (int, optional) – Number of features for each molecule after DTNNStep


	n_distance (int, optional) – granularity of distance matrix
step size will be (distance_max-distance_min)/n_distance


	distance_min (float, optional) – minimum distance of atom pairs, default = -1 Angstorm


	distance_max (float, optional) – maximum distance of atom pairs, default = 18 Angstorm


	mode (str) – Only “regression” is currently supported.


	dropout (float) – the dropout probablity to use.













	
compute_features_on_batch(X_b)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/graph_models.py#L510-L554]

	Computes the values for different Feature Layers on given batch

A tf.py_func wrapper is written around this when creating the
input_fn for tf.Estimator






	
default_generator(dataset, epochs=1, mode='fit', deterministic=True, pad_batches=True)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/graph_models.py#L556-L567]

	Create a generator that iterates batches for a dataset.

Subclasses may override this method to customize how model inputs are
generated from the data.


	Parameters:

	
	dataset (Dataset) – the data to iterate


	epochs (int) – the number of times to iterate over the full dataset


	mode (str) – allowed values are ‘fit’ (called during training), ‘predict’ (called
during prediction), and ‘uncertainty’ (called during uncertainty
prediction)


	deterministic (bool) – whether to iterate over the dataset in order, or randomly shuffle the
data for each epoch


	pad_batches (bool) – whether to pad each batch up to this model’s preferred batch size






	Returns:

	
	a generator that iterates batches, each represented as a tuple of lists


	([inputs], [outputs], [weights])




















DAGModel


	
class DAGModel(n_tasks, max_atoms=50, n_atom_feat=75, n_graph_feat=30, n_outputs=30, layer_sizes=[100], layer_sizes_gather=[100], dropout=None, mode='classification', n_classes=2, uncertainty=False, batch_size=100, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/graph_models.py#L570-L789]

	Directed Acyclic Graph models for molecular property prediction.

This model is based on the following paper:

Lusci, Alessandro, Gianluca Pollastri, and Pierre Baldi. “Deep architectures and deep learning in chemoinformatics: the prediction of aqueous solubility for drug-like molecules.” Journal of chemical information and modeling 53.7 (2013): 1563-1575.

The basic idea for this paper is that a molecule is usually
viewed as an undirected graph. However, you can convert it to
a series of directed graphs. The idea is that for each atom,
you make a DAG using that atom as the vertex of the DAG and
edges pointing “inwards” to it. This transformation is
implemented in
dc.trans.transformers.DAGTransformer.UG_to_DAG.

This model accepts ConvMols as input, just as GraphConvModel
does, but these ConvMol objects must be transformed by
dc.trans.DAGTransformer.

As a note, performance of this model can be a little
sensitive to initialization. It might be worth training a few
different instantiations to get a stable set of parameters.


	
__init__(n_tasks, max_atoms=50, n_atom_feat=75, n_graph_feat=30, n_outputs=30, layer_sizes=[100], layer_sizes_gather=[100], dropout=None, mode='classification', n_classes=2, uncertainty=False, batch_size=100, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/graph_models.py#L594-L736]

	
	Parameters:

	
	n_tasks (int) – Number of tasks.


	max_atoms (int, optional) – Maximum number of atoms in a molecule, should be defined based on dataset.


	n_atom_feat (int, optional) – Number of features per atom.


	n_graph_feat (int, optional) – Number of features for atom in the graph.


	n_outputs (int, optional) – Number of features for each molecule.


	layer_sizes (list of int, optional) – List of hidden layer size(s) in the propagation step:
length of this list represents the number of hidden layers,
and each element is the width of corresponding hidden layer.


	layer_sizes_gather (list of int, optional) – List of hidden layer size(s) in the gather step.


	dropout (None or float, optional) – Dropout probability, applied after each propagation step and gather step.


	mode (str, optional) – Either “classification” or “regression” for type of model.


	n_classes (int) – the number of classes to predict (only used in classification mode)


	uncertainty (bool) – if True, include extra outputs and loss terms to enable the uncertainty
in outputs to be predicted













	
default_generator(dataset, epochs=1, mode='fit', deterministic=True, pad_batches=True)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/graph_models.py#L738-L789]

	Convert a dataset into the tensors needed for learning











GraphConvModel


	
class GraphConvModel(n_tasks: int, graph_conv_layers: List[int] = [64, 64], dense_layer_size: int = 128, dropout: float = 0.0, mode: str = 'classification', number_atom_features: int = 75, n_classes: int = 2, batch_size: int = 100, batch_normalize: bool = True, uncertainty: bool = False, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/graph_models.py#L905-L1042]

	Graph Convolutional Models.

This class implements the graph convolutional model from the
following paper [1]_. These graph convolutions start with a per-atom set of
descriptors for each atom in a molecule, then combine and recombine these
descriptors over convolutional layers.
following [1]_.
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__init__(n_tasks: int, graph_conv_layers: List[int] = [64, 64], dense_layer_size: int = 128, dropout: float = 0.0, mode: str = 'classification', number_atom_features: int = 75, n_classes: int = 2, batch_size: int = 100, batch_normalize: bool = True, uncertainty: bool = False, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/graph_models.py#L922-L1017]

	The wrapper class for graph convolutions.

Note that since the underlying _GraphConvKerasModel class is
specified using imperative subclassing style, this model
cannout make predictions for arbitrary outputs.


	Parameters:

	
	n_tasks (int) – Number of tasks


	graph_conv_layers (list of int) – Width of channels for the Graph Convolution Layers


	dense_layer_size (int) – Width of channels for Atom Level Dense Layer after GraphPool


	dropout (list or float) – the dropout probablity to use for each layer.  The length of this list
should equal len(graph_conv_layers)+1 (one value for each convolution
layer, and one for the dense layer).  Alternatively this may be a single
value instead of a list, in which case the same value is used for every
layer.


	mode (str) – Either “classification” or “regression”


	number_atom_features (int) – 75 is the default number of atom features created, but
this can vary if various options are passed to the
function atom_features in graph_features


	n_classes (int) – the number of classes to predict (only used in classification mode)


	batch_normalize (True) – if True, apply batch normalization to model


	uncertainty (bool) – if True, include extra outputs and loss terms to enable the uncertainty
in outputs to be predicted













	
default_generator(dataset, epochs=1, mode='fit', deterministic=True, pad_batches=True)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/graph_models.py#L1019-L1042]

	Create a generator that iterates batches for a dataset.

Subclasses may override this method to customize how model inputs are
generated from the data.


	Parameters:

	
	dataset (Dataset) – the data to iterate


	epochs (int) – the number of times to iterate over the full dataset


	mode (str) – allowed values are ‘fit’ (called during training), ‘predict’ (called
during prediction), and ‘uncertainty’ (called during uncertainty
prediction)


	deterministic (bool) – whether to iterate over the dataset in order, or randomly shuffle the
data for each epoch


	pad_batches (bool) – whether to pad each batch up to this model’s preferred batch size






	Returns:

	
	a generator that iterates batches, each represented as a tuple of lists


	([inputs], [outputs], [weights])




















MPNNModel


	
class MPNNModel(n_tasks, n_atom_feat=70, n_pair_feat=8, n_hidden=100, T=5, M=10, mode='regression', dropout=0.0, n_classes=2, uncertainty=False, batch_size=100, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/graph_models.py#L1045-L1247]

	Message Passing Neural Network,

Message Passing Neural Networks [1]_ treat graph convolutional
operations as an instantiation of a more general message
passing schem. Recall that message passing in a graph is when
nodes in a graph send each other “messages” and update their
internal state as a consequence of these messages.

Ordering structures in this model are built according to [2]_
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__init__(n_tasks, n_atom_feat=70, n_pair_feat=8, n_hidden=100, T=5, M=10, mode='regression', dropout=0.0, n_classes=2, uncertainty=False, batch_size=100, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/graph_models.py#L1064-L1193]

	
	Parameters:

	
	n_tasks (int) – Number of tasks


	n_atom_feat (int, optional) – Number of features per atom.


	n_pair_feat (int, optional) – Number of features per pair of atoms.


	n_hidden (int, optional) – Number of units(convolution depths) in corresponding hidden layer


	n_graph_feat (int, optional) – Number of output features for each molecule(graph)


	dropout (float) – the dropout probablity to use.


	n_classes (int) – the number of classes to predict (only used in classification mode)


	uncertainty (bool) – if True, include extra outputs and loss terms to enable the uncertainty
in outputs to be predicted













	
default_generator(dataset, epochs=1, mode='fit', deterministic=True, pad_batches=True)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/graph_models.py#L1195-L1247]

	Create a generator that iterates batches for a dataset.

Subclasses may override this method to customize how model inputs are
generated from the data.


	Parameters:

	
	dataset (Dataset) – the data to iterate


	epochs (int) – the number of times to iterate over the full dataset


	mode (str) – allowed values are ‘fit’ (called during training), ‘predict’ (called
during prediction), and ‘uncertainty’ (called during uncertainty
prediction)


	deterministic (bool) – whether to iterate over the dataset in order, or randomly shuffle the
data for each epoch


	pad_batches (bool) – whether to pad each batch up to this model’s preferred batch size






	Returns:

	
	a generator that iterates batches, each represented as a tuple of lists


	([inputs], [outputs], [weights])




















BasicMolGANModel


	
class BasicMolGANModel(edges: int = 5, vertices: int = 9, nodes: int = 5, embedding_dim: int = 10, dropout_rate: float = 0.0, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/molgan.py#L11-L212]

	Model for de-novo generation of small molecules based on work of Nicola De Cao et al. [1]_.
It uses a GAN directly on graph data and a reinforcement learning objective to induce the network to generate molecules with certain chemical properties.
Utilizes WGAN infrastructure; uses adjacency matrix and node features as inputs.
Inputs need to be one-hot representation.

Examples

>>>
>> import deepchem as dc
>> from deepchem.models import BasicMolGANModel as MolGAN
>> from deepchem.models.optimizers import ExponentialDecay
>> from tensorflow import one_hot
>> smiles = ['CCC', 'C1=CC=CC=C1', 'CNC' ]
>> # create featurizer
>> feat = dc.feat.MolGanFeaturizer()
>> # featurize molecules
>> features = feat.featurize(smiles)
>> # Remove empty objects
>> features = list(filter(lambda x: x is not None, features))
>> # create model
>> gan = MolGAN(learning_rate=ExponentialDecay(0.001, 0.9, 5000))
>> dataset = dc.data.NumpyDataset([x.adjacency_matrix for x in features],[x.node_features for x in features])
>> def iterbatches(epochs):
>>     for i in range(epochs):
>>         for batch in dataset.iterbatches(batch_size=gan.batch_size, pad_batches=True):
>>             adjacency_tensor = one_hot(batch[0], gan.edges)
>>             node_tensor = one_hot(batch[1], gan.nodes)
>>             yield {gan.data_inputs[0]: adjacency_tensor, gan.data_inputs[1]:node_tensor}
>> gan.fit_gan(iterbatches(8), generator_steps=0.2, checkpoint_interval=5000)
>> generated_data = gan.predict_gan_generator(1000)
>> # convert graphs to RDKitmolecules
>> nmols = feat.defeaturize(generated_data)
>> print("{} molecules generated".format(len(nmols)))
>> # remove invalid moles
>> nmols = list(filter(lambda x: x is not None, nmols))
>> # currently training is unstable so 0 is a common outcome
>> print ("{} valid molecules".format(len(nmols)))
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__init__(edges: int = 5, vertices: int = 9, nodes: int = 5, embedding_dim: int = 10, dropout_rate: float = 0.0, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/molgan.py#L57-L89]

	Initialize the model


	Parameters:

	
	edges (int, default 5) – Number of bond types includes BondType.Zero


	vertices (int, default 9) – Max number of atoms in adjacency and node features matrices


	nodes (int, default 5) – Number of atom types in node features matrix


	embedding_dim (int, default 10) – Size of noise input array


	dropout_rate (float, default = 0.) – Rate of dropout used across whole model


	name (str, default '') – Name of the model













	
get_noise_input_shape() → Tuple[int][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/molgan.py#L91-L101]

	Return shape of the noise input used in generator


	Returns:

	Shape of the noise input



	Return type:

	Tuple










	
get_data_input_shapes() → List[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/molgan.py#L103-L115]

	Return input shape of the discriminator


	Returns:

	List of shapes used as an input for distriminator.



	Return type:

	List










	
create_generator() → Model[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/molgan.py#L117-L135]

	Create generator model.
Take noise data as an input and processes it through number of
dense and dropout layers. Then data is converted into two forms
one used for training and other for generation of compounds.
The model has two outputs:



	edges


	nodes







The format differs depending on intended use (training or sample generation).
For sample generation use flag, sample_generation=True while calling generator
i.e. gan.generators[0](noise_input, training=False, sample_generation=True).
For training the model, set sample_generation=False






	
create_discriminator() → Model[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/molgan.py#L137-L165]

	Create discriminator model based on MolGAN layers.
Takes two inputs:



	adjacency tensor, containing bond information


	nodes tensor, containing atom information







The input vectors need to be in one-hot encoding format.
Use MolGAN featurizer for that purpose. It will be simplified
in the future release.






	
predict_gan_generator(batch_size: int = 1, noise_input: List | None = None, conditional_inputs: List = [], generator_index: int = 0) → List[GraphMatrix][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/molgan.py#L167-L212]

	Use the GAN to generate a batch of samples.


	Parameters:

	
	batch_size (int) – the number of samples to generate.  If either noise_input or
conditional_inputs is specified, this argument is ignored since the batch
size is then determined by the size of that argument.


	noise_input (array) – the value to use for the generator’s noise input.  If None (the default),
get_noise_batch() is called to generate a random input, so each call will
produce a new set of samples.


	conditional_inputs (list of arrays) – NOT USED.
the values to use for all conditional inputs.  This must be specified if
the GAN has any conditional inputs.


	generator_index (int) – NOT USED.
the index of the generator (between 0 and n_generators-1) to use for
generating the samples.






	Returns:

	Returns a list of GraphMatrix object that can be converted into
RDKit molecules using MolGANFeaturizer defeaturize function.



	Return type:

	List[GraphMatrix]















ScScoreModel


	
class ScScoreModel(n_features, layer_sizes=[300, 300, 300], dropouts=0.0, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/scscore.py#L10-L99]

	The SCScore model is a neural network model based on the work of Coley et al. [1]_ that predicts the synthetic complexity score (SCScore) of molecules and correlates it with the expected number of reaction steps required to produce the given target molecule.
It is trained on a dataset of over 12 million reactions from the Reaxys database to impose a pairwise inequality constraint enforcing that on average the products of published chemical reactions should be more synthetically complex than their corresponding reactants.
The learned metric (SCScore) exhibits highly desirable nonlinear behavior, particularly in recognizing increases in synthetic complexity throughout a number of linear synthetic routes.
The SCScore model can accurately predict the synthetic complexity of a variety of molecules, including both drug-like and natural product molecules.
SCScore has the potential to be a valuable tool for chemists who are working on drug discovery and other areas of chemistry.

The learned metric (SCScore) exhibits highly desirable nonlinear behavior, particularly in recognizing increases in synthetic complexity throughout a number of linear synthetic routes.

Our model uses hingeloss instead of the shifted relu loss as in the supplementary material [2]_ provided by the author.
This could cause differentiation issues with compounds that are “close” to each other in “complexity”.
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__init__(n_features, layer_sizes=[300, 300, 300], dropouts=0.0, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/scscore.py#L30-L77]

	
	Parameters:

	
	n_features (int) – number of features per molecule


	layer_sizes (list of int) – size of each hidden layer


	dropouts (int) – droupout to apply to each hidden layer


	kwargs – This takes all kwards as TensorGraph













	
default_generator(dataset, epochs=1, mode='fit', deterministic=True, pad_batches=True)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/scscore.py#L79-L90]

	Create a generator that iterates batches for a dataset.

Subclasses may override this method to customize how model inputs are
generated from the data.


	Parameters:

	
	dataset (Dataset) – the data to iterate


	epochs (int) – the number of times to iterate over the full dataset


	mode (str) – allowed values are ‘fit’ (called during training), ‘predict’ (called
during prediction), and ‘uncertainty’ (called during uncertainty
prediction)


	deterministic (bool) – whether to iterate over the dataset in order, or randomly shuffle the
data for each epoch


	pad_batches (bool) – whether to pad each batch up to this model’s preferred batch size






	Returns:

	
	a generator that iterates batches, each represented as a tuple of lists


	([inputs], [outputs], [weights])




















SeqToSeq


	
class SeqToSeq(input_tokens, output_tokens, max_output_length, encoder_layers=4, decoder_layers=4, embedding_dimension=512, dropout=0.0, reverse_input=True, variational=False, annealing_start_step=5000, annealing_final_step=10000, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/seqtoseq.py#L44-L417]

	Implements sequence to sequence translation models.

The model is based on the description in Sutskever et al., “Sequence to
Sequence Learning with Neural Networks” (https://arxiv.org/abs/1409.3215),
although this implementation uses GRUs instead of LSTMs.  The goal is to
take sequences of tokens as input, and translate each one into a different
output sequence.  The input and output sequences can both be of variable
length, and an output sequence need not have the same length as the input
sequence it was generated from.  For example, these models were originally
developed for use in natural language processing.  In that context, the
input might be a sequence of English words, and the output might be a
sequence of French words.  The goal would be to train the model to translate
sentences from English to French.

The model consists of two parts called the “encoder” and “decoder”.  Each one
consists of a stack of recurrent layers.  The job of the encoder is to
transform the input sequence into a single, fixed length vector called the
“embedding”.  That vector contains all relevant information from the input
sequence.  The decoder then transforms the embedding vector into the output
sequence.

These models can be used for various purposes.  First and most obviously,
they can be used for sequence to sequence translation.  In any case where you
have sequences of tokens, and you want to translate each one into a different
sequence, a SeqToSeq model can be trained to perform the translation.

Another possible use case is transforming variable length sequences into
fixed length vectors.  Many types of models require their inputs to have a
fixed shape, which makes it difficult to use them with variable sized inputs
(for example, when the input is a molecule, and different molecules have
different numbers of atoms).  In that case, you can train a SeqToSeq model as
an autoencoder, so that it tries to make the output sequence identical to the
input one.  That forces the embedding vector to contain all information from
the original sequence.  You can then use the encoder for transforming
sequences into fixed length embedding vectors, suitable to use as inputs to
other types of models.

Another use case is to train the decoder for use as a generative model.  Here
again you begin by training the SeqToSeq model as an autoencoder.  Once
training is complete, you can supply arbitrary embedding vectors, and
transform each one into an output sequence.  When used in this way, you
typically train it as a variational autoencoder.  This adds random noise to
the encoder, and also adds a constraint term to the loss that forces the
embedding vector to have a unit Gaussian distribution.  You can then pick
random vectors from a Gaussian distribution, and the output sequences should
follow the same distribution as the training data.

When training as a variational autoencoder, it is best to use KL cost
annealing, as described in https://arxiv.org/abs/1511.06349.  The constraint
term in the loss is initially set to 0, so the optimizer just tries to
minimize the reconstruction loss.  Once it has made reasonable progress
toward that, the constraint term can be gradually turned back on.  The range
of steps over which this happens is configurable.


	
__init__(input_tokens, output_tokens, max_output_length, encoder_layers=4, decoder_layers=4, embedding_dimension=512, dropout=0.0, reverse_input=True, variational=False, annealing_start_step=5000, annealing_final_step=10000, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/seqtoseq.py#L102-L180]

	Construct a SeqToSeq model.

In addition to the following arguments, this class also accepts all the keyword arguments
from TensorGraph.


	Parameters:

	
	input_tokens (list) – a list of all tokens that may appear in input sequences


	output_tokens (list) – a list of all tokens that may appear in output sequences


	max_output_length (int) – the maximum length of output sequence that may be generated


	encoder_layers (int) – the number of recurrent layers in the encoder


	decoder_layers (int) – the number of recurrent layers in the decoder


	embedding_dimension (int) – the width of the embedding vector.  This also is the width of all
recurrent layers.


	dropout (float) – the dropout probability to use during training


	reverse_input (bool) – if True, reverse the order of input sequences before sending them into
the encoder.  This can improve performance when working with long sequences.


	variational (bool) – if True, train the model as a variational autoencoder.  This adds random
noise to the encoder, and also constrains the embedding to follow a unit
Gaussian distribution.


	annealing_start_step (int) – the step (that is, batch) at which to begin turning on the constraint term
for KL cost annealing


	annealing_final_step (int) – the step (that is, batch) at which to finish turning on the constraint term
for KL cost annealing













	
fit_sequences(sequences, max_checkpoints_to_keep=5, checkpoint_interval=1000, restore=False)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/seqtoseq.py#L225-L248]

	Train this model on a set of sequences


	Parameters:

	
	sequences (iterable) – the training samples to fit to.  Each sample should be
represented as a tuple of the form (input_sequence, output_sequence).


	max_checkpoints_to_keep (int) – the maximum number of checkpoints to keep.  Older checkpoints are discarded.


	checkpoint_interval (int) – the frequency at which to write checkpoints, measured in training steps.


	restore (bool) – if True, restore the model from the most recent checkpoint and continue training
from there.  If False, retrain the model from scratch.













	
predict_from_sequences(sequences, beam_width=5)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/seqtoseq.py#L250-L273]

	Given a set of input sequences, predict the output sequences.

The prediction is done using a beam search with length normalization.


	Parameters:

	
	sequences (iterable) – the input sequences to generate a prediction for


	beam_width (int) – the beam width to use for searching.  Set to 1 to use a simple greedy search.













	
predict_from_embeddings(embeddings, beam_width=5)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/seqtoseq.py#L275-L297]

	Given a set of embedding vectors, predict the output sequences.

The prediction is done using a beam search with length normalization.


	Parameters:

	
	embeddings (iterable) – the embedding vectors to generate predictions for


	beam_width (int) – the beam width to use for searching.  Set to 1 to use a simple greedy search.













	
predict_embeddings(sequences)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/seqtoseq.py#L299-L318]

	Given a set of input sequences, compute the embedding vectors.


	Parameters:

	sequences (iterable) – the input sequences to generate an embedding vector for















GAN


	
class GAN(n_generators=1, n_discriminators=1, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/gan.py#L11-L453]

	Implements Generative Adversarial Networks.

A Generative Adversarial Network (GAN) is a type of generative model.  It
consists of two parts called the “generator” and the “discriminator”.  The
generator takes random noise as input and transforms it into an output that
(hopefully) resembles the training data.  The discriminator takes a set of
samples as input and tries to distinguish the real training samples from the
ones created by the generator.  Both of them are trained together.  The
discriminator tries to get better and better at telling real from false data,
while the generator tries to get better and better at fooling the discriminator.

In many cases there also are additional inputs to the generator and
discriminator.  In that case it is known as a Conditional GAN (CGAN), since it
learns a distribution that is conditional on the values of those inputs.  They
are referred to as “conditional inputs”.

Many variations on this idea have been proposed, and new varieties of GANs are
constantly being proposed.  This class tries to make it very easy to implement
straightforward GANs of the most conventional types.  At the same time, it
tries to be flexible enough that it can be used to implement many (but
certainly not all) variations on the concept.

To define a GAN, you must create a subclass that provides implementations of
the following methods:

get_noise_input_shape()
get_data_input_shapes()
create_generator()
create_discriminator()

If you want your GAN to have any conditional inputs you must also implement:

get_conditional_input_shapes()

The following methods have default implementations that are suitable for most
conventional GANs.  You can override them if you want to customize their
behavior:

create_generator_loss()
create_discriminator_loss()
get_noise_batch()

This class allows a GAN to have multiple generators and discriminators, a model
known as MIX+GAN.  It is described in Arora et al., “Generalization and
Equilibrium in Generative Adversarial Nets (GANs)” (https://arxiv.org/abs/1703.00573).
This can lead to better models, and is especially useful for reducing mode
collapse, since different generators can learn different parts of the
distribution.  To use this technique, simply specify the number of generators
and discriminators when calling the constructor.  You can then tell
predict_gan_generator() which generator to use for predicting samples.


	
__init__(n_generators=1, n_discriminators=1, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/gan.py#L64-L187]

	Construct a GAN.

In addition to the parameters listed below, this class accepts all the
keyword arguments from KerasModel.


	Parameters:

	
	n_generators (int) – the number of generators to include


	n_discriminators (int) – the number of discriminators to include













	
get_noise_input_shape()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/gan.py#L198-L205]

	Get the shape of the generator’s noise input layer.

Subclasses must override this to return a tuple giving the shape of the
noise input.  The actual Input layer will be created automatically.  The
dimension corresponding to the batch size should be omitted.






	
get_data_input_shapes()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/gan.py#L207-L216]

	Get the shapes of the inputs for training data.

Subclasses must override this to return a list of tuples, each giving the
shape of one of the inputs.  The actual Input layers will be created
automatically.  This list of shapes must also match the shapes of the
generator’s outputs.  The dimension corresponding to the batch size should
be omitted.






	
get_conditional_input_shapes()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/gan.py#L218-L229]

	Get the shapes of any conditional inputs.

Subclasses may override this to return a list of tuples, each giving the
shape of one of the conditional inputs.  The actual Input layers will be
created automatically.  The dimension corresponding to the batch size should
be omitted.

The default implementation returns an empty list, meaning there are no
conditional inputs.






	
get_noise_batch(batch_size)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/gan.py#L231-L241]

	Get a batch of random noise to pass to the generator.

This should return a NumPy array whose shape matches the one returned by
get_noise_input_shape().  The default implementation returns normally
distributed values.  Subclasses can override this to implement a different
distribution.






	
create_generator()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/gan.py#L243-L252]

	Create and return a generator.

Subclasses must override this to construct the generator.  The returned
value should be a tf.keras.Model whose inputs are a batch of noise, followed
by any conditional inputs.  The number and shapes of its outputs must match
the return value from get_data_input_shapes(), since generated data must
have the same form as training data.






	
create_discriminator()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/gan.py#L254-L262]

	Create and return a discriminator.

Subclasses must override this to construct the discriminator.  The returned
value should be a tf.keras.Model whose inputs are all data inputs, followed
by any conditional inputs.  Its output should be a one dimensional tensor
containing the probability of each sample being a training sample.






	
create_generator_loss(discrim_output)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/gan.py#L264-L281]

	Create the loss function for the generator.

The default implementation is appropriate for most cases.  Subclasses can
override this if the need to customize it.


	Parameters:

	discrim_output (Tensor) – the output from the discriminator on a batch of generated data.  This is
its estimate of the probability that each sample is training data.



	Return type:

	A Tensor equal to the loss function to use for optimizing the generator.










	
create_discriminator_loss(discrim_output_train, discrim_output_gen)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/gan.py#L283-L305]

	Create the loss function for the discriminator.

The default implementation is appropriate for most cases.  Subclasses can
override this if the need to customize it.


	Parameters:

	
	discrim_output_train (Tensor) – the output from the discriminator on a batch of training data.  This is
its estimate of the probability that each sample is training data.


	discrim_output_gen (Tensor) – the output from the discriminator on a batch of generated data.  This is
its estimate of the probability that each sample is training data.






	Return type:

	A Tensor equal to the loss function to use for optimizing the discriminator.










	
fit_gan(batches, generator_steps=1.0, max_checkpoints_to_keep=5, checkpoint_interval=1000, restore=False)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/gan.py#L307-L410]

	Train this model on data.


	Parameters:

	
	batches (iterable) – batches of data to train the discriminator on, each represented as a dict
that maps Inputs to values.  It should specify values for all members of
data_inputs and conditional_inputs.


	generator_steps (float) – the number of training steps to perform for the generator for each batch.
This can be used to adjust the ratio of training steps for the generator
and discriminator.  For example, 2.0 will perform two training steps for
every batch, while 0.5 will only perform one training step for every two
batches.


	max_checkpoints_to_keep (int) – the maximum number of checkpoints to keep.  Older checkpoints are discarded.


	checkpoint_interval (int) – the frequency at which to write checkpoints, measured in batches.  Set
this to 0 to disable automatic checkpointing.


	restore (bool) – if True, restore the model from the most recent checkpoint before training
it.













	
predict_gan_generator(batch_size=1, noise_input=None, conditional_inputs=[], generator_index=0)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/gan.py#L412-L453]

	Use the GAN to generate a batch of samples.


	Parameters:

	
	batch_size (int) – the number of samples to generate.  If either noise_input or
conditional_inputs is specified, this argument is ignored since the batch
size is then determined by the size of that argument.


	noise_input (array) – the value to use for the generator’s noise input.  If None (the default),
get_noise_batch() is called to generate a random input, so each call will
produce a new set of samples.


	conditional_inputs (list of arrays) – the values to use for all conditional inputs.  This must be specified if
the GAN has any conditional inputs.


	generator_index (int) – the index of the generator (between 0 and n_generators-1) to use for
generating the samples.






	Returns:

	
	An array (if the generator has only one output) or list of arrays (if it has


	multiple outputs) containing the generated samples.



















WGAN


	
class WGAN(gradient_penalty=10.0, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/gan.py#L462-L529]

	Implements Wasserstein Generative Adversarial Networks.

This class implements Wasserstein Generative Adversarial Networks (WGANs) as
described in Arjovsky et al., “Wasserstein GAN” (https://arxiv.org/abs/1701.07875).
A WGAN is conceptually rather different from a conventional GAN, but in
practical terms very similar.  It reinterprets the discriminator (often called
the “critic” in this context) as learning an approximation to the Earth Mover
distance between the training and generated distributions.  The generator is
then trained to minimize that distance.  In practice, this just means using
slightly different loss functions for training the generator and discriminator.

WGANs have theoretical advantages over conventional GANs, and they often work
better in practice.  In addition, the discriminator’s loss function can be
directly interpreted as a measure of the quality of the model.  That is an
advantage over conventional GANs, where the loss does not directly convey
information about the quality of the model.

The theory WGANs are based on requires the discriminator’s gradient to be
bounded.  The original paper achieved this by clipping its weights.  This
class instead does it by adding a penalty term to the discriminator’s loss, as
described in https://arxiv.org/abs/1704.00028.  This is sometimes found to
produce better results.

There are a few other practical differences between GANs and WGANs.  In a
conventional GAN, the discriminator’s output must be between 0 and 1 so it can
be interpreted as a probability.  In a WGAN, it should produce an unbounded
output that can be interpreted as a distance.

When training a WGAN, you also should usually use a smaller value for
generator_steps.  Conventional GANs rely on keeping the generator and
discriminator “in balance” with each other.  If the discriminator ever gets
too good, it becomes impossible for the generator to fool it and training
stalls.  WGANs do not have this problem, and in fact the better the
discriminator is, the easier it is for the generator to improve.  It therefore
usually works best to perform several training steps on the discriminator for
each training step on the generator.


	
__init__(gradient_penalty=10.0, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/gan.py#L501-L513]

	Construct a WGAN.

In addition to the following, this class accepts all the keyword arguments
from GAN and KerasModel.


	Parameters:

	gradient_penalty (float) – the magnitude of the gradient penalty loss










	
create_generator_loss(discrim_output)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/gan.py#L522-L523]

	Create the loss function for the generator.

The default implementation is appropriate for most cases.  Subclasses can
override this if the need to customize it.


	Parameters:

	discrim_output (Tensor) – the output from the discriminator on a batch of generated data.  This is
its estimate of the probability that each sample is training data.



	Return type:

	A Tensor equal to the loss function to use for optimizing the generator.










	
create_discriminator_loss(discrim_output_train, discrim_output_gen)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/gan.py#L525-L529]

	Create the loss function for the discriminator.

The default implementation is appropriate for most cases.  Subclasses can
override this if the need to customize it.


	Parameters:

	
	discrim_output_train (Tensor) – the output from the discriminator on a batch of training data.  This is
its estimate of the probability that each sample is training data.


	discrim_output_gen (Tensor) – the output from the discriminator on a batch of generated data.  This is
its estimate of the probability that each sample is training data.






	Return type:

	A Tensor equal to the loss function to use for optimizing the discriminator.
















TextCNNModel


	
class TextCNNModel(n_tasks, char_dict, seq_length, n_embedding=75, kernel_sizes=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20], num_filters=[100, 200, 200, 200, 200, 100, 100, 100, 100, 100, 160, 160], dropout=0.25, mode='classification', **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/text_cnn.py#L54-L276]

	A Convolutional neural network on smiles strings

Reimplementation of the discriminator module in ORGAN [1]_ .
Originated from [2]_.

This model applies multiple 1D convolutional filters to
the padded strings, then max-over-time pooling is applied on
all filters, extracting one feature per filter.  All
features are concatenated and transformed through several
hidden layers to form predictions.

This model is initially developed for sentence-level
classification tasks, with words represented as vectors. In
this implementation, SMILES strings are dissected into
characters and transformed to one-hot vectors in a similar
way. The model can be used for general molecular-level
classification or regression tasks. It is also used in the
ORGAN model as discriminator.

Training of the model only requires SMILES strings input,
all featurized datasets that include SMILES in the ids
attribute are accepted. PDBbind, QM7 and QM7b are not
supported. To use the model, build_char_dict should be
called first before defining the model to build character
dict of input dataset, example can be found in
examples/delaney/delaney_textcnn.py
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__init__(n_tasks, char_dict, seq_length, n_embedding=75, kernel_sizes=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20], num_filters=[100, 200, 200, 200, 200, 100, 100, 100, 100, 100, 160, 160], dropout=0.25, mode='classification', **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/text_cnn.py#L89-L175]

	
	Parameters:

	
	n_tasks (int) – Number of tasks


	char_dict (dict) – Mapping from characters in smiles to integers


	seq_length (int) – Length of sequences(after padding)


	n_embedding (int, optional) – Length of embedding vector


	filter_sizes (list of int, optional) – Properties of filters used in the conv net


	num_filters (list of int, optional) – Properties of filters used in the conv net


	dropout (float, optional) – Dropout rate


	mode (str) – Either “classification” or “regression” for type of model.













	
static build_char_dict(dataset, default_dict={'#': 1, '(': 2, ')': 3, '+': 4, '-': 5, '/': 6, '1': 7, '2': 8, '3': 9, '4': 10, '5': 11, '6': 12, '7': 13, '8': 14, '=': 15, 'Br': 30, 'C': 16, 'Cl': 29, 'F': 17, 'H': 18, 'I': 19, 'N': 20, 'O': 21, 'P': 22, 'S': 23, '[': 24, '\\': 25, ']': 26, '_': 27, 'c': 28, 'n': 31, 'o': 32, 's': 33})[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/text_cnn.py#L177-L212]

	Collect all unique characters(in smiles) from the dataset.
This method should be called before defining the model to build appropriate char_dict






	
smiles_to_seq_batch(ids_b)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/text_cnn.py#L219-L231]

	Converts SMILES strings to np.array sequence.

A tf.py_func wrapper is written around this when creating the input_fn for make_estimator






	
default_generator(dataset, epochs=1, mode='fit', deterministic=True, pad_batches=True)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/text_cnn.py#L233-L251]

	Transfer smiles strings to fixed length integer vectors






	
smiles_to_seq(smiles)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/text_cnn.py#L253-L276]

	Tokenize characters in smiles to integers











AtomicConvModel


	
class AtomicConvModel(n_tasks: int, frag1_num_atoms: int = 70, frag2_num_atoms: int = 634, complex_num_atoms: int = 701, max_num_neighbors: int = 12, batch_size: int = 24, atom_types: ~typing.Sequence[float] = [6, 7.0, 8.0, 9.0, 11.0, 12.0, 15.0, 16.0, 17.0, 20.0, 25.0, 30.0, 35.0, 53.0, -1.0], radial: ~typing.Sequence[~typing.Sequence[float]] = [[1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0, 10.5, 11.0, 11.5, 12.0], [0.0, 4.0, 8.0], [0.4]], layer_sizes=[100], weight_init_stddevs: float | ~typing.Sequence[float] = 0.02, bias_init_consts: float | ~typing.Sequence[float] = 1.0, weight_decay_penalty: float = 0.0, weight_decay_penalty_type: str = 'l2', dropouts: float | ~typing.Sequence[float] = 0.5, activation_fns: ~typing.Callable | str | ~typing.Sequence[~typing.Callable | str] = <function relu>, residual: bool = False, learning_rate=0.001, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/atomic_conv.py#L20-L308]

	Implements an Atomic Convolution Model.

Implements the atomic convolutional networks as introduced in

Gomes, Joseph, et al. “Atomic convolutional networks for predicting protein-ligand binding affinity.” arXiv preprint arXiv:1703.10603 (2017).

The atomic convolutional networks function as a variant of
graph convolutions. The difference is that the “graph” here is
the nearest neighbors graph in 3D space. The AtomicConvModel
leverages these connections in 3D space to train models that
learn to predict energetic state starting from the spatial
geometry of the model.


	
__init__(n_tasks: int, frag1_num_atoms: int = 70, frag2_num_atoms: int = 634, complex_num_atoms: int = 701, max_num_neighbors: int = 12, batch_size: int = 24, atom_types: ~typing.Sequence[float] = [6, 7.0, 8.0, 9.0, 11.0, 12.0, 15.0, 16.0, 17.0, 20.0, 25.0, 30.0, 35.0, 53.0, -1.0], radial: ~typing.Sequence[~typing.Sequence[float]] = [[1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0, 10.5, 11.0, 11.5, 12.0], [0.0, 4.0, 8.0], [0.4]], layer_sizes=[100], weight_init_stddevs: float | ~typing.Sequence[float] = 0.02, bias_init_consts: float | ~typing.Sequence[float] = 1.0, weight_decay_penalty: float = 0.0, weight_decay_penalty_type: str = 'l2', dropouts: float | ~typing.Sequence[float] = 0.5, activation_fns: ~typing.Callable | str | ~typing.Sequence[~typing.Callable | str] = <function relu>, residual: bool = False, learning_rate=0.001, **kwargs) → None[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/atomic_conv.py#L35-L214]

	
	Parameters:

	
	n_tasks (int) – number of tasks


	frag1_num_atoms (int) – Number of atoms in first fragment


	frag2_num_atoms (int) – Number of atoms in sec


	max_num_neighbors (int) – Maximum number of neighbors possible for an atom. Recall neighbors
are spatial neighbors.


	atom_types (list) – List of atoms recognized by model. Atoms are indicated by their
nuclear numbers.


	radial (list) – Radial parameters used in the atomic convolution transformation.


	layer_sizes (list) – the size of each dense layer in the network.  The length of
this list determines the number of layers.


	weight_init_stddevs (list or float) – the standard deviation of the distribution to use for weight
initialization of each layer.  The length of this list should
equal len(layer_sizes).  Alternatively this may be a single
value instead of a list, in which case the same value is used
for every layer.


	bias_init_consts (list or float) – the value to initialize the biases in each layer to.  The
length of this list should equal len(layer_sizes).
Alternatively this may be a single value instead of a list, in
which case the same value is used for every layer.


	weight_decay_penalty (float) – the magnitude of the weight decay penalty to use


	weight_decay_penalty_type (str) – the type of penalty to use for weight decay, either ‘l1’ or ‘l2’


	dropouts (list or float) – the dropout probablity to use for each layer.  The length of this list should equal len(layer_sizes).
Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.


	activation_fns (list or object) – the Tensorflow activation function to apply to each layer.  The length of this list should equal
len(layer_sizes).  Alternatively this may be a single value instead of a list, in which case the
same value is used for every layer.


	residual (bool) – if True, the model will be composed of pre-activation residual blocks instead
of a simple stack of dense layers.


	learning_rate (float) – Learning rate for the model.













	
default_generator(dataset, epochs=1, mode='fit', deterministic=True, pad_batches=True)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/atomic_conv.py#L216-L300]

	Create a generator that iterates batches for a dataset.

Subclasses may override this method to customize how model inputs are
generated from the data.


	Parameters:

	
	dataset (Dataset) – the data to iterate


	epochs (int) – the number of times to iterate over the full dataset


	mode (str) – allowed values are ‘fit’ (called during training), ‘predict’ (called
during prediction), and ‘uncertainty’ (called during uncertainty
prediction)


	deterministic (bool) – whether to iterate over the dataset in order, or randomly shuffle the
data for each epoch


	pad_batches (bool) – whether to pad each batch up to this model’s preferred batch size






	Returns:

	
	a generator that iterates batches, each represented as a tuple of lists


	([inputs], [outputs], [weights])















	
save()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/atomic_conv.py#L302-L304]

	Saves model to disk using joblib.






	
reload()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/atomic_conv.py#L306-L308]

	Loads model from joblib file on disk.











Smiles2Vec


	
class Smiles2Vec(char_to_idx, n_tasks=10, max_seq_len=270, embedding_dim=50, n_classes=2, use_bidir=True, use_conv=True, filters=192, kernel_size=3, strides=1, rnn_sizes=[224, 384], rnn_types=['GRU', 'GRU'], mode='regression', **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/chemnet_models.py#L33-L189]

	Implements the Smiles2Vec model, that learns neural representations of SMILES
strings which can be used for downstream tasks.

The model is based on the description in Goh et al., “SMILES2vec: An
Interpretable General-Purpose Deep Neural Network for Predicting Chemical
Properties” (https://arxiv.org/pdf/1712.02034.pdf). The goal here is to take
SMILES strings as inputs, turn them into vector representations which can then
be used in predicting molecular properties.

The model consists of an Embedding layer that retrieves embeddings for each
character in the SMILES string. These embeddings are learnt jointly with the
rest of the model. The output from the embedding layer is a tensor of shape
(batch_size, seq_len, embedding_dim). This tensor can optionally be fed
through a 1D convolutional layer, before being passed to a series of RNN cells
(optionally bidirectional). The final output from the RNN cells aims
to have learnt the temporal dependencies in the SMILES string, and in turn
information about the structure of the molecule, which is then used for
molecular property prediction.

In the paper, the authors also train an explanation mask to endow the model
with interpretability and gain insights into its decision making. This segment
is currently not a part of this implementation as this was
developed for the purpose of investigating a transfer learning protocol,
ChemNet (which can be found at https://arxiv.org/abs/1712.02734).


	
__init__(char_to_idx, n_tasks=10, max_seq_len=270, embedding_dim=50, n_classes=2, use_bidir=True, use_conv=True, filters=192, kernel_size=3, strides=1, rnn_sizes=[224, 384], rnn_types=['GRU', 'GRU'], mode='regression', **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/chemnet_models.py#L61-L120]

	
	Parameters:

	
	char_to_idx (dict,) – char_to_idx contains character to index mapping for SMILES characters


	embedding_dim (int, default 50) – Size of character embeddings used.


	use_bidir (bool, default True) – Whether to use BiDirectional RNN Cells


	use_conv (bool, default True) – Whether to use a conv-layer


	kernel_size (int, default 3) – Kernel size for convolutions


	filters (int, default 192) – Number of filters


	strides (int, default 1) – Strides used in convolution


	rnn_sizes (list[int], default [224, 384]) – Number of hidden units in the RNN cells


	mode (str, default regression) – Whether to use model for regression or classification













	
default_generator(dataset, epochs=1, mode='fit', deterministic=True, pad_batches=True)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/chemnet_models.py#L175-L189]

	Create a generator that iterates batches for a dataset.

Subclasses may override this method to customize how model inputs are
generated from the data.


	Parameters:

	
	dataset (Dataset) – the data to iterate


	epochs (int) – the number of times to iterate over the full dataset


	mode (str) – allowed values are ‘fit’ (called during training), ‘predict’ (called
during prediction), and ‘uncertainty’ (called during uncertainty
prediction)


	deterministic (bool) – whether to iterate over the dataset in order, or randomly shuffle the
data for each epoch


	pad_batches (bool) – whether to pad each batch up to this model’s preferred batch size






	Returns:

	
	a generator that iterates batches, each represented as a tuple of lists


	([inputs], [outputs], [weights])




















ChemCeption


	
class ChemCeption(img_spec: str = 'std', img_size: int = 80, base_filters: int = 16, inception_blocks: Dict = {'A': 3, 'B': 3, 'C': 3}, n_tasks: int = 10, n_classes: int = 2, augment: bool = False, mode: str = 'regression', **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/chemnet_models.py#L192-L362]

	Implements the ChemCeption model that leverages the representational capacities
of convolutional neural networks (CNNs) to predict molecular properties.

The model is based on the description in Goh et al., “Chemception: A Deep
Neural Network with Minimal Chemistry Knowledge Matches the Performance of
Expert-developed QSAR/QSPR Models” (https://arxiv.org/pdf/1706.06689.pdf).
The authors use an image based representation of the molecule, where pixels
encode different atomic and bond properties. More details on the image repres-
entations can be found at https://arxiv.org/abs/1710.02238

The model consists of a Stem Layer that reduces the image resolution for the
layers to follow. The output of the Stem Layer is followed by a series of
Inception-Resnet blocks & a Reduction layer. Layers in the Inception-Resnet
blocks process image tensors at multiple resolutions and use a ResNet style
skip-connection, combining features from different resolutions. The Reduction
layers reduce the spatial extent of the image by max-pooling and 2-strided
convolutions. More details on these layers can be found in the ChemCeption
paper referenced above. The output of the final Reduction layer is subject to
a Global Average Pooling, and a fully-connected layer maps the features to
downstream outputs.

In the ChemCeption paper, the authors perform real-time image augmentation by
rotating images between 0 to 180 degrees. This can be done during model
training by setting the augment argument to True.


	
__init__(img_spec: str = 'std', img_size: int = 80, base_filters: int = 16, inception_blocks: Dict = {'A': 3, 'B': 3, 'C': 3}, n_tasks: int = 10, n_classes: int = 2, augment: bool = False, mode: str = 'regression', **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/chemnet_models.py#L220-L265]

	
	Parameters:

	
	img_spec (str, default std) – Image specification used


	img_size (int, default 80) – Image size used


	base_filters (int, default 16) – Base filters used for the different inception and reduction layers


	inception_blocks (dict,) – Dictionary containing number of blocks for every inception layer


	n_tasks (int, default 10) – Number of classification or regression tasks


	n_classes (int, default 2) – Number of classes (used only for classification)


	augment (bool, default False) – Whether to augment images


	mode (str, default regression) – Whether the model is used for regression or classification













	
build_inception_module(inputs, type='A')[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/chemnet_models.py#L306-L315]

	Inception module is a series of inception layers of similar type. This
function builds that.






	
default_generator(dataset, epochs=1, mode='fit', deterministic=True, pad_batches=True)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/chemnet_models.py#L317-L362]

	Create a generator that iterates batches for a dataset.

Subclasses may override this method to customize how model inputs are
generated from the data.


	Parameters:

	
	dataset (Dataset) – the data to iterate


	epochs (int) – the number of times to iterate over the full dataset


	mode (str) – allowed values are ‘fit’ (called during training), ‘predict’ (called
during prediction), and ‘uncertainty’ (called during uncertainty
prediction)


	deterministic (bool) – whether to iterate over the dataset in order, or randomly shuffle the
data for each epoch


	pad_batches (bool) – whether to pad each batch up to this model’s preferred batch size






	Returns:

	
	a generator that iterates batches, each represented as a tuple of lists


	([inputs], [outputs], [weights])




















NormalizingFlowModel

The purpose of a normalizing flow is to map a simple distribution (that is
easy to sample from and evaluate probability densities for) to a more
complex distribution that is learned from data. Normalizing flows combine the
advantages of autoregressive models (which provide likelihood estimation
but do not learn features) and variational autoencoders (which learn feature
representations but do not provide marginal likelihoods). They are effective
for any application requiring a probabilistic model with these capabilities, e.g. generative modeling, unsupervised learning, or probabilistic inference.


	
class NormalizingFlowModel(model: NormalizingFlow, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/normalizing_flows.py#L72-L218]

	A base distribution and normalizing flow for applying transformations.

Normalizing flows are effective for any application requiring
a probabilistic model that can both sample from a distribution and
compute marginal likelihoods, e.g. generative modeling,
unsupervised learning, or probabilistic inference. For a thorough review
of normalizing flows, see [1]_.


	A distribution implements two main operations:
	
	Sampling from the transformed distribution


	Calculating log probabilities






	A normalizing flow implements three main operations:
	
	Forward transformation


	Inverse transformation


	Calculating the Jacobian








Deep Normalizing Flow models require normalizing flow layers where
input and output dimensions are the same, the transformation is invertible,
and the determinant of the Jacobian is efficient to compute and
differentiable. The determinant of the Jacobian of the transformation
gives a factor that preserves the probability volume to 1 when transforming
between probability densities of different random variables.

References



[1]
Papamakarios, George et al. “Normalizing Flows for Probabilistic Modeling and Inference.” (2019). https://arxiv.org/abs/1912.02762.




	
__init__(model: NormalizingFlow, **kwargs) → None[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/normalizing_flows.py#L103-L153]

	Creates a new NormalizingFlowModel.

In addition to the following arguments, this class also accepts all the keyword arguments from KerasModel.


	Parameters:

	model (NormalizingFlow) – An instance of NormalizingFlow.





Examples

>> import tensorflow_probability as tfp
>> tfd = tfp.distributions
>> tfb = tfp.bijectors
>> flow_layers = [
..    tfb.RealNVP(
..        num_masked=2,
..        shift_and_log_scale_fn=tfb.real_nvp_default_template(
..            hidden_layers=[8, 8]))
..]
>> base_distribution = tfd.MultivariateNormalDiag(loc=[0., 0., 0.])
>> nf = NormalizingFlow(base_distribution, flow_layers)
>> nfm = NormalizingFlowModel(nf)
>> dataset = NumpyDataset(
..    X=np.random.rand(5, 3).astype(np.float32),
..    y=np.random.rand(5,),
..    ids=np.arange(5))
>> nfm.fit(dataset)






	
create_nll(input: Tensor | Sequence[Tensor]) → Tensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/normalizing_flows.py#L155-L172]

	Create the negative log likelihood loss function.

The default implementation is appropriate for most cases. Subclasses can
override this if there is a need to customize it.


	Parameters:

	input (OneOrMany[tf.Tensor]) – A batch of data.



	Return type:

	A Tensor equal to the loss function to use for optimization.










	
save()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/normalizing_flows.py#L174-L176]

	Saves model to disk using joblib.






	
reload()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/normalizing_flows.py#L178-L180]

	Loads model from joblib file on disk.












PyTorch Models

DeepChem supports the use of PyTorch [https://pytorch.org/] to build deep learning models.


TorchModel

You can wrap an arbitrary torch.nn.Module in a TorchModel object.


	
class TorchModel(model: Module, loss: Loss | Callable[[List, List, List], Any], output_types: List[str] | None = None, batch_size: int = 100, model_dir: str | None = None, learning_rate: float | LearningRateSchedule = 0.001, optimizer: Optimizer | None = None, tensorboard: bool = False, wandb: bool = False, log_frequency: int = 100, device: device | None = None, regularization_loss: Callable | None = None, wandb_logger: WandbLogger | None = None, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/torch_model.py#L42-L1211]

	This is a DeepChem model implemented by a PyTorch model.

Here is a simple example of code that uses TorchModel to train
a PyTorch model on a DeepChem dataset.

>>> import torch
>>> import deepchem as dc
>>> import numpy as np
>>> X, y = np.random.random((10, 100)), np.random.random((10, 1))
>>> dataset = dc.data.NumpyDataset(X=X, y=y)
>>> pytorch_model = torch.nn.Sequential(
...   torch.nn.Linear(100, 1000),
...   torch.nn.Tanh(),
...   torch.nn.Linear(1000, 1))
>>> model = dc.models.TorchModel(pytorch_model, loss=dc.models.losses.L2Loss())
>>> loss = model.fit(dataset, nb_epoch=5)





The loss function for a model can be defined in two different
ways.  For models that have only a single output and use a
standard loss function, you can simply provide a
dc.models.losses.Loss object.  This defines the loss for each
sample or sample/task pair.  The result is automatically
multiplied by the weights and averaged over the batch.

For more complicated cases, you can instead provide a function
that directly computes the total loss.  It must be of the form
f(outputs, labels, weights), taking the list of outputs from
the model, the expected values, and any weight matrices.  It
should return a scalar equal to the value of the loss function
for the batch.  No additional processing is done to the
result; it is up to you to do any weighting, averaging, adding
of penalty terms, etc.

You can optionally provide an output_types argument, which
describes how to interpret the model’s outputs.  This should
be a list of strings, one for each output. You can use an
arbitrary output_type for a output, but some output_types are
special and will undergo extra processing:


	
	‘prediction’: This is a normal output, and will be returned by predict().
	If output types are not specified, all outputs are assumed
to be of this type.







	
	‘loss’: This output will be used in place of the normal
	outputs for computing the loss function.  For example,
models that output probability distributions usually do it
by computing unbounded numbers (the logits), then passing
them through a softmax function to turn them into
probabilities.  When computing the cross entropy, it is more
numerically stable to use the logits directly rather than
the probabilities.  You can do this by having the model
produce both probabilities and logits as outputs, then
specifying output_types=[‘prediction’, ‘loss’].  When
predict() is called, only the first output (the
probabilities) will be returned.  But during training, it is
the second output (the logits) that will be passed to the
loss function.







	
	‘variance’: This output is used for estimating the
	uncertainty in another output.  To create a model that can
estimate uncertainty, there must be the same number of
‘prediction’ and ‘variance’ outputs.  Each variance output
must have the same shape as the corresponding prediction
output, and each element is an estimate of the variance in
the corresponding prediction.  Also be aware that if a model
supports uncertainty, it MUST use dropout on every layer,
and dropout most be enabled during uncertainty prediction.
Otherwise, the uncertainties it computes will be inaccurate.







	
	other: Arbitrary output_types can be used to extract outputs
	produced by the model, but will have no additional
processing performed.










	
__init__(model: Module, loss: Loss | Callable[[List, List, List], Any], output_types: List[str] | None = None, batch_size: int = 100, model_dir: str | None = None, learning_rate: float | LearningRateSchedule = 0.001, optimizer: Optimizer | None = None, tensorboard: bool = False, wandb: bool = False, log_frequency: int = 100, device: device | None = None, regularization_loss: Callable | None = None, wandb_logger: WandbLogger | None = None, **kwargs) → None[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/torch_model.py#L117-L273]

	Create a new TorchModel.


	Parameters:

	
	model (torch.nn.Module) – the PyTorch model implementing the calculation


	loss (dc.models.losses.Loss or function) – a Loss or function defining how to compute the training loss for each
batch, as described above


	output_types (list of strings, optional (default None)) – the type of each output from the model, as described above


	batch_size (int, optional (default 100)) – default batch size for training and evaluating


	model_dir (str, optional (default None)) – the directory on disk where the model will be stored.  If this is None,
a temporary directory is created.


	learning_rate (float or LearningRateSchedule, optional (default 0.001)) – the learning rate to use for fitting.  If optimizer is specified, this is
ignored.


	optimizer (Optimizer, optional (default None)) – the optimizer to use for fitting.  If this is specified, learning_rate is
ignored.


	tensorboard (bool, optional (default False)) – whether to log progress to TensorBoard during training


	wandb (bool, optional (default False)) – whether to log progress to Weights & Biases during training


	log_frequency (int, optional (default 100)) – The frequency at which to log data. Data is logged using
logging by default. If tensorboard is set, data is also
logged to TensorBoard. If wandb is set, data is also logged
to Weights & Biases. Logging happens at global steps. Roughly,
a global step corresponds to one batch of training. If you’d
like a printout every 10 batch steps, you’d set
log_frequency=10 for example.


	device (torch.device, optional (default None)) – the device on which to run computations.  If None, a device is
chosen automatically.


	regularization_loss (Callable, optional) – a function that takes no arguments, and returns an extra contribution to add
to the loss function


	wandb_logger (WandbLogger) – the Weights & Biases logger object used to log data and metrics













	
fit(dataset: Dataset, nb_epoch: int = 10, max_checkpoints_to_keep: int = 5, checkpoint_interval: int = 1000, deterministic: bool = False, restore: bool = False, variables: List[Parameter] | None = None, loss: Callable[[List, List, List], Any] | None = None, callbacks: Callable | List[Callable] = [], all_losses: List[float] | None = None) → float[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/torch_model.py#L289-L343]

	Train this model on a dataset.


	Parameters:

	
	dataset (Dataset) – the Dataset to train on


	nb_epoch (int) – the number of epochs to train for


	max_checkpoints_to_keep (int) – the maximum number of checkpoints to keep.  Older checkpoints are discarded.


	checkpoint_interval (int) – the frequency at which to write checkpoints, measured in training steps.
Set this to 0 to disable automatic checkpointing.


	deterministic (bool) – if True, the samples are processed in order.  If False, a different random
order is used for each epoch.


	restore (bool) – if True, restore the model from the most recent checkpoint and continue training
from there.  If False, retrain the model from scratch.


	variables (list of torch.nn.Parameter) – the variables to train.  If None (the default), all trainable variables in
the model are used.


	loss (function) – a function of the form f(outputs, labels, weights) that computes the loss
for each batch.  If None (the default), the model’s standard loss function
is used.


	callbacks (function or list of functions) – one or more functions of the form f(model, step) that will be invoked after
every step.  This can be used to perform validation, logging, etc.


	all_losses (Optional[List[float]], optional (default None)) – If specified, all logged losses are appended into this list. Note that
you can call fit() repeatedly with the same list and losses will
continue to be appended.






	Return type:

	The average loss over the most recent checkpoint interval










	
fit_generator(generator: Iterable[Tuple[Any, Any, Any]], max_checkpoints_to_keep: int = 5, checkpoint_interval: int = 1000, restore: bool = False, variables: List[Parameter] | ParameterList | None = None, loss: Callable[[List, List, List], Any] | None = None, callbacks: Callable | List[Callable] = [], all_losses: List[float] | None = None) → float[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/torch_model.py#L345-L487]

	Train this model on data from a generator.


	Parameters:

	
	generator (generator) – this should generate batches, each represented as a tuple of the form
(inputs, labels, weights).


	max_checkpoints_to_keep (int) – the maximum number of checkpoints to keep.  Older checkpoints are discarded.


	checkpoint_interval (int) – the frequency at which to write checkpoints, measured in training steps.
Set this to 0 to disable automatic checkpointing.


	restore (bool) – if True, restore the model from the most recent checkpoint and continue training
from there.  If False, retrain the model from scratch.


	variables (list of torch.nn.Parameter or torch.nn.ParameterList) – the variables to train.  If None (the default), all trainable variables in
the model are used.
ParameterList can be used like a regular Python list, but Tensors that are
Parameter are properly registered, and will be visible by all Module methods.


	loss (function) – a function of the form f(outputs, labels, weights) that computes the loss
for each batch.  If None (the default), the model’s standard loss function
is used.


	callbacks (function or list of functions) – one or more functions of the form f(model, step) that will be invoked after
every step.  This can be used to perform validation, logging, etc.


	all_losses (Optional[List[float]], optional (default None)) – If specified, all logged losses are appended into this list. Note that
you can call fit() repeatedly with the same list and losses will
continue to be appended.






	Return type:

	The average loss over the most recent checkpoint interval










	
fit_on_batch(X: Sequence, y: Sequence, w: Sequence, variables: List[Parameter] | None = None, loss: Callable[[List, List, List], Any] | None = None, callbacks: Callable | List[Callable] = [], checkpoint: bool = True, max_checkpoints_to_keep: int = 5) → float[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/torch_model.py#L489-L536]

	Perform a single step of training.


	Parameters:

	
	X (ndarray) – the inputs for the batch


	y (ndarray) – the labels for the batch


	w (ndarray) – the weights for the batch


	variables (list of torch.nn.Parameter) – the variables to train.  If None (the default), all trainable variables in
the model are used.


	loss (function) – a function of the form f(outputs, labels, weights) that computes the loss
for each batch.  If None (the default), the model’s standard loss function
is used.


	callbacks (function or list of functions) – one or more functions of the form f(model, step) that will be invoked after
every step.  This can be used to perform validation, logging, etc.


	checkpoint (bool) – if true, save a checkpoint after performing the training step


	max_checkpoints_to_keep (int) – the maximum number of checkpoints to keep.  Older checkpoints are discarded.






	Return type:

	the loss on the batch










	
predict_on_generator(generator: Iterable[Tuple[Any, Any, Any]], transformers: List[Transformer] = [], output_types: str | Sequence[str] | None = None) → ndarray | Sequence[ndarray][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/torch_model.py#L645-L668]

	
	Parameters:

	
	generator (generator) – this should generate batches, each represented as a tuple of the form
(inputs, labels, weights).


	transformers (list of dc.trans.Transformers) – Transformers that the input data has been transformed by.  The output
is passed through these transformers to undo the transformations.


	output_types (String or list of Strings) – If specified, all outputs of this type will be retrieved
from the model. If output_types is specified, outputs must
be None.


	Returns – a NumPy array of the model produces a single output, or a list of arrays
if it produces multiple outputs













	
predict_on_batch(X: _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes], transformers: List[Transformer] = []) → ndarray | Sequence[ndarray][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/torch_model.py#L670-L690]

	Generates predictions for input samples, processing samples in a batch.


	Parameters:

	
	X (ndarray) – the input data, as a Numpy array.


	transformers (list of dc.trans.Transformers) – Transformers that the input data has been transformed by.  The output
is passed through these transformers to undo the transformations.






	Returns:

	
	a NumPy array of the model produces a single output, or a list of arrays


	if it produces multiple outputs















	
predict_uncertainty_on_batch(X: Sequence, masks: int = 50) → Tuple[ndarray, ndarray] | Sequence[Tuple[ndarray, ndarray]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/torch_model.py#L692-L720]

	Predict the model’s outputs, along with the uncertainty in each one.

The uncertainty is computed as described in https://arxiv.org/abs/1703.04977.
It involves repeating the prediction many times with different dropout masks.
The prediction is computed as the average over all the predictions.  The
uncertainty includes both the variation among the predicted values (epistemic
uncertainty) and the model’s own estimates for how well it fits the data
(aleatoric uncertainty).  Not all models support uncertainty prediction.


	Parameters:

	
	X (ndarray) – the input data, as a Numpy array.


	masks (int) – the number of dropout masks to average over






	Returns:

	
	for each output, a tuple (y_pred, y_std) where y_pred is the predicted


	value of the output, and each element of y_std estimates the standard


	deviation of the corresponding element of y_pred















	
predict(dataset: Dataset, transformers: List[Transformer] = [], output_types: List[str] | None = None) → ndarray | Sequence[ndarray][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/torch_model.py#L722-L752]

	Uses self to make predictions on provided Dataset object.


	Parameters:

	
	dataset (dc.data.Dataset) – Dataset to make prediction on


	transformers (list of dc.trans.Transformers) – Transformers that the input data has been transformed by.  The output
is passed through these transformers to undo the transformations.


	output_types (String or list of Strings) – If specified, all outputs of this type will be retrieved
from the model. If output_types is specified, outputs must
be None.






	Returns:

	
	a NumPy array of the model produces a single output, or a list of arrays


	if it produces multiple outputs















	
predict_embedding(dataset: Dataset) → ndarray | Sequence[ndarray][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/torch_model.py#L754-L773]

	Predicts embeddings created by underlying model if any exist.
An embedding must be specified to have output_type of
‘embedding’ in the model definition.


	Parameters:

	dataset (dc.data.Dataset) – Dataset to make prediction on



	Returns:

	
	a NumPy array of the embeddings model produces, or a list


	of arrays if it produces multiple embeddings















	
predict_uncertainty(dataset: Dataset, masks: int = 50) → Tuple[ndarray, ndarray] | Sequence[Tuple[ndarray, ndarray]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/torch_model.py#L775-L830]

	Predict the model’s outputs, along with the uncertainty in each one.

The uncertainty is computed as described in https://arxiv.org/abs/1703.04977.
It involves repeating the prediction many times with different dropout masks.
The prediction is computed as the average over all the predictions.  The
uncertainty includes both the variation among the predicted values (epistemic
uncertainty) and the model’s own estimates for how well it fits the data
(aleatoric uncertainty).  Not all models support uncertainty prediction.


	Parameters:

	
	dataset (dc.data.Dataset) – Dataset to make prediction on


	masks (int) – the number of dropout masks to average over






	Returns:

	
	for each output, a tuple (y_pred, y_std) where y_pred is the predicted


	value of the output, and each element of y_std estimates the standard


	deviation of the corresponding element of y_pred















	
evaluate_generator(generator: Iterable[Tuple[Any, Any, Any]], metrics: List[Metric], transformers: List[Transformer] = [], per_task_metrics: bool = False)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/torch_model.py#L832-L858]

	Evaluate the performance of this model on the data produced by a generator.


	Parameters:

	
	generator (generator) – this should generate batches, each represented as a tuple of the form
(inputs, labels, weights).


	metric (list of deepchem.metrics.Metric) – Evaluation metric


	transformers (list of dc.trans.Transformers) – Transformers that the input data has been transformed by.  The output
is passed through these transformers to undo the transformations.


	per_task_metrics (bool) – If True, return per-task scores.






	Returns:

	Maps tasks to scores under metric.



	Return type:

	dict










	
compute_saliency(X: ndarray) → ndarray | Sequence[ndarray][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/torch_model.py#L860-L912]

	Compute the saliency map for an input sample.

This computes the Jacobian matrix with the derivative of each output element
with respect to each input element.  More precisely,


	
	If this model has a single output, it returns a matrix of shape
	(output_shape, input_shape) with the derivatives.







	
	If this model has multiple outputs, it returns a list of matrices, one
	for each output.









This method cannot be used on models that take multiple inputs.


	Parameters:

	X (ndarray) – the input data for a single sample



	Return type:

	the Jacobian matrix, or a list of matrices










	
default_generator(dataset: Dataset, epochs: int = 1, mode: str = 'fit', deterministic: bool = True, pad_batches: bool = True) → Iterable[Tuple[List, List, List]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/torch_model.py#L945-L985]

	Create a generator that iterates batches for a dataset.

Subclasses may override this method to customize how model inputs are
generated from the data.


	Parameters:

	
	dataset (Dataset) – the data to iterate


	epochs (int) – the number of times to iterate over the full dataset


	mode (str) – allowed values are ‘fit’ (called during training), ‘predict’ (called
during prediction), and ‘uncertainty’ (called during uncertainty
prediction)


	deterministic (bool) – whether to iterate over the dataset in order, or randomly shuffle the
data for each epoch


	pad_batches (bool) – whether to pad each batch up to this model’s preferred batch size






	Returns:

	
	a generator that iterates batches, each represented as a tuple of lists


	([inputs], [outputs], [weights])















	
save_checkpoint(max_checkpoints_to_keep: int = 5, model_dir: str | None = None) → None[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/torch_model.py#L987-L1033]

	Save a checkpoint to disk.

Usually you do not need to call this method, since fit() saves checkpoints
automatically.  If you have disabled automatic checkpointing during fitting,
this can be called to manually write checkpoints.


	Parameters:

	
	max_checkpoints_to_keep (int) – the maximum number of checkpoints to keep.  Older checkpoints are discarded.
If set to zero, the function will simply return as no checkpoint is saved.


	model_dir (str, default None) – Model directory to save checkpoint to. If None, revert to self.model_dir













	
get_checkpoints(model_dir: str | None = None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/torch_model.py#L1035-L1050]

	Get a list of all available checkpoint files.


	Parameters:

	model_dir (str, default None) – Directory to get list of checkpoints from. Reverts to self.model_dir if None










	
restore(checkpoint: str | None = None, model_dir: str | None = None, strict: bool | None = True) → None[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/torch_model.py#L1052-L1081]

	Reload the values of all variables from a checkpoint file.


	Parameters:

	
	checkpoint (str) – the path to the checkpoint file to load.  If this is None, the most recent
checkpoint will be chosen automatically.  Call get_checkpoints() to get a
list of all available checkpoints.


	model_dir (str, default None) – Directory to restore checkpoint from. If None, use self.model_dir.  If
checkpoint is not None, this is ignored.


	strict (bool, default True) – Whether or not to strictly enforce that the keys in checkpoint match
the keys returned by this model’s get_variable_scope() method.













	
get_global_step() → int[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/torch_model.py#L1083-L1085]

	Get the number of steps of fitting that have been performed.






	
load_from_pretrained(source_model: TorchModel, assignment_map: Dict[Any, Any] | None = None, value_map: Dict[Any, Any] | None = None, checkpoint: str | None = None, model_dir: str | None = None, include_top: bool = True, inputs: Sequence[Any] | None = None, **kwargs) → None[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/torch_model.py#L1143-L1211]

	Copies parameter values from a pretrained model. source_model can either
be a pretrained model or a model with the same architecture. value_map
is a parameter-value dictionary. If no value_map is provided, the parameter
values are restored to the source_model from a checkpoint and a default
value_map is created. assignment_map is a dictionary mapping parameters
from the source_model to the current model. If no assignment_map is
provided, one is made from scratch and assumes the model is composed of
several different layers, with the final one being a dense layer. include_top
is used to control whether or not the final dense layer is used. The default
assignment map is useful in cases where the type of task is different
(classification vs regression) and/or number of tasks in the setting.


	Parameters:

	
	source_model (dc.TorchModel, required) – source_model can either be the pretrained model or a dc.TorchModel with
the same architecture as the pretrained model. It is used to restore from
a checkpoint, if value_map is None and to create a default assignment map
if assignment_map is None


	assignment_map (Dict, default None) – Dictionary mapping the source_model parameters and current model parameters


	value_map (Dict, default None) – Dictionary containing source_model trainable parameters mapped to numpy
arrays. If value_map is None, the values are restored and a default
parameter map is created using the restored values


	checkpoint (str, default None) – the path to the checkpoint file to load.  If this is None, the most recent
checkpoint will be chosen automatically.  Call get_checkpoints() to get a
list of all available checkpoints


	model_dir (str, default None) – Restore source model from custom model directory if needed


	include_top (bool, default True) – if True, copies the weights and bias associated with the final dense
layer. Used only when assignment map is None


	inputs (List, input tensors for model) – if not None, then the weights are built for both the source and self.


















ModularTorchModel

You can modify networks for different tasks by using a ModularTorchModel.


	
class ModularTorchModel(model: Module, components: dict, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/modular.py#L15-L405]

	ModularTorchModel is a subclass of TorchModel that allows for components to be
pretrained and then combined into a final model. It is designed to be subclassed
for specific models and is not intended to be used directly. There are 3 main differences
between ModularTorchModel and TorchModel:


	The build_components() method is used to define the components of the model.


	The components are combined into a final model with the build_model() method.


	The loss function is defined with the loss_func method. This may access the
components to compute the loss using intermediate values from the network, rather
than just the full forward pass output.




Here is an example of how to use ModularTorchModel to pretrain a linear layer, load
it into another network and then finetune that network:

>>> import numpy as np
>>> import deepchem as dc
>>> import torch
>>> n_samples = 6
>>> n_feat = 3
>>> n_hidden = 2
>>> n_tasks = 6
>>> pt_tasks = 3
>>> X = np.random.rand(n_samples, n_feat)
>>> y_pretrain = np.zeros((n_samples, pt_tasks)).astype(np.float32)
>>> dataset_pt = dc.data.NumpyDataset(X, y_pretrain)
>>> y_finetune = np.zeros((n_samples, n_tasks)).astype(np.float32)
>>> dataset_ft = dc.data.NumpyDataset(X, y_finetune)
>>> components = {'linear': torch.nn.Linear(n_feat, n_hidden),
... 'activation': torch.nn.ReLU(), 'head': torch.nn.Linear(n_hidden, n_tasks)}
>>> model = torch.nn.Sequential(components['linear'], components['activation'],
... components['head'])
>>> modular_model = dc.models.torch_models.modular.ModularTorchModel(model, components)
>>> def example_loss_func(inputs, labels, weights):
...    return (torch.nn.functional.mse_loss(model(inputs), labels[0]) * weights[0]).mean()
>>> modular_model.loss_func = example_loss_func
>>> def example_model_build():
...     return torch.nn.Sequential(components['linear'], components['activation'],
... components['head'])
>>> modular_model.build_model = example_model_build
>>> pretrain_components = {'linear': torch.nn.Linear(n_feat, n_hidden),
... 'activation': torch.nn.ReLU(), 'head': torch.nn.Linear(n_hidden, pt_tasks)}
>>> pretrain_model = torch.nn.Sequential(pretrain_components['linear'],
... pretrain_components['activation'], pretrain_components['head'])
>>> pretrain_modular_model = dc.models.torch_models.modular.ModularTorchModel(pretrain_model,
... pretrain_components)
>>> def example_pt_loss_func(inputs, labels, weights):
...     return (torch.nn.functional.mse_loss(pretrain_model(inputs), labels[0]) * weights[0]).mean()
>>> pretrain_modular_model.loss_func = example_pt_loss_func
>>> pt_loss = pretrain_modular_model.fit(dataset_pt, nb_epoch=1)
>>> modular_model.load_from_pretrained(pretrain_modular_model, components=['linear'])
>>> ft_loss = modular_model.fit(dataset_ft, nb_epoch=1)






	
__init__(model: Module, components: dict, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/modular.py#L70-L91]

	Create a ModularTorchModel.


	Parameters:

	
	model (nn.Module) – The model to be trained.


	components (dict) – A dictionary of the components of the model. The keys are the names of the
components and the values are the components themselves.













	
build_model() → Module[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/modular.py#L93-L95]

	Builds the final model from the components.






	
build_components() → dict[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/modular.py#L97-L100]

	Creates the components dictionary, with the keys being the names of the
components and the values being torch.nn.module objects.






	
loss_func(inputs: Tensor | Sequence[Tensor], labels: Sequence, weights: Sequence) → Tensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/modular.py#L102-L107]

	Defines the loss function for the model which can access the components
using self.components. The loss function should take the inputs, labels, and
weights as arguments and return the loss.






	
freeze_components(components: List[str])[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/modular.py#L109-L121]

	Freezes or unfreezes the parameters of the specified components.

Components string refers to keys in self.components.


	Parameters:

	components (List[str]) – The components to freeze.










	
unfreeze_components(components: List[str])[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/modular.py#L123-L135]

	Unfreezes the parameters of the specified components.

Components string refers to keys in self.components.


	Parameters:

	components (List[str]) – The components to unfreeze.










	
fit_generator(generator: Iterable[Tuple[Any, Any, Any]], max_checkpoints_to_keep: int = 5, checkpoint_interval: int = 1000, restore: bool = False, variables: List[Parameter] | ParameterList | None = None, loss: Callable[[List, List, List], Any] | None = None, callbacks: Callable | List[Callable] = [], all_losses: List[float] | None = None) → float[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/modular.py#L137-L277]

	Train this model on data from a generator. This method is similar to
the TorchModel implementation, but it passes the inputs directly to the
loss function, rather than passing them through the model first.  This
enables the loss to be calculated from intermediate steps of the model
and not just the final output.


	Parameters:

	
	generator (generator) – this should generate batches, each represented as a tuple of the form
(inputs, labels, weights).


	max_checkpoints_to_keep (int) – the maximum number of checkpoints to keep.  Older checkpoints are discarded.


	checkpoint_interval (int) – the frequency at which to write checkpoints, measured in training steps.
Set this to 0 to disable automatic checkpointing.


	restore (bool) – if True, restore the model from the most recent checkpoint and continue training
from there.  If False, retrain the model from scratch.


	variables (list of torch.nn.Parameter) – the variables to train.  If None (the default), all trainable variables in
the model are used.


	loss (function) – a function of the form f(outputs, labels, weights) that computes the loss
for each batch.  If None (the default), the model’s standard loss function
is used.


	callbacks (function or list of functions) – one or more functions of the form f(model, step) that will be invoked after
every step.  This can be used to perform validation, logging, etc.


	all_losses (Optional[List[float]], optional (default None)) – If specified, all logged losses are appended into this list. Note that
you can call fit() repeatedly with the same list and losses will
continue to be appended.






	Return type:

	The average loss over the most recent checkpoint interval










	
load_from_pretrained(source_model: ModularTorchModel | None = None, components: List[str] | None = None, checkpoint: str | None = None, model_dir: str | None = None, inputs: Sequence[Any] | None = None, **kwargs) → None[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/modular.py#L279-L324]

	Copies parameter values from a pretrained model. The pretrained model can be loaded as a source_model (ModularTorchModel object), checkpoint (pytorch .ckpt file) or a model_dir (directory with .ckpt files).
Specific components can be chosen by passing a list of strings with the desired component names. If both a source_model and a checkpoint/model_dir are loaded, the source_model weights will be loaded.


	Parameters:

	
	source_model (dc.ModularTorchModel, required) – source_model can either be the pretrained model or a dc.TorchModel with
the same architecture as the pretrained model. It is used to restore from
a checkpoint, if value_map is None and to create a default assignment map
if assignment_map is None


	checkpoint (str, default None) – the path to the checkpoint file to load.  If this is None, the most recent
checkpoint will be chosen automatically.  Call get_checkpoints() to get a
list of all available checkpoints


	model_dir (str, default None) – Restore source model from custom model directory if needed


	inputs (List, input tensors for model) – if not None, then the weights are built for both the source and self.













	
save_checkpoint(max_checkpoints_to_keep=5, model_dir=None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/modular.py#L326-L368]

	Saves the current state of the model and its components as a checkpoint file in the specified model directory.
It maintains a maximum number of checkpoint files, deleting the oldest one when the limit is reached.


	Parameters:

	
	max_checkpoints_to_keep (int, default 5) – Maximum number of checkpoint files to keep.


	model_dir (str, default None) – The directory to save the checkpoint file in. If None, the model_dir specified in the constructor is used.













	
restore(components: List[str] | None = None, checkpoint: str | None = None, model_dir: str | None = None) → None[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/modular.py#L370-L405]

	Restores the state of a ModularTorchModel from a checkpoint file.

If no checkpoint file is provided, it will use the latest checkpoint found in the model directory. If a list of component names is provided, only the state of those components will be restored.


	Parameters:

	
	components (Optional[List[str]]) – A list of component names to restore. If None, all components will be restored.


	checkpoint (Optional[str]) – The path to the checkpoint file. If None, the latest checkpoint in the model directory will
be used.


	model_dir (Optional[str]) – The path to the model directory. If None, the model directory used to initialize the model will be used.


















CNN


	
class CNN(n_tasks: int, n_features: int, dims: int, layer_filters: List[int] = [100], kernel_size: int | Sequence[int] = 5, strides: int | Sequence[int] = 1, weight_init_stddevs: float | Sequence[float] = 0.02, bias_init_consts: float | Sequence[float] = 1.0, weight_decay_penalty: float = 0.0, weight_decay_penalty_type: str = 'l2', dropouts: float | Sequence[float] = 0.5, activation_fns: Callable | str | Sequence[Callable | str] = 'relu', pool_type: str = 'max', mode: str = 'classification', n_classes: int = 2, uncertainty: bool = False, residual: bool = False, padding: int | str = 'valid', **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/cnn.py#L12-L206]

	A 1, 2, or 3 dimensional convolutional network for either regression or classification.

The network consists of the following sequence of layers:


	A configurable number of convolutional layers


	A global pooling layer (either max pool or average pool)


	A final fully connected layer to compute the output




It optionally can compose the model from pre-activation residual blocks, as
described in https://arxiv.org/abs/1603.05027, rather than a simple stack of
convolution layers.  This often leads to easier training, especially when using a
large number of layers.  Note that residual blocks can only be used when
successive layers have the same output shape.  Wherever the output shape changes, a
simple convolution layer will be used even if residual=True.

Examples

>>> import deepchem as dc
>>> n_samples = 10
>>> n_features = 3
>>> n_tasks = 1
>>> np.random.seed(123)
>>> X = np.random.rand(n_samples, 10, n_features)
>>> y = np.random.randint(2, size=(n_samples, n_tasks)).astype(np.float32)
>>> dataset: dc.data.Dataset = dc.data.NumpyDataset(X, y)
>>> regression_metric = dc.metrics.Metric(dc.metrics.mean_squared_error)
>>> model = CNN(n_tasks, n_features, dims=1, kernel_size=3, mode='regression')
>>> avg_loss = model.fit(dataset, nb_epoch=10)






	
__init__(n_tasks: int, n_features: int, dims: int, layer_filters: List[int] = [100], kernel_size: int | Sequence[int] = 5, strides: int | Sequence[int] = 1, weight_init_stddevs: float | Sequence[float] = 0.02, bias_init_consts: float | Sequence[float] = 1.0, weight_decay_penalty: float = 0.0, weight_decay_penalty_type: str = 'l2', dropouts: float | Sequence[float] = 0.5, activation_fns: Callable | str | Sequence[Callable | str] = 'relu', pool_type: str = 'max', mode: str = 'classification', n_classes: int = 2, uncertainty: bool = False, residual: bool = False, padding: int | str = 'valid', **kwargs) → None[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/cnn.py#L44-L183]

	TorchModel wrapper for CNN


	Parameters:

	
	n_tasks (int) – number of tasks


	n_features (int) – number of features


	dims (int) – the number of dimensions to apply convolutions over (1, 2, or 3)


	layer_filters (list) – the number of output filters for each convolutional layer in the network.
The length of this list determines the number of layers.


	kernel_size (int, tuple, or list) – a list giving the shape of the convolutional kernel for each layer.  Each
element may be either an int (use the same kernel width for every dimension)
or a tuple (the kernel width along each dimension).  Alternatively this may
be a single int or tuple instead of a list, in which case the same kernel
shape is used for every layer.


	strides (int, tuple, or list) – a list giving the stride between applications of the  kernel for each layer.
Each element may be either an int (use the same stride for every dimension)
or a tuple (the stride along each dimension).  Alternatively this may be a
single int or tuple instead of a list, in which case the same stride is
used for every layer.


	weight_init_stddevs (list or float) – the standard deviation of the distribution to use for weight initialization
of each layer.  The length of this list should equal len(layer_filters)+1,
where the final element corresponds to the dense layer.  Alternatively this
may be a single value instead of a list, in which case the same value is used
for every layer.


	bias_init_consts (list or float) – the value to initialize the biases in each layer to.  The length of this
list should equal len(layer_filters)+1, where the final element corresponds
to the dense layer.  Alternatively this may be a single value instead of a
list, in which case the same value is used for every layer.


	weight_decay_penalty (float) – the magnitude of the weight decay penalty to use


	weight_decay_penalty_type (str) – the type of penalty to use for weight decay, either ‘l1’ or ‘l2’


	dropouts (list or float) – the dropout probability to use for each layer.  The length of this list should equal len(layer_filters).
Alternatively this may be a single value instead of a list, in which case the same value is used for every layer


	activation_fns (str or list) – the torch activation function to apply to each layer. The length of this list should equal
len(layer_filters).  Alternatively this may be a single value instead of a list, in which case the
same value is used for every layer, ‘relu’ by default


	pool_type (str) – the type of pooling layer to use, either ‘max’ or ‘average’


	mode (str) – Either ‘classification’ or ‘regression’


	n_classes (int) – the number of classes to predict (only used in classification mode)


	uncertainty (bool) – if True, include extra outputs and loss terms to enable the uncertainty
in outputs to be predicted


	residual (bool) – if True, the model will be composed of pre-activation residual blocks instead
of a simple stack of convolutional layers.


	padding (str, int or tuple) – the padding to use for convolutional layers, either ‘valid’ or ‘same’













	
default_generator(dataset, epochs=1, mode='fit', deterministic=True, pad_batches=True)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/cnn.py#L185-L206]

	Create a generator that iterates batches for a dataset.

Subclasses may override this method to customize how model inputs are
generated from the data.


	Parameters:

	
	dataset (Dataset) – the data to iterate


	epochs (int) – the number of times to iterate over the full dataset


	mode (str) – allowed values are ‘fit’ (called during training), ‘predict’ (called
during prediction), and ‘uncertainty’ (called during uncertainty
prediction)


	deterministic (bool) – whether to iterate over the dataset in order, or randomly shuffle the
data for each epoch


	pad_batches (bool) – whether to pad each batch up to this model’s preferred batch size






	Returns:

	
	a generator that iterates batches, each represented as a tuple of lists


	([inputs], [outputs], [weights])




















MultitaskRegressor


	
class MultitaskRegressor(n_tasks: int, n_features: int, layer_sizes: Sequence[int] = [1000], weight_init_stddevs: float | Sequence[float] = 0.02, bias_init_consts: float | Sequence[float] = 1.0, weight_decay_penalty: float = 0.0, weight_decay_penalty_type: str = 'l2', dropouts: float | Sequence[float] = 0.5, activation_fns: Callable | str | Sequence[Callable | str] = 'relu', uncertainty: bool = False, residual: bool = False, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/fcnet.py#L188-L393]

	A fully connected network for multitask regression.

This class provides lots of options for customizing aspects of the model: the
number and widths of layers, the activation functions, regularization methods,
etc.

It optionally can compose the model from pre-activation residual blocks, as
described in https://arxiv.org/abs/1603.05027, rather than a simple stack of
dense layers.  This often leads to easier training, especially when using a
large number of layers.  Note that residual blocks can only be used when
successive layers have the same width.  Wherever the layer width changes, a
simple dense layer will be used even if residual=True.


	
__init__(n_tasks: int, n_features: int, layer_sizes: Sequence[int] = [1000], weight_init_stddevs: float | Sequence[float] = 0.02, bias_init_consts: float | Sequence[float] = 1.0, weight_decay_penalty: float = 0.0, weight_decay_penalty_type: str = 'l2', dropouts: float | Sequence[float] = 0.5, activation_fns: Callable | str | Sequence[Callable | str] = 'relu', uncertainty: bool = False, residual: bool = False, **kwargs) → None[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/fcnet.py#L203-L375]

	Create a MultitaskRegressor.

In addition to the following arguments, this class also accepts all the keywork arguments
from TensorGraph.


	Parameters:

	
	n_tasks (int) – number of tasks


	n_features (int) – number of features


	layer_sizes (list) – the size of each dense layer in the network.  The length of this list determines the number of layers.


	weight_init_stddevs (list or float) – the standard deviation of the distribution to use for weight initialization of each layer.  The length
of this list should equal len(layer_sizes)+1.  The final element corresponds to the output layer.
Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.


	bias_init_consts (list or float) – the value to initialize the biases in each layer to.  The length of this list should equal len(layer_sizes)+1.
The final element corresponds to the output layer.  Alternatively this may be a single value instead of a list,
in which case the same value is used for every layer.


	weight_decay_penalty (float) – the magnitude of the weight decay penalty to use


	weight_decay_penalty_type (str) – the type of penalty to use for weight decay, either ‘l1’ or ‘l2’


	dropouts (list or float) – the dropout probablity to use for each layer.  The length of this list should equal len(layer_sizes).
Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.


	activation_fns (list or object) – the PyTorch activation function to apply to each layer.  The length of this list should equal
len(layer_sizes).  Alternatively this may be a single value instead of a list, in which case the
same value is used for every layer.  Standard activation functions from torch.nn.functional can be specified by name.


	uncertainty (bool) – if True, include extra outputs and loss terms to enable the uncertainty
in outputs to be predicted


	residual (bool) – if True, the model will be composed of pre-activation residual blocks instead
of a simple stack of dense layers.













	
default_generator(dataset: Dataset, epochs: int = 1, mode: str = 'fit', deterministic: bool = True, pad_batches: bool = True) → Iterable[Tuple[List, List, List]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/fcnet.py#L377-L393]

	Create a generator that iterates batches for a dataset.

Subclasses may override this method to customize how model inputs are
generated from the data.


	Parameters:

	
	dataset (Dataset) – the data to iterate


	epochs (int) – the number of times to iterate over the full dataset


	mode (str) – allowed values are ‘fit’ (called during training), ‘predict’ (called
during prediction), and ‘uncertainty’ (called during uncertainty
prediction)


	deterministic (bool) – whether to iterate over the dataset in order, or randomly shuffle the
data for each epoch


	pad_batches (bool) – whether to pad each batch up to this model’s preferred batch size






	Returns:

	
	a generator that iterates batches, each represented as a tuple of lists


	([inputs], [outputs], [weights])




















MultitaskFitTransformRegressor


	
class MultitaskFitTransformRegressor(n_tasks: int, n_features: int, fit_transformers: Sequence[Transformer] = [], batch_size: int = 50, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/fcnet.py#L396-L502]

	Implements a MultitaskRegressor that performs on-the-fly transformation during fit/predict.

Examples

>>> n_samples = 10
>>> n_features = 3
>>> n_tasks = 1
>>> ids = np.arange(n_samples)
>>> X = np.random.rand(n_samples, n_features, n_features)
>>> y = np.zeros((n_samples, n_tasks))
>>> w = np.ones((n_samples, n_tasks))
>>> dataset = dc.data.NumpyDataset(X, y, w, ids)
>>> fit_transformers = [dc.trans.CoulombFitTransformer(dataset)]
>>> model = dc.models.MultitaskFitTransformRegressor(n_tasks, [n_features, n_features],
...     dropouts=[0.], learning_rate=0.003, weight_init_stddevs=[np.sqrt(6)/np.sqrt(1000)],
...     batch_size=n_samples, fit_transformers=fit_transformers)
>>> model.n_features
12






	
__init__(n_tasks: int, n_features: int, fit_transformers: Sequence[Transformer] = [], batch_size: int = 50, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/fcnet.py#L417-L458]

	Create a MultitaskFitTransformRegressor.

In addition to the following arguments, this class also accepts all the keywork arguments
from MultitaskRegressor.


	Parameters:

	
	n_tasks (int) – number of tasks


	n_features (list or int) – number of features


	fit_transformers (list) – List of dc.trans.FitTransformer objects













	
default_generator(dataset: Dataset, epochs: int = 1, mode: str = 'fit', deterministic: bool = True, pad_batches: bool = True) → Iterable[Tuple[List, List, List]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/fcnet.py#L460-L484]

	Create a generator that iterates batches for a dataset.

Subclasses may override this method to customize how model inputs are
generated from the data.


	Parameters:

	
	dataset (Dataset) – the data to iterate


	epochs (int) – the number of times to iterate over the full dataset


	mode (str) – allowed values are ‘fit’ (called during training), ‘predict’ (called
during prediction), and ‘uncertainty’ (called during uncertainty
prediction)


	deterministic (bool) – whether to iterate over the dataset in order, or randomly shuffle the
data for each epoch


	pad_batches (bool) – whether to pad each batch up to this model’s preferred batch size






	Returns:

	
	a generator that iterates batches, each represented as a tuple of lists


	([inputs], [outputs], [weights])















	
predict_on_generator(generator: Iterable[Tuple[Any, Any, Any]], transformers: List[Transformer] = [], output_types: str | Sequence[str] | None = None) → ndarray | Sequence[ndarray][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/fcnet.py#L486-L502]

	
	Parameters:

	
	generator (generator) – this should generate batches, each represented as a tuple of the form
(inputs, labels, weights).


	transformers (list of dc.trans.Transformers) – Transformers that the input data has been transformed by.  The output
is passed through these transformers to undo the transformations.


	output_types (String or list of Strings) – If specified, all outputs of this type will be retrieved
from the model. If output_types is specified, outputs must
be None.


	Returns – a NumPy array of the model produces a single output, or a list of arrays
if it produces multiple outputs


















MultitaskClassifier


	
class MultitaskClassifier(n_tasks: int, n_features: int, layer_sizes: Sequence[int] = [1000], weight_init_stddevs: float | Sequence[float] = 0.02, bias_init_consts: float | Sequence[float] = 1.0, weight_decay_penalty: float = 0.0, weight_decay_penalty_type: str = 'l2', dropouts: float | Sequence[float] = 0.5, activation_fns: Callable | str | Sequence[Callable | str] = 'relu', n_classes: int = 2, residual: bool = False, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/fcnet.py#L21-L185]

	A fully connected network for multitask classification.

This class provides lots of options for customizing aspects of the model: the
number and widths of layers, the activation functions, regularization methods,
etc.

It optionally can compose the model from pre-activation residual blocks, as
described in https://arxiv.org/abs/1603.05027, rather than a simple stack of
dense layers.  This often leads to easier training, especially when using a
large number of layers.  Note that residual blocks can only be used when
successive layers have the same width.  Wherever the layer width changes, a
simple dense layer will be used even if residual=True.


	
__init__(n_tasks: int, n_features: int, layer_sizes: Sequence[int] = [1000], weight_init_stddevs: float | Sequence[float] = 0.02, bias_init_consts: float | Sequence[float] = 1.0, weight_decay_penalty: float = 0.0, weight_decay_penalty_type: str = 'l2', dropouts: float | Sequence[float] = 0.5, activation_fns: Callable | str | Sequence[Callable | str] = 'relu', n_classes: int = 2, residual: bool = False, **kwargs) → None[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/fcnet.py#L36-L168]

	Create a MultitaskClassifier.

In addition to the following arguments, this class also accepts
all the keyword arguments from TensorGraph.


	Parameters:

	
	n_tasks (int) – number of tasks


	n_features (int) – number of features


	layer_sizes (list) – the size of each dense layer in the network.  The length of
this list determines the number of layers.


	weight_init_stddevs (list or float) – the standard deviation of the distribution to use for weight
initialization of each layer.  The length of this list should
equal len(layer_sizes).  Alternatively this may be a single
value instead of a list, in which case the same value is used
for every layer.


	bias_init_consts (list or float) – the value to initialize the biases in each layer to.  The
length of this list should equal len(layer_sizes).
Alternatively this may be a single value instead of a list, in
which case the same value is used for every layer.


	weight_decay_penalty (float) – the magnitude of the weight decay penalty to use


	weight_decay_penalty_type (str) – the type of penalty to use for weight decay, either ‘l1’ or ‘l2’


	dropouts (list or float) – the dropout probablity to use for each layer.  The length of this list should equal len(layer_sizes).
Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.


	activation_fns (list or object) – the PyTorch activation function to apply to each layer.  The length of this list should equal
len(layer_sizes).  Alternatively this may be a single value instead of a list, in which case the
same value is used for every layer.  Standard activation functions from torch.nn.functional can be specified by name.


	n_classes (int) – the number of classes


	residual (bool) – if True, the model will be composed of pre-activation residual blocks instead
of a simple stack of dense layers.













	
default_generator(dataset: Dataset, epochs: int = 1, mode: str = 'fit', deterministic: bool = True, pad_batches: bool = True) → Iterable[Tuple[List, List, List]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/fcnet.py#L170-L185]

	Create a generator that iterates batches for a dataset.

Subclasses may override this method to customize how model inputs are
generated from the data.


	Parameters:

	
	dataset (Dataset) – the data to iterate


	epochs (int) – the number of times to iterate over the full dataset


	mode (str) – allowed values are ‘fit’ (called during training), ‘predict’ (called
during prediction), and ‘uncertainty’ (called during uncertainty
prediction)


	deterministic (bool) – whether to iterate over the dataset in order, or randomly shuffle the
data for each epoch


	pad_batches (bool) – whether to pad each batch up to this model’s preferred batch size






	Returns:

	
	a generator that iterates batches, each represented as a tuple of lists


	([inputs], [outputs], [weights])




















CGCNNModel


	
class CGCNNModel(in_node_dim: int = 92, hidden_node_dim: int = 64, in_edge_dim: int = 41, num_conv: int = 3, predictor_hidden_feats: int = 128, n_tasks: int = 1, mode: str = 'regression', n_classes: int = 2, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/cgcnn.py#L250-L362]

	Crystal Graph Convolutional Neural Network (CGCNN).

Here is a simple example of code that uses the CGCNNModel with
materials dataset.

Examples

>>> import deepchem as dc
>>> dataset_config = {"reload": False, "featurizer": dc.feat.CGCNNFeaturizer(), "transformers": []}
>>> tasks, datasets, transformers = dc.molnet.load_perovskite(**dataset_config)
>>> train, valid, test = datasets
>>> model = dc.models.CGCNNModel(mode='regression', batch_size=32, learning_rate=0.001)
>>> avg_loss = model.fit(train, nb_epoch=50)





This model takes arbitary crystal structures as an input, and predict material properties
using the element information and connection of atoms in the crystal. If you want to get
some material properties which has a high computational cost like band gap in the case
of DFT, this model may be useful. This model is one of variants of Graph Convolutional
Networks. The main differences between other GCN models are how to construct graphs and
how to update node representations. This model defines the crystal graph from structures
using distances between atoms. The crystal graph is an undirected multigraph which is defined
by nodes representing atom properties and edges representing connections between atoms
in a crystal. And, this model updates the node representations using both neighbor node
and edge representations. Please confirm the detail algorithms from [1]_.

References



[1]
Xie, Tian, and Jeffrey C. Grossman. “Crystal graph convolutional neural networks
for an accurate and interpretable prediction of material properties.” Physical review letters
120.14 (2018): 145301.



Notes

This class requires DGL and PyTorch to be installed.


	
__init__(in_node_dim: int = 92, hidden_node_dim: int = 64, in_edge_dim: int = 41, num_conv: int = 3, predictor_hidden_feats: int = 128, n_tasks: int = 1, mode: str = 'regression', n_classes: int = 2, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/cgcnn.py#L287-L333]

	This class accepts all the keyword arguments from TorchModel.


	Parameters:

	
	in_node_dim (int, default 92) – The length of the initial node feature vectors. The 92 is
based on length of vectors in the atom_init.json.


	hidden_node_dim (int, default 64) – The length of the hidden node feature vectors.


	in_edge_dim (int, default 41) – The length of the initial edge feature vectors. The 41 is
based on default setting of CGCNNFeaturizer.


	num_conv (int, default 3) – The number of convolutional layers.


	predictor_hidden_feats (int, default 128) – The size for hidden representations in the output MLP predictor.


	n_tasks (int, default 1) – The number of the output size.


	mode (str, default 'regression') – The model type, ‘classification’ or ‘regression’.


	n_classes (int, default 2) – The number of classes to predict (only used in classification mode).


	kwargs (Dict) – This class accepts all the keyword arguments from TorchModel.


















GATModel


	
class GATModel(n_tasks: int, graph_attention_layers: list | None = None, n_attention_heads: int = 8, agg_modes: list | None = None, activation=<function elu>, residual: bool = True, dropout: float = 0.0, alpha: float = 0.2, predictor_hidden_feats: int = 128, predictor_dropout: float = 0.0, mode: str = 'regression', number_atom_features: int = 30, n_classes: int = 2, self_loop: bool = True, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/gat.py#L220-L376]

	Model for Graph Property Prediction Based on Graph Attention Networks (GAT).

This model proceeds as follows:


	Update node representations in graphs with a variant of GAT


	
	For each graph, compute its representation by 1) a weighted sum of the node
	representations in the graph, where the weights are computed by applying a
gating function to the node representations 2) a max pooling of the node
representations 3) concatenating the output of 1) and 2)







	Perform the final prediction using an MLP




Examples

>>> import deepchem as dc
>>> from deepchem.models import GATModel
>>> # preparing dataset
>>> smiles = ["C1CCC1", "C1=CC=CN=C1"]
>>> labels = [0., 1.]
>>> featurizer = dc.feat.MolGraphConvFeaturizer()
>>> X = featurizer.featurize(smiles)
>>> dataset = dc.data.NumpyDataset(X=X, y=labels)
>>> # training model
>>> model = GATModel(mode='classification', n_tasks=1,
...                  batch_size=16, learning_rate=0.001)
>>> loss = model.fit(dataset, nb_epoch=5)





References



[1]
Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò,
and Yoshua Bengio. “Graph Attention Networks.” ICLR 2018.



Notes

This class requires DGL (https://github.com/dmlc/dgl) and DGL-LifeSci
(https://github.com/awslabs/dgl-lifesci) to be installed.


	
__init__(n_tasks: int, graph_attention_layers: list | None = None, n_attention_heads: int = 8, agg_modes: list | None = None, activation=<function elu>, residual: bool = True, dropout: float = 0.0, alpha: float = 0.2, predictor_hidden_feats: int = 128, predictor_dropout: float = 0.0, mode: str = 'regression', number_atom_features: int = 30, n_classes: int = 2, self_loop: bool = True, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/gat.py#L258-L345]

	
	Parameters:

	
	n_tasks (int) – Number of tasks.


	graph_attention_layers (list of int) – Width of channels per attention head for GAT layers. graph_attention_layers[i]
gives the width of channel for each attention head for the i-th GAT layer. If
both graph_attention_layers and agg_modes are specified, they should have
equal length. If not specified, the default value will be [8, 8].


	n_attention_heads (int) – Number of attention heads in each GAT layer.


	agg_modes (list of str) – The way to aggregate multi-head attention results for each GAT layer, which can be
either ‘flatten’ for concatenating all-head results or ‘mean’ for averaging all-head
results. agg_modes[i] gives the way to aggregate multi-head attention results for
the i-th GAT layer. If both graph_attention_layers and agg_modes are
specified, they should have equal length. If not specified, the model will flatten
multi-head results for intermediate GAT layers and compute mean of multi-head results
for the last GAT layer.


	activation (activation function or None) – The activation function to apply to the aggregated multi-head results for each GAT
layer. If not specified, the default value will be ELU.


	residual (bool) – Whether to add a residual connection within each GAT layer. Default to True.


	dropout (float) – The dropout probability within each GAT layer. Default to 0.


	alpha (float) – A hyperparameter in LeakyReLU, which is the slope for negative values. Default to 0.2.


	predictor_hidden_feats (int) – The size for hidden representations in the output MLP predictor. Default to 128.


	predictor_dropout (float) – The dropout probability in the output MLP predictor. Default to 0.


	mode (str) – The model type, ‘classification’ or ‘regression’. Default to ‘regression’.


	number_atom_features (int) – The length of the initial atom feature vectors. Default to 30.


	n_classes (int) – The number of classes to predict per task
(only used when mode is ‘classification’). Default to 2.


	self_loop (bool) – Whether to add self loops for the nodes, i.e. edges from nodes to themselves.
When input graphs have isolated nodes, self loops allow preserving the original feature
of them in message passing. Default to True.


	kwargs – This can include any keyword argument of TorchModel.


















GCNModel


	
class GCNModel(n_tasks: int, graph_conv_layers: list | None = None, activation=None, residual: bool = True, batchnorm: bool = False, dropout: float = 0.0, predictor_hidden_feats: int = 128, predictor_dropout: float = 0.0, mode: str = 'regression', number_atom_features=30, n_classes: int = 2, self_loop: bool = True, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/gcn.py#L202-L358]

	Model for Graph Property Prediction Based on Graph Convolution Networks (GCN).

This model proceeds as follows:


	Update node representations in graphs with a variant of GCN


	
	For each graph, compute its representation by 1) a weighted sum of the node
	representations in the graph, where the weights are computed by applying a
gating function to the node representations 2) a max pooling of the node
representations 3) concatenating the output of 1) and 2)







	Perform the final prediction using an MLP




Examples

>>> import deepchem as dc
>>> from deepchem.models import GCNModel
>>> # preparing dataset
>>> smiles = ["C1CCC1", "CCC"]
>>> labels = [0., 1.]
>>> featurizer = dc.feat.MolGraphConvFeaturizer()
>>> X = featurizer.featurize(smiles)
>>> dataset = dc.data.NumpyDataset(X=X, y=labels)
>>> # training model
>>> model = GCNModel(mode='classification', n_tasks=1,
...                  batch_size=16, learning_rate=0.001)
>>> loss = model.fit(dataset, nb_epoch=5)





References



[1]
Thomas N. Kipf and Max Welling. “Semi-Supervised Classification with Graph
Convolutional Networks.” ICLR 2017.



Notes

This class requires DGL (https://github.com/dmlc/dgl) and DGL-LifeSci
(https://github.com/awslabs/dgl-lifesci) to be installed.

This model is different from deepchem.models.GraphConvModel as follows:


	
	For each graph convolution, the learnable weight in this model is shared across all nodes.
	GraphConvModel employs separate learnable weights for nodes of different degrees. A
learnable weight is shared across all nodes of a particular degree.







	
	For GraphConvModel, there is an additional GraphPool operation after each
	graph convolution. The operation updates the representation of a node by applying an
element-wise maximum over the representations of its neighbors and itself.







	
	For computing graph-level representations, this model computes a weighted sum and an
	element-wise maximum of the representations of all nodes in a graph and concatenates them.
The node weights are obtained by using a linear/dense layer followd by a sigmoid function.
For GraphConvModel, the sum over node representations is unweighted.







	
	There are various minor differences in using dropout, skip connection and batch
	normalization.










	
__init__(n_tasks: int, graph_conv_layers: list | None = None, activation=None, residual: bool = True, batchnorm: bool = False, dropout: float = 0.0, predictor_hidden_feats: int = 128, predictor_dropout: float = 0.0, mode: str = 'regression', number_atom_features=30, n_classes: int = 2, self_loop: bool = True, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/gcn.py#L255-L327]

	
	Parameters:

	
	n_tasks (int) – Number of tasks.


	graph_conv_layers (list of int) – Width of channels for GCN layers. graph_conv_layers[i] gives the width of channel
for the i-th GCN layer. If not specified, the default value will be [64, 64].


	activation (callable) – The activation function to apply to the output of each GCN layer.
By default, no activation function will be applied.


	residual (bool) – Whether to add a residual connection within each GCN layer. Default to True.


	batchnorm (bool) – Whether to apply batch normalization to the output of each GCN layer.
Default to False.


	dropout (float) – The dropout probability for the output of each GCN layer. Default to 0.


	predictor_hidden_feats (int) – The size for hidden representations in the output MLP predictor. Default to 128.


	predictor_dropout (float) – The dropout probability in the output MLP predictor. Default to 0.


	mode (str) – The model type, ‘classification’ or ‘regression’. Default to ‘regression’.


	number_atom_features (int) – The length of the initial atom feature vectors. Default to 30.


	n_classes (int) – The number of classes to predict per task
(only used when mode is ‘classification’). Default to 2.


	self_loop (bool) – Whether to add self loops for the nodes, i.e. edges from nodes to themselves.
When input graphs have isolated nodes, self loops allow preserving the original feature
of them in message passing. Default to True.


	kwargs – This can include any keyword argument of TorchModel.


















AttentiveFPModel


	
class AttentiveFPModel(n_tasks: int, num_layers: int = 2, num_timesteps: int = 2, graph_feat_size: int = 200, dropout: float = 0.0, mode: str = 'regression', number_atom_features: int = 30, number_bond_features: int = 11, n_classes: int = 2, self_loop: bool = True, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/attentivefp.py#L179-L312]

	Model for Graph Property Prediction.

This model proceeds as follows:


	
	Combine node features and edge features for initializing node representations,
	which involves a round of message passing







	Update node representations with multiple rounds of message passing


	
	For each graph, compute its representation by combining the representations
	of all nodes in it, which involves a gated recurrent unit (GRU).







	Perform the final prediction using a linear layer




Examples

>>> import deepchem as dc
>>> from deepchem.models import AttentiveFPModel
>>> # preparing dataset
>>> smiles = ["C1CCC1", "C1=CC=CN=C1"]
>>> labels = [0., 1.]
>>> featurizer = dc.feat.MolGraphConvFeaturizer(use_edges=True)
>>> X = featurizer.featurize(smiles)
>>> dataset = dc.data.NumpyDataset(X=X, y=labels)
>>> # training model
>>> model = AttentiveFPModel(mode='classification', n_tasks=1,
...    batch_size=16, learning_rate=0.001)
>>> loss = model.fit(dataset, nb_epoch=5)





References



[1]
Zhaoping Xiong, Dingyan Wang, Xiaohong Liu, Feisheng Zhong, Xiaozhe Wan, Xutong Li,
Zhaojun Li, Xiaomin Luo, Kaixian Chen, Hualiang Jiang, and Mingyue Zheng. “Pushing
the Boundaries of Molecular Representation for Drug Discovery with the Graph
Attention Mechanism.” Journal of Medicinal Chemistry. 2020, 63, 16, 8749–8760.



Notes

This class requires DGL (https://github.com/dmlc/dgl) and DGL-LifeSci
(https://github.com/awslabs/dgl-lifesci) to be installed.


	
__init__(n_tasks: int, num_layers: int = 2, num_timesteps: int = 2, graph_feat_size: int = 200, dropout: float = 0.0, mode: str = 'regression', number_atom_features: int = 30, number_bond_features: int = 11, n_classes: int = 2, self_loop: bool = True, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/attentivefp.py#L219-L281]

	
	Parameters:

	
	n_tasks (int) – Number of tasks.


	num_layers (int) – Number of graph neural network layers, i.e. number of rounds of message passing.
Default to 2.


	num_timesteps (int) – Number of time steps for updating graph representations with a GRU. Default to 2.


	graph_feat_size (int) – Size for graph representations. Default to 200.


	dropout (float) – Dropout probability. Default to 0.


	mode (str) – The model type, ‘classification’ or ‘regression’. Default to ‘regression’.


	number_atom_features (int) – The length of the initial atom feature vectors. Default to 30.


	number_bond_features (int) – The length of the initial bond feature vectors. Default to 11.


	n_classes (int) – The number of classes to predict per task
(only used when mode is ‘classification’). Default to 2.


	self_loop (bool) – Whether to add self loops for the nodes, i.e. edges from nodes to themselves.
When input graphs have isolated nodes, self loops allow preserving the original feature
of them in message passing. Default to True.


	kwargs – This can include any keyword argument of TorchModel.


















PagtnModel


	
class PagtnModel(n_tasks: int, number_atom_features: int = 94, number_bond_features: int = 42, mode: str = 'regression', n_classes: int = 2, output_node_features: int = 256, hidden_features: int = 32, num_layers: int = 5, num_heads: int = 1, dropout: float = 0.1, pool_mode: str = 'sum', **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/pagtn.py#L184-L316]

	Model for Graph Property Prediction.

This model proceeds as follows:


	
	Update node representations in graphs with a variant of GAT, where a
	linear additive form of attention is applied. Attention Weights are derived
by concatenating the node and edge features for each bond.







	Update node representations with multiple rounds of message passing.


	For each layer has, residual connections with its previous layer.


	
	The final molecular representation is computed by combining the representations
	of all nodes in the molecule.







	Perform the final prediction using a linear layer




Examples

>>> import deepchem as dc
>>> from deepchem.models import PagtnModel
>>> # preparing dataset
>>> smiles = ["C1CCC1", "CCC"]
>>> labels = [0., 1.]
>>> featurizer = dc.feat.PagtnMolGraphFeaturizer(max_length=5)
>>> X = featurizer.featurize(smiles)
>>> dataset = dc.data.NumpyDataset(X=X, y=labels)
>>> # training model
>>> model = PagtnModel(mode='classification', n_tasks=1,
...                    batch_size=16, learning_rate=0.001)
>>> loss = model.fit(dataset, nb_epoch=5)





References



[1]
Benson Chen, Regina Barzilay, Tommi Jaakkola. “Path-Augmented
Graph Transformer Network.” arXiv:1905.12712



Notes

This class requires DGL (https://github.com/dmlc/dgl) and DGL-LifeSci
(https://github.com/awslabs/dgl-lifesci) to be installed.


	
__init__(n_tasks: int, number_atom_features: int = 94, number_bond_features: int = 42, mode: str = 'regression', n_classes: int = 2, output_node_features: int = 256, hidden_features: int = 32, num_layers: int = 5, num_heads: int = 1, dropout: float = 0.1, pool_mode: str = 'sum', **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/pagtn.py#L224-L287]

	
	Parameters:

	
	n_tasks (int) – Number of tasks.


	number_atom_features (int) – Size for the input node features. Default to 94.


	number_bond_features (int) – Size for the input edge features. Default to 42.


	mode (str) – The model type, ‘classification’ or ‘regression’. Default to ‘regression’.


	n_classes (int) – The number of classes to predict per task
(only used when mode is ‘classification’). Default to 2.


	output_node_features (int) – Size for the output node features in PAGTN layers. Default to 256.


	hidden_features (int) – Size for the hidden node features in PAGTN layers. Default to 32.


	num_layers (int) – Number of graph neural network layers, i.e. number of rounds of message passing.
Default to 2.


	num_heads (int) – Number of attention heads. Default to 1.


	dropout (float) – Dropout probability. Default to 0.1


	pool_mode ('max' or 'mean' or 'sum') – Whether to compute elementwise maximum, mean or sum of the node representations.


	kwargs – This can include any keyword argument of TorchModel.


















AtomConvModel


	
class AtomConvModel(n_tasks: int, frag1_num_atoms: int = 70, frag2_num_atoms: int = 634, complex_num_atoms: int = 701, max_num_neighbors: int = 12, batch_size: int = 24, atom_types: Sequence[float] = [6, 7.0, 8.0, 9.0, 11.0, 12.0, 15.0, 16.0, 17.0, 20.0, 25.0, 30.0, 35.0, 53.0, -1.0], radial: Sequence[Sequence[float]] = [[1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0, 10.5, 11.0, 11.5, 12.0], [0.0, 4.0, 8.0], [0.4]], layer_sizes=[100], weight_init_stddevs: float | Sequence[float] = 0.02, bias_init_consts: float | Sequence[float] = 1.0, weight_decay_penalty: float = 0.0, weight_decay_penalty_type: str = 'l2', dropouts: float | Sequence[float] = 0.5, activation_fns: Callable | str | Sequence[Callable | str] = ['relu'], residual: bool = False, learning_rate=0.001, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/acnn.py#L12-L299]

	An Atomic Convolutional Neural Network (ACNN) for energy score prediction.

The network follows the design of a graph convolutional network but in this case the graph is represented
as a 3D structure of the molecule. The objective of this model is to train models and predict energetic
state starting from the spatial geometry of the model [1].

References



[1]
Gomes, Joseph, et al. “Atomic convolutional networks for predicting protein-ligand binding affinity.” arXiv preprint arXiv:1703.10603 (2017).



Examples

>>> from deepchem.models.torch_models import AtomConvModel
>>> from deepchem.data import NumpyDataset
>>> frag1_num_atoms = 100 # atoms for ligand
>>> frag2_num_atoms = 1200 # atoms for protein
>>> complex_num_atoms = frag1_num_atoms + frag2_num_atoms
>>> batch_size = 1
>>> # Initialize the model
>>> atomic_convnet = AtomConvModel(n_tasks=1,
...                                batch_size=batch_size,
...                                layer_sizes=[
...                                    10,
...                                ],
...                                frag1_num_atoms=frag1_num_atoms,
...                                frag2_num_atoms=frag2_num_atoms,
...                                complex_num_atoms=complex_num_atoms)
>>> # Creates a set of dummy features that contain the coordinate and
>>> # neighbor-list features required by the AtomicConvModel.
>>> # Preparing the dataset
>>> features = []
>>> frag1_coords = np.random.rand(frag1_num_atoms, 3)
>>> frag1_nbr_list = {i: [] for i in range(frag1_num_atoms)}
>>> frag1_z = np.random.randint(10, size=(frag1_num_atoms))
>>> frag2_coords = np.random.rand(frag2_num_atoms, 3)
>>> frag2_nbr_list = {i: [] for i in range(frag2_num_atoms)}
>>> frag2_z = np.random.randint(10, size=(frag2_num_atoms))
>>> system_coords = np.random.rand(complex_num_atoms, 3)
>>> system_nbr_list = {i: [] for i in range(complex_num_atoms)}
>>> system_z = np.random.randint(10, size=(complex_num_atoms))
>>> features.append((frag1_coords, frag1_nbr_list, frag1_z, frag2_coords, frag2_nbr_list, frag2_z, system_coords, system_nbr_list, system_z))
>>> features = np.asarray(features, dtype=object)
>>> labels = np.zeros(batch_size)
>>> train = NumpyDataset(features, labels)
>>> _ = atomic_convnet.fit(train, nb_epoch=1)
>>> preds = atomic_convnet.predict(train)






	
__init__(n_tasks: int, frag1_num_atoms: int = 70, frag2_num_atoms: int = 634, complex_num_atoms: int = 701, max_num_neighbors: int = 12, batch_size: int = 24, atom_types: Sequence[float] = [6, 7.0, 8.0, 9.0, 11.0, 12.0, 15.0, 16.0, 17.0, 20.0, 25.0, 30.0, 35.0, 53.0, -1.0], radial: Sequence[Sequence[float]] = [[1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0, 10.5, 11.0, 11.5, 12.0], [0.0, 4.0, 8.0], [0.4]], layer_sizes=[100], weight_init_stddevs: float | Sequence[float] = 0.02, bias_init_consts: float | Sequence[float] = 1.0, weight_decay_penalty: float = 0.0, weight_decay_penalty_type: str = 'l2', dropouts: float | Sequence[float] = 0.5, activation_fns: Callable | str | Sequence[Callable | str] = ['relu'], residual: bool = False, learning_rate=0.001, **kwargs) → None[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/acnn.py#L61-L178]

	TorchModel wrapper for ACNN


	Parameters:

	
	n_tasks (int) – number of tasks


	frag1_num_atoms (int) – Number of atoms in first fragment.


	frag2_num_atoms (int) – Number of atoms in second fragment.


	complex_num_atoms (int) – Number of atoms in complex.


	max_num_neighbors (int) – Maximum number of neighbors possible for an atom. Recall neighbors
are spatial neighbors.


	batch_size (int) – Size of the batch.


	atom_types (list) – List of atoms recognized by model. Atoms are indicated by their
nuclear numbers.


	radial (list) – Radial parameters used in the atomic convolution transformation.


	layer_sizes (list) – the size of each dense layer in the network.  The length of
this list determines the number of layers.


	weight_init_stddevs (list or float) – the standard deviation of the distribution to use for weight
initialization of each layer.  The length of this list should
equal len(layer_sizes).  Alternatively, this may be a single
value instead of a list, where the same value is used
for every layer.


	bias_init_consts (list or float) – the value to initialize the biases in each layer.  The
length of this list should equal len(layer_sizes).
Alternatively, this may be a single value instead of a list, where the same value is used for every layer.


	dropouts (list or float) – the dropout probability to use for each layer.  The length of this list should equal len(layer_sizes).
Alternatively, this may be a single value instead of a list, where the same value is used for every layer.


	activation_fns (list or object) – the Tensorflow activation function to apply to each layer.  The length of this list should equal
len(layer_sizes).  Alternatively, this may be a single value instead of a list, where the
same value is used for every layer.


	residual (bool) – Whether to use residual connections.


	learning_rate (float) – the learning rate to use for fitting.













	
default_generator(dataset: Dataset, epochs: int = 1, mode: str = 'fit', deterministic: bool = True, pad_batches: bool = True) → Iterable[Tuple[List, List, List]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/acnn.py#L180-L299]

	Convert a dataset into the tensors needed for learning.


	Parameters:

	
	dataset (dc.data.Dataset) – Dataset to convert


	epochs (int, optional (Default 1)) – Number of times to walk over dataset


	mode (str, optional (Default 'fit')) – Ignored in this implementation.


	deterministic (bool, optional (Default True)) – Whether the dataset should be walked in a deterministic fashion


	pad_batches (bool, optional (Default True)) – If true, each returned batch will have size self.batch_size.






	Return type:

	Iterator which walks over the batches















MPNNModel

Note that this is an alternative implementation for MPNN and currently you can only import it from
deepchem.models.torch_models.


	
class MPNNModel(n_tasks: int, node_out_feats: int = 64, edge_hidden_feats: int = 128, num_step_message_passing: int = 3, num_step_set2set: int = 6, num_layer_set2set: int = 3, mode: str = 'regression', number_atom_features: int = 30, number_bond_features: int = 11, n_classes: int = 2, self_loop: bool = False, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/mpnn.py#L179-L312]

	Model for graph property prediction

This model proceeds as follows:


	
	Combine latest node representations and edge features in updating node representations,
	which involves multiple rounds of message passing







	
	For each graph, compute its representation by combining the representations
	of all nodes in it, which involves a Set2Set layer.







	Perform the final prediction using an MLP




Examples

>>> import deepchem as dc
>>> from deepchem.models.torch_models import MPNNModel
>>> # preparing dataset
>>> smiles = ["C1CCC1", "CCC"]
>>> labels = [0., 1.]
>>> featurizer = dc.feat.MolGraphConvFeaturizer(use_edges=True)
>>> X = featurizer.featurize(smiles)
>>> dataset = dc.data.NumpyDataset(X=X, y=labels)
>>> # training model
>>> model = MPNNModel(mode='classification', n_tasks=1,
...                  batch_size=16, learning_rate=0.001)
>>> loss =  model.fit(dataset, nb_epoch=5)





References



[1]
Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, George E. Dahl.
“Neural Message Passing for Quantum Chemistry.” ICML 2017.



Notes

This class requires DGL (https://github.com/dmlc/dgl) and DGL-LifeSci
(https://github.com/awslabs/dgl-lifesci) to be installed.

The featurizer used with MPNNModel must produce a GraphData object which should have both ‘edge’ and ‘node’ features.


	
__init__(n_tasks: int, node_out_feats: int = 64, edge_hidden_feats: int = 128, num_step_message_passing: int = 3, num_step_set2set: int = 6, num_layer_set2set: int = 3, mode: str = 'regression', number_atom_features: int = 30, number_bond_features: int = 11, n_classes: int = 2, self_loop: bool = False, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/mpnn.py#L217-L281]

	
	Parameters:

	
	n_tasks (int) – Number of tasks.


	node_out_feats (int) – The length of the final node representation vectors. Default to 64.


	edge_hidden_feats (int) – The length of the hidden edge representation vectors. Default to 128.


	num_step_message_passing (int) – The number of rounds of message passing. Default to 3.


	num_step_set2set (int) – The number of set2set steps. Default to 6.


	num_layer_set2set (int) – The number of set2set layers. Default to 3.


	mode (str) – The model type, ‘classification’ or ‘regression’. Default to ‘regression’.


	number_atom_features (int) – The length of the initial atom feature vectors. Default to 30.


	number_bond_features (int) – The length of the initial bond feature vectors. Default to 11.


	n_classes (int) – The number of classes to predict per task
(only used when mode is ‘classification’). Default to 2.


	self_loop (bool) – Whether to add self loops for the nodes, i.e. edges from nodes to themselves.
Generally, an MPNNModel does not require self loops. Default to False.


	kwargs – This can include any keyword argument of TorchModel.


















InfoGraphModel


	
class InfoGraphModel(num_features, embedding_dim, num_gc_layers=5, prior=True, gamma=0.1, measure='JSD', average_loss=True, task='pretraining', n_tasks: int | None = None, n_classes: int | None = None, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/infograph.py#L289-L496]

	InfoGraphMode

InfoGraphModel is a model which learn graph-level representation via unsupervised learning. To this end,
the model aims to maximize the mutual information between the representations of entire graphs and the representations of substructures of different granularity (eg. nodes, edges, triangles)

The unsupervised training of InfoGraph involves two encoders: one that encodes the entire graph and another that encodes substructures of different sizes. The mutual information between the two encoder outputs is maximized using a contrastive loss function.
The model randomly samples pairs of graphs and substructures, and then maximizes their mutual information by minimizing their distance in a learned embedding space.

This can be used for downstream tasks such as graph classification and molecular property prediction.It is implemented as a ModularTorchModel in order to facilitate transfer learning.

References


	Sun, F.-Y., Hoffmann, J., Verma, V. & Tang, J. InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization. Preprint at http://arxiv.org/abs/1908.01000 (2020).





	Parameters:

	
	num_features (int) – Number of node features for each input


	edge_features (int) – Number of edge features for each input


	embedding_dim (int) – Dimension of the embedding


	num_gc_layers (int) – Number of graph convolutional layers


	prior (bool) – Whether to use a prior expectation in the loss term


	gamma (float) – Weight of the prior expectation in the loss term


	measure (str) – The divergence measure to use for the unsupervised loss. Options are ‘GAN’, ‘JSD’,
‘KL’, ‘RKL’, ‘X2’, ‘DV’, ‘H2’, or ‘W1’.


	average_loss (bool) – Whether to average the loss over the batch


	n_classes (int) – Number of classses








Example

>>> from deepchem.models.torch_models.infograph import InfoGraphModel
>>> from deepchem.feat import MolGraphConvFeaturizer
>>> from deepchem.data import NumpyDataset
>>> import torch
>>> import numpy as np
>>> import tempfile
>>> tempdir = tempfile.TemporaryDirectory()
>>> smiles = ["C1CCC1", "C1=CC=CN=C1"]
>>> featurizer = MolGraphConvFeaturizer(use_edges=True)
>>> X = featurizer.featurize(smiles)
>>> y = torch.randint(0, 2, size=(2, 1)).float()
>>> w = torch.ones(size=(2, 1)).float()
>>> dataset = NumpyDataset(X, y, w)
>>> num_feat, edge_dim = 30, 11  # num feat and edge dim by molgraph conv featurizer
>>> pretrain_model = InfoGraphModel(num_feat, edge_dim, num_gc_layers=1, task='pretraining', model_dir=tempdir.name)
>>> pretraining_loss = pretrain_model.fit(dataset, nb_epoch=1)
>>> pretrain_model.save_checkpoint()
>>> finetune_model = InfoGraphModel(num_feat, edge_dim, num_gc_layers=1, task='regression', n_tasks=1, model_dir=tempdir.name)
>>> finetune_model.restore(components=['encoder'])
>>> finetuning_loss = finetune_model.fit(dataset)
>>>
>>> # classification example
>>> n_classes, n_tasks = 2, 1
>>> classification_model = InfoGraphModel(num_feat, edge_dim, num_gc_layers=1, task='classification', n_tasks=1, n_classes=2)
>>> y = np.random.randint(n_classes, size=(len(smiles), n_tasks)).astype(np.float64)
>>> dataset = NumpyDataset(X, y, w)
>>> loss = classification_model.fit(dataset, nb_epoch=1)






	
__init__(num_features, embedding_dim, num_gc_layers=5, prior=True, gamma=0.1, measure='JSD', average_loss=True, task='pretraining', n_tasks: int | None = None, n_classes: int | None = None, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/infograph.py#L357-L387]

	Create a ModularTorchModel.


	Parameters:

	
	model (nn.Module) – The model to be trained.


	components (dict) – A dictionary of the components of the model. The keys are the names of the
components and the values are the components themselves.













	
build_components() → dict[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/infograph.py#L389-L433]

	Build the components of the model. InfoGraph is an unsupervised molecular graph representation learning model. It consists of an encoder, a local discriminator, a global discriminator, and a prior discriminator.

The unsupervised loss is calculated by the mutual information in embedding representations at all layers.


Components list, type and description:

encoder: GINEncoder, graph convolutional encoder

local_d: MultilayerPerceptron, local discriminator

global_d: MultilayerPerceptron, global discriminator

prior_d: MultilayerPerceptron, prior discriminator
fc1: MultilayerPerceptron, dense layer used during finetuning
fc2: MultilayerPerceptron, dense layer used during finetuning







	
build_model() → Module[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/infograph.py#L435-L440]

	Builds the final model from the components.






	
loss_func(inputs, labels, weights)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/infograph.py#L442-L463]

	Defines the loss function for the model which can access the components
using self.components. The loss function should take the inputs, labels, and
weights as arguments and return the loss.






	
restore(components: List[str] | None = None, checkpoint: str | None = None, model_dir: str | None = None, map_location: device | None = None) → None[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/infograph.py#L480-L496]

	Restores the state of a ModularTorchModel from a checkpoint file.

If no checkpoint file is provided, it will use the latest checkpoint found in the model directory. If a list of component names is provided, only the state of those components will be restored.


	Parameters:

	
	components (Optional[List[str]]) – A list of component names to restore. If None, all components will be restored.


	checkpoint (Optional[str]) – The path to the checkpoint file. If None, the latest checkpoint in the model directory will
be used.


	model_dir (Optional[str]) – The path to the model directory. If None, the model directory used to initialize the model will be used.


















InfoGraphStarModel


	
class InfoGraphStarModel(num_features, edge_features, embedding_dim, task: Literal['supervised', 'semisupervised'] = 'supervised', mode: Literal['regression', 'classification'] = 'regression', num_classes=2, num_tasks=1, measure='JSD', average_loss=True, num_gc_layers=5, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/infograph.py#L597-L870]

	InfographStar is a semi-supervised graph convolutional network for predicting molecular properties.
It aims to maximize the mutual information between the graph-level representation and the
representations of substructures of different scales. It does this by producing graph-level
encodings and substructure encodings, and then using a discriminator to classify if they
are from the same molecule or not.

Supervised training is done by using the graph-level encodings to predict the target property. Semi-supervised training is done by adding a loss term that maximizes the mutual information between the graph-level encodings and the substructure encodings to the supervised loss.
These modes can be chosen by setting the training_mode parameter.

To conduct training in unsupervised mode, use InfoGraphModel.

References



[1]
F.-Y. Sun, J. Hoffmann, V. Verma, and J. Tang, “InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Maximization.” arXiv, Jan. 17, 2020. http://arxiv.org/abs/1908.01000




	Parameters:

	
	num_features (int) – Number of node features for each input


	edge_features (int) – Number of edge features for each input


	embedding_dim (int) – Dimension of the embedding


	training_mode (str) – The mode to use for training. Options are ‘supervised’, ‘semisupervised’. For unsupervised training, use InfoGraphModel.


	measure (str) – The divergence measure to use for the unsupervised loss. Options are ‘GAN’, ‘JSD’,
‘KL’, ‘RKL’, ‘X2’, ‘DV’, ‘H2’, or ‘W1’.


	average_loss (bool) – Whether to average the loss over the batch








Examples

>>> from deepchem.models.torch_models import InfoGraphStarModel
>>> from deepchem.feat import MolGraphConvFeaturizer
>>> from deepchem.data import NumpyDataset
>>> import torch
>>> smiles = ["C1CCC1", "C1=CC=CN=C1"]
>>> featurizer = MolGraphConvFeaturizer(use_edges=True)
>>> X = featurizer.featurize(smiles)
>>> y = torch.randint(0, 2, size=(2, 1)).float()
>>> w = torch.ones(size=(2, 1)).float()
>>> ds = NumpyDataset(X, y, w)
>>> num_feat = max([ds.X[i].num_node_features for i in range(len(ds))])
>>> edge_dim = max([ds.X[i].num_edge_features for i in range(len(ds))])
>>> model = InfoGraphStarModel(num_feat, edge_dim, 15, training_mode='semisupervised')
>>> loss = model.fit(ds, nb_epoch=1)






	
__init__(num_features, edge_features, embedding_dim, task: Literal['supervised', 'semisupervised'] = 'supervised', mode: Literal['regression', 'classification'] = 'regression', num_classes=2, num_tasks=1, measure='JSD', average_loss=True, num_gc_layers=5, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/infograph.py#L648-L689]

	Create a ModularTorchModel.


	Parameters:

	
	model (nn.Module) – The model to be trained.


	components (dict) – A dictionary of the components of the model. The keys are the names of the
components and the values are the components themselves.













	
build_components()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/infograph.py#L691-L781]

	Builds the components of the InfoGraphStar model. InfoGraphStar works by maximizing the mutual information between the graph-level representation and the representations of substructures of different scales.

It does this by producing graph-level encodings and substructure encodings, and then using a discriminator to classify if they are from the same molecule or not.

The encoder is a graph convolutional network that produces the graph-level encodings and substructure encodings.

In a supervised training mode, only 1 encoder is used and the encodings are not compared, while in a semi-supvervised training mode they are different in order to prevent negative transfer from the pretraining stage.

The local discriminator is a multilayer perceptron that classifies if the substructure encodings are from the same molecule or not while the global discriminator classifies if the graph-level encodings are from the same molecule or not.


Components list, type and description:

encoder: InfoGraphEncoder

unsup_encoder: InfoGraphEncoder for supervised or GINEncoder for unsupervised training

ff1: MultilayerPerceptron, feedforward network

ff2: MultilayerPerceptron, feedforward network

fc1: torch.nn.Linear, fully connected layer

fc2: torch.nn.Linear, fully connected layer

local_d: MultilayerPerceptron, local discriminator

global_d: MultilayerPerceptron, global discriminator







	
build_model()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/infograph.py#L783-L793]

	Builds the InfoGraph model by unpacking the components dictionary and passing them to the InfoGraph nn.module.






	
loss_func(inputs, labels, weights)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/infograph.py#L795-L805]

	Defines the loss function for the model which can access the components
using self.components. The loss function should take the inputs, labels, and
weights as arguments and return the loss.






	
default_generator(dataset: Dataset, epochs: int = 1, mode: str = 'fit', deterministic: bool = True, pad_batches: bool = True) → Iterable[Tuple[List, List, List]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/infograph.py#L855-L870]

	Create a generator that iterates batches for a dataset.

Subclasses may override this method to customize how model inputs are
generated from the data.


	Parameters:

	
	dataset (Dataset) – the data to iterate


	epochs (int) – the number of times to iterate over the full dataset


	mode (str) – allowed values are ‘fit’ (called during training), ‘predict’ (called
during prediction), and ‘uncertainty’ (called during uncertainty
prediction)


	deterministic (bool) – whether to iterate over the dataset in order, or randomly shuffle the
data for each epoch


	pad_batches (bool) – whether to pad each batch up to this model’s preferred batch size






	Returns:

	
	a generator that iterates batches, each represented as a tuple of lists


	([inputs], [outputs], [weights])




















GNNModular


	
class GNNModular(gnn_type: str = 'gin', num_layer: int = 3, emb_dim: int = 64, num_tasks: int = 1, num_classes: int = 2, graph_pooling: str = 'mean', dropout: int = 0, jump_knowledge: str = 'last', task: str = 'edge_pred', mask_rate: float = 0.1, mask_edge: bool = True, context_size: int = 1, neighborhood_size: int = 3, context_mode: str = 'cbow', neg_samples: int = 1, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/gnn.py#L243-L823]

	Modular GNN which allows for easy swapping of GNN layers.


	Parameters:

	
	gnn_type (str) – The type of GNN layer to use. Must be one of “gin”, “gcn”, “graphsage”, or “gat”.


	num_layer (int) – The number of GNN layers to use.


	emb_dim (int) – The dimensionality of the node embeddings.


	num_tasks (int) – The number of tasks.


	graph_pooling (str) – The type of graph pooling to use. Must be one of “sum”, “mean”, “max”, “attention” or “set2set”.
“sum” may cause issues with positive prediction loss.


	dropout (float, optional (default 0)) – The dropout probability.


	jump_knowledge (str, optional (default "last")) – The type of jump knowledge to use. [1] Must be one of “last”, “sum”, “max”, or “concat”.
“last”: Use the node representation from the last GNN layer.
“concat”: Concatenate the node representations from all GNN layers. This will increase the dimensionality of the node representations by a factor of num_layer.
“max”: Take the element-wise maximum of the node representations from all GNN layers.
“sum”: Take the element-wise sum of the node representations from all GNN layers. This may cause issues with positive prediction loss.


	task (str, optional (default "regression")) – The type of task.
Unsupervised tasks:
edge_pred: Edge prediction. Predicts whether an edge exists between two nodes.
mask_nodes: Masking nodes. Predicts the masked node.
mask_edges: Masking edges. Predicts the masked edge.
infomax: Infomax. Maximizes mutual information between local node representations and a pooled global graph representation.
context_pred: Context prediction. Predicts the surrounding context of a node.
Supervised tasks:
“regression” or “classification”.


	mask_rate (float, optional (default 0.1)) – The rate at which to mask nodes or edges for mask_nodes and mask_edges tasks.


	mask_edge (bool, optional (default True)) – Whether to also mask connecting edges for mask_nodes tasks.


	context_size (int, optional (default 1)) – The size of the context to use for context prediction tasks.


	neighborhood_size (int, optional (default 3)) – The size of the neighborhood to use for context prediction tasks.


	context_mode (str, optional (default "cbow")) – The context mode to use for context prediction tasks. Must be one of “cbow” or “skipgram”.


	neg_samples (int, optional (default 1)) – The number of negative samples to use for context prediction.








Examples

>>> import numpy as np
>>> import deepchem as dc
>>> from deepchem.feat.molecule_featurizers import SNAPFeaturizer
>>> from deepchem.models.torch_models.gnn import GNNModular
>>> featurizer = SNAPFeaturizer()
>>> smiles = ["C1=CC=CC=C1", "C1=CC=CC=C1C=O", "C1=CC=CC=C1C(=O)O"]
>>> features = featurizer.featurize(smiles)
>>> dataset = dc.data.NumpyDataset(features, np.zeros(len(features)))
>>> model = GNNModular(task="edge_pred")
>>> loss = model.fit(dataset, nb_epoch=1)
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__init__(gnn_type: str = 'gin', num_layer: int = 3, emb_dim: int = 64, num_tasks: int = 1, num_classes: int = 2, graph_pooling: str = 'mean', dropout: int = 0, jump_knowledge: str = 'last', task: str = 'edge_pred', mask_rate: float = 0.1, mask_edge: bool = True, context_size: int = 1, neighborhood_size: int = 3, context_mode: str = 'cbow', neg_samples: int = 1, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/gnn.py#L310-L367]

	Create a ModularTorchModel.


	Parameters:

	
	model (nn.Module) – The model to be trained.


	components (dict) – A dictionary of the components of the model. The keys are the names of the
components and the values are the components themselves.













	
build_components()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/gnn.py#L369-L503]

	Builds the components of the GNNModular model. It initializes the encoders, batch normalization layers, pooling layers, and head layers based on the provided configuration. The method returns a dictionary containing the following components:


Components list, type and description:

node_type_embedding: torch.nn.Embedding, an embedding layer for node types.

chirality_embedding: torch.nn.Embedding, an embedding layer for chirality tags.

gconvs: torch_geometric.nn.conv.MessagePassing, a list of graph convolutional layers (encoders) based on the specified GNN type (GIN, GCN, or GAT).

batch_norms: torch.nn.BatchNorm1d, a list of batch normalization layers corresponding to the encoders.

pool: Union[function,torch_geometric.nn.aggr.Aggregation], a pooling layer based on the specified graph pooling type (sum, mean, max, attention, or set2set).

head: nn.Linear, a linear layer for the head of the model.

These components are then used to construct the GNN and GNN_head modules for the GNNModular model.







	
build_gnn(num_layer)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/gnn.py#L505-L543]

	Build graph neural network encoding layers by specifying the number of GNN layers.


	Parameters:

	num_layer (int) – The number of GNN layers to be created.



	Returns:

	A tuple containing two ModuleLists:
1. encoders: A ModuleList of GNN layers (currently only GIN is supported).
2. batch_norms: A ModuleList of batch normalization layers corresponding to each GNN layer.



	Return type:

	tuple of (torch.nn.ModuleList, torch.nn.ModuleList)










	
build_model()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/gnn.py#L545-L560]

	Builds the appropriate model based on the specified task.

For the edge prediction task, the model is simply the GNN module because it is an unsupervised task and does not require a prediction head.

Supervised tasks such as node classification and graph regression require a prediction head, so the model is a sequential module consisting of the GNN module followed by the GNN_head module.






	
loss_func(inputs, labels, weights)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/gnn.py#L562-L581]

	The loss function executed in the training loop, which is based on the specified task.






	
masked_node_loss_loader(inputs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/gnn.py#L594-L610]

	Produces the loss between the predicted node features and the true node features for masked nodes.  Set mask_edge to True to also predict the edge types for masked edges.






	
masked_edge_loss_loader(inputs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/gnn.py#L612-L622]

	Produces the loss between the predicted edge types and the true edge types for masked edges.






	
infomax_loss_loader(inputs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/gnn.py#L624-L646]

	Loss that maximizes mutual information between local node representations and a pooled global graph representation. The positive and negative scores represent the similarity between local node representations and global graph representations of simlar and dissimilar graphs, respectively.


	Parameters:

	inputs (BatchedGraphData) – BatchedGraphData object containing the node features, edge indices, and graph indices for the batch of graphs.










	
context_pred_loss_loader(inputs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/gnn.py#L648-L691]

	Loads the context prediction loss for the given input by taking the batched subgraph and context graphs and computing the context prediction loss for each subgraph and context graph pair.


	Parameters:

	inputs (tuple) – A tuple containing the following elements:
- substruct_batch (BatchedGraphData): Batched subgraph, or neighborhood, graphs.
- s_overlap (List[int]): List of overlapping subgraph node indices between the subgraph and context graphs.
- context_graphs (BatchedGraphData): Batched context graphs.
- c_overlap (List[int]): List of overlapping context node indices between the subgraph and context graphs.
- overlap_size (List[int]): List of the number of overlapping nodes between the subgraph and context graphs.



	Returns:

	context_pred_loss – The context prediction loss



	Return type:

	torch.Tensor










	
default_generator(dataset: Dataset, epochs: int = 1, mode: str = 'fit', deterministic: bool = True, pad_batches: bool = True) → Iterable[Tuple[List, List, List]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/gnn.py#L804-L823]

	This default generator is modified from the default generator in dc.models.tensorgraph.tensor_graph.py to support multitask classification. If the task is classification, the labels y_b are converted to a one-hot encoding and reshaped according to the number of tasks and classes.











InfoMax3DModular


	
class InfoMax3DModular(task: Literal['pretraining', 'regression', 'classification'], hidden_dim: int = 64, target_dim: int = 10, aggregators: List[str] = ['mean'], readout_aggregators: List[str] = ['mean'], scalers: List[str] = ['identity'], residual: bool = True, node_wise_output_layers: int = 2, pairwise_distances: bool = False, activation: Callable | str = 'relu', reduce_func: str = 'sum', batch_norm: bool = True, batch_norm_momentum: float = 0.1, propagation_depth: int = 5, dropout: float = 0.0, readout_layers: int = 2, readout_hidden_dim: int = 1, fourier_encodings: int = 4, update_net_layers: int = 2, message_net_layers: int = 2, use_node_features: bool = False, posttrans_layers: int = 1, pretrans_layers: int = 1, n_tasks: int = 1, n_classes: bool | None = None, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/gnn3d.py#L354-L684]

	InfoMax3DModular is a modular torch model that uses a 2D PNA model and a 3D Net3D model to maximize the mutual information between their representations. The 2D model can then be used for downstream tasks without the need for 3D coordinates. This is based off the work in [1].

This class expects data in featurized by the RDKitConformerFeaturizer. This featurizer produces features of the type Array[Array[List[GraphData]]].
The outermost array is the dataset array, the second array is the molecule, the list contains the conformers for that molecule and the GraphData object is the featurized graph for that conformer with node_pos_features holding the 3D coordinates.
If you are not using RDKitConformerFeaturizer, your input data features should look like this: Dataset[Molecule[Conformers[GraphData]]].

For pretraining, the original paper used a learning rate of 8e-5 with a batch size of 500.
For finetuning on quantum mechanical datasets, a learning rate of 7e-5 with a batch size of 128
was used. For finetuning on non-quantum mechanical datasets, a learning rate of 1e-3 with a
batch size of 32 was used in the original implementation.


	Parameters:

	
	task (Literal['pretrain', 'regression', 'classification']) – The task of the model


	hidden_dim (int, optional, default = 64) – The dimension of the hidden layers.


	target_dim (int, optional, default = 10) – The dimension of the output layer.


	aggregators (List[str]) – A list of aggregator functions for the PNA model. Options are ‘mean’, ‘sum’, ‘min’, ‘max’, ‘std’, ‘var’, ‘moment3’, ‘moment4’, ‘moment5’.


	readout_aggregators (List[str]) – A list of aggregator functions for the readout layer. Options are ‘sum’, ‘max’, ‘min’, ‘mean’.


	scalers (List[str]) – A list of scaler functions for the PNA model. Options are ‘identity’, ‘amplification’, ‘attenuation’.


	residual (bool, optional (default=True)) – Whether to use residual connections in the PNA model.


	node_wise_output_layers (int, optional (default=2)) – The number of output layers for each node in the Net3D model.


	pairwise_distances (bool, optional (default=False)) – Whether to use pairwise distances in the PNA model.


	activation (Union[Callable, str], optional (default="relu")) – The activation function to use in the PNA model.


	reduce_func (str, optional (default='sum')) – The reduce function to use for aggregating messages in the Net3D model.


	batch_norm (bool, optional (default=True)) – Whether to use batch normalization in the PNA model.


	batch_norm_momentum (float, optional (default=0.1)) – The momentum for the batch normalization layers.


	propagation_depth (int, optional (default=5)) – The number of propagation layers in the PNA and Net3D models.


	dropout (float, optional (default=0.0)) – The dropout rate for the layers in the PNA and Net3D models.


	readout_layers (int, optional (default=2)) – The number of readout layers in the PNA and Net3D models.


	readout_hidden_dim (int, optional (default=None)) – The dimension of the hidden layers in the readout network.


	fourier_encodings (int, optional (default=4)) – The number of Fourier encodings to use in the Net3D model.


	update_net_layers (int, optional (default=2)) – The number of update network layers in the Net3D model.


	message_net_layers (int, optional (default=2)) – The number of message network layers in the Net3D model.


	use_node_features (bool, optional (default=False)) – Whether to use node features as input in the Net3D model.


	posttrans_layers (int, optional (default=1)) – The number of post-transformation layers in the PNA model.


	pretrans_layers (int, optional (default=1)) – The number of pre-transformation layers in the PNA model.


	kwargs (dict) – Additional keyword arguments.
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Examples

>>> from deepchem.feat.graph_data import BatchGraphData
>>> from deepchem.feat.molecule_featurizers.conformer_featurizer import RDKitConformerFeaturizer
>>> from deepchem.models.torch_models.gnn3d import InfoMax3DModular
>>> import numpy as np
>>> import deepchem as dc
>>> from deepchem.data.datasets import NumpyDataset
>>> smiles = ["C[C@H](F)Cl", "C[C@@H](F)Cl"]
>>> featurizer = RDKitConformerFeaturizer()
>>> data = featurizer.featurize(smiles)
>>> dataset = NumpyDataset(X=data)
>>> model = InfoMax3DModular(task='pretraining',
...                          hidden_dim=64,
...                          target_dim=10,
...                          aggregators=['max'],
...                          readout_aggregators=['mean'],
...                          scalers=['identity'])
>>> loss = model.fit(dataset, nb_epoch=1)






	
__init__(task: Literal['pretraining', 'regression', 'classification'], hidden_dim: int = 64, target_dim: int = 10, aggregators: List[str] = ['mean'], readout_aggregators: List[str] = ['mean'], scalers: List[str] = ['identity'], residual: bool = True, node_wise_output_layers: int = 2, pairwise_distances: bool = False, activation: Callable | str = 'relu', reduce_func: str = 'sum', batch_norm: bool = True, batch_norm_momentum: float = 0.1, propagation_depth: int = 5, dropout: float = 0.0, readout_layers: int = 2, readout_hidden_dim: int = 1, fourier_encodings: int = 4, update_net_layers: int = 2, message_net_layers: int = 2, use_node_features: bool = False, posttrans_layers: int = 1, pretrans_layers: int = 1, n_tasks: int = 1, n_classes: bool | None = None, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/gnn3d.py#L443-L511]

	Create a ModularTorchModel.


	Parameters:

	
	model (nn.Module) – The model to be trained.


	components (dict) – A dictionary of the components of the model. The keys are the names of the
components and the values are the components themselves.













	
build_components()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/gnn3d.py#L513-L564]

	Build the components of the InfoMax3DModular model.


	Returns:

	A dictionary containing the ‘2d’ PNA model and the ‘3d’ Net3D model.



	Return type:

	dict










	
build_model()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/gnn3d.py#L566-L577]

	Build the InfoMax3DModular model. This is the 2D network which is meant to be used for inference.


	Returns:

	The 2D PNA model component.



	Return type:

	PNA










	
loss_func(inputs, labels, weights)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/gnn3d.py#L579-L612]

	Compute the loss function for the InfoMax3DModular model.


	Parameters:

	
	inputs (dgl.DGLGraph) – The input graph with node features stored under the key ‘x’ and edge distances stored under the key ‘d’.


	labels (torch.Tensor) – The ground truth labels.


	weights (torch.Tensor) – The weights for each sample.






	Returns:

	The computed loss value.



	Return type:

	torch.Tensor















LCNNModel


	
class LCNNModel(n_occupancy: int = 3, n_neighbor_sites_list: int = 19, n_permutation_list: int = 6, n_task: int = 1, dropout_rate: float = 0.4, n_conv: int = 2, n_features: int = 44, sitewise_n_feature: int = 25, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/lcnn.py#L394-L537]

	Lattice Convolutional Neural Network (LCNN).
Here is a simple example of code that uses the LCNNModel with
Platinum 2d Adsorption dataset.

This model takes arbitrary configurations of Molecules on an adsorbate and predicts
their formation energy. These formation energies are found using DFT calculations and
LCNNModel is to automate that process. This model defines a crystal graph using the
distance between atoms. The crystal graph is an undirected regular graph (equal neighbours)
and different permutations of the neighbours are pre-computed using the LCNNFeaturizer.
On each node for each permutation, the neighbour nodes are concatenated which are further operated.
This model has only a node representation. Please confirm the detail algorithms from [1]_.

Examples

>>>
>> import deepchem as dc
>> from pymatgen.core import Structure
>> import numpy as np
>> from deepchem.feat import LCNNFeaturizer
>> from deepchem.molnet import load_Platinum_Adsorption
>> PRIMITIVE_CELL = {
..   "lattice": [[2.818528, 0.0, 0.0],
..               [-1.409264, 2.440917, 0.0],
..               [0.0, 0.0, 25.508255]],
..   "coords": [[0.66667, 0.33333, 0.090221],
..              [0.33333, 0.66667, 0.18043936],
..              [0.0, 0.0, 0.27065772],
..              [0.66667, 0.33333, 0.36087608],
..              [0.33333, 0.66667, 0.45109444],
..              [0.0, 0.0, 0.49656991]],
..   "species": ['H', 'H', 'H', 'H', 'H', 'He'],
..   "site_properties": {'SiteTypes': ['S1', 'S1', 'S1', 'S1', 'S1', 'A1']}
.. }
>> PRIMITIVE_CELL_INF0 = {
..    "cutoff": np.around(6.00),
..    "structure": Structure(**PRIMITIVE_CELL),
..    "aos": ['1', '0', '2'],
..    "pbc": [True, True, False],
..    "ns": 1,
..    "na": 1
.. }
>> tasks, datasets, transformers = load_Platinum_Adsorption(
..    featurizer= LCNNFeaturizer( **PRIMITIVE_CELL_INF0)
.. )
>> train, val, test = datasets
>> model = LCNNModel(mode='regression',
..                   batch_size=8,
..                   learning_rate=0.001)
>> model = LCNN()
>> out = model(lcnn_feat)
>> model.fit(train, nb_epoch=10)
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Notes

This class requires DGL and PyTorch to be installed.


	
__init__(n_occupancy: int = 3, n_neighbor_sites_list: int = 19, n_permutation_list: int = 6, n_task: int = 1, dropout_rate: float = 0.4, n_conv: int = 2, n_features: int = 44, sitewise_n_feature: int = 25, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/lcnn.py#L458-L507]

	This class accepts all the keyword arguments from TorchModel.


	Parameters:

	
	n_occupancy (int, default 3) – number of possible occupancy.


	n_neighbor_sites_list (int, default 19) – Number of neighbors of each site.


	n_permutation (int, default 6) – Diffrent permutations taken along diffrent directions.


	n_task (int, default 1) – Number of tasks.


	dropout_rate (float, default 0.4) – p value for dropout between 0.0 to 1.0


	nconv (int, default 2) – number of convolutions performed.


	n_feature (int, default 44) – number of feature for each site.


	sitewise_n_feature (int, default 25) – number of features for atoms for site-wise activation.


	kwargs (Dict) – This class accepts all the keyword arguments from TorchModel.


















MEGNetModel


	
class MEGNetModel(n_node_features: int = 32, n_edge_features: int = 32, n_global_features: int = 32, n_blocks: int = 1, is_undirected: bool = True, residual_connection: bool = True, mode: str = 'regression', n_classes: int = 2, n_tasks: int = 1, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/megnet.py#L161-L271]

	MatErials Graph Network for Molecules and Crystals

MatErials Graph Network [1]_ are Graph Networks [2]_ which are used for property prediction
in molecules and crystals. The model implements multiple layers of Graph Network as
MEGNetBlocks and then combines the node properties and edge properties of all nodes
and edges via a Set2Set layer. The combines information is used with the global
features of the material/molecule for property prediction tasks.

Example

>>> import deepchem as dc
>>> from deepchem.models import MEGNetModel
>>> from deepchem.utils.fake_data_generator import FakeGraphGenerator as FGG
>>> graphs = FGG(global_features=4, num_classes=10).sample(n_graphs=20)
>>> model = dc.models.MEGNetModel(n_node_features=5, n_edge_features=3, n_global_features=4, n_blocks=3, is_undirected=True, residual_connection=True, mode='classification', n_classes=10, batch_size=16)
>>> training_loss = model.fit(graphs)
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Note

The model requires PyTorch-Geometric to be installed.




	
__init__(n_node_features: int = 32, n_edge_features: int = 32, n_global_features: int = 32, n_blocks: int = 1, is_undirected: bool = True, residual_connection: bool = True, mode: str = 'regression', n_classes: int = 2, n_tasks: int = 1, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/megnet.py#L188-L241]

	
	Parameters:

	
	n_node_features (int) – Number of features in a node


	n_edge_features (int) – Number of features in a edge


	n_global_features (int) – Number of global features


	n_blocks (int) – Number of GraphNetworks block to use in update


	is_undirected (bool, optional (default True)) – True when the model is used on undirected graphs otherwise false


	residual_connection (bool, optional (default True)) – If True, the layer uses a residual connection during training


	n_tasks (int, default 1) – The number of tasks


	mode (str, default 'regression') – The model type - classification or regression


	n_classes (int, default 2) – The number of classes to predict (used only in classification mode).


	kwargs (Dict) – kwargs supported by TorchModel


















MATModel


	
class MATModel(dist_kernel: str = 'softmax', n_encoders=8, lambda_attention: float = 0.33, lambda_distance: float = 0.33, h: int = 16, sa_hsize: int = 1024, sa_dropout_p: float = 0.0, output_bias: bool = True, d_input: int = 1024, d_hidden: int = 1024, d_output: int = 1024, activation: str = 'leakyrelu', n_layers: int = 1, ff_dropout_p: float = 0.0, encoder_hsize: int = 1024, encoder_dropout_p: float = 0.0, embed_input_hsize: int = 36, embed_dropout_p: float = 0.0, gen_aggregation_type: str = 'mean', gen_dropout_p: float = 0.0, gen_n_layers: int = 1, gen_attn_hidden: int = 128, gen_attn_out: int = 4, gen_d_output: int = 1, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/mat.py#L179-L385]

	Molecular Attention Transformer.

This class implements the Molecular Attention Transformer [1]_.
The MATFeaturizer (deepchem.feat.MATFeaturizer) is intended to work with this class.
The model takes a batch of MATEncodings (from MATFeaturizer) as input, and returns an array of size Nx1, where N is the number of molecules in the batch.
Each molecule is broken down into its Node Features matrix, adjacency matrix and distance matrix.
A mask tensor is calculated for the batch. All of this goes as input to the MATEmbedding, MATEncoder and MATGenerator layers, which are defined in deepchem.models.torch_models.layers.py

Currently, MATModel is intended to be a regression model for the freesolv dataset.

References



[1]
Lukasz Maziarka et al. “Molecule Attention Transformer” Graph Representation Learning workshop and Machine Learning and the Physical Sciences workshop at NeurIPS 2019. 2020. https://arxiv.org/abs/2002.08264



Examples

>>> import deepchem as dc
>>> import pandas as pd
>>> smiles = ['CC', 'CCC',  'CCCC', 'CCCCC', 'CCCCCCC']
>>> vals = [1.35, 6.72, 5.67, 1.23, 1.76]
>>> df = pd.DataFrame(list(zip(smiles, vals)), columns = ['smiles', 'y'])
>>> loader = dc.data.CSVLoader(tasks=['y'], feature_field='smiles', featurizer=dc.feat.MATFeaturizer())
>>> df.to_csv('test.csv')
>>> dataset = loader.create_dataset('test.csv')
>>> model = dc.models.torch_models.MATModel(batch_size = 2)
>>> out = model.fit(dataset, nb_epoch = 1)






	
__init__(dist_kernel: str = 'softmax', n_encoders=8, lambda_attention: float = 0.33, lambda_distance: float = 0.33, h: int = 16, sa_hsize: int = 1024, sa_dropout_p: float = 0.0, output_bias: bool = True, d_input: int = 1024, d_hidden: int = 1024, d_output: int = 1024, activation: str = 'leakyrelu', n_layers: int = 1, ff_dropout_p: float = 0.0, encoder_hsize: int = 1024, encoder_dropout_p: float = 0.0, embed_input_hsize: int = 36, embed_dropout_p: float = 0.0, gen_aggregation_type: str = 'mean', gen_dropout_p: float = 0.0, gen_n_layers: int = 1, gen_attn_hidden: int = 128, gen_attn_out: int = 4, gen_d_output: int = 1, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/mat.py#L208-L321]

	The wrapper class for the Molecular Attention Transformer.

Since we are using a custom data class as input (MATEncoding), we have overriden the default_generator function from DiskDataset and customized it to work with a batch of MATEncoding classes.


	Parameters:

	
	dist_kernel (str) – Kernel activation to be used. Can be either ‘softmax’ for softmax or ‘exp’ for exponential, for the self-attention layer.


	n_encoders (int) – Number of encoder layers in the encoder block.


	lambda_attention (float) – Constant to be multiplied with the attention matrix in the self-attention layer.


	lambda_distance (float) – Constant to be multiplied with the distance matrix in the self-attention layer.


	h (int) – Number of attention heads for the self-attention layer.


	sa_hsize (int) – Size of dense layer in the self-attention layer.


	sa_dropout_p (float) – Dropout probability for the self-attention layer.


	output_bias (bool) – If True, dense layers will use bias vectors in the self-attention layer.


	d_input (int) – Size of input layer in the feed-forward layer.


	d_hidden (int) – Size of hidden layer in the feed-forward layer. Will also be used as d_output for the MATEmbedding layer.


	d_output (int) – Size of output layer in the feed-forward layer.


	activation (str) – Activation function to be used in the feed-forward layer.
Can choose between ‘relu’ for ReLU, ‘leakyrelu’ for LeakyReLU, ‘prelu’ for PReLU,
‘tanh’ for TanH, ‘selu’ for SELU, ‘elu’ for ELU and ‘linear’ for linear activation.


	n_layers (int) – Number of layers in the feed-forward layer.


	ff_dropout_p (float) – Dropout probability in the feeed-forward layer.


	encoder_hsize (int) – Size of Dense layer for the encoder itself.


	encoder_dropout_p (float) – Dropout probability for connections in the encoder layer.


	embed_input_hsize (int) – Size of input layer for the MATEmbedding layer.


	embed_dropout_p (float) – Dropout probability for the MATEmbedding layer.


	gen_aggregation_type (str) – Type of aggregation to be used. Can be ‘grover’, ‘mean’ or ‘contextual’.


	gen_dropout_p (float) – Dropout probability for the MATGenerator layer.


	gen_n_layers (int) – Number of layers in MATGenerator.


	gen_attn_hidden (int) – Size of hidden attention layer in the MATGenerator layer.


	gen_attn_out (int) – Size of output attention layer in the MATGenerator layer.


	gen_d_output (int) – Size of output layer in the MATGenerator layer.













	
pad_array(array: ndarray, shape: Any) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/mat.py#L323-L342]

	Pads an array to the desired shape.


	Parameters:

	
	array (np.ndarray) – 


	padded. (Array to be) – 


	shape (int or Tuple) – 


	to. (Shape the array is padded) – 






	Returns:

	
	array (np.ndarray)


	Array padded to input shape.















	
pad_sequence(sequence: ndarray) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/mat.py#L344-L360]

	Pads a given sequence using the pad_array function.


	Parameters:

	
	sequence (np.ndarray) – 


	sequence. (Arrays in this sequence are padded to the largest shape in the) – 






	Returns:

	
	array (np.ndarray)


	Sequence with padded arrays.















	
default_generator(dataset, epochs=1, mode='fit', deterministic=True, pad_batches=True, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/mat.py#L362-L385]

	Create a generator that iterates batches for a dataset.

Subclasses may override this method to customize how model inputs are
generated from the data.


	Parameters:

	
	dataset (Dataset) – the data to iterate


	epochs (int) – the number of times to iterate over the full dataset


	mode (str) – allowed values are ‘fit’ (called during training), ‘predict’ (called
during prediction), and ‘uncertainty’ (called during uncertainty
prediction)


	deterministic (bool) – whether to iterate over the dataset in order, or randomly shuffle the
data for each epoch


	pad_batches (bool) – whether to pad each batch up to this model’s preferred batch size






	Returns:

	
	a generator that iterates batches, each represented as a tuple of lists


	([inputs], [outputs], [weights])




















NormalizingFlowModel


	
class NormalizingFlow(transform: Sequence, base_distribution, dim: int)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/normalizing_flows_pytorch.py#L8-L112]

	Normalizing flows are widley used to perform generative models.
This algorithm gives advantages over variational autoencoders (VAE) because
of ease in sampling by applying invertible transformations
(Frey, Gadepally, & Ramsundar, 2022).

Example

>>> import deepchem as dc
>>> from deepchem.models.torch_models.layers import Affine
>>> from deepchem.models.torch_models.normalizing_flows_pytorch import NormalizingFlow
>>> import torch
>>> from torch.distributions import MultivariateNormal
>>> # initialize the transformation layer's parameters
>>> dim = 2
>>> samples = 96
>>> transforms = [Affine(dim)]
>>> distribution = MultivariateNormal(torch.zeros(dim), torch.eye(dim))
>>> # initialize normalizing flow model
>>> model = NormalizingFlow(transforms, distribution, dim)
>>> # evaluate the log_prob when applying the transformation layers
>>> input = distribution.sample(torch.Size((samples, dim)))
>>> len(model.log_prob(input))
96
>>> # evaluates the the sampling method and its log_prob
>>> len(model.sample(samples))
2











DMPNNModel


	
class DMPNNModel(mode: str = 'regression', n_classes: int = 3, n_tasks: int = 1, batch_size: int = 1, global_features_size: int = 0, use_default_fdim: bool = True, atom_fdim: int = 133, bond_fdim: int = 14, enc_hidden: int = 300, depth: int = 3, bias: bool = False, enc_activation: str = 'relu', enc_dropout_p: float = 0.0, aggregation: str = 'mean', aggregation_norm: int | float = 100, ffn_hidden: int = 300, ffn_activation: str = 'relu', ffn_layers: int = 3, ffn_dropout_p: float = 0.0, ffn_dropout_at_input_no_act: bool = True, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/dmpnn.py#L452-L755]

	Directed Message Passing Neural Network

This class implements the Directed Message Passing Neural Network (D-MPNN) [1]_.

The DMPNN model has 2 phases, message-passing phase and read-out phase.


	The goal of the message-passing phase is to generate ‘hidden states of all the atoms in the molecule’ using encoders.


	Next in read-out phase, the features are passed into feed-forward neural network to get the task-based prediction.




For additional information:


	Mapper class [https://github.com/deepchem/deepchem/blob/31676cc2497d5f2de65d648c09fc86191b594501/deepchem/models/torch_models/dmpnn.py#L10-L92]


	Encoder layer class [https://github.com/deepchem/deepchem/blob/31676cc2497d5f2de65d648c09fc86191b594501/deepchem/models/torch_models/layers.py#L1223-L1374]


	Feed-Forward class [https://github.com/deepchem/deepchem/blob/31676cc2497d5f2de65d648c09fc86191b594501/deepchem/models/torch_models/layers.py#L689-L700]




Example

>>> import deepchem as dc
>>> import os
>>> model_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
>>> input_file = os.path.join(model_dir, 'tests/assets/freesolv_sample_5.csv')
>>> loader = dc.data.CSVLoader(tasks=['y'], feature_field='smiles', featurizer=dc.feat.DMPNNFeaturizer())
>>> dataset = loader.create_dataset(input_file)
>>> model = DMPNNModel()
>>> out = model.fit(dataset, nb_epoch=1)





References



[1]
Analyzing Learned Molecular Representations for Property Prediction https://arxiv.org/pdf/1904.01561.pdf




	
__init__(mode: str = 'regression', n_classes: int = 3, n_tasks: int = 1, batch_size: int = 1, global_features_size: int = 0, use_default_fdim: bool = True, atom_fdim: int = 133, bond_fdim: int = 14, enc_hidden: int = 300, depth: int = 3, bias: bool = False, enc_activation: str = 'relu', enc_dropout_p: float = 0.0, aggregation: str = 'mean', aggregation_norm: int | float = 100, ffn_hidden: int = 300, ffn_activation: str = 'relu', ffn_layers: int = 3, ffn_dropout_p: float = 0.0, ffn_dropout_at_input_no_act: bool = True, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/dmpnn.py#L484-L590]

	Initialize the DMPNNModel class.


	Parameters:

	
	mode (str, default 'regression') – The model type - classification or regression.


	n_classes (int, default 3) – The number of classes to predict (used only in classification mode).


	n_tasks (int, default 1) – The number of tasks.


	batch_size (int, default 1) – The number of datapoints in a batch.


	global_features_size (int, default 0) – Size of the global features vector, based on the global featurizers used during featurization.


	use_default_fdim (bool) – If True, self.atom_fdim and self.bond_fdim are initialized using values from the GraphConvConstants class.
If False, self.atom_fdim and self.bond_fdim are initialized from the values provided.


	atom_fdim (int) – Dimension of atom feature vector.


	bond_fdim (int) – Dimension of bond feature vector.


	enc_hidden (int) – Size of hidden layer in the encoder layer.


	depth (int) – No of message passing steps.


	bias (bool) – If True, dense layers will use bias vectors.


	enc_activation (str) – Activation function to be used in the encoder layer.
Can choose between ‘relu’ for ReLU, ‘leakyrelu’ for LeakyReLU, ‘prelu’ for PReLU,
‘tanh’ for TanH, ‘selu’ for SELU, and ‘elu’ for ELU.


	enc_dropout_p (float) – Dropout probability for the encoder layer.


	aggregation (str) – Aggregation type to be used in the encoder layer.
Can choose between ‘mean’, ‘sum’, and ‘norm’.


	aggregation_norm (Union[int, float]) – Value required if aggregation type is ‘norm’.


	ffn_hidden (int) – Size of hidden layer in the feed-forward network layer.


	ffn_activation (str) – Activation function to be used in feed-forward network layer.
Can choose between ‘relu’ for ReLU, ‘leakyrelu’ for LeakyReLU, ‘prelu’ for PReLU,
‘tanh’ for TanH, ‘selu’ for SELU, and ‘elu’ for ELU.


	ffn_layers (int) – Number of layers in the feed-forward network layer.


	ffn_dropout_p (float) – Dropout probability for the feed-forward network layer.


	ffn_dropout_at_input_no_act (bool) – If true, dropout is applied on the input tensor. For single layer, it is not passed to an activation function.


	kwargs (Dict) – kwargs supported by TorchModel













	
default_generator(dataset: Dataset, epochs: int = 1, mode: str = 'fit', deterministic: bool = True, pad_batches: bool = False, **kwargs) → Iterable[Tuple[List, List, List]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/dmpnn.py#L677-L755]

	Create a generator that iterates batches for a dataset.

Overrides the existing default_generator method to customize how model inputs are
generated from the data.

Here, the _MapperDMPNN helper class is used, for each molecule in a batch, to get required input parameters:


	atom_features


	f_ini_atoms_bonds


	atom_to_incoming_bonds


	mapping


	global_features




Then data from each molecule is converted to a _ModData object and stored as list of graphs.
The graphs are modified such that all tensors have same size in 0th dimension. (important requirement for batching)


	Parameters:

	
	dataset (Dataset) – the data to iterate


	epochs (int) – the number of times to iterate over the full dataset


	mode (str) – allowed values are ‘fit’ (called during training), ‘predict’ (called
during prediction), and ‘uncertainty’ (called during uncertainty
prediction)


	deterministic (bool) – whether to iterate over the dataset in order, or randomly shuffle the
data for each epoch


	pad_batches (bool) – whether to pad each batch up to this model’s preferred batch size






	Returns:

	
	a generator that iterates batches, each represented as a tuple of lists


	([inputs], [outputs], [weights])


	Here, [inputs] is list of graphs.




















GroverModel


	
class GroverModel(node_fdim: int, edge_fdim: int, hidden_size: int, self_attention=False, features_only=False, atom_vocab: GroverAtomVocabularyBuilder | None = None, bond_vocab: GroverBondVocabularyBuilder | None = None, functional_group_size: int | None = 85, features_dim: int = 128, dropout: float = 0.2, activation: str = 'relu', task: str = 'pretraining', ffn_num_layers: int = 1, ffn_hidden_size: int = 64, attn_out_size: int = 16, num_attn_heads: int = 4, depth: int = 1, mode: str | None = None, model_dir=None, n_tasks: int = 1, n_classes: int | None = None, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/grover.py#L261-L885]

	GROVER model

The GROVER model employs a self-supervised message passing transformer architecutre
for learning molecular representation. The pretraining task can learn rich structural
and semantic information of molecules from unlabelled molecular data, which can
be leveraged by finetuning for downstream applications. To this end, GROVER integrates message
passing networks into a transformer style architecture.


	Parameters:

	
	node_fdim (int) – the dimension of additional feature for node/atom.


	edge_fdim (int) – the dimension of additional feature for edge/bond.


	atom_vocab (GroverAtomVocabularyBuilder) – Grover atom vocabulary builder required during pretraining.


	bond_vocab (GroverBondVocabularyBuilder) – Grover bond vocabulary builder required during pretraining.


	hidden_size (int) – Size of hidden layers


	features_only (bool) – Uses only additional features in the feed-forward network, no graph network


	self_attention (bool, default False) – When set to True, a self-attention layer is used during graph readout operation.


	functional_group_size (int (default: 85)) – Size of functional group used in grover.


	features_dim (int) – Size of additional molecular features, like fingerprints.


	ffn_num_layers (int (default: 1)) – Number of linear layers to use for feature extraction from embeddings


	ffn_hidden_size (int (default: 64)) – Hidden size of feed forward network


	attn_out_size (int (default: 16)) – Size of attention heads


	num_attn_heads (int (default: 4)) – Number of attention heads


	task (str (pretraining or finetuning)) – Pretraining or finetuning tasks.


	mode (str (classification or regression)) – Training mode (used only for finetuning)


	n_tasks (int, optional (default: 1)) – Number of tasks


	n_classes (int, optiona (default: 2)) – Number of target classes in classification mode


	model_dir (str) – Directory to save model checkpoints


	dropout (float, optional (default: 0.2)) – dropout value


	activation (str, optional (default: 'relu')) – supported activation function


	depth (int (default: 1)) – Dynamic message passing depth for use in MPNEncoder








Example

>>> import deepchem as dc
>>> from deepchem.models.torch_models.grover import GroverModel
>>> from deepchem.feat.vocabulary_builders import (GroverAtomVocabularyBuilder, GroverBondVocabularyBuilder)
>>> import pandas as pd
>>> import os
>>> import tempfile
>>> tmpdir = tempfile.mkdtemp()
>>> df = pd.DataFrame({'smiles': ['CC', 'CCC'], 'preds': [0, 0]})
>>> filepath = os.path.join(tmpdir, 'example.csv')
>>> df.to_csv(filepath, index=False)
>>> dataset_path = os.path.join(filepath)
>>> loader = dc.data.CSVLoader(tasks=['preds'], featurizer=dc.feat.DummyFeaturizer(), feature_field=['smiles'])
>>> dataset = loader.create_dataset(filepath)
>>> av = GroverAtomVocabularyBuilder()
>>> av.build(dataset)
>>> bv = GroverBondVocabularyBuilder()
>>> bv.build(dataset)
>>> fg = dc.feat.CircularFingerprint()
>>> loader2 = dc.data.CSVLoader(tasks=['preds'], featurizer=dc.feat.GroverFeaturizer(features_generator=fg), feature_field='smiles')
>>> graph_data = loader2.create_dataset(filepath)
>>> model = GroverModel(node_fdim=151, edge_fdim=165, atom_vocab=av, bond_vocab=bv, features_dim=2048, hidden_size=128, functional_group_size=85, mode='regression', task='finetuning', model_dir='gm')
>>> loss = model.fit(graph_data, nb_epoch=1)






Reference


	
__init__(node_fdim: int, edge_fdim: int, hidden_size: int, self_attention=False, features_only=False, atom_vocab: GroverAtomVocabularyBuilder | None = None, bond_vocab: GroverBondVocabularyBuilder | None = None, functional_group_size: int | None = 85, features_dim: int = 128, dropout: float = 0.2, activation: str = 'relu', task: str = 'pretraining', ffn_num_layers: int = 1, ffn_hidden_size: int = 64, attn_out_size: int = 16, num_attn_heads: int = 4, depth: int = 1, mode: str | None = None, model_dir=None, n_tasks: int = 1, n_classes: int | None = None, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/grover.py#L345-L415]

	Create a ModularTorchModel.


	Parameters:

	
	model (nn.Module) – The model to be trained.


	components (dict) – A dictionary of the components of the model. The keys are the names of the
components and the values are the components themselves.













	
build_components()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/grover.py#L417-L468]

	Builds components for grover pretraining and finetuning model.


Components of pretraining model






	Component name

	Type

	Description





	embedding

	Graph message passing network

	A layer which accepts a molecular graph and produces an embedding for grover pretraining task



	atom_vocab_task_atom

	Feed forward layer

	A layer which accepts an embedding generated from atom hidden states and predicts atom vocabulary for grover pretraining task



	atom_vocab_task_bond

	Feed forward layer

	A layer which accepts an embedding generated from bond hidden states and predicts atom vocabulary for grover pretraining task



	bond_vocab_task_atom

	Feed forward layer

	A layer which accepts an embedding generated from atom hidden states and predicts bond vocabulary for grover pretraining task



	bond_vocab_task_bond

	Feed forward layer

	A layer which accepts an embedding generated from bond hidden states and predicts bond vocabulary for grover pretraining task



	functional_group_predictor

	Feed forward layer

	A layer which accepts an embedding generated from a graph readout and predicts functional group for grover pretraining task







Components of finetuning model

	Component name

	Type

	Description



	embedding

	Graph message passing network

	An embedding layer to generate embedding from input molecular graph



	readout

	Feed forward layer

	A readout layer to perform readout atom and bond hidden states



	mol_atom_from_atom_ffn

	Feed forward layer

	A feed forward network which learns representation from atom messages generated via atom hidden states of a molecular graph



	mol_atom_from_bond_ffn

	Feed forward layer

	A feed forward network which learns representation from atom messages generated via bond hidden states of a molecular graph











	
build_model()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/grover.py#L470-L479]

	Builds grover pretrain or finetune model based on task






	
get_loss_func()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/grover.py#L481-L487]

	Returns loss function based on task






	
loss_func(inputs, labels, weights)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/grover.py#L489-L494]

	Returns loss function which performs forward iteration based on task type






	
static atom_vocab_random_mask(atom_vocab: GroverAtomVocabularyBuilder, smiles: List[str]) → List[int][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/grover.py#L749-L795]

	Random masking of atom labels from vocabulary

For every atom in the list of SMILES string, the algorithm fetches the atoms
context (vocab label) from the vocabulary provided and returns the vocabulary
labels with a random masking (probability of masking = 0.15).


	Parameters:

	
	atom_vocab (GroverAtomVocabularyBuilder) – atom vocabulary


	smiles (List[str]) – a list of smiles string






	Returns:

	vocab_label – atom vocab label with random masking



	Return type:

	List[int]





Example

>>> import deepchem as dc
>>> from deepchem.models.torch_models.grover import GroverModel
>>> from deepchem.feat.vocabulary_builders import GroverAtomVocabularyBuilder
>>> smiles = np.array(['CC', 'CCC'])
>>> dataset = dc.data.NumpyDataset(X=smiles)
>>> atom_vocab = GroverAtomVocabularyBuilder()
>>> atom_vocab.build(dataset)
>>> vocab_labels = GroverModel.atom_vocab_random_mask(atom_vocab, smiles)










	
static bond_vocab_random_mask(bond_vocab: GroverBondVocabularyBuilder, smiles: List[str]) → List[int][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/grover.py#L797-L855]

	Random masking of bond labels from bond vocabulary

For every bond in the list of SMILES string, the algorithm fetches the bond
context (vocab label) from the vocabulary provided and returns the vocabulary
labels with a random masking (probability of masking = 0.15).


	Parameters:

	
	bond_vocab (GroverBondVocabularyBuilder) – bond vocabulary


	smiles (List[str]) – a list of smiles string






	Returns:

	vocab_label – bond vocab label with random masking



	Return type:

	List[int]





Example

>>> import deepchem as dc
>>> from deepchem.models.torch_models.grover import GroverModel
>>> from deepchem.feat.vocabulary_builders import GroverBondVocabularyBuilder
>>> smiles = np.array(['CC', 'CCC'])
>>> dataset = dc.data.NumpyDataset(X=smiles)
>>> bond_vocab = GroverBondVocabularyBuilder()
>>> bond_vocab.build(dataset)
>>> vocab_labels = GroverModel.bond_vocab_random_mask(bond_vocab, smiles)










	
restore(checkpoint: str | None = None, model_dir: str | None = None) → None[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/grover.py#L857-L885]

	Reload the values of all variables from a checkpoint file.


	Parameters:

	
	checkpoint (str) – the path to the checkpoint file to load.  If this is None, the most recent
checkpoint will be chosen automatically.  Call get_checkpoints() to get a
list of all available checkpoints.


	model_dir (str, default None) – Directory to restore checkpoint from. If None, use self.model_dir.  If
checkpoint is not None, this is ignored.



















DTNNModel


	
class DTNNModel(n_tasks: int, n_embedding: int = 30, n_hidden: int = 100, n_distance: int = 100, distance_min: float = -1, distance_max: float = 18, output_activation: bool = True, mode: str = 'regression', dropout: float = 0.0, n_steps: int = 2, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/dtnn.py#L153-L286]

	Implements DTNN models for regression.

DTNN is based on the many-body Hamiltonian concept, which is a fundamental principle in quantum mechanics.
DTNN recieves a molecule’s distance matrix and membership of its atom from its Coulomb Matrix representation.
Then, it iteratively refines the representation of each atom by considering its interactions with neighboring atoms.
Finally, it predicts the energy of the molecule by summing up the energies of the individual atoms.

This class implements the Deep Tensor Neural Network (DTNN) [1]_.

Examples

>>> import os
>>> from deepchem.data import SDFLoader
>>> from deepchem.feat import CoulombMatrix
>>> from deepchem.models.torch_models import DTNNModel
>>> model_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
>>> dataset_file = os.path.join(model_dir, 'tests/assets/qm9_mini.sdf')
>>> TASKS = ["alpha", "homo"]
>>> loader = SDFLoader(tasks=TASKS, featurizer=CoulombMatrix(29), sanitize=True)
>>> data = loader.create_dataset(dataset_file, shard_size=100)
>>> n_tasks = data.y.shape[1]
>>> model = DTNNModel(n_tasks,
...                   n_embedding=20,
...                   n_distance=100,
...                   learning_rate=1.0,
...                   mode="regression")
>>> loss = model.fit(data, nb_epoch=250)
>>> pred = model.predict(data)





References
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__init__(n_tasks: int, n_embedding: int = 30, n_hidden: int = 100, n_distance: int = 100, distance_min: float = -1, distance_max: float = 18, output_activation: bool = True, mode: str = 'regression', dropout: float = 0.0, n_steps: int = 2, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/dtnn.py#L190-L244]

	
	Parameters:

	
	n_tasks (int) – Number of tasks


	n_embedding (int (default 30)) – Number of features per atom.


	n_hidden (int (default 100)) – Number of features for each molecule after DTNNStep


	n_distance (int (default 100)) – granularity of distance matrix
step size will be (distance_max-distance_min)/n_distance


	distance_min (float (default -1)) – minimum distance of atom pairs (in Angstrom)


	distance_max (float (default = 18)) – maximum distance of atom pairs (in Angstrom)


	output_activation (bool (default True)) – determines whether an activation function should be apply  to its output.


	mode (str (default "regression")) – Only “regression” is currently supported.


	dropout (float (default 0.0)) – the dropout probablity to use.


	n_steps (int (default 2)) – Number of DTNNStep Layers to use.













	
default_generator(dataset: Dataset, epochs: int = 1, mode: str = 'fit', deterministic: bool = True, pad_batches: bool = True)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/dtnn.py#L246-L286]

	Create a generator that iterates batches for a dataset.
It processes inputs through the _compute_features_on_batch function to calculate required features of input.


	Parameters:

	
	dataset (Dataset) – the data to iterate


	epochs (int) – the number of times to iterate over the full dataset


	mode (str) – allowed values are ‘fit’ (called during training), ‘predict’ (called
during prediction), and ‘uncertainty’ (called during uncertainty
prediction)


	deterministic (bool) – whether to iterate over the dataset in order, or randomly shuffle the
data for each epoch


	pad_batches (bool) – whether to pad each batch up to this model’s preferred batch size






	Returns:

	
	a generator that iterates batches, each represented as a tuple of lists


	([inputs], [outputs], [weights])




















SeqToSeqModel


	
class SeqToSeqModel(input_tokens: List, output_tokens: List, max_output_length: int, encoder_layers: int = 4, decoder_layers: int = 4, batch_size: int = 100, embedding_dimension: int = 512, dropout: float = 0.0, reverse_input: bool = True, variational: bool = False, annealing_start_step: int = 5000, annealing_final_step: int = 10000, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/seqtoseq.py#L195-L603]

	Implements sequence to sequence translation models.

The model is based on the description in Sutskever et al., “Sequence to
Sequence Learning with Neural Networks” (https://arxiv.org/abs/1409.3215),
although this implementation uses GRUs instead of LSTMs. The goal is to
take sequences of tokens as input, and translate each one into a different
output sequence. The input and output sequences can both be of variable
length, and an output sequence need not have the same length as the input
sequence it was generated from. For example, these models were originally
developed for use in natural language processing. In that context, the
input might be a sequence of English words, and the output might be a
sequence of French words. The goal would be to train the model to translate
sentences from English to French.

The model consists of two parts called the “encoder” and “decoder”. Each one
consists of a stack of recurrent layers. The job of the encoder is to
transform the input sequence into a single, fixed length vector called the
“embedding”. That vector contains all relevant information from the input
sequence. The decoder then transforms the embedding vector into the output
sequence.

These models can be used for various purposes. First and most obviously,
they can be used for sequence to sequence translation. In any case where you
have sequences of tokens, and you want to translate each one into a different
sequence, a SeqToSeq model can be trained to perform the translation.

Another possible use case is transforming variable length sequences into
fixed length vectors. Many types of models require their inputs to have a
fixed shape, which makes it difficult to use them with variable sized inputs
(for example, when the input is a molecule, and different molecules have
different numbers of atoms). In that case, you can train a SeqToSeq model as
an autoencoder, so that it tries to make the output sequence identical to the
input one. That forces the embedding vector to contain all information from
the original sequence. You can then use the encoder for transforming
sequences into fixed length embedding vectors, suitable to use as inputs to
other types of models.

Another use case is to train the decoder for use as a generative model. Here
again you begin by training the SeqToSeq model as an autoencoder. Once
training is complete, you can supply arbitrary embedding vectors, and
transform each one into an output sequence. When used in this way, you
typically train it as a variational autoencoder. This adds random noise to
the encoder, and also adds a constraint term to the loss that forces the
embedding vector to have a unit Gaussian distribution. You can then pick
random vectors from a Gaussian distribution, and the output sequences should
follow the same distribution as the training data.

When training as a variational autoencoder, it is best to use KL cost
annealing, as described in https://arxiv.org/abs/1511.06349. The constraint
term in the loss is initially set to 0, so the optimizer just tries to
minimize the reconstruction loss. Once it has made reasonable progress
toward that, the constraint term can be gradually turned back on. The range
of steps over which this happens is configurable.

In this class, we establish a sequential model for the Sequence to Sequence (DTNN) [1]_.

Examples

>>> import torch
>>> from deepchem.models.torch_models.seqtoseq import SeqToSeqModel
>>> data = [
...     ("Cc1cccc(N2CCN(C(=O)C34CC5CC(CC(C5)C3)C4)CC2)c1C",
...      "Cc1cccc(N2CCN(C(=O)C34CC5CC(CC(C5)C3)C4)CC2)c1C"),
...     ("Cn1ccnc1SCC(=O)Nc1ccc(Oc2ccccc2)cc1",
...      "Cn1ccnc1SCC(=O)Nc1ccc(Oc2ccccc2)cc1"),
...     ("COc1cc2c(cc1NC(=O)CN1C(=O)NC3(CCc4ccccc43)C1=O)oc1ccccc12",
...      "COc1cc2c(cc1NC(=O)CN1C(=O)NC3(CCc4ccccc43)C1=O)oc1ccccc12"),
...     ("O=C1/C(=C/NC2CCS(=O)(=O)C2)c2ccccc2C(=O)N1c1ccccc1",
...      "O=C1/C(=C/NC2CCS(=O)(=O)C2)c2ccccc2C(=O)N1c1ccccc1"),
...     ("NC(=O)NC(Cc1ccccc1)C(=O)O",
...     "NC(=O)NC(Cc1ccccc1)C(=O)O")]
>>> train_smiles = [s[0] for s in data]
>>> tokens = set()
>>> for s in train_smiles:
...     tokens = tokens.union(set(c for c in s))
>>> tokens = sorted(list(tokens))
>>> from deepchem.models.optimizers import Adam, ExponentialDecay
>>> max_length = max(len(s) for s in train_smiles)
>>> batch_size = 100
>>> batches_per_epoch = len(train_smiles) / batch_size
>>> model = SeqToSeqModel(
...     tokens,
...     tokens,
...     max_length,
...     encoder_layers=2,
...     decoder_layers=2,
...     embedding_dimension=256,
...     model_dir="fingerprint",
...     batch_size=batch_size,
...     learning_rate=ExponentialDecay(0.001, 0.9, batches_per_epoch))
>>> for i in range(20):
...     loss = model.fit_sequences(data)
>>> prediction = model.predict_from_sequences(train_smiles, 5)
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__init__(input_tokens: List, output_tokens: List, max_output_length: int, encoder_layers: int = 4, decoder_layers: int = 4, batch_size: int = 100, embedding_dimension: int = 512, dropout: float = 0.0, reverse_input: bool = True, variational: bool = False, annealing_start_step: int = 5000, annealing_final_step: int = 10000, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/seqtoseq.py#L298-L384]

	Construct a SeqToSeq model.


	Parameters:

	
	input_tokens (list) – List of all tokens that may appear in input sequences.


	output_tokens (list) – List of all tokens that may appear in output sequences


	max_output_length (int) – Maximum length of output sequence that may be generated


	encoder_layers (int (default 4)) – Number of recurrent layers in the encoder


	decoder_layers (int (default 4)) – Number of recurrent layers in the decoder


	embedding_dimension (int (default 512)) – Width of the embedding vector. This also is the width of all
recurrent layers.


	dropout (float (default 0.0)) – Dropout probability to use during training.


	reverse_input (bool (default True)) – If True, reverse the order of input sequences before sending
them into the encoder. This can improve performance when
working with long sequences.


	variational (bool (default False)) – If True, train the model as a variational autoencoder. This
adds random noise to the encoder, and also constrains the
embedding to follow a unit Gaussian distribution.


	annealing_start_step (int (default 5000)) – Step (that is, batch) at which to begin turning on the constraint
term for KL cost annealing.


	annealing_final_step (int (default 10000)) – Step (that is, batch) at which to finish turning on the constraint
term for KL cost annealing.













	
fit_sequences(sequences: List[str], max_checkpoints_to_keep: int = 5, checkpoint_interval: int = 1000, restore: bool = False)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/seqtoseq.py#L402-L430]

	Train this model on a set of sequences


	Parameters:

	
	sequences (List[str]) – Training samples to fit to. Each sample should be represented
as a tuple of the form (input_sequence, output_sequence).


	max_checkpoints_to_keep (int) – Maximum number of checkpoints to keep. Older checkpoints are
discarded.


	checkpoint_interval (int) – Frequency at which to write checkpoints, measured in training steps.


	restore (bool) – if True, restore the model from the most recent checkpoint and
continue training from there. If False, retrain the model from
scratch.













	
predict_from_sequences(sequences: List[str], beam_width=5)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/seqtoseq.py#L432-L457]

	Given a set of input sequences, predict the output sequences.

The prediction is done using a beam search with length normalization.


	Parameters:

	
	sequences (List[str]) – Input sequences to generate a prediction for


	beam_width (int (default 5)) – Beam width to use for searching.
Set to 1 to use a simple greedy search.













	
predict_embedding(sequences: List[str])[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/seqtoseq.py#L459-L479]

	Given a set of input sequences, compute the embedding vectors.


	Parameters:

	sequences (List[str]) – Input sequences to generate embeddings for.










	
predict_from_embedding(embeddings: List[ndarray], beam_width=5)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/seqtoseq.py#L481-L508]

	Given a set of embedding vectors, predict the output sequences.

The prediction is done using a beam search with length normalization.


	Parameters:

	
	embeddings (List[np.ndarray]) – Embedding vectors to generate predictions for


	beam_width (int) – Beam width to use for searching.
Set to 1 to use a simple greedy search.


















GAN


	
class GAN(noise_input_shape: tuple, data_input_shape: list, conditional_input_shape: list, generator_fn: Callable, discriminator_fn: Callable, device: device, n_generators: int = 1, n_discriminators: int = 1, create_discriminator_loss: Callable | None = None, create_generator_loss: Callable | None = None, _call_discriminator: Callable | None = None, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/gan.py#L13-L497]

	Builder class for Generative Adversarial Networks.

A Generative Adversarial Network (GAN) is a type of generative model. It
consists of two parts called the “generator” and the “discriminator”. The
generator takes random noise as input and transforms it into an output that
(hopefully) resembles the training data. The discriminator takes a set of
samples as input and tries to distinguish the real training samples from the
ones created by the generator. Both of them are trained together. The
discriminator tries to get better and better at telling real from false data,
while the generator tries to get better and better at fooling the discriminator.

Examples

Importing necessary modules

>>> import deepchem as dc
>>> from deepchem.models.torch_models.gan import GAN
>>> import torch
>>> import torch.nn as nn
>>> import torch.nn.functional as F





Creating a Generator

>>> class Generator(nn.Module):
...     def __init__(self, noise_input_shape, conditional_input_shape):
...         super(Generator, self).__init__()
...         self.noise_input_shape = noise_input_shape
...         self.conditional_input_shape = conditional_input_shape
...         self.noise_dim = noise_input_shape[1:]
...         self.conditional_dim = conditional_input_shape[1:]
...         input_dim = sum(self.noise_dim) + sum(self.conditional_dim)
...         self.output = nn.Linear(input_dim, 1)
...     def forward(self, input):
...         noise_input, conditional_input = input
...         inputs = torch.cat((noise_input, conditional_input), dim=1)
...         output = self.output(inputs)
...         return output





Creating a Discriminator

>>> class Discriminator(nn.Module):
...     def __init__(self, data_input_shape, conditional_input_shape):
...         super(Discriminator, self).__init__()
...         self.data_input_shape = data_input_shape
...         self.conditional_input_shape = conditional_input_shape
...         # Extracting the actual data dimension
...         data_dim = data_input_shape[1:]
...         # Extracting the actual conditional dimension
...         conditional_dim = conditional_input_shape[1:]
...         input_dim = sum(data_dim) + sum(conditional_dim)
...         # Define the dense layers
...         self.dense1 = nn.Linear(input_dim, 10)
...         self.dense2 = nn.Linear(10, 1)
...     def forward(self, input):
...         data_input, conditional_input = input
...         # Concatenate data_input and conditional_input along the second dimension
...         discrim_in = torch.cat((data_input, conditional_input), dim=1)
...         # Pass the concatenated input through the dense layers
...         x = F.relu(self.dense1(discrim_in))
...         output = torch.sigmoid(self.dense2(x))
...         return output





Defining an Example GAN class

>>> class ExampleGAN(dc.models.torch_models.GAN):
...    def get_noise_input_shape(self):
...        return (16,2,)
...    def get_data_input_shapes(self):
...        return [(16,1,)]
...    def get_conditional_input_shapes(self):
...        return [(16,1,)]
...    def create_generator(self):
...        noise_dim = self.get_noise_input_shape()
...        conditional_dim = self.get_conditional_input_shapes()[0]
...        return nn.Sequential(Generator(noise_dim, conditional_dim))
...    def create_discriminator(self):
...        data_input_shape = self.get_data_input_shapes()[0]
...        conditional_input_shape = self.get_conditional_input_shapes()[0]
...        return nn.Sequential(
...            Discriminator(data_input_shape, conditional_input_shape))





Defining the GAN

>>> batch_size = 16
>>> noise_shape = (batch_size, 2,)
>>> data_shape = [(batch_size, 1,)]
>>> conditional_shape = [(batch_size, 1,)]
>>> def create_generator(noise_dim, conditional_dim):
...     noise_dim = noise_dim
...     conditional_dim = conditional_dim[0]
...     return nn.Sequential(Generator(noise_dim, conditional_dim))
>>> def create_discriminator(data_input_shape, conditional_input_shape):
...     data_input_shape = data_input_shape[0]
...     conditional_input_shape = conditional_input_shape[0]
...     return nn.Sequential(
...         Discriminator(data_input_shape, conditional_input_shape))
>>> gan = ExampleGAN(noise_shape,
...              data_shape,
...              conditional_shape,
...              create_generator(noise_shape, conditional_shape),
...              create_discriminator(data_shape, conditional_shape),
...              device='cpu')
>>> noise = torch.rand(*gan.noise_input_shape)
>>> real_data = torch.rand(*gan.data_input_shape[0])
>>> conditional = torch.rand(*gan.conditional_input_shape[0])
>>> gen_loss, disc_loss = gan([noise, real_data, conditional])
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__init__(noise_input_shape: tuple, data_input_shape: list, conditional_input_shape: list, generator_fn: Callable, discriminator_fn: Callable, device: device, n_generators: int = 1, n_discriminators: int = 1, create_discriminator_loss: Callable | None = None, create_generator_loss: Callable | None = None, _call_discriminator: Callable | None = None, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/gan.py#L130-L258]

	Construct a GAN.

In addition to the parameters listed below, this class accepts all the
keyword arguments from KerasModel.


	Parameters:

	
	noise_input_shape (tuple) – the shape of the noise input to the generator.  The first dimension
(corresponding to the batch size) should be omitted.


	data_input_shape (list of tuple) – the shapes of the inputs to the discriminator.  The first dimension
(corresponding to the batch size) should be omitted.


	conditional_input_shape (list of tuple) – the shapes of the conditional inputs to the generator and discriminator.
The first dimension (corresponding to the batch size) should be omitted.
If there are no conditional inputs, this should be an empty list.


	generator_fn (Callable) – a function that returns a generator.  It will be called with no arguments.
The returned value should be a nn.Module whose input is a list
containing a batch of noise, followed by any conditional inputs.  The
number and shapes of its outputs must match the return value from
get_data_input_shapes(), since generated data must have the same form as
training data.


	discriminator_fn (Callable) – a function that returns a discriminator.  It will be called with no
arguments.  The returned value should be a nn.Module whose input is a
list containing a batch of data, followed by any conditional inputs.  Its
output should be a one dimensional tensor containing the probability of
each sample being a training sample.


	device (torch.device) – the device to use for training


	n_generators (int) – the number of generators to include


	n_discriminators (int) – the number of discriminators to include


	create_discriminator_loss (Callable) – a function that returns the loss function for the discriminator.  It will
be called with two arguments: the output from the discriminator on a
batch of training data, and the output from the discriminator on a batch
of generated data.  The default implementation is appropriate for most
cases.  Subclasses can override this if the need to customize it.


	create_generator_loss (Callable) – a function that returns the loss function for the generator.  It will be
called with one argument: the output from the discriminator on a batch of
generated data.  The default implementation is appropriate for most
cases.  Subclasses can override this if the need to customize it.


	_call_discriminator (Callable) – a function that invokes the discriminator on a set of inputs.  It will be
called with three arguments: the discriminator to invoke, the list of
data inputs, and the list of conditional inputs.  The default
implementation is appropriate for most cases.  Subclasses can override
this if the need to customize it.













	
forward(inputs) → Tuple[Tensor, Tensor][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/gan.py#L260-L361]

	Compute the output of the GAN.


	Parameters:

	inputs (list of Tensor) – the inputs to the GAN. The first element must be a batch of noise,
followed by data inputs and any conditional inputs.



	Returns:

	
	total_gen_loss (Tensor) – the total loss for the generator


	total_discrim_loss (Tensor) – the total loss for the discriminator















	
get_noise_batch(batch_size: int) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/gan.py#L389-L409]

	Get a batch of random noise to pass to the generator.

This should return a NumPy array whose shape matches the one returned by
get_noise_input_shape().  The default implementation returns normally
distributed values.  Subclasses can override this to implement a different
distribution.


	Parameters:

	batch_size (int) – the number of samples to generate



	Returns:

	random_noise – a batch of random noise



	Return type:

	ndarray










	
create_generator_loss(discrim_output: Tensor) → Tensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/gan.py#L411-L429]

	Create the loss function for the generator.

The default implementation is appropriate for most cases.  Subclasses can
override this if the need to customize it.


	Parameters:

	discrim_output (Tensor) – the output from the discriminator on a batch of generated data.  This is
its estimate of the probability that each sample is training data.



	Returns:

	output – A Tensor equal to the loss function to use for optimizing the generator.



	Return type:

	Tensor










	
create_discriminator_loss(discrim_output_train: Tensor, discrim_output_gen: Tensor) → Tensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/gan.py#L431-L455]

	Create the loss function for the discriminator.

The default implementation is appropriate for most cases.  Subclasses can
override this if the need to customize it.


	Parameters:

	
	discrim_output_train (Tensor) – the output from the discriminator on a batch of training data.  This is
its estimate of the probability that each sample is training data.


	discrim_output_gen (Tensor) – the output from the discriminator on a batch of generated data.  This is
its estimate of the probability that each sample is training data.






	Returns:

	output – A Tensor equal to the loss function to use for optimizing the discriminator.



	Return type:

	Tensor










	
discrim_loss_fn(outputs: List, labels: List[Tensor], weights: List[Tensor]) → Any[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/gan.py#L457-L476]

	Function to get the discriminator loss from the fit_generator output


	Parameters:

	
	outputs (list of Tensor) – the output from the discriminator on a batch of training data.  This is
its estimate of the probability that each sample is training data.


	labels (Tensor) – the labels for the batch.  These are ignored.


	weights (Tensor) – the weights for the batch.  These are ignored.






	Return type:

	the value of the discriminator loss from the fit_generator output.










	
gen_loss_fn(outputs: List, labels: List[Tensor], weights: List[Tensor]) → Tensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/gan.py#L478-L497]

	Function to get the Generator loss from the fit_generator output


	Parameters:

	
	outputs (Tensor) – the output from the discriminator on a batch of generated data.  This is
its estimate of the probability that each sample is training data.


	labels (Tensor) – the labels for the batch.  These are ignored.


	weights (Tensor) – the weights for the batch.  These are ignored.






	Return type:

	the value of the generator loss function for this input.















GANModel


	
class GANModel(n_generators: int = 1, n_discriminators: int = 1, create_discriminator_loss: Callable | None = None, create_generator_loss: Callable | None = None, _call_discriminator: Callable | None = None, device: device | None = None, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/gan.py#L521-L954]

	Implements Generative Adversarial Networks.

A Generative Adversarial Network (GAN) is a type of generative model.  It
consists of two parts called the “generator” and the “discriminator”.  The
generator takes random noise as input and transforms it into an output that
(hopefully) resembles the training data.  The discriminator takes a set of
samples as input and tries to distinguish the real training samples from the
ones created by the generator.  Both of them are trained together.  The
discriminator tries to get better and better at telling real from false data,
while the generator tries to get better and better at fooling the discriminator.

In many cases there also are additional inputs to the generator and
discriminator.  In that case it is known as a Conditional GAN (CGAN), since it
learns a distribution that is conditional on the values of those inputs.  They
are referred to as “conditional inputs”.

Many variations on this idea have been proposed, and new varieties of GANs are
constantly being proposed.  This class tries to make it very easy to implement
straightforward GANs of the most conventional types.  At the same time, it
tries to be flexible enough that it can be used to implement many (but
certainly not all) variations on the concept.

To define a GAN, you must create a subclass that provides implementations of
the following methods:

get_noise_input_shape()
get_data_input_shapes()
create_generator()
create_discriminator()

If you want your GAN to have any conditional inputs you must also implement:

get_conditional_input_shapes()

The following methods have default implementations that are suitable for most
conventional GANs.  You can override them if you want to customize their
behavior:

create_generator_loss()
create_discriminator_loss()
get_noise_batch()

This class allows a GAN to have multiple generators and discriminators, a model
known as MIX+GAN.  It is described in [2]
This can lead to better models, and is especially useful for reducing mode
collapse, since different generators can learn different parts of the
distribution.  To use this technique, simply specify the number of generators
and discriminators when calling the constructor.  You can then tell
predict_gan_generator() which generator to use for predicting samples.

Examples

Importing necessary modules

>>> import deepchem as dc
>>> from deepchem.models.torch_models.gan import GAN
>>> import torch
>>> import torch.nn as nn
>>> import torch.nn.functional as F





Creating a Generator

>>> class Generator(nn.Module):
...     def __init__(self, noise_input_shape, conditional_input_shape):
...         super(Generator, self).__init__()
...         self.noise_input_shape = noise_input_shape
...         self.conditional_input_shape = conditional_input_shape
...         self.noise_dim = noise_input_shape[1:]
...         self.conditional_dim = conditional_input_shape[1:]
...         input_dim = sum(self.noise_dim) + sum(self.conditional_dim)
...         self.output = nn.Linear(input_dim, 1)
...     def forward(self, input):
...         noise_input, conditional_input = input
...         inputs = torch.cat((noise_input, conditional_input), dim=1)
...         output = self.output(inputs)
...         return output





Creating a Discriminator

>>> class Discriminator(nn.Module):
...     def __init__(self, data_input_shape, conditional_input_shape):
...         super(Discriminator, self).__init__()
...         self.data_input_shape = data_input_shape
...         self.conditional_input_shape = conditional_input_shape
...         # Extracting the actual data dimension
...         data_dim = data_input_shape[1:]
...         # Extracting the actual conditional dimension
...         conditional_dim = conditional_input_shape[1:]
...         input_dim = sum(data_dim) + sum(conditional_dim)
...         # Define the dense layers
...         self.dense1 = nn.Linear(input_dim, 10)
...         self.dense2 = nn.Linear(10, 1)
...     def forward(self, input):
...         data_input, conditional_input = input
...         # Concatenate data_input and conditional_input along the second dimension
...         discrim_in = torch.cat((data_input, conditional_input), dim=1)
...         # Pass the concatenated input through the dense layers
...         x = F.relu(self.dense1(discrim_in))
...         output = torch.sigmoid(self.dense2(x))
...         return output





Defining an Example GAN class

>>> class ExampleGANModel(dc.models.torch_models.GANModel):
...    def get_noise_input_shape(self):
...        return (100,2,)
...    def get_data_input_shapes(self):
...        return [(100,1,)]
...    def get_conditional_input_shapes(self):
...        return [(100,1,)]
...    def create_generator(self):
...        noise_dim = self.get_noise_input_shape()
...        conditional_dim = self.get_conditional_input_shapes()[0]
...        return nn.Sequential(Generator(noise_dim, conditional_dim))
...    def create_discriminator(self):
...        data_input_shape = self.get_data_input_shapes()[0]
...        conditional_input_shape = self.get_conditional_input_shapes()[0]
...        return nn.Sequential(
...            Discriminator(data_input_shape, conditional_input_shape))





Defining a function to generate data

>>> def generate_batch(batch_size):
...     means = 10 * np.random.random([batch_size, 1])
...     values = np.random.normal(means, scale=2.0)
...     return means, values





>>> def generate_data(gan, batches, batch_size):
...     for _ in range(batches):
...         means, values = generate_batch(batch_size)
...         batch = {
...             gan.data_inputs[0]: values,
...             gan.conditional_inputs[0]: means
...         }
...         yield batch





Defining the GANModel

>>> batch_size = 100
>>> noise_shape = (batch_size, 2,)
>>> data_shape = [(batch_size, 1,)]
>>> conditional_shape = [(batch_size, 1,)]
>>> gan = ExampleGANModel(learning_rate=0.01)
>>> data = generate_data(gan, 500, 100)
>>> gan.fit_gan(data, generator_steps=0.5, checkpoint_interval=0)
>>> means = 10 * np.random.random([1000, 1])
>>> values = gan.predict_gan_generator(conditional_inputs=[means])
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Notes

This class is a subclass of TorchModel.  It accepts all the keyword arguments
from TorchModel.


	
__init__(n_generators: int = 1, n_discriminators: int = 1, create_discriminator_loss: Callable | None = None, create_generator_loss: Callable | None = None, _call_discriminator: Callable | None = None, device: device | None = None, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/gan.py#L684-L751]

	
	Parameters:

	
	n_generators (int) – the number of generators to include


	n_discriminators (int) – the number of discriminators to include


	create_discriminator_loss (Callable) – a function that returns the loss function for the discriminator.  It will
be called with two arguments: the output from the discriminator on a
batch of training data, and the output from the discriminator on a batch
of generated data.  The default implementation is appropriate for most
cases.  Subclasses can override this if the need to customize it.


	create_generator_loss (Callable) – a function that returns the loss function for the generator.  It will be
called with one argument: the output from the discriminator on a batch of
generated data.  The default implementation is appropriate for most
cases.  Subclasses can override this if the need to customize it.


	_call_discriminator (Callable) – a function that invokes the discriminator on a set of inputs.  It will be
called with three arguments: the discriminator to invoke, the list of
data inputs, and the list of conditional inputs.  The default
implementation is appropriate for most cases.  Subclasses can override
this if the need to customize it.













	
get_noise_input_shape()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/gan.py#L753-L760]

	Get the shape of the generator’s noise input layer.

Subclasses must override this to return a tuple giving the shape of the
noise input.  The actual Input layer will be created automatically.  The
dimension corresponding to the batch size should be omitted.






	
get_data_input_shapes()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/gan.py#L762-L771]

	Get the shapes of the inputs for training data.

Subclasses must override this to return a list of tuples, each giving the
shape of one of the inputs.  The actual Input layers will be created
automatically.  This list of shapes must also match the shapes of the
generator’s outputs.  The dimension corresponding to the batch size should
be omitted.






	
get_conditional_input_shapes()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/gan.py#L773-L784]

	Get the shapes of any conditional inputs.

Subclasses may override this to return a list of tuples, each giving the
shape of one of the conditional inputs.  The actual Input layers will be
created automatically.  The dimension corresponding to the batch size should
be omitted.

The default implementation returns an empty list, meaning there are no
conditional inputs.






	
create_generator()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/gan.py#L786-L795]

	Create and return a generator.

Subclasses must override this to construct the generator.  The returned
value should be a tf.keras.Model whose inputs are a batch of noise, followed
by any conditional inputs.  The number and shapes of its outputs must match
the return value from get_data_input_shapes(), since generated data must
have the same form as training data.






	
create_discriminator()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/gan.py#L797-L805]

	Create and return a discriminator.

Subclasses must override this to construct the discriminator.  The returned
value should be a tf.keras.Model whose inputs are all data inputs, followed
by any conditional inputs.  Its output should be a one dimensional tensor
containing the probability of each sample being a training sample.






	
fit_gan(batches, generator_steps=1, max_checkpoints_to_keep=5, checkpoint_interval=1000, restore=False) → None[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/gan.py#L807-L911]

	Train this model on data.


	Parameters:

	
	batches (iterable) – batches of data to train the discriminator on, each represented as a dict
that maps Inputs to values.  It should specify values for all members of
data_inputs and conditional_inputs.


	generator_steps (float) – the number of training steps to perform for the generator for each batch.
This can be used to adjust the ratio of training steps for the generator
and discriminator.  For example, 2.0 will perform two training steps for
every batch, while 0.5 will only perform one training step for every two
batches.


	max_checkpoints_to_keep (int) – the maximum number of checkpoints to keep.  Older checkpoints are discarded.


	checkpoint_interval (int) – the frequency at which to write checkpoints, measured in batches.  Set
this to 0 to disable automatic checkpointing.


	restore (bool) – if True, restore the model from the most recent checkpoint before training
it.













	
predict_gan_generator(batch_size=1, noise_input=None, conditional_inputs=[], generator_index=0)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/gan.py#L913-L954]

	Use the GAN to generate a batch of samples.


	Parameters:

	
	batch_size (int) – the number of samples to generate.  If either noise_input or
conditional_inputs is specified, this argument is ignored since the batch
size is then determined by the size of that argument.


	noise_input (array) – the value to use for the generator’s noise input.  If None (the default),
get_noise_batch() is called to generate a random input, so each call will
produce a new set of samples.


	conditional_inputs (list of arrays) – the values to use for all conditional inputs.  This must be specified if
the GAN has any conditional inputs.


	generator_index (int) – the index of the generator (between 0 and n_generators-1) to use for
generating the samples.






	Returns:

	
	An array (if the generator has only one output) or list of arrays (if it has


	multiple outputs) containing the generated samples.




















WGANModel


	
class WGANModel(gradient_penalty: float = 10.0, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/gan.py#L957-L1182]

	Implements Wasserstein Generative Adversarial Networks.

This class implements Wasserstein Generative Adversarial Networks (WGANs) as
described in Arjovsky et al., “Wasserstein GAN” [1]_.
A WGAN is conceptually rather different from a conventional GAN, but in
practical terms very similar.  It reinterprets the discriminator (often called
the “critic” in this context) as learning an approximation to the Earth Mover
distance between the training and generated distributions.  The generator is
then trained to minimize that distance.  In practice, this just means using
slightly different loss functions for training the generator and discriminator.

WGANs have theoretical advantages over conventional GANs, and they often work
better in practice.  In addition, the discriminator’s loss function can be
directly interpreted as a measure of the quality of the model.  That is an
advantage over conventional GANs, where the loss does not directly convey
information about the quality of the model.

The theory WGANs are based on requires the discriminator’s gradient to be
bounded.  The original paper achieved this by clipping its weights.  This
class instead does it by adding a penalty term to the discriminator’s loss, as
described in [2]_.  This is sometimes found to produce better results.

There are a few other practical differences between GANs and WGANs.  In a
conventional GAN, the discriminator’s output must be between 0 and 1 so it can
be interpreted as a probability.  In a WGAN, it should produce an unbounded
output that can be interpreted as a distance.

When training a WGAN, you also should usually use a smaller value for
generator_steps.  Conventional GANs rely on keeping the generator and
discriminator “in balance” with each other.  If the discriminator ever gets
too good, it becomes impossible for the generator to fool it and training
stalls.  WGANs do not have this problem, and in fact the better the
discriminator is, the easier it is for the generator to improve.  It therefore
usually works best to perform several training steps on the discriminator for
each training step on the generator.

Examples

Importing necessary modules

>>> import deepchem as dc
>>> from deepchem.models.torch_models.gan import WGANModel
>>> import torch
>>> import torch.nn as nn
>>> import torch.nn.functional as F





Creating a Generator

>>> class Generator(nn.Module):
...     def __init__(self, noise_input_shape, conditional_input_shape):
...         super(Generator, self).__init__()
...         self.noise_input_shape = noise_input_shape
...         self.conditional_input_shape = conditional_input_shape
...         self.noise_dim = noise_input_shape[1:]
...         self.conditional_dim = conditional_input_shape[1:]
...         input_dim = sum(self.noise_dim) + sum(self.conditional_dim)
...         self.output = nn.Linear(input_dim, 1)
...     def forward(self, input):
...         noise_input, conditional_input = input
...         inputs = torch.cat((noise_input, conditional_input), dim=1)
...         output = self.output(inputs)
...         return output





Creating a Discriminator

>>> class Discriminator(nn.Module):
...     def __init__(self, data_input_shape, conditional_input_shape):
...         super(Discriminator, self).__init__()
...         self.data_input_shape = data_input_shape
...         self.conditional_input_shape = conditional_input_shape
...         # Extracting the actual data dimension
...         data_dim = data_input_shape[1:]
...         # Extracting the actual conditional dimension
...         conditional_dim = conditional_input_shape[1:]
...         input_dim = sum(data_dim) + sum(conditional_dim)
...         # Define the dense layers
...         self.dense1 = nn.Linear(input_dim, 10)
...         self.dense2 = nn.Linear(10, 1)
...     def forward(self, input):
...         data_input, conditional_input = input
...         # Concatenate data_input and conditional_input along the second dimension
...         discrim_in = torch.cat((data_input, conditional_input), dim=1)
...         # Pass the concatenated input through the dense layers
...         x = F.relu(self.dense1(discrim_in))
...         output = self.dense2(x)
...         return output





Creating an Example WGANModel class

>>> class ExampleWGAN(WGANModel):
...     def get_noise_input_shape(self):
...         return (100,2,)
...     def get_data_input_shapes(self):
...         return [(100,1,)]
...     def get_conditional_input_shapes(self):
...         return [(100,1,)]
...     def create_generator(self):
...         noise_dim = self.get_noise_input_shape()
...         conditional_dim = self.get_conditional_input_shapes()[0]
...         return nn.Sequential(Generator(noise_dim, conditional_dim))
...     def create_discriminator(self):
...         data_input_shape = self.get_data_input_shapes()[0]
...         conditional_input_shape = self.get_conditional_input_shapes()[0]
...         return nn.Sequential(
...             Discriminator(data_input_shape, conditional_input_shape))





Defining a function to generate data

>>> def generate_batch(batch_size):
...     means = 10 * np.random.random([batch_size, 1])
...     values = np.random.normal(means, scale=2.0)
...     return means, values
>>> def generate_data(gan, batches, batch_size):
...     for _ in range(batches):
...         means, values = generate_batch(batch_size)
...         batch = {
...             gan.data_inputs[0]: values,
...             gan.conditional_inputs[0]: means
...         }
...         yield batch





Defining the WGANModel

>>> wgan = ExampleWGAN(learning_rate=0.01,
...               gradient_penalty=0.1)
>>> data = generate_data(wgan, 500, 100)
>>> wgan.fit_gan(data, generator_steps=0.1, checkpoint_interval=0)
>>> means = 10 * np.random.random([1000, 1])
>>> values = wgan.predict_gan_generator(conditional_inputs=[means])
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__init__(gradient_penalty: float = 10.0, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/gan.py#L1100-L1116]

	Construct a WGAN.

In addition to the following, this class accepts all the keyword arguments
from GAN and TorchModel.


	Parameters:

	gradient_penalty (float default 10.0) – the magnitude of the gradient penalty loss










	
create_generator_loss(discrim_output: Tensor) → Tensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/gan.py#L1146-L1161]

	Create the loss function for the generator.


	Parameters:

	discrim_output (torch.Tensor) – the output from the discriminator on a batch of generated data.  This is
its estimate of the probability that each sample is training data.



	Returns:

	A Tensor equal to the mean of the inputs



	Return type:

	torch.Tensor










	
create_discriminator_loss(discrim_output_train: List[Tensor], discrim_output_gen: Tensor) → Tensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/gan.py#L1163-L1182]

	Create the loss function for the discriminator.


	Parameters:

	
	discrim_output_train (List[Tensor]) – the output from the discriminator on a batch of training data.  This is
its estimate of the probability that each sample is training data.


	discrim_output_gen (Tensor) – the output from the discriminator on a batch of generated data.






	Returns:

	A Tensor equal to the loss function to use for optimizing the discriminator.



	Return type:

	torch.Tensor















BasicMolGANModel


	
class BasicMolGANModel(edges: int = 5, vertices: int = 9, nodes: int = 5, embedding_dim: int = 10, dropout_rate: float = 0.0, device: device | None = None, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/molgan.py#L11-L253]

	Model for de-novo generation of small molecules based on work of Nicola De Cao et al. [1]_.
It uses a GAN directly on graph data and a reinforcement learning objective to induce the network to generate molecules with certain chemical properties.
Utilizes WGAN infrastructure; uses adjacency matrix and node features as inputs.
Inputs need to be one-hot representation.

Examples

Import necessary libraries and modules

>>> import deepchem as dc
>>> from deepchem.models.torch_models import BasicMolGANModel as MolGAN
>>> from deepchem.models.optimizers import ExponentialDecay
>>> import torch
>>> import torch.nn.functional as F





Load dataset and featurize molecules
We will use a small dataset for this example.
We will be using MolGanFeaturizer to featurize the molecules.

>>> smiles = ['CCC', 'C1=CC=CC=C1', 'CNC' ]
>>> # create featurizer
>>> feat = dc.feat.MolGanFeaturizer()
>>> # featurize molecules
>>> features = feat.featurize(smiles)
>>> # Remove empty objects
>>> features = list(filter(lambda x: x is not None, features))





Create and train the model

>>> # create model
>>> gan = MolGAN(learning_rate=ExponentialDecay(0.001, 0.9, 5000))
>>> dataset = dc.data.NumpyDataset([x.adjacency_matrix for x in features],[x.node_features for x in features])
>>> def iterbatches(epochs):
...     for i in range(epochs):
...         for batch in dataset.iterbatches(batch_size=gan.batch_size, pad_batches=True):
...             adjacency_tensor = F.one_hot(
...                     torch.Tensor(batch[0]).to(torch.int64),
...                     gan.edges).to(torch.float32)
...             node_tensor = F.one_hot(
...                     torch.Tensor(batch[1]).to(torch.int64),
...                     gan.nodes).to(torch.float32)
...             yield {gan.data_inputs[0]: adjacency_tensor, gan.data_inputs[1]:node_tensor}
>>> # train model
>>> gan.fit_gan(iterbatches(8), generator_steps=0.2, checkpoint_interval=0)





You can change the above parameters to get better results. The above example is just a simple example to show how to use the model.
You can try iterbatches(1000) for better results.

Now, let’s generate some molecules using the trained model
We will generate 10 molecules and then convert them to RDKit molecules.

>>> generated_data = gan.predict_gan_generator(10)
Generating 10 samples
>>> # convert graphs to RDKitmolecules
>>> nmols = feat.defeaturize(generated_data)
>>> print("{} molecules generated".format(len(nmols)))
10 molecules generated





You can increase the number of generated molecules by changing the parameter in predict_gan_generator function.
Generated molecules are in the form of GraphMatrix. You can convert them to RDKit molecules using defeaturize function of MolGanFeaturizer.

Now, let’s remove invalid molecules from the generated molecules.

>>> # remove invalid moles
>>> nmols = list(filter(lambda x: x is not None, nmols))
>>> print ("{} valid molecules".format(len(nmols)))
0 valid molecules





We can see that currently training is unstable and 0 is a common outcome. You can try training the model with different parameters to get better results.
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__init__(edges: int = 5, vertices: int = 9, nodes: int = 5, embedding_dim: int = 10, dropout_rate: float = 0.0, device: device | None = None, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/molgan.py#L90-L132]

	Initialize the model


	Parameters:

	
	edges (int, default 5) – Number of bond types includes BondType.Zero


	vertices (int, default 9) – Max number of atoms in adjacency and node features matrices


	nodes (int, default 5) – Number of atom types in node features matrix


	embedding_dim (int, default 10) – Size of noise input array


	dropout_rate (float, default = 0.) – Rate of dropout used across whole model


	name (str, default '') – Name of the model













	
get_noise_input_shape() → Tuple[int, int][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/molgan.py#L134-L147]

	Return shape of the noise input used in generator


	Returns:

	Shape of the noise input



	Return type:

	Tuple










	
get_data_input_shapes() → List[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/molgan.py#L149-L161]

	Return input shape of the discriminator


	Returns:

	List of shapes used as an input for distriminator.



	Return type:

	List










	
create_generator()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/molgan.py#L163-L182]

	Create generator model.
Take noise data as an input and processes it through number of
dense and dropout layers. Then data is converted into two forms
one used for training and other for generation of compounds.
The model has two outputs:



	edges


	nodes







The format differs depending on intended use (training or sample generation).
For sample generation use flag, sample_generation=True while calling generator
i.e. gan.generators[0](noise_input, training=False, sample_generation=True).
For training the model, set sample_generation=False






	
create_discriminator(units: List[Tuple[int, int] | int] = [(128, 64), 64])[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/molgan.py#L184-L202]

	Create discriminator model based on MolGAN layers.
Takes two inputs:



	adjacency tensor, containing bond information


	nodes tensor, containing atom information







The input vectors need to be in one-hot encoding format.
Use MolGAN featurizer for that purpose. It will be simplified
in the future release.






	
predict_gan_generator(batch_size: int = 1, noise_input: List | Tensor | None = None, conditional_inputs: List = [], generator_index: int = 0) → List[GraphMatrix][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/molgan.py#L204-L253]

	Use the GAN to generate a batch of samples.


	Parameters:

	
	batch_size (int) – the number of samples to generate.  If either noise_input or
conditional_inputs is specified, this argument is ignored since the batch
size is then determined by the size of that argument.


	noise_input (array) – the value to use for the generator’s noise input.  If None (the default),
get_noise_batch() is called to generate a random input, so each call will
produce a new set of samples.


	conditional_inputs (list of arrays) – NOT USED.
the values to use for all conditional inputs.  This must be specified if
the GAN has any conditional inputs.


	generator_index (int) – NOT USED.
the index of the generator (between 0 and n_generators-1) to use for
generating the samples.






	Returns:

	Returns a list of GraphMatrix object that can be converted into
RDKit molecules using MolGANFeaturizer defeaturize function.



	Return type:

	List[GraphMatrix]















Weave


	
class Weave(n_tasks: int, n_atom_feat: int | ~typing.Sequence[int] = 75, n_pair_feat: int | ~typing.Sequence[int] = 14, n_hidden: int = 50, n_graph_feat: int = 128, n_weave: int = 2, fully_connected_layer_sizes: ~typing.List[int] = [2000, 100], conv_weight_init_stddevs: float | ~typing.Sequence[float] = 0.03, weight_init_stddevs: float | ~typing.Sequence[float] = 0.01, bias_init_consts: float | ~typing.Sequence[float] = 0.0, dropouts: float | ~typing.Sequence[float] = 0.25, final_conv_activation_fn=<function tanh>, activation_fns: ~typing.Callable | str | ~typing.Sequence[~typing.Callable | str] = 'relu', batch_normalize: bool = True, gaussian_expand: bool = True, compress_post_gaussian_expansion: bool = False, mode: str = 'classification', n_classes: int = 2, batch_size: int = 100)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/weavemodel_pytorch.py#L19-L328]

	A graph convolutional network(GCN) for either classification or regression.
The network consists of the following sequence of layers:


	Weave feature modules


	Final convolution


	Weave Gather Layer


	A fully connected layer


	A Softmax layer




Example

>>> import numpy as np
>>> import deepchem as dc
>>> featurizer = dc.feat.WeaveFeaturizer()
>>> X = featurizer(["C", "CC"])
>>> y = np.array([1, 0])
>>> batch_size = 2
>>> weavemodel = dc.models.WeaveModel(n_tasks=1,n_weave=2, fully_connected_layer_sizes=[2000, 1000],mode="classification",batch_size=batch_size)
>>> atom_feat, pair_feat, pair_split, atom_split, atom_to_pair = weavemodel.compute_features_on_batch(X)
>>> model = Weave(n_tasks=1,n_weave=2,fully_connected_layer_sizes=[2000, 1000],mode="classification")
>>> input_data = [atom_feat, pair_feat, pair_split, atom_split, atom_to_pair]
>>> output = model(input_data)
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__init__(n_tasks: int, n_atom_feat: int | ~typing.Sequence[int] = 75, n_pair_feat: int | ~typing.Sequence[int] = 14, n_hidden: int = 50, n_graph_feat: int = 128, n_weave: int = 2, fully_connected_layer_sizes: ~typing.List[int] = [2000, 100], conv_weight_init_stddevs: float | ~typing.Sequence[float] = 0.03, weight_init_stddevs: float | ~typing.Sequence[float] = 0.01, bias_init_consts: float | ~typing.Sequence[float] = 0.0, dropouts: float | ~typing.Sequence[float] = 0.25, final_conv_activation_fn=<function tanh>, activation_fns: ~typing.Callable | str | ~typing.Sequence[~typing.Callable | str] = 'relu', batch_normalize: bool = True, gaussian_expand: bool = True, compress_post_gaussian_expansion: bool = False, mode: str = 'classification', n_classes: int = 2, batch_size: int = 100)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/weavemodel_pytorch.py#L55-L265]

	
	Parameters:

	
	n_tasks (int) – Number of tasks


	n_atom_feat (int, optional (default 75)) – Number of features per atom. Note this is 75 by default and should be 78
if chirality is used by WeaveFeaturizer.


	n_pair_feat (int, optional (default 14)) – Number of features per pair of atoms.


	n_hidden (int, optional (default 50)) – Number of units(convolution depths) in corresponding hidden layer


	n_graph_feat (int, optional (default 128)) – Number of output features for each molecule(graph)


	n_weave (int, optional (default 2)) – The number of weave layers in this model.


	fully_connected_layer_sizes (list (default [2000, 100])) – The size of each dense layer in the network.  The length of
this list determines the number of layers.


	conv_weight_init_stddevs (list or float (default 0.03)) – The standard deviation of the distribution to use for weight
initialization of each convolutional layer. The length of this lisst
should equal n_weave. Alternatively, this may be a single value instead
of a list, in which case the same value is used for each layer.


	weight_init_stddevs (list or float (default 0.01)) – The standard deviation of the distribution to use for weight
initialization of each fully connected layer.  The length of this list
should equal len(layer_sizes).  Alternatively this may be a single value
instead of a list, in which case the same value is used for every layer.


	bias_init_consts (list or float (default 0.0)) – The value to initialize the biases in each fully connected layer.  The
length of this list should equal len(layer_sizes).
Alternatively this may be a single value instead of a list, in
which case the same value is used for every layer.


	dropouts (list or float (default 0.25)) – The dropout probablity to use for each fully connected layer.  The length of this list
should equal len(layer_sizes).  Alternatively this may be a single value
instead of a list, in which case the same value is used for every layer.


	final_conv_activation_fn (Optional[ActivationFn] (default F.tanh)) – The activation funcntion to apply to the final
convolution at the end of the weave convolutions. If None, then no
activate is applied (hence linear).


	activation_fns (str (default relu)) – The activation function to apply to each fully connected layer.  The length
of this list should equal len(layer_sizes).  Alternatively this may be a
single value instead of a list, in which case the same value is used for
every layer.


	batch_normalize (bool, optional (default True)) – If this is turned on, apply batch normalization before applying
activation functions on convolutional and fully connected layers.


	gaussian_expand (boolean, optional (default True)) – Whether to expand each dimension of atomic features by gaussian
histogram


	compress_post_gaussian_expansion (bool, optional (default False)) – If True, compress the results of the Gaussian expansion back to the
original dimensions of the input.


	mode (str (default "classification")) – Either “classification” or “regression” for type of model.


	n_classes (int (default 2)) – Number of classes to predict (only used in classification mode)


	batch_size (int (default 100)) – Batch size used by this model for training.













	
forward(inputs: Tensor | Sequence[Tensor]) → List[Tensor][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/weavemodel_pytorch.py#L267-L328]

	
	Parameters:

	inputs (OneOrMany[torch.Tensor]) – Should contain 5 tensors [atom_features, pair_features, pair_split, atom_split, atom_to_pair]



	Returns:

	Output as per use case : regression/classification



	Return type:

	List[torch.Tensor]















WeaveModel


	
class WeaveModel(n_tasks: int, n_atom_feat: int | ~typing.Sequence[int] = 75, n_pair_feat: int | ~typing.Sequence[int] = 14, n_hidden: int = 50, n_graph_feat: int = 128, n_weave: int = 2, fully_connected_layer_sizes: ~typing.List[int] = [2000, 100], conv_weight_init_stddevs: float | ~typing.Sequence[float] = 0.03, weight_init_stddevs: float | ~typing.Sequence[float] = 0.01, bias_init_consts: float | ~typing.Sequence[float] = 0.0, weight_decay_penalty: float = 0.0, weight_decay_penalty_type: str = 'l2', dropouts: float | ~typing.Sequence[float] = 0.25, final_conv_activation_fn: ~typing.Callable | str | None = <function tanh>, activation_fns: ~typing.Callable | str | ~typing.Sequence[~typing.Callable | str] = 'relu', batch_normalize: bool = True, gaussian_expand: bool = True, compress_post_gaussian_expansion: bool = False, mode: str = 'classification', n_classes: int = 2, batch_size: int = 100, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/weavemodel_pytorch.py#L331-L618]

	Implements Google-style Weave Graph Convolutions

This model implements the Weave style graph convolutions
from [1]_.

The biggest difference between WeaveModel style convolutions
and GraphConvModel style convolutions is that Weave
convolutions model bond features explicitly. This has the
side effect that it needs to construct a NxN matrix
explicitly to model bond interactions. This may cause
scaling issues, but may possibly allow for better modeling
of subtle bond effects.

Note that [1]_ introduces a whole variety of different architectures for
Weave models. The default settings in this class correspond to the W2N2
variant from [1]_ which is the most commonly used variant..

Examples

Here’s an example of how to fit a WeaveModel on a tiny sample dataset.

>>> import numpy as np
>>> import deepchem as dc
>>> featurizer = dc.feat.WeaveFeaturizer()
>>> X = featurizer(["C", "CC"])
>>> y = np.array([1, 0])
>>> dataset = dc.data.NumpyDataset(X, y)
>>> model = dc.models.WeaveModel(n_tasks=1, n_weave=2, fully_connected_layer_sizes=[2000, 1000], mode="classification")
>>> loss = model.fit(dataset)





References



[1]
Kearnes, Steven, et al. “Molecular graph convolutions: moving beyond
fingerprints.” Journal of computer-aided molecular design 30.8 (2016):
595-608.




	
__init__(n_tasks: int, n_atom_feat: int | ~typing.Sequence[int] = 75, n_pair_feat: int | ~typing.Sequence[int] = 14, n_hidden: int = 50, n_graph_feat: int = 128, n_weave: int = 2, fully_connected_layer_sizes: ~typing.List[int] = [2000, 100], conv_weight_init_stddevs: float | ~typing.Sequence[float] = 0.03, weight_init_stddevs: float | ~typing.Sequence[float] = 0.01, bias_init_consts: float | ~typing.Sequence[float] = 0.0, weight_decay_penalty: float = 0.0, weight_decay_penalty_type: str = 'l2', dropouts: float | ~typing.Sequence[float] = 0.25, final_conv_activation_fn: ~typing.Callable | str | None = <function tanh>, activation_fns: ~typing.Callable | str | ~typing.Sequence[~typing.Callable | str] = 'relu', batch_normalize: bool = True, gaussian_expand: bool = True, compress_post_gaussian_expansion: bool = False, mode: str = 'classification', n_classes: int = 2, batch_size: int = 100, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/weavemodel_pytorch.py#L371-L514]

	
	Parameters:

	
	n_tasks (int) – Number of tasks


	n_atom_feat (int, optional (default 75)) – Number of features per atom. Note this is 75 by default and should be 78
if chirality is used by WeaveFeaturizer.


	n_pair_feat (int, optional (default 14)) – Number of features per pair of atoms.


	n_hidden (int, optional (default 50)) – Number of units(convolution depths) in corresponding hidden layer


	n_graph_feat (int, optional (default 128)) – Number of output features for each molecule(graph)


	n_weave (int, optional (default 2)) – The number of weave layers in this model.


	fully_connected_layer_sizes (list (default [2000, 100])) – The size of each dense layer in the network.  The length of
this list determines the number of layers.


	conv_weight_init_stddevs (list or float (default 0.03)) – The standard deviation of the distribution to use for weight
initialization of each convolutional layer. The length of this lisst
should equal n_weave. Alternatively, this may be a single value instead
of a list, in which case the same value is used for each layer.


	weight_init_stddevs (list or float (default 0.01)) – The standard deviation of the distribution to use for weight
initialization of each fully connected layer.  The length of this list
should equal len(layer_sizes).  Alternatively this may be a single value
instead of a list, in which case the same value is used for every layer.


	bias_init_consts (list or float (default 0.0)) – The value to initialize the biases in each fully connected layer.  The
length of this list should equal len(layer_sizes).
Alternatively this may be a single value instead of a list, in
which case the same value is used for every layer.


	weight_decay_penalty (float (default 0.0)) – The magnitude of the weight decay penalty to use


	weight_decay_penalty_type (str (default "l2")) – The type of penalty to use for weight decay, either ‘l1’ or ‘l2’


	dropouts (list or float (default 0.25)) – The dropout probablity to use for each fully connected layer.  The length of this list
should equal len(layer_sizes).  Alternatively this may be a single value
instead of a list, in which case the same value is used for every layer.


	final_conv_activation_fn (Optional[ActivationFn] (default F.tanh)) – The activation funcntion to apply to the final
convolution at the end of the weave convolutions. If None, then no
activate is applied (hence linear).


	activation_fns (str (default relu)) – The activation function to apply to each fully connected layer.  The length
of this list should equal len(layer_sizes).  Alternatively this may be a
single value instead of a list, in which case the same value is used for
every layer.


	batch_normalize (bool, optional (default True)) – If this is turned on, apply batch normalization before applying
activation functions on convolutional and fully connected layers.


	gaussian_expand (boolean, optional (default True)) – Whether to expand each dimension of atomic features by gaussian
histogram


	compress_post_gaussian_expansion (bool, optional (default False)) – If True, compress the results of the Gaussian expansion back to the
original dimensions of the input.


	mode (str (default "classification")) – Either “classification” or “regression” for type of model.


	n_classes (int (default 2)) – Number of classes to predict (only used in classification mode)


	batch_size (int (default 100)) – Batch size used by this model for training.













	
compute_features_on_batch(X_b)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/weavemodel_pytorch.py#L516-L578]

	Compute tensors that will be input into the model from featurized representation.

The featurized input to WeaveModel is instances of WeaveMol created by
WeaveFeaturizer. This method converts input WeaveMol objects into
tensors used by the Keras implementation to compute WeaveModel outputs.


	Parameters:

	X_b (np.ndarray) – A numpy array with dtype=object where elements are WeaveMol objects.



	Returns:

	
	atom_feat (np.ndarray) – Of shape (N_atoms, N_atom_feat).


	pair_feat (np.ndarray) – Of shape (N_pairs, N_pair_feat). Note that N_pairs will depend on
the number of pairs being considered. If max_pair_distance is
None, then this will be N_atoms**2. Else it will be the number
of pairs within the specifed graph distance.


	pair_split (np.ndarray) – Of shape (N_pairs,). The i-th entry in this array will tell you the
originating atom for this pair (the “source”). Note that pairs are
symmetric so for a pair (a, b), both a and b will separately be
sources at different points in this array.


	atom_split (np.ndarray) – Of shape (N_atoms,). The i-th entry in this array will be the molecule
with the i-th atom belongs to.


	atom_to_pair (np.ndarray) – Of shape (N_pairs, 2). The i-th row in this array will be the array
[a, b] if (a, b) is a pair to be considered. (Note by symmetry, this
implies some other row will contain [b, a].















	
default_generator(dataset: Dataset, epochs: int = 1, mode: str = 'fit', deterministic: bool = True, pad_batches: bool = True) → Iterable[Tuple[List, List, List]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/weavemodel_pytorch.py#L580-L618]

	Convert a dataset into the tensors needed for learning.


	Parameters:

	
	dataset (dc.data.Dataset) – Dataset to convert


	epochs (int, optional (Default 1)) – Number of times to walk over dataset


	mode (str, optional (Default 'fit')) – Ignored in this implementation.


	deterministic (bool, optional (Default True)) – Whether the dataset should be walked in a deterministic fashion


	pad_batches (bool, optional (Default True)) – If true, each returned batch will have size self.batch_size.






	Return type:

	Iterator which walks over the batches















ProgressiveMultitaskModel


	
class ProgressiveMultitaskModel(n_tasks: int, n_features: int, layer_sizes: List[int] = [1000], mode: Literal['regression', 'classification'] = 'regression', alpha_init_stddevs: float | Sequence[float] = 0.02, weight_init_stddevs: float | Sequence[float] = 0.02, bias_init_consts: float | Sequence[float] = 1.0, weight_decay_penalty: float = 0.0, weight_decay_penalty_type: str = 'l2', activation_fns: Callable | str | Sequence[Callable | str] = 'relu', dropouts: float | Sequence[float] = 0.5, n_classes: int | None = None, n_outputs: int | None = None, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/progressive_multitask.py#L313-L525]

	Implements a progressive multitask neural network in PyTorch.

Progressive networks allow for multitask learning where each task
gets a new column of weights and lateral connections to previous tasks
are added to the network. As a result, there is no exponential
forgetting where previous tasks are ignored.

Examples

>>> import deepchem as dc
>>> from deepchem.models.torch_models import ProgressiveMultitaskModel
>>> featurizer = dc.feat.CircularFingerprint(size=1024, radius=4)
>>> tasks, datasets, transformers = dc.molnet.load_tox21(featurizer=featurizer)
>>> train_dataset, valid_dataset, test_dataset = datasets
>>> n_tasks = len(tasks)
>>> model = ProgressiveMultitaskModel(n_tasks, 1024, layer_sizes=[1024], mode='classification')
>>> model.fit(train_dataset, nb_epoch=10)





References

See [1]_ for a full description of the progressive architecture



[1]
Rusu, Andrei A., et al. “Progressive neural networks.” arXiv preprint
arXiv:1606.04671 (2016).




	
__init__(n_tasks: int, n_features: int, layer_sizes: List[int] = [1000], mode: Literal['regression', 'classification'] = 'regression', alpha_init_stddevs: float | Sequence[float] = 0.02, weight_init_stddevs: float | Sequence[float] = 0.02, bias_init_consts: float | Sequence[float] = 1.0, weight_decay_penalty: float = 0.0, weight_decay_penalty_type: str = 'l2', activation_fns: Callable | str | Sequence[Callable | str] = 'relu', dropouts: float | Sequence[float] = 0.5, n_classes: int | None = None, n_outputs: int | None = None, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/progressive_multitask.py#L340-L427]

	
	Parameters:

	
	n_tasks (int) – Number of tasks.


	n_features (int) – Size of input feature vector.


	layer_sizes (list of ints) – List of layer sizes.


	mode (str) – Type of model.  Must be ‘regression’ or ‘classification’.


	alpha_init_stddevs (float or list of floats) – Standard deviation for truncated normal distribution to initialize
alpha parameters.


	weight_init_stddevs (float or list of floats) – Standard deviation for truncated normal distribution to initialize
weight parameters.


	bias_init_consts (float or list of floats) – Constant value to initialize bias parameters.


	weight_decay_penalty (float) – Amount of weight decay penalty to use.


	weight_decay_penalty_type (str) – Type of weight decay penalty.  Must be ‘l1’ or ‘l2’.


	activation_fns (str or list of str) – Name of activation function(s) to use.


	dropouts (float or list of floats) – Dropout probability.


	n_classes (int) – The number of classes to predict per task. Default to 2 for classification and 1 for regression.


	n_outputs (int) – The number of outputs to predict per task. Deprecated, use n_classes instead.













	
fit(dataset: Dataset, nb_epoch: int = 10, max_checkpoints_to_keep: int = 5, checkpoint_interval: int = 1000, deterministic: bool = False, restore: bool = False, variables: List[Parameter] | None = None, loss: Callable[[List, List, List], Any] | None = None, callbacks: Callable | List[Callable] = [], all_losses: List[float] | None = None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/progressive_multitask.py#L429-L452]

	Train this model on a dataset.


	Parameters:

	
	dataset (Dataset) – the Dataset to train on


	nb_epoch (int) – the number of epochs to train for


	max_checkpoints_to_keep (int) – the maximum number of checkpoints to keep.  Older checkpoints are discarded.


	checkpoint_interval (int) – the frequency at which to write checkpoints, measured in training steps.
Set this to 0 to disable automatic checkpointing.


	deterministic (bool) – if True, the samples are processed in order.  If False, a different random
order is used for each epoch.


	restore (bool) – if True, restore the model from the most recent checkpoint and continue training
from there.  If False, retrain the model from scratch.


	variables (list of torch.nn.Parameter) – the variables to train.  If None (the default), all trainable variables in
the model are used.


	loss (function) – a function of the form f(outputs, labels, weights) that computes the loss
for each batch.  If None (the default), the model’s standard loss function
is used.


	callbacks (function or list of functions) – one or more functions of the form f(model, step) that will be invoked after
every step.  This can be used to perform validation, logging, etc.


	all_losses (Optional[List[float]], optional (default None)) – If specified, all logged losses are appended into this list. Note that
you can call fit() repeatedly with the same list and losses will
continue to be appended.






	Return type:

	The average loss over the most recent checkpoint interval










	
fit_task(dataset: Dataset, task: int, nb_epoch: int = 10, max_checkpoints_to_keep: int = 5, checkpoint_interval: int = 1000, deterministic: bool = False, restore: bool = False, variables: List[Parameter] | None = None, loss: Callable[[List, List, List], Any] | None = None, callbacks: Callable | List[Callable] = [], all_losses: List[float] | None = None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/progressive_multitask.py#L454-L525]

	Train this model on one task. Called by fit() to train each task sequentially.
Calls fit_generator() internally.


	Parameters:

	
	dataset (Dataset) – the Dataset to train on


	task (int) – the task to train on


	nb_epoch (int) – the number of epochs to train for


	max_checkpoints_to_keep (int) – the maximum number of checkpoints to keep.  Older checkpoints are discarded.


	checkpoint_interval (int) – the frequency at which to write checkpoints, measured in training steps.
Set this to 0 to disable automatic checkpointing.


	deterministic (bool) – if True, the samples are processed in order.  If False, a different random
order is used for each epoch.


	restore (bool) – if True, restore the model from the most recent checkpoint and continue training
from there.  If False, retrain the model from scratch.


	variables (list of torch.nn.Parameter) – the variables to train.  If None (the default), all trainable variables in
the model are used.


	loss (function) – a function of the form f(outputs, labels, weights) that computes the loss
for each batch.  If None (the default), the model’s standard loss function
is used.


	callbacks (function or list of functions) – one or more functions of the form f(model, step) that will be invoked after
every step.  This can be used to perform validation, logging, etc.


	all_losses (Optional[List[float]], optional (default None)) – If specified, all logged losses are appended into this list. Note that
you can call fit() repeatedly with the same list and losses will
continue to be appended.






	Return type:

	The average loss over the most recent checkpoint interval















Density Functional Theory Model - XCModel



TextCNNModel


	
class TextCNNModel(n_tasks: int, char_dict: Dict[str, int], seq_length: int, n_embedding: int = 75, kernel_sizes: List[int] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20], num_filters: List[int] = [100, 200, 200, 200, 200, 100, 100, 100, 100, 100, 160, 160], dropout: float = 0.25, mode: str = 'classification', **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/text_cnn.py#L191-L470]

	A 1D convolutional neural network to work on smiles strings for both
classification and regression tasks.

Reimplementation of the discriminator module in ORGAN [1] .
Originated from [2].

The model converts the input smile strings to an embedding vector, the vector
is convolved and pooled through a series of convolutional filters which are concatnated
and later passed through a simple dense layer. The resulting vector goes through a Highway
layer [3] which finally as per the nature of the task is passed through a dense layer.

References



[1]
Guimaraes, Gabriel Lima, et al. “Objective-reinforced generative adversarial networks (ORGAN) for sequence generation models.” arXiv preprint arXiv:1705.10843 (2017).



[2]
Kim, Yoon. “Convolutional neural networks for sentence classification.” arXiv preprint arXiv:1408.5882 (2014).



[3]
Srivastava et al., “Training Very Deep Networks”.https://arxiv.org/abs/1507.06228



Examples

>>> import os
>>> from deepchem.models.torch_models import TextCNNModel
>>> from deepchem.models.torch_models.text_cnn import default_dict
>>> n_tasks = 1
>>> seq_len = 250
>>> model = TextCNNModel(n_tasks, default_dict, seq_len)






	
__init__(n_tasks: int, char_dict: Dict[str, int], seq_length: int, n_embedding: int = 75, kernel_sizes: List[int] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20], num_filters: List[int] = [100, 200, 200, 200, 200, 100, 100, 100, 100, 100, 160, 160], dropout: float = 0.25, mode: str = 'classification', **kwargs) → None[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/text_cnn.py#L224-L290]

	
	Parameters:

	
	n_tasks (int) – Number of tasks


	char_dict (dict) – Mapping from characters in smiles to integers


	seq_length (int) – Length of sequences(after padding)


	n_embedding (int, optional) – Length of embedding vector


	filter_sizes (list of int, optional) – Properties of filters used in the conv net


	num_filters (list of int, optional) – Properties of filters used in the conv net


	dropout (float, optional) – Dropout rate


	mode (str) – Either “classification” or “regression” for type of model.













	
default_generator(dataset: Dataset, epochs: int = 1, mode: str = 'fit', deterministic: bool = True, pad_batches: bool = True) → Iterable[Tuple[List, List, List]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/text_cnn.py#L294-L333]

	Transfer smiles strings to fixed length integer vectors


	Parameters:

	
	dataset (dc.data.Dataset) – Dataset to convert


	epochs (int, optional (Default 1)) – Number of times to walk over dataset


	mode (str, optional (Default 'fit')) – Ignored in this implementation.


	deterministic (bool, optional (Default True)) – Whether the dataset should be walked in a deterministic fashion


	pad_batches (bool, optional (Default True)) – If true, each returned batch will have size self.batch_size.






	Return type:

	Iterator which walks over the batches










	
static build_char_dict(dataset: Dataset, default_dict: Dict[str, int] = {'#': 1, '(': 2, ')': 3, '+': 4, '-': 5, '/': 6, '1': 7, '2': 8, '3': 9, '4': 10, '5': 11, '6': 12, '7': 13, '8': 14, '=': 15, 'Br': 30, 'C': 16, 'Cl': 29, 'F': 17, 'H': 18, 'I': 19, 'N': 20, 'O': 21, 'P': 22, 'S': 23, '[': 24, '\\': 25, ']': 26, '_': 27, 'c': 28, 'n': 31, 'o': 32, 's': 33})[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/text_cnn.py#L335-L385]

	Collect all unique characters(in smiles) from the dataset.
This method should be called before defining the model to build appropriate char_dict


	Parameters:

	
	dataset (Dataset) – Dataset for which char_dict is built for


	default_dict (dict, optional) – Mapping from characters in smiles to integers, optional






	Returns:

	
	out_dict (dict) – A dictionary containing mapping between unique characters in the dataset to integers


	seq_length (int) – The maximum sequence length of smile strings found in the dataset multiplied by 1.2















	
smiles_to_seq(smiles: str)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/text_cnn.py#L387-L421]

	Tokenize characters in smiles to integers


	Parameters:

	smiles (str) – A smile string



	Returns:

	array – An array of integers representing the tokenized sequence of characters.



	Return type:

	np.ndarray










	
static convert_bytes_to_char(s: bytes) → str[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/text_cnn.py#L423-L439]

	Convert bytes to string.


	Parameters:

	s (bytes) – Bytes to be converted to string.



	Returns:

	String representation of the bytes.



	Return type:

	str










	
smiles_to_seq_batch(ids_b: List[bytes | str] | ndarray) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/text_cnn.py#L441-L470]

	Converts SMILES strings to np.array sequence.


	Parameters:

	ids_b (Union[List[Union[bytes, str]], np.ndarray]) – A list of SMILES strings, either as bytes or strings.



	Returns:

	A numpy array containing the tokenized sequences of SMILES strings.



	Return type:

	np.ndarray
















PyTorch Lightning Models

DeepChem supports the use of PyTorch-Lightning [https://www.pytorchlightning.ai/] to build PyTorch models.


DCLightningModule

You can wrap an arbitrary TorchModel in a DCLightningModule object.


	
class DCLightningModule(dc_model)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/lightning/dc_lightning_module.py#L6-L81]

	DeepChem Lightning Module to be used with Lightning trainer.

TODO: Add dataloader, example code and fit, once datasetmodule
is ready
The lightning module is a wrapper over deepchem’s torch model.
This module directly works with pytorch lightning trainer
which runs training for multiple epochs and also is responsible
for setting up and training models on multiple GPUs.
https://pytorch-lightning.readthedocs.io/en/stable/api/pytorch_lightning.core.LightningModule.html?highlight=LightningModule

Notes

This class requires PyTorch to be installed.


	
__init__(dc_model)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/lightning/dc_lightning_module.py#L22-L35]

	Create a new DCLightningModule.


	Parameters:

	dc_model (deepchem.models.torch_models.torch_model.TorchModel) – TorchModel to be wrapped inside the lightning module.










	
configure_optimizers()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/lightning/dc_lightning_module.py#L37-L39]

	Choose what optimizers and learning-rate schedulers to use in your optimization. Normally you’d need one.
But in the case of GANs or similar you might have multiple. Optimization with multiple optimizers only works in
the manual optimization mode.


	Returns:

	Any of these 6 options.


	Single optimizer.


	List or Tuple of optimizers.


	Two lists - The first list has multiple optimizers, and the second has multiple LR schedulers
(or multiple lr_scheduler_config).


	Dictionary, with an "optimizer" key, and (optionally) a "lr_scheduler"
key whose value is a single LR scheduler or lr_scheduler_config.


	None - Fit will run without any optimizer.










The lr_scheduler_config is a dictionary which contains the scheduler and its associated configuration.
The default configuration is shown below.

lr_scheduler_config = {
    # REQUIRED: The scheduler instance
    "scheduler": lr_scheduler,
    # The unit of the scheduler's step size, could also be 'step'.
    # 'epoch' updates the scheduler on epoch end whereas 'step'
    # updates it after a optimizer update.
    "interval": "epoch",
    # How many epochs/steps should pass between calls to
    # `scheduler.step()`. 1 corresponds to updating the learning
    # rate after every epoch/step.
    "frequency": 1,
    # Metric to to monitor for schedulers like `ReduceLROnPlateau`
    "monitor": "val_loss",
    # If set to `True`, will enforce that the value specified 'monitor'
    # is available when the scheduler is updated, thus stopping
    # training if not found. If set to `False`, it will only produce a warning
    "strict": True,
    # If using the `LearningRateMonitor` callback to monitor the
    # learning rate progress, this keyword can be used to specify
    # a custom logged name
    "name": None,
}





When there are schedulers in which the .step() method is conditioned on a value, such as the
torch.optim.lr_scheduler.ReduceLROnPlateau scheduler, Lightning requires that the
lr_scheduler_config contains the keyword "monitor" set to the metric name that the scheduler
should be conditioned on.

# The ReduceLROnPlateau scheduler requires a monitor
def configure_optimizers(self):
    optimizer = Adam(...)
    return {
        "optimizer": optimizer,
        "lr_scheduler": {
            "scheduler": ReduceLROnPlateau(optimizer, ...),
            "monitor": "metric_to_track",
            "frequency": "indicates how often the metric is updated",
            # If "monitor" references validation metrics, then "frequency" should be set to a
            # multiple of "trainer.check_val_every_n_epoch".
        },
    }


# In the case of two optimizers, only one using the ReduceLROnPlateau scheduler
def configure_optimizers(self):
    optimizer1 = Adam(...)
    optimizer2 = SGD(...)
    scheduler1 = ReduceLROnPlateau(optimizer1, ...)
    scheduler2 = LambdaLR(optimizer2, ...)
    return (
        {
            "optimizer": optimizer1,
            "lr_scheduler": {
                "scheduler": scheduler1,
                "monitor": "metric_to_track",
            },
        },
        {"optimizer": optimizer2, "lr_scheduler": scheduler2},
    )





Metrics can be made available to monitor by simply logging it using
self.log('metric_to_track', metric_val) in your LightningModule.


Note

Some things to know:


	Lightning calls .backward() and .step() automatically in case of automatic optimization.


	If a learning rate scheduler is specified in configure_optimizers() with key
"interval" (default “epoch”) in the scheduler configuration, Lightning will call
the scheduler’s .step() method automatically in case of automatic optimization.


	If you use 16-bit precision (precision=16), Lightning will automatically handle the optimizer.


	If you use torch.optim.LBFGS, Lightning handles the closure function automatically for you.


	If you use multiple optimizers, you will have to switch to ‘manual optimization’ mode and step them
yourself.


	If you need to control how often the optimizer steps, override the optimizer_step() hook.











	
training_step(batch, batch_idx)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/lightning/dc_lightning_module.py#L41-L81]

	Perform a training step.


	Parameters:

	
	batch (A tensor, tuple or list.) – 


	batch_idx (Integer displaying index of this batch) – 


	optimizer_idx (When using multiple optimizers, this argument will also be present.) – 






	Returns:

	loss_outputs



	Return type:

	outputs of losses.
















Jax Models

DeepChem supports the use of Jax [https://github.com/google/jax] to build deep learning models.


JaxModel


	
class JaxModel(forward_fn: ~collections.abc.Mapping[str, ~collections.abc.Mapping[str, ~jax.Array]], params: ~collections.abc.Mapping[str, ~collections.abc.Mapping[str, ~jax.Array]], loss: ~deepchem.models.losses.Loss | ~typing.Callable[[~typing.List, ~typing.List, ~typing.List], ~typing.Any] | None, output_types: ~typing.List[str] | None = None, batch_size: int = 100, learning_rate: float = 0.001, optimizer: ~optax._src.base.GradientTransformation | ~deepchem.models.optimizers.Optimizer | None = None, grad_fn: ~typing.Callable = <function create_default_gradient_fn>, update_fn: ~typing.Callable = <function create_default_update_fn>, eval_fn: ~typing.Callable = <function create_default_eval_fn>, rng=Array([0, 1], dtype=uint32), log_frequency: int = 100, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/jax_models/jax_model.py#L74-L699]

	This is a DeepChem model implemented by a Jax Model
Here is a simple example of that uses JaxModel to train a
Haiku (JAX Neural Network Library) based model on deepchem
dataset.

>>>
>> def forward_model(x):
>>   net = hk.nets.MLP([512, 256, 128, 1])
>>   return net(x)
>> def rms_loss(pred, tar, w):
>>   return jnp.mean(optax.l2_loss(pred, tar))
>> params_init, forward_fn = hk.transform(forward_model)
>> rng = jax.random.PRNGKey(500)
>> inputs, _, _, _ = next(iter(dataset.iterbatches(batch_size=256)))
>> params = params_init(rng, inputs)
>> j_m = JaxModel(forward_fn, params, rms_loss, 256, 0.001, 100)
>> j_m.fit(train_dataset)





All optimizations will be done using the optax library.


	
__init__(forward_fn: ~collections.abc.Mapping[str, ~collections.abc.Mapping[str, ~jax.Array]], params: ~collections.abc.Mapping[str, ~collections.abc.Mapping[str, ~jax.Array]], loss: ~deepchem.models.losses.Loss | ~typing.Callable[[~typing.List, ~typing.List, ~typing.List], ~typing.Any] | None, output_types: ~typing.List[str] | None = None, batch_size: int = 100, learning_rate: float = 0.001, optimizer: ~optax._src.base.GradientTransformation | ~deepchem.models.optimizers.Optimizer | None = None, grad_fn: ~typing.Callable = <function create_default_gradient_fn>, update_fn: ~typing.Callable = <function create_default_update_fn>, eval_fn: ~typing.Callable = <function create_default_eval_fn>, rng=Array([0, 1], dtype=uint32), log_frequency: int = 100, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/jax_models/jax_model.py#L96-L198]

	Create a new JaxModel


	Parameters:

	
	model (hk.State or Function) – Any Jax based model that has a apply method for computing the network. Currently
only haiku models are supported.


	params (hk.Params) – The parameter of the Jax based networks


	loss (dc.models.losses.Loss or function) – a Loss or function defining how to compute the training loss for each
batch, as described above


	output_types (list of strings, optional (default None)) – the type of each output from the model, as described above


	batch_size (int, optional (default 100)) – default batch size for training and evaluating


	learning_rate (float or LearningRateSchedule, optional (default 0.001)) – the learning rate to use for fitting.  If optimizer is specified, this is
ignored.


	optimizer (optax object) – For the time being, it is optax object


	rng (jax.random.PRNGKey, optional (default 1)) – A default global PRNG key to use for drawing random numbers.


	log_frequency (int, optional (default 100)) – The frequency at which to log data. Data is logged using
logging by default.









Miscellanous Parameters Yet To Add


	model_dir: str, optional (default None)
	Will be added along with the save & load method



	tensorboard: bool, optional (default False)
	whether to log progress to TensorBoard during training



	wandb: bool, optional (default False)
	whether to log progress to Weights & Biases during training







Work in Progress

[1] Integrate the optax losses, optimizers, schedulers with Deepchem
[2] Support for saving & loading the model.







	
fit(dataset: Dataset, nb_epochs: int = 10, deterministic: bool = False, loss: Loss | Callable[[List, List, List], Any] | None = None, callbacks: Callable | List[Callable] = [], all_losses: List[float] | None = None) → float[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/jax_models/jax_model.py#L213-L267]

	Train this model on a dataset.
:param dataset: the Dataset to train on
:type dataset: Dataset
:param nb_epoch: the number of epochs to train for
:type nb_epoch: int
:param deterministic: if True, the samples are processed in order.  If False, a different random


order is used for each epoch.





	Parameters:

	
	loss (function) – a function of the form f(outputs, labels, weights) that computes the loss
for each batch.  If None (the default), the model’s standard loss function
is used.


	callbacks (function or list of functions) – one or more functions of the form f(model, step) that will be invoked after
every step.  This can be used to perform validation, logging, etc.


	all_losses (Optional[List[float]], optional (default None)) – If specified, all logged losses are appended into this list. Note that
you can call fit() repeatedly with the same list and losses will
continue to be appended.






	Returns:

	
	The average loss over the most recent checkpoint interval


	Miscellanous Parameters Yet To Add


	———————————-


	max_checkpoints_to_keep (int) – the maximum number of checkpoints to keep.  Older checkpoints are discarded.


	checkpoint_interval (int) – the frequency at which to write checkpoints, measured in training steps.
Set this to 0 to disable automatic checkpointing.


	restore (bool) – if True, restore the model from the most recent checkpoint and continue training
from there.  If False, retrain the model from scratch.


	variables (list of hk.Variable) – the variables to train.  If None (the default), all trainable variables in
the model are used.


	Work in Progress


	—————-


	[1] Integerate the optax losses, optimizers, schedulers with Deepchem


	[2] Support for saving & loading the model.


	[3] Adding support for output types (choosing only self._loss_outputs)















	
predict_on_generator(generator: Iterable[Tuple[Any, Any, Any]], transformers: List[Transformer] = [], output_types: str | Sequence[str] | None = None) → ndarray | Sequence[ndarray][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/jax_models/jax_model.py#L454-L479]

	
	Parameters:

	
	generator (generator) – this should generate batches, each represented as a tuple of the form
(inputs, labels, weights).


	transformers (List[dc.trans.Transformers]) – Transformers that the input data has been transformed by.  The output
is passed through these transformers to undo the transformations.


	output_types (String or list of Strings) – If specified, all outputs of this type will be retrieved
from the model. If output_types is specified, outputs must
be None.






	Returns:

	
	a NumPy array of the model produces a single output, or a list of arrays


	if it produces multiple outputs















	
predict_on_batch(X: _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes], transformers: List[Transformer] = []) → ndarray | Sequence[ndarray][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/jax_models/jax_model.py#L481-L500]

	Generates predictions for input samples, processing samples in a batch.
:param X: the input data, as a Numpy array.
:type X: ndarray
:param transformers: Transformers that the input data has been transformed by.  The output


is passed through these transformers to undo the transformations.





	Returns:

	
	a NumPy array of the model produces a single output, or a list of arrays


	if it produces multiple outputs















	
predict(dataset: Dataset, transformers: List[Transformer] = [], output_types: List[str] | None = None) → ndarray | Sequence[ndarray][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/jax_models/jax_model.py#L510-L540]

	Uses self to make predictions on provided Dataset object.


	Parameters:

	
	dataset (dc.data.Dataset) – Dataset to make prediction on


	transformers (List[dc.trans.Transformers]) – Transformers that the input data has been transformed by.  The output
is passed through these transformers to undo the transformations.


	output_types (String or list of Strings) – If specified, all outputs of this type will be retrieved
from the model. If output_types is specified, outputs must
be None.






	Returns:

	
	a NumPy array of the model produces a single output, or a list of arrays


	if it produces multiple outputs















	
get_global_step() → int[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/jax_models/jax_model.py#L542-L544]

	Get the number of steps of fitting that have been performed.






	
evaluate_generator(generator: Iterable[Tuple[Any, Any, Any]], metrics: List[Metric], transformers: List[Transformer] = [], per_task_metrics: bool = False)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/jax_models/jax_model.py#L600-L624]

	Evaluate the performance of this model on the data produced by a generator.
:param generator: this should generate batches, each represented as a tuple of the form


(inputs, labels, weights).





	Parameters:

	
	metric (list of deepchem.metrics.Metric) – Evaluation metric


	transformers (List[dc.trans.Transformers]) – Transformers that the input data has been transformed by.  The output
is passed through these transformers to undo the transformations.


	per_task_metrics (bool) – If True, return per-task scores.






	Returns:

	Maps tasks to scores under metric.



	Return type:

	dict










	
default_generator(dataset: Dataset, epochs: int = 1, mode: str = 'fit', deterministic: bool = True, pad_batches: bool = True) → Iterable[Tuple[List, List, List]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/jax_models/jax_model.py#L663-L699]

	Create a generator that iterates batches for a dataset.
Subclasses may override this method to customize how model inputs are
generated from the data.
:param dataset: the data to iterate
:type dataset: Dataset
:param epochs: the number of times to iterate over the full dataset
:type epochs: int
:param mode: allowed values are ‘fit’ (called during training), ‘predict’ (called


during prediction), and ‘uncertainty’ (called during uncertainty
prediction)





	Parameters:

	
	deterministic (bool) – whether to iterate over the dataset in order, or randomly shuffle the
data for each epoch


	pad_batches (bool) – whether to pad each batch up to this model’s preferred batch size






	Returns:

	
	a generator that iterates batches, each represented as a tuple of lists


	([inputs], [outputs], [weights])




















PinnModel


	
class PINNModel(forward_fn: ~collections.abc.Mapping[str, ~collections.abc.Mapping[str, ~jax.Array]], params: ~collections.abc.Mapping[str, ~collections.abc.Mapping[str, ~jax.Array]], initial_data: dict = {}, output_types: ~typing.List[str] | None = None, batch_size: int = 100, learning_rate: float = 0.001, optimizer: ~optax._src.base.GradientTransformation | ~deepchem.models.optimizers.Optimizer | None = None, grad_fn: ~typing.Callable = <function create_default_gradient_fn>, update_fn: ~typing.Callable = <function create_default_update_fn>, eval_fn: ~typing.Callable = <function create_default_eval_fn>, rng=Array([0, 1], dtype=uint32), log_frequency: int = 100, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/jax_models/pinns_model.py#L48-L408]

	This is class is derived from the JaxModel class and methods are also very similar to JaxModel,
but it has the option of passing multiple arguments(Done using *args) suitable for PINNs model.
Ex - Approximating f(x, y, z, t) satisfying a Linear differential equation.

This model is recommended for linear partial differential equations but if you can accurately write
the gradient function in Jax depending on your use case, then it will work as well.

This class requires two functions apart from the usual function definition and weights

[1] grad_fn : Each PINNs have a different strategy for calculating its final losses. This
function tells the PINNModel how to go about computing the derivatives for backpropagation.
It should follow this format:

>>>
>> def gradient_fn(forward_fn, loss_outputs, initial_data):
>>
>>  def model_loss(params, target, weights, rng, ...):
>>
>>    # write code using the arguments.
>>    # ... indicates the variable number of positional arguments.
>>    return
>>
>>  return model_loss





“…” can be replaced with various arguments like (x, y, z, y) but should match with eval_fn

[2] eval_fn: Function for defining how the model needs to compute during inference.
It should follow this format

>>>
>> def create_eval_fn(forward_fn, params):
>>  def eval_model(..., rng=None):
>>    # write code here using arguments
>>
>>    return
>>  return eval_model





“…” can be replaced with various arguments like (x, y, z, y) but should match with grad_fn

[3] boundary_data:
For a detailed example, check out - deepchem/models/jax_models/tests/test_pinn.py where we have
solved f’(x) = -sin(x)

References
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Notes

This class requires Jax, Haiku and Optax to be installed.


	
__init__(forward_fn: ~collections.abc.Mapping[str, ~collections.abc.Mapping[str, ~jax.Array]], params: ~collections.abc.Mapping[str, ~collections.abc.Mapping[str, ~jax.Array]], initial_data: dict = {}, output_types: ~typing.List[str] | None = None, batch_size: int = 100, learning_rate: float = 0.001, optimizer: ~optax._src.base.GradientTransformation | ~deepchem.models.optimizers.Optimizer | None = None, grad_fn: ~typing.Callable = <function create_default_gradient_fn>, update_fn: ~typing.Callable = <function create_default_update_fn>, eval_fn: ~typing.Callable = <function create_default_eval_fn>, rng=Array([0, 1], dtype=uint32), log_frequency: int = 100, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/jax_models/pinns_model.py#L107-L161]

	
	Parameters:

	
	forward_fn (hk.State or Function) – Any Jax based model that has a apply method for computing the network. Currently
only haiku models are supported.


	params (hk.Params) – The parameter of the Jax based networks


	initial_data (dict) – This acts as a session variable which will be passed as a dictionary in grad_fn


	output_types (list of strings, optional (default None)) – the type of each output from the model, as described above


	batch_size (int, optional (default 100)) – default batch size for training and evaluating


	learning_rate (float or LearningRateSchedule, optional (default 0.001)) – the learning rate to use for fitting.  If optimizer is specified, this is
ignored.


	optimizer (optax object) – For the time being, it is optax object


	grad_fn (Callable (default create_default_gradient_fn)) – It defines how the loss function and gradients need to be calculated for the PINNs model


	update_fn (Callable (default create_default_update_fn)) – It defines how the weights need to be updated using backpropogation. We have used optax library
for optimisation operations. Its reccomended to leave this default.


	eval_fn (Callable (default create_default_eval_fn)) – Function for defining on how the model needs to compute during inference.


	rng (jax.random.PRNGKey, optional (default 1)) – A default global PRNG key to use for drawing random numbers.


	log_frequency (int, optional (default 100)) – The frequency at which to log data. Data is logged using
logging by default.













	
default_generator(dataset: Dataset, epochs: int = 1, mode: str = 'fit', deterministic: bool = True, pad_batches: bool = True) → Iterable[Tuple[List, List, List]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/jax_models/pinns_model.py#L263-L300]

	Create a generator that iterates batches for a dataset.
Subclasses may override this method to customize how model inputs are
generated from the data.


	Parameters:

	
	dataset (Dataset) – the data to iterate


	epochs (int) – the number of times to iterate over the full dataset


	mode (str) – allowed values are ‘fit’ (called during training), ‘predict’ (called
during prediction), and ‘uncertainty’ (called during uncertainty
prediction)


	deterministic (bool) – whether to iterate over the dataset in order, or randomly shuffle the
data for each epoch


	pad_batches (bool) – whether to pad each batch up to this model’s preferred batch size






	Returns:

	
	a generator that iterates batches, each represented as a tuple of lists


	([inputs], [outputs], [weights])





















Hugging Face Models

HuggingFace models from the transformers [https://huggingface.co/models] library can wrapped using the wrapper HuggingFaceModel


	
class HuggingFaceModel(model: PreTrainedModel, tokenizer: transformers.tokenization_utils.PreTrainedTokenizer, task: str | None = None, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/hf_models.py#L23-L498]

	Wrapper class that wraps HuggingFace models as DeepChem models

The class provides a wrapper for wrapping models from HuggingFace
ecosystem in DeepChem and training it via DeepChem’s api. The reason
for this might be that you might want to do an apples-to-apples comparison
between HuggingFace from the transformers library and DeepChem library.

The HuggingFaceModel has a Has-A relationship by wrapping models from
transformers library. Once a model is wrapped, DeepChem’s API are used
for training, prediction, evaluation and other downstream tasks.

A HuggingFaceModel wrapper also has a tokenizer which tokenizes raw
SMILES strings into tokens to be used by downstream models.  The SMILES
strings are generally stored in the X attribute of deepchem.data.Dataset object’.
This differs from the DeepChem standard workflow as tokenization is done
on the fly here. The approach allows us to leverage transformers library’s fast
tokenization algorithms and other utilities like data collation, random masking of tokens
for masked language model training etc.


	Parameters:

	
	model (transformers.modeling_utils.PreTrainedModel) – The HuggingFace model to wrap.


	task (str, (optional, default None)) – 
	The task defines the type of learning task in the model. The supported tasks are
	
	mlm - masked language modeling commonly used in pretraining


	mtr - multitask regression - a task used for both pretraining base models and finetuning


	regression - use it for regression tasks, like property prediction


	classification - use it for classification tasks








When the task is not specified or None, the wrapper returns raw output of the HuggingFaceModel.
In cases where the HuggingFaceModel is a model without a task specific head, this output will be
the last hidden states.




	tokenizer (transformers.tokenization_utils.PreTrainedTokenizer) – Tokenizer








Example

>>> import os
>>> import tempfile
>>> tempdir = tempfile.mkdtemp()





>>> # preparing dataset
>>> smiles = ['CN(c1ccccc1)c1ccccc1C(=O)NCC1(O)CCOCC1', 'CC[NH+](CC)C1CCC([NH2+]C2CC2)(C(=O)[O-])C1', \
...     'COCC(CNC(=O)c1ccc2c(c1)NC(=O)C2)OC', 'OCCn1cc(CNc2cccc3c2CCCC3)nn1', \
...     'CCCCCCc1ccc(C#Cc2ccc(C#CC3=CC=C(CCC)CC3)c(C3CCCCC3)c2)c(F)c1', 'nO=C(NCc1ccc(F)cc1)N1CC=C(c2c[nH]c3ccccc23)CC1']
>>> filepath = os.path.join(tempdir, 'smiles.txt')
>>> f = open(filepath, 'w')
>>> f.write('\n'.join(smiles))
253
>>> f.close()





>>> # preparing tokenizer
>>> from tokenizers import ByteLevelBPETokenizer
>>> from transformers.models.roberta import RobertaTokenizerFast
>>> tokenizer = ByteLevelBPETokenizer()
>>> tokenizer.train(files=filepath, vocab_size=1_000, min_frequency=2, special_tokens=["<s>", "<pad>", "</s>", "<unk>", "<mask>"])
>>> tokenizer_path = os.path.join(tempdir, 'tokenizer')
>>> os.makedirs(tokenizer_path)
>>> result = tokenizer.save_model(tokenizer_path)
>>> tokenizer = RobertaTokenizerFast.from_pretrained(tokenizer_path)





>>> # preparing dataset
>>> import pandas as pd
>>> import deepchem as dc
>>> smiles = ["CCN(CCSC)C(=O)N[C@@](C)(CC)C(F)(F)F","CC1(C)CN(C(=O)Nc2cc3ccccc3nn2)C[C@@]2(CCOC2)O1"]
>>> labels = [3.112,2.432]
>>> df = pd.DataFrame(list(zip(smiles, labels)), columns=["smiles", "task1"])
>>> with dc.utils.UniversalNamedTemporaryFile(mode='w') as tmpfile:
...     df.to_csv(tmpfile.name)
...     loader = dc.data.CSVLoader(["task1"], feature_field="smiles", featurizer=dc.feat.DummyFeaturizer())
...     dataset = loader.create_dataset(tmpfile.name)





>>> # pretraining
>>> from deepchem.models.torch_models.hf_models import HuggingFaceModel
>>> from transformers.models.roberta import RobertaForMaskedLM, RobertaModel, RobertaConfig
>>> config = RobertaConfig(vocab_size=tokenizer.vocab_size)
>>> model = RobertaForMaskedLM(config)
>>> hf_model = HuggingFaceModel(model=model, tokenizer=tokenizer, task='mlm', model_dir='model-dir')
>>> training_loss = hf_model.fit(dataset, nb_epoch=1)





>>> # finetuning a regression model
>>> from transformers.models.roberta import RobertaForSequenceClassification
>>> config = RobertaConfig(vocab_size=tokenizer.vocab_size, problem_type='regression', num_labels=1)
>>> model = RobertaForSequenceClassification(config)
>>> hf_model = HuggingFaceModel(model=model, tokenizer=tokenizer, task='regression', model_dir='model-dir')
>>> hf_model.load_from_pretrained()
>>> training_loss = hf_model.fit(dataset, nb_epoch=1)
>>> prediction = hf_model.predict(dataset)  # prediction
>>> eval_results = hf_model.evaluate(dataset, metrics=dc.metrics.Metric(dc.metrics.mae_score))





>>> # finetune a classification model
>>> # making dataset suitable for classification
>>> import numpy as np
>>> y = np.random.choice([0, 1], size=dataset.y.shape)
>>> dataset = dc.data.NumpyDataset(X=dataset.X, y=y, w=dataset.w, ids=dataset.ids)





>>> from transformers import RobertaForSequenceClassification
>>> config = RobertaConfig(vocab_size=tokenizer.vocab_size)
>>> model = RobertaForSequenceClassification(config)
>>> hf_model = HuggingFaceModel(model=model, task='classification', tokenizer=tokenizer)
>>> training_loss = hf_model.fit(dataset, nb_epoch=1)
>>> predictions = hf_model.predict(dataset)
>>> eval_result = hf_model.evaluate(dataset, metrics=dc.metrics.Metric(dc.metrics.f1_score))






	
__init__(model: PreTrainedModel, tokenizer: transformers.tokenization_utils.PreTrainedTokenizer, task: str | None = None, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/hf_models.py#L131-L149]

	Create a new TorchModel.


	Parameters:

	
	model (torch.nn.Module) – the PyTorch model implementing the calculation


	loss (dc.models.losses.Loss or function) – a Loss or function defining how to compute the training loss for each
batch, as described above


	output_types (list of strings, optional (default None)) – the type of each output from the model, as described above


	batch_size (int, optional (default 100)) – default batch size for training and evaluating


	model_dir (str, optional (default None)) – the directory on disk where the model will be stored.  If this is None,
a temporary directory is created.


	learning_rate (float or LearningRateSchedule, optional (default 0.001)) – the learning rate to use for fitting.  If optimizer is specified, this is
ignored.


	optimizer (Optimizer, optional (default None)) – the optimizer to use for fitting.  If this is specified, learning_rate is
ignored.


	tensorboard (bool, optional (default False)) – whether to log progress to TensorBoard during training


	wandb (bool, optional (default False)) – whether to log progress to Weights & Biases during training


	log_frequency (int, optional (default 100)) – The frequency at which to log data. Data is logged using
logging by default. If tensorboard is set, data is also
logged to TensorBoard. If wandb is set, data is also logged
to Weights & Biases. Logging happens at global steps. Roughly,
a global step corresponds to one batch of training. If you’d
like a printout every 10 batch steps, you’d set
log_frequency=10 for example.


	device (torch.device, optional (default None)) – the device on which to run computations.  If None, a device is
chosen automatically.


	regularization_loss (Callable, optional) – a function that takes no arguments, and returns an extra contribution to add
to the loss function


	wandb_logger (WandbLogger) – the Weights & Biases logger object used to log data and metrics













	
load_from_pretrained(model_dir: str | None = None, from_hf_checkpoint: bool = False)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/hf_models.py#L151-L216]

	Load HuggingFace model from a pretrained checkpoint.

The utility can be used for loading a model from a checkpoint.
Given model_dir, it checks for existing checkpoint in the directory.
If a checkpoint exists, the models state is loaded from the checkpoint.

If the option from_hf_checkpoint is set as True, then it loads a pretrained
model using HuggingFace models from_pretrained method. This option
interprets model_dir as a model id of a pretrained model hosted inside a model repo
on huggingface.co or path to directory containing model weights saved using save_pretrained
method of a HuggingFace model.


Parameter


	model_dir: str
	Directory containing model checkpoint



	from_hf_checkpoint: bool, default False
	Loads a pretrained model from HuggingFace checkpoint.





Example

>>> from transformers import RobertaTokenizerFast
>>> tokenizer = RobertaTokenizerFast.from_pretrained("seyonec/PubChem10M_SMILES_BPE_60k")





>>> from deepchem.models.torch_models.hf_models import HuggingFaceModel
>>> from transformers.models.roberta import RobertaForMaskedLM, RobertaModel, RobertaConfig
>>> config = RobertaConfig(vocab_size=tokenizer.vocab_size)
>>> model = RobertaForMaskedLM(config)
>>> pretrain_model = HuggingFaceModel(model=model, tokenizer=tokenizer, task='mlm', model_dir='model-dir')
>>> pretrain_model.save_checkpoint()





>>> from transformers import RobertaForSequenceClassification
>>> config = RobertaConfig(vocab_size=tokenizer.vocab_size)
>>> model = RobertaForSequenceClassification(config)
>>> finetune_model = HuggingFaceModel(model=model, task='classification', tokenizer=tokenizer, model_dir='model-dir')





>>> finetune_model.load_from_pretrained()











	
fit_generator(generator: Iterable[Tuple[Any, Any, Any]], max_checkpoints_to_keep: int = 5, checkpoint_interval: int = 1000, restore: bool = False, variables: List[Parameter] | ParameterList | None = None, loss: Callable[[List, List, List], Any] | None = None, callbacks: Callable | List[Callable] = [], all_losses: List[float] | None = None) → float[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/hf_models.py#L247-L383]

	Train this model on data from a generator.


	Parameters:

	
	generator (generator) – this should generate batches, each represented as a tuple of the form
(inputs, labels, weights).


	max_checkpoints_to_keep (int) – the maximum number of checkpoints to keep.  Older checkpoints are discarded.


	checkpoint_interval (int) – the frequency at which to write checkpoints, measured in training steps.
Set this to 0 to disable automatic checkpointing.


	restore (bool) – if True, restore the model from the most recent checkpoint and continue training
from there.  If False, retrain the model from scratch.


	variables (list of torch.nn.Parameter) – the variables to train.  If None (the default), all trainable variables in
the model are used.


	loss (function) – a function of the form f(outputs, labels, weights) that computes the loss
for each batch.  If None (the default), the model’s standard loss function
is used.


	callbacks (function or list of functions) – one or more functions of the form f(model, step) that will be invoked after
every step.  This can be used to perform validation, logging, etc.


	all_losses (Optional[List[float]], optional (default None)) – If specified, all logged losses are appended into this list. Note that
you can call fit() repeatedly with the same list and losses will
continue to be appended.






	Return type:

	The average loss over the most recent checkpoint interval






Note

A HuggingFace model can return embeddings (last hidden state), attentions.
Support must be added to return the embeddings to the user, so that it can
be used for other downstream applications.












Chemberta


	
class Chemberta(task: str, tokenizer_path: str = 'seyonec/PubChem10M_SMILES_BPE_60k', n_tasks: int = 1, config: Dict[Any, Any] = {}, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/chemberta.py#L10-L117]

	Chemberta Model

Chemberta is a transformer style model for learning on SMILES strings.
The model architecture is based on the RoBERTa architecture. The model
has can be used for both pretraining an embedding and finetuning for
downstream applications.

The model supports two types of pretraining tasks - pretraining via masked language
modeling and pretraining via multi-task regression. To pretrain via masked language
modeling task, use task = mlm and for pretraining via multitask regression task,
use task = mtr. The model supports the regression, classification and multitask
regression finetuning tasks and they can be specified using regression, classification
and mtr as arguments to the task keyword during model initialisation.

The model uses a tokenizer To create input tokens for the models from the SMILES strings.
The default tokenizer model is a byte-pair encoding tokenizer trained on PubChem10M dataset
and loaded from huggingFace model hub (https://huggingface.co/seyonec/PubChem10M_SMILES_BPE_60k).


	Parameters:

	
	task (str) – 
	The task defines the type of learning task in the model. The supported tasks are
	
	mlm - masked language modeling commonly used in pretraining


	mtr - multitask regression - a task used for both pretraining base models and finetuning


	regression - use it for regression tasks, like property prediction


	classification - use it for classification tasks











	tokenizer_path (str) – Path containing pretrained tokenizer used to tokenize SMILES string for model inputs. The tokenizer path can either be a huggingFace tokenizer model or a path in the local machine containing the tokenizer.


	n_tasks (int, default 1) – Number of prediction targets for a multitask learning model








Example

>>> import os
>>> import tempfile
>>> tempdir = tempfile.mkdtemp()





>>> # preparing dataset
>>> import pandas as pd
>>> import deepchem as dc
>>> smiles = ["CCN(CCSC)C(=O)N[C@@](C)(CC)C(F)(F)F","CC1(C)CN(C(=O)Nc2cc3ccccc3nn2)C[C@@]2(CCOC2)O1"]
>>> labels = [3.112,2.432]
>>> df = pd.DataFrame(list(zip(smiles, labels)), columns=["smiles", "task1"])
>>> with dc.utils.UniversalNamedTemporaryFile(mode='w') as tmpfile:
...     df.to_csv(tmpfile.name)
...     loader = dc.data.CSVLoader(["task1"], feature_field="smiles", featurizer=dc.feat.DummyFeaturizer())
...     dataset = loader.create_dataset(tmpfile.name)





>>> # pretraining
>>> from deepchem.models.torch_models.chemberta import Chemberta
>>> pretrain_model_dir = os.path.join(tempdir, 'pretrain-model')
>>> tokenizer_path = "seyonec/PubChem10M_SMILES_BPE_60k"
>>> pretrain_model = Chemberta(task='mlm', model_dir=pretrain_model_dir, tokenizer_path=tokenizer_path)  # mlm pretraining
>>> pretraining_loss = pretrain_model.fit(dataset, nb_epoch=1)





>>> # finetuning in regression mode
>>> finetune_model_dir = os.path.join(tempdir, 'finetune-model')
>>> finetune_model = Chemberta(task='regression', model_dir=finetune_model_dir, tokenizer_path=tokenizer_path)
>>> finetune_model.load_from_pretrained(pretrain_model_dir)
>>> finetuning_loss = finetune_model.fit(dataset, nb_epoch=1)





>>> # prediction and evaluation
>>> result = finetune_model.predict(dataset)
>>> eval_results = finetune_model.evaluate(dataset, metrics=dc.metrics.Metric(dc.metrics.mae_score))






Reference


	
__init__(task: str, tokenizer_path: str = 'seyonec/PubChem10M_SMILES_BPE_60k', n_tasks: int = 1, config: Dict[Any, Any] = {}, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/chemberta.py#L84-L117]

	Create a new TorchModel.


	Parameters:

	
	model (torch.nn.Module) – the PyTorch model implementing the calculation


	loss (dc.models.losses.Loss or function) – a Loss or function defining how to compute the training loss for each
batch, as described above


	output_types (list of strings, optional (default None)) – the type of each output from the model, as described above


	batch_size (int, optional (default 100)) – default batch size for training and evaluating


	model_dir (str, optional (default None)) – the directory on disk where the model will be stored.  If this is None,
a temporary directory is created.


	learning_rate (float or LearningRateSchedule, optional (default 0.001)) – the learning rate to use for fitting.  If optimizer is specified, this is
ignored.


	optimizer (Optimizer, optional (default None)) – the optimizer to use for fitting.  If this is specified, learning_rate is
ignored.


	tensorboard (bool, optional (default False)) – whether to log progress to TensorBoard during training


	wandb (bool, optional (default False)) – whether to log progress to Weights & Biases during training


	log_frequency (int, optional (default 100)) – The frequency at which to log data. Data is logged using
logging by default. If tensorboard is set, data is also
logged to TensorBoard. If wandb is set, data is also logged
to Weights & Biases. Logging happens at global steps. Roughly,
a global step corresponds to one batch of training. If you’d
like a printout every 10 batch steps, you’d set
log_frequency=10 for example.


	device (torch.device, optional (default None)) – the device on which to run computations.  If None, a device is
chosen automatically.


	regularization_loss (Callable, optional) – a function that takes no arguments, and returns an extra contribution to add
to the loss function


	wandb_logger (WandbLogger) – the Weights & Biases logger object used to log data and metrics




















Trainer

A Trainer object automates the scaling of DeepChem model’s training into multi-gpu and multi-node infrastructures.


DistributedTrainer
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Layers

Deep learning models are often said to be made up of “layers”.
Intuitively, a “layer” is a function which transforms some
tensor into another tensor. DeepChem maintains an extensive
collection of layers which perform various useful scientific
transformations. For now, most layers are Keras only but over
time we expect this support to expand to other types of models
and layers.


Layers Cheatsheet

The “layers cheatsheet” lists various scientifically relevant differentiable layers implemented in DeepChem.

Note that some layers implemented for specific model architectures such as GROVER
and Attention layers, this is indicated in the Model column of the table.

In order to use the layers, make sure that the backend (Keras and tensorflow, Pytorch or Jax) is installed.

Tensorflow Keras Layers

These layers are subclasses of the tensorflow.keras.layers.Layer class.


Custom Keras Layers

	Layer

	Reference

	Model





	InteratomicL2Distances

	
	


	GraphConv

	ref [https://arxiv.org/abs/1509.09292]

	


	GraphPool

	ref [https://arxiv.org/abs/1509.09292]

	


	GraphGather

	ref [https://arxiv.org/abs/1509.09292]

	


	MolGANConvolutionLayer

	ref [https://arxiv.org/abs/1805.11973]

	MolGan



	MolGANAggregationLayer

	ref [https://arxiv.org/abs/1805.11973]

	MolGan



	MolGANMultiConvolutionLayer

	ref [https://arxiv.org/abs/1805.11973]

	MolGan



	MolGANEncoderLayer

	ref [https://arxiv.org/abs/1805.11973]

	MolGan



	LSTMStep

	
	


	AttnLSTMEmbedding

	ref [https://arxiv.org/abs/1606.04080]

	


	IterRefLSTMEmbedding

	
	


	SwitchedDropout

	
	


	WeightedLinearCombo

	
	


	CombineMeanSt

	
	


	Stack

	
	


	VinaFreeEnergy

	
	


	NeighborList

	
	


	AtomicConvolution

	ref [https://arxiv.org/abs/1703.10603]

	


	AlphaShareLayer

	
	Sluice Network



	SluiceLoss

	
	Sluice Network



	BetaShare

	
	Sluice Network



	ANIFeat

	
	


	GraphEmbedPoolLayer

	ref [https://arxiv.org/abs/1703.00792]

	


	Highway

	ref [https://arxiv.org/abs/11505.00387]

	


	WeaveLayer

	ref [https://pubmed.ncbi.nlm.nih.gov/27558503/]

	


	WeaveGather

	ref [https://pubmed.ncbi.nlm.nih.gov/27558503/]

	


	DTNNEmbedding

	
	


	DTNNStep

	
	


	DTNNGather

	
	


	DAGLayer

	ref [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3739985/]

	


	DAGGather

	
	


	MessagePassing

	ref [https://arxiv.org/abs/1511.06391]

	


	EdgeNetwork

	ref [https://arxiv.org/abs/1511.06391]

	MessagePassing



	GatedRecurrentUnit

	ref [https://arxiv.org/abs/1511.06391]

	MessagePassing



	SetGather

	
	





PyTorch

These layers are subclasses of the torch.nn.Module class.


Custom PyTorch Layers

	Layer

	Reference

	Model





	MultilayerPerceptron

	
	


	ScaleNorm

	ref [https://arxiv.org/abs/2002.08264]

	Molecular Attention Transformer



	MATEncoderLayer

	ref [https://arxiv.org/abs/2002.08264]

	Molecular Attention Transformer



	MultiHeadedMATAttention

	ref [https://arxiv.org/abs/2002.08264]

	Molecular Attention Transformer



	SublayerConnection

	ref [https://arxiv.org/abs/1706.03762]

	Transformer



	MATEmbedding

	ref [https://arxiv.org/abs/2002.08264]

	Molecular Attention Transformer



	MATGenerator

	ref [https://arxiv.org/abs/2002.08264]

	Molecular Attention Transformer



	Affine

	ref [http://arxiv.org/abs/2110.15828]

	Normalizing Flow



	RealNVPLayer

	ref [http://arxiv.org/abs/2110.15828]

	Normalizing Flow



	DMPNNEncoderLayer

	ref [https://arxiv.org/pdf/1904.01561.pdf]

	Normalizing Flow



	PositionwiseFeedForward

	ref [https://arxiv.org/abs/2002.08264]

	Molecular Attention Transformer



	GraphPool

	ref [https://arxiv.org/abs/1509.09292]

	


	GroverMPNEncoder

	ref [https://drug.ai.tencent.com/publications/GROVER.pdf]

	Grover



	GroverAttentionHead

	ref [https://drug.ai.tencent.com/publications/GROVER.pdf]

	Grover



	GroverMTBlock

	ref [https://drug.ai.tencent.com/publications/GROVER.pdf]

	Grover



	GroverTransEncoder

	ref [https://drug.ai.tencent.com/publications/GROVER.pdf]

	Grover



	GroverEmbedding

	ref [https://drug.ai.tencent.com/publications/GROVER.pdf]

	Grover



	GroverAtomVocabPredictor

	ref [https://drug.ai.tencent.com/publications/GROVER.pdf]

	Grover



	GroverBondVocabPredictor

	ref [https://drug.ai.tencent.com/publications/GROVER.pdf]

	Grover



	GroverFunctionalGroupPredictor

	ref [https://drug.ai.tencent.com/publications/GROVER.pdf]

	Grover



	ScaledDotProductAttention

	ref [https://arxiv.org/abs/1706.03762]

	Transformer



	SelfAttention

	ref [https://arxiv.org/abs/1706.03762]

	Transformer



	GroverReadout

	ref [https://drug.ai.tencent.com/publications/GROVER.pdf]

	Grover



	DFTXC

	ref [https://arxiv.org/abs/2102.04229]

	XCModel-DFT



	NNLDA

	ref [https://arxiv.org/abs/2102.04229]

	XCModel-DFT



	HybridXC

	ref [https://arxiv.org/abs/2102.04229]

	XCModel-DFT



	XCNNSCF

	ref [https://arxiv.org/abs/2102.04229]

	XCModel-DFT



	AtomEncoder

	`https://arxiv.org/abs/2110.04126`_

	3D InfoMax



	BondEncoder

	`https://arxiv.org/abs/2110.04126`_

	3D InfoMax



	Net3DLayer

	`https://arxiv.org/abs/2110.04126`_

	3D InfoMax



	Net3D

	`https://arxiv.org/abs/2110.04126`_

	3D InfoMax



	PNALayer

	`https://arxiv.org/abs/2004.05718`_

	Principal Neighbourhood Aggregation



	PNAGNN

	`https://arxiv.org/abs/2004.05718`_

	Principal Neighbourhood Aggregation



	EdgeNetwork

	ref [https://arxiv.org/abs/1704.01212]

	Message Passing Neural Network



	WeaveLayer

	ref [https://pubmed.ncbi.nlm.nih.gov/27558503/]

	WeaveModel



	WeaveGather

	ref [https://pubmed.ncbi.nlm.nih.gov/27558503/]

	WeaveModel



	GradientPenalty

	ref [https://arxiv.org/abs/1704.00028]

	WGANModel



	MolGANConvolutionLayer

	ref [https://arxiv.org/abs/1805.11973]

	MolGan



	MolGANAggregationLayer

	ref [https://arxiv.org/abs/1805.11973]

	MolGan



	MolGANMultiConvolutionLayer

	ref [https://arxiv.org/abs/1805.11973]

	MolGan



	MolGANEncoderLayer

	ref [https://arxiv.org/abs/1805.11973]

	MolGan



	DTNNEmbedding

	ref`<https://arxiv.org/abs/1609.08259>`_

	DTNNModel



	DTNNStep

	ref`<https://arxiv.org/abs/1609.08259>`_

	DTNNModel



	DTNNGather

	ref`<https://arxiv.org/abs/1609.08259>`_

	DTNNModel



	MXMNetGlobalMessagePassing

	ref [https://arxiv.org/pdf/2011.07457]

	MXMNetModel



	MXMNetBesselBasisLayer

	ref [https://arxiv.org/pdf/2011.07457]

	MXMNetModel



	VariationalRandomizer

	ref [https://arxiv.org/abs/1511.06349]

	SeqToSeqModel



	EncoderRNN

	ref [https://arxiv.org/abs/1409.3215]

	SeqToSeqModel



	DecoderRNN

	ref [https://arxiv.org/abs/1409.3215]

	SeqToSeqModel



	FerminetElectronFeature

	ref [https://arxiv.org/pdf/1909.02487.pdf]

	FerminetModel



	FerminetEnvelope

	ref [https://arxiv.org/pdf/1909.02487.pdf]

	FerminetModel



	MXMNetLocalMessagePassing

	ref [https://arxiv.org/pdf/2011.07457]

	MXMNetModel



	MXMNetModelMXMNetSphericalBasisLayer

	ref`<https://arxiv.org/pdf/2011.07457>`_

	MXMNetModel



	HighwayLayer

	ref [https://arxiv.org/abs/1507.06228]

	







Keras Layers


	
class InteratomicL2Distances(*args, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L10-L78]

	Compute (squared) L2 Distances between atoms given neighbors.

This class computes pairwise distances between its inputs.

Examples

>>> import numpy as np
>>> import deepchem as dc
>>> atoms = 5
>>> neighbors = 2
>>> coords = np.random.rand(atoms, 3)
>>> neighbor_list = np.random.randint(0, atoms, size=(atoms, neighbors))
>>> layer = InteratomicL2Distances(atoms, neighbors, 3)
>>> result = np.array(layer([coords, neighbor_list]))
>>> result.shape
(5, 2)






	
__init__(N_atoms: int, M_nbrs: int, ndim: int, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L30-L45]

	Constructor for this layer.


	Parameters:

	
	N_atoms (int) – Number of atoms in the system total.


	M_nbrs (int) – Number of neighbors to consider when computing distances.


	n_dim (int) – Number of descriptors for each atom.













	
get_config() → Dict[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L47-L53]

	Returns config dictionary for this layer.






	
call(inputs: List)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L55-L78]

	Invokes this layer.


	Parameters:

	inputs (list) – Should be of form inputs=[coords, nbr_list] where coords is a
tensor of shape (None, N, 3) and nbr_list is a list.



	Return type:

	Tensor of shape (N_atoms, M_nbrs) with interatomic distances.














	
class GraphConv(*args, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L81-L213]

	Graph Convolutional Layers

This layer implements the graph convolution introduced in [1]_.  The graph
convolution combines per-node feature vectures in a nonlinear fashion with
the feature vectors for neighboring nodes.  This “blends” information in
local neighborhoods of a graph.

References



[1]
Duvenaud, David K., et al. “Convolutional networks on graphs for learning molecular fingerprints.”
Advances in neural information processing systems. 2015. https://arxiv.org/abs/1509.09292




	
__init__(out_channel: int, min_deg: int = 0, max_deg: int = 10, activation_fn: Callable | None = None, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L96-L124]

	Initialize a graph convolutional layer.


	Parameters:

	
	out_channel (int) – The number of output channels per graph node.


	min_deg (int, optional (default 0)) – The minimum allowed degree for each graph node.


	max_deg (int, optional (default 10)) – The maximum allowed degree for each graph node. Note that this
is set to 10 to handle complex molecules (some organometallic
compounds have strange structures). If you’re using this for
non-molecular applications, you may need to set this much higher
depending on your dataset.


	activation_fn (function) – A nonlinear activation function to apply. If you’re not sure,
tf.nn.relu is probably a good default for your application.













	
build(input_shape)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L126-L141]

	Creates the variables of the layer (for subclass implementers).

This is a method that implementers of subclasses of Layer or Model
can override if they need a state-creation step in-between
layer instantiation and layer call. It is invoked automatically before
the first execution of call().

This is typically used to create the weights of Layer subclasses
(at the discretion of the subclass implementer).


	Parameters:

	input_shape – Instance of TensorShape, or list of instances of
TensorShape if the layer expects a list of inputs
(one instance per input).










	
get_config()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L143-L149]

	Returns the config of the layer.

A layer config is a Python dictionary (serializable)
containing the configuration of a layer.
The same layer can be reinstantiated later
(without its trained weights) from this configuration.

The config of a layer does not include connectivity
information, nor the layer class name. These are handled
by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of
dict every time it is called. The callers should make a copy of the
returned dict if they want to modify it.


	Returns:

	Python dictionary.










	
call(inputs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L151-L200]

	This is where the layer’s logic lives.

The call() method may not create state (except in its first
invocation, wrapping the creation of variables or other resources in
tf.init_scope()).  It is recommended to create state, including
tf.Variable instances and nested Layer instances,


in __init__(), or in the build() method that is




called automatically before call() executes for the first time.


	Parameters:

	
	inputs – Input tensor, or dict/list/tuple of input tensors.
The first positional inputs argument is subject to special rules:
- inputs must be explicitly passed. A layer cannot have zero


arguments, and inputs cannot be provided via the default value
of a keyword argument.





	NumPy array or Python scalar values in inputs get cast as
tensors.


	Keras mask metadata is only collected from inputs.


	Layers are built (build(input_shape) method)
using shape info from inputs only.


	input_spec compatibility is only checked against inputs.


	Mixed precision input casting is only applied to inputs.
If a layer has tensor arguments in *args or **kwargs, their
casting behavior in mixed precision should be handled manually.


	The SavedModel input specification is generated using inputs
only.


	Integration with various ecosystem packages like TFMOT, TFLite,
TF.js, etc is only supported for inputs and not for tensors in
positional and keyword arguments.







	*args – Additional positional arguments. May contain tensors, although
this is not recommended, for the reasons above.


	**kwargs – Additional keyword arguments. May contain tensors, although
this is not recommended, for the reasons above.
The following optional keyword arguments are reserved:
- training: Boolean scalar tensor of Python boolean indicating


whether the call is meant for training or inference.





	mask: Boolean input mask. If the layer’s call() method takes a
mask argument, its default value will be set to the mask
generated for inputs by the previous layer (if input did come
from a layer that generated a corresponding mask, i.e. if it came
from a Keras layer with masking support).











	Returns:

	A tensor or list/tuple of tensors.










	
sum_neigh(atoms, deg_adj_lists)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L202-L213]

	Store the summed atoms by degree










	
class GraphPool(*args, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L216-L294]

	A GraphPool gathers data from local neighborhoods of a graph.

This layer does a max-pooling over the feature vectors of atoms in a
neighborhood. You can think of this layer as analogous to a max-pooling
layer for 2D convolutions but which operates on graphs instead. This
technique is described in [1]_.

References



[1]
Duvenaud, David K., et al. “Convolutional networks on graphs for
learning molecular fingerprints.” Advances in neural information processing
systems. 2015. https://arxiv.org/abs/1509.09292




	
__init__(min_degree=0, max_degree=10, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L232-L248]

	Initialize this layer


	Parameters:

	
	min_deg (int, optional (default 0)) – The minimum allowed degree for each graph node.


	max_deg (int, optional (default 10)) – The maximum allowed degree for each graph node. Note that this
is set to 10 to handle complex molecules (some organometallic
compounds have strange structures). If you’re using this for
non-molecular applications, you may need to set this much higher
depending on your dataset.













	
get_config()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L250-L254]

	Returns the config of the layer.

A layer config is a Python dictionary (serializable)
containing the configuration of a layer.
The same layer can be reinstantiated later
(without its trained weights) from this configuration.

The config of a layer does not include connectivity
information, nor the layer class name. These are handled
by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of
dict every time it is called. The callers should make a copy of the
returned dict if they want to modify it.


	Returns:

	Python dictionary.










	
call(inputs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L256-L294]

	This is where the layer’s logic lives.

The call() method may not create state (except in its first
invocation, wrapping the creation of variables or other resources in
tf.init_scope()).  It is recommended to create state, including
tf.Variable instances and nested Layer instances,


in __init__(), or in the build() method that is




called automatically before call() executes for the first time.


	Parameters:

	
	inputs – Input tensor, or dict/list/tuple of input tensors.
The first positional inputs argument is subject to special rules:
- inputs must be explicitly passed. A layer cannot have zero


arguments, and inputs cannot be provided via the default value
of a keyword argument.





	NumPy array or Python scalar values in inputs get cast as
tensors.


	Keras mask metadata is only collected from inputs.


	Layers are built (build(input_shape) method)
using shape info from inputs only.


	input_spec compatibility is only checked against inputs.


	Mixed precision input casting is only applied to inputs.
If a layer has tensor arguments in *args or **kwargs, their
casting behavior in mixed precision should be handled manually.


	The SavedModel input specification is generated using inputs
only.


	Integration with various ecosystem packages like TFMOT, TFLite,
TF.js, etc is only supported for inputs and not for tensors in
positional and keyword arguments.







	*args – Additional positional arguments. May contain tensors, although
this is not recommended, for the reasons above.


	**kwargs – Additional keyword arguments. May contain tensors, although
this is not recommended, for the reasons above.
The following optional keyword arguments are reserved:
- training: Boolean scalar tensor of Python boolean indicating


whether the call is meant for training or inference.





	mask: Boolean input mask. If the layer’s call() method takes a
mask argument, its default value will be set to the mask
generated for inputs by the previous layer (if input did come
from a layer that generated a corresponding mask, i.e. if it came
from a Keras layer with masking support).











	Returns:

	A tensor or list/tuple of tensors.














	
class GraphGather(*args, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L297-L369]

	A GraphGather layer pools node-level feature vectors to create a graph feature vector.

Many graph convolutional networks manipulate feature vectors per
graph-node. For a molecule for example, each node might represent an
atom, and the network would manipulate atomic feature vectors that
summarize the local chemistry of the atom. However, at the end of
the application, we will likely want to work with a molecule level
feature representation. The GraphGather layer creates a graph level
feature vector by combining all the node-level feature vectors.

One subtlety about this layer is that it depends on the
batch_size. This is done for internal implementation reasons. The
GraphConv, and GraphPool layers pool all nodes from all graphs
in a batch that’s being processed. The GraphGather reassembles
these jumbled node feature vectors into per-graph feature vectors.
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__init__(batch_size, activation_fn=None, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L321-L336]

	Initialize this layer.


	Parameters:

	
	batch_size (int) – The batch size for this layer. Note that the layer’s behavior
changes depending on the batch size.


	activation_fn (function) – A nonlinear activation function to apply. If you’re not sure,
tf.nn.relu is probably a good default for your application.













	
get_config()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L338-L342]

	Returns the config of the layer.

A layer config is a Python dictionary (serializable)
containing the configuration of a layer.
The same layer can be reinstantiated later
(without its trained weights) from this configuration.

The config of a layer does not include connectivity
information, nor the layer class name. These are handled
by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of
dict every time it is called. The callers should make a copy of the
returned dict if they want to modify it.


	Returns:

	Python dictionary.










	
call(inputs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L344-L369]

	Invoking this layer.


	Parameters:

	inputs (list) – This list should consist of inputs = [atom_features, deg_slice,
membership, deg_adj_list placeholders…]. These are all
tensors that are created/process by GraphConv and GraphPool














	
class MolGANConvolutionLayer(*args, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L372-L499]

	Graph convolution layer used in MolGAN model.
MolGAN is a WGAN type model for generation of small molecules.
Not used directly, higher level layers like MolGANMultiConvolutionLayer use it.
This layer performs basic convolution on one-hot encoded matrices containing
atom and bond information. This layer also accepts three inputs for the case
when convolution is performed more than once and results of previous convolution
need to used. It was done in such a way to avoid creating another layer that
accepts three inputs rather than two. The last input layer is so-called
hidden_layer and it hold results of the convolution while first two are unchanged
input tensors.

Example

See: MolGANMultiConvolutionLayer for using in layers.

>>> from tensorflow.keras import Model
>>> from tensorflow.keras.layers import Input
>>> vertices = 9
>>> nodes = 5
>>> edges = 5
>>> units = 128





>>> layer1 = MolGANConvolutionLayer(units=units,edges=edges, name='layer1')
>>> layer2 = MolGANConvolutionLayer(units=units,edges=edges, name='layer2')
>>> adjacency_tensor= Input(shape=(vertices, vertices, edges))
>>> node_tensor = Input(shape=(vertices,nodes))
>>> hidden1 = layer1([adjacency_tensor,node_tensor])
>>> output = layer2(hidden1)
>>> model = Model(inputs=[adjacency_tensor,node_tensor], outputs=[output])
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__init__(units: int, activation: ~typing.Callable = <function tanh>, dropout_rate: float = 0.0, edges: int = 5, name: str = '', **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L410-L444]

	Initialize this layer.


	Parameters:

	
	units (int) – Dimesion of dense layers used for convolution


	activation (function, optional (default=Tanh)) – activation function used across model, default is Tanh


	dropout_rate (float, optional (default=0.0)) – Dropout rate used by dropout layer


	edges (int, optional (default=5)) – How many dense layers to use in convolution.
Typically equal to number of bond types used in the model.


	name (string, optional (default="")) – Name of the layer













	
call(inputs, training=False)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L446-L487]

	Invoke this layer


	Parameters:

	
	inputs (list) – List of two input matrices, adjacency tensor and node features tensors
in one-hot encoding format.


	training (bool) – Should this layer be run in training mode.
Typically decided by main model, influences things like dropout.






	Returns:

	First and second are original input tensors
Third is the result of convolution



	Return type:

	tuple(tf.Tensor,tf.Tensor,tf.Tensor)










	
get_config() → Dict[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L489-L499]

	Returns config dictionary for this layer.










	
class MolGANAggregationLayer(*args, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L502-L602]

	Graph Aggregation layer used in MolGAN model.
MolGAN is a WGAN type model for generation of small molecules.
Performs aggregation on tensor resulting from convolution layers.
Given its simple nature it might be removed in future and moved to
MolGANEncoderLayer.

Example

>>> from tensorflow.keras import Model
>>> from tensorflow.keras.layers import Input
>>> vertices = 9
>>> nodes = 5
>>> edges = 5
>>> units = 128





>>> layer_1 = MolGANConvolutionLayer(units=units,edges=edges, name='layer1')
>>> layer_2 = MolGANConvolutionLayer(units=units,edges=edges, name='layer2')
>>> layer_3 = MolGANAggregationLayer(units=128, name='layer3')
>>> adjacency_tensor= Input(shape=(vertices, vertices, edges))
>>> node_tensor = Input(shape=(vertices,nodes))
>>> hidden_1 = layer_1([adjacency_tensor,node_tensor])
>>> hidden_2 = layer_2(hidden_1)
>>> output = layer_3(hidden_2[2])
>>> model = Model(inputs=[adjacency_tensor,node_tensor], outputs=[output])
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__init__(units: int = 128, activation: ~typing.Callable = <function tanh>, dropout_rate: float = 0.0, name: str = '', **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L536-L565]

	Initialize the layer


	Parameters:

	
	units (int, optional (default=128)) – Dimesion of dense layers used for aggregation


	activation (function, optional (default=Tanh)) – activation function used across model, default is Tanh


	dropout_rate (float, optional (default=0.0)) – Used by dropout layer


	name (string, optional (default="")) – Name of the layer













	
call(inputs, training=False)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L567-L590]

	Invoke this layer


	Parameters:

	
	inputs (List) – Single tensor resulting from graph convolution layer


	training (bool) – Should this layer be run in training mode.
Typically decided by main model, influences things like dropout.






	Returns:

	aggregation tensor – Result of aggregation function on input convolution tensor.



	Return type:

	tf.Tensor










	
get_config() → Dict[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L592-L602]

	Returns config dictionary for this layer.










	
class MolGANMultiConvolutionLayer(*args, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L605-L721]

	Multiple pass convolution layer used in MolGAN model.
MolGAN is a WGAN type model for generation of small molecules.
It takes outputs of previous convolution layer and uses
them as inputs for the next one.
It simplifies the overall framework, but might be moved to
MolGANEncoderLayer in the future in order to reduce number of layers.

Example

>>> from tensorflow.keras import Model
>>> from tensorflow.keras.layers import Input
>>> vertices = 9
>>> nodes = 5
>>> edges = 5
>>> units = 128





>>> layer_1 = MolGANMultiConvolutionLayer(units=(128,64), name='layer1')
>>> layer_2 = MolGANAggregationLayer(units=128, name='layer2')
>>> adjacency_tensor= Input(shape=(vertices, vertices, edges))
>>> node_tensor = Input(shape=(vertices,nodes))
>>> hidden = layer_1([adjacency_tensor,node_tensor])
>>> output = layer_2(hidden)
>>> model = Model(inputs=[adjacency_tensor,node_tensor], outputs=[output])
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__init__(units: ~typing.Tuple = (128, 64), activation: ~typing.Callable = <function tanh>, dropout_rate: float = 0.0, edges: int = 5, name: str = '', **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L637-L678]

	Initialize the layer


	Parameters:

	
	units (Tuple, optional (default=(128,64)), min_length=2) – List of dimensions used by consecutive convolution layers.
The more values the more convolution layers invoked.


	activation (function, optional (default=tanh)) – activation function used across model, default is Tanh


	dropout_rate (float, optional (default=0.0)) – Used by dropout layer


	edges (int, optional (default=0)) – Controls how many dense layers use for single convolution unit.
Typically matches number of bond types used in the molecule.


	name (string, optional (default="")) – Name of the layer













	
call(inputs, training=False)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L680-L709]

	Invoke this layer


	Parameters:

	
	inputs (list) – List of two input matrices, adjacency tensor and node features tensors
in one-hot encoding format.


	training (bool) – Should this layer be run in training mode.
Typically decided by main model, influences things like dropout.






	Returns:

	convolution tensor – Result of input tensors going through convolution a number of times.



	Return type:

	tf.Tensor










	
get_config() → Dict[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L711-L721]

	Returns config dictionary for this layer.










	
class MolGANEncoderLayer(*args, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L724-L843]

	Main learning layer used by MolGAN model.
MolGAN is a WGAN type model for generation of small molecules.
It role is to further simplify model.
This layer can be manually built by stacking graph convolution layers
followed by graph aggregation.

Example

>>> from tensorflow.keras import Model
>>> from tensorflow.keras.layers import Input, Dropout,Dense
>>> vertices = 9
>>> edges = 5
>>> nodes = 5
>>> dropout_rate = .0
>>> adjacency_tensor= Input(shape=(vertices, vertices, edges))
>>> node_tensor = Input(shape=(vertices, nodes))





>>> graph = MolGANEncoderLayer(units = [(128,64),128], dropout_rate= dropout_rate, edges=edges)([adjacency_tensor,node_tensor])
>>> dense = Dense(units=128, activation='tanh')(graph)
>>> dense = Dropout(dropout_rate)(dense)
>>> dense = Dense(units=64, activation='tanh')(dense)
>>> dense = Dropout(dropout_rate)(dense)
>>> output = Dense(units=1)(dense)





>>> model = Model(inputs=[adjacency_tensor,node_tensor], outputs=[output])
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__init__(units: ~typing.List = [(128, 64), 128], activation: ~typing.Callable = <function tanh>, dropout_rate: float = 0.0, edges: int = 5, name: str = '', **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L758-L796]

	Initialize the layer.


	Parameters:

	
	units (List, optional (default=[(128, 64), 128])) – List of units for MolGANMultiConvolutionLayer and GraphAggregationLayer
i.e. [(128,64),128] means two convolution layers dims = [128,64]
followed by aggregation layer dims=128


	activation (function, optional (default=Tanh)) – activation function used across model, default is Tanh


	dropout_rate (float, optional (default=0.0)) – Used by dropout layer


	edges (int, optional (default=0)) – Controls how many dense layers use for single convolution unit.
Typically matches number of bond types used in the molecule.


	name (string, optional (default="")) – Name of the layer













	
call(inputs, training=False)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L798-L830]

	Invoke this layer


	Parameters:

	
	inputs (list) – List of two input matrices, adjacency tensor and node features tensors
in one-hot encoding format.


	training (bool) – Should this layer be run in training mode.
Typically decided by main model, influences things like dropout.






	Returns:

	encoder tensor – Tensor that been through number of convolutions followed
by aggregation.



	Return type:

	tf.Tensor










	
get_config() → Dict[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L832-L843]

	Returns config dictionary for this layer.










	
class LSTMStep(*args, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L846-L946]

	Layer that performs a single step LSTM update.

This layer performs a single step LSTM update. Note that it is not
a full LSTM recurrent network. The LSTMStep layer is useful as a
primitive for designing layers such as the AttnLSTMEmbedding or the
IterRefLSTMEmbedding below.


	
__init__(output_dim, input_dim, init_fn='glorot_uniform', inner_init_fn='orthogonal', activation_fn='tanh', inner_activation_fn='hard_sigmoid', **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L855-L889]

	
	Parameters:

	
	output_dim (int) – Dimensionality of output vectors.


	input_dim (int) – Dimensionality of input vectors.


	init_fn (str) – TensorFlow nitialization to use for W.


	inner_init_fn (str) – TensorFlow initialization to use for U.


	activation_fn (str) – TensorFlow activation to use for output.


	inner_activation_fn (str) – TensorFlow activation to use for inner steps.













	
get_config()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L891-L899]

	Returns the config of the layer.

A layer config is a Python dictionary (serializable)
containing the configuration of a layer.
The same layer can be reinstantiated later
(without its trained weights) from this configuration.

The config of a layer does not include connectivity
information, nor the layer class name. These are handled
by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of
dict every time it is called. The callers should make a copy of the
returned dict if they want to modify it.


	Returns:

	Python dictionary.










	
build(input_shape)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L904-L915]

	Constructs learnable weights for this layer.






	
call(inputs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L917-L946]

	Execute this layer on input tensors.


	Parameters:

	inputs (list) – List of three tensors (x, h_tm1, c_tm1). h_tm1 means “h, t-1”.



	Returns:

	Returns h, [h, c]



	Return type:

	list














	
class AttnLSTMEmbedding(*args, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L1038-L1133]

	Implements AttnLSTM as in matching networks paper.

The AttnLSTM embedding adjusts two sets of vectors, the “test” and
“support” sets. The “support” consists of a set of evidence vectors.
Think of these as the small training set for low-data machine
learning.  The “test” consists of the queries we wish to answer with
the small amounts of available data. The AttnLSTMEmbdding allows us to
modify the embedding of the “test” set depending on the contents of
the “support”.  The AttnLSTMEmbedding is thus a type of learnable
metric that allows a network to modify its internal notion of
distance.

See references [1]_ [2]_ for more details.
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__init__(n_test, n_support, n_feat, max_depth, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L1061-L1079]

	
	Parameters:

	
	n_support (int) – Size of support set.


	n_test (int) – Size of test set.


	n_feat (int) – Number of features per atom


	max_depth (int) – Number of “processing steps” used by sequence-to-sequence for sets model.













	
get_config()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L1081-L1087]

	Returns the config of the layer.

A layer config is a Python dictionary (serializable)
containing the configuration of a layer.
The same layer can be reinstantiated later
(without its trained weights) from this configuration.

The config of a layer does not include connectivity
information, nor the layer class name. These are handled
by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of
dict every time it is called. The callers should make a copy of the
returned dict if they want to modify it.


	Returns:

	Python dictionary.










	
build(input_shape)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L1089-L1094]

	Creates the variables of the layer (for subclass implementers).

This is a method that implementers of subclasses of Layer or Model
can override if they need a state-creation step in-between
layer instantiation and layer call. It is invoked automatically before
the first execution of call().

This is typically used to create the weights of Layer subclasses
(at the discretion of the subclass implementer).


	Parameters:

	input_shape – Instance of TensorShape, or list of instances of
TensorShape if the layer expects a list of inputs
(one instance per input).










	
call(inputs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L1096-L1133]

	Execute this layer on input tensors.


	Parameters:

	inputs (list) – List of two tensors (X, Xp). X should be of shape (n_test,
n_feat) and Xp should be of shape (n_support, n_feat) where
n_test is the size of the test set, n_support that of the support
set, and n_feat is the number of per-atom features.



	Returns:

	Returns two tensors of same shape as input. Namely the output
shape will be [(n_test, n_feat), (n_support, n_feat)]



	Return type:

	list














	
class IterRefLSTMEmbedding(*args, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L1136-L1249]

	Implements the Iterative Refinement LSTM.

Much like AttnLSTMEmbedding, the IterRefLSTMEmbedding is another type
of learnable metric which adjusts “test” and “support.” Recall that
“support” is the small amount of data available in a low data machine
learning problem, and that “test” is the query. The AttnLSTMEmbedding
only modifies the “test” based on the contents of the support.
However, the IterRefLSTM modifies both the “support” and “test” based
on each other. This allows the learnable metric to be more malleable
than that from AttnLSTMEmbeding.


	
__init__(n_test, n_support, n_feat, max_depth, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L1149-L1171]

	Unlike the AttnLSTM model which only modifies the test vectors
additively, this model allows for an additive update to be
performed to both test and support using information from each
other.


	Parameters:

	
	n_support (int) – Size of support set.


	n_test (int) – Size of test set.


	n_feat (int) – Number of input atom features


	max_depth (int) – Number of LSTM Embedding layers.













	
get_config()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L1173-L1179]

	Returns the config of the layer.

A layer config is a Python dictionary (serializable)
containing the configuration of a layer.
The same layer can be reinstantiated later
(without its trained weights) from this configuration.

The config of a layer does not include connectivity
information, nor the layer class name. These are handled
by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of
dict every time it is called. The callers should make a copy of the
returned dict if they want to modify it.


	Returns:

	Python dictionary.










	
build(input_shape)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L1181-L1195]

	Creates the variables of the layer (for subclass implementers).

This is a method that implementers of subclasses of Layer or Model
can override if they need a state-creation step in-between
layer instantiation and layer call. It is invoked automatically before
the first execution of call().

This is typically used to create the weights of Layer subclasses
(at the discretion of the subclass implementer).


	Parameters:

	input_shape – Instance of TensorShape, or list of instances of
TensorShape if the layer expects a list of inputs
(one instance per input).










	
call(inputs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L1197-L1249]

	Execute this layer on input tensors.


	Parameters:

	inputs (list) – List of two tensors (X, Xp). X should be of shape (n_test,
n_feat) and Xp should be of shape (n_support, n_feat) where
n_test is the size of the test set, n_support that of the
support set, and n_feat is the number of per-atom features.



	Returns:

	
	Returns two tensors of same shape as input. Namely the output


	shape will be [(n_test, n_feat), (n_support, n_feat)]



















	
class SwitchedDropout(*args, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L1252-L1273]

	Apply dropout based on an input.

This is required for uncertainty prediction.  The standard Keras
Dropout layer only performs dropout during training, but we
sometimes need to do it during prediction.  The second input to this
layer should be a scalar equal to 0 or 1, indicating whether to
perform dropout.


	
get_config()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L1266-L1269]

	Returns the config of the layer.

A layer config is a Python dictionary (serializable)
containing the configuration of a layer.
The same layer can be reinstantiated later
(without its trained weights) from this configuration.

The config of a layer does not include connectivity
information, nor the layer class name. These are handled
by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of
dict every time it is called. The callers should make a copy of the
returned dict if they want to modify it.


	Returns:

	Python dictionary.










	
call(inputs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L1271-L1273]

	This is where the layer’s logic lives.

The call() method may not create state (except in its first
invocation, wrapping the creation of variables or other resources in
tf.init_scope()).  It is recommended to create state, including
tf.Variable instances and nested Layer instances,


in __init__(), or in the build() method that is




called automatically before call() executes for the first time.


	Parameters:

	
	inputs – Input tensor, or dict/list/tuple of input tensors.
The first positional inputs argument is subject to special rules:
- inputs must be explicitly passed. A layer cannot have zero


arguments, and inputs cannot be provided via the default value
of a keyword argument.





	NumPy array or Python scalar values in inputs get cast as
tensors.


	Keras mask metadata is only collected from inputs.


	Layers are built (build(input_shape) method)
using shape info from inputs only.


	input_spec compatibility is only checked against inputs.


	Mixed precision input casting is only applied to inputs.
If a layer has tensor arguments in *args or **kwargs, their
casting behavior in mixed precision should be handled manually.


	The SavedModel input specification is generated using inputs
only.


	Integration with various ecosystem packages like TFMOT, TFLite,
TF.js, etc is only supported for inputs and not for tensors in
positional and keyword arguments.







	*args – Additional positional arguments. May contain tensors, although
this is not recommended, for the reasons above.


	**kwargs – Additional keyword arguments. May contain tensors, although
this is not recommended, for the reasons above.
The following optional keyword arguments are reserved:
- training: Boolean scalar tensor of Python boolean indicating


whether the call is meant for training or inference.





	mask: Boolean input mask. If the layer’s call() method takes a
mask argument, its default value will be set to the mask
generated for inputs by the previous layer (if input did come
from a layer that generated a corresponding mask, i.e. if it came
from a Keras layer with masking support).











	Returns:

	A tensor or list/tuple of tensors.














	
class WeightedLinearCombo(*args, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L1276-L1311]

	Computes a weighted linear combination of input layers, with the weights defined by trainable variables.


	
__init__(std=0.3, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L1279-L1288]

	Initialize this layer.


	Parameters:

	std (float, optional (default 0.3)) – The standard deviation to use when randomly initializing weights.










	
get_config()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L1290-L1293]

	Returns the config of the layer.

A layer config is a Python dictionary (serializable)
containing the configuration of a layer.
The same layer can be reinstantiated later
(without its trained weights) from this configuration.

The config of a layer does not include connectivity
information, nor the layer class name. These are handled
by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of
dict every time it is called. The callers should make a copy of the
returned dict if they want to modify it.


	Returns:

	Python dictionary.










	
build(input_shape)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L1295-L1302]

	Creates the variables of the layer (for subclass implementers).

This is a method that implementers of subclasses of Layer or Model
can override if they need a state-creation step in-between
layer instantiation and layer call. It is invoked automatically before
the first execution of call().

This is typically used to create the weights of Layer subclasses
(at the discretion of the subclass implementer).


	Parameters:

	input_shape – Instance of TensorShape, or list of instances of
TensorShape if the layer expects a list of inputs
(one instance per input).










	
call(inputs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L1304-L1311]

	This is where the layer’s logic lives.

The call() method may not create state (except in its first
invocation, wrapping the creation of variables or other resources in
tf.init_scope()).  It is recommended to create state, including
tf.Variable instances and nested Layer instances,


in __init__(), or in the build() method that is




called automatically before call() executes for the first time.


	Parameters:

	
	inputs – Input tensor, or dict/list/tuple of input tensors.
The first positional inputs argument is subject to special rules:
- inputs must be explicitly passed. A layer cannot have zero


arguments, and inputs cannot be provided via the default value
of a keyword argument.





	NumPy array or Python scalar values in inputs get cast as
tensors.


	Keras mask metadata is only collected from inputs.


	Layers are built (build(input_shape) method)
using shape info from inputs only.


	input_spec compatibility is only checked against inputs.


	Mixed precision input casting is only applied to inputs.
If a layer has tensor arguments in *args or **kwargs, their
casting behavior in mixed precision should be handled manually.


	The SavedModel input specification is generated using inputs
only.


	Integration with various ecosystem packages like TFMOT, TFLite,
TF.js, etc is only supported for inputs and not for tensors in
positional and keyword arguments.







	*args – Additional positional arguments. May contain tensors, although
this is not recommended, for the reasons above.


	**kwargs – Additional keyword arguments. May contain tensors, although
this is not recommended, for the reasons above.
The following optional keyword arguments are reserved:
- training: Boolean scalar tensor of Python boolean indicating


whether the call is meant for training or inference.





	mask: Boolean input mask. If the layer’s call() method takes a
mask argument, its default value will be set to the mask
generated for inputs by the previous layer (if input did come
from a layer that generated a corresponding mask, i.e. if it came
from a Keras layer with masking support).











	Returns:

	A tensor or list/tuple of tensors.














	
class CombineMeanStd(*args, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L1314-L1355]

	Generate Gaussian nose.


	
__init__(training_only=False, noise_epsilon=1.0, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L1317-L1337]

	Create a CombineMeanStd layer.

This layer should have two inputs with the same shape, and its
output also has the same shape.  Each element of the output is a
Gaussian distributed random number whose mean is the corresponding
element of the first input, and whose standard deviation is the
corresponding element of the second input.


	Parameters:

	
	training_only (bool) – if True, noise is only generated during training.  During
prediction, the output is simply equal to the first input (that
is, the mean of the distribution used during training).


	noise_epsilon (float) – The noise is scaled by this factor













	
get_config()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L1339-L1343]

	Returns the config of the layer.

A layer config is a Python dictionary (serializable)
containing the configuration of a layer.
The same layer can be reinstantiated later
(without its trained weights) from this configuration.

The config of a layer does not include connectivity
information, nor the layer class name. These are handled
by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of
dict every time it is called. The callers should make a copy of the
returned dict if they want to modify it.


	Returns:

	Python dictionary.










	
call(inputs, training=True)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L1345-L1355]

	This is where the layer’s logic lives.

The call() method may not create state (except in its first
invocation, wrapping the creation of variables or other resources in
tf.init_scope()).  It is recommended to create state, including
tf.Variable instances and nested Layer instances,


in __init__(), or in the build() method that is




called automatically before call() executes for the first time.


	Parameters:

	
	inputs – Input tensor, or dict/list/tuple of input tensors.
The first positional inputs argument is subject to special rules:
- inputs must be explicitly passed. A layer cannot have zero


arguments, and inputs cannot be provided via the default value
of a keyword argument.





	NumPy array or Python scalar values in inputs get cast as
tensors.


	Keras mask metadata is only collected from inputs.


	Layers are built (build(input_shape) method)
using shape info from inputs only.


	input_spec compatibility is only checked against inputs.


	Mixed precision input casting is only applied to inputs.
If a layer has tensor arguments in *args or **kwargs, their
casting behavior in mixed precision should be handled manually.


	The SavedModel input specification is generated using inputs
only.


	Integration with various ecosystem packages like TFMOT, TFLite,
TF.js, etc is only supported for inputs and not for tensors in
positional and keyword arguments.







	*args – Additional positional arguments. May contain tensors, although
this is not recommended, for the reasons above.


	**kwargs – Additional keyword arguments. May contain tensors, although
this is not recommended, for the reasons above.
The following optional keyword arguments are reserved:
- training: Boolean scalar tensor of Python boolean indicating


whether the call is meant for training or inference.





	mask: Boolean input mask. If the layer’s call() method takes a
mask argument, its default value will be set to the mask
generated for inputs by the previous layer (if input did come
from a layer that generated a corresponding mask, i.e. if it came
from a Keras layer with masking support).











	Returns:

	A tensor or list/tuple of tensors.














	
class Stack(*args, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L1358-L1371]

	Stack the inputs along a new axis.


	
get_config()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L1365-L1368]

	Returns the config of the layer.

A layer config is a Python dictionary (serializable)
containing the configuration of a layer.
The same layer can be reinstantiated later
(without its trained weights) from this configuration.

The config of a layer does not include connectivity
information, nor the layer class name. These are handled
by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of
dict every time it is called. The callers should make a copy of the
returned dict if they want to modify it.


	Returns:

	Python dictionary.










	
call(inputs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L1370-L1371]

	This is where the layer’s logic lives.

The call() method may not create state (except in its first
invocation, wrapping the creation of variables or other resources in
tf.init_scope()).  It is recommended to create state, including
tf.Variable instances and nested Layer instances,


in __init__(), or in the build() method that is




called automatically before call() executes for the first time.


	Parameters:

	
	inputs – Input tensor, or dict/list/tuple of input tensors.
The first positional inputs argument is subject to special rules:
- inputs must be explicitly passed. A layer cannot have zero


arguments, and inputs cannot be provided via the default value
of a keyword argument.





	NumPy array or Python scalar values in inputs get cast as
tensors.


	Keras mask metadata is only collected from inputs.


	Layers are built (build(input_shape) method)
using shape info from inputs only.


	input_spec compatibility is only checked against inputs.


	Mixed precision input casting is only applied to inputs.
If a layer has tensor arguments in *args or **kwargs, their
casting behavior in mixed precision should be handled manually.


	The SavedModel input specification is generated using inputs
only.


	Integration with various ecosystem packages like TFMOT, TFLite,
TF.js, etc is only supported for inputs and not for tensors in
positional and keyword arguments.







	*args – Additional positional arguments. May contain tensors, although
this is not recommended, for the reasons above.


	**kwargs – Additional keyword arguments. May contain tensors, although
this is not recommended, for the reasons above.
The following optional keyword arguments are reserved:
- training: Boolean scalar tensor of Python boolean indicating


whether the call is meant for training or inference.





	mask: Boolean input mask. If the layer’s call() method takes a
mask argument, its default value will be set to the mask
generated for inputs by the previous layer (if input did come
from a layer that generated a corresponding mask, i.e. if it came
from a Keras layer with masking support).











	Returns:

	A tensor or list/tuple of tensors.














	
class VinaFreeEnergy(*args, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L1407-L1529]

	Computes free-energy as defined by Autodock Vina.

TODO(rbharath): Make this layer support batching.


	
get_config()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L1436-L1446]

	Returns the config of the layer.

A layer config is a Python dictionary (serializable)
containing the configuration of a layer.
The same layer can be reinstantiated later
(without its trained weights) from this configuration.

The config of a layer does not include connectivity
information, nor the layer class name. These are handled
by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of
dict every time it is called. The callers should make a copy of the
returned dict if they want to modify it.


	Returns:

	Python dictionary.










	
build(input_shape)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L1448-L1451]

	Creates the variables of the layer (for subclass implementers).

This is a method that implementers of subclasses of Layer or Model
can override if they need a state-creation step in-between
layer instantiation and layer call. It is invoked automatically before
the first execution of call().

This is typically used to create the weights of Layer subclasses
(at the discretion of the subclass implementer).


	Parameters:

	input_shape – Instance of TensorShape, or list of instances of
TensorShape if the layer expects a list of inputs
(one instance per input).










	
nonlinearity(c, w)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L1457-L1460]

	Computes non-linearity used in Vina.






	
repulsion(d)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L1462-L1465]

	Computes Autodock Vina’s repulsion interaction term.






	
hydrophobic(d)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L1467-L1471]

	Computes Autodock Vina’s hydrophobic interaction term.






	
hydrogen_bond(d)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L1473-L1478]

	Computes Autodock Vina’s hydrogen bond interaction term.






	
gaussian_first(d)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L1480-L1483]

	Computes Autodock Vina’s first Gaussian interaction term.






	
gaussian_second(d)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L1485-L1488]

	Computes Autodock Vina’s second Gaussian interaction term.






	
call(inputs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L1490-L1529]

	
	Parameters:

	
	X (tf.Tensor of shape (N, d)) – Coordinates/features.


	Z (tf.Tensor of shape (N)) – Atomic numbers of neighbor atoms.






	Returns:

	layer – The free energy of each complex in batch



	Return type:

	tf.Tensor of shape (B)














	
class NeighborList(*args, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L1532-L1827]

	Computes a neighbor-list in Tensorflow.

Neighbor-lists (also called Verlet Lists) are a tool for grouping
atoms which are close to each other spatially. This layer computes a
Neighbor List from a provided tensor of atomic coordinates. You can
think of this as a general “k-means” layer, but optimized for the
case k==3.

TODO(rbharath): Make this layer support batching.


	
__init__(N_atoms, M_nbrs, ndim, nbr_cutoff, start, stop, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L1544-L1568]

	
	Parameters:

	
	N_atoms (int) – Maximum number of atoms this layer will neighbor-list.


	M_nbrs (int) – Maximum number of spatial neighbors possible for atom.


	ndim (int) – Dimensionality of space atoms live in. (Typically 3D, but sometimes will
want to use higher dimensional descriptors for atoms).


	nbr_cutoff (float) – Length in Angstroms (?) at which atom boxes are gridded.













	
get_config()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L1570-L1578]

	Returns the config of the layer.

A layer config is a Python dictionary (serializable)
containing the configuration of a layer.
The same layer can be reinstantiated later
(without its trained weights) from this configuration.

The config of a layer does not include connectivity
information, nor the layer class name. These are handled
by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of
dict every time it is called. The callers should make a copy of the
returned dict if they want to modify it.


	Returns:

	Python dictionary.










	
call(inputs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L1580-L1588]

	This is where the layer’s logic lives.

The call() method may not create state (except in its first
invocation, wrapping the creation of variables or other resources in
tf.init_scope()).  It is recommended to create state, including
tf.Variable instances and nested Layer instances,


in __init__(), or in the build() method that is




called automatically before call() executes for the first time.


	Parameters:

	
	inputs – Input tensor, or dict/list/tuple of input tensors.
The first positional inputs argument is subject to special rules:
- inputs must be explicitly passed. A layer cannot have zero


arguments, and inputs cannot be provided via the default value
of a keyword argument.





	NumPy array or Python scalar values in inputs get cast as
tensors.


	Keras mask metadata is only collected from inputs.


	Layers are built (build(input_shape) method)
using shape info from inputs only.


	input_spec compatibility is only checked against inputs.


	Mixed precision input casting is only applied to inputs.
If a layer has tensor arguments in *args or **kwargs, their
casting behavior in mixed precision should be handled manually.


	The SavedModel input specification is generated using inputs
only.


	Integration with various ecosystem packages like TFMOT, TFLite,
TF.js, etc is only supported for inputs and not for tensors in
positional and keyword arguments.







	*args – Additional positional arguments. May contain tensors, although
this is not recommended, for the reasons above.


	**kwargs – Additional keyword arguments. May contain tensors, although
this is not recommended, for the reasons above.
The following optional keyword arguments are reserved:
- training: Boolean scalar tensor of Python boolean indicating


whether the call is meant for training or inference.





	mask: Boolean input mask. If the layer’s call() method takes a
mask argument, its default value will be set to the mask
generated for inputs by the previous layer (if input did come
from a layer that generated a corresponding mask, i.e. if it came
from a Keras layer with masking support).











	Returns:

	A tensor or list/tuple of tensors.










	
compute_nbr_list(coords)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L1590-L1652]

	Get closest neighbors for atoms.

Needs to handle padding for atoms with no neighbors.


	Parameters:

	coords (tf.Tensor) – Shape (N_atoms, ndim)



	Returns:

	nbr_list – Shape (N_atoms, M_nbrs) of atom indices



	Return type:

	tf.Tensor










	
get_atoms_in_nbrs(coords, cells)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L1654-L1693]

	Get the atoms in neighboring cells for each cells.


	Return type:

	atoms_in_nbrs = (N_atoms, n_nbr_cells, M_nbrs)










	
get_closest_atoms(coords, cells)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L1695-L1731]

	For each cell, find M_nbrs closest atoms.

Let N_atoms be the number of atoms.


	Parameters:

	
	coords (tf.Tensor) – (N_atoms, ndim) shape.


	cells (tf.Tensor) – (n_cells, ndim) shape.






	Returns:

	closest_inds – Of shape (n_cells, M_nbrs)



	Return type:

	tf.Tensor










	
get_cells_for_atoms(coords, cells)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L1733-L1759]

	Compute the cells each atom belongs to.


	Parameters:

	
	coords (tf.Tensor) – Shape (N_atoms, ndim)


	cells (tf.Tensor) – (n_cells, ndim) shape.






	Returns:

	cells_for_atoms – Shape (N_atoms, 1)



	Return type:

	tf.Tensor










	
get_neighbor_cells(cells)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L1775-L1807]

	Compute neighbors of cells in grid.

# TODO(rbharath): Do we need to handle periodic boundary conditions
properly here?
# TODO(rbharath): This doesn’t handle boundaries well. We hard-code
# looking for n_nbr_cells neighbors, which isn’t right for boundary cells in
# the cube.


	Parameters:

	cells (tf.Tensor) – (n_cells, ndim) shape.



	Returns:

	nbr_cells – (n_cells, n_nbr_cells)



	Return type:

	tf.Tensor










	
get_cells()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L1809-L1827]

	Returns the locations of all grid points in box.

Suppose start is -10 Angstrom, stop is 10 Angstrom, nbr_cutoff is 1.
Then would return a list of length 20^3 whose entries would be
[(-10, -10, -10), (-10, -10, -9), …, (9, 9, 9)]


	Returns:

	cells – (n_cells, ndim) shape.



	Return type:

	tf.Tensor














	
class AtomicConvolution(*args, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L1830-L2049]

	Implements the atomic convolutional transform introduced in

Gomes, Joseph, et al. “Atomic convolutional networks for predicting
protein-ligand binding affinity.” arXiv preprint arXiv:1703.10603
(2017).

At a high level, this transform performs a graph convolution
on the nearest neighbors graph in 3D space.


	
__init__(atom_types=None, radial_params=[], boxsize=None, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L1841-L1863]

	Atomic convolution layer

N = max_num_atoms, M = max_num_neighbors, B = batch_size, d = num_features
l = num_radial_filters * num_atom_types


	Parameters:

	
	atom_types (list or None) – Of length a, where a is number of atom types for filtering.


	radial_params (list) – Of length l, where l is number of radial filters learned.


	boxsize (float or None) – Simulation box length [Angstrom].













	
get_config()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L1865-L1870]

	Returns the config of the layer.

A layer config is a Python dictionary (serializable)
containing the configuration of a layer.
The same layer can be reinstantiated later
(without its trained weights) from this configuration.

The config of a layer does not include connectivity
information, nor the layer class name. These are handled
by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of
dict every time it is called. The callers should make a copy of the
returned dict if they want to modify it.


	Returns:

	Python dictionary.










	
build(input_shape)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L1872-L1881]

	Creates the variables of the layer (for subclass implementers).

This is a method that implementers of subclasses of Layer or Model
can override if they need a state-creation step in-between
layer instantiation and layer call. It is invoked automatically before
the first execution of call().

This is typically used to create the weights of Layer subclasses
(at the discretion of the subclass implementer).


	Parameters:

	input_shape – Instance of TensorShape, or list of instances of
TensorShape if the layer expects a list of inputs
(one instance per input).










	
call(inputs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L1883-L1933]

	
	Parameters:

	
	X (tf.Tensor of shape (B, N, d)) – Coordinates/features.


	Nbrs (tf.Tensor of shape (B, N, M)) – Neighbor list.


	Nbrs_Z (tf.Tensor of shape (B, N, M)) – Atomic numbers of neighbor atoms.






	Returns:

	layer – A new tensor representing the output of the atomic conv layer



	Return type:

	tf.Tensor of shape (B, N, l)










	
radial_symmetry_function(R, rc, rs, e)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L1935-L1958]

	Calculates radial symmetry function.

B = batch_size, N = max_num_atoms, M = max_num_neighbors, d = num_filters


	Parameters:

	
	R (tf.Tensor of shape (B, N, M)) – Distance matrix.


	rc (float) – Interaction cutoff [Angstrom].


	rs (float) – Gaussian distance matrix mean.


	e (float) – Gaussian distance matrix width.






	Returns:

	retval – Radial symmetry function (before summation)



	Return type:

	tf.Tensor of shape (B, N, M)










	
radial_cutoff(R, rc)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L1960-L1981]

	Calculates radial cutoff matrix.

B = batch_size, N = max_num_atoms, M = max_num_neighbors


	Parameters:

	
	[B (R) – Distance matrix.


	N (tf.Tensor) – Distance matrix.


	M] (tf.Tensor) – Distance matrix.


	rc (tf.Variable) – Interaction cutoff [Angstrom].






	Returns:

	FC [B, N, M] – Radial cutoff matrix.



	Return type:

	tf.Tensor










	
gaussian_distance_matrix(R, rs, e)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L1983-L2002]

	Calculates gaussian distance matrix.

B = batch_size, N = max_num_atoms, M = max_num_neighbors


	Parameters:

	
	[B (R) – Distance matrix.


	N (tf.Tensor) – Distance matrix.


	M] (tf.Tensor) – Distance matrix.


	rs (tf.Variable) – Gaussian distance matrix mean.


	e (tf.Variable) – Gaussian distance matrix width (e = .5/std**2).






	Returns:

	retval [B, N, M] – Gaussian distance matrix.



	Return type:

	tf.Tensor










	
distance_tensor(X, Nbrs, boxsize, B, N, M, d)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L2004-L2030]

	Calculates distance tensor for batch of molecules.

B = batch_size, N = max_num_atoms, M = max_num_neighbors, d = num_features


	Parameters:

	
	X (tf.Tensor of shape (B, N, d)) – Coordinates/features tensor.


	Nbrs (tf.Tensor of shape (B, N, M)) – Neighbor list tensor.


	boxsize (float or None) – Simulation box length [Angstrom].






	Returns:

	D – Coordinates/features distance tensor.



	Return type:

	tf.Tensor of shape (B, N, M, d)










	
distance_matrix(D)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L2032-L2049]

	Calcuates the distance matrix from the distance tensor

B = batch_size, N = max_num_atoms, M = max_num_neighbors, d = num_features


	Parameters:

	D (tf.Tensor of shape (B, N, M, d)) – Distance tensor.



	Returns:

	R – Distance matrix.



	Return type:

	tf.Tensor of shape (B, N, M)














	
class AlphaShareLayer(*args, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L2052-L2111]

	Part of a sluice network. Adds alpha parameters to control
sharing between the main and auxillary tasks

Factory method AlphaShare should be used for construction


	Parameters:

	in_layers (list of Layers or tensors) – tensors in list must be the same size and list must include two or more tensors



	Returns:

	
	out_tensor (a tensor with shape [len(in_layers), x, y] where x, y were the original layer dimensions)


	Distance matrix.











	
get_config()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L2073-L2075]

	Returns the config of the layer.

A layer config is a Python dictionary (serializable)
containing the configuration of a layer.
The same layer can be reinstantiated later
(without its trained weights) from this configuration.

The config of a layer does not include connectivity
information, nor the layer class name. These are handled
by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of
dict every time it is called. The callers should make a copy of the
returned dict if they want to modify it.


	Returns:

	Python dictionary.










	
build(input_shape)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L2077-L2081]

	Creates the variables of the layer (for subclass implementers).

This is a method that implementers of subclasses of Layer or Model
can override if they need a state-creation step in-between
layer instantiation and layer call. It is invoked automatically before
the first execution of call().

This is typically used to create the weights of Layer subclasses
(at the discretion of the subclass implementer).


	Parameters:

	input_shape – Instance of TensorShape, or list of instances of
TensorShape if the layer expects a list of inputs
(one instance per input).










	
call(inputs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L2083-L2111]

	This is where the layer’s logic lives.

The call() method may not create state (except in its first
invocation, wrapping the creation of variables or other resources in
tf.init_scope()).  It is recommended to create state, including
tf.Variable instances and nested Layer instances,


in __init__(), or in the build() method that is




called automatically before call() executes for the first time.


	Parameters:

	
	inputs – Input tensor, or dict/list/tuple of input tensors.
The first positional inputs argument is subject to special rules:
- inputs must be explicitly passed. A layer cannot have zero


arguments, and inputs cannot be provided via the default value
of a keyword argument.





	NumPy array or Python scalar values in inputs get cast as
tensors.


	Keras mask metadata is only collected from inputs.


	Layers are built (build(input_shape) method)
using shape info from inputs only.


	input_spec compatibility is only checked against inputs.


	Mixed precision input casting is only applied to inputs.
If a layer has tensor arguments in *args or **kwargs, their
casting behavior in mixed precision should be handled manually.


	The SavedModel input specification is generated using inputs
only.


	Integration with various ecosystem packages like TFMOT, TFLite,
TF.js, etc is only supported for inputs and not for tensors in
positional and keyword arguments.







	*args – Additional positional arguments. May contain tensors, although
this is not recommended, for the reasons above.


	**kwargs – Additional keyword arguments. May contain tensors, although
this is not recommended, for the reasons above.
The following optional keyword arguments are reserved:
- training: Boolean scalar tensor of Python boolean indicating


whether the call is meant for training or inference.





	mask: Boolean input mask. If the layer’s call() method takes a
mask argument, its default value will be set to the mask
generated for inputs by the previous layer (if input did come
from a layer that generated a corresponding mask, i.e. if it came
from a Keras layer with masking support).











	Returns:

	A tensor or list/tuple of tensors.














	
class SluiceLoss(*args, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L2114-L2139]

	Calculates the loss in a Sluice Network
Every input into an AlphaShare should be used in SluiceLoss


	
get_config()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L2123-L2125]

	Returns the config of the layer.

A layer config is a Python dictionary (serializable)
containing the configuration of a layer.
The same layer can be reinstantiated later
(without its trained weights) from this configuration.

The config of a layer does not include connectivity
information, nor the layer class name. These are handled
by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of
dict every time it is called. The callers should make a copy of the
returned dict if they want to modify it.


	Returns:

	Python dictionary.










	
call(inputs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L2127-L2139]

	This is where the layer’s logic lives.

The call() method may not create state (except in its first
invocation, wrapping the creation of variables or other resources in
tf.init_scope()).  It is recommended to create state, including
tf.Variable instances and nested Layer instances,


in __init__(), or in the build() method that is




called automatically before call() executes for the first time.


	Parameters:

	
	inputs – Input tensor, or dict/list/tuple of input tensors.
The first positional inputs argument is subject to special rules:
- inputs must be explicitly passed. A layer cannot have zero


arguments, and inputs cannot be provided via the default value
of a keyword argument.





	NumPy array or Python scalar values in inputs get cast as
tensors.


	Keras mask metadata is only collected from inputs.


	Layers are built (build(input_shape) method)
using shape info from inputs only.


	input_spec compatibility is only checked against inputs.


	Mixed precision input casting is only applied to inputs.
If a layer has tensor arguments in *args or **kwargs, their
casting behavior in mixed precision should be handled manually.


	The SavedModel input specification is generated using inputs
only.


	Integration with various ecosystem packages like TFMOT, TFLite,
TF.js, etc is only supported for inputs and not for tensors in
positional and keyword arguments.







	*args – Additional positional arguments. May contain tensors, although
this is not recommended, for the reasons above.


	**kwargs – Additional keyword arguments. May contain tensors, although
this is not recommended, for the reasons above.
The following optional keyword arguments are reserved:
- training: Boolean scalar tensor of Python boolean indicating


whether the call is meant for training or inference.





	mask: Boolean input mask. If the layer’s call() method takes a
mask argument, its default value will be set to the mask
generated for inputs by the previous layer (if input did come
from a layer that generated a corresponding mask, i.e. if it came
from a Keras layer with masking support).











	Returns:

	A tensor or list/tuple of tensors.














	
class BetaShare(*args, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L2142-L2182]

	Part of a sluice network. Adds beta params to control which layer
outputs are used for prediction


	Parameters:

	in_layers (list of Layers or tensors) – tensors in list must be the same size and list must include two or
more tensors



	Returns:

	output_layers – Distance matrix.



	Return type:

	list of Layers or tensors with same size as in_layers






	
get_config()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L2162-L2164]

	Returns the config of the layer.

A layer config is a Python dictionary (serializable)
containing the configuration of a layer.
The same layer can be reinstantiated later
(without its trained weights) from this configuration.

The config of a layer does not include connectivity
information, nor the layer class name. These are handled
by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of
dict every time it is called. The callers should make a copy of the
returned dict if they want to modify it.


	Returns:

	Python dictionary.










	
build(input_shape)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L2166-L2169]

	Creates the variables of the layer (for subclass implementers).

This is a method that implementers of subclasses of Layer or Model
can override if they need a state-creation step in-between
layer instantiation and layer call. It is invoked automatically before
the first execution of call().

This is typically used to create the weights of Layer subclasses
(at the discretion of the subclass implementer).


	Parameters:

	input_shape – Instance of TensorShape, or list of instances of
TensorShape if the layer expects a list of inputs
(one instance per input).










	
call(inputs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L2171-L2182]

	Size of input layers must all be the same










	
class ANIFeat(*args, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L2185-L2367]

	Performs transform from 3D coordinates to ANI symmetry functions


	
__init__(max_atoms=23, radial_cutoff=4.6, angular_cutoff=3.1, radial_length=32, angular_length=8, atom_cases=[1, 6, 7, 8, 16], atomic_number_differentiated=True, coordinates_in_bohr=True, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L2188-L2209]

	Only X can be transformed






	
get_config()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L2211-L2222]

	Returns the config of the layer.

A layer config is a Python dictionary (serializable)
containing the configuration of a layer.
The same layer can be reinstantiated later
(without its trained weights) from this configuration.

The config of a layer does not include connectivity
information, nor the layer class name. These are handled
by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of
dict every time it is called. The callers should make a copy of the
returned dict if they want to modify it.


	Returns:

	Python dictionary.










	
call(inputs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L2224-L2246]

	In layers should be of shape dtype tf.float32, (None, self.max_atoms, 4)






	
distance_matrix(coordinates, flags)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L2248-L2270]

	Generate distance matrix






	
distance_cutoff(d, cutoff, flags)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L2272-L2280]

	Generate distance matrix with trainable cutoff






	
radial_symmetry(d_cutoff, d, atom_numbers)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L2282-L2306]

	Radial Symmetry Function






	
angular_symmetry(d_cutoff, d, atom_numbers, coordinates)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L2308-L2363]

	Angular Symmetry Function










	
class GraphEmbedPoolLayer(*args, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L2370-L2459]

	GraphCNNPool Layer from Robust Spatial Filtering with Graph Convolutional Neural Networks
https://arxiv.org/abs/1703.00792

This is a learnable pool operation It constructs a new adjacency
matrix for a graph of specified number of nodes.

This differs from our other pool operations which set vertices to a
function value without altering the adjacency matrix.

..math:: V_{emb} = SpatialGraphCNN({V_{in}})
..math:: V_{out} = sigma(V_{emb})^{T} * V_{in}
..math:: A_{out} = V_{emb}^{T} * A_{in} * V_{emb}


	
get_config()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L2390-L2393]

	Returns the config of the layer.

A layer config is a Python dictionary (serializable)
containing the configuration of a layer.
The same layer can be reinstantiated later
(without its trained weights) from this configuration.

The config of a layer does not include connectivity
information, nor the layer class name. These are handled
by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of
dict every time it is called. The callers should make a copy of the
returned dict if they want to modify it.


	Returns:

	Python dictionary.










	
build(input_shape)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L2395-L2403]

	Creates the variables of the layer (for subclass implementers).

This is a method that implementers of subclasses of Layer or Model
can override if they need a state-creation step in-between
layer instantiation and layer call. It is invoked automatically before
the first execution of call().

This is typically used to create the weights of Layer subclasses
(at the discretion of the subclass implementer).


	Parameters:

	input_shape – Instance of TensorShape, or list of instances of
TensorShape if the layer expects a list of inputs
(one instance per input).










	
call(inputs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L2405-L2445]

	
	Parameters:

	
	num_filters (int) – Number of filters to have in the output


	in_layers (list of Layers or tensors) – [V, A, mask]
V are the vertex features must be of shape (batch, vertex, channel)


	graph (A are the adjacency matrixes for each) – Shape (batch, from_vertex, adj_matrix, to_vertex)


	optional (mask is) – 


	the (to be used when not every graph has) – 


	vertices (same number of) – 






	Returns:

	
	Returns a tf.tensor with a graph convolution applied


	The shape will be (batch, vertex, self.num_filters).



















	
class GraphCNN(*args, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L2462-L2556]

	GraphCNN Layer from Robust Spatial Filtering with Graph Convolutional Neural Networks
https://arxiv.org/abs/1703.00792

Spatial-domain convolutions can be defined as
H = h_0I + h_1A + h_2A^2 + … + hkAk, H ∈ R**(N×N)

We approximate it by
H ≈ h_0I + h_1A

We can define a convolution as applying multiple these linear filters
over edges of different types (think up, down, left, right, diagonal in images)
Where each edge type has its own adjacency matrix
H ≈ h_0I + h_1A_1 + h_2A_2 + … h_(L−1)A_(L−1)

V_out = sum_{c=1}^{C} H^{c} V^{c} + b


	
__init__(num_filters, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L2481-L2503]

	
	Parameters:

	
	num_filters (int) – Number of filters to have in the output


	in_layers (list of Layers or tensors) – [V, A, mask]
V are the vertex features must be of shape (batch, vertex, channel)


	graph (A are the adjacency matrixes for each) – Shape (batch, from_vertex, adj_matrix, to_vertex)


	optional (mask is) – 


	the (to be used when not every graph has) – 


	vertices (same number of) – 


	Returns (tf.tensor) – 


	applied (Returns a tf.tensor with a graph convolution) – 


	(batch (The shape will be) – 


	vertex – 


	self.num_filters) – 













	
get_config()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L2505-L2508]

	Returns the config of the layer.

A layer config is a Python dictionary (serializable)
containing the configuration of a layer.
The same layer can be reinstantiated later
(without its trained weights) from this configuration.

The config of a layer does not include connectivity
information, nor the layer class name. These are handled
by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of
dict every time it is called. The callers should make a copy of the
returned dict if they want to modify it.


	Returns:

	Python dictionary.










	
build(input_shape)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L2510-L2524]

	Creates the variables of the layer (for subclass implementers).

This is a method that implementers of subclasses of Layer or Model
can override if they need a state-creation step in-between
layer instantiation and layer call. It is invoked automatically before
the first execution of call().

This is typically used to create the weights of Layer subclasses
(at the discretion of the subclass implementer).


	Parameters:

	input_shape – Instance of TensorShape, or list of instances of
TensorShape if the layer expects a list of inputs
(one instance per input).










	
call(inputs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L2526-L2537]

	This is where the layer’s logic lives.

The call() method may not create state (except in its first
invocation, wrapping the creation of variables or other resources in
tf.init_scope()).  It is recommended to create state, including
tf.Variable instances and nested Layer instances,


in __init__(), or in the build() method that is




called automatically before call() executes for the first time.


	Parameters:

	
	inputs – Input tensor, or dict/list/tuple of input tensors.
The first positional inputs argument is subject to special rules:
- inputs must be explicitly passed. A layer cannot have zero


arguments, and inputs cannot be provided via the default value
of a keyword argument.





	NumPy array or Python scalar values in inputs get cast as
tensors.


	Keras mask metadata is only collected from inputs.


	Layers are built (build(input_shape) method)
using shape info from inputs only.


	input_spec compatibility is only checked against inputs.


	Mixed precision input casting is only applied to inputs.
If a layer has tensor arguments in *args or **kwargs, their
casting behavior in mixed precision should be handled manually.


	The SavedModel input specification is generated using inputs
only.


	Integration with various ecosystem packages like TFMOT, TFLite,
TF.js, etc is only supported for inputs and not for tensors in
positional and keyword arguments.







	*args – Additional positional arguments. May contain tensors, although
this is not recommended, for the reasons above.


	**kwargs – Additional keyword arguments. May contain tensors, although
this is not recommended, for the reasons above.
The following optional keyword arguments are reserved:
- training: Boolean scalar tensor of Python boolean indicating


whether the call is meant for training or inference.





	mask: Boolean input mask. If the layer’s call() method takes a
mask argument, its default value will be set to the mask
generated for inputs by the previous layer (if input did come
from a layer that generated a corresponding mask, i.e. if it came
from a Keras layer with masking support).











	Returns:

	A tensor or list/tuple of tensors.














	
class Highway(*args, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L2559-L2632]

	Create a highway layer. y = H(x) * T(x) + x * (1 - T(x))

H(x) = activation_fn(matmul(W_H, x) + b_H) is the non-linear transformed output
T(x) = sigmoid(matmul(W_T, x) + b_T) is the transform gate

Implementation based on paper

Srivastava, Rupesh Kumar, Klaus Greff, and Jürgen Schmidhuber. “Highway networks.” arXiv preprint arXiv:1505.00387 (2015).

This layer expects its input to be a two dimensional tensor
of shape (batch size, # input features).  Outputs will be in
the same shape.


	
__init__(activation_fn='relu', biases_initializer='zeros', weights_initializer=None, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L2575-L2594]

	
	Parameters:

	
	activation_fn (object) – the Tensorflow activation function to apply to the output


	biases_initializer (callable object) – the initializer for bias values.  This may be None, in which case the layer
will not include biases.


	weights_initializer (callable object) – the initializer for weight values













	
get_config()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L2596-L2601]

	Returns the config of the layer.

A layer config is a Python dictionary (serializable)
containing the configuration of a layer.
The same layer can be reinstantiated later
(without its trained weights) from this configuration.

The config of a layer does not include connectivity
information, nor the layer class name. These are handled
by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of
dict every time it is called. The callers should make a copy of the
returned dict if they want to modify it.


	Returns:

	Python dictionary.










	
build(input_shape)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L2603-L2623]

	Creates the variables of the layer (for subclass implementers).

This is a method that implementers of subclasses of Layer or Model
can override if they need a state-creation step in-between
layer instantiation and layer call. It is invoked automatically before
the first execution of call().

This is typically used to create the weights of Layer subclasses
(at the discretion of the subclass implementer).


	Parameters:

	input_shape – Instance of TensorShape, or list of instances of
TensorShape if the layer expects a list of inputs
(one instance per input).










	
call(inputs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L2625-L2632]

	This is where the layer’s logic lives.

The call() method may not create state (except in its first
invocation, wrapping the creation of variables or other resources in
tf.init_scope()).  It is recommended to create state, including
tf.Variable instances and nested Layer instances,


in __init__(), or in the build() method that is




called automatically before call() executes for the first time.


	Parameters:

	
	inputs – Input tensor, or dict/list/tuple of input tensors.
The first positional inputs argument is subject to special rules:
- inputs must be explicitly passed. A layer cannot have zero


arguments, and inputs cannot be provided via the default value
of a keyword argument.





	NumPy array or Python scalar values in inputs get cast as
tensors.


	Keras mask metadata is only collected from inputs.


	Layers are built (build(input_shape) method)
using shape info from inputs only.


	input_spec compatibility is only checked against inputs.


	Mixed precision input casting is only applied to inputs.
If a layer has tensor arguments in *args or **kwargs, their
casting behavior in mixed precision should be handled manually.


	The SavedModel input specification is generated using inputs
only.


	Integration with various ecosystem packages like TFMOT, TFLite,
TF.js, etc is only supported for inputs and not for tensors in
positional and keyword arguments.







	*args – Additional positional arguments. May contain tensors, although
this is not recommended, for the reasons above.


	**kwargs – Additional keyword arguments. May contain tensors, although
this is not recommended, for the reasons above.
The following optional keyword arguments are reserved:
- training: Boolean scalar tensor of Python boolean indicating


whether the call is meant for training or inference.





	mask: Boolean input mask. If the layer’s call() method takes a
mask argument, its default value will be set to the mask
generated for inputs by the previous layer (if input did come
from a layer that generated a corresponding mask, i.e. if it came
from a Keras layer with masking support).











	Returns:

	A tensor or list/tuple of tensors.














	
class WeaveLayer(*args, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L2635-L2937]

	This class implements the core Weave convolution from the
Google graph convolution paper [1]_

This model contains atom features and bond features
separately.Here, bond features are also called pair features.
There are 2 types of transformation, atom->atom, atom->pair,
pair->atom, pair->pair that this model implements.

Examples

This layer expects 4 inputs in a list of the form [atom_features,
pair_features, pair_split, atom_to_pair]. We’ll walk through the structure
of these inputs. Let’s start with some basic definitions.

>>> import deepchem as dc
>>> import numpy as np





Suppose you have a batch of molecules

>>> smiles = ["CCC", "C"]





Note that there are 4 atoms in total in this system. This layer expects its
input molecules to be batched together.

>>> total_n_atoms = 4





Let’s suppose that we have a featurizer that computes n_atom_feat features
per atom.

>>> n_atom_feat = 75





Then conceptually, atom_feat is the array of shape (total_n_atoms,
n_atom_feat) of atomic features. For simplicity, let’s just go with a
random such matrix.

>>> atom_feat = np.random.rand(total_n_atoms, n_atom_feat)





Let’s suppose we have n_pair_feat pairwise features

>>> n_pair_feat = 14





For each molecule, we compute a matrix of shape (n_atoms*n_atoms,
n_pair_feat) of pairwise features for each pair of atoms in the molecule.
Let’s construct this conceptually for our example.

>>> pair_feat = [np.random.rand(3*3, n_pair_feat), np.random.rand(1*1, n_pair_feat)]
>>> pair_feat = np.concatenate(pair_feat, axis=0)
>>> pair_feat.shape
(10, 14)





pair_split is an index into pair_feat which tells us which atom each row belongs to. In our case, we hve

>>> pair_split = np.array([0, 0, 0, 1, 1, 1, 2, 2, 2, 3])





That is, the first 9 entries belong to “CCC” and the last entry to “C”. The
final entry atom_to_pair goes in a little more in-depth than pair_split
and tells us the precise pair each pair feature belongs to. In our case

>>> atom_to_pair = np.array([[0, 0],
...                          [0, 1],
...                          [0, 2],
...                          [1, 0],
...                          [1, 1],
...                          [1, 2],
...                          [2, 0],
...                          [2, 1],
...                          [2, 2],
...                          [3, 3]])





Let’s now define the actual layer

>>> layer = WeaveLayer()





And invoke it

>>> [A, P] = layer([atom_feat, pair_feat, pair_split, atom_to_pair])





The weave layer produces new atom/pair features. Let’s check their shapes

>>> A = np.array(A)
>>> A.shape
(4, 50)
>>> P = np.array(P)
>>> P.shape
(10, 50)





The 4 is total_num_atoms and the 10 is the total number of pairs. Where
does 50 come from? It’s from the default arguments n_atom_input_feat and
n_pair_input_feat.
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__init__(n_atom_input_feat: int = 75, n_pair_input_feat: int = 14, n_atom_output_feat: int = 50, n_pair_output_feat: int = 50, n_hidden_AA: int = 50, n_hidden_PA: int = 50, n_hidden_AP: int = 50, n_hidden_PP: int = 50, update_pair: bool = True, init: str = 'glorot_uniform', activation: str = 'relu', batch_normalize: bool = True, batch_normalize_kwargs: Dict = {'renorm': True}, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L2734-L2802]

	
	Parameters:

	
	n_atom_input_feat (int, optional (default 75)) – Number of features for each atom in input.


	n_pair_input_feat (int, optional (default 14)) – Number of features for each pair of atoms in input.


	n_atom_output_feat (int, optional (default 50)) – Number of features for each atom in output.


	n_pair_output_feat (int, optional (default 50)) – Number of features for each pair of atoms in output.


	n_hidden_AA (int, optional (default 50)) – Number of units(convolution depths) in corresponding hidden layer


	n_hidden_PA (int, optional (default 50)) – Number of units(convolution depths) in corresponding hidden layer


	n_hidden_AP (int, optional (default 50)) – Number of units(convolution depths) in corresponding hidden layer


	n_hidden_PP (int, optional (default 50)) – Number of units(convolution depths) in corresponding hidden layer


	update_pair (bool, optional (default True)) – Whether to calculate for pair features,
could be turned off for last layer


	init (str, optional (default 'glorot_uniform')) – Weight initialization for filters.


	activation (str, optional (default 'relu')) – Activation function applied


	batch_normalize (bool, optional (default True)) – If this is turned on, apply batch normalization before applying
activation functions on convolutional layers.


	batch_normalize_kwargs (Dict, optional (default {renorm=True})) – Batch normalization is a complex layer which has many potential
argumentswhich change behavior. This layer accepts user-defined
parameters which are passed to all BatchNormalization layers in
WeaveModel, WeaveLayer, and WeaveGather.













	
get_config() → Dict[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L2804-L2820]

	Returns config dictionary for this layer.






	
build(input_shape)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L2822-L2873]

	Construct internal trainable weights.


	Parameters:

	input_shape (tuple) – Ignored since we don’t need the input shape to create internal weights.










	
call(inputs: List) → List[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L2875-L2937]

	Creates weave tensors.


	Parameters:

	inputs (List) – Should contain 4 tensors [atom_features, pair_features, pair_split,
atom_to_pair]














	
class WeaveGather(*args, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L2940-L3141]

	Implements the weave-gathering section of weave convolutions.

Implements the gathering layer from [1]_. The weave gathering layer gathers
per-atom features to create a molecule-level fingerprint in a weave
convolutional network. This layer can also performs Gaussian histogram
expansion as detailed in [1]_. Note that the gathering function here is
simply addition as in [1]_>

Examples

This layer expects 2 inputs in a list of the form [atom_features,
pair_features]. We’ll walk through the structure
of these inputs. Let’s start with some basic definitions.

>>> import deepchem as dc
>>> import numpy as np





Suppose you have a batch of molecules

>>> smiles = ["CCC", "C"]





Note that there are 4 atoms in total in this system. This layer expects its
input molecules to be batched together.

>>> total_n_atoms = 4





Let’s suppose that we have n_atom_feat features per atom.

>>> n_atom_feat = 75





Then conceptually, atom_feat is the array of shape (total_n_atoms,
n_atom_feat) of atomic features. For simplicity, let’s just go with a
random such matrix.

>>> atom_feat = np.random.rand(total_n_atoms, n_atom_feat)





We then need to provide a mapping of indices to the atoms they belong to. In
ours case this would be

>>> atom_split = np.array([0, 0, 0, 1])





Let’s now define the actual layer

>>> gather = WeaveGather(batch_size=2, n_input=n_atom_feat)
>>> output_molecules = gather([atom_feat, atom_split])
>>> len(output_molecules)
2
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Note

This class requires tensorflow_probability to be installed.




	
__init__(batch_size: int, n_input: int = 128, gaussian_expand: bool = True, compress_post_gaussian_expansion: bool = False, init: str = 'glorot_uniform', activation: str = 'tanh', **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L3000-L3043]

	
	Parameters:

	
	batch_size (int) – number of molecules in a batch


	n_input (int, optional (default 128)) – number of features for each input molecule


	gaussian_expand (boolean, optional (default True)) – Whether to expand each dimension of atomic features by gaussian histogram


	compress_post_gaussian_expansion (bool, optional (default False)) – If True, compress the results of the Gaussian expansion back to the
original dimensions of the input by using a linear layer with specified
activation function. Note that this compression was not in the original
paper, but was present in the original DeepChem implementation so is
left present for backwards compatibility.


	init (str, optional (default 'glorot_uniform')) – Weight initialization for filters if compress_post_gaussian_expansion
is True.


	activation (str, optional (default 'tanh')) – Activation function applied for filters if
compress_post_gaussian_expansion is True. Should be recognizable by
tf.keras.activations.













	
get_config()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L3045-L3054]

	Returns the config of the layer.

A layer config is a Python dictionary (serializable)
containing the configuration of a layer.
The same layer can be reinstantiated later
(without its trained weights) from this configuration.

The config of a layer does not include connectivity
information, nor the layer class name. These are handled
by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of
dict every time it is called. The callers should make a copy of the
returned dict if they want to modify it.


	Returns:

	Python dictionary.










	
build(input_shape)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L3056-L3067]

	Creates the variables of the layer (for subclass implementers).

This is a method that implementers of subclasses of Layer or Model
can override if they need a state-creation step in-between
layer instantiation and layer call. It is invoked automatically before
the first execution of call().

This is typically used to create the weights of Layer subclasses
(at the discretion of the subclass implementer).


	Parameters:

	input_shape – Instance of TensorShape, or list of instances of
TensorShape if the layer expects a list of inputs
(one instance per input).










	
call(inputs: List) → List[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L3069-L3095]

	Creates weave tensors.


	Parameters:

	inputs (List) – Should contain 2 tensors [atom_features, atom_split]



	Returns:

	output_molecules – Each entry in this list is of shape (self.n_inputs,)



	Return type:

	List










	
gaussian_histogram(x)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L3097-L3141]

	Expands input into a set of gaussian histogram bins.


	Parameters:

	x (tf.Tensor) – Of shape (N, n_feat)





Examples

This method uses 11 bins spanning portions of a Gaussian with zero mean
and unit standard deviation.

>>> gaussian_memberships = [(-1.645, 0.283), (-1.080, 0.170),
...                         (-0.739, 0.134), (-0.468, 0.118),
...                         (-0.228, 0.114), (0., 0.114),
...                         (0.228, 0.114), (0.468, 0.118),
...                         (0.739, 0.134), (1.080, 0.170),
...                         (1.645, 0.283)]





We construct a Gaussian at gaussian_memberships[i][0] with standard
deviation gaussian_memberships[i][1]. Each feature in x is assigned
the probability of falling in each Gaussian, and probabilities are
normalized across the 11 different Gaussians.


	Returns:

	outputs – Of shape (N, 11*n_feat)



	Return type:

	tf.Tensor














	
class DTNNEmbedding(*args, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L3144-L3190]

	
	
__init__(n_embedding=30, periodic_table_length=30, init='glorot_uniform', **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L3146-L3164]

	
	Parameters:

	
	n_embedding (int, optional) – Number of features for each atom


	periodic_table_length (int, optional) – Length of embedding, 83=Bi


	init (str, optional) – Weight initialization for filters.













	
get_config()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L3166-L3171]

	Returns the config of the layer.

A layer config is a Python dictionary (serializable)
containing the configuration of a layer.
The same layer can be reinstantiated later
(without its trained weights) from this configuration.

The config of a layer does not include connectivity
information, nor the layer class name. These are handled
by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of
dict every time it is called. The callers should make a copy of the
returned dict if they want to modify it.


	Returns:

	Python dictionary.










	
build(input_shape)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L3173-L3183]

	Creates the variables of the layer (for subclass implementers).

This is a method that implementers of subclasses of Layer or Model
can override if they need a state-creation step in-between
layer instantiation and layer call. It is invoked automatically before
the first execution of call().

This is typically used to create the weights of Layer subclasses
(at the discretion of the subclass implementer).


	Parameters:

	input_shape – Instance of TensorShape, or list of instances of
TensorShape if the layer expects a list of inputs
(one instance per input).










	
call(inputs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L3185-L3190]

	parent layers: atom_number










	
class DTNNStep(*args, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L3193-L3277]

	
	
__init__(n_embedding=30, n_distance=100, n_hidden=60, init='glorot_uniform', activation='tanh', **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L3195-L3222]

	
	Parameters:

	
	n_embedding (int, optional) – Number of features for each atom


	n_distance (int, optional) – granularity of distance matrix


	n_hidden (int, optional) – Number of nodes in hidden layer


	init (str, optional) – Weight initialization for filters.


	activation (str, optional) – Activation function applied













	
get_config()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L3224-L3231]

	Returns the config of the layer.

A layer config is a Python dictionary (serializable)
containing the configuration of a layer.
The same layer can be reinstantiated later
(without its trained weights) from this configuration.

The config of a layer does not include connectivity
information, nor the layer class name. These are handled
by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of
dict every time it is called. The callers should make a copy of the
returned dict if they want to modify it.


	Returns:

	Python dictionary.










	
build(input_shape)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L3233-L3250]

	Creates the variables of the layer (for subclass implementers).

This is a method that implementers of subclasses of Layer or Model
can override if they need a state-creation step in-between
layer instantiation and layer call. It is invoked automatically before
the first execution of call().

This is typically used to create the weights of Layer subclasses
(at the discretion of the subclass implementer).


	Parameters:

	input_shape – Instance of TensorShape, or list of instances of
TensorShape if the layer expects a list of inputs
(one instance per input).










	
call(inputs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L3252-L3277]

	parent layers: atom_features, distance, distance_membership_i, distance_membership_j










	
class DTNNGather(*args, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L3280-L3359]

	
	
__init__(n_embedding=30, n_outputs=100, layer_sizes=[100], output_activation=True, init='glorot_uniform', activation='tanh', **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L3282-L3311]

	
	Parameters:

	
	n_embedding (int, optional) – Number of features for each atom


	n_outputs (int, optional) – Number of features for each molecule(output)


	layer_sizes (list of int, optional(default=[1000])) – Structure of hidden layer(s)


	init (str, optional) – Weight initialization for filters.


	activation (str, optional) – Activation function applied













	
get_config()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L3313-L3321]

	Returns the config of the layer.

A layer config is a Python dictionary (serializable)
containing the configuration of a layer.
The same layer can be reinstantiated later
(without its trained weights) from this configuration.

The config of a layer does not include connectivity
information, nor the layer class name. These are handled
by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of
dict every time it is called. The callers should make a copy of the
returned dict if they want to modify it.


	Returns:

	Python dictionary.










	
build(input_shape)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L3323-L3344]

	Creates the variables of the layer (for subclass implementers).

This is a method that implementers of subclasses of Layer or Model
can override if they need a state-creation step in-between
layer instantiation and layer call. It is invoked automatically before
the first execution of call().

This is typically used to create the weights of Layer subclasses
(at the discretion of the subclass implementer).


	Parameters:

	input_shape – Instance of TensorShape, or list of instances of
TensorShape if the layer expects a list of inputs
(one instance per input).










	
call(inputs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L3346-L3359]

	parent layers: atom_features, atom_membership










	
class DAGLayer(*args, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L3373-L3542]

	DAG computation layer.

This layer generates a directed acyclic graph for each atom
in a molecule. This layer is based on the algorithm from the
following paper:

Lusci, Alessandro, Gianluca Pollastri, and Pierre Baldi. “Deep architectures and deep learning in chemoinformatics: the prediction of aqueous solubility for drug-like molecules.” Journal of chemical information and modeling 53.7 (2013): 1563-1575.

This layer performs a sort of inward sweep. Recall that for
each atom, a DAG is generated that “points inward” to that
atom from the undirected molecule graph. Picture this as
“picking up” the atom as the vertex and using the natural
tree structure that forms from gravity. The layer “sweeps
inwards” from the leaf nodes of the DAG upwards to the
atom. This is batched so the transformation is done for
each atom.


	
__init__(n_graph_feat=30, n_atom_feat=75, max_atoms=50, layer_sizes=[100], init='glorot_uniform', activation='relu', dropout=None, batch_size=64, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L3393-L3437]

	
	Parameters:

	
	n_graph_feat (int, optional) – Number of features for each node(and the whole grah).


	n_atom_feat (int, optional) – Number of features listed per atom.


	max_atoms (int, optional) – Maximum number of atoms in molecules.


	layer_sizes (list of int, optional(default=[100])) – List of hidden layer size(s):
length of this list represents the number of hidden layers,
and each element is the width of corresponding hidden layer.


	init (str, optional) – Weight initialization for filters.


	activation (str, optional) – Activation function applied.


	dropout (float, optional) – Dropout probability in hidden layer(s).


	batch_size (int, optional) – number of molecules in a batch.













	
get_config()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L3439-L3449]

	Returns the config of the layer.

A layer config is a Python dictionary (serializable)
containing the configuration of a layer.
The same layer can be reinstantiated later
(without its trained weights) from this configuration.

The config of a layer does not include connectivity
information, nor the layer class name. These are handled
by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of
dict every time it is called. The callers should make a copy of the
returned dict if they want to modify it.


	Returns:

	Python dictionary.










	
build(input_shape)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L3451-L3487]

	“Construct internal trainable weights.






	
call(inputs, training=True)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L3489-L3542]

	parent layers: atom_features, parents, calculation_orders, calculation_masks, n_atoms










	
class DAGGather(*args, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L3545-L3645]

	
	
__init__(n_graph_feat=30, n_outputs=30, max_atoms=50, layer_sizes=[100], init='glorot_uniform', activation='relu', dropout=None, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L3547-L3585]

	DAG vector gathering layer


	Parameters:

	
	n_graph_feat (int, optional) – Number of features for each atom.


	n_outputs (int, optional) – Number of features for each molecule.


	max_atoms (int, optional) – Maximum number of atoms in molecules.


	layer_sizes (list of int, optional) – List of hidden layer size(s):
length of this list represents the number of hidden layers,
and each element is the width of corresponding hidden layer.


	init (str, optional) – Weight initialization for filters.


	activation (str, optional) – Activation function applied.


	dropout (float, optional) – Dropout probability in the hidden layer(s).













	
get_config()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L3587-L3596]

	Returns the config of the layer.

A layer config is a Python dictionary (serializable)
containing the configuration of a layer.
The same layer can be reinstantiated later
(without its trained weights) from this configuration.

The config of a layer does not include connectivity
information, nor the layer class name. These are handled
by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of
dict every time it is called. The callers should make a copy of the
returned dict if they want to modify it.


	Returns:

	Python dictionary.










	
build(input_shape)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L3598-L3633]

	Creates the variables of the layer (for subclass implementers).

This is a method that implementers of subclasses of Layer or Model
can override if they need a state-creation step in-between
layer instantiation and layer call. It is invoked automatically before
the first execution of call().

This is typically used to create the weights of Layer subclasses
(at the discretion of the subclass implementer).


	Parameters:

	input_shape – Instance of TensorShape, or list of instances of
TensorShape if the layer expects a list of inputs
(one instance per input).










	
call(inputs, training=True)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L3635-L3645]

	parent layers: atom_features, membership










	
class MessagePassing(*args, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L3648-L3709]

	General class for MPNN
default structures built according to https://arxiv.org/abs/1511.06391


	
__init__(T, message_fn='enn', update_fn='gru', n_hidden=100, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L3652-L3674]

	
	Parameters:

	
	T (int) – Number of message passing steps


	message_fn (str, optional) – message function in the model


	update_fn (str, optional) – update function in the model


	n_hidden (int, optional) – number of hidden units in the passing phase













	
get_config()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L3676-L3682]

	Returns the config of the layer.

A layer config is a Python dictionary (serializable)
containing the configuration of a layer.
The same layer can be reinstantiated later
(without its trained weights) from this configuration.

The config of a layer does not include connectivity
information, nor the layer class name. These are handled
by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of
dict every time it is called. The callers should make a copy of the
returned dict if they want to modify it.


	Returns:

	Python dictionary.










	
build(input_shape)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L3684-L3692]

	Creates the variables of the layer (for subclass implementers).

This is a method that implementers of subclasses of Layer or Model
can override if they need a state-creation step in-between
layer instantiation and layer call. It is invoked automatically before
the first execution of call().

This is typically used to create the weights of Layer subclasses
(at the discretion of the subclass implementer).


	Parameters:

	input_shape – Instance of TensorShape, or list of instances of
TensorShape if the layer expects a list of inputs
(one instance per input).










	
call(inputs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L3694-L3709]

	Perform T steps of message passing










	
class EdgeNetwork(*args, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L3712-L3752]

	Submodule for Message Passing


	
get_config()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L3725-L3730]

	Returns the config of the layer.

A layer config is a Python dictionary (serializable)
containing the configuration of a layer.
The same layer can be reinstantiated later
(without its trained weights) from this configuration.

The config of a layer does not include connectivity
information, nor the layer class name. These are handled
by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of
dict every time it is called. The callers should make a copy of the
returned dict if they want to modify it.


	Returns:

	Python dictionary.










	
build(input_shape)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L3732-L3744]

	Creates the variables of the layer (for subclass implementers).

This is a method that implementers of subclasses of Layer or Model
can override if they need a state-creation step in-between
layer instantiation and layer call. It is invoked automatically before
the first execution of call().

This is typically used to create the weights of Layer subclasses
(at the discretion of the subclass implementer).


	Parameters:

	input_shape – Instance of TensorShape, or list of instances of
TensorShape if the layer expects a list of inputs
(one instance per input).










	
call(inputs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L3746-L3752]

	This is where the layer’s logic lives.

The call() method may not create state (except in its first
invocation, wrapping the creation of variables or other resources in
tf.init_scope()).  It is recommended to create state, including
tf.Variable instances and nested Layer instances,


in __init__(), or in the build() method that is




called automatically before call() executes for the first time.


	Parameters:

	
	inputs – Input tensor, or dict/list/tuple of input tensors.
The first positional inputs argument is subject to special rules:
- inputs must be explicitly passed. A layer cannot have zero


arguments, and inputs cannot be provided via the default value
of a keyword argument.





	NumPy array or Python scalar values in inputs get cast as
tensors.


	Keras mask metadata is only collected from inputs.


	Layers are built (build(input_shape) method)
using shape info from inputs only.


	input_spec compatibility is only checked against inputs.


	Mixed precision input casting is only applied to inputs.
If a layer has tensor arguments in *args or **kwargs, their
casting behavior in mixed precision should be handled manually.


	The SavedModel input specification is generated using inputs
only.


	Integration with various ecosystem packages like TFMOT, TFLite,
TF.js, etc is only supported for inputs and not for tensors in
positional and keyword arguments.







	*args – Additional positional arguments. May contain tensors, although
this is not recommended, for the reasons above.


	**kwargs – Additional keyword arguments. May contain tensors, although
this is not recommended, for the reasons above.
The following optional keyword arguments are reserved:
- training: Boolean scalar tensor of Python boolean indicating


whether the call is meant for training or inference.





	mask: Boolean input mask. If the layer’s call() method takes a
mask argument, its default value will be set to the mask
generated for inputs by the previous layer (if input did come
from a layer that generated a corresponding mask, i.e. if it came
from a Keras layer with masking support).











	Returns:

	A tensor or list/tuple of tensors.














	
class GatedRecurrentUnit(*args, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L3755-L3799]

	Submodule for Message Passing


	
get_config()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L3763-L3767]

	Returns the config of the layer.

A layer config is a Python dictionary (serializable)
containing the configuration of a layer.
The same layer can be reinstantiated later
(without its trained weights) from this configuration.

The config of a layer does not include connectivity
information, nor the layer class name. These are handled
by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of
dict every time it is called. The callers should make a copy of the
returned dict if they want to modify it.


	Returns:

	Python dictionary.










	
build(input_shape)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L3769-L3787]

	Creates the variables of the layer (for subclass implementers).

This is a method that implementers of subclasses of Layer or Model
can override if they need a state-creation step in-between
layer instantiation and layer call. It is invoked automatically before
the first execution of call().

This is typically used to create the weights of Layer subclasses
(at the discretion of the subclass implementer).


	Parameters:

	input_shape – Instance of TensorShape, or list of instances of
TensorShape if the layer expects a list of inputs
(one instance per input).










	
call(inputs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L3789-L3799]

	This is where the layer’s logic lives.

The call() method may not create state (except in its first
invocation, wrapping the creation of variables or other resources in
tf.init_scope()).  It is recommended to create state, including
tf.Variable instances and nested Layer instances,


in __init__(), or in the build() method that is




called automatically before call() executes for the first time.


	Parameters:

	
	inputs – Input tensor, or dict/list/tuple of input tensors.
The first positional inputs argument is subject to special rules:
- inputs must be explicitly passed. A layer cannot have zero


arguments, and inputs cannot be provided via the default value
of a keyword argument.





	NumPy array or Python scalar values in inputs get cast as
tensors.


	Keras mask metadata is only collected from inputs.


	Layers are built (build(input_shape) method)
using shape info from inputs only.


	input_spec compatibility is only checked against inputs.


	Mixed precision input casting is only applied to inputs.
If a layer has tensor arguments in *args or **kwargs, their
casting behavior in mixed precision should be handled manually.


	The SavedModel input specification is generated using inputs
only.


	Integration with various ecosystem packages like TFMOT, TFLite,
TF.js, etc is only supported for inputs and not for tensors in
positional and keyword arguments.







	*args – Additional positional arguments. May contain tensors, although
this is not recommended, for the reasons above.


	**kwargs – Additional keyword arguments. May contain tensors, although
this is not recommended, for the reasons above.
The following optional keyword arguments are reserved:
- training: Boolean scalar tensor of Python boolean indicating


whether the call is meant for training or inference.





	mask: Boolean input mask. If the layer’s call() method takes a
mask argument, its default value will be set to the mask
generated for inputs by the previous layer (if input did come
from a layer that generated a corresponding mask, i.e. if it came
from a Keras layer with masking support).











	Returns:

	A tensor or list/tuple of tensors.














	
class SetGather(*args, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L3802-L3887]

	set2set gather layer for graph-based model

Models using this layer must set pad_batches=True.


	
__init__(M, batch_size, n_hidden=100, init='orthogonal', **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L3808-L3828]

	
	Parameters:

	
	M (int) – Number of LSTM steps


	batch_size (int) – Number of samples in a batch(all batches must have same size)


	n_hidden (int, optional) – number of hidden units in the passing phase













	
get_config()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L3830-L3836]

	Returns the config of the layer.

A layer config is a Python dictionary (serializable)
containing the configuration of a layer.
The same layer can be reinstantiated later
(without its trained weights) from this configuration.

The config of a layer does not include connectivity
information, nor the layer class name. These are handled
by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of
dict every time it is called. The callers should make a copy of the
returned dict if they want to modify it.


	Returns:

	Python dictionary.










	
build(input_shape)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L3838-L3851]

	Creates the variables of the layer (for subclass implementers).

This is a method that implementers of subclasses of Layer or Model
can override if they need a state-creation step in-between
layer instantiation and layer call. It is invoked automatically before
the first execution of call().

This is typically used to create the weights of Layer subclasses
(at the discretion of the subclass implementer).


	Parameters:

	input_shape – Instance of TensorShape, or list of instances of
TensorShape if the layer expects a list of inputs
(one instance per input).










	
call(inputs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L3853-L3876]

	Perform M steps of set2set gather,

Detailed descriptions in: https://arxiv.org/abs/1511.06391











Torch Layers


	
class AtomicConv(n_tasks: int, frag1_num_atoms: int = 70, frag2_num_atoms: int = 634, complex_num_atoms: int = 701, max_num_neighbors: int = 12, batch_size: int = 24, atom_types: Sequence[float] = [6, 7.0, 8.0, 9.0, 11.0, 12.0, 15.0, 16.0, 17.0, 20.0, 25.0, 30.0, 35.0, 53.0, -1.0], radial: Sequence[Sequence[float]] = [[1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0, 10.5, 11.0, 11.5, 12.0], [0.0, 4.0, 8.0], [0.4]], layer_sizes=[100], weight_init_stddevs: float | Sequence[float] = 0.02, bias_init_consts: float | Sequence[float] = 1.0, dropouts: float | Sequence[float] = 0.5, activation_fns: Callable | str | Sequence[Callable | str] = ['relu'], init: str = 'trunc_normal_', **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L2669-L2921]

	Implements an Atomic Convolution Model.

The atomic convolutional networks function as a variant of
graph convolutions. The difference is that the “graph” here is
the nearest neighbors graph in 3D space [1]. The AtomicConvModule
leverages these connections in 3D space to train models that
learn to predict energetic states starting from the spatial
geometry of the model.

References



[1]
Gomes, Joseph, et al. “Atomic convolutional networks for predicting protein-ligand binding affinity.” arXiv preprint arXiv:1703.10603 (2017).



Examples

>>> n_tasks = 1
>>> frag1_num_atoms = 70
>>> frag2_num_atoms = 634
>>> complex_num_atoms = 701
>>> max_num_neighbors = 12
>>> batch_size = 24
>>> atom_types = [
...     6, 7., 8., 9., 11., 12., 15., 16., 17., 20., 25., 30., 35., 53.,
...     -1.
... ]
>>> radial = [[
...     1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5,
...     8.0, 8.5, 9.0, 9.5, 10.0, 10.5, 11.0, 11.5, 12.0
... ], [0.0, 4.0, 8.0], [0.4]]
>>> layer_sizes = [32, 32, 16]
>>> acnn_model = AtomicConv(n_tasks=n_tasks,
... frag1_num_atoms=frag1_num_atoms,
... frag2_num_atoms=frag2_num_atoms,
... complex_num_atoms=complex_num_atoms,
... max_num_neighbors=max_num_neighbors,
... batch_size=batch_size,
... atom_types=atom_types,
... radial=radial,
... layer_sizes=layer_sizes)






	
__init__(n_tasks: int, frag1_num_atoms: int = 70, frag2_num_atoms: int = 634, complex_num_atoms: int = 701, max_num_neighbors: int = 12, batch_size: int = 24, atom_types: Sequence[float] = [6, 7.0, 8.0, 9.0, 11.0, 12.0, 15.0, 16.0, 17.0, 20.0, 25.0, 30.0, 35.0, 53.0, -1.0], radial: Sequence[Sequence[float]] = [[1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0, 10.5, 11.0, 11.5, 12.0], [0.0, 4.0, 8.0], [0.4]], layer_sizes=[100], weight_init_stddevs: float | Sequence[float] = 0.02, bias_init_consts: float | Sequence[float] = 1.0, dropouts: float | Sequence[float] = 0.5, activation_fns: Callable | str | Sequence[Callable | str] = ['relu'], init: str = 'trunc_normal_', **kwargs) → None[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L2712-L2871]

	
	Parameters:

	
	n_tasks (int) – number of tasks


	frag1_num_atoms (int) – Number of atoms in first fragment


	frag2_num_atoms (int) – Number of atoms in sec


	max_num_neighbors (int) – Maximum number of neighbors possible for an atom. Recall neighbors
are spatial neighbors.


	atom_types (list) – List of atoms recognized by model. Atoms are indicated by their
nuclear numbers.


	radial (list) – Radial parameters used in the atomic convolution transformation.


	layer_sizes (list) – the size of each dense layer in the network.  The length of
this list determines the number of layers.


	weight_init_stddevs (list or float) – the standard deviation of the distribution to use for weight
initialization of each layer.  The length of this list should
equal len(layer_sizes).  Alternatively, this may be a single
value instead of a list, where the same value is used
for every layer.


	bias_init_consts (list or float) – the value to initialize the biases in each layer.  The
length of this list should equal len(layer_sizes).
Alternatively, this may be a single value instead of a list, where the same value is used for every layer.


	dropouts (list or float) – the dropout probability to use for each layer.  The length of this list should equal len(layer_sizes).
Alternatively, this may be a single value instead of a list, where the same value is used for every layer.


	activation_fns (list or object) – the Tensorflow activation function to apply to each layer.  The length of this list should equal
len(layer_sizes).  Alternatively, this may be a single value instead of a list, where the
same value is used for every layer.













	
forward(inputs: Tensor | Sequence[Tensor])[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L2873-L2921]

	
	Parameters:

	inputs (torch.Tensor) – Input Tensor



	Returns:

	Output for each label.



	Return type:

	torch.Tensor














	
class MultilayerPerceptron(d_input: int, d_output: int, d_hidden: tuple | None = None, dropout: float = 0.0, batch_norm: bool = False, batch_norm_momentum: float = 0.1, activation_fn: Callable | str = 'relu', skip_connection: bool = False, weighted_skip: bool = True)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L29-L119]

	A simple fully connected feed-forward network, otherwise known as a multilayer perceptron (MLP).

Examples

>>> model = MultilayerPerceptron(d_input=10, d_hidden=(2,3), d_output=2, dropout=0.0, activation_fn='relu')
>>> x = torch.ones(2, 10)
>>> out = model(x)
>>> print(out.shape)
torch.Size([2, 2])






	
__init__(d_input: int, d_output: int, d_hidden: tuple | None = None, dropout: float = 0.0, batch_norm: bool = False, batch_norm_momentum: float = 0.1, activation_fn: Callable | str = 'relu', skip_connection: bool = False, weighted_skip: bool = True)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L41-L84]

	Initialize the model.


	Parameters:

	
	d_input (int) – the dimension of the input layer


	d_output (int) – the dimension of the output layer


	d_hidden (tuple) – the dimensions of the hidden layers


	dropout (float) – the dropout probability


	batch_norm (bool) – whether to use batch normalization


	batch_norm_momentum (float) – the momentum for batch normalization


	activation_fn (str) – the activation function to use in the hidden layers


	skip_connection (bool) – whether to add a skip connection from the input to the output


	weighted_skip (bool) – whether to add a weighted skip connection from the input to the output













	
build_layers()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L86-L102]

	Build the layers of the model, iterating through the hidden dimensions to produce a list of layers.






	
forward(x: Tensor) → Tensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L104-L119]

	Forward pass of the model.










	
class CNNModule(n_tasks: int, n_features: int, dims: int, layer_filters: List[int] = [100], kernel_size: int | Sequence[int] = 5, strides: int | Sequence[int] = 1, weight_init_stddevs: float | Sequence[float] = 0.02, bias_init_consts: float | Sequence[float] = 1.0, dropouts: float | Sequence[float] = 0.5, activation_fns: Callable | str | Sequence[Callable | str] = 'relu', pool_type: str = 'max', mode: str = 'classification', n_classes: int = 2, uncertainty: bool = False, residual: bool = False, padding: int | str = 'valid')[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L122-L387]

	A 1, 2, or 3 dimensional convolutional network for either regression or classification.
The network consists of the following sequence of layers:
- A configurable number of convolutional layers
- A global pooling layer (either max pool or average pool)
- A final fully connected layer to compute the output
It optionally can compose the model from pre-activation residual blocks, as
described in https://arxiv.org/abs/1603.05027, rather than a simple stack of
convolution layers.  This often leads to easier training, especially when using a
large number of layers.  Note that residual blocks can only be used when
successive layers have the same output shape.  Wherever the output shape changes, a
simple convolution layer will be used even if residual=True.
.. rubric:: Examples

>>> model = CNNModule(n_tasks=5, n_features=8, dims=2, layer_filters=[3,8,8,16], kernel_size=3, n_classes = 7, mode='classification', uncertainty=False, padding='same')
>>> x = torch.ones(2, 224, 224, 8)
>>> x = model(x)
>>> for tensor in x:
...    print(tensor.shape)
torch.Size([2, 5, 7])
torch.Size([2, 5, 7])






	
__init__(n_tasks: int, n_features: int, dims: int, layer_filters: List[int] = [100], kernel_size: int | Sequence[int] = 5, strides: int | Sequence[int] = 1, weight_init_stddevs: float | Sequence[float] = 0.02, bias_init_consts: float | Sequence[float] = 1.0, dropouts: float | Sequence[float] = 0.5, activation_fns: Callable | str | Sequence[Callable | str] = 'relu', pool_type: str = 'max', mode: str = 'classification', n_classes: int = 2, uncertainty: bool = False, residual: bool = False, padding: int | str = 'valid') → None[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L145-L322]

	Create a CNN.


	Parameters:

	
	n_tasks (int) – number of tasks


	n_features (int) – number of features


	dims (int) – the number of dimensions to apply convolutions over (1, 2, or 3)


	layer_filters (list) – the number of output filters for each convolutional layer in the network.
The length of this list determines the number of layers.


	kernel_size (int, tuple, or list) – a list giving the shape of the convolutional kernel for each layer.  Each
element may be either an int (use the same kernel width for every dimension)
or a tuple (the kernel width along each dimension).  Alternatively this may
be a single int or tuple instead of a list, in which case the same kernel
shape is used for every layer.


	strides (int, tuple, or list) – a list giving the stride between applications of the  kernel for each layer.
Each element may be either an int (use the same stride for every dimension)
or a tuple (the stride along each dimension).  Alternatively this may be a
single int or tuple instead of a list, in which case the same stride is
used for every layer.


	weight_init_stddevs (list or float) – the standard deviation of the distribution to use for weight initialization
of each layer.  The length of this list should equal len(layer_filters)+1,
where the final element corresponds to the dense layer.  Alternatively this
may be a single value instead of a list, in which case the same value is used
for every layer.


	bias_init_consts (list or float) – the value to initialize the biases in each layer to.  The length of this
list should equal len(layer_filters)+1, where the final element corresponds
to the dense layer.  Alternatively this may be a single value instead of a
list, in which case the same value is used for every layer.


	dropouts (list or float) – the dropout probability to use for each layer.  The length of this list should equal len(layer_filters).
Alternatively this may be a single value instead of a list, in which case the same value is used for every layer


	activation_fns (str or list) – the torch activation function to apply to each layer. The length of this list should equal
len(layer_filters).  Alternatively this may be a single value instead of a list, in which case the
same value is used for every layer, ‘relu’ by default


	pool_type (str) – the type of pooling layer to use, either ‘max’ or ‘average’


	mode (str) – Either ‘classification’ or ‘regression’


	n_classes (int) – the number of classes to predict (only used in classification mode)


	uncertainty (bool) – if True, include extra outputs and loss terms to enable the uncertainty
in outputs to be predicted


	residual (bool) – if True, the model will be composed of pre-activation residual blocks instead
of a simple stack of convolutional layers.


	padding (str, int or tuple) – the padding to use for convolutional layers, either ‘valid’ or ‘same’













	
forward(inputs: Tensor | Sequence[Tensor]) → List[Any][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L324-L387]

	
	Parameters:

	x (torch.Tensor) – Input Tensor



	Returns:

	Output as per use case : regression/classification



	Return type:

	torch.Tensor














	
class ScaleNorm(scale: float, eps: float = 1e-05)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L390-L430]

	Apply Scale Normalization to input.

The ScaleNorm layer first computes the square root of the scale, then computes the matrix/vector norm of the input tensor.
The norm value is calculated as sqrt(scale) / matrix norm.
Finally, the result is returned as input_tensor * norm value.

This layer can be used instead of LayerNorm when a scaled version of the norm is required.
Instead of performing the scaling operation (scale / norm) in a lambda-like layer, we are defining it within this layer to make prototyping more efficient.

References



[1]
Lukasz Maziarka et al. “Molecule Attention Transformer” Graph Representation Learning workshop and Machine Learning and the Physical Sciences workshop at NeurIPS 2019. 2020. https://arxiv.org/abs/2002.08264



Examples

>>> from deepchem.models.torch_models.layers import ScaleNorm
>>> scale = 0.35
>>> layer = ScaleNorm(scale)
>>> input_tensor = torch.tensor([[1.269, 39.36], [0.00918, -9.12]])
>>> output_tensor = layer(input_tensor)






	
__init__(scale: float, eps: float = 1e-05)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L413-L425]

	Initialize a ScaleNorm layer.


	Parameters:

	
	scale (float) – Scale magnitude.


	eps (float) – Epsilon value. Default = 1e-5.













	
forward(x: Tensor) → Tensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L427-L430]

	Define the computation performed at every call.

Should be overridden by all subclasses.


Note

Although the recipe for forward pass needs to be defined within
this function, one should call the Module instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.












	
class MATEncoderLayer(dist_kernel: str = 'softmax', lambda_attention: float = 0.33, lambda_distance: float = 0.33, h: int = 16, sa_hsize: int = 1024, sa_dropout_p: float = 0.0, output_bias: bool = True, d_input: int = 1024, d_hidden: int = 1024, d_output: int = 1024, activation: str = 'leakyrelu', n_layers: int = 1, ff_dropout_p: float = 0.0, encoder_hsize: int = 1024, encoder_dropout_p: float = 0.0)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L619-L744]

	Encoder layer for use in the Molecular Attention Transformer [1]_.

The MATEncoder layer primarily consists of a self-attention layer (MultiHeadedMATAttention) and a feed-forward layer (PositionwiseFeedForward).
This layer can be stacked multiple times to form an encoder.

References



[1]
Lukasz Maziarka et al. “Molecule Attention Transformer” Graph Representation Learning workshop and Machine Learning and the Physical Sciences workshop at NeurIPS 2019. 2020. https://arxiv.org/abs/2002.08264



Examples

>>> from rdkit import Chem
>>> import torch
>>> import deepchem
>>> from deepchem.models.torch_models.layers import MATEmbedding, MATEncoderLayer
>>> input_smile = "CC"
>>> feat = deepchem.feat.MATFeaturizer()
>>> out = feat.featurize(input_smile)
>>> node = torch.tensor(out[0].node_features).float().unsqueeze(0)
>>> adj = torch.tensor(out[0].adjacency_matrix).float().unsqueeze(0)
>>> dist = torch.tensor(out[0].distance_matrix).float().unsqueeze(0)
>>> mask = torch.sum(torch.abs(node), dim=-1) != 0
>>> layer = MATEncoderLayer()
>>> op = MATEmbedding()(node)
>>> output = layer(op, mask, adj, dist)






	
__init__(dist_kernel: str = 'softmax', lambda_attention: float = 0.33, lambda_distance: float = 0.33, h: int = 16, sa_hsize: int = 1024, sa_dropout_p: float = 0.0, output_bias: bool = True, d_input: int = 1024, d_hidden: int = 1024, d_output: int = 1024, activation: str = 'leakyrelu', n_layers: int = 1, ff_dropout_p: float = 0.0, encoder_hsize: int = 1024, encoder_dropout_p: float = 0.0)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L647-L710]

	Initialize a MATEncoder layer.


	Parameters:

	
	dist_kernel (str) – Kernel activation to be used. Can be either ‘softmax’ for softmax or ‘exp’ for exponential, for the self-attention layer.


	lambda_attention (float) – Constant to be multiplied with the attention matrix in the self-attention layer.


	lambda_distance (float) – Constant to be multiplied with the distance matrix in the self-attention layer.


	h (int) – Number of attention heads for the self-attention layer.


	sa_hsize (int) – Size of dense layer in the self-attention layer.


	sa_dropout_p (float) – Dropout probability for the self-attention layer.


	output_bias (bool) – If True, dense layers will use bias vectors in the self-attention layer.


	d_input (int) – Size of input layer in the feed-forward layer.


	d_hidden (int) – Size of hidden layer in the feed-forward layer.


	d_output (int) – Size of output layer in the feed-forward layer.


	activation (str) – Activation function to be used in the feed-forward layer.
Can choose between ‘relu’ for ReLU, ‘leakyrelu’ for LeakyReLU, ‘prelu’ for PReLU,
‘tanh’ for TanH, ‘selu’ for SELU, ‘elu’ for ELU and ‘linear’ for linear activation.


	n_layers (int) – Number of layers in the feed-forward layer.


	dropout_p (float) – Dropout probability in the feeed-forward layer.


	encoder_hsize (int) – Size of Dense layer for the encoder itself.


	encoder_dropout_p (float) – Dropout probability for connections in the encoder layer.













	
forward(x: Tensor, mask: Tensor, adj_matrix: Tensor, distance_matrix: Tensor, sa_dropout_p: float = 0.0) → Tensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L712-L744]

	Output computation for the MATEncoder layer.

In the MATEncoderLayer intialization, self.sublayer is defined as an nn.ModuleList of 2 layers. We will be passing our computation through these layers sequentially.
nn.ModuleList is subscriptable and thus we can access it as self.sublayer[0], for example.


	Parameters:

	
	x (torch.Tensor) – Input tensor.


	mask (torch.Tensor) – Masks out padding values so that they are not taken into account when computing the attention score.


	adj_matrix (torch.Tensor) – Adjacency matrix of a molecule.


	distance_matrix (torch.Tensor) – Distance matrix of a molecule.


	sa_dropout_p (float) – Dropout probability for the self-attention layer (MultiHeadedMATAttention).

















	
class MultiHeadedMATAttention(dist_kernel: str = 'softmax', lambda_attention: float = 0.33, lambda_distance: float = 0.33, h: int = 16, hsize: int = 1024, dropout_p: float = 0.0, output_bias: bool = True)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L433-L616]

	First constructs an attention layer tailored to the Molecular Attention Transformer [1]_ and then converts it into Multi-Headed Attention.

In Multi-Headed attention the attention mechanism multiple times parallely through the multiple attention heads.
Thus, different subsequences of a given sequences can be processed differently.
The query, key and value parameters are split multiple ways and each split is passed separately through a different attention head.
.. rubric:: References



[1]
Lukasz Maziarka et al. “Molecule Attention Transformer” Graph Representation Learning workshop and Machine Learning and the Physical Sciences workshop at NeurIPS 2019. 2020. https://arxiv.org/abs/2002.08264



Examples

>>> from deepchem.models.torch_models.layers import MultiHeadedMATAttention, MATEmbedding
>>> import deepchem as dc
>>> import torch
>>> input_smile = "CC"
>>> feat = dc.feat.MATFeaturizer()
>>> input_smile = "CC"
>>> out = feat.featurize(input_smile)
>>> node = torch.tensor(out[0].node_features).float().unsqueeze(0)
>>> adj = torch.tensor(out[0].adjacency_matrix).float().unsqueeze(0)
>>> dist = torch.tensor(out[0].distance_matrix).float().unsqueeze(0)
>>> mask = torch.sum(torch.abs(node), dim=-1) != 0
>>> layer = MultiHeadedMATAttention(
...    dist_kernel='softmax',
...    lambda_attention=0.33,
...    lambda_distance=0.33,
...    h=16,
...    hsize=1024,
...    dropout_p=0.0)
>>> op = MATEmbedding()(node)
>>> output = layer(op, op, op, mask, adj, dist)






	
__init__(dist_kernel: str = 'softmax', lambda_attention: float = 0.33, lambda_distance: float = 0.33, h: int = 16, hsize: int = 1024, dropout_p: float = 0.0, output_bias: bool = True)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L466-L505]

	Initialize a multi-headed attention layer.
:param dist_kernel: Kernel activation to be used. Can be either ‘softmax’ for softmax or ‘exp’ for exponential.
:type dist_kernel: str
:param lambda_attention: Constant to be multiplied with the attention matrix.
:type lambda_attention: float
:param lambda_distance: Constant to be multiplied with the distance matrix.
:type lambda_distance: float
:param h: Number of attention heads.
:type h: int
:param hsize: Size of dense layer.
:type hsize: int
:param dropout_p: Dropout probability.
:type dropout_p: float
:param output_bias: If True, dense layers will use bias vectors.
:type output_bias: bool






	
forward(query: Tensor, key: Tensor, value: Tensor, mask: Tensor, adj_matrix: Tensor, distance_matrix: Tensor, dropout_p: float = 0.0, eps: float = 1e-06, inf: float = 1000000000000.0) → Tensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L570-L616]

	Output computation for the MultiHeadedAttention layer.
:param query: Standard query parameter for attention.
:type query: torch.Tensor
:param key: Standard key parameter for attention.
:type key: torch.Tensor
:param value: Standard value parameter for attention.
:type value: torch.Tensor
:param mask: Masks out padding values so that they are not taken into account when computing the attention score.
:type mask: torch.Tensor
:param adj_matrix: Adjacency matrix of the input molecule, returned from dc.feat.MATFeaturizer()
:type adj_matrix: torch.Tensor
:param dist_matrix: Distance matrix of the input molecule, returned from dc.feat.MATFeaturizer()
:type dist_matrix: torch.Tensor
:param dropout_p: Dropout probability.
:type dropout_p: float
:param eps: Epsilon value
:type eps: float
:param inf: Value of infinity to be used.
:type inf: float










	
class SublayerConnection(size: int, dropout_p: float = 0.0)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L747-L791]

	SublayerConnection layer based on the paper Attention Is All You Need [https://arxiv.org/abs/1706.03762].

The SublayerConnection normalizes and adds dropout to output tensor of an arbitary layer.
It further adds a residual layer connection between the input of the arbitary layer and the dropout-adjusted layer output.

Examples

>>> from deepchem.models.torch_models.layers import SublayerConnection
>>> scale = 0.35
>>> layer = SublayerConnection(2, 0.)
>>> input_ar = torch.tensor([[1., 2.], [5., 6.]])
>>> output = layer(input_ar, input_ar)






	
__init__(size: int, dropout_p: float = 0.0)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L762-L774]

	Initialize a SublayerConnection Layer.


	Parameters:

	
	size (int) – Size of layer.


	dropout_p (float) – Dropout probability.













	
forward(x: Tensor, output: Tensor) → Tensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L776-L791]

	Output computation for the SublayerConnection layer.

Takes an input tensor x, then adds the dropout-adjusted sublayer output for normalized x to it.
This is done to add a residual connection followed by LayerNorm.


	Parameters:

	
	x (torch.Tensor) – Input tensor.


	output (torch.Tensor) – Layer whose normalized output will be added to x.

















	
class PositionwiseFeedForward(d_input: int = 1024, d_hidden: int = 1024, d_output: int = 1024, activation: str = 'leakyrelu', n_layers: int = 1, dropout_p: float = 0.0, dropout_at_input_no_act: bool = False)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L794-L907]

	PositionwiseFeedForward is a layer used to define the position-wise feed-forward (FFN) algorithm for the Molecular Attention Transformer [1]_

Each layer in the MAT encoder contains a fully connected feed-forward network which applies two linear transformations and the given activation function.
This is done in addition to the SublayerConnection module.


	Note: This modified version of PositionwiseFeedForward class contains dropout_at_input_no_act condition to facilitate its use in defining
	the feed-forward (FFN) algorithm for the Directed Message Passing Neural Network (D-MPNN) [2]_





References



[1]
Lukasz Maziarka et al. “Molecule Attention Transformer” Graph Representation Learning workshop and Machine Learning and the Physical Sciences workshop at NeurIPS 2019. 2020. https://arxiv.org/abs/2002.08264



[2]
Analyzing Learned Molecular Representations for Property Prediction https://arxiv.org/pdf/1904.01561.pdf



Examples

>>> from deepchem.models.torch_models.layers import PositionwiseFeedForward
>>> feed_fwd_layer = PositionwiseFeedForward(d_input = 2, d_hidden = 2, d_output = 2, activation = 'relu', n_layers = 1, dropout_p = 0.1)
>>> input_tensor = torch.tensor([[1., 2.], [5., 6.]])
>>> output_tensor = feed_fwd_layer(input_tensor)






	
__init__(d_input: int = 1024, d_hidden: int = 1024, d_output: int = 1024, activation: str = 'leakyrelu', n_layers: int = 1, dropout_p: float = 0.0, dropout_at_input_no_act: bool = False)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L816-L883]

	Initialize a PositionwiseFeedForward layer.


	Parameters:

	
	d_input (int) – Size of input layer.


	d_hidden (int (same as d_input if d_output = 0)) – Size of hidden layer.


	d_output (int (same as d_input if d_output = 0)) – Size of output layer.


	activation (str) – Activation function to be used. Can choose between ‘relu’ for ReLU, ‘leakyrelu’ for LeakyReLU, ‘prelu’ for PReLU,
‘tanh’ for TanH, ‘selu’ for SELU, ‘elu’ for ELU and ‘linear’ for linear activation.


	n_layers (int) – Number of layers.


	dropout_p (float) – Dropout probability.


	dropout_at_input_no_act (bool) – If true, dropout is applied on the input tensor. For single layer, it is not passed to an activation function.













	
forward(x: Tensor) → Tensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L885-L907]

	Output Computation for the PositionwiseFeedForward layer.


	Parameters:

	x (torch.Tensor) – Input tensor.














	
class MATEmbedding(d_input: int = 36, d_output: int = 1024, dropout_p: float = 0.0)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L910-L955]

	Embedding layer to create embedding for inputs.

In an embedding layer, input is taken and converted to a vector representation for each input.
In the MATEmbedding layer, an input tensor is processed through a dropout-adjusted linear layer and the resultant vector is returned.

References



[1]
Lukasz Maziarka et al. “Molecule Attention Transformer” Graph Representation Learning workshop and Machine Learning and the Physical Sciences workshop at NeurIPS 2019. 2020. https://arxiv.org/abs/2002.08264



Examples

>>> from deepchem.models.torch_models.layers import MATEmbedding
>>> layer = MATEmbedding(d_input = 3, d_output = 3, dropout_p = 0.2)
>>> input_tensor = torch.tensor([1., 2., 3.])
>>> output = layer(input_tensor)






	
__init__(d_input: int = 36, d_output: int = 1024, dropout_p: float = 0.0)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L928-L945]

	Initialize a MATEmbedding layer.


	Parameters:

	
	d_input (int) – Size of input layer.


	d_output (int) – Size of output layer.


	dropout_p (float) – Dropout probability for layer.













	
forward(x: Tensor) → Tensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L947-L955]

	Computation for the MATEmbedding layer.


	Parameters:

	x (torch.Tensor) – Input tensor to be converted into a vector.














	
class MATGenerator(hsize: int = 1024, aggregation_type: str = 'mean', d_output: int = 1, n_layers: int = 1, dropout_p: float = 0.0, attn_hidden: int = 128, attn_out: int = 4)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L958-L1059]

	MATGenerator defines the linear and softmax generator step for the Molecular Attention Transformer [1]_.

In the MATGenerator, a Generator is defined which performs the Linear + Softmax generation step.
Depending on the type of aggregation selected, the attention output layer performs different operations.

References



[1]
Lukasz Maziarka et al. “Molecule Attention Transformer” Graph Representation Learning workshop and Machine Learning and the Physical Sciences workshop at NeurIPS 2019. 2020. https://arxiv.org/abs/2002.08264



Examples

>>> from deepchem.models.torch_models.layers import MATGenerator
>>> layer = MATGenerator(hsize = 3, aggregation_type = 'mean', d_output = 1, n_layers = 1, dropout_p = 0.3, attn_hidden = 128, attn_out = 4)
>>> input_tensor = torch.tensor([1., 2., 3.])
>>> mask = torch.tensor([1., 1., 1.])
>>> output = layer(input_tensor, mask)






	
__init__(hsize: int = 1024, aggregation_type: str = 'mean', d_output: int = 1, n_layers: int = 1, dropout_p: float = 0.0, attn_hidden: int = 128, attn_out: int = 4)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L977-L1027]

	Initialize a MATGenerator.


	Parameters:

	
	hsize (int) – Size of input layer.


	aggregation_type (str) – Type of aggregation to be used. Can be ‘grover’, ‘mean’ or ‘contextual’.


	d_output (int) – Size of output layer.


	n_layers (int) – Number of layers in MATGenerator.


	dropout_p (float) – Dropout probability for layer.


	attn_hidden (int) – Size of hidden attention layer.


	attn_out (int) – Size of output attention layer.













	
forward(x: Tensor, mask: Tensor) → Tensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L1029-L1059]

	Computation for the MATGenerator layer.


	Parameters:

	
	x (torch.Tensor) – Input tensor.


	mask (torch.Tensor) – Mask for padding so that padded values do not get included in attention score calculation.

















	
cosine_dist(x, y)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/layers.py#L949-L1035]

	Computes the inner product (cosine similarity) between two tensors.

This assumes that the two input tensors contain rows of vectors where
each column represents a different feature. The output tensor will have
elements that represent the inner product between pairs of normalized vectors
in the rows of x and y. The two tensors need to have the same number of
columns, because one cannot take the dot product between vectors of different
lengths. For example, in sentence similarity and sentence classification tasks,
the number of columns is the embedding size. In these tasks, the rows of the
input tensors would be different test vectors or sentences. The input tensors
themselves could be different batches. Using vectors or tensors of all 0s
should be avoided.


	
The vectors in the input tensors are first l2-normalized such that each vector

	




	
has length or magnitude of 1. The inner product (dot product) is then taken

	




	
between corresponding pairs of row vectors in the input tensors and returned.

	



Examples

The cosine similarity between two equivalent vectors will be 1. The cosine
similarity between two equivalent tensors (tensors where all the elements are
the same) will be a tensor of 1s. In this scenario, if the input tensors x and
y are each of shape (n,p), where each element in x and y is the same, then
the output tensor would be a tensor of shape (n,n) with 1 in every entry.

>>> import numpy as np
>>> import tensorflow as tf
>>> import deepchem.models.layers as layers
>>> x = tf.ones((6, 4), dtype=tf.dtypes.float32, name=None)
>>> y_same = tf.ones((6, 4), dtype=tf.dtypes.float32, name=None)
>>> cos_sim_same = layers.cosine_dist(x,y_same)





x and y_same are the same tensor (equivalent at every element, in this
case 1). As such, the pairwise inner product of the rows in x and y will
always be 1. The output tensor will be of shape (6,6).

>>> diff = cos_sim_same - tf.ones((6, 6), dtype=tf.dtypes.float32, name=None)
>>> np.allclose(0.0, tf.reduce_sum(diff).numpy(), atol=1e-05)
True
>>> cos_sim_same.shape
TensorShape([6, 6])





The cosine similarity between two orthogonal vectors will be 0 (by definition).
If every row in x is orthogonal to every row in y, then the output will be a
tensor of 0s. In the following example, each row in the tensor x1 is orthogonal
to each row in x2 because they are halves of an identity matrix.

>>> identity_tensor = tf.eye(512, dtype=tf.dtypes.float32)
>>> x1 = identity_tensor[0:256,:]
>>> x2 = identity_tensor[256:512,:]
>>> cos_sim_orth = layers.cosine_dist(x1,x2)





Each row in x1 is orthogonal to each row in x2. As such, the pairwise inner
product of the rows in x1`and `x2 will always be 0. Furthermore, because the
shape of the input tensors are both of shape (256,512), the output tensor will
be of shape (256,256).

>>> np.allclose(0.0, tf.reduce_sum(cos_sim_orth).numpy(), atol=1e-05)
True
>>> cos_sim_orth.shape
TensorShape([256, 256])






	Parameters:

	
	x (tf.Tensor) – Input Tensor of shape (n, p).
The shape of this input tensor should be n rows by p columns.
Note that n need not equal m (the number of rows in y).


	y (tf.Tensor) – Input Tensor of shape (m, p)
The shape of this input tensor should be m rows by p columns.
Note that m need not equal n (the number of rows in x).






	Returns:

	Returns a tensor of shape (n, m), that is, n rows by m columns.
Each i,j-th entry of this output tensor is the inner product between
the l2-normalized i-th row of the input tensor x and the
the l2-normalized j-th row of the output tensor y.



	Return type:

	tf.Tensor










	
class GraphNetwork(n_node_features: int = 32, n_edge_features: int = 32, n_global_features: int = 32, is_undirected: bool = True, residual_connection: bool = True)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L1062-L1257]

	Graph Networks

A Graph Network [1]_ takes a graph as input and returns an updated graph
as output. The output graph has same structure as input graph but it
has updated node features, edge features and global state features.


	Parameters:

	
	n_node_features (int) – Number of features in a node


	n_edge_features (int) – Number of features in a edge


	n_global_features (int) – Number of global features


	is_undirected (bool, optional (default True)) – Directed or undirected graph


	residual_connection (bool, optional (default True)) – If True, the layer uses a residual connection during training








Example

>>> import torch
>>> from deepchem.models.torch_models.layers import GraphNetwork as GN
>>> n_nodes, n_node_features = 5, 10
>>> n_edges, n_edge_features = 5, 2
>>> n_global_features = 4
>>> node_features = torch.randn(n_nodes, n_node_features)
>>> edge_features = torch.randn(n_edges, n_edge_features)
>>> edge_index = torch.tensor([[0, 1, 2, 3, 4], [1, 2, 3, 4, 0]]).long()
>>> global_features = torch.randn(1, n_global_features)
>>> gn = GN(n_node_features=n_node_features, n_edge_features=n_edge_features, n_global_features=n_global_features)
>>> node_features, edge_features, global_features = gn(node_features, edge_index, edge_features, global_features)





References



[1]
Battaglia et al, Relational inductive biases, deep learning, and graph networks. https://arxiv.org/abs/1806.01261 (2018)




	
__init__(n_node_features: int = 32, n_edge_features: int = 32, n_global_features: int = 32, is_undirected: bool = True, residual_connection: bool = True)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L1101-L1135]

	Initialize internal Module state, shared by both nn.Module and ScriptModule.






	
forward(node_features: Tensor, edge_index: Tensor, edge_features: Tensor, global_features: Tensor, batch: Tensor | None = None) → Tuple[Tensor, Tensor, Tensor][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L1195-L1252]

	Output computation for a GraphNetwork


	Parameters:

	
	node_features (torch.Tensor) – Input node features of shape \((|\mathcal{V}|, F_n)\)


	edge_index (torch.Tensor) – Edge indexes of shape \((2, |\mathcal{E}|)\)


	edge_features (torch.Tensor) – Edge features of the graph, shape: \((|\mathcal{E}|, F_e)\)


	global_features (torch.Tensor) – Global features of the graph, shape: \((F_g, 1)\) where, \(|\mathcal{V}|\) and \(|\mathcal{E}|\) denotes the number of nodes and edges in the graph,
\(F_n\), \(F_e\), \(F_g\) denotes the number of node features, edge features and global state features respectively.


	batch (torch.LongTensor (optional, default: None)) – A vector that maps each node to its respective graph identifier. The attribute is used only when more than one graph are batched together during a single forward pass.

















	
class Affine(dim: int)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L1260-L1368]

	Class which performs the Affine transformation.

This transformation is based on the affinity of the base distribution with
the target distribution. A geometric transformation is applied where
the parameters performs changes on the scale and shift of a function
(inputs).

Normalizing Flow transformations must be bijective in order to compute
the logarithm of jacobian’s determinant. For this reason, transformations
must perform a forward and inverse pass.

Example

>>> import deepchem as dc
>>> from deepchem.models.torch_models.layers import Affine
>>> import torch
>>> from torch.distributions import MultivariateNormal
>>> # initialize the transformation layer's parameters
>>> dim = 2
>>> samples = 96
>>> transforms = Affine(dim)
>>> # forward pass based on a given distribution
>>> distribution = MultivariateNormal(torch.zeros(dim), torch.eye(dim))
>>> input = distribution.sample(torch.Size((samples, dim)))
>>> len(transforms.forward(input))
2
>>> # inverse pass based on a distribution
>>> len(transforms.inverse(input))
2






	
__init__(dim: int) → None[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L1293-L1306]

	Create a Affine transform layer.


	Parameters:

	dim (int) – Value of the Nth dimension of the dataset.










	
forward(x: Sequence) → Tuple[Tensor, Tensor][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L1308-L1336]

	Performs a transformation between two different distributions. This
particular transformation represents the following function:
y = x * exp(a) + b, where a is scale parameter and b performs a shift.
This class also returns the logarithm of the jacobians determinant
which is useful when invert a transformation and compute the
probability of the transformation.


	Parameters:

	x (Sequence) – Tensor sample with the initial distribution data which will pass into
the normalizing flow algorithm.



	Returns:

	
	y (torch.Tensor) – Transformed tensor according to Affine layer with the shape of ‘x’.


	log_det_jacobian (torch.Tensor) – Tensor which represents the info about the deviation of the initial
and target distribution.















	
inverse(y: Sequence) → Tuple[Tensor, Tensor][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L1338-L1368]

	Performs a transformation between two different distributions.
This transformation represents the bacward pass of the function
mention before. Its mathematical representation is x = (y - b) / exp(a)
, where “a” is scale parameter and “b” performs a shift. This class
also returns the logarithm of the jacobians determinant which is
useful when invert a transformation and compute the probability of
the transformation.


	Parameters:

	y (Sequence) – Tensor sample with transformed distribution data which will be used in
the normalizing algorithm inverse pass.



	Returns:

	
	x (torch.Tensor) – Transformed tensor according to Affine layer with the shape of ‘y’.


	inverse_log_det_jacobian (torch.Tensor) – Tensor which represents the information of the deviation of the initial
and target distribution.



















	
class RealNVPLayer(mask: Tensor, hidden_size: int)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L1831-L1963]

	Real NVP Transformation Layer

This class class is a constructor transformation layer used on a
NormalizingFLow model.  The Real Non-Preserving-Volumen (Real NVP) is a type
of normalizing flow layer which gives advantages over this mainly because an
ease to compute the inverse pass [1]_, this is to learn a target
distribution.

Example

>>> import torch
>>> import torch.nn as nn
>>> from torch.distributions import MultivariateNormal
>>> from deepchem.models.torch_models.layers import RealNVPLayer
>>> dim = 2
>>> samples = 96
>>> data = MultivariateNormal(torch.zeros(dim), torch.eye(dim))
>>> tensor = data.sample(torch.Size((samples, dim)))





>>> layers = 4
>>> hidden_size = 16
>>> masks = F.one_hot(torch.tensor([i % 2 for i in range(layers)])).float()
>>> layers = nn.ModuleList([RealNVPLayer(mask, hidden_size) for mask in masks])





>>> for layer in layers:
...   _, inverse_log_det_jacobian = layer.inverse(tensor)
...   inverse_log_det_jacobian = inverse_log_det_jacobian.detach().numpy()
>>> len(inverse_log_det_jacobian)
96





References



[1]
Stimper, V., Schölkopf, B., & Hernández-Lobato, J. M. (2021). Resampling Base



Distributions of Normalizing Flows. (2017). Retrieved from http://arxiv.org/abs/2110.15828


	
__init__(mask: Tensor, hidden_size: int) → None[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L1868-L1898]

	
	Parameters:

	
	mask (torch.Tensor) – Tensor with zeros and ones and its size depende on the number of layers
and dimenssions the user request.


	hidden_size (int) – The size of the outputs and inputs used on the internal nodes of the
transformation layer.













	
forward(x: Sequence) → Tuple[Tensor, Tensor][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L1900-L1931]

	Forward pass.

This particular transformation is represented by the following function:
y = x + (1 - x) * exp( s(x)) + t(x), where t and s needs an activation
function. This class also returns the logarithm of the jacobians
determinant which is useful when invert a transformation and compute
the probability of the transformation.


	Parameters:

	x (Sequence) – Tensor sample with the initial distribution data which will pass into
the normalizing algorithm



	Returns:

	
	y (torch.Tensor) – Transformed tensor according to Real NVP layer with the shape of ‘x’.


	log_det_jacobian (torch.Tensor) – Tensor which represents the info about the deviation of the initial
and target distribution.















	
inverse(y: Sequence) → Tuple[Tensor, Tensor][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L1933-L1963]

	Inverse pass

This class performs the inverse of the previous method (formward).
Also, this metehod returns the logarithm of the jacobians determinant
which is useful to compute the learneable features of target distribution.


	Parameters:

	y (Sequence) – Tensor sample with transformed distribution data which will be used in
the normalizing algorithm inverse pass.



	Returns:

	
	x (torch.Tensor) – Transformed tensor according to Real NVP layer with the shape of ‘y’.


	inverse_log_det_jacobian (torch.Tensor) – Tensor which represents the information of the deviation of the initial
and target distribution.



















	
class DMPNNEncoderLayer(use_default_fdim: bool = True, atom_fdim: int = 133, bond_fdim: int = 14, d_hidden: int = 300, depth: int = 3, bias: bool = False, activation: str = 'relu', dropout_p: float = 0.0, aggregation: str = 'mean', aggregation_norm: int | float = 100)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L1371-L1759]

	Encoder layer for use in the Directed Message Passing Neural Network (D-MPNN) [1]_.

The role of the DMPNNEncoderLayer class is to generate molecule encodings in following steps:


	Message passing phase


	Get new atom hidden states and readout phase


	Concatenate the global features




Let the diagram given below represent a molecule containing 5 atoms (nodes) and 4 bonds (edges):-


1 — 5

|

2 — 4

|

3



Let the bonds from atoms 1->2 (B[12]) and 2->1 (B[21]) be considered as 2 different bonds.
Hence, by considering the same for all atoms, the total number of bonds = 8.

Let:


	atom features : a1, a2, a3, a4, a5


	hidden states of atoms : h1, h2, h3, h4, h5


	bond features bonds : b12, b21, b23, b32, b24, b42, b15, b51


	initial hidden states of bonds : (0)h12, (0)h21, (0)h23, (0)h32, (0)h24, (0)h42, (0)h15, (0)h51




The hidden state of every bond is a function of the concatenated feature vector which contains
concatenation of the features of initial atom of the bond and bond features.

Example: (0)h21 = func1(concat(a2, b21))


Note

Here func1 is self.W_i



The Message passing phase

The goal of the message-passing phase is to generate hidden states of all the atoms in the molecule.

The hidden state of an atom is a function of concatenation of atom features and messages (at T depth).

A message is a sum of hidden states of bonds coming to the atom (at T depth).


Note

Depth refers to the number of iterations in the message passing phase (here, T iterations). After each iteration, the hidden states of the bonds are updated.



Example:
h1 = func3(concat(a1, m1))


Note

Here func3 is self.W_o.

m1 refers to the message coming to the atom.



m1 = (T-1)h21 + (T-1)h51
(hidden state of bond 2->1 + hidden state of bond 5->1) (at T depth)

for, depth T = 2:


	the hidden states of the bonds @ 1st iteration will be => (0)h21, (0)h51


	the hidden states of the bonds @ 2nd iteration will be => (1)h21, (1)h51




The hidden states of the bonds in 1st iteration are already know.
For hidden states of the bonds in 2nd iteration, we follow the criterion that:


	hidden state of the bond is a function of initial hidden state of bond




and messages coming to that bond in that iteration

Example:
(1)h21 = func2( (0)h21 , (1)m21 )


Note

Here func2 is self.W_h.

(1)m21 refers to the messages coming to that bond 2->1 in that 2nd iteration.



Messages coming to a bond in an iteration is a sum of hidden states of bonds (from previous iteration) coming to this bond.

Example:
(1)m21 = (0)h32 + (0)h42


2 <— 3

^

|

4



Computing the messages

                     B0      B1      B2      B3      B4      B5      B6      B7      B8
f_ini_atoms_bonds = [(0)h12, (0)h21, (0)h23, (0)h32, (0)h24, (0)h42, (0)h15, (0)h51, h(-1)]






Note

h(-1) is an empty array of the same size as other hidden states of bond states.



            B0      B1      B2      B3      B4      B5      B6      B7       B8
mapping = [ [-1,B7] [B3,B5] [B0,B5] [-1,-1] [B0,B3] [-1,-1] [B1,-1] [-1,-1]  [-1,-1] ]





Later, the encoder will map the concatenated features from the f_ini_atoms_bonds
to mapping in each iteration upto Tth iteration.

Next the encoder will sum-up the concat features within same bond index.

                (1)m12           (1)m21           (1)m23              (1)m32          (1)m24           (1)m42           (1)m15          (1)m51            m(-1)
message = [ [h(-1) + (0)h51] [(0)h32 + (0)h42] [(0)h12 + (0)h42] [h(-1) + h(-1)] [(0)h12 + (0)h32] [h(-1) + h(-1)] [(0)h21 + h(-1)] [h(-1) + h(-1)]  [h(-1) + h(-1)] ]





Hence, this is how encoder can get messages for message-passing steps.

Get new atom hidden states and readout phase

Hence now for h1:

h1 = func3(
            concat(
                 a1,
                 [
                    func2( (0)h21 , (0)h32 + (0)h42 ) +
                    func2( (0)h51 , 0               )
                 ]
                )
         )





Similarly, h2, h3, h4 and h5 are calculated.

Next, all atom hidden states are concatenated to make a feature vector of the molecule:

mol_encodings = [[h1, h2, h3, h4, h5]]

Concatenate the global features

Let,
global_features = [[gf1, gf2, gf3]]
This array contains molecule level features. In case of this example, it contains 3 global features.

Hence after concatenation,

mol_encodings = [[h1, h2, h3, h4, h5, gf1, gf2, gf3]]
(Final output of the encoder)

References



[1]
Analyzing Learned Molecular Representations for Property Prediction https://arxiv.org/pdf/1904.01561.pdf



Examples

>>> from rdkit import Chem
>>> import torch
>>> import deepchem as dc
>>> input_smile = "CC"
>>> feat = dc.feat.DMPNNFeaturizer(features_generators=['morgan'])
>>> graph = feat.featurize(input_smile)
>>> from deepchem.models.torch_models.dmpnn import _MapperDMPNN
>>> mapper = _MapperDMPNN(graph[0])
>>> atom_features, f_ini_atoms_bonds, atom_to_incoming_bonds, mapping, global_features = mapper.values
>>> atom_features = torch.from_numpy(atom_features).float()
>>> f_ini_atoms_bonds = torch.from_numpy(f_ini_atoms_bonds).float()
>>> atom_to_incoming_bonds = torch.from_numpy(atom_to_incoming_bonds)
>>> mapping = torch.from_numpy(mapping)
>>> global_features = torch.from_numpy(global_features).float()
>>> molecules_unbatch_key = len(atom_features)
>>> layer = DMPNNEncoderLayer(d_hidden=2)
>>> output = layer(atom_features, f_ini_atoms_bonds, atom_to_incoming_bonds, mapping, global_features, molecules_unbatch_key)






	
__init__(use_default_fdim: bool = True, atom_fdim: int = 133, bond_fdim: int = 14, d_hidden: int = 300, depth: int = 3, bias: bool = False, activation: str = 'relu', dropout_p: float = 0.0, aggregation: str = 'mean', aggregation_norm: int | float = 100)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L1546-L1627]

	Initialize a DMPNNEncoderLayer layer.


	Parameters:

	
	use_default_fdim (bool) – If True, self.atom_fdim and self.bond_fdim are initialized using values from the GraphConvConstants class. If False, self.atom_fdim and self.bond_fdim are initialized from the values provided.


	atom_fdim (int) – Dimension of atom feature vector.


	bond_fdim (int) – Dimension of bond feature vector.


	d_hidden (int) – Size of hidden layer in the encoder layer.


	depth (int) – No of message passing steps.


	bias (bool) – If True, dense layers will use bias vectors.


	activation (str) – Activation function to be used in the encoder layer.
Can choose between ‘relu’ for ReLU, ‘leakyrelu’ for LeakyReLU, ‘prelu’ for PReLU,
‘tanh’ for TanH, ‘selu’ for SELU, and ‘elu’ for ELU.


	dropout_p (float) – Dropout probability for the encoder layer.


	aggregation (str) – Aggregation type to be used in the encoder layer.
Can choose between ‘mean’, ‘sum’, and ‘norm’.


	aggregation_norm (Union[int, float]) – Value required if aggregation type is ‘norm’.













	
forward(atom_features: Tensor, f_ini_atoms_bonds: Tensor, atom_to_incoming_bonds: Tensor, mapping: Tensor, global_features: Tensor, molecules_unbatch_key: List) → Tensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L1695-L1759]

	Output computation for the DMPNNEncoderLayer.

Steps:


	Get original bond hidden states from concatenation of initial atom and bond features. (input)


	Get initial messages hidden states. (message)


	Execute message passing step for self.depth - 1 iterations.


	Get atom hidden states using atom features and message hidden states.


	Get molecule encodings.


	Concatenate global molecular features and molecule encodings.





	Parameters:

	
	atom_features (torch.Tensor) – Tensor containing atoms features.


	f_ini_atoms_bonds (torch.Tensor) – Tensor containing concatenated feature vector which contains concatenation of initial atom and bond features.


	atom_to_incoming_bonds (torch.Tensor) – Tensor containing mapping from atom index to list of indicies of incoming bonds.


	mapping (torch.Tensor) – Tensor containing the mapping that maps bond index to ‘array of indices of the bonds’
incoming at the initial atom of the bond (excluding the reverse bonds).


	global_features (torch.Tensor) – Tensor containing molecule features.


	molecules_unbatch_key (List) – List containing number of atoms in various molecules of a batch






	Returns:

	output – Tensor containing the encodings of the molecules.



	Return type:

	torch.Tensor














	
class InfoGraphEncoder(num_features, edge_features, embedding_dim)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/infograph.py#L113-L186]

	The encoder for the InfoGraph model. It is a message passing graph convolutional
network that produces encoded representations for molecular graph inputs.


	Parameters:

	
	num_features (int) – Number of node features for each input


	edge_features (int) – Number of edge features for each input


	embedding_dim (int) – Dimension of the embedding








Example

>>> import numpy as np
>>> from deepchem.models.torch_models.infograph import InfoGraphEncoder
>>> from deepchem.feat.graph_data import GraphData
>>> encoder = InfoGraphEncoder(num_features=25, edge_features=10, embedding_dim=32)
>>> node_features = np.random.randn(10, 25)
>>> edge_index = np.array([[0, 1, 2], [1, 2, 3]])
>>> edge_features = np.random.randn(3, 10)
>>> graph_index = np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
>>> data = GraphData(node_features=node_features, edge_index=edge_index, edge_features=edge_features, graph_index=graph_index).numpy_to_torch()
>>> embedding, feature_map = encoder(data)
>>> print(embedding.shape)
torch.Size([1, 64])






	
__init__(num_features, edge_features, embedding_dim)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/infograph.py#L143-L156]

	Initialize internal Module state, shared by both nn.Module and ScriptModule.






	
forward(data)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/infograph.py#L158-L186]

	Encode input graphs into an embedding and feature map.


	Parameters:

	data (Union[BatchGraphData, GraphData]) – Contains information about graphs.



	Returns:

	
	torch.Tensor – Encoded tensor of input data.


	torch.Tensor – Feature map tensor of input data.



















	
class GINEncoder(num_features: int, embedding_dim: int, num_gc_layers: int = 5)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/infograph.py#L25-L110]

	Graph Information Network (GIN) encoder. This is a graph convolutional network that produces encoded representations for molecular graph inputs.


	Parameters:

	
	num_features (int) – The number of node features


	embedding_dim (int) – The dimension of the output embedding


	num_gc_layers (int, optional (default 5)) – The number of graph convolutional layers to use








Example

>>> import numpy as np
>>> from deepchem.models.torch_models.infograph import GINEncoder
>>> from deepchem.feat.graph_data import GraphData
>>> encoder = GINEncoder(num_features=25, embedding_dim=32)
>>> node_features = np.random.randn(10, 25)
>>> edge_index = np.array([[0, 1, 2], [1, 2, 3]])
>>> edge_features = np.random.randn(3, 10)
>>> graph_index = np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
>>> data = GraphData(node_features=node_features, edge_index=edge_index, edge_features=edge_features, graph_index=graph_index).numpy_to_torch()
>>> embedding, intermediate_embeddings = encoder(data)
>>> print(embedding.shape)
torch.Size([1, 30])





References



[1]
Xu, K., Hu, W., Leskovec, J. & Jegelka, S. How Powerful are Graph Neural Networks? arXiv:1810.00826 [cs, stat] (2019).




	
__init__(num_features: int, embedding_dim: int, num_gc_layers: int = 5)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/infograph.py#L59-L83]

	Initialize internal Module state, shared by both nn.Module and ScriptModule.






	
forward(data)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/infograph.py#L85-L110]

	Encodes the input graph data.


	Parameters:

	data (BatchGraphData) – The batched input graph data.



	Returns:

	A tuple containing the encoded representation and intermediate embeddings.



	Return type:

	Tuple[torch.Tensor, torch.Tensor]














	
class SetGather(M: int, batch_size: int, n_hidden: int = 100, init='orthogonal', **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L3085-L3247]

	set2set gather layer for graph-based model

Models using this layer must set pad_batches=True

Torch Equivalent of Keras SetGather layer


	Parameters:

	
	M (int) – Number of LSTM steps


	batch_size (int) – Number of samples in a batch(all batches must have same size)


	n_hidden (int, optional) – number of hidden units in the passing phase








Examples

>>> import deepchem as dc
>>> import numpy as np
>>> from deepchem.models.torch_models import layers
>>> total_n_atoms = 4
>>> n_atom_feat = 4
>>> atom_feat = np.random.rand(total_n_atoms, n_atom_feat)
>>> atom_split = np.array([0, 0, 1, 1], dtype=np.int32)
>>> gather = layers.SetGather(2, 2, n_hidden=4)
>>> output_molecules = gather([atom_feat, atom_split])
>>> print(output_molecules.shape)
torch.Size([2, 8])






	
__init__(M: int, batch_size: int, n_hidden: int = 100, init='orthogonal', **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L3117-L3136]

	Initialize internal Module state, shared by both nn.Module and ScriptModule.






	
forward(inputs: List) → Tensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L3143-L3187]

	Perform M steps of set2set gather,

Detailed descriptions in: https://arxiv.org/abs/1511.06391


	Parameters:

	inputs (List) – This contains two elements.
atom_features: np.ndarray
atom_split: np.ndarray



	Returns:

	q_star – Final state of the model after all M steps.



	Return type:

	torch.Tensor














	
class GNN(node_type_embedding, chirality_embedding, gconvs, batch_norms, dropout, jump_knowledge, init_emb=False)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/gnn.py#L22-L135]

	GNN module for the GNNModular model.

This module is responsible for the graph neural network layers in the GNNModular model.


	Parameters:

	
	node_type_embedding (torch.nn.Embedding) – Embedding layer for node types.


	chirality_embedding (torch.nn.Embedding) – Embedding layer for chirality tags.


	gconvs (torch.nn.ModuleList) – ModuleList of graph convolutional layers.


	batch_norms (torch.nn.ModuleList) – ModuleList of batch normalization layers.


	dropout (int) – Dropout probability.


	jump_knowledge (str) – The type of jump knowledge to use. [1] Must be one of “last”, “sum”, “max”, “concat” or “none”.
“last”: Use the node representation from the last GNN layer.
“concat”: Concatenate the node representations from all GNN layers.
“max”: Take the element-wise maximum of the node representations from all GNN layers.
“sum”: Take the element-wise sum of the node representations from all GNN layers.


	init_emb (bool) – Whether to initialize the embedding layers with Xavier uniform initialization.








References



[1]
Xu, K. et al. Representation Learning on Graphs with Jumping Knowledge Networks. Preprint at https://doi.org/10.48550/arXiv.1806.03536 (2018).



Example

>>> from deepchem.models.torch_models.gnn import GNNModular
>>> from deepchem.feat.graph_data import BatchGraphData
>>> from deepchem.feat.molecule_featurizers import SNAPFeaturizer
>>> featurizer = SNAPFeaturizer()
>>> smiles = ["C1=CC=CC=C1", "C1=CC=CC=C1C=O", "C1=CC=CC=C1C(=O)O"]
>>> features = featurizer.featurize(smiles)
>>> modular = GNNModular(emb_dim = 8, task = "edge_pred")
>>> batched_graph = BatchGraphData(features).numpy_to_torch(device=modular.device)
>>> gnnmodel = modular.gnn
>>> print(gnnmodel(batched_graph)[0].shape)
torch.Size([23, 8])






	
__init__(node_type_embedding, chirality_embedding, gconvs, batch_norms, dropout, jump_knowledge, init_emb=False)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/gnn.py#L69-L90]

	Initialize internal Module state, shared by both nn.Module and ScriptModule.






	
forward(data: BatchGraphData)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/gnn.py#L92-L135]

	Forward pass for the GNN module.


	Parameters:

	data (BatchGraphData) – Batched graph data.














	
class GNNHead(pool, head, task, num_tasks, num_classes)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/gnn.py#L138-L181]

	Prediction head module for the GNNModular model.


	Parameters:

	
	pool (Union[function,torch.nn.Module]) – Pooling function or nn.Module to use


	head (torch.nn.Module) – Prediction head to use


	task (str) – The type of task. Must be one of “regression”, “classification”.


	num_tasks (int) – Number of tasks.


	num_classes (int) – Number of classes for classification.









	
__init__(pool, head, task, num_tasks, num_classes)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/gnn.py#L156-L162]

	Initialize internal Module state, shared by both nn.Module and ScriptModule.






	
forward(data)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/gnn.py#L164-L181]

	Forward pass for the GNN head module.


	Parameters:

	data (tuple) – A tuple containing the node representations and the input graph data.
node_representation is a torch.Tensor created after passing input through the GNN layers.
input_batch is the original input BatchGraphData.














	
class LocalGlobalDiscriminator(hidden_dim)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/gnn.py#L184-L240]

	This discriminator module is a linear layer without bias, used to measure the similarity between local node representations (x) and global graph representations (summary).

The goal of the discriminator is to distinguish between positive and negative pairs of local and global representations.

Examples

>>> import torch
>>> from deepchem.models.torch_models.gnn import LocalGlobalDiscriminator
>>> discriminator = LocalGlobalDiscriminator(hidden_dim=64)
>>> x = torch.randn(32, 64)  # Local node representations
>>> summary = torch.randn(32, 64)  # Global graph representations
>>> similarity_scores = discriminator(x, summary)
>>> print(similarity_scores.shape)
torch.Size([32])






	
__init__(hidden_dim)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/gnn.py#L202-L216]

	self.weight is a learnable weight matrix of shape (hidden_dim, hidden_dim).

nn.Parameters are tensors that require gradients and are optimized during the training process.


	Parameters:

	hidden_dim (int) – The size of the hidden dimension for the weight matrix.










	
forward(x, summary)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/gnn.py#L222-L240]

	Computes the product of summary and self.weight, and then calculates the element-wise product of x and the resulting matrix h.
It then sums over the hidden_dim dimension, resulting in a tensor of shape (batch_size,), which represents the similarity scores between the local and global representations.


	Parameters:

	
	x (torch.Tensor) – Local node representations of shape (batch_size, hidden_dim).


	summary (torch.Tensor) – Global graph representations of shape (batch_size, hidden_dim).






	Returns:

	A tensor of shape (batch_size,), representing the similarity scores between the local and global representations.



	Return type:

	torch.Tensor














	
class AtomEncoder(emb_dim, padding=False)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/pna_gnn.py#L47-L115]

	Encodes atom features into embeddings based on the Open Graph Benchmark feature set in conformer_featurizer.


	Parameters:

	
	emb_dim (int) – The dimension that the returned embedding will have.


	padding (bool, optional (default=False)) – If true then the last index will be used for padding.








Examples

>>> from deepchem.feat.molecule_featurizers.conformer_featurizer import full_atom_feature_dims
>>> atom_encoder = AtomEncoder(emb_dim=32)
>>> num_rows = 10
>>> atom_features = torch.stack([
... torch.randint(low=0, high=dim, size=(num_rows,))
... for dim in full_atom_feature_dims
... ], dim=1)
>>> atom_embeddings = atom_encoder(atom_features)






	
__init__(emb_dim, padding=False)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/pna_gnn.py#L70-L82]

	Initialize internal Module state, shared by both nn.Module and ScriptModule.






	
reset_parameters()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/pna_gnn.py#L84-L92]

	Reset the parameters of the atom embeddings.

This method resets the weights of the atom embeddings by initializing
them with a uniform distribution between -sqrt(3) and sqrt(3).






	
forward(x)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/pna_gnn.py#L94-L115]

	Compute the atom embeddings for the given atom features.


	Parameters:

	x (torch.Tensor, shape (batch_size, num_atoms, num_features)) – The input atom features tensor.



	Returns:

	x_embedding – The computed atom embeddings.



	Return type:

	torch.Tensor, shape (batch_size, num_atoms, emb_dim)














	
class BondEncoder(emb_dim, padding=False)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/pna_gnn.py#L118-L178]

	Encodes bond features into embeddings based on the Open Graph Benchmark feature set in conformer_featurizer.


	Parameters:

	
	emb_dim (int) – The dimension that the returned embedding will have.


	padding (bool, optional (default=False)) – If true then the last index will be used for padding.








Examples

>>> from deepchem.feat.molecule_featurizers.conformer_featurizer import full_bond_feature_dims
>>> bond_encoder = BondEncoder(emb_dim=32)
>>> num_rows = 10
>>> bond_features = torch.stack([
... torch.randint(low=0, high=dim, size=(num_rows,))
... for dim in full_bond_feature_dims
... ], dim=1)
>>> bond_embeddings = bond_encoder(bond_features)






	
__init__(emb_dim, padding=False)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/pna_gnn.py#L141-L153]

	Initialize internal Module state, shared by both nn.Module and ScriptModule.






	
forward(edge_attr)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/pna_gnn.py#L155-L178]

	Compute the bond embeddings for the given bond features.


	Parameters:

	edge_attr (torch.Tensor, shape (batch_size, num_edges, num_features)) – The input bond features tensor.



	Returns:

	bond_embedding – The computed bond embeddings.



	Return type:

	torch.Tensor, shape (batch_size, num_edges, emb_dim)














	
class PNALayer(in_dim: int, out_dim: int, in_dim_edges: int, aggregators: List[str], scalers: List[str], activation: Callable | str = 'relu', dropout: float = 0.0, residual: bool = True, pairwise_distances: bool = False, batch_norm: bool = True, batch_norm_momentum=0.1, avg_d: Dict[str, float] = {'log': 1.0}, posttrans_layers: int = 2, pretrans_layers: int = 1)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/pna_gnn.py#L181-L411]

	Principal Neighbourhood Aggregation Layer (PNA) from [1].


	Parameters:

	
	in_dim (int) – Input dimension of the node features.


	out_dim (int) – Output dimension of the node features.


	in_dim_edges (int) – Input dimension of the edge features.


	aggregators (List[str]) – List of aggregator functions to use. Options are “mean”, “sum”, “max”, “min”, “std”, “var”, “moment3”, “moment4”, “moment5”.


	scalers (List[str]) – List of scaler functions to use. Options are “identity”, “amplification”, “attenuation”.


	activation (Union[Callable, str], optional, default="relu") – Activation function to use.


	last_activation (Union[Callable, str], optional, default="none") – Last activation function to use.


	dropout (float, optional, default=0.0) – Dropout rate.


	residual (bool, optional, default=True) – Whether to use residual connections.


	pairwise_distances (bool, optional, default=False) – Whether to use pairwise distances.


	batch_norm (bool, optional, default=True) – Whether to use batch normalization.


	batch_norm_momentum (float, optional, default=0.1) – Momentum for the batch normalization layers.


	avg_d (Dict[str, float], optional, default={"log": 1.0}) – Dictionary containing the average degree of the graph.


	posttrans_layers (int, optional, default=2) – Number of post-transformation layers.


	pretrans_layers (int, optional, default=1) – Number of pre-transformation layers.








References



[1]
Corso, G., Cavalleri, L., Beaini, D., Liò, P. & Veličković, P. Principal Neighbourhood Aggregation for Graph Nets. Preprint at https://doi.org/10.48550/arXiv.2004.05718 (2020).



Examples

>>> import dgl
>>> import numpy as np
>>> import torch
>>> from deepchem.models.torch_models.pna_gnn import PNALayer
>>> in_dim = 32
>>> out_dim = 64
>>> in_dim_edges = 16
>>> aggregators = ["mean", "max"]
>>> scalers = ["identity", "amplification", "attenuation"]
>>> pna_layer = PNALayer(in_dim=in_dim,
...                      out_dim=out_dim,
...                      in_dim_edges=in_dim_edges,
...                      aggregators=aggregators,
...                      scalers=scalers)
>>> num_nodes = 10
>>> num_edges = 20
>>> node_features = torch.randn(num_nodes, in_dim)
>>> edge_features = torch.randn(num_edges, in_dim_edges)
>>> g = dgl.graph((np.random.randint(0, num_nodes, num_edges),
...                np.random.randint(0, num_nodes, num_edges)))
>>> g.ndata['feat'] = node_features
>>> g.edata['feat'] = edge_features
>>> g.ndata['feat'] = pna_layer(g)






	
__init__(in_dim: int, out_dim: int, in_dim_edges: int, aggregators: List[str], scalers: List[str], activation: Callable | str = 'relu', dropout: float = 0.0, residual: bool = True, pairwise_distances: bool = False, batch_norm: bool = True, batch_norm_momentum=0.1, avg_d: Dict[str, float] = {'log': 1.0}, posttrans_layers: int = 2, pretrans_layers: int = 1)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/pna_gnn.py#L249-L293]

	Initialize internal Module state, shared by both nn.Module and ScriptModule.






	
forward(g)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/pna_gnn.py#L295-L322]

	Forward pass of the PNA layer.


	Parameters:

	g (dgl.DGLGraph) – Input graph



	Returns:

	h – Node feature tensor



	Return type:

	torch.Tensor










	
message_func(edges) → Dict[str, Tensor][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/pna_gnn.py#L324-L338]

	The message function to generate messages along the edges.


	Parameters:

	edges (dgl.EdgeBatch) – Batch of edges.



	Returns:

	Dictionary containing the edge features.



	Return type:

	Dict[str, torch.Tensor]










	
reduce_func(nodes) → Dict[str, Tensor][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/pna_gnn.py#L340-L373]

	The reduce function to aggregate the messages.
Apply the aggregators and scalers, and concatenate the results.


	Parameters:

	nodes (dgl.NodeBatch) – Batch of nodes.



	Returns:

	Dictionary containing the aggregated node features.



	Return type:

	Dict[str, torch.Tensor]










	
pretrans_edges(edges) → Dict[str, Tensor][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/pna_gnn.py#L375-L411]

	Return a mapping to the concatenation of the features from
the source node, the destination node, and the edge between them (if applicable).


	Parameters:

	edges (dgl.EdgeBatch) – Batch of edges.



	Returns:

	Dictionary containing the concatenated features.



	Return type:

	Dict[str, torch.Tensor]














	
class PNAGNN(hidden_dim, aggregators: List[str], scalers: List[str], residual: bool = True, pairwise_distances: bool = False, activation: Callable | str = 'relu', batch_norm: bool = True, batch_norm_momentum=0.1, propagation_depth: int = 5, dropout: float = 0.0, posttrans_layers: int = 1, pretrans_layers: int = 1, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/pna_gnn.py#L414-L525]

	Principal Neighbourhood Aggregation Graph Neural Network [1]. This defines the message passing layers of the PNA model.


	Parameters:

	
	hidden_dim (int) – Dimension of the hidden layers.


	aggregators (List[str]) – List of aggregator functions to use.


	scalers (List[str]) – List of scaler functions to use. Options are “identity”, “amplification”, “attenuation”.


	residual (bool, optional, default=True) – Whether to use residual connections.


	pairwise_distances (bool, optional, default=False) – Whether to use pairwise distances.


	activation (Union[Callable, str], optional, default="relu") – Activation function to use.


	batch_norm (bool, optional, default=True) – Whether to use batch normalization in the layers before the aggregator.


	batch_norm_momentum (float, optional, default=0.1) – Momentum for the batch normalization layers.


	propagation_depth (int, optional, default=5) – Number of propagation layers.


	dropout (float, optional, default=0.0) – Dropout rate.


	posttrans_layers (int, optional, default=1) – Number of post-transformation layers.


	pretrans_layers (int, optional, default=1) – Number of pre-transformation layers.








References



[1]
Corso, G., Cavalleri, L., Beaini, D., Liò, P. & Veličković, P. Principal Neighbourhood Aggregation for Graph Nets. Preprint at https://doi.org/10.48550/arXiv.2004.05718 (2020).



Examples

>>> import numpy as np
>>> from deepchem.feat.molecule_featurizers.conformer_featurizer import RDKitConformerFeaturizer
>>> from deepchem.feat.graph_data import BatchGraphData
>>> from deepchem.models.torch_models.pna_gnn import PNAGNN
>>> featurizer = RDKitConformerFeaturizer()
>>> smiles = ['C1=CC=NC=C1', 'CC(=O)C', 'C']
>>> featurizer = RDKitConformerFeaturizer()
>>> data = featurizer.featurize(smiles)
>>> features = BatchGraphData(data)
>>> features = features.to_dgl_graph()
>>> model = PNAGNN(hidden_dim=16,
...                aggregators=['mean', 'sum'],
...                scalers=['identity'])
>>> output = model(features)






	
__init__(hidden_dim, aggregators: List[str], scalers: List[str], residual: bool = True, pairwise_distances: bool = False, activation: Callable | str = 'relu', batch_norm: bool = True, batch_norm_momentum=0.1, propagation_depth: int = 5, dropout: float = 0.0, posttrans_layers: int = 1, pretrans_layers: int = 1, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/pna_gnn.py#L467-L502]

	Initialize internal Module state, shared by both nn.Module and ScriptModule.






	
forward(input_graph: DGLGraph) → DGLGraph[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/pna_gnn.py#L504-L525]

	Forward pass of the PNAGNN model.


	Parameters:

	input_graph (dgl.DGLGraph) – Input graph with node and edge features.



	Returns:

	graph – Output graph with updated node features after applying the message passing layers.



	Return type:

	dgl.DGLGraph














	
class PNA(hidden_dim: int, target_dim: int, task: str, aggregators: List[str] = ['mean'], scalers: List[str] = ['identity'], readout_aggregators: List[str] = ['mean'], readout_hidden_dim: int = 1, readout_layers: int = 2, residual: bool = True, pairwise_distances: bool = False, activation: Callable | str = 'relu', batch_norm: bool = True, batch_norm_momentum: float = 0.1, propagation_depth: int = 5, dropout: float = 0.0, posttrans_layers: int = 1, pretrans_layers: int = 1, n_tasks: int = 1, n_classes: int = 2, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/pna_gnn.py#L528-L663]

	Message passing neural network for graph representation learning [1]_.


	Parameters:

	
	hidden_dim (int) – Hidden dimension size.


	target_dim (int) – Dimensionality of the output, for example for binary classification target_dim = 1.


	aggregators (List[str]) – Type of message passing functions. Options are ‘mean’,’sum’,’max’,’min’,’std’,’var’,’moment3’,’moment4’,’moment5’.


	scalers (List[str]) – Type of normalization layers in the message passing network. Options are ‘identity’,’amplification’,’attenuation’.


	readout_aggregators (List[str]) – Type of aggregators in the readout network.


	readout_hidden_dim (int, default None) – The dimension of the hidden layer in the readout network. If not provided, the readout has the same dimensionality of the final layer of the PNA layer, which is the hidden dimension size.


	readout_layers (int, default 1) – The number of linear layers in the readout network.


	residual (bool, default True) – Whether to use residual connections.


	pairwise_distances (bool, default False) – Whether to use pairwise distances.


	activation (Union[Callable, str]) – Activation function to use.


	batch_norm (bool, default True) – Whether to use batch normalization in the layers before the aggregator..


	batch_norm_momentum (float, default 0.1) – Momentum for the batch normalization layers.


	propagation_depth (int, default) – Number of propagation layers.


	dropout (float, default 0.0) – Dropout probability in the message passing layers.


	posttrans_layers (int, default 1) – Number of post-transformation layers.


	pretrans_layers (int, default 1) – Number of pre-transformation layers.








References



[1]
Corso, G., Cavalleri, L., Beaini, D., Liò, P. & Veličković, P. Principal Neighbourhood Aggregation for Graph Nets. Preprint at https://doi.org/10.48550/arXiv.2004.05718 (2020).



Examples

>>> import numpy as np
>>> from deepchem.feat.graph_data import BatchGraphData
>>> from deepchem.models.torch_models.pna_gnn import PNA
>>> from deepchem.feat.molecule_featurizers.conformer_featurizer import RDKitConformerFeaturizer
>>> smiles = ["C1=CC=CN=C1", "C1CCC1"]
>>> featurizer = RDKitConformerFeaturizer()
>>> data = featurizer.featurize(smiles)
>>> features = BatchGraphData(data)
>>> features = features.to_dgl_graph()
>>> target_dim = 1
>>> model = PNA(hidden_dim=16, target_dim=target_dim, task='regression')
>>> output = model(features)
>>> print(output.shape)
torch.Size([1, 1])






	
__init__(hidden_dim: int, target_dim: int, task: str, aggregators: List[str] = ['mean'], scalers: List[str] = ['identity'], readout_aggregators: List[str] = ['mean'], readout_hidden_dim: int = 1, readout_layers: int = 2, residual: bool = True, pairwise_distances: bool = False, activation: Callable | str = 'relu', batch_norm: bool = True, batch_norm_momentum: float = 0.1, propagation_depth: int = 5, dropout: float = 0.0, posttrans_layers: int = 1, pretrans_layers: int = 1, n_tasks: int = 1, n_classes: int = 2, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/pna_gnn.py#L589-L642]

	Initialize internal Module state, shared by both nn.Module and ScriptModule.






	
forward(graph: DGLGraph)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/pna_gnn.py#L644-L663]

	Define the computation performed at every call.

Should be overridden by all subclasses.


Note

Although the recipe for forward pass needs to be defined within
this function, one should call the Module instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.












	
class Net3DLayer(edge_dim: int, hidden_dim: int, reduce_func: str = 'sum', batch_norm: bool = False, batch_norm_momentum: float = 0.1, dropout: float = 0.0, message_net_layers: int = 2, update_net_layers: int = 2)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/gnn3d.py#L17-L155]

	Net3DLayer is a single layer of a 3D graph neural network based on the 3D Infomax architecture [1].

This class expects a DGL graph with node features stored under the name ‘feat’ and edge features stored under the name ‘d’ (representing 3D distances). The edge features are updated by the message network and the node features are updated by the update network.


	Parameters:

	
	edge_dim (int) – The dimension of the edge features.


	hidden_dim (int) – The dimension of the hidden layers.


	reduce_func (str) – The reduce function to use for aggregating messages. Can be either ‘sum’ or ‘mean’.


	batch_norm (bool, optional (default=False)) – Whether to use batch normalization.


	batch_norm_momentum (float, optional (default=0.1)) – The momentum for the batch normalization layers.


	dropout (float, optional (default=0.0)) – The dropout rate for the layers.


	mid_activation (str, optional (default='SiLU')) – The activation function to use in the network.


	message_net_layers (int, optional (default=2)) – The number of message network layers.


	update_net_layers (int, optional (default=2)) – The number of update network layers.








References



[1]
Stärk, H. et al. 3D Infomax improves GNNs for Molecular Property Prediction. Preprint at https://doi.org/10.48550/arXiv.2110.04126 (2022).



Examples

>>> net3d_layer = Net3DLayer(edge_dim=3, hidden_dim=3)
>>> graph = dgl.graph(([0, 1], [1, 2]))
>>> graph.ndata['feat'] = torch.tensor([[1., 2., 3.], [4., 5., 6.], [7., 8., 9.]])
>>> graph.edata['d'] = torch.tensor([[0.5, 0.6, 0.7], [0.8, 0.9, 1.0]])
>>> output = net3d_layer(graph)






	
__init__(edge_dim: int, hidden_dim: int, reduce_func: str = 'sum', batch_norm: bool = False, batch_norm_momentum: float = 0.1, dropout: float = 0.0, message_net_layers: int = 2, update_net_layers: int = 2)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/gnn3d.py#L57-L90]

	Initialize internal Module state, shared by both nn.Module and ScriptModule.






	
forward(input_graph: DGLGraph)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/gnn3d.py#L92-L113]

	Perform a forward pass on the given graph.


	Parameters:

	input_graph (dgl.DGLGraph) – The graph to perform the forward pass on.



	Returns:

	The updated graph after the forward pass.



	Return type:

	dgl.DGLGraph










	
message_function(edges)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/gnn3d.py#L115-L133]

	Computes the message and edge weight for a given set of edges.


	Parameters:

	edges (dgl.EdgeBatch) – A dgl.EdgeBatch object containing the edges information (data, batch size, etc.).



	Returns:

	A dictionary containing the message multiplied by the edge weight.



	Return type:

	dict










	
update_function(nodes)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/gnn3d.py#L135-L155]

	Update function for updating node features based on the aggregated messages.

This function is used in the forward method to perform a forward pass on the graph.


	Parameters:

	nodes (dgl.NodeBatch) – A node batch object containing the nodes information (data, batch size, etc.).



	Returns:

	A dictionary containing the updated features.



	Return type:

	dict














	
class Net3D(hidden_dim, target_dim, readout_aggregators: List[str], node_wise_output_layers=2, batch_norm=True, batch_norm_momentum=0.1, reduce_func='sum', dropout=0.0, propagation_depth: int = 4, readout_layers: int = 2, readout_hidden_dim=None, fourier_encodings=4, update_net_layers=2, message_net_layers=2, use_node_features=False)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/gnn3d.py#L158-L351]

	Net3D is a 3D graph neural network that expects a DGL graph input with 3D coordinates stored under the name ‘d’ and node features stored under the name ‘feat’. It is based on the 3D Infomax architecture [1].


	Parameters:

	
	hidden_dim (int) – The dimension of the hidden layers.


	target_dim (int) – The dimension of the output layer.


	readout_aggregators (List[str]) – A list of aggregator functions for the readout layer. Options are ‘sum’, ‘max’, ‘min’, ‘mean’.


	batch_norm (bool, optional (default=False)) – Whether to use batch normalization.


	node_wise_output_layers (int, optional (default=2)) – The number of output layers for each node.


	readout_batchnorm (bool, optional (default=True)) – Whether to use batch normalization in the readout layer.


	batch_norm_momentum (float, optional (default=0.1)) – The momentum for the batch normalization layers.


	reduce_func (str, optional (default='sum')) – The reduce function to use for aggregating messages.


	dropout (float, optional (default=0.0)) – The dropout rate for the layers.


	propagation_depth (int, optional (default=4)) – The number of propagation layers in the network.


	readout_layers (int, optional (default=2)) – The number of readout layers in the network.


	readout_hidden_dim (int, optional (default=None)) – The dimension of the hidden layers in the readout network.


	fourier_encodings (int, optional (default=0)) – The number of Fourier encodings to use.


	activation (str, optional (default='SiLU')) – The activation function to use in the network.


	update_net_layers (int, optional (default=2)) – The number of update network layers.


	message_net_layers (int, optional (default=2)) – The number of message network layers.


	use_node_features (bool, optional (default=False)) – Whether to use node features as input.








Examples

>>> from deepchem.feat.molecule_featurizers.conformer_featurizer import RDKitConformerFeaturizer
>>> from deepchem.models.torch_models.gnn3d import Net3D
>>> smiles = ["C[C@H](F)Cl", "C[C@@H](F)Cl"]
>>> featurizer = RDKitConformerFeaturizer()
>>> data = featurizer.featurize(smiles)
>>> dgldata = [graph.to_dgl_graph() for graph in data]
>>> net3d = Net3D(hidden_dim=3, target_dim=2, readout_aggregators=['sum', 'mean'])
>>> output = [net3d(graph) for graph in dgldata]





References



[1]
Stärk, H. et al. 3D Infomax improves GNNs for Molecular Property Prediction. Preprint at https://doi.org/10.48550/arXiv.2110.04126 (2022).




	
__init__(hidden_dim, target_dim, readout_aggregators: List[str], node_wise_output_layers=2, batch_norm=True, batch_norm_momentum=0.1, reduce_func='sum', dropout=0.0, propagation_depth: int = 4, readout_layers: int = 2, readout_hidden_dim=None, fourier_encodings=4, update_net_layers=2, message_net_layers=2, use_node_features=False)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/gnn3d.py#L215-L281]

	Initialize internal Module state, shared by both nn.Module and ScriptModule.






	
forward(graph: DGLGraph)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/gnn3d.py#L283-L319]

	Forward pass of the Net3D model.


	Parameters:

	graph (dgl.DGLGraph) – The input graph with node features stored under the key ‘x’ and edge distances stored under the key ‘d’.



	Returns:

	The graph representation tensor of shape (1, target_dim).



	Return type:

	torch.Tensor










	
output_node_func(nodes)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/gnn3d.py#L321-L335]

	Apply the node-wise output network to the node features.


	Parameters:

	nodes (dgl.NodeBatch) – A batch of nodes with features stored under the key ‘feat’.



	Returns:

	A dictionary with the updated node features under the key ‘feat’.



	Return type:

	dict










	
input_edge_func(edges)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/gnn3d.py#L337-L351]

	Apply the edge input network to the edge features.


	Parameters:

	edges (dgl.EdgeBatch) – A batch of edges with distances stored under the key ‘d’.



	Returns:

	A dictionary with the updated edge features under the key ‘d’.



	Return type:

	dict














	
class DTNNEmbedding(n_embedding: int = 30, periodic_table_length: int = 30, initalizer: str = 'xavier_uniform_', **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L3250-L3333]

	DTNNEmbedding layer for DTNN model.

Assign initial atomic descriptors. [1]_

This layer creates ‘n’ number of embeddings as initial atomic descriptors. According to the required weight initializer and periodic_table_length (Total number of unique atoms).

References


	[1] Schütt, Kristof T., et al. “Quantum-chemical insights from deep
	tensor neural networks.” Nature communications 8.1 (2017): 1-8.





Examples

>>> from deepchem.models.torch_models import layers
>>> import torch
>>> layer = layers.DTNNEmbedding(30, 30, 'xavier_uniform_')
>>> output = layer(torch.tensor([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]))
>>> output.shape
torch.Size([10, 30])






	
__init__(n_embedding: int = 30, periodic_table_length: int = 30, initalizer: str = 'xavier_uniform_', **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L3273-L3298]

	
	Parameters:

	
	n_embedding (int, optional) – Number of features for each atom


	periodic_table_length (int, optional) – Length of embedding, 83=Bi


	initalizer (str, optional) – Weight initialization for filters.
Options: {xavier_uniform_, xavier_normal_, kaiming_uniform_, kaiming_normal_, trunc_normal_}













	
forward(inputs: Tensor)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L3316-L3333]

	Returns Embeddings according to indices.


	Parameters:

	inputs (torch.Tensor) – Indices of Atoms whose embeddings are requested.



	Returns:

	atom_embeddings – Embeddings of atoms accordings to indices.



	Return type:

	torch.Tensor














	
class DTNNStep(n_embedding: int = 30, n_distance: int = 100, n_hidden: int = 60, initializer: str = 'xavier_uniform_', activation='tanh', **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L3851-L3990]

	DTNNStep Layer for DTNN model.

Encodes the atom’s interaction with other atoms according to distance relationships. [1]_

This Layer implements the Eq (7) from DTNN Paper. Then sums them up to get the final output using Eq (6) from DTNN Paper.

Eq (7): V_ij = tanh[W_fc . ((W_cf . C_j + b_cf) * (W_df . d_ij + b_df))]

Eq (6): C_i = C_i + sum(V_ij)

Here : ‘.’=Matrix Multiplication , ‘*’=Multiplication

References


	[1] Schütt, Kristof T., et al. “Quantum-chemical insights from deep
	tensor neural networks.” Nature communications 8.1 (2017): 1-8.





Examples

>>> from deepchem.models.torch_models import layers
>>> import torch
>>> embedding_layer = layers.DTNNEmbedding(4, 4)
>>> emb = embedding_layer(torch.Tensor([0,1,2,3]).to(torch.int64))
>>> step_layer = layers.DTNNStep(4, 6, 8)
>>> output_torch = step_layer([
...     torch.Tensor(emb),
...     torch.Tensor([0, 1, 2, 3, 4, 5]).to(torch.float32),
...     torch.Tensor([1]).to(torch.int64),
...     torch.Tensor([[1]]).to(torch.int64)
... ])
>>> output_torch.shape
torch.Size([2, 4, 4])






	
__init__(n_embedding: int = 30, n_distance: int = 100, n_hidden: int = 60, initializer: str = 'xavier_uniform_', activation='tanh', **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L3887-L3931]

	
	Parameters:

	
	n_embedding (int, optional) – Number of features for each atom


	n_distance (int, optional) – granularity of distance matrix


	n_hidden (int, optional) – Number of nodes in hidden layer


	initializer (str, optional) – Weight initialization for filters.
Options: {xavier_uniform_, xavier_normal_, kaiming_uniform_, kaiming_normal_, trunc_normal_}


	activation (str, optional) – Activation function applied













	
forward(inputs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L3953-L3990]

	Executes the equations and Returns the intraction vector of the atom with other atoms.


	Parameters:

	inputs (torch.Tensor) – List of Tensors having atom_features, distance, distance_membership_i, distance_membership_j.



	Returns:

	interaction_vector – interaction of the atom with other atoms based on distance and distance_membership.



	Return type:

	torch.Tensor














	
class DTNNGather(n_embedding=30, n_outputs=100, layer_sizes=[100], output_activation=True, initializer='xavier_uniform_', activation='tanh', **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L3993-L4112]

	DTNNGather Layer for DTNN Model.

Predict Molecular Energy using atom_features and atom_membership. [1]_

This Layer gathers the inputs got from the step layer according to atom_membership and calulates the total Molecular Energy.

References


	[1] Schütt, Kristof T., et al. “Quantum-chemical insights from deep
	tensor neural networks.” Nature communications 8.1 (2017): 1-8.





Examples

>>> from deepchem.models.torch_models import layers as layers_torch
>>> import torch
>>> gather_layer_torch = layers_torch.DTNNGather(3, 3, [10])
>>> result = gather_layer_torch([torch.Tensor([[3, 2, 1]]).to(torch.float32), torch.Tensor([0]).to(torch.int64)])
>>> result.shape
torch.Size([1, 3])






	
__init__(n_embedding=30, n_outputs=100, layer_sizes=[100], output_activation=True, initializer='xavier_uniform_', activation='tanh', **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L4016-L4068]

	
	Parameters:

	
	n_embedding (int, optional) – Number of features for each atom


	n_outputs (int, optional) – Number of features for each molecule(output)


	layer_sizes (list of int, optional(default=[100])) – Structure of hidden layer(s)


	initializer (str, optional) – Weight initialization for filters.


	activation (str, optional) – Activation function applied













	
forward(inputs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L4089-L4112]

	Executes the equation and Returns Molecular Energies according to atom_membership.


	Parameters:

	inputs (torch.Tensor) – List of Tensor containing atom_features and atom_membership



	Returns:

	molecular_energies – Tensor containing the Molecular Energies according to atom_membership.



	Return type:

	torch.Tensor














	
class GradientPenaltyLayer(gan: WGANModel, discriminator: Module, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/gan.py#L1185-L1344]

	Implements the gradient penalty loss term for WGANs.

This class implements the gradient penalty loss term for WGANs as described in
Gulrajani et al., “Improved Training of Wasserstein GANs” [1]_.  It is used
internally by WGANModel

Examples

Importing necessary modules

>>> import deepchem
>>> from deepchem.models.torch_models.gan import WGANModel
>>> from deepchem.models.torch_models import GradientPenaltyLayer
>>> import torch
>>> import torch.nn as nn
>>> import torch.nn.functional as F





Creating a Generator

>>> class Generator(nn.Module):
...     def __init__(self, noise_input_shape, conditional_input_shape):
...         super(Generator, self).__init__()
...         self.noise_input_shape = noise_input_shape
...         self.conditional_input_shape = conditional_input_shape
...         self.noise_dim = noise_input_shape[1:]
...         self.conditional_dim = conditional_input_shape[1:]
...         input_dim = sum(self.noise_dim) + sum(self.conditional_dim)
...         self.output = nn.Linear(input_dim, 1)
...     def forward(self, input):
...         noise_input, conditional_input = input
...         inputs = torch.cat((noise_input, conditional_input), dim=1)
...         output = self.output(inputs)
...         return output





Creating a Discriminator

>>> class Discriminator(nn.Module):
...     def __init__(self, data_input_shape, conditional_input_shape):
...         super(Discriminator, self).__init__()
...         self.data_input_shape = data_input_shape
...         self.conditional_input_shape = conditional_input_shape
...         # Extracting the actual data dimension
...         data_dim = data_input_shape[1:]
...         # Extracting the actual conditional dimension
...         conditional_dim = conditional_input_shape[1:]
...         input_dim = sum(data_dim) + sum(conditional_dim)
...         # Define the dense layers
...         self.dense1 = nn.Linear(input_dim, 10)
...         self.dense2 = nn.Linear(10, 1)
...     def forward(self, input):
...         data_input, conditional_input = input
...         # Concatenate data_input and conditional_input along the second dimension
...         discrim_in = torch.cat((data_input, conditional_input), dim=1)
...         # Pass the concatenated input through the dense layers
...         x = F.relu(self.dense1(discrim_in))
...         output = self.dense2(x)
...         return output





Creating an Example WGANModel class

>>> class ExampleWGAN(WGANModel):
...     def get_noise_input_shape(self):
...         return (100,2,)
...     def get_data_input_shapes(self):
...         return [(100,1,)]
...     def get_conditional_input_shapes(self):
...         return [(100,1,)]
...     def create_generator(self):
...         noise_dim = self.get_noise_input_shape()
...         conditional_dim = self.get_conditional_input_shapes()[0]
...         return nn.Sequential(Generator(noise_dim, conditional_dim))
...     def create_discriminator(self):
...         data_input_shape = self.get_data_input_shapes()[0]
...         conditional_input_shape = self.get_conditional_input_shapes()[0]
...         return nn.Sequential(
...             Discriminator(data_input_shape, conditional_input_shape))





Defining an Example GradientPenaltyLayer

>>> wgan = ExampleWGAN()
>>> discriminator = wgan.discriminators[0]
>>> gpl = GradientPenaltyLayer(wgan, discriminator)
>>> inputs = [torch.randn(4, 1)]
>>> conditional_inputs = [torch.randn(4, 1)]
>>> output, penalty = gpl(inputs, conditional_inputs)





References


	
__init__(gan: WGANModel, discriminator: Module, **kwargs) → None[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/gan.py#L1280-L1293]

	Construct a GradientPenaltyLayer.


	Parameters:

	
	gan (WGANModel) – the WGANModel that this layer is part of


	discriminator (nn.Module) – the discriminator to compute the gradient penalty for













	
forward(inputs: list | Tensor, conditional_inputs: Tensor) → list[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/gan.py#L1295-L1344]

	Compute the output of the gradient penalty layer.


	Parameters:

	
	inputs (list of Tensor) – the inputs to the discriminator.


	conditional_inputs (Tensor) – the conditional inputs to the discriminator.






	Returns:

	output – the output from the discriminator, followed by the gradient penalty.



	Return type:

	list [Tensor, Tensor]














	
class MolGANConvolutionLayer(units: int, nodes: int, activation=<built-in method tanh of type object>, dropout_rate: float = 0.0, edges: int = 5, name: str = '', prev_shape: int = 0, device: ~torch.device = device(type='cpu'))[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L3336-L3479]

	Graph convolution layer used in MolGAN model.
MolGAN is a WGAN type model for generation of small molecules.
Not used directly, higher level layers like MolGANMultiConvolutionLayer use it.
This layer performs basic convolution on one-hot encoded matrices containing
atom and bond information. This layer also accepts three inputs for the case
when convolution is performed more than once and results of previous convolution
need to used. It was done in such a way to avoid creating another layer that
accepts three inputs rather than two. The last input layer is so-called
hidden_layer and it hold results of the convolution while first two are unchanged
input tensors.

Examples

See: MolGANMultiConvolutionLayer for using in layers.

>>> import torch
>>> import torch.nn as nn
>>> import torch.nn.functional as F
>>> vertices = 9
>>> nodes = 5
>>> edges = 5
>>> units = 128





>>> layer1 = MolGANConvolutionLayer(units=units, edges=edges, nodes=nodes, name='layer1')
>>> adjacency_tensor = torch.randn((1, vertices, vertices, edges))
>>> node_tensor = torch.randn((1, vertices, nodes))
>>> output = layer1([adjacency_tensor, node_tensor])





References



[1]
Nicola De Cao et al. “MolGAN: An implicit generative model
for small molecular graphs”, https://arxiv.org/abs/1805.11973




	
__init__(units: int, nodes: int, activation=<built-in method tanh of type object>, dropout_rate: float = 0.0, edges: int = 5, name: str = '', prev_shape: int = 0, device: ~torch.device = device(type='cpu'))[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L3372-L3421]

	Initialize this layer.


	Parameters:

	
	units (int) – Dimesion of dense layers used for convolution


	nodes (int) – Number of features in node tensor


	activation (function, optional (default=Tanh)) – activation function used across model, default is Tanh


	dropout_rate (float, optional (default=0.0)) – Dropout rate used by dropout layer


	edges (int, optional (default=5)) – How many dense layers to use in convolution.
Typically equal to number of bond types used in the model.


	name (string, optional (default="")) – Name of the layer


	prev_shape (int, optional (default=0)) – Shape of the previous layer, used when more than two inputs are passed













	
forward(inputs: List) → Tuple[Tensor, Tensor, Tensor][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L3436-L3479]

	Invoke this layer


	Parameters:

	inputs (list) – List of two input matrices, adjacency tensor and node features tensors
in one-hot encoding format.



	Returns:

	First and second are original input tensors
Third is the result of convolution



	Return type:

	tuple(torch.Tensor,torch.Tensor,torch.Tensor)














	
class MolGANAggregationLayer(units: int = 128, activation=<built-in method tanh of type object>, dropout_rate: float = 0.0, name: str = '', prev_shape: int = 0, device: ~torch.device = device(type='cpu'))[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L3482-L3584]

	Graph Aggregation layer used in MolGAN model.
MolGAN is a WGAN type model for generation of small molecules.
Performs aggregation on tensor resulting from convolution layers.
Given its simple nature it might be removed in future and moved to
MolGANEncoderLayer.

Examples

>>> import torch
>>> import torch.nn as nn
>>> import torch.nn.functional as F
>>> vertices = 9
>>> nodes = 5
>>> edges = 5
>>> units = 128





>>> layer_1 = MolGANConvolutionLayer(units=units,nodes=nodes,edges=edges, name='layer1')
>>> layer_2 = MolGANAggregationLayer(units=128, name='layer2')
>>> adjacency_tensor = torch.randn((1, vertices, vertices, edges))
>>> node_tensor = torch.randn((1, vertices, nodes))
>>> hidden_1 = layer_1([adjacency_tensor, node_tensor])
>>> output = layer_2(hidden_1[2])





References



[1]
Nicola De Cao et al. “MolGAN: An implicit generative model
for small molecular graphs”, https://arxiv.org/abs/1805.11973




	
__init__(units: int = 128, activation=<built-in method tanh of type object>, dropout_rate: float = 0.0, name: str = '', prev_shape: int = 0, device: ~torch.device = device(type='cpu'))[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L3514-L3551]

	Initialize the layer


	Parameters:

	
	units (int, optional (default=128)) – Dimesion of dense layers used for aggregation


	activation (function, optional (default=Tanh)) – activation function used across model, default is Tanh


	dropout_rate (float, optional (default=0.0)) – Used by dropout layer


	name (string, optional (default="")) – Name of the layer


	prev_shape (int, optional (default=0)) – Shape of the input tensor













	
forward(inputs: Tensor) → Tensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L3564-L3584]

	Invoke this layer


	Parameters:

	inputs (List) – Single tensor resulting from graph convolution layer



	Returns:

	aggregation tensor – Result of aggregation function on input convolution tensor.



	Return type:

	torch.Tensor














	
class MolGANMultiConvolutionLayer(units: ~typing.Tuple = (128, 64), nodes: int = 5, activation=<built-in method tanh of type object>, dropout_rate: float = 0.0, edges: int = 5, name: str = '', device: ~torch.device = device(type='cpu'), **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L3587-L3716]

	Multiple pass convolution layer used in MolGAN model.
MolGAN is a WGAN type model for generation of small molecules.
It takes outputs of previous convolution layer and uses
them as inputs for the next one.
It simplifies the overall framework, but might be moved to
MolGANEncoderLayer in the future in order to reduce number of layers.

Example

>>> import torch
>>> import torch.nn as nn
>>> import torch.nn.functional as F
>>> vertices = 9
>>> nodes = 5
>>> edges = 5
>>> units = (128,64)





>>> layer_1 = MolGANMultiConvolutionLayer(units=units, nodes=nodes, edges=edges, name='layer1')
>>> adjacency_tensor = torch.randn((1, vertices, vertices, edges))
>>> node_tensor = torch.randn((1, vertices, nodes))
>>> output = layer_1([adjacency_tensor, node_tensor])





References



[1]
Nicola De Cao et al. “MolGAN: An implicit generative model
for small molecular graphs”, https://arxiv.org/abs/1805.11973




	
__init__(units: ~typing.Tuple = (128, 64), nodes: int = 5, activation=<built-in method tanh of type object>, dropout_rate: float = 0.0, edges: int = 5, name: str = '', device: ~torch.device = device(type='cpu'), **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L3617-L3675]

	Initialize the layer


	Parameters:

	
	units (Tuple, optional (default=(128,64)), min_length=2) – ist of dimensions used by consecutive convolution layers.
The more values the more convolution layers invoked.


	nodes (int, optional (default=5)) – Number of features in node tensor


	activation (function, optional (default=Tanh)) – activation function used across model, default is Tanh


	dropout_rate (float, optional (default=0.0)) – Used by dropout layer


	edges (int, optional (default=5)) – Controls how many dense layers use for single convolution unit.
Typically matches number of bond types used in the molecule.


	name (string, optional (default="")) – Name of the layer













	
forward(inputs: List) → Tensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L3688-L3716]

	Invoke this layer


	Parameters:

	inputs (list) – List of two input matrices, adjacency tensor and node features tensors
in one-hot encoding format.



	Returns:

	convolution tensor – Result of input tensors going through convolution a number of times.



	Return type:

	torch.Tensor














	
class MolGANEncoderLayer(units: ~typing.List = [(128, 64), 128], activation: ~typing.Callable = <built-in method tanh of type object>, dropout_rate: float = 0.0, edges: int = 5, nodes: int = 5, name: str = '', device: ~torch.device = device(type='cpu'), **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L3719-L3848]

	Main learning layer used by MolGAN model.
MolGAN is a WGAN type model for generation of small molecules.
It role is to further simplify model.
This layer can be manually built by stacking graph convolution layers
followed by graph aggregation.

Example

>>> import torch
>>> import torch.nn as nn
>>> import torch.nn.functional as F
>>> vertices = 9
>>> nodes = 5
>>> edges = 5
>>> dropout_rate = 0.0
>>> adjacency_tensor = torch.randn((1, vertices, vertices, edges))
>>> node_tensor = torch.randn((1, vertices, nodes))





>>> graph = MolGANEncoderLayer(units = [(128,64),128], dropout_rate= dropout_rate, edges=edges, nodes=nodes)([adjacency_tensor,node_tensor])
>>> dense = nn.Linear(128,128)(graph)
>>> dense = torch.tanh(dense)
>>> dense = nn.Dropout(dropout_rate)(dense)
>>> dense = nn.Linear(128,64)(dense)
>>> dense = torch.tanh(dense)
>>> dense = nn.Dropout(dropout_rate)(dense)
>>> output = nn.Linear(64,1)(dense)





References



[1]
Nicola De Cao et al. “MolGAN: An implicit generative model
for small molecular graphs”, https://arxiv.org/abs/1805.11973




	
__init__(units: ~typing.List = [(128, 64), 128], activation: ~typing.Callable = <built-in method tanh of type object>, dropout_rate: float = 0.0, edges: int = 5, nodes: int = 5, name: str = '', device: ~torch.device = device(type='cpu'), **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L3754-L3806]

	Initialize the layer


	Parameters:

	
	units (List, optional (default=[(128,64),128])) – List of dimensions used by consecutive convolution layers.
The more values the more convolution layers invoked.


	activation (function, optional (default=Tanh)) – activation function used across model, default is Tanh


	dropout_rate (float, optional (default=0.0)) – Used by dropout layer


	edges (int, optional (default=5)) – Controls how many dense layers use for single convolution unit.
Typically matches number of bond types used in the molecule.


	nodes (int, optional (default=5)) – Number of features in node tensor


	name (string, optional (default="")) – Name of the layer













	
forward(inputs: List) → Tensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L3819-L3848]

	Invoke this layer


	Parameters:

	inputs (list) – List of two input matrices, adjacency tensor and node features tensors
in one-hot encoding format.



	Returns:

	encoder tensor – Tensor that been through number of convolutions followed
by aggregation.



	Return type:

	tf.Tensor














	
class EdgeNetwork(n_pair_features: int = 8, n_hidden: int = 100, init: str = 'xavier_uniform_', **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L4115-L4197]

	The EdgeNetwork module is a PyTorch submodule designed for message passing in graph neural networks.

Examples

>>> pair_features = torch.rand((4, 2), dtype=torch.float32)
>>> atom_features = torch.rand((5, 2), dtype=torch.float32)
>>> atom_to_pair = []
>>> n_atoms = 2
>>> start = 0
>>> C0, C1 = np.meshgrid(np.arange(n_atoms), np.arange(n_atoms))
>>> atom_to_pair.append(np.transpose(np.array([C1.flatten() + start, C0.flatten() + start])))
>>> atom_to_pair = torch.Tensor(atom_to_pair)
>>> atom_to_pair = torch.squeeze(atom_to_pair.to(torch.int64), dim=0)
>>> inputs = [pair_features, atom_features, atom_to_pair]
>>> n_pair_features = 2
>>> n_hidden = 2
>>> init = 'xavier_uniform_'
>>> layer = EdgeNetwork(n_pair_features, n_hidden, init)
>>> result = layer(inputs)
>>> result.shape[1]
2






	
__init__(n_pair_features: int = 8, n_hidden: int = 100, init: str = 'xavier_uniform_', **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L4139-L4165]

	Initalises a EdgeNetwork Layer


	Parameters:

	
	n_pair_features (int, optional) – The length of the pair features vector.


	n_hidden (int, optional) – number of hidden units in the passing phase


	init (str, optional) – Initialization function to be used in the message passing layer.













	
forward(inputs: List[Tensor]) → Tensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L4172-L4197]

	
	Parameters:

	inputs (List[torch.Tensor]) – The length of atom_to_pair should be same as n_pair_features.



	Returns:

	result – Tensor containing the mapping of the edge vector to a d × d matrix, where d denotes the dimension of the internal hidden representation of each node in the graph.



	Return type:

	torch.Tensor














	
class WeaveLayer(n_atom_input_feat: int = 75, n_pair_input_feat: int = 14, n_atom_output_feat: int = 50, n_pair_output_feat: int = 50, n_hidden_AA: int = 50, n_hidden_PA: int = 50, n_hidden_AP: int = 50, n_hidden_PP: int = 50, update_pair: bool = True, init_: str = 'xavier_uniform_', activation: str = 'relu', batch_normalize: bool = True, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L4200-L4538]

	This class implements the core Weave convolution from the Google graph convolution paper [1]_
This is the Torch equivalent of the original implementation using Keras.

This model contains atom features and bond features
separately.Here, bond features are also called pair features.
There are 2 types of transformation, atom->atom, atom->pair, pair->atom, pair->pair that this model implements.

Examples

This layer expects 4 inputs in a list of the form [atom_features,
pair_features, pair_split, atom_to_pair]. We’ll walk through the structure
of these inputs. Let’s start with some basic definitions.

>>> import deepchem as dc
>>> import numpy as np





Suppose you have a batch of molecules

>>> smiles = ["CCC", "C"]





Note that there are 4 atoms in total in this system. This layer expects its input molecules to be batched together.

>>> total_n_atoms = 4





Let’s suppose that we have a featurizer that computes n_atom_feat features per atom.

>>> n_atom_feat = 75





Then conceptually, atom_feat is the array of shape (total_n_atoms,
n_atom_feat) of atomic features. For simplicity, let’s just go with a
random such matrix.

>>> atom_feat = np.random.rand(total_n_atoms, n_atom_feat)





Let’s suppose we have n_pair_feat pairwise features

>>> n_pair_feat = 14





For each molecule, we compute a matrix of shape (n_atoms*n_atoms,n_pair_feat) of pairwise features for each pair of atoms in the molecule.
Let’s construct this conceptually for our example.

>>> pair_feat = [np.random.rand(3*3, n_pair_feat), np.random.rand(1*1,n_pair_feat)]
>>> pair_feat = np.concatenate(pair_feat, axis=0)
>>> pair_feat.shape
(10, 14)





pair_split is an index into pair_feat which tells us which atom each row belongs to. In our case, we hve

>>> pair_split = np.array([0, 0, 0, 1, 1, 1, 2, 2, 2, 3])





That is, the first 9 entries belong to “CCC” and the last entry to “C”. The
final entry atom_to_pair goes in a little more in-depth than pair_split
and tells us the precise pair each pair feature belongs to. In our case

>>> atom_to_pair = np.array([[0, 0],
...                          [0, 1],
...                          [0, 2],
...                          [1, 0],
...                          [1, 1],
...                          [1, 2],
...                          [2, 0],
...                          [2, 1],
...                          [2, 2],
...                          [3, 3]])





Let’s now define the actual layer

>>> layer = WeaveLayer()





And invoke it

>>> [A, P] = layer([atom_feat, pair_feat, pair_split, atom_to_pair])





The weave layer produces new atom/pair features. Let’s check their shapes

>>> A = A.detach().numpy()
>>> A.shape
(4, 50)
>>> P = P.detach().numpy()
>>> P.shape
(10, 50)





The 4 is total_num_atoms and the 10 is the total number of pairs. Where
does 50 come from? It’s from the default arguments n_atom_input_feat and
n_pair_input_feat.

References



[1]
Kearnes, Steven, et al. “Molecular graph convolutions: moving beyond
fingerprints.” Journal of computer-aided molecular design 30.8 (2016):
595-608.




	
__init__(n_atom_input_feat: int = 75, n_pair_input_feat: int = 14, n_atom_output_feat: int = 50, n_pair_output_feat: int = 50, n_hidden_AA: int = 50, n_hidden_PA: int = 50, n_hidden_AP: int = 50, n_hidden_PP: int = 50, update_pair: bool = True, init_: str = 'xavier_uniform_', activation: str = 'relu', batch_normalize: bool = True, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L4294-L4421]

	
	Parameters:

	
	n_atom_input_feat (int, optional (default 75)) – Number of features for each atom in input.


	n_pair_input_feat (int, optional (default 14)) – Number of features for each pair of atoms in input.


	n_atom_output_feat (int, optional (default 50)) – Number of features for each atom in output.


	n_pair_output_feat (int, optional (default 50)) – Number of features for each pair of atoms in output.


	n_hidden_AA (int, optional (default 50)) – Number of units(convolution depths) in corresponding hidden layer


	n_hidden_PA (int, optional (default 50)) – Number of units(convolution depths) in corresponding hidden layer


	n_hidden_AP (int, optional (default 50)) – Number of units(convolution depths) in corresponding hidden layer


	n_hidden_PP (int, optional (default 50)) – Number of units(convolution depths) in corresponding hidden layer


	update_pair (bool, optional (default True)) – Whether to calculate for pair features,
could be turned off for last layer


	init (str, optional (default ‘xavier_uniform_’)) – Weight initialization for filters.


	activation (str, optional (default 'relu')) – Activation function applied


	batch_normalize (bool, optional (default True)) – If this is turned on, apply batch normalization before applying
activation functions on convolutional layers.













	
forward(inputs: List[ndarray]) → List[Tensor][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L4436-L4538]

	Creates weave tensors.


	Parameters:

	inputs (List[Union[np.ndarray, np.ndarray, np.ndarray, np.ndarray]]) – Should contain 4 tensors [atom_features, pair_features, pair_split,
atom_to_pair]



	Returns:

	A: Atom features tensor of shape (total_num_atoms,atom feature size)

P: Pair features tensor of shape (total num of pairs,bond feature size)





	Return type:

	List[Union[torch.Tensor, torch.Tensor]]














	
class WeaveGather(batch_size: int, n_input: int = 128, gaussian_expand: bool = True, compress_post_gaussian_expansion: bool = False, init_: str = 'xavier_uniform_', activation: str = 'tanh', **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L4541-L4757]

	Implements the weave-gathering section of weave convolutions.
This is the Torch equivalent of the original implementation using Keras.

Implements the gathering layer from [1]_. The weave gathering layer gathers
per-atom features to create a molecule-level fingerprint in a weave
convolutional network. This layer can also performs Gaussian histogram
expansion as detailed in [1]_. Note that the gathering function here is
simply addition as in [1]_>

Examples

This layer expects 2 inputs in a list of the form [atom_features,
pair_features]. We’ll walk through the structure
of these inputs. Let’s start with some basic definitions.

>>> import deepchem as dc
>>> import numpy as np





Suppose you have a batch of molecules

>>> smiles = ["CCC", "C"]





Note that there are 4 atoms in total in this system. This layer expects its
input molecules to be batched together.

>>> total_n_atoms = 4





Let’s suppose that we have n_atom_feat features per atom.

>>> n_atom_feat = 75





Then conceptually, atom_feat is the array of shape (total_n_atoms,
n_atom_feat) of atomic features. For simplicity, let’s just go with a
random such matrix.

>>> atom_feat = np.random.rand(total_n_atoms, n_atom_feat)





We then need to provide a mapping of indices to the atoms they belong to. In
ours case this would be

>>> atom_split = np.array([0, 0, 0, 1])





Let’s now define the actual layer

>>> gather = WeaveGather(batch_size=2, n_input=n_atom_feat)
>>> output_molecules = gather([atom_feat, atom_split])
>>> len(output_molecules)
2





References



[1]
Kearnes, Steven, et al. “Molecular graph convolutions: moving beyond
fingerprints.” Journal of computer-aided molecular design 30.8 (2016):
595-608.




	
__init__(batch_size: int, n_input: int = 128, gaussian_expand: bool = True, compress_post_gaussian_expansion: bool = False, init_: str = 'xavier_uniform_', activation: str = 'tanh', **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L4598-L4642]

	
	Parameters:

	
	batch_size (int) – number of molecules in a batch


	n_input (int, optional (default 128)) – number of features for each input molecule


	gaussian_expand (boolean, optional (default True)) – Whether to expand each dimension of atomic features by gaussian histogram


	compress_post_gaussian_expansion (bool, optional (default False)) – If True, compress the results of the Gaussian expansion back to the
original dimensions of the input by using a linear layer with specified
activation function. Note that this compression was not in the original
paper, but was present in the original DeepChem implementation so is
left present for backwards compatibility.


	init (str, optional (default ‘xavier_uniform_’)) – Weight initialization for filters if compress_post_gaussian_expansion
is True.


	activation (str, optional (default 'tanh')) – Activation function applied for filters if
compress_post_gaussian_expansion is True.













	
forward(inputs: List[ndarray]) → Tensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L4656-L4696]

	Creates weave tensors.


	Parameters:

	inputs (List[Union[np.ndarray,np.ndarray]]) – Should contain 2 tensors [atom_features, atom_split]



	Returns:

	output_molecules – Each entry in this list is of shape (self.n_inputs,)



	Return type:

	torch.Tensor










	
gaussian_histogram(x: Tensor) → Tensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L4698-L4757]

	Expands input into a set of gaussian histogram bins.


	Parameters:

	x (torch.Tensor) – Of shape (N, n_feat)





Examples

This method uses 11 bins spanning portions of a Gaussian with zero mean
and unit standard deviation.

>>> gaussian_memberships = [(-1.645, 0.283), (-1.080, 0.170),
...                         (-0.739, 0.134), (-0.468, 0.118),
...                         (-0.228, 0.114), (0., 0.114),
...                         (0.228, 0.114), (0.468, 0.118),
...                         (0.739, 0.134), (1.080, 0.170),
...                         (1.645, 0.283)]





We construct a Gaussian at gaussian_memberships[i][0] with standard
deviation gaussian_memberships[i][1]. Each feature in x is assigned
the probability of falling in each Gaussian, and probabilities are
normalized across the 11 different Gaussians.


	Returns:

	outputs – Of shape (N, 11*n_feat)



	Return type:

	torch.Tensor














	
class MXMNetGlobalMessagePassing(dim: int, activation_fn: Callable | str = 'silu')[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L4827-L5011]

	This class implements the Global Message Passing Layer from the Molecular Mechanics-Driven Graph Neural Network
with Multiplex Graph for Molecular Structures(MXMNet) paper [1]_.

This layer consists of two message passing steps and an update step between them.


	Let:
	
	x_i : The node to be updated


	h_i : The hidden state of x_i


	x_j : The neighbour node connected to x_i by edge e_ij


	h_j : The hidden state of x_j


	W : The edge weights


	m_ij : The message between x_i and x_j


	h_j (self_loop) : The set of hidden states of atom features


	mlp : MultilayerPerceptron


	res : ResidualBlock








In each message passing step


m_ij = mlp1([h_i || h_j || e_ij])*(e_ij W)





To handle self loops


m_ij = m_ij + h_j(self_loop)











In each update step


hm_j = res1(sum(m_ij))
h_j_new = mlp2(hm_j) + h_j
h_j_new = res2(h_j_new)
h_j_new = res3(h_j_new)








Message passing and message aggregation(sum) is handled by propagate().

References



[1]
Molecular Mechanics-Driven Graph Neural Network with Multiplex Graph for Molecular Structures. https://arxiv.org/pdf/2011.07457.pdf



Examples

The provided example demonstrates how to use the GlobalMessagePassing layer by creating an instance, passing input tensors (node_features, edge_attributes, edge_indices) through it, and checking the shape of the output.

Initializes variables and creates a configuration dictionary with specific values.

>>> dim = 1
>>> node_features = torch.tensor([[0.8343], [1.2713], [1.2713], [1.2713], [1.2713]])
>>> edge_attributes = torch.tensor([[1.0004], [1.0004], [1.0005], [1.0004], [1.0004],[-0.2644], [-0.2644], [-0.2644], [1.0004],[-0.2644], [-0.2644], [-0.2644], [1.0005],[-0.2644], [-0.2644], [-0.2644], [1.0004],[-0.2644], [-0.2644], [-0.2644]])
>>> edge_indices = torch.tensor([[0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4],[1, 2, 3, 4, 0, 2, 3, 4, 0, 1, 3, 4, 0, 1, 2, 4, 0, 1, 2, 3]])
>>> out = MXMNetGlobalMessagePassing(dim)
>>> output = out(node_features, edge_attributes, edge_indices)
>>> output.shape
torch.Size([5, 1])






	
__init__(dim: int, activation_fn: Callable | str = 'silu')[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L4890-L4934]

	Initializes the MXMNETGlobalMessagePassing layer.


	Parameters:

	dim (int) – The dimension of the input and output features.










	
forward(node_features: Tensor, edge_attributes: Tensor, edge_indices: Tensor) → Tensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L4936-L4982]

	Performs the forward pass of the GlobalMessagePassing layer.


	Parameters:

	
	node_features (torch.Tensor) – The input node features tensor of shape (num_nodes, feature_dim).


	edge_attributes (torch.Tensor) – The input edge attribute tensor of shape (num_edges, attribute_dim).


	edge_indices (torch.Tensor) – The input edge index tensor of shape (2, num_edges).






	Returns:

	The updated node features tensor after message passing of shape (num_nodes, feature_dim).



	Return type:

	torch.Tensor










	
message(x_i: Tensor, x_j: Tensor, edge_attr: Tensor) → Tensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L4984-L5011]

	Constructs messages to be passed along the edges in the graph.


	Parameters:

	
	x_i (torch.Tensor) – The source node features tensor of shape (num_edges+num_nodes, feature_dim).


	x_j (torch.Tensor) – The target node features tensor of shape (num_edges+num_nodes, feature_dim).


	edge_attributes (torch.Tensor) – The edge attribute tensor of shape (num_edges, attribute_dim).






	Returns:

	The constructed messages tensor.



	Return type:

	torch.Tensor














	
class MXMNetBesselBasisLayer(num_radial: int, cutoff: float = 5.0, envelope_exponent: int = 5)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L5017-L5082]

	This layer implements a basis layer for the MXMNet model using Bessel functions.
The basis layer is used to model radial symmetry in molecular systems.

The output of the layer is given by:
output = envelope(dist / cutoff) * (freq * dist / cutoff).sin()

Examples

>>> radial_layer = MXMNetBesselBasisLayer(num_radial=2, cutoff=2.0, envelope_exponent=2)
>>> distances = torch.tensor([0.5, 1.0, 2.0, 3.0])
>>> output = radial_layer(distances)
>>> output.shape
torch.Size([4, 2])






	
__init__(num_radial: int, cutoff: float = 5.0, envelope_exponent: int = 5)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L5033-L5053]

	Initialize the MXMNet Bessel Basis Layer.


	Parameters:

	
	num_radial (int) – The number of radial basis functions to use.


	cutoff (float, optional (default 5.0)) – The radial cutoff distance used to scale the distances.


	envelope_exponent (int, optional (default 5)) – The exponent of the envelope function.













	
reset_parameters()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L5055-L5065]

	Reset and initialize the learnable parameters of the MXMNet Bessel Basis Layer.

The ‘freq’ tensor, representing the frequencies of the Bessel functions, is set up with initial values proportional to π (PI) and becomes a learnable parameter.

The ‘freq’ tensor will be updated during the training process to optimize the performance of the MXMNet model for the specific task it is being trained on.






	
forward(dist: Tensor) → Tensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L5067-L5082]

	Compute the output of the MXMNet Bessel Basis Layer.


	Parameters:

	dist (torch.Tensor) – The input tensor representing the pairwise distances between atoms.



	Returns:

	output – The output tensor representing the radial basis functions applied to the input distances.



	Return type:

	torch.Tensor














	
class DTNN(n_tasks: int, n_embedding: int = 30, n_hidden: int = 100, n_distance: int = 100, distance_min: float = -1, distance_max: float = 18, output_activation: bool = True, mode: str = 'regression', dropout: float = 0.0, n_steps: int = 2)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/dtnn.py#L13-L150]

	Deep Tensor Neural Networks

DTNN is based on the many-body Hamiltonian concept, which is a fundamental principle in quantum mechanics.
The DTNN recieves a molecule’s distance matrix and membership of its atom from its Coulomb Matrix representation.
Then, it iteratively refines the representation of each atom by considering its interactions with neighboring atoms.
Finally, it predicts the energy of the molecule by summing up the energies of the individual atoms.

In this class, we establish a sequential model for the Deep Tensor Neural Network (DTNN) [1]_.

Examples

>>> import os
>>> import torch
>>> from deepchem.models.torch_models import DTNN
>>> from deepchem.data import SDFLoader
>>> from deepchem.feat import CoulombMatrix
>>> from deepchem.utils import batch_coulomb_matrix_features
>>> # Get Data
>>> model_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
>>> dataset_file = os.path.join(model_dir, 'tests/assets/qm9_mini.sdf')
>>> TASKS = ["alpha", "homo"]
>>> loader = SDFLoader(tasks=TASKS, featurizer=CoulombMatrix(29), sanitize=True)
>>> data = loader.create_dataset(dataset_file, shard_size=100)
>>> inputs = batch_coulomb_matrix_features(data.X)
>>> atom_number, distance, atom_membership, distance_membership_i, distance_membership_j = inputs
>>> inputs = [torch.tensor(atom_number).to(torch.int64),
...           torch.tensor(distance).to(torch.float32),
...           torch.tensor(atom_membership).to(torch.int64),
...           torch.tensor(distance_membership_i).to(torch.int64),
...           torch.tensor(distance_membership_j).to(torch.int64)]
>>> n_tasks = data.y.shape[0]
>>> model = DTNN(n_tasks)
>>> pred = model(inputs)





References



[1]
Schütt, Kristof T., et al. “Quantum-chemical insights from deep
tensor neural networks.” Nature communications 8.1 (2017): 1-8.




	
__init__(n_tasks: int, n_embedding: int = 30, n_hidden: int = 100, n_distance: int = 100, distance_min: float = -1, distance_max: float = 18, output_activation: bool = True, mode: str = 'regression', dropout: float = 0.0, n_steps: int = 2)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/dtnn.py#L55-L122]

	
	Parameters:

	
	n_tasks (int) – Number of tasks


	n_embedding (int (default 30)) – Number of features per atom.


	n_hidden (int (default 100)) – Number of features for each molecule after DTNNStep


	n_distance (int (default 100)) – granularity of distance matrix
step size will be (distance_max-distance_min)/n_distance


	distance_min (float (default -1)) – minimum distance of atom pairs (in Angstrom)


	distance_max (float (default 18)) – maximum distance of atom pairs (in Angstrom)


	output_activation (bool (default True)) – determines whether an activation function should be apply  to its output.


	mode (str (default "regression")) – Only “regression” is currently supported.


	dropout (float (default 0.0)) – the dropout probablity to use.


	n_steps (int (default 2)) – Number of DTNNStep Layers to use.













	
forward(inputs: List[Tensor])[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/dtnn.py#L124-L150]

	
	Parameters:

	inputs (List) – A list of tensors containing atom_number, distance,
atom_membership, distance_membership_i, and distance_membership_j.



	Returns:

	output – Predictions of the Molecular Energy.



	Return type:

	torch.Tensor














	
class VariationalRandomizer(embedding_dimension: int, annealing_start_step: int, annealing_final_step: int, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L5085-L5216]

	Add random noise to the embedding and include a corresponding loss.

This adds random noise to the encoder, and also adds a constraint term to
the loss that forces the embedding vector to have a unit Gaussian distribution.
We can then pick random vectors from a Gaussian distribution, and the output
sequences should follow the same distribution as the training data.

We can use this layer with an AutoEncoder, which makes it a Variational
AutoEncoder. The constraint term in the loss is initially set to 0, so the
optimizer just tries to minimize the reconstruction loss. Once it has made
reasonable progress toward that, the constraint term can be gradually turned
back on. The range of steps over which this happens is configured by modifying
the annealing_start_step and annealing final_step parameter.

Examples

>>> from deepchem.models.torch_models.layers import VariationalRandomizer
>>> import torch
>>> embedding_dimension = 512
>>> batch_size = 100
>>> annealing_start_step = 1000
>>> annealing_final_step = 2000
>>> embedding_shape = (batch_size, embedding_dimension)
>>> embeddings = torch.rand(embedding_shape)
>>> global_step = torch.tensor([100])
>>> layer = VariationalRandomizer(embedding_dimension, annealing_start_step, annealing_final_step)
>>> output = layer([embeddings, global_step])
>>> output.shape
torch.Size([100, 512])





References



[1]
Samuel R. Bowman et al., “Generating Sentences from a Continuous Space”




	
__init__(embedding_dimension: int, annealing_start_step: int, annealing_final_step: int, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L5122-L5150]

	Initialize the VariationalRandomizer layer.


	Parameters:

	
	embedding_dimension (int) – The dimension of the embedding.


	annealing_start_step (int) – the step (that is, batch) at which to begin turning on the constraint
term for KL cost annealing.


	annealing_final_step (int) – the step (that is, batch) at which to finish turning on the constraint
term for KL cost annealing.













	
forward(inputs: List[Tensor], training=True)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L5169-L5205]

	Returns the Variationally Randomized Embedding.


	Parameters:

	
	inputs (List[torch.Tensor]) – A list of two tensors, the first of which is the input to the layer
and the second of which is the global step.


	training (bool, optional (default True)) – Whether to use the layer in training mode or inference mode.






	Returns:

	embedding – The embedding tensor.



	Return type:

	torch.Tensor










	
add_loss(loss)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L5207-L5216]

	Add a loss term to the layer.


	Parameters:

	loss (torch.Tensor) – The loss tensor to add to the layer.














	
class EncoderRNN(input_size: int, hidden_size: int, n_layers: int, dropout_p: float = 0.1, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L5219-L5303]

	Encoder Layer for SeqToSeq Model.

It takes input sequences and converts them into a fixed-size context vector
called the “embedding”. This vector contains all relevant information from
the input sequence. This context vector is then used by the decoder to
generate the output sequence and can also be used as a representation of the
input sequence for other Models.

Examples

>>> from deepchem.models.torch_models.layers import EncoderRNN
>>> import torch
>>> embedding_dimensions = 7
>>> num_input_token = 4
>>> n_layers = 9
>>> input = torch.tensor([[1, 0, 2, 3, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]])
>>> layer = EncoderRNN(num_input_token, embedding_dimensions, n_layers)
>>> emb, hidden = layer(input)
>>> emb.shape
torch.Size([3, 5, 7])





References



[1]
Sutskever et al., “Sequence to Sequence Learning with Neural Networks”




	
__init__(input_size: int, hidden_size: int, n_layers: int, dropout_p: float = 0.1, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L5247-L5268]

	Initialize the EncoderRNN layer.


	Parameters:

	
	input_size (int) – The number of expected features.


	hidden_size (int) – The number of features in the hidden state.


	dropout_p (float (default 0.1)) – The dropout probability to use during training.













	
forward(input: Tensor)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L5285-L5303]

	Returns Embeddings according to provided sequences.


	Parameters:

	input (torch.Tensor) – Batch of input sequences.



	Returns:

	
	output (torch.Tensor) – Batch of Embeddings.


	hidden (torch.Tensor) – Batch of hidden states.



















	
class DecoderRNN(hidden_size: int, output_size: int, n_layers: int, max_length: int, batch_size: int, step_activation: str = 'relu', **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L5306-L5435]

	Decoder Layer for SeqToSeq Model.

The decoder transforms the embedding vector into the output sequence.
It is trained to predict the next token in the sequence given the previous
tokens in the sequence. It uses the context vector from the encoder to
help generate the correct token in the sequence.

Examples

>>> from deepchem.models.torch_models.layers import DecoderRNN
>>> import torch
>>> embedding_dimensions = 512
>>> num_output_tokens = 7
>>> max_length = 10
>>> batch_size = 100
>>> n_layers = 2
>>> layer = DecoderRNN(embedding_dimensions, num_output_tokens, n_layers, max_length, batch_size)
>>> embeddings = torch.randn(batch_size, embedding_dimensions)
>>> output, hidden = layer([embeddings, None])
>>> output.shape
torch.Size([100, 10, 7])





References



[1]
Sutskever et al., “Sequence to Sequence Learning with Neural Networks”




	
__init__(hidden_size: int, output_size: int, n_layers: int, max_length: int, batch_size: int, step_activation: str = 'relu', **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L5335-L5367]

	Initialize the DecoderRNN layer.


	Parameters:

	
	hidden_size (int) – Number of features in the hidden state.


	output_size (int) – Number of expected features.


	max_length (int) – Maximum length of the sequence.


	batch_size (int) – Batch size of the input.


	step_activation (str (default "relu")) – Activation function to use after every step.













	
forward(inputs: List[Tensor])[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L5388-L5428]

	
	Parameters:

	inputs (List[torch.Tensor]) – A list of tensor containg encoder_hidden and target_tensor.



	Returns:

	
	decoder_outputs (torch.Tensor) – Predicted output sequences.


	decoder_hidden (torch.Tensor) – Hidden state of the decoder.



















	
class SeqToSeq(n_input_tokens: int, n_output_tokens: int, max_output_length: int, encoder_layers: int = 4, decoder_layers: int = 4, batch_size: int = 100, embedding_dimension: int = 512, dropout: float = 0.0, variational: bool = False, annealing_start_step: int = 5000, annealing_final_step: int = 10000)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/seqtoseq.py#L14-L192]

	Implements sequence to sequence translation models.

The model is based on the description in Sutskever et al., “Sequence to
Sequence Learning with Neural Networks” (https://arxiv.org/abs/1409.3215),
although this implementation uses GRUs instead of LSTMs. The goal is to
take sequences of tokens as input, and translate each one into a different
output sequence. The input and output sequences can both be of variable
length, and an output sequence need not have the same length as the input
sequence it was generated from. For example, these models were originally
developed for use in natural language processing. In that context, the
input might be a sequence of English words, and the output might be a
sequence of French words. The goal would be to train the model to translate
sentences from English to French.

The model consists of two parts called the “encoder” and “decoder”. Each one
consists of a stack of recurrent layers. The job of the encoder is to
transform the input sequence into a single, fixed length vector called the
“embedding”. That vector contains all relevant information from the input
sequence. The decoder then transforms the embedding vector into the output
sequence.

These models can be used for various purposes. First and most obviously,
they can be used for sequence to sequence translation. In any case where you
have sequences of tokens, and you want to translate each one into a different
sequence, a SeqToSeq model can be trained to perform the translation.

Another possible use case is transforming variable length sequences into
fixed length vectors. Many types of models require their inputs to have a
fixed shape, which makes it difficult to use them with variable sized inputs
(for example, when the input is a molecule, and different molecules have
different numbers of atoms). In that case, you can train a SeqToSeq model as
an autoencoder, so that it tries to make the output sequence identical to the
input one. That forces the embedding vector to contain all information from
the original sequence. You can then use the encoder for transforming
sequences into fixed length embedding vectors, suitable to use as inputs to
other types of models.

Another use case is to train the decoder for use as a generative model. Here
again you begin by training the SeqToSeq model as an autoencoder. Once
training is complete, you can supply arbitrary embedding vectors, and
transform each one into an output sequence. When used in this way, you
typically train it as a variational autoencoder. This adds random noise to
the encoder, and also adds a constraint term to the loss that forces the
embedding vector to have a unit Gaussian distribution. You can then pick
random vectors from a Gaussian distribution, and the output sequences should
follow the same distribution as the training data.

When training as a variational autoencoder, it is best to use KL cost
annealing, as described in https://arxiv.org/abs/1511.06349. The constraint
term in the loss is initially set to 0, so the optimizer just tries to
minimize the reconstruction loss. Once it has made reasonable progress
toward that, the constraint term can be gradually turned back on. The range
of steps over which this happens is configurable.

In this class, we establish a sequential model for the Sequence to Sequence (SeqToSeq) [1]_.

Examples

>>> import torch
>>> from deepchem.models.torch_models.seqtoseq import SeqToSeq
>>> from deepchem.utils.batch_utils import create_input_array
>>> # Dataset of SMILES strings for testing SeqToSeq models.
>>> train_smiles = [
...     'Cc1cccc(N2CCN(C(=O)C34CC5CC(CC(C5)C3)C4)CC2)c1C',
...     'Cn1ccnc1SCC(=O)Nc1ccc(Oc2ccccc2)cc1',
...     'COc1cc2c(cc1NC(=O)CN1C(=O)NC3(CCc4ccccc43)C1=O)oc1ccccc12',
...     'CCCc1cc(=O)nc(SCC(=O)N(CC(C)C)C2CCS(=O)(=O)C2)[nH]1',
... ]
>>> tokens = set()
>>> for s in train_smiles:
...     tokens = tokens.union(set(c for c in s))
>>> token_list = sorted(list(tokens))
>>> batch_size = len(train_smiles)
>>> MAX_LENGTH = max(len(s) for s in train_smiles)
>>> token_list = token_list + [" "]
>>> input_dict = dict((x, i) for i, x in enumerate(token_list))
>>> n_tokens = len(token_list)
>>> embedding_dimension = 16
>>> model = SeqToSeq(n_tokens, n_tokens, MAX_LENGTH, batch_size=batch_size,
...                  embedding_dimension=embedding_dimension)
>>> inputs = create_input_array(train_smiles, MAX_LENGTH, False, batch_size,
...                             input_dict, " ")
>>> output, embeddings = model([torch.tensor(inputs), torch.tensor([1])])
>>> output.shape
torch.Size([4, 57, 19])
>>> embeddings.shape
torch.Size([4, 16])





References
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__init__(n_input_tokens: int, n_output_tokens: int, max_output_length: int, encoder_layers: int = 4, decoder_layers: int = 4, batch_size: int = 100, embedding_dimension: int = 512, dropout: float = 0.0, variational: bool = False, annealing_start_step: int = 5000, annealing_final_step: int = 10000)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/seqtoseq.py#L109-L161]

	Initialize SeqToSeq model.


	Parameters:

	
	n_input_tokens (int) – Number of input tokens.


	n_output_tokens (int) – Number of output tokens.


	max_output_length (int) – Maximum length of output sequence.


	encoder_layers (int (default 4)) – Number of recurrent layers in the encoder


	decoder_layers (int (default 4)) – Number of recurrent layers in the decoder


	embedding_dimension (int (default 512)) – Width of the embedding vector. This also is the width of all recurrent
layers.


	dropout (float (default 0.0)) – Dropout probability to use during training.


	variational (bool (default False)) – If True, train the model as a variational autoencoder. This adds random
noise to the encoder, and also constrains the embedding to follow a unit
Gaussian distribution.


	annealing_start_step (int (default 5000)) – the step (that is, batch) at which to begin turning on the constraint
term for KL cost annealing.


	annealing_final_step (int (default 10000)) – the tep (that is, batch) at which to finish turning on the constraint
term for KL cost annealing.













	
forward(inputs: List)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/seqtoseq.py#L163-L192]

	Generates Embeddings using Encoder then passes it to Decoder to
predict output sequences.


	Parameters:

	inputs (List) – List of two tensors.
First tensor is batch of input sequence.
Second tensor is the current global_step.



	Returns:

	
	output (torch.Tensor) – Predicted output sequence.


	_embedding (torch.Tensor) – Embeddings generated by the Encoder.



















	
class FerminetElectronFeature(n_one: List[int], n_two: List[int], no_of_atoms: int, batch_size: int, total_electron: int, spin: List[int])[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L5438-L5590]

	A Pytorch Module implementing the ferminet’s electron features interaction layer _[1]. This is a helper class for the Ferminet model.

The layer consists of 2 types of linear layers - v for the one elctron features and w for the two electron features. The number and dimensions
of each layer depends on the number of atoms and electrons in the molecule system.

References



[1]
Spencer, James S., et al. Better, Faster Fermionic Neural Networks. arXiv:2011.07125, arXiv, 13 Nov. 2020. arXiv.org, http://arxiv.org/abs/2011.07125.



Examples

>>> import deepchem as dc
>>> electron_layer = dc.models.torch_models.layers.FerminetElectronFeature([32,32,32],[16,16,16], 4, 8, 10, [5,5])
>>> one_electron_test = torch.randn(8, 10, 4*4)
>>> two_electron_test = torch.randn(8, 10, 10, 4)
>>> one, two = electron_layer.forward(one_electron_test, two_electron_test)
>>> one.size()
torch.Size([8, 10, 32])
>>> two.size()
torch.Size([8, 10, 10, 16])






	
__init__(n_one: List[int], n_two: List[int], no_of_atoms: int, batch_size: int, total_electron: int, spin: List[int])[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L5462-L5535]

	
	Parameters:

	
	n_one (List[int]) – List of integer values containing the dimensions of each n_one layer’s output


	n_two (List[int]) – List of integer values containing the dimensions of each n_one layer’s output


	no_of_atoms (int:) – Value containing the number of atoms in the molecule system


	batch_size (int) – Value containing the number of batches for the input provided


	total_electron (int) – Value containing the total number of electrons in the molecule system


	spin (List[int]) – List data structure in the format of [number of up-spin electrons, number of down-spin electrons]


	v (torch.nn.ModuleList) – torch ModuleList containing the linear layer with the n_one layer’s dimension size.


	w (torch.nn.ModuleList) – torch ModuleList containing the linear layer with the n_two layer’s dimension size.


	layer_size (int) – Value containing the number of n_one and n_two layers













	
forward(one_electron: Tensor, two_electron: Tensor)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L5537-L5590]

	
	Parameters:

	
	one_electron (torch.Tensor) – The one electron feature which has the shape (batch_size, number of electrons, number of atoms * 4). Here the last dimension contains
the electron’s distance from each of the atom as a vector concatenated with norm of that vector.


	two_electron (torch.Tensor) – The two electron feature which has the shape (batch_size, number of electrons, number of electron , 4). Here the last dimension contains
the electron’s distance from the other electrons as a vector concatenated with norm of that vector.






	Returns:

	
	one_electron (torch.Tensor) – The one electron feature after passing through the layer which has the shape (batch_size, number of electrons, n_one shape).


	two_electron (torch.Tensor) – The two electron feature after passing through the layer which has the shape (batch_size, number of electrons, number of electron , n_two shape).



















	
class FerminetEnvelope(n_one: List[int], n_two: List[int], total_electron: int, batch_size: int, spin: List[int], no_of_atoms: int, determinant: int)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L5593-L5739]

	A Pytorch Module implementing the ferminet’s envlope layer _[1], which is used to calculate the spin up and spin down orbital values.
This is a helper class for the Ferminet model.
The layer consists of 4 types of parameter lists - envelope_w, envelope_g, sigma and pi, which helps to calculate the orbital vlaues.

References



[1]
Spencer, James S., et al. Better, Faster Fermionic Neural Networks. arXiv:2011.07125, arXiv, 13 Nov. 2020. arXiv.org, http://arxiv.org/abs/2011.07125.



Examples

>>> import deepchem as dc
>>> import torch
>>> envelope_layer = dc.models.torch_models.layers.FerminetEnvelope([32, 32, 32], [16, 16, 16], 10, 8, [5, 5], 5, 16)
>>> one_electron = torch.randn(8, 10, 32)
>>> one_electron_permuted = torch.randn(8, 10, 5, 3)
>>> psi, psi_up, psi_down = envelope_layer.forward(one_electron, one_electron_permuted)
>>> psi.size()
torch.Size([8])
>>> psi_up.size()
torch.Size([8, 16, 5, 5])
>>> psi_down.size()
torch.Size([8, 16, 5, 5])






	
__init__(n_one: List[int], n_two: List[int], total_electron: int, batch_size: int, spin: List[int], no_of_atoms: int, determinant: int)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L5619-L5679]

	
	Parameters:

	
	n_one (List[int]) – List of integer values containing the dimensions of each n_one layer’s output


	n_two (List[int]) – List of integer values containing the dimensions of each n_one layer’s output


	total_electron (int) – Value containing the total number of electrons in the molecule system


	batch_size (int) – Value containing the number of batches for the input provided


	spin (List[int]) – List data structure in the format of [number of up-spin electrons, number of down-spin electrons]


	no_of_atoms (int) – Value containing the number of atoms in the molecule system


	determinant (int) – The number of determinants to be incorporated in the post-HF solution.


	envelope_w (torch.nn.ParameterList) – torch ParameterList containing the torch Tensor with n_one layer’s dimension size.


	envelope_g (torch.nn.ParameterList) – torch ParameterList containing the torch Tensor with the unit dimension size, which acts as bias.


	sigma (torch.nn.ParameterList) – torch ParameterList containing the torch Tensor with the unit dimension size.


	pi (torch.nn.ParameterList) – torch ParameterList containing the linear layer with the n_two layer’s dimension size.


	layer_size (int) – Value containing the number of n_one and n_two layers













	
forward(one_electron: Tensor, one_electron_vector_permuted: Tensor)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L5681-L5739]

	
	Parameters:

	
	one_electron (torch.Tensor) – Torch tensor which is output from FerminElectronFeature layer in the shape of (batch_size, number of elctrons, n_one layer size).


	one_electron_vector_permuted (torch.Tensor) – Torch tensor which is shape permuted vector of the original one_electron vector tensor. shape of the tensor should be (batch_size, number of atoms, number of electrons, 3).






	Returns:

	psi_up – Torch tensor with a scalar value containing the sampled wavefunction value for each batch.



	Return type:

	torch.Tensor














	
class MXMNetLocalMessagePassing(dim: int, activation_fn: Callable | str = 'silu')[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L5742-L5994]

	The MXMNetLocalMessagePassing class defines a local message passing layer used in the MXMNet model [1]_.
This layer integrates cross-layer mappings inside the local message passing, allowing for the transformation
of input tensors representing pairwise distances and angles between atoms in a molecular system.
The layer aggregates information using message passing and updates atom representations accordingly.
The 3-step message passing scheme is proposed in the paper [1]_.


	Step 1 contains Message Passing 1 that captures the two-hop angles and related pairwise distances to update edge-level embeddings {mji}.


	Step 2 contains Message Passing 2 that captures the one-hop angles and related pairwise distances to further update {mji}.


	Step 3 finally aggregates {mji} to update the node-level embedding hi.




These steps in the t-th iteration can be formulated as follows:


	Let:
	
	mlp : MultilayerPerceptron


	res : ResidualBlock


	h : node_features


	m : message with radial basis function


	idx_kj: Tensor containing indices for the k and j atoms


	x_i : The node to be updated


	h_i : The hidden state of x_i


	x_j : The neighbour node connected to x_i by edge e_ij


	h_j : The hidden state of x_j


	rbf : Input tensor representing radial basis functions


	sbf : Input tensor representing the spherical basis functions


	idx_jj : Tensor containing indices for the j and j' where j' is other neighbours of i








Step 1: Message Passing 1


m = [h[i] || h[j] || rbf]
m_kj = mlp_kj(m[idx_kj]) * (rbf*W) * mlp_sbf1(sbf1)
m_ji = mlp_ji_1(m) + reduce_sum(m_kj)








Step 2: Message Passing 2


m_ji = mlp_jj(m_ji[idx_jj]) * (rbf*W) * mlp_sbf2(sbf2)
m_ji = mlp_ji_2(m_ji) + reduce_sum(m_ji)








Step 3: Aggregation and Update


In each aggregation step

m = reduce_sum(m_ji*(rbf*W))





In each update step

hm_i = res1(m)
h_i_new = mlp2(hm_i) + h_i
h_i_new = res2(h_i_new)
h_i_new = res3(h_i_new)








References



[1]
Molecular Mechanics-Driven Graph Neural Network with Multiplex Graph for Molecular Structures. https://arxiv.org/pdf/2011.07457



Examples

>>> dim = 1
>>> h = torch.tensor([[0.8343], [1.2713], [1.2713], [1.2713], [1.2713]])
>>> rbf = torch.tensor([[-0.2628], [-0.2628], [-0.2628], [-0.2628],
...                     [-0.2629], [-0.2629], [-0.2628], [-0.2628]])
>>> sbf1 = torch.tensor([[-0.2767], [-0.2767], [-0.2767], [-0.2767],
...                      [-0.2767], [-0.2767], [-0.2767], [-0.2767],
...                      [-0.2767], [-0.2767], [-0.2767], [-0.2767]])
>>> sbf2 = torch.tensor([[-0.0301], [-0.0301], [-0.1483], [-0.1486], [-0.1484],
...                      [-0.0301], [-0.1483], [-0.0301], [-0.1485], [-0.1483],
...                      [-0.0301], [-0.1486], [-0.1485], [-0.0301], [-0.1486],
...                      [-0.0301], [-0.1484], [-0.1483], [-0.1486], [-0.0301]])
>>> idx_kj = torch.tensor([3, 5, 7, 1, 5, 7, 1, 3, 7, 1, 3, 5])
>>> idx_ji_1 = torch.tensor([0, 0, 0, 2, 2, 2, 4, 4, 4, 6, 6, 6])
>>> idx_jj = torch.tensor([0, 1, 3, 5, 7, 2, 1, 3, 5, 7, 4, 1, 3, 5, 7, 6, 1, 3, 5, 7])
>>> idx_ji_2 = torch.tensor([0, 1, 1, 1, 1, 2, 3, 3, 3, 3, 4, 5, 5, 5, 5, 6, 7, 7, 7, 7])
>>> edge_index = torch.tensor([[0, 1, 0, 2, 0, 3, 0, 4],
...                           [1, 0, 2, 0, 3, 0, 4, 0]])
>>> out = MXMNetLocalMessagePassing(dim, activation_fn='silu')
>>> output = out(h,
...             rbf,
...             sbf1,
...             sbf2,
...             idx_kj,
...             idx_ji_1,
...             idx_jj,
...             idx_ji_2,
...             edge_index)
>>> output[0].shape
torch.Size([5, 1])
>>> output[1].shape
torch.Size([5, 1])






	
__init__(dim: int, activation_fn: Callable | str = 'silu')[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L5840-L5908]

	Initializes the MXMNetLocalMessagePassing layer.


	Parameters:

	
	dim (int) – The dimension of the input and output tensors for the local message passing layer.


	activation_fn (Union[Callable, str], optional (default: 'silu')) – The activation function to be used in the multilayer perceptrons (MLPs) within the layer.













	
forward(node_features: Tensor, rbf: Tensor, sbf1: Tensor, sbf2: Tensor, idx_kj: Tensor, idx_ji_1: Tensor, idx_jj: Tensor, idx_ji_2: Tensor, edge_index: Tensor) → Tuple[Tensor, Tensor][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L5910-L5994]

	The forward method performs the computation for the MXMNetLocalMessagePassing Layer.
This method processes the input tensors representing atom features, radial basis functions (RBF), and spherical basis functions (SBF) using message passing over the molecular graph. The message passing updates the atom representations, and the resulting tensor represents the updated atom feature after local message passing.


	Parameters:

	
	node_features (torch.Tensor) – Input tensor representing atom features.


	rbf (torch.Tensor) – Input tensor representing radial basis functions.


	sbf1 (torch.Tensor) – Input tensor representing the first set of spherical basis functions.


	sbf2 (torch.Tensor) – Input tensor representing the second set of spherical basis functions.


	idx_kj (torch.Tensor) – Tensor containing indices for the k and j atoms involved in each interaction.


	idx_ji_1 (torch.Tensor) – Tensor containing indices for the j and i atoms involved in the first message passing step.


	idx_jj (torch.Tensor) – Tensor containing indices for the j and j’ atoms involved in the second message passing step.


	idx_ji_2 (torch.Tensor) – Tensor containing indices for the j and i atoms involved in the second message passing step.


	edge_index (torch.Tensor) – Tensor containing the edge indices of the molecular graph, with shape (2, M), where M is the number of edges.






	Returns:

	
	node_features (torch.Tensor) – Updated atom representations after local message passing.


	output (torch.Tensor) – Output tensor representing a fixed-size representation, with shape (N, 1).



















	
class MXMNetSphericalBasisLayer(num_spherical: int, num_radial: int, cutoff: float = 5.0, envelope_exponent: int = 5)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L5997-L6095]

	It takes pairwise distances and angles between atoms as input and combines radial basis functions with spherical harmonic
functions to generate a fixed-size representation that captures both radial and orientation information. This type of
representation is commonly used in molecular modeling and simulations to capture the behavior of atoms and molecules in
chemical systems.

Inside the initialization, Bessel basis functions and real spherical harmonic functions are generated.
The Bessel basis functions capture the radial information, and the spherical harmonic functions capture the orientation information.
These functions are generated based on the provided num_spherical and num_radial parameters.

Examples

>>> dist = torch.tensor([0.5, 1.0, 2.0, 3.0])
>>> angle = torch.tensor([0.1, 0.2, 0.3, 0.4])
>>> idx_kj = torch.tensor([0, 1, 2, 3])
>>> spherical_layer = MXMNetSphericalBasisLayer(envelope_exponent=2, num_spherical=2, num_radial=2, cutoff=2.0)
>>> output = spherical_layer(dist, angle, idx_kj)
>>> output.shape
torch.Size([4, 4])






	
__init__(num_spherical: int, num_radial: int, cutoff: float = 5.0, envelope_exponent: int = 5)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L6018-L6062]

	Initialize the MXMNetSphericalBasisLayer.


	Parameters:

	
	num_spherical (int) – The number of spherical harmonic functions to use. These functions capture orientation information related to atom positions.


	num_radial (int) – The number of radial basis functions to use. These functions capture information about pairwise distances between atoms.


	cutoff (float, optional (default 5.0)) – The cutoff distance for the radial basis functions. It specifies the distance beyond which the interactions are ignored.


	envelope_exponent (int, optional (default 5)) – The exponent for the envelope function. It controls the degree of damping for the radial basis functions.













	
forward(dist: Tensor, angle: Tensor, idx_kj: Tensor) → Tensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L6064-L6095]

	Forward pass of the MXMNetSphericalBasisLayer.


	Parameters:

	
	dist (torch.Tensor) – Input tensor representing pairwise distances between atoms.


	angle (torch.Tensor) – Input tensor representing pairwise angles between atoms.


	idx_kj (torch.Tensor) – Tensor containing indices for the k and j atoms.






	Returns:

	output – The output tensor containing the fixed-size representation.



	Return type:

	torch.Tensor














	
class HighwayLayer(d_input: int, activation_fn: Callable | str = 'relu')[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L6098-L6166]

	Highway layer from “Training Very Deep Networks” [1]

y = H(x) * T(x) + x * C(x), where

H(x): 1-layer neural network with non-linear activation
T(x): 1-layer neural network with sigmoid activation
C(X): 1 - T(X); As per the original paper

The output will be of the same dimension as the input

References
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Examples

>>> x = torch.randn(16, 20)
>>> highway_layer = HighwayLayer(d_input=x.shape[1])
>>> y = highway_layer(x)
>>> x.shape
torch.Size([16, 20])
>>> y.shape
torch.Size([16, 20])






	
__init__(d_input: int, activation_fn: Callable | str = 'relu')[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L6125-L6145]

	Initializes the HighwayLayer.


	Parameters:

	
	d_input (int) – the dimension of the input layer


	activation_fn (str) – the activation function to use for H(x)













	
forward(x: Tensor) → Tensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/layers.py#L6147-L6166]

	Forward pass of the HighwayLayer.


	Parameters:

	x (torch.Tensor) – Input tensor of dimension (,input_dim).



	Returns:

	output – Output tensor of dimension (,input_dim)



	Return type:

	torch.Tensor














Grover Layers

The following layers are used for implementing GROVER model as described in the paper <Self-Supervised  Graph Transformer on Large-Scale Molecular Data <https://drug.ai.tencent.com/publications/GROVER.pdf>_


	
class GroverMPNEncoder(atom_messages: bool, init_message_dim: int, hidden_size: int, depth: int, undirected: bool, attach_feats: bool, attached_feat_fdim: int = 0, bias: bool = True, dropout: float = 0.2, activation: str = 'relu', input_layer: str = 'fc', dynamic_depth: str = 'none')[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/grover_layers.py#L348-L481]

	Performs Message Passing to generate encodings for the molecule.


	Parameters:

	
	atom_messages (bool) – True if encoding atom-messages else False.


	init_message_dim (int) – Dimension of embedding message.


	attach_feats (bool) – Set to True if additional features are passed along with node/edge embeddings.


	attached_feat_fdim (int) – Dimension of additional features when attach_feats is True


	undirected (bool) – If set to True, the graph is considered as an undirected graph.


	depth (int) – number of hops in a message passing iteration


	dynamic_depth (str, default: none) – If set to uniform for randomly sampling dynamic depth from an uniform distribution else if set to truncnorm, dynamic depth is sampled from a truncated normal distribution.


	input_layer (str) – If set to fc, adds an initial feed-forward layer. If set to none, does not add an initial feed forward layer.









	
__init__(atom_messages: bool, init_message_dim: int, hidden_size: int, depth: int, undirected: bool, attach_feats: bool, attached_feat_fdim: int = 0, bias: bool = True, dropout: float = 0.2, activation: str = 'relu', input_layer: str = 'fc', dynamic_depth: str = 'none')[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/grover_layers.py#L373-L421]

	Initialize internal Module state, shared by both nn.Module and ScriptModule.






	
forward(init_messages, init_attached_features, a2nei, a2attached, b2a=None, b2revb=None, adjs=None) → FloatTensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/grover_layers.py#L423-L481]

	Define the computation performed at every call.

Should be overridden by all subclasses.


Note

Although the recipe for forward pass needs to be defined within
this function, one should call the Module instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.












	
class GroverAttentionHead(hidden_size: int = 128, bias: bool = True, depth: int = 1, dropout: float = 0.0, undirected: bool = False, atom_messages: bool = False)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/grover_layers.py#L484-L582]

	Generates attention head using GroverMPNEncoder for generating query, key and value


	Parameters:

	
	hidden_size (int) – Dimension of hidden layer


	undirected (bool) – If set to True, the graph is considered as an undirected graph.


	depth (int) – number of hops in a message passing iteration


	atom_messages (bool) – True if encoding atom-messages else False.









	
__init__(hidden_size: int = 128, bias: bool = True, depth: int = 1, dropout: float = 0.0, undirected: bool = False, atom_messages: bool = False)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/grover_layers.py#L499-L545]

	Initialize internal Module state, shared by both nn.Module and ScriptModule.






	
forward(f_atoms, f_bonds, a2b, a2a, b2a, b2revb)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/grover_layers.py#L547-L582]

	Define the computation performed at every call.

Should be overridden by all subclasses.


Note

Although the recipe for forward pass needs to be defined within
this function, one should call the Module instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.












	
class GroverMTBlock(atom_messages: bool, input_dim: int, num_heads: int, depth: int, undirected: bool = False, hidden_size: int = 128, dropout: float = 0.0, bias: bool = True, res_connection: bool = True, activation: str = 'relu')[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/grover_layers.py#L585-L689]

	Message passing combined with transformer architecture

The layer combines message passing performed using GroverMPNEncoder and uses it
to generate query, key and value for multi-headed Attention block.


	Parameters:

	
	atom_messages (bool) – True if encoding atom-messages else False.


	input_dim (int) – Dimension of input features


	num_heads (int) – Number of attention heads


	depth (int) – Number of hops in a message passing iteration


	undirected (bool) – If set to True, the graph is considered as an undirected graph.









	
__init__(atom_messages: bool, input_dim: int, num_heads: int, depth: int, undirected: bool = False, hidden_size: int = 128, dropout: float = 0.0, bias: bool = True, res_connection: bool = True, activation: str = 'relu')[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/grover_layers.py#L605-L646]

	Initialize internal Module state, shared by both nn.Module and ScriptModule.






	
forward(batch)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/grover_layers.py#L648-L689]

	Define the computation performed at every call.

Should be overridden by all subclasses.


Note

Although the recipe for forward pass needs to be defined within
this function, one should call the Module instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.












	
class GroverTransEncoder(node_fdim: int, edge_fdim: int, depth: int = 3, undirected: bool = False, num_mt_block: int = 2, num_heads: int = 2, hidden_size: int = 64, dropout: float = 0.2, res_connection: bool = True, bias: bool = True, activation: str = 'relu')[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/grover_layers.py#L692-L940]

	GroverTransEncoder for encoding a molecular graph

The GroverTransEncoder layer is used for encoding a molecular graph.
The layer returns 4 outputs. They are atom messages aggregated from atom hidden states,
atom messages aggregated from bond hidden states, bond messages aggregated from atom hidden
states, bond messages aggregated from bond hidden states.


	Parameters:

	
	hidden_size (int) – the hidden size of the model.


	edge_fdim (int) – the dimension of additional feature for edge/bond.


	node_fdim (int) – the dimension of additional feature for node/atom.


	depth (int) – Dynamic message passing depth for use in MPNEncoder


	undirected (bool) – The message passing is undirected or not


	dropout (float) – the dropout ratio


	activation (str) – the activation function


	num_mt_block (int) – the number of mt block.


	num_head (int) – the number of attention AttentionHead.


	bias (bool) – enable bias term in all linear layers.


	res_connection (bool) – enables the skip-connection in MTBlock.









	
__init__(node_fdim: int, edge_fdim: int, depth: int = 3, undirected: bool = False, num_mt_block: int = 2, num_heads: int = 2, hidden_size: int = 64, dropout: float = 0.2, res_connection: bool = True, bias: bool = True, activation: str = 'relu')[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/grover_layers.py#L726-L823]

	Initialize internal Module state, shared by both nn.Module and ScriptModule.






	
forward(batch)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/grover_layers.py#L888-L940]

	Forward layer


	Parameters:

	batch (Tuple) – A tuple of tensors representing grover attributes



	Returns:

	embeddings – Embeddings for atom generated from hidden state of nodes and bonds and embeddings of bond generated from hidden states of nodes and bond.



	Return type:

	Tuple[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor, torch.Tensor]]














	
class GroverEmbedding(node_fdim, edge_fdim, hidden_size=128, depth=1, undirected=False, dropout=0.2, activation='relu', num_mt_block=1, num_heads=4, bias=False, res_connection=False)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/grover_layers.py#L16-L86]

	GroverEmbedding layer.

This layer is a simple wrapper over GroverTransEncoder layer for retrieving the embeddings from the GroverTransEncoder layer.


	Parameters:

	
	edge_fdim (int) – the dimension of additional feature for edge/bond.


	node_fdim (int) – the dimension of additional feature for node/atom.


	depth (int) – Dynamic message passing depth for use in MPNEncoder


	undirected (bool) – The message passing is undirected or not


	num_mt_block (int) – the number of message passing blocks.


	num_head (int) – the number of attention heads.









	
__init__(node_fdim, edge_fdim, hidden_size=128, depth=1, undirected=False, dropout=0.2, activation='relu', num_mt_block=1, num_heads=4, bias=False, res_connection=False)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/grover_layers.py#L37-L60]

	Initialize internal Module state, shared by both nn.Module and ScriptModule.






	
forward(graph_batch: List[Tensor])[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/grover_layers.py#L62-L86]

	Forward function


	Parameters:

	graph_batch (List[torch.Tensor]) – A list containing f_atoms, f_bonds, a2b, b2a, b2revb, a_scope, b_scope, a2a



	Returns:

	embedding –    Returns a dictionary of embeddings. The embeddings are:
- atom_from_atom: node messages aggregated from node hidden states
- bond_from_atom: bond messages aggregated from bond hidden states
- atom_from_bond: node message aggregated from bond hidden states
- bond_from_bond: bond messages aggregated from bond hidden states.



	Return type:

	Dict[str, torch.Tensor]














	
class GroverEmbedding(node_fdim, edge_fdim, hidden_size=128, depth=1, undirected=False, dropout=0.2, activation='relu', num_mt_block=1, num_heads=4, bias=False, res_connection=False)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/grover_layers.py#L16-L86]

	GroverEmbedding layer.

This layer is a simple wrapper over GroverTransEncoder layer for retrieving the embeddings from the GroverTransEncoder layer.


	Parameters:

	
	edge_fdim (int) – the dimension of additional feature for edge/bond.


	node_fdim (int) – the dimension of additional feature for node/atom.


	depth (int) – Dynamic message passing depth for use in MPNEncoder


	undirected (bool) – The message passing is undirected or not


	num_mt_block (int) – the number of message passing blocks.


	num_head (int) – the number of attention heads.









	
__init__(node_fdim, edge_fdim, hidden_size=128, depth=1, undirected=False, dropout=0.2, activation='relu', num_mt_block=1, num_heads=4, bias=False, res_connection=False)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/grover_layers.py#L37-L60]

	Initialize internal Module state, shared by both nn.Module and ScriptModule.






	
forward(graph_batch: List[Tensor])[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/grover_layers.py#L62-L86]

	Forward function


	Parameters:

	graph_batch (List[torch.Tensor]) – A list containing f_atoms, f_bonds, a2b, b2a, b2revb, a_scope, b_scope, a2a



	Returns:

	embedding –    Returns a dictionary of embeddings. The embeddings are:
- atom_from_atom: node messages aggregated from node hidden states
- bond_from_atom: bond messages aggregated from bond hidden states
- atom_from_bond: node message aggregated from bond hidden states
- bond_from_bond: bond messages aggregated from bond hidden states.



	Return type:

	Dict[str, torch.Tensor]














	
class GroverAtomVocabPredictor(vocab_size: int, in_features: int = 128)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/grover_layers.py#L148-L199]

	Grover Atom Vocabulary Prediction Module.

The GroverAtomVocabPredictor module is used for predicting atom-vocabulary
for the self-supervision task in Grover architecture. In the self-supervision tasks,
one task is to learn contextual-information of nodes (atoms).
Contextual information are encoded as strings, like C_N-DOUBLE1_O-SINGLE1.
The module accepts an atom encoding and learns to predict the contextual information
of the atom as a multi-class classification problem.

Example

>>> from deepchem.models.torch_models.grover_layers import GroverAtomVocabPredictor
>>> num_atoms, in_features, vocab_size = 30, 16, 10
>>> layer = GroverAtomVocabPredictor(vocab_size, in_features)
>>> embedding = torch.randn(num_atoms, in_features)
>>> result = layer(embedding)
>>> result.shape
torch.Size([30, 10])






Reference


	
__init__(vocab_size: int, in_features: int = 128)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/grover_layers.py#L173-L185]

	Initializing Grover Atom Vocabulary Predictor


	Parameters:

	
	vocab_size (int) – size of vocabulary (vocabulary here is the total number of different possible contexts)


	in_features (int) – feature size of atom embeddings.













	
forward(embeddings)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/grover_layers.py#L187-L199]

	
	Parameters:

	embeddings (torch.Tensor) – the atom embeddings of shape (vocab_size, in_features)



	Returns:

	logits – the prediction for each atom of shape (num_bond, vocab_size)



	Return type:

	torch.Tensor















	
class GroverBondVocabPredictor(vocab_size: int, in_features: int = 128)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/grover_layers.py#L89-L145]

	Layer for learning contextual information for bonds.

The layer is used in Grover architecture to learn contextual information of a bond by predicting
the context of a bond from the bond embedding in a multi-class classification setting.
The contextual information of a bond are encoded as strings (ex: ‘(DOUBLE-STEREONONE-NONE)_C-(SINGLE-STEREONONE-NONE)2’).

Example

>>> from deepchem.models.torch_models.grover_layers import GroverBondVocabPredictor
>>> num_bonds = 20
>>> in_features, vocab_size = 16, 10
>>> layer = GroverBondVocabPredictor(vocab_size, in_features)
>>> embedding = torch.randn(num_bonds * 2, in_features)
>>> result = layer(embedding)
>>> result.shape
torch.Size([20, 10])






Reference


	
__init__(vocab_size: int, in_features: int = 128)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/grover_layers.py#L112-L125]

	Initializes GroverBondVocabPredictor


	Parameters:

	
	vocab_size (int) – Size of vocabulary, used for number of classes in prediction.


	in_features (int, default: 128) – Input feature size of bond embeddings.













	
forward(embeddings)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/grover_layers.py#L127-L145]

	
	Parameters:

	embeddings (torch.Tensor) – bond embeddings of shape (num_bond, in_features)



	Returns:

	logits – the prediction for each bond, (num_bond, vocab_size)



	Return type:

	torch.Tensor















	
class GroverFunctionalGroupPredictor(functional_group_size: int, in_features=128)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/grover_layers.py#L202-L289]

	The functional group prediction task for self-supervised learning.

Molecules have functional groups in them. This module is used for predicting
the functional group and the problem is formulated as an multi-label classification problem.


	Parameters:

	
	functional_group_size (int,) – size of functional group


	in_features (int,) – hidden_layer size, default 128








Example

>>> from deepchem.models.torch_models.grover_layers import GroverFunctionalGroupPredictor
>>> in_features, functional_group_size = 8, 20
>>> num_atoms, num_bonds = 10, 20
>>> predictor = GroverFunctionalGroupPredictor(functional_group_size=20, in_features=8)
>>> atom_scope, bond_scope = [(0, 3), (3, 3), (6, 4)], [(0, 5), (5, 4), (9, 11)]
>>> embeddings = {}
>>> embeddings['bond_from_atom'] = torch.randn(num_bonds, in_features)
>>> embeddings['bond_from_bond'] = torch.randn(num_bonds, in_features)
>>> embeddings['atom_from_atom'] = torch.randn(num_atoms, in_features)
>>> embeddings['atom_from_bond'] = torch.randn(num_atoms, in_features)
>>> result = predictor(embeddings, atom_scope, bond_scope)






Reference


	
__init__(functional_group_size: int, in_features=128)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/grover_layers.py#L235-L246]

	Initialize internal Module state, shared by both nn.Module and ScriptModule.






	
forward(embeddings: Dict, atom_scope: List, bond_scope: List)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/grover_layers.py#L248-L289]

	The forward function for the GroverFunctionalGroupPredictor (semantic motif prediction) layer.
It takes atom/bond embeddings produced from node and bond hidden states from GroverEmbedding module
and the atom, bond scopes and produces prediction logits for different each embedding.
The scopes are used to differentiate atoms/bonds belonging to a molecule in a batched molecular graph.


	Parameters:

	
	embedding (Dict) – The input embeddings organized as an dictionary. The input embeddings are output of GroverEmbedding layer.


	atom_scope (List) – The scope for atoms.


	bond_scope (List) – The scope for bonds






	Returns:

	
	preds (Dict) – A dictionary containing the predicted logits of functional group from four different types of input embeddings. The key and their corresponding predictions


	are described below. –


	atom_from_atom - prediction logits from atom embeddings generated via node hidden states


	atom_from_bond - prediction logits from atom embeddings generated via bond hidden states


	bond_from_atom - prediction logits from bond embeddings generated via node hidden states


	bond_from_bond - prediction logits from bond embeddings generated via bond hidden states
























	
class GroverPretrain(embedding: Module, atom_vocab_task_atom: Module, atom_vocab_task_bond: Module, bond_vocab_task_atom: Module, bond_vocab_task_bond: Module, functional_group_predictor: Module)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/grover.py#L20-L123]

	The Grover Pretrain module.

The GroverPretrain module is used for training an embedding based on the Grover Pretraining task.
Grover pretraining is a self-supervised task where an embedding is trained to learn the contextual
information of atoms and bonds along with graph-level properties, which are functional groups
in case of molecular graphs.


	Parameters:

	
	embedding (nn.Module) – An embedding layer to generate embedding from input molecular graph


	atom_vocab_task_atom (nn.Module) – A layer used for predicting atom vocabulary from atom features generated via atom hidden states.


	atom_vocab_task_bond (nn.Module) – A layer used for predicting atom vocabulary from atom features generated via bond hidden states.


	bond_vocab_task_atom (nn.Module) – A layer used for predicting bond vocabulary from bond features generated via atom hidden states.


	bond_vocab_task_bond (nn.Module) – A layer used for predicting bond vocabulary from bond features generated via bond hidden states.






	Returns:

	
	prediction_logits (Tuple) – A tuple of prediction logits containing prediction logits of atom vocabulary task from atom hidden state,


	prediction logits for atom vocabulary task from bond hidden states, prediction logits for bond vocabulary task


	from atom hidden states, prediction logits for bond vocabulary task from bond hidden states, functional


	group prediction logits from atom embedding generated from atom and bond hidden states, functional group


	prediction logits from bond embedding generated from atom and bond hidden states.










Example

>>> import deepchem as dc
>>> from deepchem.utils.grover import BatchGroverGraph
>>> from deepchem.models.torch_models.grover import GroverPretrain
>>> from deepchem.models.torch_models.grover_layers import GroverEmbedding, GroverAtomVocabPredictor, GroverBondVocabPredictor, GroverFunctionalGroupPredictor
>>> smiles = ['CC', 'CCC', 'CC(=O)C']





>>> fg = dc.feat.CircularFingerprint()
>>> featurizer = dc.feat.GroverFeaturizer(features_generator=fg)





>>> graphs = featurizer.featurize(smiles)
>>> batched_graph = BatchGroverGraph(graphs)
>>> grover_graph_attributes = batched_graph.get_components()
>>> f_atoms, f_bonds, a2b, b2a, b2revb, a2a, a_scope, b_scope, _ = grover_graph_attributes
>>> components = {}
>>> components['embedding'] = GroverEmbedding(node_fdim=f_atoms.shape[1], edge_fdim=f_bonds.shape[1])
>>> components['atom_vocab_task_atom'] = GroverAtomVocabPredictor(vocab_size=10, in_features=128)
>>> components['atom_vocab_task_bond'] = GroverAtomVocabPredictor(vocab_size=10, in_features=128)
>>> components['bond_vocab_task_atom'] = GroverBondVocabPredictor(vocab_size=10, in_features=128)
>>> components['bond_vocab_task_bond'] = GroverBondVocabPredictor(vocab_size=10, in_features=128)
>>> components['functional_group_predictor'] = GroverFunctionalGroupPredictor(10)
>>> model = GroverPretrain(**components)





>>> inputs = f_atoms, f_bonds, a2b, b2a, b2revb, a_scope, b_scope, a2a
>>> output = model(inputs)






Reference


	
__init__(embedding: Module, atom_vocab_task_atom: Module, atom_vocab_task_bond: Module, bond_vocab_task_atom: Module, bond_vocab_task_bond: Module, functional_group_predictor: Module)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/grover.py#L82-L93]

	Initialize internal Module state, shared by both nn.Module and ScriptModule.






	
forward(graph_batch)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/grover.py#L95-L123]

	Forward function


	Parameters:

	graph_batch (List[torch.Tensor]) – A list containing grover graph attributes















	
class GroverFinetune(embedding: Module, readout: Module, mol_atom_from_atom_ffn: Module, mol_atom_from_bond_ffn: Module, hidden_size: int = 128, mode: str = 'regression', n_tasks: int = 1, n_classes: int | None = None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/grover.py#L126-L258]

	Grover Finetune model.

For a graph level prediction task, the GroverFinetune model uses node/edge embeddings
output by the GroverEmbeddong layer and applies a readout function on it to get
graph embeddings and use additional MLP layers to predict the property of the molecular graph.


	Parameters:

	
	embedding (nn.Module) – An embedding layer to generate embedding from input molecular graph


	readout (nn.Module) – A readout layer to perform readout atom and bond hidden states


	mol_atom_from_atom_ffn (nn.Module) – A feed forward network which learns representation from atom messages generated via atom hidden states of a molecular graph


	mol_atom_from_bond_ffn (nn.Module) – A feed forward network which learns representation from atom messages generated via bond hidden states of a molecular graph


	mode (str) – classification or regression






	Returns:

	prediction_logits – prediction logits



	Return type:

	torch.Tensor





Example

>>> import deepchem as dc
>>> from deepchem.utils.grover import BatchGroverGraph
>>> from deepchem.models.torch_models.grover_layers import GroverEmbedding
>>> from deepchem.models.torch_models.readout import GroverReadout
>>> from deepchem.models.torch_models.grover import GroverFinetune
>>> smiles = ['CC', 'CCC', 'CC(=O)C']
>>> fg = dc.feat.CircularFingerprint()
>>> featurizer = dc.feat.GroverFeaturizer(features_generator=fg)
>>> graphs = featurizer.featurize(smiles)
>>> batched_graph = BatchGroverGraph(graphs)
>>> attributes = batched_graph.get_components()
>>> components = {}
>>> additional_features = batched_graph.additional_features
>>> f_atoms, f_bonds, a2b, b2a, b2revb, a2a, a_scope, b_scope, fg_labels = attributes
>>> inputs = f_atoms, f_bonds, a2b, b2a, b2revb, a_scope, b_scope, a2a
>>> components = {}
>>> components['embedding'] = GroverEmbedding(node_fdim=f_atoms.shape[1], edge_fdim=f_bonds.shape[1])
>>> components['readout'] = GroverReadout(rtype="mean", in_features=128)
>>> components['mol_atom_from_atom_ffn'] = nn.Linear(in_features=additional_features.shape[1]+ 128, out_features=128)
>>> components['mol_atom_from_bond_ffn'] = nn.Linear(in_features=additional_features.shape[1] + 128, out_features=128)
>>> model = GroverFinetune(**components, mode='regression', hidden_size=128)
>>> model.training = False
>>> output = model((inputs, additional_features))






Reference


	
__init__(embedding: Module, readout: Module, mol_atom_from_atom_ffn: Module, mol_atom_from_bond_ffn: Module, hidden_size: int = 128, mode: str = 'regression', n_tasks: int = 1, n_classes: int | None = None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/grover.py#L182-L206]

	Initialize internal Module state, shared by both nn.Module and ScriptModule.






	
forward(inputs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/grover.py#L208-L258]

	
	Parameters:

	inputs (Tuple) – grover batch graph attributes
















Attention Layers


	
class ScaledDotProductAttention[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/attention.py#L10-L58]

	The Scaled Dot Production Attention operation from Attention Is All You Need <https://arxiv.org/abs/1706.03762>_ paper.

Example

>>> from deepchem.models import ScaledDotProductAttention as SDPA
>>> attn = SDPA()
>>> x = torch.ones(1, 5)
>>> # Linear layers for making query, key, value
>>> Q, K, V = nn.Parameter(torch.ones(5)), nn.Parameter(torch.ones(5)), nn.Parameter(torch.ones(5))
>>> query, key, value = Q * x, K * x, V * x
>>> x_out, attn_score = attn(query, key, value)






	
__init__()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/attention.py#L24-L26]

	Initialize internal Module state, shared by both nn.Module and ScriptModule.






	
forward(query: Tensor, key: Tensor, value: Tensor, mask: Tensor | None = None, dropout: Dropout | None = None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/attention.py#L28-L58]

	
	Parameters:

	
	query (torch.Tensor) – Query tensor for attention


	key (torch.Tensor) – Key tensor for attention


	value (torch.Tensor) – Value tensor for attention


	mask (torch.Tensor (optional)) – Mask to apply during attention computation


	dropout (nn.Dropout (optional)) – Dropout layer for attention output

















	
class SelfAttention(in_features, out_features, hidden_size=128)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/attention.py#L61-L109]

	SelfAttention Layer

Given $Xin mathbb{R}^{n   imes in_feature}$, the attention is calculated by: $a=softmax(W_2tanh(W_1X))$, where
$W_1 in mathbb{R}^{hidden         imes in_feature}$, $W_2 in mathbb{R}^{out_feature     imes hidden}$.
The final output is $y=aX$ where $y in mathbb{R}^{n       imes out_feature}$.


	Parameters:

	
	in_features (int) – Dimension of input features


	out_features (int) – Dimension of output features


	hidden_size (int) – Dimension of hidden layer









	
__init__(in_features, out_features, hidden_size=128)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/attention.py#L78-L84]

	Initialize internal Module state, shared by both nn.Module and ScriptModule.






	
forward(X)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/attention.py#L90-L109]

	The forward function.


	Parameters:

	X (torch.Tensor) – input feature of shape $mathbb{R}^{n       imes in_feature}$.



	Returns:

	
	embedding (torch.Tensor) – The final embedding of shape $mathbb{R}^{out_features      imes in_feature}$


	attention-matrix (torch.Tensor) – The attention matrix




















Readout Layers


	
class GroverReadout(rtype: str = 'mean', in_features: int = 128, attn_hidden_size: int = 32, attn_out_size: int = 32)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/readout.py#L11-L88]

	Performs readout on a batch of graph

The readout module is used for performing readouts on batched graphs to
convert node embeddings/edge embeddings into graph embeddings. It is used
in the Grover architecture to generate a graph embedding from node and edge
embeddings. The generate embedding can be used in downstream tasks like graph
classification or graph prediction problems.


	Parameters:

	
	rtype (str) – Readout type, can be ‘mean’ or ‘self-attention’


	in_features (int) – Size fof input features


	attn_hidden_size (int) – If readout type is attention, size of hidden layer in attention network.


	attn_out_size (int) – If readout type is attention, size of attention out layer.








Example

>>> import torch
>>> from deepchem.models.torch_models.readout import GroverReadout
>>> n_nodes, n_features = 6, 32
>>> readout = GroverReadout(rtype="mean")
>>> embedding = torch.ones(n_nodes, n_features)
>>> result = readout(embedding, scope=[(0, 6)])
>>> result.size()
torch.Size([1, 32])






	
__init__(rtype: str = 'mean', in_features: int = 128, attn_hidden_size: int = 32, attn_out_size: int = 32)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/readout.py#L43-L55]

	Initialize internal Module state, shared by both nn.Module and ScriptModule.






	
forward(graph_embeddings: Tensor, scope: List[List]) → Tensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/torch_models/readout.py#L57-L88]

	Given a batch node/edge embedding and a scope list, produce the graph-level embedding by scope.


	Parameters:

	
	embeddings (torch.Tensor) – The embedding matrix, num_nodes x in_features or num_edges x in_features.


	scope (List[List]) – A list, in which the element is a list [start, range]. start is the index,
range is the length of scope. (start + range = end)






	Returns:

	graph_embeddings – A stacked tensor containing graph embeddings of shape len(scope) x in_features if readout type is mean or len(scope) x attn_out_size when readout type is self-attention.



	Return type:

	torch.Tensor
















Jax Layers


	
class Linear(num_output: int, initializer: str = 'linear', use_bias: bool = True, bias_init: float = 0.0, name: str = 'linear')[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/jax_models/layers.py#L11-L103]

	Protein folding specific Linear Module.


	This differs from the standard Haiku Linear in a few ways:
	
	It supports inputs of arbitrary rank


	Initializers are specified by strings








This code is adapted from DeepMind’s AlphaFold code release
(https://github.com/deepmind/alphafold).

Examples

>>> import deepchem as dc
>>> import haiku as hk
>>> import jax
>>> import deepchem.models.jax_models.layers
>>> def forward_model(x):
...   layer = dc.models.jax_models.layers.Linear(2)
...   return layer(x)
>>> f = hk.transform(forward_model)
>>> rng = jax.random.PRNGKey(42)
>>> x = jnp.ones([8, 28 * 28])
>>> params = f.init(rng, x)
>>> output = f.apply(params, rng, x)






	
__init__(num_output: int, initializer: str = 'linear', use_bias: bool = True, bias_init: float = 0.0, name: str = 'linear')[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/models/jax_models/layers.py#L37-L63]

	Constructs Linear Module.


	Parameters:

	
	num_output (int) – number of output channels.


	initializer (str (default 'linear')) – What initializer to use, should be one of {‘linear’, ‘relu’, ‘zeros’}


	use_bias (bool (default True)) – Whether to include trainable bias


	bias_init (float (default 0)) – Value used to initialize bias.


	name (str (default 'linear')) – name of module, used for name scopes.
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Metrics

Metrics are one of the most important parts of machine learning. Unlike
traditional software, in which algorithms either work or don’t work,
machine learning models work in degrees. That is, there’s a continuous
range of “goodness” for a model. “Metrics” are functions which measure
how well a model works. There are many different choices of metrics
depending on the type of model at hand.


Metric Utilities

Metric utility functions allow for some common manipulations such as
switching to/from one-hot representations.


	
to_one_hot(y: ndarray, n_classes: int = 2) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/metrics/metric.py#L371-L401]

	Transforms label vector into one-hot encoding.

Turns y into vector of shape (N, n_classes) with a one-hot
encoding. Assumes that y takes values from 0 to n_classes - 1.


	Parameters:

	
	y (np.ndarray) – A vector of shape (N,) or (N, 1)


	n_classes (int, default 2) – If specified use this as the number of classes. Else will try to
impute it as n_classes = max(y) + 1 for arrays and as
n_classes=2 for the case of scalars. Note this parameter only
has value if mode==”classification”






	Returns:

	A numpy array of shape (N, n_classes).



	Return type:

	np.ndarray










	
from_one_hot(y: ndarray, axis: int = 1) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/metrics/metric.py#L404-L419]

	Transforms label vector from one-hot encoding.


	Parameters:

	
	y (np.ndarray) – A vector of shape (n_samples, num_classes)


	axis (int, optional (default 1)) – The axis with one-hot encodings to reduce on.






	Returns:

	A numpy array of shape (n_samples,)



	Return type:

	np.ndarray











Metric Shape Handling

One of the trickiest parts of handling metrics correctly is making sure the
shapes of input weights, predictions and labels and processed correctly. This
is challenging in particular since DeepChem supports multitask, multiclass
models which means that shapes must be handled with care to prevent errors.
DeepChem maintains the following utility functions which attempt to
facilitate shape handling for you.


	
normalize_weight_shape(w: ndarray | None, n_samples: int, n_tasks: int) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/metrics/metric.py#L41-L101]

	A utility function to correct the shape of the weight array.

This utility function is used to normalize the shapes of a given
weight array.


	Parameters:

	
	w (np.ndarray) – w can be None or a scalar or a np.ndarray of shape
(n_samples,) or of shape (n_samples, n_tasks). If w is a
scalar, it’s assumed to be the same weight for all samples/tasks.


	n_samples (int) – The number of samples in the dataset. If w is not None, we should
have n_samples = w.shape[0] if w is a ndarray


	n_tasks (int) – The number of tasks. If w is 2d ndarray, then we should have
w.shape[1] == n_tasks.








Examples

>>> import numpy as np
>>> w_out = normalize_weight_shape(None, n_samples=10, n_tasks=1)
>>> (w_out == np.ones((10, 1))).all()
True






	Returns:

	w_out – Array of shape (n_samples, n_tasks)



	Return type:

	np.ndarray










	
normalize_labels_shape(y: ndarray, mode: str | None = None, n_tasks: int | None = None, n_classes: int | None = None) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/metrics/metric.py#L104-L179]

	A utility function to correct the shape of the labels.


	Parameters:

	
	y (np.ndarray) – y is an array of shape (N,) or (N, n_tasks) or (N, n_tasks, 1).


	mode (str, default None) – If mode is “classification” or “regression”, attempts to apply
data transformations.


	n_tasks (int, default None) – The number of tasks this class is expected to handle.


	n_classes (int, default None) – If specified use this as the number of classes. Else will try to
impute it as n_classes = max(y) + 1 for arrays and as
n_classes=2 for the case of scalars. Note this parameter only
has value if mode==”classification”






	Returns:

	y_out – If mode==”classification”, y_out is an array of shape (N,
n_tasks, n_classes). If mode==”regression”, y_out is an array
of shape (N, n_tasks).



	Return type:

	np.ndarray










	
normalize_prediction_shape(y: ndarray, mode: str | None = None, n_tasks: int | None = None, n_classes: int | None = None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/metrics/metric.py#L182-L295]

	A utility function to correct the shape of provided predictions.

The metric computation classes expect that inputs for classification
have the uniform shape (N, n_tasks, n_classes) and inputs for
regression have the uniform shape (N, n_tasks). This function
normalizes the provided input array to have the desired shape.

Examples

>>> import numpy as np
>>> y = np.random.rand(10)
>>> y_out = normalize_prediction_shape(y, "regression", n_tasks=1)
>>> y_out.shape
(10, 1)






	Parameters:

	
	y (np.ndarray) – If mode==”classification”, y is an array of shape (N,) or
(N, n_tasks) or (N, n_tasks, n_classes). If
mode==”regression”, y is an array of shape (N,) or (N,
n_tasks)`or `(N, n_tasks, 1).


	mode (str, default None) – If mode is “classification” or “regression”, attempts to apply
data transformations.


	n_tasks (int, default None) – The number of tasks this class is expected to handle.


	n_classes (int, default None) – If specified use this as the number of classes. Else will try to
impute it as n_classes = max(y) + 1 for arrays and as
n_classes=2 for the case of scalars. Note this parameter only
has value if mode==”classification”






	Returns:

	y_out – If mode==”classification”, y_out is an array of shape (N,
n_tasks, n_classes). If mode==”regression”, y_out is an array
of shape (N, n_tasks).



	Return type:

	np.ndarray










	
handle_classification_mode(y: ndarray, classification_handling_mode: str | None, threshold_value: float | None = None) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/metrics/metric.py#L298-L368]

	Handle classification mode.

Transform predictions so that they have the correct classification mode.


	Parameters:

	
	y (np.ndarray) – Must be of shape (N, n_tasks, n_classes)


	classification_handling_mode (str, default None) – DeepChem models by default predict class probabilities for
classification problems. This means that for a given singletask
prediction, after shape normalization, the DeepChem prediction will be a
numpy array of shape (N, n_classes) with class probabilities.
classification_handling_mode is a string that instructs this method
how to handle transforming these probabilities. It can take on the
following values:
- None: default value. Pass in y_pred directy into self.metric.
- “threshold”: Use threshold_predictions to threshold y_pred. Use


threshold_value as the desired threshold.





	”threshold-one-hot”: Use threshold_predictions to threshold y_pred
using threshold_values, then apply to_one_hot to output.







	threshold_value (float, default None) – If set, and classification_handling_mode is “threshold” or
“threshold-one-hot” apply a thresholding operation to values with this
threshold. This option isj only sensible on binary classification tasks.
If float, this will be applied as a binary classification value.






	Returns:

	y_out – If classification_handling_mode is “direct”, then of shape (N, n_tasks, n_classes).
If classification_handling_mode is “threshold”, then of shape (N, n_tasks).
If `classification_handling_mode is “threshold-one-hot”, then of shape `(N, n_tasks, n_classes)”



	Return type:

	np.ndarray











Metric Functions

DeepChem has a variety of different metrics which are useful for measuring model performance. A number (but not all) of these metrics are directly sourced from sklearn.


	
matthews_corrcoef(y_true, y_pred, *, sample_weight=None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/../../../envs/2.8.0/lib/python3.9/site-packages/sklearn/utils/_param_validation.py#L910-L1003]

	Compute the Matthews correlation coefficient (MCC).

The Matthews correlation coefficient is used in machine learning as a
measure of the quality of binary and multiclass classifications. It takes
into account true and false positives and negatives and is generally
regarded as a balanced measure which can be used even if the classes are of
very different sizes. The MCC is in essence a correlation coefficient value
between -1 and +1. A coefficient of +1 represents a perfect prediction, 0
an average random prediction and -1 an inverse prediction.  The statistic
is also known as the phi coefficient. [source: Wikipedia]

Binary and multiclass labels are supported.  Only in the binary case does
this relate to information about true and false positives and negatives.
See references below.

Read more in the User Guide.


	Parameters:

	
	y_true (array-like of shape (n_samples,)) – Ground truth (correct) target values.


	y_pred (array-like of shape (n_samples,)) – Estimated targets as returned by a classifier.


	sample_weight (array-like of shape (n_samples,), default=None) – Sample weights.


New in version 0.18.










	Returns:

	mcc – The Matthews correlation coefficient (+1 represents a perfect
prediction, 0 an average random prediction and -1 and inverse
prediction).



	Return type:

	float





References



[1]
:doi:`Baldi, Brunak, Chauvin, Andersen and Nielsen, (2000). Assessing the
accuracy of prediction algorithms for classification: an overview.
<10.1093/bioinformatics/16.5.412>`



[2]
Wikipedia entry for the Matthews Correlation Coefficient [https://en.wikipedia.org/wiki/Matthews_correlation_coefficient].



[3]
Gorodkin, (2004). Comparing two K-category assignments by a
K-category correlation coefficient [https://www.sciencedirect.com/science/article/pii/S1476927104000799].



[4]
Jurman, Riccadonna, Furlanello, (2012). A Comparison of MCC and CEN
Error Measures in MultiClass Prediction [https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0041882].



Examples

>>> from sklearn.metrics import matthews_corrcoef
>>> y_true = [+1, +1, +1, -1]
>>> y_pred = [+1, -1, +1, +1]
>>> matthews_corrcoef(y_true, y_pred)
-0.33...










	
recall_score(y_true, y_pred, *, labels=None, pos_label=1, average='binary', sample_weight=None, zero_division='warn')[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/../../../envs/2.8.0/lib/python3.9/site-packages/sklearn/utils/_param_validation.py#L2195-L2373]

	Compute the recall.

The recall is the ratio tp / (tp + fn) where tp is the number of
true positives and fn the number of false negatives. The recall is
intuitively the ability of the classifier to find all the positive samples.

The best value is 1 and the worst value is 0.

Support beyond term:binary targets is achieved by treating multiclass
and multilabel data as a collection of binary problems, one for each
label. For the binary case, setting average=’binary’ will return
recall for pos_label. If average is not ‘binary’, pos_label is ignored
and recall for both classes are computed then averaged or both returned (when
average=None). Similarly, for multiclass and multilabel targets,
recall for all labels are either returned or averaged depending on the average
parameter. Use labels specify the set of labels to calculate recall for.

Read more in the User Guide.


	Parameters:

	
	y_true (1d array-like, or label indicator array / sparse matrix) – Ground truth (correct) target values.


	y_pred (1d array-like, or label indicator array / sparse matrix) – Estimated targets as returned by a classifier.


	labels (array-like, default=None) – The set of labels to include when average != ‘binary’, and their
order if average is None. Labels present in the data can be
excluded, for example in multiclass classification to exclude a “negative
class”. Labels not present in the data can be included and will be
“assigned” 0 samples. For multilabel targets, labels are column indices.
By default, all labels in y_true and y_pred are used in sorted order.


Changed in version 0.17: Parameter labels improved for multiclass problem.






	pos_label (int, float, bool or str, default=1) – The class to report if average=’binary’ and the data is binary,
otherwise this parameter is ignored.
For multiclass or multilabel targets, set labels=[pos_label] and
average != ‘binary’ to report metrics for one label only.


	average ({'micro', 'macro', 'samples', 'weighted', 'binary'} or None,             default='binary') – This parameter is required for multiclass/multilabel targets.
If None, the scores for each class are returned. Otherwise, this
determines the type of averaging performed on the data:


	'binary':
	Only report results for the class specified by pos_label.
This is applicable only if targets (y_{true,pred}) are binary.



	'micro':
	Calculate metrics globally by counting the total true positives,
false negatives and false positives.



	'macro':
	Calculate metrics for each label, and find their unweighted
mean.  This does not take label imbalance into account.



	'weighted':
	Calculate metrics for each label, and find their average weighted
by support (the number of true instances for each label). This
alters ‘macro’ to account for label imbalance; it can result in an
F-score that is not between precision and recall. Weighted recall
is equal to accuracy.



	'samples':
	Calculate metrics for each instance, and find their average (only
meaningful for multilabel classification where this differs from
accuracy_score()).








	sample_weight (array-like of shape (n_samples,), default=None) – Sample weights.


	zero_division ({"warn", 0.0, 1.0, np.nan}, default="warn") – Sets the value to return when there is a zero division.

Notes:
- If set to “warn”, this acts like 0, but a warning is also raised.
- If set to np.nan, such values will be excluded from the average.


New in version 1.3: np.nan option was added.










	Returns:

	recall – Recall of the positive class in binary classification or weighted
average of the recall of each class for the multiclass task.



	Return type:

	float (if average is not None) or array of float of shape              (n_unique_labels,)






See also


	precision_recall_fscore_support
	Compute precision, recall, F-measure and support for each class.



	precision_score
	Compute the ratio tp / (tp + fp) where tp is the number of true positives and fp the number of false positives.



	balanced_accuracy_score
	Compute balanced accuracy to deal with imbalanced datasets.



	multilabel_confusion_matrix
	Compute a confusion matrix for each class or sample.



	PrecisionRecallDisplay.from_estimator
	Plot precision-recall curve given an estimator and some data.



	PrecisionRecallDisplay.from_predictions
	Plot precision-recall curve given binary class predictions.







Notes

When true positive + false negative == 0, recall returns 0 and raises
UndefinedMetricWarning. This behavior can be modified with
zero_division.

Examples

>>> import numpy as np
>>> from sklearn.metrics import recall_score
>>> y_true = [0, 1, 2, 0, 1, 2]
>>> y_pred = [0, 2, 1, 0, 0, 1]
>>> recall_score(y_true, y_pred, average='macro')
0.33...
>>> recall_score(y_true, y_pred, average='micro')
0.33...
>>> recall_score(y_true, y_pred, average='weighted')
0.33...
>>> recall_score(y_true, y_pred, average=None)
array([1., 0., 0.])
>>> y_true = [0, 0, 0, 0, 0, 0]
>>> recall_score(y_true, y_pred, average=None)
array([0.5, 0. , 0. ])
>>> recall_score(y_true, y_pred, average=None, zero_division=1)
array([0.5, 1. , 1. ])
>>> recall_score(y_true, y_pred, average=None, zero_division=np.nan)
array([0.5, nan, nan])





>>> # multilabel classification
>>> y_true = [[0, 0, 0], [1, 1, 1], [0, 1, 1]]
>>> y_pred = [[0, 0, 0], [1, 1, 1], [1, 1, 0]]
>>> recall_score(y_true, y_pred, average=None)
array([1. , 1. , 0.5])










	
r2_score(y_true, y_pred, *, sample_weight=None, multioutput='uniform_average', force_finite=True)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/../../../envs/2.8.0/lib/python3.9/site-packages/sklearn/utils/_param_validation.py#L1039-L1207]

	\(R^2\) (coefficient of determination) regression score function.

Best possible score is 1.0 and it can be negative (because the
model can be arbitrarily worse). In the general case when the true y is
non-constant, a constant model that always predicts the average y
disregarding the input features would get a \(R^2\) score of 0.0.

In the particular case when y_true is constant, the \(R^2\) score
is not finite: it is either NaN (perfect predictions) or -Inf
(imperfect predictions). To prevent such non-finite numbers to pollute
higher-level experiments such as a grid search cross-validation, by default
these cases are replaced with 1.0 (perfect predictions) or 0.0 (imperfect
predictions) respectively. You can set force_finite to False to
prevent this fix from happening.

Note: when the prediction residuals have zero mean, the \(R^2\) score
is identical to the
Explained Variance score.

Read more in the User Guide.


	Parameters:

	
	y_true (array-like of shape (n_samples,) or (n_samples, n_outputs)) – Ground truth (correct) target values.


	y_pred (array-like of shape (n_samples,) or (n_samples, n_outputs)) – Estimated target values.


	sample_weight (array-like of shape (n_samples,), default=None) – Sample weights.


	multioutput ({'raw_values', 'uniform_average', 'variance_weighted'},             array-like of shape (n_outputs,) or None, default='uniform_average') – Defines aggregating of multiple output scores.
Array-like value defines weights used to average scores.
Default is “uniform_average”.


	’raw_values’ :
	Returns a full set of scores in case of multioutput input.



	’uniform_average’ :
	Scores of all outputs are averaged with uniform weight.



	’variance_weighted’ :
	Scores of all outputs are averaged, weighted by the variances
of each individual output.






Changed in version 0.19: Default value of multioutput is ‘uniform_average’.






	force_finite (bool, default=True) – Flag indicating if NaN and -Inf scores resulting from constant
data should be replaced with real numbers (1.0 if prediction is
perfect, 0.0 otherwise). Default is True, a convenient setting
for hyperparameters’ search procedures (e.g. grid search
cross-validation).


New in version 1.1.










	Returns:

	z – The \(R^2\) score or ndarray of scores if ‘multioutput’ is
‘raw_values’.



	Return type:

	float or ndarray of floats





Notes

This is not a symmetric function.

Unlike most other scores, \(R^2\) score may be negative (it need not
actually be the square of a quantity R).

This metric is not well-defined for single samples and will return a NaN
value if n_samples is less than two.

References



[1]
Wikipedia entry on the Coefficient of determination [https://en.wikipedia.org/wiki/Coefficient_of_determination]



Examples

>>> from sklearn.metrics import r2_score
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> r2_score(y_true, y_pred)
0.948...
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> r2_score(y_true, y_pred,
...          multioutput='variance_weighted')
0.938...
>>> y_true = [1, 2, 3]
>>> y_pred = [1, 2, 3]
>>> r2_score(y_true, y_pred)
1.0
>>> y_true = [1, 2, 3]
>>> y_pred = [2, 2, 2]
>>> r2_score(y_true, y_pred)
0.0
>>> y_true = [1, 2, 3]
>>> y_pred = [3, 2, 1]
>>> r2_score(y_true, y_pred)
-3.0
>>> y_true = [-2, -2, -2]
>>> y_pred = [-2, -2, -2]
>>> r2_score(y_true, y_pred)
1.0
>>> r2_score(y_true, y_pred, force_finite=False)
nan
>>> y_true = [-2, -2, -2]
>>> y_pred = [-2, -2, -2 + 1e-8]
>>> r2_score(y_true, y_pred)
0.0
>>> r2_score(y_true, y_pred, force_finite=False)
-inf










	
mean_squared_error(y_true, y_pred, *, sample_weight=None, multioutput='uniform_average', squared='deprecated')[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/../../../envs/2.8.0/lib/python3.9/site-packages/sklearn/utils/_param_validation.py#L407-L510]

	Mean squared error regression loss.

Read more in the User Guide.


	Parameters:

	
	y_true (array-like of shape (n_samples,) or (n_samples, n_outputs)) – Ground truth (correct) target values.


	y_pred (array-like of shape (n_samples,) or (n_samples, n_outputs)) – Estimated target values.


	sample_weight (array-like of shape (n_samples,), default=None) – Sample weights.


	multioutput ({'raw_values', 'uniform_average'} or array-like of shape             (n_outputs,), default='uniform_average') – Defines aggregating of multiple output values.
Array-like value defines weights used to average errors.


	’raw_values’ :
	Returns a full set of errors in case of multioutput input.



	’uniform_average’ :
	Errors of all outputs are averaged with uniform weight.








	squared (bool, default=True) – If True returns MSE value, if False returns RMSE value.


Deprecated since version 1.4: squared is deprecated in 1.4 and will be removed in 1.6.
Use root_mean_squared_error()
instead to calculate the root mean squared error.










	Returns:

	loss – A non-negative floating point value (the best value is 0.0), or an
array of floating point values, one for each individual target.



	Return type:

	float or ndarray of floats





Examples

>>> from sklearn.metrics import mean_squared_error
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> mean_squared_error(y_true, y_pred)
0.375
>>> y_true = [[0.5, 1],[-1, 1],[7, -6]]
>>> y_pred = [[0, 2],[-1, 2],[8, -5]]
>>> mean_squared_error(y_true, y_pred)
0.708...
>>> mean_squared_error(y_true, y_pred, multioutput='raw_values')
array([0.41666667, 1.        ])
>>> mean_squared_error(y_true, y_pred, multioutput=[0.3, 0.7])
0.825...










	
mean_absolute_error(y_true, y_pred, *, sample_weight=None, multioutput='uniform_average')[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/../../../envs/2.8.0/lib/python3.9/site-packages/sklearn/utils/_param_validation.py#L143-L219]

	Mean absolute error regression loss.

Read more in the User Guide.


	Parameters:

	
	y_true (array-like of shape (n_samples,) or (n_samples, n_outputs)) – Ground truth (correct) target values.


	y_pred (array-like of shape (n_samples,) or (n_samples, n_outputs)) – Estimated target values.


	sample_weight (array-like of shape (n_samples,), default=None) – Sample weights.


	multioutput ({'raw_values', 'uniform_average'}  or array-like of shape             (n_outputs,), default='uniform_average') – Defines aggregating of multiple output values.
Array-like value defines weights used to average errors.


	’raw_values’ :
	Returns a full set of errors in case of multioutput input.



	’uniform_average’ :
	Errors of all outputs are averaged with uniform weight.












	Returns:

	loss – If multioutput is ‘raw_values’, then mean absolute error is returned
for each output separately.
If multioutput is ‘uniform_average’ or an ndarray of weights, then the
weighted average of all output errors is returned.

MAE output is non-negative floating point. The best value is 0.0.





	Return type:

	float or ndarray of floats





Examples

>>> from sklearn.metrics import mean_absolute_error
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> mean_absolute_error(y_true, y_pred)
0.5
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> mean_absolute_error(y_true, y_pred)
0.75
>>> mean_absolute_error(y_true, y_pred, multioutput='raw_values')
array([0.5, 1. ])
>>> mean_absolute_error(y_true, y_pred, multioutput=[0.3, 0.7])
0.85...










	
precision_score(y_true, y_pred, *, labels=None, pos_label=1, average='binary', sample_weight=None, zero_division='warn')[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/../../../envs/2.8.0/lib/python3.9/site-packages/sklearn/utils/_param_validation.py#L2015-L2192]

	Compute the precision.

The precision is the ratio tp / (tp + fp) where tp is the number of
true positives and fp the number of false positives. The precision is
intuitively the ability of the classifier not to label as positive a sample
that is negative.

The best value is 1 and the worst value is 0.

Support beyond term:binary targets is achieved by treating multiclass
and multilabel data as a collection of binary problems, one for each
label. For the binary case, setting average=’binary’ will return
precision for pos_label. If average is not ‘binary’, pos_label is ignored
and precision for both classes are computed, then averaged or both returned (when
average=None). Similarly, for multiclass and multilabel targets,
precision for all labels are either returned or averaged depending on the
average parameter. Use labels specify the set of labels to calculate precision
for.

Read more in the User Guide.


	Parameters:

	
	y_true (1d array-like, or label indicator array / sparse matrix) – Ground truth (correct) target values.


	y_pred (1d array-like, or label indicator array / sparse matrix) – Estimated targets as returned by a classifier.


	labels (array-like, default=None) – The set of labels to include when average != ‘binary’, and their
order if average is None. Labels present in the data can be
excluded, for example in multiclass classification to exclude a “negative
class”. Labels not present in the data can be included and will be
“assigned” 0 samples. For multilabel targets, labels are column indices.
By default, all labels in y_true and y_pred are used in sorted order.


Changed in version 0.17: Parameter labels improved for multiclass problem.






	pos_label (int, float, bool or str, default=1) – The class to report if average=’binary’ and the data is binary,
otherwise this parameter is ignored.
For multiclass or multilabel targets, set labels=[pos_label] and
average != ‘binary’ to report metrics for one label only.


	average ({'micro', 'macro', 'samples', 'weighted', 'binary'} or None,             default='binary') – This parameter is required for multiclass/multilabel targets.
If None, the scores for each class are returned. Otherwise, this
determines the type of averaging performed on the data:


	'binary':
	Only report results for the class specified by pos_label.
This is applicable only if targets (y_{true,pred}) are binary.



	'micro':
	Calculate metrics globally by counting the total true positives,
false negatives and false positives.



	'macro':
	Calculate metrics for each label, and find their unweighted
mean.  This does not take label imbalance into account.



	'weighted':
	Calculate metrics for each label, and find their average weighted
by support (the number of true instances for each label). This
alters ‘macro’ to account for label imbalance; it can result in an
F-score that is not between precision and recall.



	'samples':
	Calculate metrics for each instance, and find their average (only
meaningful for multilabel classification where this differs from
accuracy_score()).








	sample_weight (array-like of shape (n_samples,), default=None) – Sample weights.


	zero_division ({"warn", 0.0, 1.0, np.nan}, default="warn") – Sets the value to return when there is a zero division.

Notes:
- If set to “warn”, this acts like 0, but a warning is also raised.
- If set to np.nan, such values will be excluded from the average.


New in version 1.3: np.nan option was added.










	Returns:

	precision – Precision of the positive class in binary classification or weighted
average of the precision of each class for the multiclass task.



	Return type:

	float (if average is not None) or array of float of shape                 (n_unique_labels,)






See also


	precision_recall_fscore_support
	Compute precision, recall, F-measure and support for each class.



	recall_score
	Compute the ratio tp / (tp + fn) where tp is the number of true positives and fn the number of false negatives.



	PrecisionRecallDisplay.from_estimator
	Plot precision-recall curve given an estimator and some data.



	PrecisionRecallDisplay.from_predictions
	Plot precision-recall curve given binary class predictions.



	multilabel_confusion_matrix
	Compute a confusion matrix for each class or sample.







Notes

When true positive + false positive == 0, precision returns 0 and
raises UndefinedMetricWarning. This behavior can be
modified with zero_division.

Examples

>>> import numpy as np
>>> from sklearn.metrics import precision_score
>>> y_true = [0, 1, 2, 0, 1, 2]
>>> y_pred = [0, 2, 1, 0, 0, 1]
>>> precision_score(y_true, y_pred, average='macro')
0.22...
>>> precision_score(y_true, y_pred, average='micro')
0.33...
>>> precision_score(y_true, y_pred, average='weighted')
0.22...
>>> precision_score(y_true, y_pred, average=None)
array([0.66..., 0.        , 0.        ])
>>> y_pred = [0, 0, 0, 0, 0, 0]
>>> precision_score(y_true, y_pred, average=None)
array([0.33..., 0.        , 0.        ])
>>> precision_score(y_true, y_pred, average=None, zero_division=1)
array([0.33..., 1.        , 1.        ])
>>> precision_score(y_true, y_pred, average=None, zero_division=np.nan)
array([0.33...,        nan,        nan])





>>> # multilabel classification
>>> y_true = [[0, 0, 0], [1, 1, 1], [0, 1, 1]]
>>> y_pred = [[0, 0, 0], [1, 1, 1], [1, 1, 0]]
>>> precision_score(y_true, y_pred, average=None)
array([0.5, 1. , 1. ])










	
precision_recall_curve(y_true, probas_pred, *, pos_label=None, sample_weight=None, drop_intermediate=False)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/../../../envs/2.8.0/lib/python3.9/site-packages/sklearn/utils/_param_validation.py#L865-L1003]

	Compute precision-recall pairs for different probability thresholds.

Note: this implementation is restricted to the binary classification task.

The precision is the ratio tp / (tp + fp) where tp is the number of
true positives and fp the number of false positives. The precision is
intuitively the ability of the classifier not to label as positive a sample
that is negative.

The recall is the ratio tp / (tp + fn) where tp is the number of
true positives and fn the number of false negatives. The recall is
intuitively the ability of the classifier to find all the positive samples.

The last precision and recall values are 1. and 0. respectively and do not
have a corresponding threshold. This ensures that the graph starts on the
y axis.

The first precision and recall values are precision=class balance and recall=1.0
which corresponds to a classifier that always predicts the positive class.

Read more in the User Guide.


	Parameters:

	
	y_true (array-like of shape (n_samples,)) – True binary labels. If labels are not either {-1, 1} or {0, 1}, then
pos_label should be explicitly given.


	probas_pred (array-like of shape (n_samples,)) – Target scores, can either be probability estimates of the positive
class, or non-thresholded measure of decisions (as returned by
decision_function on some classifiers).


	pos_label (int, float, bool or str, default=None) – The label of the positive class.
When pos_label=None, if y_true is in {-1, 1} or {0, 1},
pos_label is set to 1, otherwise an error will be raised.


	sample_weight (array-like of shape (n_samples,), default=None) – Sample weights.


	drop_intermediate (bool, default=False) – Whether to drop some suboptimal thresholds which would not appear
on a plotted precision-recall curve. This is useful in order to create
lighter precision-recall curves.


New in version 1.3.










	Returns:

	
	precision (ndarray of shape (n_thresholds + 1,)) – Precision values such that element i is the precision of
predictions with score >= thresholds[i] and the last element is 1.


	recall (ndarray of shape (n_thresholds + 1,)) – Decreasing recall values such that element i is the recall of
predictions with score >= thresholds[i] and the last element is 0.


	thresholds (ndarray of shape (n_thresholds,)) – Increasing thresholds on the decision function used to compute
precision and recall where n_thresholds = len(np.unique(probas_pred)).











See also


	PrecisionRecallDisplay.from_estimator
	Plot Precision Recall Curve given a binary classifier.



	PrecisionRecallDisplay.from_predictions
	Plot Precision Recall Curve using predictions from a binary classifier.



	average_precision_score
	Compute average precision from prediction scores.



	det_curve
	Compute error rates for different probability thresholds.



	roc_curve
	Compute Receiver operating characteristic (ROC) curve.







Examples

>>> import numpy as np
>>> from sklearn.metrics import precision_recall_curve
>>> y_true = np.array([0, 0, 1, 1])
>>> y_scores = np.array([0.1, 0.4, 0.35, 0.8])
>>> precision, recall, thresholds = precision_recall_curve(
...     y_true, y_scores)
>>> precision
array([0.5       , 0.66666667, 0.5       , 1.        , 1.        ])
>>> recall
array([1. , 1. , 0.5, 0.5, 0. ])
>>> thresholds
array([0.1 , 0.35, 0.4 , 0.8 ])










	
auc(x, y)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/../../../envs/2.8.0/lib/python3.9/site-packages/sklearn/utils/_param_validation.py#L48-L114]

	Compute Area Under the Curve (AUC) using the trapezoidal rule.

This is a general function, given points on a curve.  For computing the
area under the ROC-curve, see roc_auc_score().  For an alternative
way to summarize a precision-recall curve, see
average_precision_score().


	Parameters:

	
	x (array-like of shape (n,)) – X coordinates. These must be either monotonic increasing or monotonic
decreasing.


	y (array-like of shape (n,)) – Y coordinates.






	Returns:

	auc – Area Under the Curve.



	Return type:

	float






See also


	roc_auc_score
	Compute the area under the ROC curve.



	average_precision_score
	Compute average precision from prediction scores.



	precision_recall_curve
	Compute precision-recall pairs for different probability thresholds.







Examples

>>> import numpy as np
>>> from sklearn import metrics
>>> y = np.array([1, 1, 2, 2])
>>> pred = np.array([0.1, 0.4, 0.35, 0.8])
>>> fpr, tpr, thresholds = metrics.roc_curve(y, pred, pos_label=2)
>>> metrics.auc(fpr, tpr)
0.75










	
jaccard_score(y_true, y_pred, *, labels=None, pos_label=1, average='binary', sample_weight=None, zero_division='warn')[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/../../../envs/2.8.0/lib/python3.9/site-packages/sklearn/utils/_param_validation.py#L712-L907]

	Jaccard similarity coefficient score.

The Jaccard index [1], or Jaccard similarity coefficient, defined as
the size of the intersection divided by the size of the union of two label
sets, is used to compare set of predicted labels for a sample to the
corresponding set of labels in y_true.

Support beyond term:binary targets is achieved by treating multiclass
and multilabel data as a collection of binary problems, one for each
label. For the binary case, setting average=’binary’ will return the
Jaccard similarity coefficient for pos_label. If average is not ‘binary’,
pos_label is ignored and scores for both classes are computed, then averaged or
both returned (when average=None). Similarly, for multiclass and
multilabel targets, scores for all labels are either returned or
averaged depending on the average parameter. Use labels specify the set of
labels to calculate the score for.

Read more in the User Guide.


	Parameters:

	
	y_true (1d array-like, or label indicator array / sparse matrix) – Ground truth (correct) labels.


	y_pred (1d array-like, or label indicator array / sparse matrix) – Predicted labels, as returned by a classifier.


	labels (array-like of shape (n_classes,), default=None) – The set of labels to include when average != ‘binary’, and their
order if average is None. Labels present in the data can be
excluded, for example in multiclass classification to exclude a “negative
class”. Labels not present in the data can be included and will be
“assigned” 0 samples. For multilabel targets, labels are column indices.
By default, all labels in y_true and y_pred are used in sorted order.


	pos_label (int, float, bool or str, default=1) – The class to report if average=’binary’ and the data is binary,
otherwise this parameter is ignored.
For multiclass or multilabel targets, set labels=[pos_label] and
average != ‘binary’ to report metrics for one label only.


	average ({'micro', 'macro', 'samples', 'weighted',             'binary'} or None, default='binary') – If None, the scores for each class are returned. Otherwise, this
determines the type of averaging performed on the data:


	'binary':
	Only report results for the class specified by pos_label.
This is applicable only if targets (y_{true,pred}) are binary.



	'micro':
	Calculate metrics globally by counting the total true positives,
false negatives and false positives.



	'macro':
	Calculate metrics for each label, and find their unweighted
mean.  This does not take label imbalance into account.



	'weighted':
	Calculate metrics for each label, and find their average, weighted
by support (the number of true instances for each label). This
alters ‘macro’ to account for label imbalance.



	'samples':
	Calculate metrics for each instance, and find their average (only
meaningful for multilabel classification).








	sample_weight (array-like of shape (n_samples,), default=None) – Sample weights.


	zero_division ("warn", {0.0, 1.0}, default="warn") – Sets the value to return when there is a zero division, i.e. when there
there are no negative values in predictions and labels. If set to
“warn”, this acts like 0, but a warning is also raised.






	Returns:

	score – The Jaccard score. When average is not None, a single scalar is
returned.



	Return type:

	float or ndarray of shape (n_unique_labels,), dtype=np.float64






See also


	accuracy_score
	Function for calculating the accuracy score.



	f1_score
	Function for calculating the F1 score.



	multilabel_confusion_matrix
	Function for computing a confusion matrix                                  for each class or sample.







Notes

jaccard_score() may be a poor metric if there are no
positives for some samples or classes. Jaccard is undefined if there are
no true or predicted labels, and our implementation will return a score
of 0 with a warning.

References



[1]
Wikipedia entry for the Jaccard index [https://en.wikipedia.org/wiki/Jaccard_index].



Examples

>>> import numpy as np
>>> from sklearn.metrics import jaccard_score
>>> y_true = np.array([[0, 1, 1],
...                    [1, 1, 0]])
>>> y_pred = np.array([[1, 1, 1],
...                    [1, 0, 0]])





In the binary case:

>>> jaccard_score(y_true[0], y_pred[0])
0.6666...





In the 2D comparison case (e.g. image similarity):

>>> jaccard_score(y_true, y_pred, average="micro")
0.6





In the multilabel case:

>>> jaccard_score(y_true, y_pred, average='samples')
0.5833...
>>> jaccard_score(y_true, y_pred, average='macro')
0.6666...
>>> jaccard_score(y_true, y_pred, average=None)
array([0.5, 0.5, 1. ])





In the multiclass case:

>>> y_pred = [0, 2, 1, 2]
>>> y_true = [0, 1, 2, 2]
>>> jaccard_score(y_true, y_pred, average=None)
array([1. , 0. , 0.33...])










	
f1_score(y_true, y_pred, *, labels=None, pos_label=1, average='binary', sample_weight=None, zero_division='warn')[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/../../../envs/2.8.0/lib/python3.9/site-packages/sklearn/utils/_param_validation.py#L1091-L1280]

	Compute the F1 score, also known as balanced F-score or F-measure.

The F1 score can be interpreted as a harmonic mean of the precision and
recall, where an F1 score reaches its best value at 1 and worst score at 0.
The relative contribution of precision and recall to the F1 score are
equal. The formula for the F1 score is:


\[\text{F1} = \frac{2 * \text{TP}}{2 * \text{TP} + \text{FP} + \text{FN}}\]

Where \(\text{TP}\) is the number of true positives, \(\text{FN}\) is the
number of false negatives, and \(\text{FP}\) is the number of false positives.
F1 is by default
calculated as 0.0 when there are no true positives, false negatives, or
false positives.

Support beyond binary targets is achieved by treating multiclass
and multilabel data as a collection of binary problems, one for each
label. For the binary case, setting average=’binary’ will return
F1 score for pos_label. If average is not ‘binary’, pos_label is ignored
and F1 score for both classes are computed, then averaged or both returned (when
average=None). Similarly, for multiclass and multilabel targets,
F1 score for all labels are either returned or averaged depending on the
average parameter. Use labels specify the set of labels to calculate F1 score
for.

Read more in the User Guide.


	Parameters:

	
	y_true (1d array-like, or label indicator array / sparse matrix) – Ground truth (correct) target values.


	y_pred (1d array-like, or label indicator array / sparse matrix) – Estimated targets as returned by a classifier.


	labels (array-like, default=None) – The set of labels to include when average != ‘binary’, and their
order if average is None. Labels present in the data can be
excluded, for example in multiclass classification to exclude a “negative
class”. Labels not present in the data can be included and will be
“assigned” 0 samples. For multilabel targets, labels are column indices.
By default, all labels in y_true and y_pred are used in sorted order.


Changed in version 0.17: Parameter labels improved for multiclass problem.






	pos_label (int, float, bool or str, default=1) – The class to report if average=’binary’ and the data is binary,
otherwise this parameter is ignored.
For multiclass or multilabel targets, set labels=[pos_label] and
average != ‘binary’ to report metrics for one label only.


	average ({'micro', 'macro', 'samples', 'weighted', 'binary'} or None,             default='binary') – This parameter is required for multiclass/multilabel targets.
If None, the scores for each class are returned. Otherwise, this
determines the type of averaging performed on the data:


	'binary':
	Only report results for the class specified by pos_label.
This is applicable only if targets (y_{true,pred}) are binary.



	'micro':
	Calculate metrics globally by counting the total true positives,
false negatives and false positives.



	'macro':
	Calculate metrics for each label, and find their unweighted
mean.  This does not take label imbalance into account.



	'weighted':
	Calculate metrics for each label, and find their average weighted
by support (the number of true instances for each label). This
alters ‘macro’ to account for label imbalance; it can result in an
F-score that is not between precision and recall.



	'samples':
	Calculate metrics for each instance, and find their average (only
meaningful for multilabel classification where this differs from
accuracy_score()).








	sample_weight (array-like of shape (n_samples,), default=None) – Sample weights.


	zero_division ({"warn", 0.0, 1.0, np.nan}, default="warn") – Sets the value to return when there is a zero division, i.e. when all
predictions and labels are negative.

Notes:
- If set to “warn”, this acts like 0, but a warning is also raised.
- If set to np.nan, such values will be excluded from the average.


New in version 1.3: np.nan option was added.










	Returns:

	f1_score – F1 score of the positive class in binary classification or weighted
average of the F1 scores of each class for the multiclass task.



	Return type:

	float or array of float, shape = [n_unique_labels]






See also


	fbeta_score
	Compute the F-beta score.



	precision_recall_fscore_support
	Compute the precision, recall, F-score, and support.



	jaccard_score
	Compute the Jaccard similarity coefficient score.



	multilabel_confusion_matrix
	Compute a confusion matrix for each class or sample.







Notes

When true positive + false positive + false negative == 0 (i.e. a class
is completely absent from both y_true or y_pred), f-score is
undefined. In such cases, by default f-score will be set to 0.0, and
UndefinedMetricWarning will be raised. This behavior can be modified by
setting the zero_division parameter.

References



[1]
Wikipedia entry for the F1-score [https://en.wikipedia.org/wiki/F1_score].



Examples

>>> import numpy as np
>>> from sklearn.metrics import f1_score
>>> y_true = [0, 1, 2, 0, 1, 2]
>>> y_pred = [0, 2, 1, 0, 0, 1]
>>> f1_score(y_true, y_pred, average='macro')
0.26...
>>> f1_score(y_true, y_pred, average='micro')
0.33...
>>> f1_score(y_true, y_pred, average='weighted')
0.26...
>>> f1_score(y_true, y_pred, average=None)
array([0.8, 0. , 0. ])





>>> # binary classification
>>> y_true_empty = [0, 0, 0, 0, 0, 0]
>>> y_pred_empty = [0, 0, 0, 0, 0, 0]
>>> f1_score(y_true_empty, y_pred_empty)
0.0...
>>> f1_score(y_true_empty, y_pred_empty, zero_division=1.0)
1.0...
>>> f1_score(y_true_empty, y_pred_empty, zero_division=np.nan)
nan...





>>> # multilabel classification
>>> y_true = [[0, 0, 0], [1, 1, 1], [0, 1, 1]]
>>> y_pred = [[0, 0, 0], [1, 1, 1], [1, 1, 0]]
>>> f1_score(y_true, y_pred, average=None)
array([0.66666667, 1.        , 0.66666667])










	
roc_auc_score(y_true, y_score, *, average='macro', sample_weight=None, max_fpr=None, multi_class='raise', labels=None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/../../../envs/2.8.0/lib/python3.9/site-packages/sklearn/utils/_param_validation.py#L408-L654]

	Compute Area Under the Receiver Operating Characteristic Curve (ROC AUC)     from prediction scores.

Note: this implementation can be used with binary, multiclass and
multilabel classification, but some restrictions apply (see Parameters).

Read more in the User Guide.


	Parameters:

	
	y_true (array-like of shape (n_samples,) or (n_samples, n_classes)) – True labels or binary label indicators. The binary and multiclass cases
expect labels with shape (n_samples,) while the multilabel case expects
binary label indicators with shape (n_samples, n_classes).


	y_score (array-like of shape (n_samples,) or (n_samples, n_classes)) – Target scores.


	In the binary case, it corresponds to an array of shape
(n_samples,). Both probability estimates and non-thresholded
decision values can be provided. The probability estimates correspond
to the probability of the class with the greater label,
i.e. estimator.classes_[1] and thus
estimator.predict_proba(X, y)[:, 1]. The decision values
corresponds to the output of estimator.decision_function(X, y).
See more information in the User guide;


	In the multiclass case, it corresponds to an array of shape
(n_samples, n_classes) of probability estimates provided by the
predict_proba method. The probability estimates must
sum to 1 across the possible classes. In addition, the order of the
class scores must correspond to the order of labels,
if provided, or else to the numerical or lexicographical order of
the labels in y_true. See more information in the
User guide;


	In the multilabel case, it corresponds to an array of shape
(n_samples, n_classes). Probability estimates are provided by the
predict_proba method and the non-thresholded decision values by
the decision_function method. The probability estimates correspond
to the probability of the class with the greater label for each
output of the classifier. See more information in the
User guide.







	average ({'micro', 'macro', 'samples', 'weighted'} or None,             default='macro') – If None, the scores for each class are returned.
Otherwise, this determines the type of averaging performed on the data.
Note: multiclass ROC AUC currently only handles the ‘macro’ and
‘weighted’ averages. For multiclass targets, average=None is only
implemented for multi_class=’ovr’ and average=’micro’ is only
implemented for multi_class=’ovr’.


	'micro':
	Calculate metrics globally by considering each element of the label
indicator matrix as a label.



	'macro':
	Calculate metrics for each label, and find their unweighted
mean.  This does not take label imbalance into account.



	'weighted':
	Calculate metrics for each label, and find their average, weighted
by support (the number of true instances for each label).



	'samples':
	Calculate metrics for each instance, and find their average.





Will be ignored when y_true is binary.




	sample_weight (array-like of shape (n_samples,), default=None) – Sample weights.


	max_fpr (float > 0 and <= 1, default=None) – If not None, the standardized partial AUC [2]_ over the range
[0, max_fpr] is returned. For the multiclass case, max_fpr,
should be either equal to None or 1.0 as AUC ROC partial
computation currently is not supported for multiclass.


	multi_class ({'raise', 'ovr', 'ovo'}, default='raise') – Only used for multiclass targets. Determines the type of configuration
to use. The default value raises an error, so either
'ovr' or 'ovo' must be passed explicitly.


	'ovr':
	Stands for One-vs-rest. Computes the AUC of each class
against the rest [3]_ [4]_. This
treats the multiclass case in the same way as the multilabel case.
Sensitive to class imbalance even when average == 'macro',
because class imbalance affects the composition of each of the
‘rest’ groupings.



	'ovo':
	Stands for One-vs-one. Computes the average AUC of all
possible pairwise combinations of classes [5].
Insensitive to class imbalance when
average == 'macro'.








	labels (array-like of shape (n_classes,), default=None) – Only used for multiclass targets. List of labels that index the
classes in y_score. If None, the numerical or lexicographical
order of the labels in y_true is used.






	Returns:

	auc – Area Under the Curve score.



	Return type:

	float






See also


	average_precision_score
	Area under the precision-recall curve.



	roc_curve
	Compute Receiver operating characteristic (ROC) curve.



	RocCurveDisplay.from_estimator
	Plot Receiver Operating Characteristic (ROC) curve given an estimator and some data.



	RocCurveDisplay.from_predictions
	Plot Receiver Operating Characteristic (ROC) curve given the true and predicted values.







Notes

The Gini Coefficient is a summary measure of the ranking ability of binary
classifiers. It is expressed using the area under of the ROC as follows:

G = 2 * AUC - 1

Where G is the Gini coefficient and AUC is the ROC-AUC score. This normalisation
will ensure that random guessing will yield a score of 0 in expectation, and it is
upper bounded by 1.

References



[1]
Wikipedia entry for the Receiver operating characteristic [https://en.wikipedia.org/wiki/Receiver_operating_characteristic]



[2]
Analyzing a portion of the ROC curve. McClish, 1989 [https://www.ncbi.nlm.nih.gov/pubmed/2668680]



[3]
Provost, F., Domingos, P. (2000). Well-trained PETs: Improving
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#IS-00-04, Stern School of Business, New York University.
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Recognition Letters, 27(8), 861-874. [https://www.sciencedirect.com/science/article/pii/S016786550500303X]



[5]
Hand, D.J., Till, R.J. (2001). A Simple Generalisation of the Area
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Machine Learning, 45(2), 171-186. [http://link.springer.com/article/10.1023/A:1010920819831]
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Examples

Binary case:

>>> from sklearn.datasets import load_breast_cancer
>>> from sklearn.linear_model import LogisticRegression
>>> from sklearn.metrics import roc_auc_score
>>> X, y = load_breast_cancer(return_X_y=True)
>>> clf = LogisticRegression(solver="liblinear", random_state=0).fit(X, y)
>>> roc_auc_score(y, clf.predict_proba(X)[:, 1])
0.99...
>>> roc_auc_score(y, clf.decision_function(X))
0.99...





Multiclass case:

>>> from sklearn.datasets import load_iris
>>> X, y = load_iris(return_X_y=True)
>>> clf = LogisticRegression(solver="liblinear").fit(X, y)
>>> roc_auc_score(y, clf.predict_proba(X), multi_class='ovr')
0.99...





Multilabel case:

>>> import numpy as np
>>> from sklearn.datasets import make_multilabel_classification
>>> from sklearn.multioutput import MultiOutputClassifier
>>> X, y = make_multilabel_classification(random_state=0)
>>> clf = MultiOutputClassifier(clf).fit(X, y)
>>> # get a list of n_output containing probability arrays of shape
>>> # (n_samples, n_classes)
>>> y_pred = clf.predict_proba(X)
>>> # extract the positive columns for each output
>>> y_pred = np.transpose([pred[:, 1] for pred in y_pred])
>>> roc_auc_score(y, y_pred, average=None)
array([0.82..., 0.86..., 0.94..., 0.85... , 0.94...])
>>> from sklearn.linear_model import RidgeClassifierCV
>>> clf = RidgeClassifierCV().fit(X, y)
>>> roc_auc_score(y, clf.decision_function(X), average=None)
array([0.81..., 0.84... , 0.93..., 0.87..., 0.94...])










	
accuracy_score(y_true, y_pred, *, normalize=True, sample_weight=None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/../../../envs/2.8.0/lib/python3.9/site-packages/sklearn/utils/_param_validation.py#L137-L221]

	Accuracy classification score.

In multilabel classification, this function computes subset accuracy:
the set of labels predicted for a sample must exactly match the
corresponding set of labels in y_true.

Read more in the User Guide.


	Parameters:

	
	y_true (1d array-like, or label indicator array / sparse matrix) – Ground truth (correct) labels.


	y_pred (1d array-like, or label indicator array / sparse matrix) – Predicted labels, as returned by a classifier.


	normalize (bool, default=True) – If False, return the number of correctly classified samples.
Otherwise, return the fraction of correctly classified samples.


	sample_weight (array-like of shape (n_samples,), default=None) – Sample weights.






	Returns:

	score – If normalize == True, return the fraction of correctly
classified samples (float), else returns the number of correctly
classified samples (int).

The best performance is 1 with normalize == True and the number
of samples with normalize == False.





	Return type:

	float






See also


	balanced_accuracy_score
	Compute the balanced accuracy to deal with imbalanced datasets.



	jaccard_score
	Compute the Jaccard similarity coefficient score.



	hamming_loss
	Compute the average Hamming loss or Hamming distance between two sets of samples.



	zero_one_loss
	Compute the Zero-one classification loss. By default, the function will return the percentage of imperfectly predicted subsets.







Notes

In binary classification, this function is equal to the jaccard_score
function.

Examples

>>> from sklearn.metrics import accuracy_score
>>> y_pred = [0, 2, 1, 3]
>>> y_true = [0, 1, 2, 3]
>>> accuracy_score(y_true, y_pred)
0.5
>>> accuracy_score(y_true, y_pred, normalize=False)
2.0





In the multilabel case with binary label indicators:

>>> import numpy as np
>>> accuracy_score(np.array([[0, 1], [1, 1]]), np.ones((2, 2)))
0.5










	
balanced_accuracy_score(y_true, y_pred, *, sample_weight=None, adjusted=False)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/../../../envs/2.8.0/lib/python3.9/site-packages/sklearn/utils/_param_validation.py#L2376-L2466]

	Compute the balanced accuracy.

The balanced accuracy in binary and multiclass classification problems to
deal with imbalanced datasets. It is defined as the average of recall
obtained on each class.

The best value is 1 and the worst value is 0 when adjusted=False.

Read more in the User Guide.


New in version 0.20.




	Parameters:

	
	y_true (array-like of shape (n_samples,)) – Ground truth (correct) target values.


	y_pred (array-like of shape (n_samples,)) – Estimated targets as returned by a classifier.


	sample_weight (array-like of shape (n_samples,), default=None) – Sample weights.


	adjusted (bool, default=False) – When true, the result is adjusted for chance, so that random
performance would score 0, while keeping perfect performance at a score
of 1.






	Returns:

	balanced_accuracy – Balanced accuracy score.



	Return type:

	float






See also


	average_precision_score
	Compute average precision (AP) from prediction scores.



	precision_score
	Compute the precision score.



	recall_score
	Compute the recall score.



	roc_auc_score
	Compute Area Under the Receiver Operating Characteristic Curve (ROC AUC) from prediction scores.







Notes

Some literature promotes alternative definitions of balanced accuracy. Our
definition is equivalent to accuracy_score() with class-balanced
sample weights, and shares desirable properties with the binary case.
See the User Guide.

References



[1]
Brodersen, K.H.; Ong, C.S.; Stephan, K.E.; Buhmann, J.M. (2010).
The balanced accuracy and its posterior distribution.
Proceedings of the 20th International Conference on Pattern
Recognition, 3121-24.



[2]
John. D. Kelleher, Brian Mac Namee, Aoife D’Arcy, (2015).
Fundamentals of Machine Learning for Predictive Data Analytics:
Algorithms, Worked Examples, and Case Studies [https://mitpress.mit.edu/books/fundamentals-machine-learning-predictive-data-analytics].



Examples

>>> from sklearn.metrics import balanced_accuracy_score
>>> y_true = [0, 1, 0, 0, 1, 0]
>>> y_pred = [0, 1, 0, 0, 0, 1]
>>> balanced_accuracy_score(y_true, y_pred)
0.625










	
top_k_accuracy_score(y_true, y_score, *, k=2, normalize=True, sample_weight=None, labels=None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/../../../envs/2.8.0/lib/python3.9/site-packages/sklearn/utils/_param_validation.py#L1843-L2014]

	Top-k Accuracy classification score.

This metric computes the number of times where the correct label is among
the top k labels predicted (ranked by predicted scores). Note that the
multilabel case isn’t covered here.

Read more in the User Guide


	Parameters:

	
	y_true (array-like of shape (n_samples,)) – True labels.


	y_score (array-like of shape (n_samples,) or (n_samples, n_classes)) – Target scores. These can be either probability estimates or
non-thresholded decision values (as returned by
decision_function on some classifiers).
The binary case expects scores with shape (n_samples,) while the
multiclass case expects scores with shape (n_samples, n_classes).
In the multiclass case, the order of the class scores must
correspond to the order of labels, if provided, or else to
the numerical or lexicographical order of the labels in y_true.
If y_true does not contain all the labels, labels must be
provided.


	k (int, default=2) – Number of most likely outcomes considered to find the correct label.


	normalize (bool, default=True) – If True, return the fraction of correctly classified samples.
Otherwise, return the number of correctly classified samples.


	sample_weight (array-like of shape (n_samples,), default=None) – Sample weights. If None, all samples are given the same weight.


	labels (array-like of shape (n_classes,), default=None) – Multiclass only. List of labels that index the classes in y_score.
If None, the numerical or lexicographical order of the labels in
y_true is used. If y_true does not contain all the labels,
labels must be provided.






	Returns:

	score – The top-k accuracy score. The best performance is 1 with
normalize == True and the number of samples with
normalize == False.



	Return type:

	float






See also


	accuracy_score
	Compute the accuracy score. By default, the function will return the fraction of correct predictions divided by the total number of predictions.







Notes

In cases where two or more labels are assigned equal predicted scores,
the labels with the highest indices will be chosen first. This might
impact the result if the correct label falls after the threshold because
of that.

Examples

>>> import numpy as np
>>> from sklearn.metrics import top_k_accuracy_score
>>> y_true = np.array([0, 1, 2, 2])
>>> y_score = np.array([[0.5, 0.2, 0.2],  # 0 is in top 2
...                     [0.3, 0.4, 0.2],  # 1 is in top 2
...                     [0.2, 0.4, 0.3],  # 2 is in top 2
...                     [0.7, 0.2, 0.1]]) # 2 isn't in top 2
>>> top_k_accuracy_score(y_true, y_score, k=2)
0.75
>>> # Not normalizing gives the number of "correctly" classified samples
>>> top_k_accuracy_score(y_true, y_score, k=2, normalize=False)
3










	
pearson_r2_score(y: ndarray, y_pred: ndarray) → float[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/metrics/score_function.py#L43-L58]

	Computes Pearson R^2 (square of Pearson correlation).


	Parameters:

	
	y (np.ndarray) – ground truth array


	y_pred (np.ndarray) – predicted array






	Returns:

	The Pearson-R^2 score.



	Return type:

	float










	
jaccard_index(y: ndarray, y_pred: ndarray) → float[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/metrics/score_function.py#L61-L79]

	Computes Jaccard Index which is the Intersection Over Union metric
which is commonly used in image segmentation tasks.

DEPRECATED: WILL BE REMOVED IN A FUTURE VERSION OF DEEEPCHEM. USE jaccard_score instead.


	Parameters:

	
	y (np.ndarray) – ground truth array


	y_pred (np.ndarray) – predicted array






	Returns:

	score – The jaccard index. A number between 0 and 1.



	Return type:

	float










	
pixel_error(y: ndarray, y_pred: ndarray) → float[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/metrics/score_function.py#L82-L100]

	An error metric in case y, y_pred are images.

Defined as 1 - the maximal F-score of pixel similarity, or squared
Euclidean distance between the original and the result labels.


	Parameters:

	
	y (np.ndarray) – ground truth array


	y_pred (np.ndarray) – predicted array






	Returns:

	score – The pixel-error. A number between 0 and 1.



	Return type:

	float










	
prc_auc_score(y: ndarray, y_pred: ndarray) → float[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/metrics/score_function.py#L103-L119]

	Compute area under precision-recall curve


	Parameters:

	
	y (np.ndarray) – A numpy array of shape (N, n_classes) or (N,) with true labels


	y_pred (np.ndarray) – Of shape (N, n_classes) with class probabilities.






	Returns:

	The area under the precision-recall curve. A number between 0 and 1.



	Return type:

	float










	
rms_score(y_true: ndarray, y_pred: ndarray) → float[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/metrics/score_function.py#L122-L124]

	Computes RMS error.






	
mae_score(y_true: ndarray, y_pred: ndarray) → float[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/metrics/score_function.py#L127-L129]

	Computes MAE.






	
kappa_score(y1, y2, *, labels=None, weights=None, sample_weight=None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/../../../envs/2.8.0/lib/python3.9/site-packages/sklearn/utils/_param_validation.py#L617-L709]

	Compute Cohen’s kappa: a statistic that measures inter-annotator agreement.

This function computes Cohen’s kappa [1]_, a score that expresses the level
of agreement between two annotators on a classification problem. It is
defined as


\[\kappa = (p_o - p_e) / (1 - p_e)\]

where \(p_o\) is the empirical probability of agreement on the label
assigned to any sample (the observed agreement ratio), and \(p_e\) is
the expected agreement when both annotators assign labels randomly.
\(p_e\) is estimated using a per-annotator empirical prior over the
class labels [2]_.

Read more in the User Guide.


	Parameters:

	
	y1 (array-like of shape (n_samples,)) – Labels assigned by the first annotator.


	y2 (array-like of shape (n_samples,)) – Labels assigned by the second annotator. The kappa statistic is
symmetric, so swapping y1 and y2 doesn’t change the value.


	labels (array-like of shape (n_classes,), default=None) – List of labels to index the matrix. This may be used to select a
subset of labels. If None, all labels that appear at least once in
y1 or y2 are used.


	weights ({'linear', 'quadratic'}, default=None) – Weighting type to calculate the score. None means no weighted;
“linear” means linear weighted; “quadratic” means quadratic weighted.


	sample_weight (array-like of shape (n_samples,), default=None) – Sample weights.






	Returns:

	kappa – The kappa statistic, which is a number between -1 and 1. The maximum
value means complete agreement; zero or lower means chance agreement.



	Return type:

	float





References
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R. Artstein and M. Poesio (2008). “Inter-coder agreement for
computational linguistics”. Computational Linguistics 34(4):555-596 [https://www.mitpressjournals.org/doi/pdf/10.1162/coli.07-034-R2].



[3]
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Examples

>>> from sklearn.metrics import cohen_kappa_score
>>> y1 = ["negative", "positive", "negative", "neutral", "positive"]
>>> y2 = ["negative", "positive", "negative", "neutral", "negative"]
>>> cohen_kappa_score(y1, y2)
0.6875










	
bedroc_score(y_true: ndarray, y_pred: ndarray, alpha: float = 20.0)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/metrics/score_function.py#L132-L183]

	Compute BEDROC metric.

BEDROC metric implemented according to Truchon and Bayley that modifies
the ROC score by allowing for a factor of early recognition.
Please confirm details from [1]_.


	Parameters:

	
	y_true (np.ndarray) – Binary class labels. 1 for positive class, 0 otherwise


	y_pred (np.ndarray) – Predicted labels


	alpha (float, default 20.0) – Early recognition parameter






	Returns:

	Value in [0, 1] that indicates the degree of early recognition



	Return type:

	float





Notes

This function requires RDKit to be installed.

References



[1]
Truchon et al. “Evaluating virtual screening methods: good and bad metrics
for the “early recognition” problem.” Journal of chemical information and modeling
47.2 (2007): 488-508.








	
concordance_index(y_true: ndarray, y_pred: ndarray) → float[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/metrics/score_function.py#L186-L235]

	Compute Concordance index.

Statistical metric indicates the quality of the predicted ranking.
Please confirm details from [1]_.


	Parameters:

	
	y_true (np.ndarray) – continous value


	y_pred (np.ndarray) – Predicted value






	Returns:

	score between [0,1]



	Return type:

	float





References



[1]
Steck, Harald, et al. “On ranking in survival analysis:
Bounds on the concordance index.” Advances in neural information processing systems (2008): 1209-1216.








	
get_motif_scores(encoded_sequences: ndarray, motif_names: List[str], max_scores: int | None = None, return_positions: bool = False, GC_fraction: float = 0.4) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/metrics/genomic_metrics.py#L11-L77]

	Computes pwm log odds.


	Parameters:

	
	encoded_sequences (np.ndarray) – A numpy array of shape (N_sequences, N_letters, sequence_length, 1).


	motif_names (List[str]) – List of motif file names.


	max_scores (int, optional) – Get top max_scores scores.


	return_positions (bool, default False) – Whether to return postions or not.


	GC_fraction (float, default 0.4) – GC fraction in background sequence.






	Returns:

	A numpy array of complete score. The shape is (N_sequences, num_motifs, seq_length) by default.
If max_scores, the shape of score array is (N_sequences, num_motifs*max_scores).
If max_scores and return_positions, the shape of score array with max scores and their positions.
is (N_sequences, 2*num_motifs*max_scores).



	Return type:

	np.ndarray





Notes

This method requires simdna to be installed.






	
get_pssm_scores(encoded_sequences: ndarray, pssm: ndarray) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/metrics/genomic_metrics.py#L80-L120]

	Convolves pssm and its reverse complement with encoded sequences
and returns the maximum score at each position of each sequence.


	Parameters:

	
	encoded_sequences (np.ndarray) – A numpy array of shape (N_sequences, N_letters, sequence_length, 1).


	pssm (np.ndarray) – A numpy array of shape (4, pssm_length).






	Returns:

	scores – A numpy array of shape (N_sequences, sequence_length).



	Return type:

	np.ndarray










	
in_silico_mutagenesis(model: Model, encoded_sequences: ndarray) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/metrics/genomic_metrics.py#L123-L183]

	Computes in-silico-mutagenesis scores


	Parameters:

	
	model (Model) – This can be any model that accepts inputs of the required shape and produces
an output of shape (N_sequences, N_tasks).


	encoded_sequences (np.ndarray) – A numpy array of shape (N_sequences, N_letters, sequence_length, 1)






	Returns:

	A numpy array of ISM scores. The shape is (num_task, N_sequences, N_letters, sequence_length, 1).



	Return type:

	np.ndarray











Metric Class

The dc.metrics.Metric class is a wrapper around metric
functions which interoperates with DeepChem dc.models.Model.


	
class Metric(metric: Callable[[...], float], task_averager: Callable[[...], Any] | None = None, name: str | None = None, threshold: float | None = None, mode: str | None = None, n_tasks: int | None = None, classification_handling_mode: str | None = None, threshold_value: float | None = None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/metrics/metric.py#L422-L727]

	Wrapper class for computing user-defined metrics.

The Metric class provides a wrapper for standardizing the API
around different classes of metrics that may be useful for DeepChem
models. The implementation provides a few non-standard conveniences
such as built-in support for multitask and multiclass metrics.

There are a variety of different metrics this class aims to support.
Metrics for classification and regression that assume that values to
compare are scalars are supported.

At present, this class doesn’t support metric computation on models
which don’t present scalar outputs. For example, if you have a
generative model which predicts images or molecules, you will need
to write a custom evaluation and metric setup.


	
__init__(metric: Callable[[...], float], task_averager: Callable[[...], Any] | None = None, name: str | None = None, threshold: float | None = None, mode: str | None = None, n_tasks: int | None = None, classification_handling_mode: str | None = None, threshold_value: float | None = None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/metrics/metric.py#L440-L566]

	
	Parameters:

	
	metric (function) – Function that takes args y_true, y_pred (in that order) and
computes desired score. If sample weights are to be considered,
metric may take in an additional keyword argument
sample_weight.


	task_averager (function, default None) – If not None, should be a function that averages metrics across
tasks.


	name (str, default None) – Name of this metric


	threshold (float, default None (DEPRECATED)) – Used for binary metrics and is the threshold for the positive
class.


	mode (str, default None) – Should usually be “classification” or “regression.”


	n_tasks (int, default None) – The number of tasks this class is expected to handle.


	classification_handling_mode (str, default None) – DeepChem models by default predict class probabilities for
classification problems. This means that for a given singletask
prediction, after shape normalization, the DeepChem labels and prediction will be
numpy arrays of shape (n_samples, n_tasks, n_classes) with class probabilities.
classification_handling_mode is a string that instructs this method
how to handle transforming these probabilities. It can take on the
following values:
- “direct”: Pass y_true and y_pred directy into self.metric.
- “threshold”: Use threshold_predictions to threshold y_true and y_pred.


Use threshold_value as the desired threshold. This converts them into
arrays of shape (n_samples, n_tasks), where each element is a class index.





	”threshold-one-hot”: Use threshold_predictions to threshold y_true and y_pred
using threshold_values, then apply to_one_hot to output.


	None: Select a mode automatically based on the metric.







	threshold_value (float, default None) – If set, and classification_handling_mode is “threshold” or
“threshold-one-hot”, apply a thresholding operation to values with this
threshold. This option is only sensible on binary classification tasks.
For multiclass problems, or if threshold_value is None, argmax() is used
to select the highest probability class for each task.













	
compute_metric(y_true: _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes], y_pred: _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes], w: _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes] | None = None, n_tasks: int | None = None, n_classes: int = 2, per_task_metrics: bool = False, use_sample_weights: bool = False, **kwargs) → Any[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/metrics/metric.py#L568-L665]

	Compute a performance metric for each task.


	Parameters:

	
	y_true (ArrayLike) – An ArrayLike containing true values for each task. Must be of shape
(N,) or (N, n_tasks) or (N, n_tasks, n_classes) if a
classification metric. If of shape (N, n_tasks) values can either be
class-labels or probabilities of the positive class for binary
classification problems. If a regression problem, must be of shape
(N,) or (N, n_tasks) or (N, n_tasks, 1) if a regression metric.


	y_pred (ArrayLike) – An ArrayLike containing predicted values for each task. Must be
of shape (N, n_tasks, n_classes) if a classification metric,
else must be of shape (N, n_tasks) if a regression metric.


	w (ArrayLike, default None) – An ArrayLike containing weights for each datapoint. If
specified,  must be of shape (N, n_tasks).


	n_tasks (int, default None) – The number of tasks this class is expected to handle.


	n_classes (int, default 2) – Number of classes in data for classification tasks.


	per_task_metrics (bool, default False) – If true, return computed metric for each task on multitask dataset.


	use_sample_weights (bool, default False) – If set, use per-sample weights w.


	kwargs (dict) – Will be passed on to self.metric






	Returns:

	A numpy array containing metric values for each task.



	Return type:

	np.ndarray










	
compute_singletask_metric(y_true: _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes], y_pred: _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes], w: _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes] | None = None, n_samples: int | None = None, use_sample_weights: bool = False, **kwargs) → float[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/metrics/metric.py#L667-L727]

	Compute a metric value.


	Parameters:

	
	y_true (ArrayLike) – True values array. This array must be of shape (N,
n_classes) if classification and (N,) if regression.


	y_pred (ArrayLike) – Predictions array. This array must be of shape (N, n_classes)
if classification and (N,) if regression.


	w (ArrayLike, default None) – Sample weight array. This array must be of shape (N,)


	n_samples (int, default None (DEPRECATED)) – The number of samples in the dataset. This is N. This argument is
ignored.


	use_sample_weights (bool, default False) – If set, use per-sample weights w.


	kwargs (dict) – Will be passed on to self.metric






	Returns:

	metric_value – The computed value of the metric.



	Return type:

	float
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Hyperparameter Tuning

One of the most important aspects of machine learning is
hyperparameter tuning. Many machine learning models have a number of
hyperparameters that control aspects of the model. These
hyperparameters typically cannot be learned directly by the same
learning algorithm used for the rest of learning and have to be set in
an alternate fashion. The dc.hyper module contains utilities
for hyperparameter tuning.

DeepChem’s hyperparameter optimzation algorithms are simple and run in
single-threaded fashion. They are not intended to be production grade
hyperparameter utilities, but rather useful first tools as you start
exploring your parameter space. As the needs of your application grow,
we recommend swapping to a more heavy duty hyperparameter
optimization library.


Hyperparameter Optimization API


	
class HyperparamOpt(model_builder: Callable[[...], Model])[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/hyper/base_classes.py#L39-L138]

	Abstract superclass for hyperparameter search classes.

This class is an abstract base class for hyperparameter search
classes in DeepChem. Hyperparameter search is performed on
dc.models.Model classes. Each hyperparameter object accepts a
dc.models.Model class upon construct. When the hyperparam_search
class is invoked, this class is used to construct many different
concrete models which are trained on the specified training set and
evaluated on a given validation set.

Different subclasses of HyperparamOpt differ in the choice of
strategy for searching the hyperparameter evaluation space. This
class itself is an abstract superclass and should never be directly
instantiated.


	
__init__(model_builder: Callable[[...], Model])[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/hyper/base_classes.py#L56-L75]

	Initialize Hyperparameter Optimizer.

Note this is an abstract constructor which should only be used by
subclasses.


	Parameters:

	model_builder (constructor function.) – This parameter must be constructor function which returns an
object which is an instance of dc.models.Model. This function
must accept two arguments, model_params of type dict and
model_dir, a string specifying a path to a model directory.
See the example.










	
hyperparam_search(params_dict: Dict, train_dataset: Dataset, valid_dataset: Dataset, metric: Metric, output_transformers: List[Transformer] = [], nb_epoch: int = 10, use_max: bool = True, logfile: str = 'results.txt', logdir: str | None = None, **kwargs) → Tuple[Model, Dict[str, Any], Dict[str, Any]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/hyper/base_classes.py#L77-L138]

	Conduct Hyperparameter search.

This method defines the common API shared by all hyperparameter
optimization subclasses. Different classes will implement
different search methods but they must all follow this common API.


	Parameters:

	
	params_dict (Dict) – Dictionary mapping strings to values. Note that the
precise semantics of params_dict will change depending on the
optimizer that you’re using. Depending on the type of
hyperparameter optimization, these values can be
ints/floats/strings/lists/etc. Read the documentation for the
concrete hyperparameter optimization subclass you’re using to
learn more about what’s expected.


	train_dataset (Dataset) – dataset used for training


	valid_dataset (Dataset) – dataset used for validation(optimization on valid scores)


	metric (Metric) – metric used for evaluation


	output_transformers (list[Transformer]) – Transformers for evaluation. This argument is needed since
train_dataset and valid_dataset may have been transformed
for learning and need the transform to be inverted before
the metric can be evaluated on a model.


	nb_epoch (int, (default 10)) – Specifies the number of training epochs during each iteration of optimization.


	use_max (bool, optional) – If True, return the model with the highest score. Else return
model with the minimum score.


	logdir (str, optional) – The directory in which to store created models. If not set, will
use a temporary directory.


	logfile (str, optional (default results.txt)) – Name of logfile to write results to. If specified, this must
be a valid file name. If not specified, results of hyperparameter
search will be written to logdir/results.txt.






	Returns:

	(best_model, best_hyperparams, all_scores) where best_model is
an instance of dc.models.Model, best_hyperparams is a
dictionary of parameters, and all_scores is a dictionary mapping
string representations of hyperparameter sets to validation
scores.



	Return type:

	Tuple[best_model, best_hyperparams, all_scores]















Grid Hyperparameter Optimization

This is the simplest form of hyperparameter optimization that simply
involves iterating over a fixed grid of possible values for
hyperaparameters.


	
class GridHyperparamOpt(model_builder: Callable[[...], Model])[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/hyper/grid_search.py#L24-L241]

	Provides simple grid hyperparameter search capabilities.

This class performs a grid hyperparameter search over the specified
hyperparameter space. This implementation is simple and simply does
a direct iteration over all possible hyperparameters and doesn’t use
parallelization to speed up the search.

Examples

This example shows the type of constructor function expected.

>>> import sklearn
>>> import deepchem as dc
>>> optimizer = dc.hyper.GridHyperparamOpt(lambda **p: dc.models.GraphConvModel(**p))





Here’s a more sophisticated example that shows how to optimize only
some parameters of a model. In this case, we have some parameters we
want to optimize, and others which we don’t. To handle this type of
search, we create a model_builder which hard codes some arguments
(in this case, max_iter is a hyperparameter which we don’t want
to search over)

>>> import deepchem as dc
>>> import numpy as np
>>> from sklearn.linear_model import LogisticRegression as LR
>>> # generating data
>>> X = np.arange(1, 11, 1).reshape(-1, 1)
>>> y = np.hstack((np.zeros(5), np.ones(5)))
>>> dataset = dc.data.NumpyDataset(X, y)
>>> # splitting dataset into train and test
>>> splitter = dc.splits.RandomSplitter()
>>> train_dataset, test_dataset = splitter.train_test_split(dataset)
>>> # metric to evaluate result of a set of parameters
>>> metric = dc.metrics.Metric(dc.metrics.accuracy_score)
>>> # defining `model_builder`
>>> def model_builder(**model_params):
...   penalty = model_params['penalty']
...   solver = model_params['solver']
...   lr = LR(penalty=penalty, solver=solver, max_iter=100)
...   return dc.models.SklearnModel(lr)
>>> # the parameters which are to be optimized
>>> params = {
...   'penalty': ['l1', 'l2'],
...   'solver': ['liblinear', 'saga']
...   }
>>> # Creating optimizer and searching over hyperparameters
>>> optimizer = dc.hyper.GridHyperparamOpt(model_builder)
>>> best_model, best_hyperparams, all_results =     optimizer.hyperparam_search(params, train_dataset, test_dataset, metric)
>>> best_hyperparams  # the best hyperparameters
{'penalty': 'l2', 'solver': 'saga'}






	
hyperparam_search(params_dict: Dict, train_dataset: Dataset, valid_dataset: Dataset, metric: Metric, output_transformers: List[Transformer] = [], nb_epoch: int = 10, use_max: bool = True, logfile: str = 'results.txt', logdir: str | None = None, **kwargs) → Tuple[Model, Dict, Dict][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/hyper/grid_search.py#L80-L241]

	Perform hyperparams search according to params_dict.

Each key to hyperparams_dict is a model_param. The values should
be a list of potential values for that hyperparam.


	Parameters:

	
	params_dict (Dict) – Maps hyperparameter names (strings) to lists of possible
parameter values.


	train_dataset (Dataset) – dataset used for training


	valid_dataset (Dataset) – dataset used for validation(optimization on valid scores)


	metric (Metric) – metric used for evaluation


	output_transformers (list[Transformer]) – Transformers for evaluation. This argument is needed since
train_dataset and valid_dataset may have been transformed
for learning and need the transform to be inverted before
the metric can be evaluated on a model.


	nb_epoch (int, (default 10)) – Specifies the number of training epochs during each iteration of optimization.
Not used by all model types.


	use_max (bool, optional) – If True, return the model with the highest score. Else return
model with the minimum score.


	logdir (str, optional) – The directory in which to store created models. If not set, will
use a temporary directory.


	logfile (str, optional (default results.txt)) – Name of logfile to write results to. If specified, this is must
be a valid file name. If not specified, results of hyperparameter
search will be written to logdir/results.txt.






	Returns:

	
	Tuple[best_model, best_hyperparams, all_scores]


	(best_model, best_hyperparams, all_scores) where best_model is


	an instance of dc.model.Model, best_hyperparams is a


	dictionary of parameters, and all_scores is a dictionary mapping


	string representations of hyperparameter sets to validation


	scores.










Notes

From DeepChem 2.6, the return type of best_hyperparams is a dictionary of
parameters rather than a tuple of parameters as it was previously. The new
changes have been made to standardize the behaviour across different
hyperparameter optimization techniques available in DeepChem.











Gaussian Process Hyperparameter Optimization


	
class GaussianProcessHyperparamOpt(model_builder: Callable[[...], Model], max_iter: int = 20, search_range: int | float | Dict = 4)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/hyper/gaussian_process.py#L86-L404]

	Gaussian Process Global Optimization(GPGO)

This class uses Gaussian Process optimization to select
hyperparameters. Underneath the hood it uses pyGPGO to optimize
models. If you don’t have pyGPGO installed, you won’t be able to use
this class.

Note that params_dict has a different semantics than for
GridHyperparamOpt. param_dict[hp] must be an int/float and is
used as the center of a search range.

Examples

This example shows the type of constructor function expected.

>>> import deepchem as dc
>>> optimizer = dc.hyper.GaussianProcessHyperparamOpt(lambda **p: dc.models.GraphConvModel(n_tasks=1, **p))





Here’s a more sophisticated example that shows how to optimize only
some parameters of a model. In this case, we have some parameters we
want to optimize, and others which we don’t. To handle this type of
search, we create a model_builder which hard codes some arguments
(in this case, n_tasks and n_features which are properties of a
dataset and not hyperparameters to search over.)

>>> import numpy as np
>>> from sklearn.ensemble import RandomForestRegressor as RF
>>> def model_builder(**model_params):
...   n_estimators = model_params['n_estimators']
...   min_samples_split = model_params['min_samples_split']
...   rf_model = RF(n_estimators=n_estimators, min_samples_split=min_samples_split)
...   rf_model = RF(n_estimators=n_estimators)
...   return dc.models.SklearnModel(rf_model)
>>> optimizer = dc.hyper.GaussianProcessHyperparamOpt(model_builder)
>>> params_dict = {"n_estimators":100, "min_samples_split":2}
>>> train_dataset = dc.data.NumpyDataset(X=np.random.rand(50, 5),
...   y=np.random.rand(50, 1))
>>> valid_dataset = dc.data.NumpyDataset(X=np.random.rand(20, 5),
...   y=np.random.rand(20, 1))
>>> metric = dc.metrics.Metric(dc.metrics.pearson_r2_score)





>> best_model, best_hyperparams, all_results =    optimizer.hyperparam_search(params_dict, train_dataset, valid_dataset, metric, max_iter=2)
>> type(best_hyperparams)
<class ‘dict’>


	Parameters:

	
	model_builder (constructor function.) – This parameter must be constructor function which returns an
object which is an instance of dc.models.Model. This function
must accept two arguments, model_params of type dict and
model_dir, a string specifying a path to a model directory.


	max_iter (int, default 20) – number of optimization trials


	search_range (int/float/Dict (default 4)) – The search_range specifies the range of parameter values to
search for. If search_range is an int/float, it is used as the
global search range for parameters. This creates a search
problem on the following space:


	optimization on [initial value / search_range,
	initial value * search_range]





If search_range is a dict, it must contain the same keys as
for params_dict. In this case, search_range specifies a
per-parameter search range. This is useful in case some
parameters have a larger natural range than others. For a given
hyperparameter hp this would create the following search
range:


	optimization on hp on [initial value[hp] / search_range[hp],
	initial value[hp] * search_range[hp]]














Notes

This class requires pyGPGO to be installed.


	
__init__(model_builder: Callable[[...], Model], max_iter: int = 20, search_range: int | float | Dict = 4)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/hyper/gaussian_process.py#L167-L174]

	Initialize Hyperparameter Optimizer.

Note this is an abstract constructor which should only be used by
subclasses.


	Parameters:

	model_builder (constructor function.) – This parameter must be constructor function which returns an
object which is an instance of dc.models.Model. This function
must accept two arguments, model_params of type dict and
model_dir, a string specifying a path to a model directory.
See the example.










	
hyperparam_search(params_dict: Dict, train_dataset: Dataset, valid_dataset: Dataset, metric: Metric, output_transformers: List[Transformer] = [], nb_epoch: int = 10, use_max: bool = True, logfile: str = 'results.txt', logdir: str | None = None, **kwargs) → Tuple[Model, Dict[str, Any], Dict[str, Any]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/hyper/gaussian_process.py#L176-L404]

	Perform hyperparameter search using a gaussian process.


	Parameters:

	
	params_dict (Dict) – Maps hyperparameter names (strings) to possible parameter
values. The semantics of this list are different than for
GridHyperparamOpt. params_dict[hp] must map to an int/float,
which is used as the center of a search with radius
search_range since pyGPGO can only optimize numerical
hyperparameters.


	train_dataset (Dataset) – dataset used for training


	valid_dataset (Dataset) – dataset used for validation(optimization on valid scores)


	metric (Metric) – metric used for evaluation


	output_transformers (list[Transformer]) – Transformers for evaluation. This argument is needed since
train_dataset and valid_dataset may have been transformed
for learning and need the transform to be inverted before
the metric can be evaluated on a model.


	nb_epoch (int, (default 10)) – Specifies the number of training epochs during each iteration of optimization.
Not used by all model types.


	use_max (bool, (default True)) – Specifies whether to maximize or minimize metric.
maximization(True) or minimization(False)


	logdir (str, optional, (default None)) – The directory in which to store created models. If not set, will
use a temporary directory.


	logfile (str, optional (default results.txt)) – Name of logfile to write results to. If specified, this is must
be a valid file. If not specified, results of hyperparameter
search will be written to logdir/results.txt.






	Returns:

	(best_model, best_hyperparams, all_scores) where best_model is
an instance of dc.model.Model, best_hyperparams is a
dictionary of parameters, and all_scores is a dictionary mapping
string representations of hyperparameter sets to validation
scores.



	Return type:

	Tuple[best_model, best_hyperparams, all_scores]
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Metalearning

One of the hardest challenges in scientific machine learning is lack of access of sufficient data. Sometimes experiments are slow and expensive and there’s no easy way to gain access to more data. What do you do then?

This module contains a collection of techniques for doing low data
learning. “Metalearning” traditionally refers to techniques for
“learning to learn” but here we take it to mean any technique which
proves effective for learning with low amounts of data.


MetaLearner

This is the abstract superclass for metalearning algorithms.


	
class MetaLearner[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/metalearning/__init__.py#L13-L68]

	Model and data to which the MAML algorithm can be applied.

To use MAML, create a subclass of this defining the learning problem to solve.
It consists of a model that can be trained to perform many different tasks, and
data for training it on a large (possibly infinite) set of different tasks.


	
compute_model(inputs, variables, training)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/metalearning/__init__.py#L21-L41]

	Compute the model for a set of inputs and variables.


	Parameters:

	
	inputs (list of tensors) – the inputs to the model


	variables (list of tensors) – the values to use for the model’s variables.  This might be the actual
variables (as returned by the MetaLearner’s variables property), or
alternatively it might be the values of those variables after one or more
steps of gradient descent for the current task.


	training (bool) – indicates whether the model is being invoked for training or prediction






	Returns:

	
	(loss, outputs) where loss is the value of the model’s loss function, and


	outputs is a list of the model’s outputs















	
property variables[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/metalearning.py]

	Get the list of variables to train.






	
select_task()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/metalearning/__init__.py#L48-L55]

	Select a new task to train on.

If there is a fixed set of training tasks, this will typically cycle through them.
If there are infinitely many training tasks, this can simply select a new one each
time it is called.






	
get_batch()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/metalearning/__init__.py#L57-L64]

	Get a batch of data for training.

This should return the data as a list of arrays, one for each of the model’s
inputs.  This will usually be called twice for each task, and should
return a different batch on each call.






	
parameters()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/metalearning/__init__.py#L66-L68]

	Returns an iterator over the MetaLearner parameters.












Tensorflow implementation


MAML


	
class MAML(learner, learning_rate=0.001, optimization_steps=1, meta_batch_size=10, optimizer=<deepchem.models.optimizers.Adam object>, model_dir=None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/metalearning/maml.py#L13-L206]

	Implements the Model-Agnostic Meta-Learning algorithm for low data learning.

The algorithm is described in Finn et al., “Model-Agnostic Meta-Learning for Fast
Adaptation of Deep Networks” (https://arxiv.org/abs/1703.03400).  It is used for
training models that can perform a variety of tasks, depending on what data they
are trained on.  It assumes you have training data for many tasks, but only a small
amount for each one.  It performs “meta-learning” by looping over tasks and trying
to minimize the loss on each one after one or a few steps of gradient descent.
That is, it does not try to create a model that can directly solve the tasks, but
rather tries to create a model that is very easy to train.

To use this class, create a subclass of MetaLearner that encapsulates the model
and data for your learning problem.  Pass it to a MAML object and call fit().
You can then use train_on_current_task() to fine tune the model for a particular
task.


	
__init__(learner, learning_rate=0.001, optimization_steps=1, meta_batch_size=10, optimizer=<deepchem.models.optimizers.Adam object>, model_dir=None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/metalearning/maml.py#L31-L89]

	Create an object for performing meta-optimization.


	Parameters:

	
	learner (MetaLearner) – defines the meta-learning problem


	learning_rate (float or Tensor) – the learning rate to use for optimizing each task (not to be confused with the one used
for meta-learning).  This can optionally be made a variable (represented as a
Tensor), in which case the learning rate will itself be learnable.


	optimization_steps (int) – the number of steps of gradient descent to perform for each task


	meta_batch_size (int) – the number of tasks to use for each step of meta-learning


	optimizer (Optimizer) – the optimizer to use for meta-learning (not to be confused with the gradient descent
optimization performed for each task)


	model_dir (str) – the directory in which the model will be saved.  If None, a temporary directory will be created.













	
fit(steps, max_checkpoints_to_keep=5, checkpoint_interval=600, restore=False)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/metalearning/maml.py#L95-L143]

	Perform meta-learning to train the model.


	Parameters:

	
	steps (int) – the number of steps of meta-learning to perform


	max_checkpoints_to_keep (int) – the maximum number of checkpoint files to keep.  When this number is reached, older
files are deleted.


	checkpoint_interval (float) – the time interval at which to save checkpoints, measured in seconds


	restore (bool) – if True, restore the model from the most recent checkpoint before training
it further













	
restore()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/metalearning/maml.py#L166-L171]

	Reload the model parameters from the most recent checkpoint file.






	
train_on_current_task(optimization_steps=1, restore=True)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/metalearning/maml.py#L173-L191]

	Perform a few steps of gradient descent to fine tune the model on the current task.


	Parameters:

	
	optimization_steps (int) – the number of steps of gradient descent to perform


	restore (bool) – if True, restore the model from the most recent checkpoint before optimizing













	
predict_on_batch(inputs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/metalearning/maml.py#L193-L206]

	Compute the model’s outputs for a batch of inputs.


	Parameters:

	inputs (list of arrays) – the inputs to the model



	Returns:

	
	(loss, outputs) where loss is the value of the model’s loss function, and


	outputs is a list of the model’s outputs





















Torch implementation


MAML


	
class MAML(learner: ~deepchem.metalearning.MetaLearner, learning_rate: float | ~deepchem.models.optimizers.LearningRateSchedule = 0.001, optimization_steps: int = 1, meta_batch_size: int = 10, optimizer: ~deepchem.models.optimizers.Optimizer = <deepchem.models.optimizers.Adam object>, model_dir: str | None = None, device: ~torch.device | None = None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/metalearning/torch_maml.py#L20-L385]

	Implements the Model-Agnostic Meta-Learning algorithm for low data learning.

The algorithm is described in Finn et al., “Model-Agnostic Meta-Learning for Fast
Adaptation of Deep Networks” (https://arxiv.org/abs/1703.03400).  It is used for
training models that can perform a variety of tasks, depending on what data they
are trained on.  It assumes you have training data for many tasks, but only a small
amount for each one.  It performs “meta-learning” by looping over tasks and trying
to minimize the loss on each one after one or a few steps of gradient descent.
That is, it does not try to create a model that can directly solve the tasks, but
rather tries to create a model that is very easy to train.

To use this class, create a subclass of MetaLearner that encapsulates the model
and data for your learning problem.  Pass it to a MAML object and call fit().
You can then use train_on_current_task() to fine tune the model for a particular
task.
.. rubric:: Example

>>> import deepchem as dc
>>> import numpy as np
>>> import torch
>>> import torch.nn.functional as F
>>> from deepchem.metalearning.torch_maml import MetaLearner, MAML
>>> class SineLearner(MetaLearner):
...     def __init__(self):
...         self.batch_size = 10
...         self.w1 = torch.nn.Parameter(torch.tensor(np.random.normal(size=[1, 40], scale=1.0),requires_grad=True))
...         self.w2 = torch.nn.Parameter(torch.tensor(np.random.normal(size=[40, 40], scale=np.sqrt(1 / 40)),requires_grad=True))
...         self.w3 = torch.nn.Parameter(torch.tensor(np.random.normal(size=[40, 1], scale=np.sqrt(1 / 40)),requires_grad=True))
...         self.b1 = torch.nn.Parameter(torch.tensor(np.zeros(40)),requires_grad=True)
...         self.b2 = torch.nn.Parameter(torch.tensor(np.zeros(40)),requires_grad=True)
...         self.b3 = torch.nn.Parameter(torch.tensor(np.zeros(1)),requires_grad=True)
...     def compute_model(self, inputs, variables, training):
...         x, y = inputs
...         w1, w2, w3, b1, b2, b3 = variables
...         dense1 = F.relu(torch.matmul(x, w1) + b1)
...         dense2 = F.relu(torch.matmul(dense1, w2) + b2)
...         output = torch.matmul(dense2, w3) + b3
...         loss = torch.mean(torch.square(output - y))
...         return loss, [output]
...     @property
...     def variables(self):
...         return [self.w1, self.w2, self.w3, self.b1, self.b2, self.b3]
...     def select_task(self):
...         self.amplitude = 5.0 * np.random.random()
...         self.phase = np.pi * np.random.random()
...     def get_batch(self):
...         x = torch.tensor(np.random.uniform(-5.0, 5.0, (self.batch_size, 1)))
...         return [x, torch.tensor(self.amplitude * np.sin(x + self.phase))]
...     def parameters(self):
...         for key, value in self.__dict__.items():
...             if isinstance(value, torch.nn.Parameter):
...                 yield value
>>> learner = SineLearner()
>>> optimizer = dc.models.optimizers.Adam(learning_rate=5e-3)
>>> maml = MAML(learner,meta_batch_size=4,optimizer=optimizer)
>>> maml.fit(9000)





To test it out on a new task and see how it works

>>> learner.select_task()
>>> maml.restore()
>>> batch = learner.get_batch()
>>> loss, outputs = maml.predict_on_batch(batch)
>>> maml.train_on_current_task()
>>> loss, outputs = maml.predict_on_batch(batch)






	
__init__(learner: ~deepchem.metalearning.MetaLearner, learning_rate: float | ~deepchem.models.optimizers.LearningRateSchedule = 0.001, optimization_steps: int = 1, meta_batch_size: int = 10, optimizer: ~deepchem.models.optimizers.Optimizer = <deepchem.models.optimizers.Adam object>, model_dir: str | None = None, device: ~torch.device | None = None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/metalearning/torch_maml.py#L88-L174]

	Create an object for performing meta-optimization.


	Parameters:

	
	learner (MetaLearner) – defines the meta-learning problem


	learning_rate (float or Tensor) – the learning rate to use for optimizing each task (not to be confused with the one used
for meta-learning).  This can optionally be made a variable (represented as a
Tensor), in which case the learning rate will itself be learnable.


	optimization_steps (int) – the number of steps of gradient descent to perform for each task


	meta_batch_size (int) – the number of tasks to use for each step of meta-learning


	optimizer (Optimizer) – the optimizer to use for meta-learning (not to be confused with the gradient descent
optimization performed for each task)


	model_dir (str) – the directory in which the model will be saved.  If None, a temporary directory will be created.


	device (torch.device, optional (default None)) – the device on which to run computations.  If None, a device is
chosen automatically.













	
fit(steps: int, max_checkpoints_to_keep: int = 5, checkpoint_interval: int = 600, restore: bool = False)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/metalearning/torch_maml.py#L180-L254]

	Perform meta-learning to train the model.


	Parameters:

	
	steps (int) – the number of steps of meta-learning to perform


	max_checkpoints_to_keep (int) – the maximum number of checkpoint files to keep.  When this number is reached, older
files are deleted.


	checkpoint_interval (int) – the time interval at which to save checkpoints, measured in seconds


	restore (bool) – if True, restore the model from the most recent checkpoint before training
it further













	
restore() → None[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/metalearning/torch_maml.py#L256-L269]

	Reload the model parameters from the most recent checkpoint file.






	
train_on_current_task(optimization_steps: int = 1, restore: bool = True)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/metalearning/torch_maml.py#L271-L300]

	Perform a few steps of gradient descent to fine tune the model on the current task.


	Parameters:

	
	optimization_steps (int) – the number of steps of gradient descent to perform


	restore (bool) – if True, restore the model from the most recent checkpoint before optimizing













	
predict_on_batch(inputs: Tensor | Sequence[Tensor]) → Tuple[Tensor, Sequence[Tensor]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/metalearning/torch_maml.py#L302-L317]

	Compute the model’s outputs for a batch of inputs.


	Parameters:

	inputs (list of arrays) – the inputs to the model



	Returns:

	
	(loss, outputs) where loss is the value of the model’s loss function, and


	outputs is a list of the model’s outputs















	
save_checkpoint(max_checkpoints_to_keep: int = 5, model_dir: str | None = None) → None[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/metalearning/torch_maml.py#L319-L368]

	Save a checkpoint to disk.

Usually you do not need to call this method, since fit() saves checkpoints
automatically.  If you have disabled automatic checkpointing during fitting,
this can be called to manually write checkpoints.


	Parameters:

	
	max_checkpoints_to_keep (int) – the maximum number of checkpoints to keep.  Older checkpoints are discarded.


	model_dir (str, default None) – Model directory to save checkpoint to. If None, revert to self.model_dir













	
get_checkpoints(model_dir: str | None = None) → List[str][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/metalearning/torch_maml.py#L370-L385]

	Get a list of all available checkpoint files.


	Parameters:

	model_dir (str, default None) – Directory to get list of checkpoints from. Reverts to self.model_dir if None
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Reinforcement Learning

Reinforcement Learning is a powerful technique for learning when you
have access to a simulator. That is, suppose that you have a high
fidelity way of predicting the outcome of an experiment. This is
perhaps a physics engine, perhaps a chemistry engine, or anything. And
you’d like to solve some task within this engine. You can use
reinforcement learning for this purpose.


Environments


	
class Environment(state_shape, n_actions=None, state_dtype=None, action_shape=None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/rl/__init__.py#L9-L145]

	An environment in which an actor performs actions to accomplish a task.

An environment has a current state, which is represented as either a single NumPy
array, or optionally a list of NumPy arrays.  When an action is taken, that causes
the state to be updated.  The environment also computes a reward for each action,
and reports when the task has been terminated (meaning that no more actions may
be taken).

Two types of actions are supported.  For environments with discrete action spaces,
the action is an integer specifying the index of the action to perform (out of a
fixed list of possible actions).  For environments with continuous action spaces,
the action is a NumPy array.

Environment objects should be written to support pickle and deepcopy operations.
Many algorithms involve creating multiple copies of the Environment, possibly
running in different processes or even on different computers.


	
__init__(state_shape, n_actions=None, state_dtype=None, action_shape=None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/rl/__init__.py#L28-L69]

	Subclasses should call the superclass constructor in addition to doing their own initialization.

A value should be provided for either n_actions (for discrete action spaces)
or action_shape (for continuous action spaces), but not both.


	Parameters:

	
	state_shape (tuple or list of tuples) – the shape(s) of the array(s) making up the state


	n_actions (int) – the number of discrete actions that can be performed.  If the action space
is continuous, this should be None.


	state_dtype (dtype or list of dtypes) – the type(s) of the array(s) making up the state.  If this is None, all
arrays are assumed to be float32.


	action_shape (tuple) – the shape of the array describing an action.  If the action space
is discrete, this should be none.













	
property state[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/rl.py]

	The current state of the environment, represented as either a NumPy array or list of arrays.

If reset() has not yet been called at least once, this is undefined.






	
property terminated[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/rl.py]

	Whether the task has reached its end.

If reset() has not yet been called at least once, this is undefined.






	
property state_shape[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/rl.py]

	The shape of the arrays that describe a state.

If the state is a single array, this returns a tuple giving the shape of that array.
If the state is a list of arrays, this returns a list of tuples where each tuple is
the shape of one array.






	
property state_dtype[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/rl.py]

	The dtypes of the arrays that describe a state.

If the state is a single array, this returns the dtype of that array.  If the state
is a list of arrays, this returns a list containing the dtypes of the arrays.






	
property n_actions[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/rl.py]

	The number of possible actions that can be performed in this Environment.

If the environment uses a continuous action space, this returns None.






	
property action_shape[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/rl.py]

	The expected shape of NumPy arrays representing actions.

If the environment uses a discrete action space, this returns None.






	
reset()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/rl/__init__.py#L122-L128]

	Initialize the environment in preparation for doing calculations with it.

This must be called before calling step() or querying the state.  You can call it
again later to reset the environment back to its original state.






	
step(action)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/rl/__init__.py#L130-L145]

	Take a time step by performing an action.

This causes the “state” and “terminated” properties to be updated.


	Parameters:

	action (object) – an object describing the action to take



	Returns:

	
	the reward earned by taking the action, represented as a floating point number


	(higher values are better)



















	
class GymEnvironment(name)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/rl/__init__.py#L148-L174]

	This is a convenience class for working with environments from OpenAI Gym.


	
__init__(name)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/rl/__init__.py#L151-L163]

	Create an Environment wrapping the OpenAI Gym environment with a specified name.






	
reset()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/rl/__init__.py#L165-L167]

	Initialize the environment in preparation for doing calculations with it.

This must be called before calling step() or querying the state.  You can call it
again later to reset the environment back to its original state.






	
step(action)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/rl/__init__.py#L169-L171]

	Take a time step by performing an action.

This causes the “state” and “terminated” properties to be updated.


	Parameters:

	action (object) – an object describing the action to take



	Returns:

	
	the reward earned by taking the action, represented as a floating point number


	(higher values are better)




















Policies


	
class Policy(output_names, rnn_initial_states=[])[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/rl/__init__.py#L177-L234]

	A policy for taking actions within an environment.

A policy is defined by a tf.keras.Model that takes the current state as input
and performs the necessary calculations.  There are many algorithms for
reinforcement learning, and they differ in what values they require a policy to
compute.  That makes it impossible to define a single interface allowing any
policy to be optimized with any algorithm.  Instead, this interface just tries
to be as flexible and generic as possible.  Each algorithm must document what
values it expects the model to output.

Special handling is needed for models that include recurrent layers.  In that
case, the model has its own internal state which the learning algorithm must
be able to specify and query.  To support this, the Policy must do three things:


	
	The Model must take additional inputs that specify the initial states of
	all its recurrent layers.  These will be appended to the list of arrays
specifying the environment state.







	
	The Model must also return the final states of all its recurrent layers as
	outputs.







	
	The constructor argument rnn_initial_states must be specified to define
	the states to use for the Model’s recurrent layers at the start of a new
rollout.









Policy objects should be written to support pickling.  Many algorithms involve
creating multiple copies of the Policy, possibly running in different processes
or even on different computers.


	
__init__(output_names, rnn_initial_states=[])[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/rl/__init__.py#L208-L224]

	Subclasses should call the superclass constructor in addition to doing
their own initialization.


	Parameters:

	
	output_names (list of strings) – the names of the Model’s outputs, in order.  It is up to each reinforcement
learning algorithm to document what outputs it expects policies to compute.
Outputs that return the final states of recurrent layers should have the
name ‘rnn_state’.


	rnn_initial_states (list of NumPy arrays) – the initial states of the Model’s recurrent layers at the start of a new
rollout













	
create_model(**kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/rl/__init__.py#L226-L234]

	Construct and return a tf.keras.Model that computes the policy.

The inputs to the model consist of the arrays representing the current state
of the environment, followed by the initial states for all recurrent layers.
Depending on the algorithm being used, other inputs might get passed as
well.  It is up to each algorithm to document that.











A2C


	
class A2C(env, policy, max_rollout_length=20, discount_factor=0.99, advantage_lambda=0.98, value_weight=1.0, entropy_weight=0.01, optimizer=None, model_dir=None, use_hindsight=False)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/rl/a2c.py#L73-L521]

	Implements the Advantage Actor-Critic (A2C) algorithm for reinforcement learning.

The algorithm is described in Mnih et al, “Asynchronous Methods for Deep Reinforcement Learning”
(https://arxiv.org/abs/1602.01783).  This class supports environments with both discrete and
continuous action spaces.  For discrete action spaces, the “action” argument passed to the
environment is an integer giving the index of the action to perform.  The policy must output
a vector called “action_prob” giving the probability of taking each action.  For continuous
action spaces, the action is an array where each element is chosen independently from a
normal distribution.  The policy must output two arrays of the same shape: “action_mean”
gives the mean value for each element, and “action_std” gives the standard deviation for
each element.  In either case, the policy must also output a scalar called “value” which
is an estimate of the value function for the current state.

The algorithm optimizes all outputs at once using a loss that is the sum of three terms:


	The policy loss, which seeks to maximize the discounted reward for each action.


	
	The value loss, which tries to make the value estimate match the actual discounted reward
	that was attained at each step.







	An entropy term to encourage exploration.




This class supports Generalized Advantage Estimation as described in Schulman et al., “High-Dimensional
Continuous Control Using Generalized Advantage Estimation” (https://arxiv.org/abs/1506.02438).
This is a method of trading off bias and variance in the advantage estimate, which can sometimes
improve the rate of convergance.  Use the advantage_lambda parameter to adjust the tradeoff.

This class supports Hindsight Experience Replay as described in Andrychowicz et al., “Hindsight
Experience Replay” (https://arxiv.org/abs/1707.01495).  This is a method that can enormously
accelerate learning when rewards are very rare.  It requires that the environment state contains
information about the goal the agent is trying to achieve.  Each time it generates a rollout, it
processes that rollout twice: once using the actual goal the agent was pursuing while generating
it, and again using the final state of that rollout as the goal.  This guarantees that half of
all rollouts processed will be ones that achieved their goals, and hence received a reward.

To use this feature, specify use_hindsight=True to the constructor.  The environment must have
a method defined as follows:


	def apply_hindsight(self, states, actions, goal):
	…
return new_states, rewards





The method receives the list of states generated during the rollout, the action taken for each one,
and a new goal state.  It should generate a new list of states that are identical to the input ones,
except specifying the new goal.  It should return that list of states, and the rewards that would
have been received for taking the specified actions from those states.  The output arrays may be
shorter than the input ones, if the modified rollout would have terminated sooner.


Note

Using this class on continuous action spaces requires that tensorflow_probability be installed.




	
__init__(env, policy, max_rollout_length=20, discount_factor=0.99, advantage_lambda=0.98, value_weight=1.0, entropy_weight=0.01, optimizer=None, model_dir=None, use_hindsight=False)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/rl/a2c.py#L127-L193]

	Create an object for optimizing a policy.


	Parameters:

	
	env (Environment) – the Environment to interact with


	policy (Policy) – the Policy to optimize.  It must have outputs with the names ‘action_prob’
and ‘value’ (for discrete action spaces) or ‘action_mean’, ‘action_std’,
and ‘value’ (for continuous action spaces)


	max_rollout_length (int) – the maximum length of rollouts to generate


	discount_factor (float) – the discount factor to use when computing rewards


	advantage_lambda (float) – the parameter for trading bias vs. variance in Generalized Advantage Estimation


	value_weight (float) – a scale factor for the value loss term in the loss function


	entropy_weight (float) – a scale factor for the entropy term in the loss function


	optimizer (Optimizer) – the optimizer to use.  If None, a default optimizer is used.


	model_dir (str) – the directory in which the model will be saved.  If None, a temporary directory will be created.


	use_hindsight (bool) – if True, use Hindsight Experience Replay













	
fit(total_steps, max_checkpoints_to_keep=5, checkpoint_interval=600, restore=False)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/rl/a2c.py#L214-L264]

	Train the policy.


	Parameters:

	
	total_steps (int) – the total number of time steps to perform on the environment, across all rollouts
on all threads


	max_checkpoints_to_keep (int) – the maximum number of checkpoint files to keep.  When this number is reached, older
files are deleted.


	checkpoint_interval (float) – the time interval at which to save checkpoints, measured in seconds


	restore (bool) – if True, restore the model from the most recent checkpoint and continue training
from there.  If False, retrain the model from scratch.













	
predict(state, use_saved_states=True, save_states=True)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/rl/a2c.py#L266-L300]

	Compute the policy’s output predictions for a state.

If the policy involves recurrent layers, this method can preserve their internal
states between calls.  Use the use_saved_states and save_states arguments to specify
how it should behave.


	Parameters:

	
	state (array or list of arrays) – the state of the environment for which to generate predictions


	use_saved_states (bool) – if True, the states most recently saved by a previous call to predict() or select_action()
will be used as the initial states.  If False, the internal states of all recurrent layers
will be set to the initial values defined by the policy before computing the predictions.


	save_states (bool) – if True, the internal states of all recurrent layers at the end of the calculation
will be saved, and any previously saved states will be discarded.  If False, the
states at the end of the calculation will be discarded, and any previously saved
states will be kept.






	Return type:

	the array of action probabilities, and the estimated value function










	
select_action(state, deterministic=False, use_saved_states=True, save_states=True)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/rl/a2c.py#L302-L335]

	Select an action to perform based on the environment’s state.

If the policy involves recurrent layers, this method can preserve their internal
states between calls.  Use the use_saved_states and save_states arguments to specify
how it should behave.


	Parameters:

	
	state (array or list of arrays) – the state of the environment for which to select an action


	deterministic (bool) – if True, always return the best action (that is, the one with highest probability).
If False, randomly select an action based on the computed probabilities.


	use_saved_states (bool) – if True, the states most recently saved by a previous call to predict() or select_action()
will be used as the initial states.  If False, the internal states of all recurrent layers
will be set to the initial values defined by the policy before computing the predictions.


	save_states (bool) – if True, the internal states of all recurrent layers at the end of the calculation
will be saved, and any previously saved states will be discarded.  If False, the
states at the end of the calculation will be discarded, and any previously saved
states will be kept.






	Return type:

	the index of the selected action










	
restore()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/rl/a2c.py#L337-L342]

	Reload the model parameters from the most recent checkpoint file.










	
class A2CLossDiscrete(value_weight, entropy_weight, action_prob_index, value_index)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/rl/a2c.py#L11-L33]

	This class computes the loss function for A2C with discrete action spaces.


	
__init__(value_weight, entropy_weight, action_prob_index, value_index)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/rl/a2c.py#L14-L19]

	









PPO


	
class PPO(env, policy, max_rollout_length=20, optimization_rollouts=8, optimization_epochs=4, batch_size=64, clipping_width=0.2, discount_factor=0.99, advantage_lambda=0.98, value_weight=1.0, entropy_weight=0.01, optimizer=None, model_dir=None, use_hindsight=False)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/rl/ppo.py#L46-L408]

	Implements the Proximal Policy Optimization (PPO) algorithm for reinforcement learning.

The algorithm is described in Schulman et al, “Proximal Policy Optimization Algorithms”
(https://openai-public.s3-us-west-2.amazonaws.com/blog/2017-07/ppo/ppo-arxiv.pdf).
This class requires the policy to output two quantities: a vector giving the probability of
taking each action, and an estimate of the value function for the current state.  It
optimizes both outputs at once using a loss that is the sum of three terms:


	The policy loss, which seeks to maximize the discounted reward for each action.


	
	The value loss, which tries to make the value estimate match the actual discounted reward
	that was attained at each step.







	An entropy term to encourage exploration.




This class only supports environments with discrete action spaces, not continuous ones.  The
“action” argument passed to the environment is an integer, giving the index of the action to perform.

This class supports Generalized Advantage Estimation as described in Schulman et al., “High-Dimensional
Continuous Control Using Generalized Advantage Estimation” (https://arxiv.org/abs/1506.02438).
This is a method of trading off bias and variance in the advantage estimate, which can sometimes
improve the rate of convergance.  Use the advantage_lambda parameter to adjust the tradeoff.

This class supports Hindsight Experience Replay as described in Andrychowicz et al., “Hindsight
Experience Replay” (https://arxiv.org/abs/1707.01495).  This is a method that can enormously
accelerate learning when rewards are very rare.  It requires that the environment state contains
information about the goal the agent is trying to achieve.  Each time it generates a rollout, it
processes that rollout twice: once using the actual goal the agent was pursuing while generating
it, and again using the final state of that rollout as the goal.  This guarantees that half of
all rollouts processed will be ones that achieved their goals, and hence received a reward.

To use this feature, specify use_hindsight=True to the constructor.  The environment must have
a method defined as follows:


	def apply_hindsight(self, states, actions, goal):
	…
return new_states, rewards





The method receives the list of states generated during the rollout, the action taken for each one,
and a new goal state.  It should generate a new list of states that are identical to the input ones,
except specifying the new goal.  It should return that list of states, and the rewards that would
have been received for taking the specified actions from those states.  The output arrays may be
shorter than the input ones, if the modified rollout would have terminated sooner.


	
__init__(env, policy, max_rollout_length=20, optimization_rollouts=8, optimization_epochs=4, batch_size=64, clipping_width=0.2, discount_factor=0.99, advantage_lambda=0.98, value_weight=1.0, entropy_weight=0.01, optimizer=None, model_dir=None, use_hindsight=False)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/rl/ppo.py#L91-L173]

	Create an object for optimizing a policy.


	Parameters:

	
	env (Environment) – the Environment to interact with


	policy (Policy) – the Policy to optimize.  It must have outputs with the names ‘action_prob’
and ‘value’, corresponding to the action probabilities and value estimate


	max_rollout_length (int) – the maximum length of rollouts to generate


	optimization_rollouts (int) – the number of rollouts to generate for each iteration of optimization


	optimization_epochs (int) – the number of epochs of optimization to perform within each iteration


	batch_size (int) – the batch size to use during optimization.  If this is 0, each rollout will be used as a
separate batch.


	clipping_width (float) – in computing the PPO loss function, the probability ratio is clipped to the range
(1-clipping_width, 1+clipping_width)


	discount_factor (float) – the discount factor to use when computing rewards


	advantage_lambda (float) – the parameter for trading bias vs. variance in Generalized Advantage Estimation


	value_weight (float) – a scale factor for the value loss term in the loss function


	entropy_weight (float) – a scale factor for the entropy term in the loss function


	optimizer (Optimizer) – the optimizer to use.  If None, a default optimizer is used.


	model_dir (str) – the directory in which the model will be saved.  If None, a temporary directory will be created.


	use_hindsight (bool) – if True, use Hindsight Experience Replay













	
fit(total_steps, max_checkpoints_to_keep=5, checkpoint_interval=600, restore=False)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/rl/ppo.py#L189-L256]

	Train the policy.


	Parameters:

	
	total_steps (int) – the total number of time steps to perform on the environment, across all rollouts
on all threads


	max_checkpoints_to_keep (int) – the maximum number of checkpoint files to keep.  When this number is reached, older
files are deleted.


	checkpoint_interval (float) – the time interval at which to save checkpoints, measured in seconds


	restore (bool) – if True, restore the model from the most recent checkpoint and continue training
from there.  If False, retrain the model from scratch.













	
predict(state, use_saved_states=True, save_states=True)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/rl/ppo.py#L299-L327]

	Compute the policy’s output predictions for a state.

If the policy involves recurrent layers, this method can preserve their internal
states between calls.  Use the use_saved_states and save_states arguments to specify
how it should behave.


	Parameters:

	
	state (array or list of arrays) – the state of the environment for which to generate predictions


	use_saved_states (bool) – if True, the states most recently saved by a previous call to predict() or select_action()
will be used as the initial states.  If False, the internal states of all recurrent layers
will be set to the initial values defined by the policy before computing the predictions.


	save_states (bool) – if True, the internal states of all recurrent layers at the end of the calculation
will be saved, and any previously saved states will be discarded.  If False, the
states at the end of the calculation will be discarded, and any previously saved
states will be kept.






	Return type:

	the array of action probabilities, and the estimated value function










	
select_action(state, deterministic=False, use_saved_states=True, save_states=True)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/rl/ppo.py#L329-L362]

	Select an action to perform based on the environment’s state.

If the policy involves recurrent layers, this method can preserve their internal
states between calls.  Use the use_saved_states and save_states arguments to specify
how it should behave.


	Parameters:

	
	state (array or list of arrays) – the state of the environment for which to select an action


	deterministic (bool) – if True, always return the best action (that is, the one with highest probability).
If False, randomly select an action based on the computed probabilities.


	use_saved_states (bool) – if True, the states most recently saved by a previous call to predict() or select_action()
will be used as the initial states.  If False, the internal states of all recurrent layers
will be set to the initial values defined by the policy before computing the predictions.


	save_states (bool) – if True, the internal states of all recurrent layers at the end of the calculation
will be saved, and any previously saved states will be discarded.  If False, the
states at the end of the calculation will be discarded, and any previously saved
states will be kept.






	Return type:

	the index of the selected action










	
restore()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/rl/ppo.py#L364-L369]

	Reload the model parameters from the most recent checkpoint file.










	
class PPOLoss(value_weight, entropy_weight, clipping_width, action_prob_index, value_index)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/rl/ppo.py#L15-L43]

	This class computes the loss function for PPO.


	
__init__(value_weight, entropy_weight, clipping_width, action_prob_index, value_index)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/rl/ppo.py#L18-L24]
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Docking

Thanks to advances in biophysics, we are often able to find the
structure of proteins from experimental techniques like Cryo-EM or
X-ray crystallography. These structures can be powerful aides in
designing small molecules. The technique of Molecular docking performs
geometric calculations to find a “binding pose” with the small
molecule interacting with the protein in question in a suitable
binding pocket (that is, a region on the protein which has a groove in
which the small molecule can rest). For more information about
docking, check out the Autodock Vina paper:

Trott, Oleg, and Arthur J. Olson. “AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.” Journal of computational chemistry 31.2 (2010): 455-461.


Binding Pocket Discovery

DeepChem has some utilities to help find binding pockets on proteins
automatically. For now, these utilities are simple, but we will
improve these in future versions of DeepChem.


	
class BindingPocketFinder[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/dock/binding_pocket.py#L55-L78]

	Abstract superclass for binding pocket detectors

Many times when working with a new protein or other macromolecule,
it’s not clear what zones of the macromolecule may be good targets
for potential ligands or other molecules to interact with. This
abstract class provides a template for child classes that
algorithmically locate potential binding pockets that are good
potential interaction sites.

Note that potential interactions sites can be found by many
different methods, and that this abstract class doesn’t specify the
technique to be used.


	
find_pockets(molecule: Any)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/dock/binding_pocket.py#L70-L78]

	Finds potential binding pockets in proteins.


	Parameters:

	molecule (object) – Some representation of a molecule.














	
class ConvexHullPocketFinder(scoring_model: Model | None = None, pad: float = 5.0)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/dock/binding_pocket.py#L81-L140]

	Implementation that uses convex hull of protein to find pockets.

Based on https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4112621/pdf/1472-6807-14-18.pdf


	
__init__(scoring_model: Model | None = None, pad: float = 5.0)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/dock/binding_pocket.py#L87-L99]

	Initialize the pocket finder.


	Parameters:

	
	scoring_model (Model, optional (default None)) – If specified, use this model to prune pockets.


	pad (float, optional (default 5.0)) – The number of angstroms to pad around a binding pocket’s atoms
to get a binding pocket box.













	
find_all_pockets(protein_file: str) → List[CoordinateBox][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/dock/binding_pocket.py#L101-L115]

	Find list of binding pockets on protein.


	Parameters:

	protein_file (str) – Protein to load in.



	Returns:

	List of binding pockets on protein. Each pocket is a CoordinateBox



	Return type:

	List[CoordinateBox]










	
find_pockets(macromolecule_file: str) → List[CoordinateBox][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/dock/binding_pocket.py#L117-L140]

	Find list of suitable binding pockets on protein.

This function computes putative binding pockets on this protein.
This class uses the ConvexHull to compute binding pockets. Each
face of the hull is converted into a coordinate box used for
binding.


	Parameters:

	macromolecule_file (str) – Location of the macromolecule file to load



	Returns:

	List of pockets. Each pocket is a CoordinateBox



	Return type:

	List[CoordinateBox]















Pose Generation

Pose generation is the task of finding a “pose”, that is a geometric
configuration of a small molecule interacting with a protein. Pose
generation is a complex process, so for now DeepChem relies on
external software to perform pose generation. This software is invoked
and installed under the hood.


	
class PoseGenerator[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/dock/pose_generation.py#L23-L77]

	A Pose Generator computes low energy conformations for molecular complexes.

Many questions in structural biophysics reduce to that of computing
the binding free energy of molecular complexes. A key step towards
computing the binding free energy of two complexes is to find low
energy “poses”, that is energetically favorable conformations of
molecules with respect to each other. One application of this
technique is to find low energy poses for protein-ligand
interactions.


	
generate_poses(molecular_complex: Tuple[str, str], centroid: ndarray | None = None, box_dims: ndarray | None = None, exhaustiveness: int = 10, num_modes: int = 9, num_pockets: int | None = None, out_dir: str | None = None, generate_scores: bool = False)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/dock/pose_generation.py#L35-L77]

	Generates a list of low energy poses for molecular complex


	Parameters:

	
	molecular_complexes (Tuple[str, str]) – A representation of a molecular complex. This tuple is
(protein_file, ligand_file).


	centroid (np.ndarray, optional (default None)) – The centroid to dock against. Is computed if not specified.


	box_dims (np.ndarray, optional (default None)) – A numpy array of shape (3,) holding the size of the box to dock.
If not specified is set to size of molecular complex plus 5 angstroms.


	exhaustiveness (int, optional (default 10)) – Tells pose generator how exhaustive it should be with pose
generation.


	num_modes (int, optional (default 9)) – Tells pose generator how many binding modes it should generate at
each invocation.


	num_pockets (int, optional (default None)) – If specified, self.pocket_finder must be set. Will only
generate poses for the first num_pockets returned by
self.pocket_finder.


	out_dir (str, optional (default None)) – If specified, write generated poses to this directory.


	generate_score (bool, optional (default False)) – If True, the pose generator will return scores for complexes.
This is used typically when invoking external docking programs
that compute scores.






	Return type:

	A list of molecular complexes in energetically favorable poses.














	
class VinaPoseGenerator(pocket_finder: BindingPocketFinder | None = None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/dock/pose_generation.py#L241-L488]

	Uses Autodock Vina to generate binding poses.

This class uses Autodock Vina to make make predictions of
binding poses.

Example

>> import deepchem as dc
>> vpg = dc.dock.VinaPoseGenerator(pocket_finder=None)
>> protein_file = ‘1jld_protein.pdb’
>> ligand_file = ‘1jld_ligand.sdf’
>> poses, scores = vpg.generate_poses(
..        (protein_file, ligand_file),
..        exhaustiveness=1,
..        num_modes=1,
..        out_dir=tmp,
..        generate_scores=True)


Note

This class requires RDKit and vina to be installed. As on 9-March-22,
Vina is not available on Windows. Hence, this utility is currently
available only on Ubuntu and MacOS.




	
__init__(pocket_finder: BindingPocketFinder | None = None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/dock/pose_generation.py#L267-L276]

	Initializes Vina Pose Generator


	Parameters:

	pocket_finder (BindingPocketFinder, optional (default None)) – If specified should be an instance of
dc.dock.BindingPocketFinder.










	
generate_poses(molecular_complex: Tuple[str, str], centroid: ndarray | None = None, box_dims: ndarray | None = None, exhaustiveness: int = 10, num_modes: int = 9, num_pockets: int | None = None, out_dir: str | None = None, generate_scores: bool | None = False, **kwargs) → Tuple[List[Tuple[Any, Any]], List[float]] | List[Tuple[Any, Any]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/dock/pose_generation.py#L278-L488]

	Generates the docked complex and outputs files for docked complex.


	Parameters:

	
	molecular_complexes (Tuple[str, str]) – A representation of a molecular complex. This tuple is
(protein_file, ligand_file). The protein should be a pdb file
and the ligand should be an sdf file.


	centroid (np.ndarray, optional) – The centroid to dock against. Is computed if not specified.


	box_dims (np.ndarray, optional) – A numpy array of shape (3,) holding the size of the box to dock. If not
specified is set to size of molecular complex plus 5 angstroms.


	exhaustiveness (int, optional (default 10)) – Tells Autodock Vina how exhaustive it should be with pose generation. A
higher value of exhaustiveness implies more computation effort for the
docking experiment.


	num_modes (int, optional (default 9)) – Tells Autodock Vina how many binding modes it should generate at
each invocation.


	num_pockets (int, optional (default None)) – If specified, self.pocket_finder must be set. Will only
generate poses for the first num_pockets returned by
self.pocket_finder.


	out_dir (str, optional) – If specified, write generated poses to this directory.


	generate_score (bool, optional (default False)) – If True, the pose generator will return scores for complexes.
This is used typically when invoking external docking programs
that compute scores.


	kwargs – The kwargs - cpu, min_rmsd, max_evals, energy_range supported by VINA
are as documented in https://autodock-vina.readthedocs.io/en/latest/vina.html






	Returns:

	Tuple of (docked_poses, scores), docked_poses, or scores. docked_poses
is a list of docked molecular complexes. Each entry in this list
contains a (protein_mol, ligand_mol) pair of RDKit molecules.
scores is a list of binding free energies predicted by Vina.



	Return type:

	Tuple[docked_poses, scores] or docked_poses or scores



	Raises:

	ValueError – 














	
class GninaPoseGenerator[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/dock/pose_generation.py#L80-L238]

	Use GNINA to generate binding poses.

This class uses GNINA (a deep learning framework for molecular
docking) to generate binding poses. It downloads the GNINA
executable to DEEPCHEM_DATA_DIR (an environment variable you set)
and invokes the executable to perform pose generation.

GNINA uses pre-trained convolutional neural network (CNN) scoring
functions to rank binding poses based on learned representations of
3D protein-ligand interactions. It has been shown to outperform
AutoDock Vina in virtual screening applications [1]_.

If you use the GNINA molecular docking engine, please cite the relevant
papers: https://github.com/gnina/gnina#citation
The primary citation for GNINA is [1]_.

References



[1]
M Ragoza, J Hochuli, E Idrobo, J Sunseri, DR Koes.



“Protein–Ligand Scoring with Convolutional Neural Networks.”
Journal of chemical information and modeling (2017).


Note


	GNINA currently only works on Linux operating systems.


	GNINA requires CUDA >= 10.1 for fast CNN scoring.


	
	Almost all dependencies are included in the most compatible way
	possible, which reduces performance. Build GNINA from source
for production use.












	
__init__()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/dock/pose_generation.py#L113-L132]

	Initialize GNINA pose generator.






	
generate_poses(molecular_complex: Tuple[str, str], centroid: ndarray | None = None, box_dims: ndarray | None = None, exhaustiveness: int = 10, num_modes: int = 9, num_pockets: int | None = None, out_dir: str | None = None, generate_scores: bool = True, **kwargs) → Tuple[List[Tuple[Any, Any]], ndarray] | List[Tuple[Any, Any]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/dock/pose_generation.py#L134-L238]

	Generates the docked complex and outputs files for docked complex.


	Parameters:

	
	molecular_complexes (Tuple[str, str]) – A representation of a molecular complex. This tuple is
(protein_file, ligand_file).


	centroid (np.ndarray, optional (default None)) – The centroid to dock against. Is computed if not specified.


	box_dims (np.ndarray, optional (default None)) – A numpy array of shape (3,) holding the size of the box to dock.
If not specified is set to size of molecular complex plus 4 angstroms.


	exhaustiveness (int (default 8)) – Tells GNINA how exhaustive it should be with pose
generation.


	num_modes (int (default 9)) – Tells GNINA how many binding modes it should generate at
each invocation.


	out_dir (str, optional) – If specified, write generated poses to this directory.


	generate_scores (bool, optional (default True)) – If True, the pose generator will return scores for complexes.
This is used typically when invoking external docking programs
that compute scores.


	kwargs – Any args supported by GNINA as documented
https://github.com/gnina/gnina#usage






	Returns:

	Tuple of (docked_poses, scores) or docked_poses. docked_poses
is a list of docked molecular complexes. Each entry in this list
contains a (protein_mol, ligand_mol) pair of RDKit molecules.
scores is an array of binding affinities (kcal/mol),
CNN pose scores, and CNN affinities predicted by GNINA.



	Return type:

	Tuple[docked_poses, scores] or docked_poses















Docking

The dc.dock.docking module provides a generic docking
implementation that depends on provide pose generation and pose
scoring utilities to perform docking. This implementation is generic.


	
class Docker(pose_generator: PoseGenerator, featurizer: ComplexFeaturizer | None = None, scoring_model: Model | None = None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/dock/docking.py#L19-L145]

	A generic molecular docking class

This class provides a docking engine which uses provided models for
featurization, pose generation, and scoring. Most pieces of docking
software are command line tools that are invoked from the shell. The
goal of this class is to provide a python clean API for invoking
molecular docking programmatically.

The implementation of this class is lightweight and generic. It’s
expected that the majority of the heavy lifting will be done by pose
generation and scoring classes that are provided to this class.


	
__init__(pose_generator: PoseGenerator, featurizer: ComplexFeaturizer | None = None, scoring_model: Model | None = None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/dock/docking.py#L33-L56]

	Builds model.


	Parameters:

	
	pose_generator (PoseGenerator) – The pose generator to use for this model


	featurizer (ComplexFeaturizer, optional (default None)) – Featurizer associated with scoring_model


	scoring_model (Model, optional (default None)) – Should make predictions on molecular complex.













	
dock(molecular_complex: Tuple[str, str], centroid: ndarray | None = None, box_dims: ndarray | None = None, exhaustiveness: int = 10, num_modes: int = 9, num_pockets: int | None = None, out_dir: str | None = None, use_pose_generator_scores: bool = False) → Generator[Tuple[Any, Any], None, None] | Generator[Tuple[Tuple[Any, Any], float], None, None][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/dock/docking.py#L58-L145]

	Generic docking function.

This docking function uses this object’s featurizer, pose
generator, and scoring model to make docking predictions. This
function is written in generic style so


	Parameters:

	
	molecular_complex (Tuple[str, str]) – A representation of a molecular complex. This tuple is
(protein_file, ligand_file).


	centroid (np.ndarray, optional (default None)) – The centroid to dock against. Is computed if not specified.


	box_dims (np.ndarray, optional (default None)) – A numpy array of shape (3,) holding the size of the box to dock. If not
specified is set to size of molecular complex plus 5 angstroms.


	exhaustiveness (int, optional (default 10)) – Tells pose generator how exhaustive it should be with pose
generation.


	num_modes (int, optional (default 9)) – Tells pose generator how many binding modes it should generate at
each invocation.


	num_pockets (int, optional (default None)) – If specified, self.pocket_finder must be set. Will only
generate poses for the first num_pockets returned by
self.pocket_finder.


	out_dir (str, optional (default None)) – If specified, write generated poses to this directory.


	use_pose_generator_scores (bool, optional (default False)) – If True, ask pose generator to generate scores. This cannot be
True if self.featurizer and self.scoring_model are set
since those will be used to generate scores in that case.






	Returns:

	A generator. If use_pose_generator_scores==True or
self.scoring_model is set, then will yield tuples
(posed_complex, score). Else will yield posed_complex.



	Return type:

	Generator[Tuple[posed_complex, score]] or Generator[posed_complex]















Pose Scoring

This module contains some utilities for computing docking scoring
functions directly in Python. For now, support for custom pose scoring
is limited.


	
pairwise_distances(coords1: ndarray, coords2: ndarray) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/dock/pose_scoring.py#L7-L22]

	Returns matrix of pairwise Euclidean distances.


	Parameters:

	
	coords1 (np.ndarray) – A numpy array of shape (N, 3)


	coords2 (np.ndarray) – A numpy array of shape (M, 3)






	Returns:

	A (N,M) array with pairwise distances.



	Return type:

	np.ndarray










	
cutoff_filter(d: ndarray, x: ndarray, cutoff=8.0) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/dock/pose_scoring.py#L25-L42]

	Applies a cutoff filter on pairwise distances


	Parameters:

	
	d (np.ndarray) – Pairwise distances matrix. A numpy array of shape (N, M)


	x (np.ndarray) – Matrix of shape (N, M)


	cutoff (float, optional (default 8)) – Cutoff for selection in Angstroms






	Returns:

	A (N,M) array with values where distance is too large thresholded to 0.



	Return type:

	np.ndarray










	
vina_nonlinearity(c: ndarray, w: float, Nrot: int) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/dock/pose_scoring.py#L45-L63]

	Computes non-linearity used in Vina.


	Parameters:

	
	c (np.ndarray) – A numpy array of shape (N, M)


	w (float) – Weighting term


	Nrot (int) – Number of rotatable bonds in this molecule






	Returns:

	A (N, M) array with activations under a nonlinearity.



	Return type:

	np.ndarray










	
vina_repulsion(d: ndarray) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/dock/pose_scoring.py#L66-L79]

	Computes Autodock Vina’s repulsion interaction term.


	Parameters:

	d (np.ndarray) – A numpy array of shape (N, M).



	Returns:

	A (N, M) array with repulsion terms.



	Return type:

	np.ndarray










	
vina_hydrophobic(d: ndarray) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/dock/pose_scoring.py#L82-L105]

	Computes Autodock Vina’s hydrophobic interaction term.

Here, d is the set of surface distances as defined in [1]_


	Parameters:

	d (np.ndarray) – A numpy array of shape (N, M).



	Returns:

	A (N, M) array of hydrophoboic interactions in a piecewise linear curve.



	Return type:

	np.ndarray





References



[1]
Jain, Ajay N. “Scoring noncovalent protein-ligand interactions:
a continuous differentiable function tuned to compute binding affinities.”
Journal of computer-aided molecular design 10.5 (1996): 427-440.








	
vina_hbond(d: ndarray) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/dock/pose_scoring.py#L108-L132]

	Computes Autodock Vina’s hydrogen bond interaction term.

Here, d is the set of surface distances as defined in [1]_


	Parameters:

	d (np.ndarray) – A numpy array of shape (N, M).



	Returns:

	A (N, M) array of hydrophoboic interactions in a piecewise linear curve.



	Return type:

	np.ndarray





References



[1]
Jain, Ajay N. “Scoring noncovalent protein-ligand interactions:
a continuous differentiable function tuned to compute binding affinities.”
Journal of computer-aided molecular design 10.5 (1996): 427-440.








	
vina_gaussian_first(d: ndarray) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/dock/pose_scoring.py#L135-L157]

	Computes Autodock Vina’s first Gaussian interaction term.

Here, d is the set of surface distances as defined in [1]_


	Parameters:

	d (np.ndarray) – A numpy array of shape (N, M).



	Returns:

	A (N, M) array of gaussian interaction terms.



	Return type:

	np.ndarray





References



[1]
Jain, Ajay N. “Scoring noncovalent protein-ligand interactions:
a continuous differentiable function tuned to compute binding affinities.”
Journal of computer-aided molecular design 10.5 (1996): 427-440.








	
vina_gaussian_second(d: ndarray) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/dock/pose_scoring.py#L160-L182]

	Computes Autodock Vina’s second Gaussian interaction term.

Here, d is the set of surface distances as defined in [1]_


	Parameters:

	d (np.ndarray) – A numpy array of shape (N, M).



	Returns:

	A (N, M) array of gaussian interaction terms.



	Return type:

	np.ndarray





References



[1]
Jain, Ajay N. “Scoring noncovalent protein-ligand interactions:
a continuous differentiable function tuned to compute binding affinities.”
Journal of computer-aided molecular design 10.5 (1996): 427-440.








	
vina_energy_term(coords1: ndarray, coords2: ndarray, weights: ndarray, wrot: float, Nrot: int) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/dock/pose_scoring.py#L203-L244]

	Computes the Vina Energy function for two molecular conformations


	Parameters:

	
	coords1 (np.ndarray) – Molecular coordinates of shape (N, 3)


	coords2 (np.ndarray) – Molecular coordinates of shape (M, 3)


	weights (np.ndarray) – A numpy array of shape (5,). The 5 values are weights for repulsion interaction term,
hydrophobic interaction term, hydrogen bond interaction term,
first Gaussian interaction term and second Gaussian interaction term.


	wrot (float) – The scaling factor for nonlinearity


	Nrot (int) – Number of rotatable bonds in this calculation






	Returns:

	A scalar value with free energy



	Return type:

	np.ndarray
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Utilities

DeepChem has a broad collection of utility functions. Many of these
maybe be of independent interest to users since they deal with some
tricky aspects of processing scientific datatypes.


Data Utilities


Array Utilities


	
pad_array(x: ndarray, shape: Tuple | int, fill: float = 0.0, both: bool = False) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/data_utils.py#L23-L62]

	Pad an array with a fill value.


	Parameters:

	
	x (np.ndarray) – A numpy array.


	shape (Tuple or int) – Desired shape. If int, all dimensions are padded to that size.


	fill (float, optional (default 0.0)) – The padded value.


	both (bool, optional (default False)) – If True, split the padding on both sides of each axis. If False,
padding is applied to the end of each axis.






	Returns:

	A padded numpy array



	Return type:

	np.ndarray











Data Directory

The DeepChem data directory is where downloaded MoleculeNet datasets are stored.


	
get_data_dir() → str[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/data_utils.py#L65-L77]

	Get the DeepChem data directory.


	Returns:

	The default path to store DeepChem data. If you want to
change this path, please set your own path to DEEPCHEM_DATA_DIR
as an environment variable.



	Return type:

	str











URL Handling


	
download_url(url: str, dest_dir: str = '/tmp', name: str | None = None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/data_utils.py#L80-L102]

	Download a file to disk.


	Parameters:

	
	url (str) – The URL to download from


	dest_dir (str) – The directory to save the file in


	name (str) – The file name to save it as.  If omitted, it will try to extract a file name from the URL














File Handling


	
untargz_file(file: str, dest_dir: str = '/tmp', name: str | None = None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/data_utils.py#L105-L123]

	Untar and unzip a .tar.gz file to disk.


	Parameters:

	
	file (str) – The filepath to decompress


	dest_dir (str) – The directory to save the file in


	name (str) – The file name to save it as.  If omitted, it will use the file name













	
unzip_file(file: str, dest_dir: str = '/tmp', name: str | None = None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/data_utils.py#L126-L145]

	Unzip a .zip file to disk.


	Parameters:

	
	file (str) – The filepath to decompress


	dest_dir (str) – The directory to save the file in


	name (str) – The directory name to unzip it to.  If omitted, it will use the file name













	
load_data(input_files: List[str], shard_size: int | None = None) → Iterator[Any][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/data_utils.py#L431-L467]

	Loads data from files.


	Parameters:

	
	input_files (List[str]) – List of filenames.


	shard_size (int, default None) – Size of shard to yield






	Returns:

	Iterator which iterates over provided files.



	Return type:

	Iterator[Any]





Notes

The supported file types are SDF, CSV and Pickle.






	
load_sdf_files(input_files: List[str], clean_mols: bool = True, tasks: List[str] = [], shard_size: int | None = None) → Iterator[DataFrame][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/data_utils.py#L221-L319]

	Load SDF file into dataframe.


	Parameters:

	
	input_files (List[str]) – List of filenames


	clean_mols (bool, default True) – Whether to sanitize molecules.


	tasks (List[str], default []) – Each entry in tasks is treated as a property in the SDF file and is
retrieved with mol.GetProp(str(task)) where mol is the RDKit mol
loaded from a given SDF entry.


	shard_size (int, default None) – The shard size to yield at one time.






	Returns:

	Generator which yields the dataframe which is the same shard size.



	Return type:

	Iterator[pd.DataFrame]





Notes

This function requires RDKit to be installed.






	
load_csv_files(input_files: List[str], shard_size: int | None = None) → Iterator[DataFrame][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/data_utils.py#L322-L350]

	Load data as pandas dataframe from CSV files.


	Parameters:

	
	input_files (List[str]) – List of filenames


	shard_size (int, default None) – The shard size to yield at one time.






	Returns:

	Generator which yields the dataframe which is the same shard size.



	Return type:

	Iterator[pd.DataFrame]










	
load_json_files(input_files: List[str], shard_size: int | None = None) → Iterator[DataFrame][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/data_utils.py#L353-L388]

	Load data as pandas dataframe.


	Parameters:

	
	input_files (List[str]) – List of json filenames.


	shard_size (int, default None) – Chunksize for reading json files.






	Returns:

	Generator which yields the dataframe which is the same shard size.



	Return type:

	Iterator[pd.DataFrame]





Notes

To load shards from a json file into a Pandas dataframe, the file
must be originally saved with df.to_json('filename.json', orient='records', lines=True)






	
load_pickle_files(input_files: List[str]) → Iterator[Any][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/data_utils.py#L413-L428]

	Load dataset from pickle files.


	Parameters:

	input_files (List[str]) – The list of filenames of pickle file. This function can load from
gzipped pickle file like XXXX.pkl.gz.



	Returns:

	Generator which yields the objects which is loaded from each pickle file.



	Return type:

	Iterator[Any]










	
load_from_disk(filename: str) → Any[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/data_utils.py#L508-L537]

	Load a dataset from file.


	Parameters:

	filename (str) – A filename you want to load data.



	Returns:

	A loaded object from file.



	Return type:

	Any










	
save_to_disk(dataset: Any, filename: str, compress: int = 3)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/data_utils.py#L488-L505]

	Save a dataset to file.


	Parameters:

	
	dataset (str) – A data saved


	filename (str) – Path to save data.


	compress (int, default 3) – The compress option when dumping joblib file.













	
load_dataset_from_disk(save_dir: str) → Tuple[bool, Tuple[DiskDataset, DiskDataset, DiskDataset] | None, List[Transformer]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/data_utils.py#L540-L591]

	Loads MoleculeNet train/valid/test/transformers from disk.

Expects that data was saved using save_dataset_to_disk below. Expects the
following directory structure for save_dir:
save_dir/








—> train_dir/
|
—> valid_dir/
|
—> test_dir/
|
—> transformers.pkl





	Parameters:

	save_dir (str) – Directory name to load datasets.



	Returns:

	
	loaded (bool) – Whether the load succeeded


	all_dataset (Tuple[DiskDataset, DiskDataset, DiskDataset]) – The train, valid, test datasets


	transformers (Transformer) – The transformers used for this dataset











See also

save_dataset_to_disk








	
save_dataset_to_disk(save_dir: str, train: DiskDataset, valid: DiskDataset, test: DiskDataset, transformers: List[Transformer])[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/data_utils.py#L594-L636]

	Utility used by MoleculeNet to save train/valid/test datasets.

This utility function saves a train/valid/test split of a dataset along
with transformers in the same directory. The saved datasets will take the
following structure:
save_dir/








—> train_dir/
|
—> valid_dir/
|
—> test_dir/
|
—> transformers.pkl





	Parameters:

	
	save_dir (str) – Directory name to save datasets to.


	train (DiskDataset) – Training dataset to save.


	valid (DiskDataset) – Validation dataset to save.


	test (DiskDataset) – Test dataset to save.


	transformers (List[Transformer]) – List of transformers to save to disk.









See also

load_dataset_from_disk










Molecular Utilities


	
class ConformerGenerator(max_conformers: int = 1, rmsd_threshold: float = 0.5, force_field: str = 'uff', pool_multiplier: int = 10)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/conformers.py#L10-L304]

	Generate molecule conformers.

Notes

Procedure
1. Generate a pool of conformers.
2. Minimize conformers.
3. Prune conformers using an RMSD threshold.

Note that pruning is done _after_ minimization, which differs from the
protocol described in the references [1]_ [2]_.

References



[1]
http://rdkit.org/docs/GettingStartedInPython.html#working-with-3d-molecules



[2]
http://pubs.acs.org/doi/full/10.1021/ci2004658



Notes

This class requires RDKit to be installed.


	
__init__(max_conformers: int = 1, rmsd_threshold: float = 0.5, force_field: str = 'uff', pool_multiplier: int = 10)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/conformers.py#L34-L61]

	
	Parameters:

	
	max_conformers (int, optional (default 1)) – Maximum number of conformers to generate (after pruning).


	rmsd_threshold (float, optional (default 0.5)) – RMSD threshold for pruning conformers. If None or negative, no
pruning is performed.


	force_field (str, optional (default 'uff')) – Force field to use for conformer energy calculation and
minimization. Options are ‘uff’, ‘mmff94’, and ‘mmff94s’.


	pool_multiplier (int, optional (default 10)) – Factor to multiply by max_conformers to generate the initial
conformer pool. Since conformers are pruned after energy
minimization, increasing the size of the pool increases the chance
of identifying max_conformers unique conformers.













	
generate_conformers(mol: Any) → Any[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/conformers.py#L80-L114]

	Generate conformers for a molecule.

This function returns a copy of the original molecule with embedded
conformers.


	Parameters:

	mol (rdkit.Chem.rdchem.Mol) – RDKit Mol object



	Returns:

	mol – A new RDKit Mol object containing the chosen conformers, sorted by
increasing energy.



	Return type:

	rdkit.Chem.rdchem.Mol










	
embed_molecule(mol: Any) → Any[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/conformers.py#L116-L139]

	Generate conformers, possibly with pruning.


	Parameters:

	mol (rdkit.Chem.rdchem.Mol) – RDKit Mol object



	Returns:

	mol – RDKit Mol object with embedded multiple conformers.



	Return type:

	rdkit.Chem.rdchem.Mol










	
get_molecule_force_field(mol: Any, conf_id: int | None = None, **kwargs) → Any[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/conformers.py#L141-L180]

	Get a force field for a molecule.


	Parameters:

	
	mol (rdkit.Chem.rdchem.Mol) – RDKit Mol object with embedded conformers.


	conf_id (int, optional) – ID of the conformer to associate with the force field.


	kwargs (dict, optional) – Keyword arguments for force field constructor.






	Returns:

	ff – RDKit force field instance for a molecule.



	Return type:

	rdkit.ForceField.rdForceField.ForceField










	
minimize_conformers(mol: Any) → None[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/conformers.py#L182-L193]

	Minimize molecule conformers.


	Parameters:

	mol (rdkit.Chem.rdchem.Mol) – RDKit Mol object with embedded conformers.










	
get_conformer_energies(mol: Any) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/conformers.py#L195-L214]

	Calculate conformer energies.


	Parameters:

	mol (rdkit.Chem.rdchem.Mol) – RDKit Mol object with embedded conformers.



	Returns:

	energies – Minimized conformer energies.



	Return type:

	np.ndarray










	
prune_conformers(mol: Any) → Any[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/conformers.py#L216-L273]

	Prune conformers from a molecule using an RMSD threshold, starting
with the lowest energy conformer.


	Parameters:

	mol (rdkit.Chem.rdchem.Mol) – RDKit Mol object



	Returns:

	new_mol – A new rdkit.Chem.rdchem.Mol containing the chosen conformers, sorted by
increasing energy.



	Return type:

	rdkit.Chem.rdchem.Mol










	
static get_conformer_rmsd(mol: Any) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/conformers.py#L275-L304]

	Calculate conformer-conformer RMSD.


	Parameters:

	mol (rdkit.Chem.rdchem.Mol) – RDKit Mol object



	Returns:

	rmsd – A conformer-conformer RMSD value. The shape is (NumConformers, NumConformers)



	Return type:

	np.ndarray














	
class MoleculeLoadException(*args, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/fragment_utils.py#L13-L16]

	
	
__init__(*args, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/fragment_utils.py#L15-L16]

	








	
get_xyz_from_mol(mol)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/rdkit_utils.py#L28-L49]

	Extracts a numpy array of coordinates from a molecules.

Returns a (N, 3) numpy array of 3d coords of given rdkit molecule


	Parameters:

	mol (rdkit Molecule) – Molecule to extract coordinates for



	Return type:

	Numpy ndarray of shape (N, 3) where N = mol.GetNumAtoms().










	
add_hydrogens_to_mol(mol, is_protein=False)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/rdkit_utils.py#L52-L72]

	Add hydrogens to a molecule object


	Parameters:

	
	mol (Rdkit Mol) – Molecule to hydrogenate


	is_protein (bool, optional (default False)) – Whether this molecule is a protein.






	Return type:

	Rdkit Mol






Note

This function requires RDKit and PDBFixer to be installed.








	
compute_charges(mol)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/rdkit_utils.py#L155-L179]

	Attempt to compute Gasteiger Charges on Mol

This also has the side effect of calculating charges on mol.  The
mol passed into this function has to already have been sanitized


	Parameters:

	mol (rdkit molecule) – 



	Return type:

	No return since updates in place.






Note

This function requires RDKit to be installed.








	
load_molecule(molecule_file, add_hydrogens=True, calc_charges=True, sanitize=True, is_protein=False)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/rdkit_utils.py#L230-L309]

	Converts molecule file to (xyz-coords, obmol object)

Given molecule_file, returns a tuple of xyz coords of molecule
and an rdkit object representing that molecule in that order (xyz,
rdkit_mol). This ordering convention is used in the code in a few
places.


	Parameters:

	
	molecule_file (str) – filename for molecule


	add_hydrogens (bool, optional (default True)) – If True, add hydrogens via pdbfixer


	calc_charges (bool, optional (default True)) – If True, add charges via rdkit


	sanitize (bool, optional (default False)) – If True, sanitize molecules via rdkit


	is_protein (bool, optional (default False)) – If True`, this molecule is loaded as a protein. This flag will
affect some of the cleanup procedures applied.






	Returns:

	
	Tuple (xyz, mol) if file contains single molecule. Else returns a


	list of the tuples for the separate molecules in this list.











Note

This function requires RDKit to be installed.








	
write_molecule(mol, outfile, is_protein=False)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/rdkit_utils.py#L312-L353]

	Write molecule to a file

This function writes a representation of the provided molecule to
the specified outfile. Doesn’t return anything.


	Parameters:

	
	mol (rdkit Mol) – Molecule to write


	outfile (str) – Filename to write mol to


	is_protein (bool, optional) – Is this molecule a protein?









Note

This function requires RDKit to be installed.




	Raises:

	ValueError – if outfile isn’t of a supported format.:











Molecular Fragment Utilities

It’s often convenient to manipulate subsets of a molecule. The MolecularFragment class aids in such manipulations.


	
class MolecularFragment(atoms: Sequence[Any], coords: ndarray)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/fragment_utils.py#L75-L148]

	A class that represents a fragment of a molecule.

It’s often convenient to represent a fragment of a molecule. For
example, if two molecules form a molecular complex, it may be useful
to create two fragments which represent the subsets of each molecule
that’s close to the other molecule (in the contact region).

Ideally, we’d be able to do this in RDKit direct, but manipulating
molecular fragments doesn’t seem to be supported functionality.

Examples

>>> import numpy as np
>>> from rdkit import Chem
>>> mol = Chem.MolFromSmiles("C")
>>> coords = np.array([[0.0, 0.0, 0.0]])
>>> atom = mol.GetAtoms()[0]
>>> fragment = MolecularFragment([atom], coords)






	
__init__(atoms: Sequence[Any], coords: ndarray)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/fragment_utils.py#L96-L117]

	Initialize this object.


	Parameters:

	
	atoms (Iterable[rdkit.Chem.rdchem.Atom]) – Each entry in this list should be a RDKit Atom.


	coords (np.ndarray) – Array of locations for atoms of shape (N, 3) where N ==
len(atoms).













	
GetAtoms() → List[AtomShim][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/fragment_utils.py#L119-L127]

	Returns the list of atoms


	Returns:

	list of atoms in this fragment.



	Return type:

	List[AtomShim]










	
GetNumAtoms() → int[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/fragment_utils.py#L129-L137]

	Returns the number of atoms


	Returns:

	Number of atoms in this fragment.



	Return type:

	int










	
GetCoords() → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/fragment_utils.py#L139-L148]

	Returns 3D coordinates for this fragment as numpy array.


	Returns:

	A numpy array of shape (N, 3) with coordinates for this fragment.
Here, N is the number of atoms.



	Return type:

	np.ndarray














	
class AtomShim(atomic_num: int, partial_charge: float, atom_coords: ndarray)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/fragment_utils.py#L19-L72]

	This is a shim object wrapping an atom.

We use this class instead of raw RDKit atoms since manipulating a
large number of rdkit Atoms seems to result in segfaults. Wrapping
the basic information in an AtomShim seems to avoid issues.


	
__init__(atomic_num: int, partial_charge: float, atom_coords: ndarray)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/fragment_utils.py#L27-L42]

	Initialize this object


	Parameters:

	
	atomic_num (int) – Atomic number for this atom.


	partial_charge (float) – The partial Gasteiger charge for this atom


	atom_coords (np.ndarray) – Of shape (3,) with the coordinates of this atom













	
GetAtomicNum() → int[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/fragment_utils.py#L44-L52]

	Returns atomic number for this atom.


	Returns:

	Atomic number for this atom.



	Return type:

	int










	
GetPartialCharge() → float[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/fragment_utils.py#L54-L62]

	Returns partial charge for this atom.


	Returns:

	A partial Gasteiger charge for this atom.



	Return type:

	float










	
GetCoords() → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/fragment_utils.py#L64-L72]

	Returns 3D coordinates for this atom as numpy array.


	Returns:

	Numpy array of shape (3,) with coordinates for this atom.



	Return type:

	np.ndarray














	
strip_hydrogens(coords: ndarray, mol: Any | MolecularFragment) → Tuple[ndarray, MolecularFragment][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/fragment_utils.py#L265-L293]

	Strip the hydrogens from input molecule


	Parameters:

	
	coords (np.ndarray) – The coords must be of shape (N, 3) and correspond to coordinates of mol.


	mol (rdkit.Chem.rdchem.Mol or MolecularFragment) – The molecule to strip






	Returns:

	A tuple of (coords, mol_frag) where coords is a numpy array of
coordinates with hydrogen coordinates. mol_frag is a MolecularFragment.



	Return type:

	Tuple[np.ndarray, MolecularFragment]





Notes

This function requires RDKit to be installed.






	
merge_molecular_fragments(molecules: List[MolecularFragment]) → MolecularFragment | None[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/fragment_utils.py#L193-L217]

	Helper method to merge two molecular fragments.


	Parameters:

	molecules (List[MolecularFragment]) – List of MolecularFragment objects.



	Returns:

	Returns a merged MolecularFragment



	Return type:

	Optional[MolecularFragment]










	
get_contact_atom_indices(fragments: List[Tuple[ndarray, Any]], cutoff: float = 4.5) → List[List[int]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/fragment_utils.py#L296-L339]

	Compute that atoms close to contact region.

Molecular complexes can get very large. This can make it unwieldy to
compute functions on them. To improve memory usage, it can be very
useful to trim out atoms that aren’t close to contact regions. This
function computes pairwise distances between all pairs of molecules
in the molecular complex. If an atom is within cutoff distance of
any atom on another molecule in the complex, it is regarded as a
contact atom. Otherwise it is trimmed.


	Parameters:

	
	fragments (List[Tuple[np.ndarray, rdkit.Chem.rdchem.Mol]]) – As returned by rdkit_utils.load_complex, a list of tuples of
(coords, mol) where coords is a (N_atoms, 3) array and mol
is the rdkit molecule object.


	cutoff (float, optional (default 4.5)) – The cutoff distance in angstroms.






	Returns:

	A list of length len(molecular_complex). Each entry in this list
is a list of atom indices from that molecule which should be kept, in
sorted order.



	Return type:

	List[List[int]]










	
reduce_molecular_complex_to_contacts(fragments: List[Tuple[ndarray, Any]], cutoff: float = 4.5) → List[Tuple[ndarray, MolecularFragment]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/fragment_utils.py#L342-L378]

	Reduce a molecular complex to only those atoms near a contact.

Molecular complexes can get very large. This can make it unwieldy to
compute functions on them. To improve memory usage, it can be very
useful to trim out atoms that aren’t close to contact regions. This
function takes in a molecular complex and returns a new molecular
complex representation that contains only contact atoms. The contact
atoms are computed by calling get_contact_atom_indices under the
hood.


	Parameters:

	
	fragments (List[Tuple[np.ndarray, rdkit.Chem.rdchem.Mol]]) – As returned by rdkit_utils.load_complex, a list of tuples of
(coords, mol) where coords is a (N_atoms, 3) array and mol
is the rdkit molecule object.


	cutoff (float) – The cutoff distance in angstroms.






	Returns:

	A list of length len(molecular_complex). Each entry in this list
is a tuple of (coords, MolecularFragment). The coords is stripped
down to (N_contact_atoms, 3) where N_contact_atoms is the number
of contact atoms for this complex. MolecularFragment is used since
it’s tricky to make a RDKit sub-molecule.



	Return type:

	List[Tuple[np.ndarray, MolecularFragment]]











Coordinate Box Utilities


	
class CoordinateBox(x_range: Tuple[float, float], y_range: Tuple[float, float], z_range: Tuple[float, float])[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/coordinate_box_utils.py#L7-L201]

	A coordinate box that represents a block in space.

Molecular complexes are typically represented with atoms as
coordinate points. Each complex is naturally associated with a
number of different box regions. For example, the bounding box is a
box that contains all atoms in the molecular complex. A binding
pocket box is a box that focuses in on a binding region of a protein
to a ligand. A interface box is the region in which two proteins
have a bulk interaction.

The CoordinateBox class is designed to represent such regions of
space. It consists of the coordinates of the box, and the collection
of atoms that live in this box alongside their coordinates.


	
__init__(x_range: Tuple[float, float], y_range: Tuple[float, float], z_range: Tuple[float, float])[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/coordinate_box_utils.py#L23-L60]

	Initialize this box.


	Parameters:

	
	x_range (Tuple[float, float]) – A tuple of (x_min, x_max) with max and min x-coordinates.


	y_range (Tuple[float, float]) – A tuple of (y_min, y_max) with max and min y-coordinates.


	z_range (Tuple[float, float]) – A tuple of (z_min, z_max) with max and min z-coordinates.






	Raises:

	ValueError – 










	
__contains__(point: Sequence[float]) → bool[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/coordinate_box_utils.py#L74-L94]

	Check whether a point is in this box.


	Parameters:

	point (Sequence[float]) – 3-tuple or list of length 3 or np.ndarray of shape (3,).
The (x, y, z) coordinates of a point in space.



	Returns:

	True if other is contained in this box.



	Return type:

	bool










	
center() → Tuple[float, float, float][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/coordinate_box_utils.py#L133-L151]

	Computes the center of this box.


	Returns:

	(x, y, z) the coordinates of the center of the box.



	Return type:

	Tuple[float, float, float]





Examples

>>> box = CoordinateBox((0, 1), (0, 1), (0, 1))
>>> box.center()
(0.5, 0.5, 0.5)










	
volume() → float[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/coordinate_box_utils.py#L153-L170]

	Computes and returns the volume of this box.


	Returns:

	The volume of this box. Can be 0 if box is empty



	Return type:

	float





Examples

>>> box = CoordinateBox((0, 1), (0, 1), (0, 1))
>>> box.volume()
1










	
contains(other: CoordinateBox) → bool[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/coordinate_box_utils.py#L172-L201]

	Test whether this box contains another.

This method checks whether other is contained in this box.


	Parameters:

	other (CoordinateBox) – The box to check is contained in this box.



	Returns:

	True if other is contained in this box.



	Return type:

	bool



	Raises:

	ValueError – 














	
intersect_interval(interval1: Tuple[float, float], interval2: Tuple[float, float]) → Tuple[float, float][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/coordinate_box_utils.py#L204-L232]

	Computes the intersection of two intervals.


	Parameters:

	
	interval1 (Tuple[float, float]) – Should be (x1_min, x1_max)


	interval2 (Tuple[float, float]) – Should be (x2_min, x2_max)






	Returns:

	x_intersect – Should be the intersection. If the intersection is empty returns
(0, 0) to represent the empty set. Otherwise is (max(x1_min,
x2_min), min(x1_max, x2_max)).



	Return type:

	Tuple[float, float]










	
union(box1: CoordinateBox, box2: CoordinateBox) → CoordinateBox[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/coordinate_box_utils.py#L257-L280]

	Merges provided boxes to find the smallest union box.

This method merges the two provided boxes.


	Parameters:

	
	box1 (CoordinateBox) – First box to merge in


	box2 (CoordinateBox) – Second box to merge into this box






	Returns:

	Smallest CoordinateBox that contains both box1 and box2



	Return type:

	CoordinateBox










	
merge_overlapping_boxes(boxes: List[CoordinateBox], threshold: float = 0.8) → List[CoordinateBox][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/coordinate_box_utils.py#L283-L316]

	Merge boxes which have an overlap greater than threshold.


	Parameters:

	
	boxes (list[CoordinateBox]) – A list of CoordinateBox objects.


	threshold (float, default 0.8) – The volume fraction of the boxes that must overlap for them to be
merged together.






	Returns:

	List[CoordinateBox] of merged boxes. This list will have length less
than or equal to the length of boxes.



	Return type:

	List[CoordinateBox]










	
get_face_boxes(coords: ndarray, pad: float = 5.0) → List[CoordinateBox][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/coordinate_box_utils.py#L319-L378]

	For each face of the convex hull, compute a coordinate box around it.

The convex hull of a macromolecule will have a series of triangular
faces. For each such triangular face, we construct a bounding box
around this triangle. Think of this box as attempting to capture
some binding interaction region whose exterior is controlled by the
box. Note that this box will likely be a crude approximation, but
the advantage of this technique is that it only uses simple geometry
to provide some basic biological insight into the molecule at hand.

The pad parameter is used to control the amount of padding around
the face to be used for the coordinate box.


	Parameters:

	
	coords (np.ndarray) – A numpy array of shape (N, 3). The coordinates of a molecule.


	pad (float, optional (default 5.0)) – The number of angstroms to pad.






	Returns:

	boxes – List of CoordinateBox



	Return type:

	List[CoordinateBox]





Examples

>>> coords = np.array([[0, 0, 0], [1, 0, 0], [0, 1, 0], [0, 0, 1]])
>>> boxes = get_face_boxes(coords, pad=5)











Evaluation Utils


	
class Evaluator(model, dataset: Dataset, transformers: List[Transformer])[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/evaluate.py#L142-L332]

	Class that evaluates a model on a given dataset.

The evaluator class is used to evaluate a dc.models.Model class on
a given dc.data.Dataset object. The evaluator is aware of
dc.trans.Transformer objects so will automatically undo any
transformations which have been applied.

Examples

Evaluators allow for a model to be evaluated directly on a Metric
for sklearn. Let’s do a bit of setup constructing our dataset and
model.

>>> import deepchem as dc
>>> import numpy as np
>>> X = np.random.rand(10, 5)
>>> y = np.random.rand(10, 1)
>>> dataset = dc.data.NumpyDataset(X, y)
>>> model = dc.models.MultitaskRegressor(1, 5)
>>> transformers = []





Then you can evaluate this model as follows
>>> import sklearn
>>> evaluator = Evaluator(model, dataset, transformers)
>>> multitask_scores = evaluator.compute_model_performance(
…     sklearn.metrics.mean_absolute_error)

Evaluators can also be used with dc.metrics.Metric objects as well
in case you want to customize your metric further.

>>> evaluator = Evaluator(model, dataset, transformers)
>>> metric = dc.metrics.Metric(dc.metrics.mae_score)
>>> multitask_scores = evaluator.compute_model_performance(metric)






	
__init__(model, dataset: Dataset, transformers: List[Transformer])[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/evaluate.py#L178-L200]

	Initialize this evaluator


	Parameters:

	
	model (Model) – Model to evaluate. Note that this must be a regression or
classification model and not a generative model.


	dataset (Dataset) – Dataset object to evaluate model on.


	transformers (List[Transformer]) – List of dc.trans.Transformer objects. These transformations
must have been applied to dataset previously. The dataset will
be untransformed for metric evaluation.













	
output_statistics(scores: Dict[str, float], stats_out: str)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/evaluate.py#L202-L217]

	Write computed stats to file.


	Parameters:

	
	scores (dict) – Dictionary mapping names of metrics to scores.


	stats_out (str) – Name of file to write scores to.













	
output_predictions(y_preds: ndarray, csv_out: str)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/evaluate.py#L219-L244]

	Writes predictions to file.

Writes predictions made on self.dataset to a specified file on
disk. self.dataset.ids are used to format predictions.


	Parameters:

	
	y_preds (np.ndarray) – Predictions to output


	csv_out (str) – Name of file to write predictions to.













	
compute_model_performance(metrics: Metric | Callable[[...], Any] | List[Metric] | List[Callable[[...], Any]], csv_out: str | None = None, stats_out: str | None = None, per_task_metrics: bool = False, use_sample_weights: bool = False, n_classes: int = 2) → Dict[str, float] | Tuple[Dict[str, float], Dict[str, float]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/evaluate.py#L246-L332]

	Computes statistics of model on test data and saves results to csv.


	Parameters:

	
	metrics (dc.metrics.Metric/list[dc.metrics.Metric]/function) – The set of metrics provided. This class attempts to do some
intelligent handling of input. If a single dc.metrics.Metric
object is provided or a list is provided, it will evaluate
self.model on these metrics. If a function is provided, it is
assumed to be a metric function that this method will attempt to
wrap in a dc.metrics.Metric object. A metric function must
accept two arguments, y_true, y_pred both of which are
np.ndarray objects and return a floating point score. The
metric function may also accept a keyword argument
sample_weight to account for per-sample weights.


	csv_out (str, optional (DEPRECATED)) – Filename to write CSV of model predictions.


	stats_out (str, optional (DEPRECATED)) – Filename to write computed statistics.


	per_task_metrics (bool, optional) – If true, return computed metric for each task on multitask dataset.


	use_sample_weights (bool, optional (default False)) – If set, use per-sample weights w.


	n_classes (int, optional (default None)) – If specified, will use n_classes as the number of unique classes
in self.dataset. Note that this argument will be ignored for
regression metrics.






	Returns:

	
	multitask_scores (dict) – Dictionary mapping names of metrics to metric scores.


	all_task_scores (dict, optional) – If per_task_metrics == True, then returns a second dictionary
of scores for each task separately.



















	
class GeneratorEvaluator(model, generator: Iterable[Tuple[Any, Any, Any]], transformers: List[Transformer], labels: List | None = None, weights: List | None = None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/evaluate.py#L335-L502]

	Evaluate models on a stream of data.

This class is a partner class to Evaluator. Instead of operating
over datasets this class operates over a generator which yields
batches of data to feed into provided model.

Examples

>>> import deepchem as dc
>>> import numpy as np
>>> X = np.random.rand(10, 5)
>>> y = np.random.rand(10, 1)
>>> dataset = dc.data.NumpyDataset(X, y)
>>> model = dc.models.MultitaskRegressor(1, 5)
>>> generator = model.default_generator(dataset, pad_batches=False)
>>> transformers = []





Then you can evaluate this model as follows

>>> import sklearn
>>> evaluator = GeneratorEvaluator(model, generator, transformers)
>>> multitask_scores = evaluator.compute_model_performance(
...     sklearn.metrics.mean_absolute_error)





Evaluators can also be used with dc.metrics.Metric objects as well
in case you want to customize your metric further. (Note that a given
generator can only be used once so we have to redefine the generator here.)

>>> generator = model.default_generator(dataset, pad_batches=False)
>>> evaluator = GeneratorEvaluator(model, generator, transformers)
>>> metric = dc.metrics.Metric(dc.metrics.mae_score)
>>> multitask_scores = evaluator.compute_model_performance(metric)






	
__init__(model, generator: Iterable[Tuple[Any, Any, Any]], transformers: List[Transformer], labels: List | None = None, weights: List | None = None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/evaluate.py#L370-L403]

	
	Parameters:

	
	model (Model) – Model to evaluate.


	generator (generator) – Generator which yields batches to feed into the model. For a
KerasModel, it should be a tuple of the form (inputs, labels,
weights). The “correct” way to create this generator is to use
model.default_generator as shown in the example above.


	transformers (List[Transformer]) – Tranformers to “undo” when applied to the models outputs


	labels (list of Layer) – layers which are keys in the generator to compare to outputs


	weights (list of Layer) – layers which are keys in the generator for weight matrices













	
compute_model_performance(metrics: Metric | Callable[[...], Any] | List[Metric] | List[Callable[[...], Any]], per_task_metrics: bool = False, use_sample_weights: bool = False, n_classes: int = 2) → Dict[str, float] | Tuple[Dict[str, float], Dict[str, float]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/evaluate.py#L405-L502]

	Computes statistics of model on test data and saves results to csv.


	Parameters:

	
	metrics (dc.metrics.Metric/list[dc.metrics.Metric]/function) – The set of metrics provided. This class attempts to do some
intelligent handling of input. If a single dc.metrics.Metric
object is provided or a list is provided, it will evaluate
self.model on these metrics. If a function is provided, it is
assumed to be a metric function that this method will attempt to
wrap in a dc.metrics.Metric object. A metric function must
accept two arguments, y_true, y_pred both of which are
np.ndarray objects and return a floating point score.


	per_task_metrics (bool, optional) – If true, return computed metric for each task on multitask
dataset.


	use_sample_weights (bool, optional (default False)) – If set, use per-sample weights w.


	n_classes (int, optional (default None)) – If specified, will assume that all metrics are classification
metrics and will use n_classes as the number of unique classes
in self.dataset.






	Returns:

	
	multitask_scores (dict) – Dictionary mapping names of metrics to metric scores.


	all_task_scores (dict, optional) – If per_task_metrics == True, then returns a second dictionary
of scores for each task separately.



















	
relative_difference(x: ndarray, y: ndarray) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/evaluate.py#L118-L139]

	Compute the relative difference between x and y

The two argument arrays must have the same shape.


	Parameters:

	
	x (np.ndarray) – First input array


	y (np.ndarray) – Second input array






	Returns:

	z – We will have z == np.abs(x-y) / np.abs(max(x, y)).



	Return type:

	np.ndarray











Genomic Utilities


	
seq_one_hot_encode(sequences, letters: str = 'ATCGN') → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/genomics_utils.py#L8-L57]

	One hot encodes list of genomic sequences.

Sequences encoded have shape (N_sequences, N_letters, sequence_length, 1).
These sequences will be processed as images with one color channel.


	Parameters:

	
	sequences (np.ndarray or Iterator[Bio.SeqRecord]) – Iterable object of genetic sequences


	letters (str, optional (default "ATCGN")) – String with the set of possible letters in the sequences.






	Raises:

	ValueError: – If sequences are of different lengths.



	Returns:

	A numpy array of shape (N_sequences, N_letters, sequence_length, 1).



	Return type:

	np.ndarray










	
encode_bio_sequence(fname: str, file_type: str = 'fasta', letters: str = 'ATCGN') → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/genomics_utils.py#L90-L121]

	Loads a sequence file and returns an array of one-hot sequences.


	Parameters:

	
	fname (str) – Filename of fasta file.


	file_type (str, optional (default "fasta")) – The type of file encoding to process, e.g. fasta or fastq, this
is passed to Biopython.SeqIO.parse.


	letters (str, optional (default "ATCGN")) – The set of letters that the sequences consist of, e.g. ATCG.






	Returns:

	A numpy array of shape (N_sequences, N_letters, sequence_length, 1).



	Return type:

	np.ndarray





Notes

This function requires BioPython to be installed.






	
hhblits(dataset_path, database=None, data_dir=None, evalue=0.001, num_iterations=2, num_threads=4)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/sequence_utils.py#L12-L94]

	Run hhblits multisequence alignment search on a dataset. This function
requires the hhblits binary to be installed and in the path. This function
also requires a Hidden Markov Model reference database to be provided. Both can be
found here: https://github.com/soedinglab/hh-suite

The database should be in the deepchem data directory or specified as an argument.
To set the deepchem data directory, run this command in your environment:

export DEEPCHEM_DATA_DIR=<path to data directory>


	Parameters:

	
	dataset_path (str) – Path to single sequence or multiple sequence alignment (MSA) dataset. Results will be saved in this directory.


	database (str) – Name of database to search against. Note this is not the path, but the name of the database.


	data_dir (str) – Path to database directory.


	evalue (float) – E-value cutoff.


	num_iterations (int) – Number of iterations.


	num_threads (int) – Number of threads.






	Returns:

	
	results (.a3m file) – MSA file containing the results of the hhblits search.


	results (.hhr file) – hhsuite results file containing the results of the hhblits search.










Examples

>>> from deepchem.utils.sequence_utils import hhblits
>>> msa_path = hhblits('test/data/example.fasta', database='example_db', data_dir='test/data/', evalue=0.001, num_iterations=2, num_threads=4)










	
hhsearch(dataset_path, database=None, data_dir=None, evalue=0.001, num_iterations=2, num_threads=4)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/sequence_utils.py#L97-L177]

	Run hhsearch multisequence alignment search on a dataset. This function
requires the hhblits binary to be installed and in the path. This function
also requires a Hidden Markov Model reference database to be provided. Both can be
found here: https://github.com/soedinglab/hh-suite

The database should be in the deepchem data directory or specified as an argument.
To set the deepchem data directory, run this command in your environment:

export DEEPCHEM_DATA_DIR=<path to data directory>

Examples

>>> from deepchem.utils.sequence_utils import hhsearch
>>> msa_path = hhsearch('test/data/example.fasta', database='example_db', data_dir='test/data/', evalue=0.001, num_iterations=2, num_threads=4)






	Parameters:

	
	dataset_path (str) – Path to multiple sequence alignment dataset. Results will be saved in this directory.


	database (str) – Name of database to search against. Note this is not the path, but the name of the database.


	data_dir (str) – Path to database directory.


	evalue (float) – E-value cutoff.


	num_iterations (int) – Number of iterations.


	num_threads (int) – Number of threads.






	Returns:

	
	results (.a3m file) – MSA file containing the results of the hhblits search.


	results (.hhr file) – hhsuite results file containing the results of the hhblits search.















	
MSA_to_dataset(msa_path)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/sequence_utils.py#L180-L198]

	Convert a multiple sequence alignment to a NumpyDataset object.







Geometry Utilities


	
unit_vector(vector: ndarray) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/geometry_utils.py#L9-L22]

	Returns the unit vector of the vector.


	Parameters:

	vector (np.ndarray) – A numpy array of shape (3,), where 3 is (x,y,z).



	Returns:

	A numpy array of shape (3,). The unit vector of the input vector.



	Return type:

	np.ndarray










	
angle_between(vector_i: ndarray, vector_j: ndarray) → float[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/geometry_utils.py#L25-L60]

	Returns the angle in radians between vectors “vector_i” and “vector_j”

Note that this function always returns the smaller of the two angles between
the vectors (value between 0 and pi).


	Parameters:

	
	vector_i (np.ndarray) – A numpy array of shape (3,), where 3 is (x,y,z).


	vector_j (np.ndarray) – A numpy array of shape (3,), where 3 is (x,y,z).






	Returns:

	The angle in radians between the two vectors.



	Return type:

	np.ndarray





Examples

>>> print("%0.06f" % angle_between((1, 0, 0), (0, 1, 0)))
1.570796
>>> print("%0.06f" % angle_between((1, 0, 0), (1, 0, 0)))
0.000000
>>> print("%0.06f" % angle_between((1, 0, 0), (-1, 0, 0)))
3.141593










	
generate_random_unit_vector() → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/geometry_utils.py#L63-L84]

	Generate a random unit vector on the sphere S^2.

Citation: http://mathworld.wolfram.com/SpherePointPicking.html


	Pseudocode:
	
	Choose random theta element [0, 2*pi]


	Choose random z element [-1, 1]


	Compute output vector u: (x,y,z) = (sqrt(1-z^2)*cos(theta), sqrt(1-z^2)*sin(theta),z)









	Returns:

	u – A numpy array of shape (3,). u is an unit vector



	Return type:

	np.ndarray










	
generate_random_rotation_matrix() → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/geometry_utils.py#L87-L125]

	Generates a random rotation matrix.


	Generate a random unit vector u, randomly sampled from the





unit sphere (see function generate_random_unit_vector()
for details)





	Generate a second random unit vector v






	If absolute value of u dot v > 0.99, repeat.





(This is important for numerical stability. Intuition: we
want them to be as linearly independent as possible or
else the orthogonalized version of v will be much shorter
in magnitude compared to u. I assume in Stack they took
this from Gram-Schmidt orthogonalization?)





	v” = v - (u dot v)*u, i.e. subtract out the component of





v that’s in u’s direction





	normalize v” (this isn”t in Stack but I assume it must be





done)








	find w = u cross v”


	u, v”, and w will form the columns of a rotation matrix, R.





The intuition is that u, v” and w are, respectively, what
the standard basis vectors e1, e2, and e3 will be mapped
to under the transformation.





	Returns:

	R – A numpy array of shape (3, 3). R is a rotation matrix.



	Return type:

	np.ndarray










	
is_angle_within_cutoff(vector_i: ndarray, vector_j: ndarray, angle_cutoff: float) → bool[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/geometry_utils.py#L151-L170]

	A utility function to compute whether two vectors are within a cutoff from 180 degrees apart.


	Parameters:

	
	vector_i (np.ndarray) – A numpy array of shape (3,)`, where 3 is (x,y,z).


	vector_j (np.ndarray) – A numpy array of shape (3,), where 3 is (x,y,z).


	cutoff (float) – The deviation from 180 (in degrees)






	Returns:

	Whether two vectors are within a cutoff from 180 degrees apart



	Return type:

	bool











Graph Utilities


	
fourier_encode_dist(x, num_encodings=4, include_self=True)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/graph_utils.py#L9-L44]

	Fourier encode the input tensor x based on the specified number of encodings.

This function applies a Fourier encoding to the input tensor x by dividing
it by a range of scales (2^i for i in range(num_encodings)) and then
concatenating the sine and cosine of the scaled values. Optionally, the
original input tensor can be included in the output.


	Parameters:

	
	x (torch.Tensor) – Input tensor to be Fourier encoded.


	num_encodings (int, optional, default=4) – Number of Fourier encodings to apply.


	include_self (bool, optional, default=True) – Whether to include the original input tensor in the output.






	Returns:

	Fourier encoded tensor.



	Return type:

	torch.Tensor





Examples

>>> import torch
>>> x = torch.tensor([1.0, 2.0, 3.0])
>>> encoded_x = fourier_encode_dist(x, num_encodings=4, include_self=True)










	
aggregate_mean(h, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/graph_utils.py#L50-L64]

	Compute the mean of the input tensor along the second to last dimension.


	Parameters:

	h (torch.Tensor) – Input tensor.



	Returns:

	Mean of the input tensor along the second to last dimension.



	Return type:

	torch.Tensor










	
aggregate_max(h, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/graph_utils.py#L67-L81]

	Compute the max of the input tensor along the second to last dimension.


	Parameters:

	h (torch.Tensor) – Input tensor.



	Returns:

	Max of the input tensor along the second to last dimension.



	Return type:

	torch.Tensor










	
aggregate_min(h, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/graph_utils.py#L84-L100]

	Compute the min of the input tensor along the second to last dimension.


	Parameters:

	
	h (torch.Tensor) – Input tensor.


	**kwargs – Additional keyword arguments.






	Returns:

	Min of the input tensor along the second to last dimension.



	Return type:

	torch.Tensor










	
aggregate_std(h, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/graph_utils.py#L103-L117]

	Compute the standard deviation of the input tensor along the second to last dimension.


	Parameters:

	h (torch.Tensor) – Input tensor.



	Returns:

	Standard deviation of the input tensor along the second to last dimension.



	Return type:

	torch.Tensor










	
aggregate_var(h, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/graph_utils.py#L120-L137]

	Compute the variance of the input tensor along the second to last dimension.


	Parameters:

	h (torch.Tensor) – Input tensor.



	Returns:

	Variance of the input tensor along the second to last dimension.



	Return type:

	torch.Tensor










	
aggregate_moment(h, n=3, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/graph_utils.py#L140-L161]

	Compute the nth moment of the input tensor along the second to last dimension.


	Parameters:

	
	h (torch.Tensor) – Input tensor.


	n (int, optional, default=3) – The order of the moment to compute.






	Returns:

	Nth moment of the input tensor along the second to last dimension.



	Return type:

	torch.Tensor










	
aggregate_sum(h, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/graph_utils.py#L164-L178]

	Compute the sum of the input tensor along the second to last dimension.


	Parameters:

	h (torch.Tensor) – Input tensor.



	Returns:

	Sum of the input tensor along the second to last dimension.



	Return type:

	torch.Tensor










	
scale_identity(h, D=None, avg_d=None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/graph_utils.py#L183-L201]

	Identity scaling function.


	Parameters:

	
	h (torch.Tensor) – Input tensor.


	D (torch.Tensor, optional) – Degree tensor.


	avg_d (dict, optional) – Dictionary containing averages over the training set.






	Returns:

	Scaled input tensor.



	Return type:

	torch.Tensor










	
scale_amplification(h, D, avg_d)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/graph_utils.py#L204-L222]

	Amplification scaling function. log(D + 1) / d * h where d is the average of the log(D + 1) in the training set


	Parameters:

	
	h (torch.Tensor) – Input tensor.


	D (torch.Tensor) – Degree tensor.


	avg_d (dict) – Dictionary containing averages over the training set.






	Returns:

	Scaled input tensor.



	Return type:

	torch.Tensor










	
scale_attenuation(h, D, avg_d)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/graph_utils.py#L225-L243]

	Attenuation scaling function. (log(D + 1))^-1 / d * X where d is the average of the log(D + 1))^-1 in the training set


	Parameters:

	
	h (torch.Tensor) – Input tensor.


	D (torch.Tensor) – Degree tensor.


	avg_d (dict) – Dictionary containing averages over the training set.






	Returns:

	Scaled input tensor.



	Return type:

	torch.Tensor











Hash Function Utilities


	
hash_ecfp(ecfp: str, size: int = 1024) → int[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/hash_utils.py#L9-L33]

	Returns an int < size representing given ECFP fragment.

Input must be a string. This utility function is used for various
ECFP based fingerprints.


	Parameters:

	
	ecfp (str) – String to hash. Usually an ECFP fragment.


	size (int, optional (default 1024)) – Hash to an int in range [0, size)






	Returns:

	ecfp_hash – An int < size representing given ECFP fragment



	Return type:

	int










	
hash_ecfp_pair(ecfp_pair: Tuple[str, str], size: int = 1024) → int[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/hash_utils.py#L40-L67]

	Returns an int < size representing that ECFP pair.

Input must be a tuple of strings. This utility is primarily used for
spatial contact featurizers. For example, if a protein and ligand
have close contact region, the first string could be the protein’s
fragment and the second the ligand’s fragment. The pair could be
hashed together to achieve one hash value for this contact region.


	Parameters:

	
	ecfp_pair (Tuple[str, str]) – Pair of ECFP fragment strings


	size (int, optional (default 1024)) – Hash to an int in range [0, size)






	Returns:

	ecfp_hash – An int < size representing given ECFP pair.



	Return type:

	int










	
vectorize(hash_function: Callable[[Any, int], int], feature_dict: Dict[int, str] | None = None, size: int = 1024, feature_list: List | None = None) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/hash_utils.py#L70-L113]

	Helper function to vectorize a spatial description from a hash.

Hash functions are used to perform spatial featurizations in
DeepChem. However, it’s necessary to convert backwards from
the hash function to feature vectors. This function aids in
this conversion procedure. It creates a vector of zeros of length
size. It then loops through feature_dict, uses hash_function
to hash the stored value to an integer in range [0, size) and bumps
that index.


	Parameters:

	
	hash_function (Function, Callable[[str, int], int]) – Should accept two arguments, feature, and size and
return a hashed integer. Here feature is the item to
hash, and size is an int. For example, if size=1024,
then hashed values must fall in range [0, 1024).


	feature_dict (Dict, optional (default None)) – Maps unique keys to features computed.


	size (int (default 1024)) – Length of generated bit vector


	feature_list (List, optional (default None)) – List of features.






	Returns:

	feature_vector – A numpy array of shape (size,)



	Return type:

	np.ndarray











Voxel Utils


	
convert_atom_to_voxel(coordinates: ndarray, atom_index: int, box_width: float, voxel_width: float) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/voxel_utils.py#L13-L42]

	Converts atom coordinates to an i,j,k grid index.

This function offsets molecular atom coordinates by
(box_width/2, box_width/2, box_width/2) and then divides by
voxel_width to compute the voxel indices.


	Parameters:

	
	coordinates (np.ndarray) – Array with coordinates of all atoms in the molecule, shape (N, 3).


	atom_index (int) – Index of an atom in the molecule.


	box_width (float) – Size of the box in Angstroms.


	voxel_width (float) – Size of a voxel in Angstroms






	Returns:

	indices – A 1D numpy array of length 3 with [i, j, k], the voxel coordinates
of specified atom.



	Return type:

	np.ndarray










	
convert_atom_pair_to_voxel(coordinates_tuple: Tuple[ndarray, ndarray], atom_index_pair: Tuple[int, int], box_width: float, voxel_width: float) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/voxel_utils.py#L45-L75]

	Converts a pair of atoms to i,j,k grid indexes.


	Parameters:

	
	coordinates_tuple (Tuple[np.ndarray, np.ndarray]) – A tuple containing two molecular coordinate arrays of shapes (N, 3) and (M, 3).


	atom_index_pair (Tuple[int, int]) – A tuple of indices for the atoms in the two molecules.


	box_width (float) – Size of the box in Angstroms.


	voxel_width (float) – Size of a voxel in Angstroms






	Returns:

	indices_list – A numpy array of shape (2, 3), where 3 is [i, j, k] of the
voxel coordinates of specified atom.



	Return type:

	np.ndarray










	
voxelize(get_voxels: Callable[[...], Any], coordinates: Any, box_width: float = 16.0, voxel_width: float = 1.0, hash_function: Callable[[...], Any] | None = None, feature_dict: Dict[Any, Any] | None = None, feature_list: List[int | Tuple[int]] | None = None, nb_channel: int = 16, dtype: str = 'int') → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/voxel_utils.py#L78-L163]

	Helper function to voxelize inputs.

This helper function helps convert a hash function which
specifies spatial features of a molecular complex into a voxel
tensor. This utility is used by various featurizers that generate
voxel grids.


	Parameters:

	
	get_voxels (Function) – Function that voxelizes inputs


	coordinates (Any) – Contains the 3D coordinates of a molecular system.  This should have
whatever type get_voxels() expects as its first argument.


	box_width (float, optional (default 16.0)) – Size of a box in which voxel features are calculated. Box
is centered on a ligand centroid.


	voxel_width (float, optional (default 1.0)) – Size of a 3D voxel in a grid in Angstroms.


	hash_function (Function) – Used to map feature choices to voxel channels.


	feature_dict (Dict, optional (default None)) – Keys are atom indices or tuples of atom indices, the values are
computed features. If hash_function is not None, then the values
are hashed using the hash function into [0, nb_channels) and
this channel at the voxel for the given key is incremented by 1
for each dictionary entry. If hash_function is None, then the
value must be a vector of size (n_channels,) which is added to
the existing channel values at that voxel grid.


	feature_list (List, optional (default None)) – List of atom indices or tuples of atom indices. This can only be
used if nb_channel==1. Increments the voxels corresponding to
these indices by 1 for each entry.


	nb_channel (int, , optional (default 16)) – The number of feature channels computed per voxel. Should
be a power of 2.


	dtype (str ('int' or 'float'), optional (default 'int')) – The type of the numpy ndarray created to hold features.






	Returns:

	feature_tensor – The voxel of the input with the shape
(voxels_per_edge, voxels_per_edge, voxels_per_edge, nb_channel).



	Return type:

	np.ndarray











Graph Convolution Utilities


	
one_hot_encode(val: int | str, allowable_set: List[str] | List[int], include_unknown_set: bool = False) → List[float][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/molecule_feature_utils.py#L137-L194]

	One hot encoder for elements of a provided set.

Examples

>>> one_hot_encode("a", ["a", "b", "c"])
[1.0, 0.0, 0.0]
>>> one_hot_encode(2, [0, 1, 2])
[0.0, 0.0, 1.0]
>>> one_hot_encode(3, [0, 1, 2])
[0.0, 0.0, 0.0]
>>> one_hot_encode(3, [0, 1, 2], True)
[0.0, 0.0, 0.0, 1.0]






	Parameters:

	
	val (int or str) – The value must be present in allowable_set.


	allowable_set (List[int] or List[str]) – List of allowable quantities.


	include_unknown_set (bool, default False) – If true, the index of all values not in allowable_set is len(allowable_set).






	Returns:

	An one-hot vector of val.
If include_unknown_set is False, the length is len(allowable_set).
If include_unknown_set is True, the length is len(allowable_set) + 1.



	Return type:

	List[float]



	Raises:

	ValueError – If include_unknown_set is False and val is not in allowable_set.










	
get_atom_type_one_hot(atom: Any, allowable_set: List[str] = ['C', 'N', 'O', 'F', 'P', 'S', 'Cl', 'Br', 'I'], include_unknown_set: bool = True) → List[float][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/molecule_feature_utils.py#L202-L224]

	Get an one-hot feature of an atom type.


	Parameters:

	
	atom (rdkit.Chem.rdchem.Atom) – RDKit atom object


	allowable_set (List[str]) – The atom types to consider. The default set is
[“C”, “N”, “O”, “F”, “P”, “S”, “Cl”, “Br”, “I”].


	include_unknown_set (bool, default True) – If true, the index of all atom not in allowable_set is len(allowable_set).






	Returns:

	An one-hot vector of atom types.
If include_unknown_set is False, the length is len(allowable_set).
If include_unknown_set is True, the length is len(allowable_set) + 1.



	Return type:

	List[float]










	
construct_hydrogen_bonding_info(mol: Any) → List[Tuple[int, str]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/molecule_feature_utils.py#L227-L246]

	Construct hydrogen bonding infos about a molecule.


	Parameters:

	mol (rdkit.Chem.rdchem.Mol) – RDKit mol object



	Returns:

	A list of tuple (atom_index, hydrogen_bonding_type).
The hydrogen_bonding_type value is “Acceptor” or “Donor”.



	Return type:

	List[Tuple[int, str]]










	
get_atom_hydrogen_bonding_one_hot(atom: Any, hydrogen_bonding: List[Tuple[int, str]]) → List[float][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/molecule_feature_utils.py#L249-L276]

	Get an one-hot feat about whether an atom accepts electrons or donates electrons.


	Parameters:

	
	atom (rdkit.Chem.rdchem.Atom) – RDKit atom object


	hydrogen_bonding (List[Tuple[int, str]]) – The return value of construct_hydrogen_bonding_info.
The value is a list of tuple (atom_index, hydrogen_bonding) like (1, “Acceptor”).






	Returns:

	A one-hot vector of the ring size type. The first element
indicates “Donor”, and the second element indicates “Acceptor”.



	Return type:

	List[float]










	
get_atom_is_in_aromatic_one_hot(atom: Any) → List[float][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/molecule_feature_utils.py#L279-L292]

	Get ans one-hot feature about whether an atom is in aromatic system or not.


	Parameters:

	atom (rdkit.Chem.rdchem.Atom) – RDKit atom object



	Returns:

	A vector of whether an atom is in aromatic system or not.



	Return type:

	List[float]










	
get_atom_hybridization_one_hot(atom: Any, allowable_set: List[str] = ['SP', 'SP2', 'SP3'], include_unknown_set: bool = False) → List[float][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/molecule_feature_utils.py#L295-L318]

	Get an one-hot feature of hybridization type.


	Parameters:

	
	atom (rdkit.Chem.rdchem.Atom) – RDKit atom object


	allowable_set (List[str]) – The hybridization types to consider. The default set is [“SP”, “SP2”, “SP3”]


	include_unknown_set (bool, default False) – If true, the index of all types not in allowable_set is len(allowable_set).






	Returns:

	An one-hot vector of the hybridization type.
If include_unknown_set is False, the length is len(allowable_set).
If include_unknown_set is True, the length is len(allowable_set) + 1.



	Return type:

	List[float]










	
get_atom_total_num_Hs_one_hot(atom: Any, allowable_set: List[int] = [0, 1, 2, 3, 4], include_unknown_set: bool = True) → List[float][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/molecule_feature_utils.py#L321-L344]

	Get an one-hot feature of the number of hydrogens which an atom has.


	Parameters:

	
	atom (rdkit.Chem.rdchem.Atom) – RDKit atom object


	allowable_set (List[int]) – The number of hydrogens to consider. The default set is [0, 1, …, 4]


	include_unknown_set (bool, default True) – If true, the index of all types not in allowable_set is len(allowable_set).






	Returns:

	A one-hot vector of the number of hydrogens which an atom has.
If include_unknown_set is False, the length is len(allowable_set).
If include_unknown_set is True, the length is len(allowable_set) + 1.



	Return type:

	List[float]










	
get_atom_chirality_one_hot(atom: Any) → List[float][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/molecule_feature_utils.py#L347-L370]

	Get an one-hot feature about an atom chirality type.


	Parameters:

	atom (rdkit.Chem.rdchem.Atom) – RDKit atom object



	Returns:

	A one-hot vector of the chirality type. The first element
indicates “R”, and the second element indicates “S”.



	Return type:

	List[float]










	
get_atom_formal_charge(atom: Any) → List[float][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/molecule_feature_utils.py#L373-L386]

	Get a formal charge of an atom.


	Parameters:

	atom (rdkit.Chem.rdchem.Atom) – RDKit atom object



	Returns:

	A vector of the formal charge.



	Return type:

	List[float]










	
get_atom_partial_charge(atom: Any) → List[float][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/molecule_feature_utils.py#L414-L435]

	Get a partial charge of an atom.


	Parameters:

	atom (rdkit.Chem.rdchem.Atom) – RDKit atom object



	Returns:

	A vector of the parital charge.



	Return type:

	List[float]





Notes

Before using this function, you must calculate GasteigerCharge
like AllChem.ComputeGasteigerCharges(mol).






	
get_atom_total_degree_one_hot(atom: Any, allowable_set: List[int] = [0, 1, 2, 3, 4, 5], include_unknown_set: bool = True) → List[float][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/molecule_feature_utils.py#L438-L461]

	Get an one-hot feature of the degree which an atom has.


	Parameters:

	
	atom (rdkit.Chem.rdchem.Atom) – RDKit atom object


	allowable_set (List[int]) – The degree to consider. The default set is [0, 1, …, 5]


	include_unknown_set (bool, default True) – If true, the index of all types not in allowable_set is len(allowable_set).






	Returns:

	A one-hot vector of the degree which an atom has.
If include_unknown_set is False, the length is len(allowable_set).
If include_unknown_set is True, the length is len(allowable_set) + 1.



	Return type:

	List[float]










	
get_bond_type_one_hot(bond: Any, allowable_set: List[str] = ['SINGLE', 'DOUBLE', 'TRIPLE', 'AROMATIC'], include_unknown_set: bool = False) → List[float][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/molecule_feature_utils.py#L523-L545]

	Get an one-hot feature of bond type.


	Parameters:

	
	bond (rdkit.Chem.rdchem.Bond) – RDKit bond object


	allowable_set (List[str]) – The bond types to consider. The default set is [“SINGLE”, “DOUBLE”, “TRIPLE”, “AROMATIC”].


	include_unknown_set (bool, default False) – If true, the index of all types not in allowable_set is len(allowable_set).






	Returns:

	A one-hot vector of the bond type.
If include_unknown_set is False, the length is len(allowable_set).
If include_unknown_set is True, the length is len(allowable_set) + 1.



	Return type:

	List[float]










	
get_bond_is_in_same_ring_one_hot(bond: Any) → List[float][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/molecule_feature_utils.py#L548-L561]

	Get an one-hot feature about whether atoms of a bond is in the same ring or not.


	Parameters:

	bond (rdkit.Chem.rdchem.Bond) – RDKit bond object



	Returns:

	A one-hot vector of whether a bond is in the same ring or not.



	Return type:

	List[float]










	
get_bond_is_conjugated_one_hot(bond: Any) → List[float][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/molecule_feature_utils.py#L564-L577]

	Get an one-hot feature about whether a bond is conjugated or not.


	Parameters:

	bond (rdkit.Chem.rdchem.Bond) – RDKit bond object



	Returns:

	A one-hot vector of whether a bond is conjugated or not.



	Return type:

	List[float]










	
get_bond_stereo_one_hot(bond: Any, allowable_set: List[str] = ['STEREONONE', 'STEREOANY', 'STEREOZ', 'STEREOE'], include_unknown_set: bool = True) → List[float][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/molecule_feature_utils.py#L580-L603]

	Get an one-hot feature of the stereo configuration of a bond.


	Parameters:

	
	bond (rdkit.Chem.rdchem.Bond) – RDKit bond object


	allowable_set (List[str]) – The stereo configuration types to consider.
The default set is [“STEREONONE”, “STEREOANY”, “STEREOZ”, “STEREOE”].


	include_unknown_set (bool, default True) – If true, the index of all types not in allowable_set is len(allowable_set).






	Returns:

	A one-hot vector of the stereo configuration of a bond.
If include_unknown_set is False, the length is len(allowable_set).
If include_unknown_set is True, the length is len(allowable_set) + 1.



	Return type:

	List[float]










	
get_bond_graph_distance_one_hot(bond: Any, graph_dist_matrix: ndarray, allowable_set: List[int] = [1, 2, 3, 4, 5, 6, 7], include_unknown_set: bool = True) → List[float][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/molecule_feature_utils.py#L606-L632]

	Get an one-hot feature of graph distance.


	Parameters:

	
	bond (rdkit.Chem.rdchem.Bond) – RDKit bond object


	graph_dist_matrix (np.ndarray) – The return value of Chem.GetDistanceMatrix(mol). The shape is (num_atoms, num_atoms).


	allowable_set (List[int]) – The graph distance types to consider. The default set is [1, 2, …, 7].


	include_unknown_set (bool, default False) – If true, the index of all types not in allowable_set is len(allowable_set).






	Returns:

	A one-hot vector of the graph distance.
If include_unknown_set is False, the length is len(allowable_set).
If include_unknown_set is True, the length is len(allowable_set) + 1.



	Return type:

	List[float]











Grover Utilities


	
extract_grover_attributes(molgraph: BatchGraphData)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/grover.py#L278-L326]

	Utility to extract grover attributes for grover model


	Parameters:

	molgraph (BatchGraphData) – A batched graph data representing a collection of molecules.



	Returns:

	graph_attributes – A tuple containing atom features, bond features, atom to bond mapping, bond to atom mapping, bond to reverse bond mapping, atom to atom mapping, atom scope, bond scope, functional group labels and other additional features.



	Return type:

	Tuple





Example

>>> import deepchem as dc
>>> from deepchem.feat.graph_data import BatchGraphData
>>> smiles = ['CC', 'CCC', 'CC(=O)C']
>>> featurizer = dc.feat.GroverFeaturizer(features_generator=dc.feat.CircularFingerprint())
>>> graphs = featurizer.featurize(smiles)
>>> molgraph = BatchGraphData(graphs)
>>> attributes = extract_grover_attributes(molgraph)











Debug Utilities



Docking Utilities

These utilities assist in file preparation and processing for molecular
docking.


	
write_vina_conf(protein_filename: str, ligand_filename: str, centroid: ndarray, box_dims: ndarray, conf_filename: str, num_modes: int = 9, exhaustiveness: int | None = None) → None[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/docking_utils.py#L12-L57]

	Writes Vina configuration file to disk.

Autodock Vina accepts a configuration file which provides options
under which Vina is invoked. This utility function writes a vina
configuration file which directs Autodock vina to perform docking
under the provided options.


	Parameters:

	
	protein_filename (str) – Filename for protein


	ligand_filename (str) – Filename for the ligand


	centroid (np.ndarray) – A numpy array with shape (3,) holding centroid of system


	box_dims (np.ndarray) – A numpy array of shape (3,) holding the size of the box to dock


	conf_filename (str) – Filename to write Autodock Vina configuration to.


	num_modes (int, optional (default 9)) – The number of binding modes Autodock Vina should find


	exhaustiveness (int, optional) – The exhaustiveness of the search to be performed by Vina













	
write_gnina_conf(protein_filename: str, ligand_filename: str, conf_filename: str, num_modes: int = 9, exhaustiveness: int | None = None, **kwargs) → None[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/docking_utils.py#L60-L102]

	Writes GNINA configuration file to disk.

GNINA accepts a configuration file which provides options
under which GNINA is invoked. This utility function writes a
configuration file which directs GNINA to perform docking
under the provided options.


	Parameters:

	
	protein_filename (str) – Filename for protein


	ligand_filename (str) – Filename for the ligand


	conf_filename (str) – Filename to write Autodock Vina configuration to.


	num_modes (int, optional (default 9)) – The number of binding modes GNINA should find


	exhaustiveness (int, optional) – The exhaustiveness of the search to be performed by GNINA


	kwargs – Args supported by GNINA documented here
https://github.com/gnina/gnina#usage













	
load_docked_ligands(pdbqt_output: str) → Tuple[List[Any], List[float]][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/docking_utils.py#L137-L196]

	This function loads ligands docked by autodock vina.

Autodock vina writes outputs to disk in a PDBQT file format. This
PDBQT file can contain multiple docked “poses”. Recall that a pose
is an energetically favorable 3D conformation of a molecule. This
utility function reads and loads the structures for multiple poses
from vina’s output file.


	Parameters:

	pdbqt_output (str) – Should be the filename of a file generated by autodock vina’s
docking software.



	Returns:

	Tuple of molecules, scores. molecules is a list of rdkit
molecules with 3D information. scores is the associated vina
score.



	Return type:

	Tuple[List[rdkit.Chem.rdchem.Mol], List[float]]





Notes

This function requires RDKit to be installed.






	
prepare_inputs(protein: str, ligand: str, replace_nonstandard_residues: bool = True, remove_heterogens: bool = True, remove_water: bool = True, add_hydrogens: bool = True, pH: float = 7.0, optimize_ligand: bool = True, pdb_name: str | None = None) → Tuple[Any, Any][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/docking_utils.py#L199-L309]

	This prepares protein-ligand complexes for docking.

Autodock Vina requires PDB files for proteins and ligands with
sensible inputs. This function uses PDBFixer and RDKit to ensure
that inputs are reasonable and ready for docking. Default values
are given for convenience, but fixing PDB files is complicated and
human judgement is required to produce protein structures suitable
for docking. Always inspect the results carefully before trying to
perform docking.


	Parameters:

	
	protein (str) – Filename for protein PDB file or a PDBID.


	ligand (str) – Either a filename for a ligand PDB file or a SMILES string.


	replace_nonstandard_residues (bool (default True)) – Replace nonstandard residues with standard residues.


	remove_heterogens (bool (default True)) – Removes residues that are not standard amino acids or nucleotides.


	remove_water (bool (default True)) – Remove water molecules.


	add_hydrogens (bool (default True)) – Add missing hydrogens at the protonation state given by pH.


	pH (float (default 7.0)) – Most common form of each residue at given pH value is used.


	optimize_ligand (bool (default True)) – If True, optimize ligand with RDKit. Required for SMILES inputs.


	pdb_name (Optional[str]) – If given, write sanitized protein and ligand to files called
“pdb_name.pdb” and “ligand_pdb_name.pdb”






	Returns:

	Tuple of protein_molecule, ligand_molecule with 3D information.



	Return type:

	Tuple[RDKitMol, RDKitMol]






Note

This function requires RDKit and OpenMM to be installed.
Read more about PDBFixer here: https://github.com/openmm/pdbfixer.



Examples

>>> p, m = prepare_inputs('3cyx', 'CCC')





>> p.GetNumAtoms()
>> m.GetNumAtoms()

>>> p, m = prepare_inputs('3cyx', 'CCC', remove_heterogens=False)





>> p.GetNumAtoms()






	
read_gnina_log(log_file: str) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/docking_utils.py#L105-L134]

	Read GNINA logfile and get docking scores.

GNINA writes computed binding affinities to a logfile.


	Parameters:

	log_file (str) – Filename of logfile generated by GNINA.



	Returns:

	scores – Array of binding affinity (kcal/mol), CNN pose score,
and CNN affinity for each binding mode.



	Return type:

	np.array, dimension (num_modes, 3)










Print Threshold

The printing threshold controls how many dataset elements are printed
when dc.data.Dataset objects are converted to strings or
represnted in the IPython repl.


	
get_print_threshold() → int[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/debug_utils.py#L5-L16]

	Return the printing threshold for datasets.

The print threshold is the number of elements from ids/tasks to
print when printing representations of Dataset objects.


	Returns:

	threshold – Number of elements that will be printed



	Return type:

	int










	
set_print_threshold(threshold: int)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/debug_utils.py#L19-L31]

	Set print threshold

The print threshold is the number of elements from ids/tasks to
print when printing representations of Dataset objects.


	Parameters:

	threshold (int) – Number of elements to print.










	
get_max_print_size() → int[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/debug_utils.py#L39-L52]

	Return the max print size for a dataset.

If a dataset is large, printing self.ids as part of a string
representation can be very slow. This field controls the maximum
size for a dataset before ids are no longer printed.


	Returns:

	max_print_size – Maximum length of a dataset for ids to be printed in string
representation.



	Return type:

	int










	
set_max_print_size(max_print_size: int)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/debug_utils.py#L55-L69]

	Set max_print_size

If a dataset is large, printing self.ids as part of a string
representation can be very slow. This field controls the maximum
size for a dataset before ids are no longer printed.


	Parameters:

	max_print_size (int) – Maximum length of a dataset for ids to be printed in string
representation.












Fake Data Generator

The utilities here are used to generate random sample data which can be
used for testing model architectures or other purposes.


	
class FakeGraphGenerator(min_nodes: int = 10, max_nodes: int = 10, n_node_features: int = 5, avg_degree: int = 4, n_edge_features: int = 3, n_classes: int = 2, task: str = 'graph', **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/fake_data_generator.py#L10-L125]

	Generates a random graphs which can be used for testing or other purposes.

The generated graph supports both node-level and graph-level labels.

Example

>>> from deepchem.utils.fake_data_generator import FakeGraphGenerator
>>> fgg  = FakeGraphGenerator(min_nodes=8, max_nodes=10,  n_node_features=5, avg_degree=8, n_edge_features=3, n_classes=2, task='graph', z=5)
>>> graphs = fgg.sample(n_graphs=10)
>>> type(graphs)
<class 'deepchem.data.datasets.NumpyDataset'>
>>> type(graphs.X[0])
<class 'deepchem.feat.graph_data.GraphData'>
>>> len(graphs) == 10  # num_graphs
True






Note

The FakeGraphGenerator class is based on torch_geometric.dataset.FakeDataset
class.




	
__init__(min_nodes: int = 10, max_nodes: int = 10, n_node_features: int = 5, avg_degree: int = 4, n_edge_features: int = 3, n_classes: int = 2, task: str = 'graph', **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/fake_data_generator.py#L33-L68]

	
	Parameters:

	
	min_nodes (int, default 10) – Minimum number of permissible nodes in a graph


	max_nodes (int, default 10) – Maximum number of permissible nodes in a graph


	n_node_features (int, default 5) – Average number of node features in a graph


	avg_degree (int, default 4) – Average degree of the graph (avg_degree should be a positive number greater than the min_nodes)


	n_edge_features (int, default 3) – Average number of features in the edge


	task (str, default 'graph') – Indicates node-level labels or graph-level labels


	kwargs (optional) – Additional graph attributes and their shapes , e.g. global_features = 5













	
sample(n_graphs: int = 100) → NumpyDataset[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/fake_data_generator.py#L70-L125]

	Samples graphs


	Parameters:

	n_graphs (int, default 100) – Number of graphs to generate



	Returns:

	graphs – Generated Graphs



	Return type:

	NumpyDataset















Electron Sampler

The utilities here are used to sample electrons in a given molecule
and update it using monte carlo methods, which can be used for methods
like Variational Monte Carlo, etc.


	
class ElectronSampler(central_value: ndarray, f: Callable[[ndarray], ndarray], batch_no: int = 10, x: ndarray = array([], dtype=float64), steps: int = 200, steps_per_update: int = 10, seed: int | None = None, symmetric: bool = True, simultaneous: bool = True)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/electron_sampler.py#L5-L313]

	This class enables to initialize electron’s position using gauss distribution around a nucleus and update using Markov Chain Monte-Carlo(MCMC) moves.

Using the probability obtained from the square of magnitude of wavefunction of a molecule/atom, MCMC steps can be performed to get the electron’s positions and further update the wavefunction.
This method is primarily used in methods like Variational Monte Carlo to sample electrons around the nucleons.
Sampling can be done in 2 ways:
-Simultaneous: All the electrons’ positions are updated all at once.

-Single-electron: MCMC steps are performed only a particular electron, given their index value.

Further these moves can be done in 2 methods:
-Symmetric: In this configuration, the standard deviation for all the steps are uniform.

-Asymmetric: In this configuration, the standard deviation are not uniform and typically the standard deviation is obtained a function like harmonic distances, etc.

Irrespective of these methods, the initialization is done uniformly around the respective nucleus and the number of electrons specified.

Example

>>> from deepchem.utils.electron_sampler import ElectronSampler
>>> test_f = lambda x: 2*np.log(np.random.uniform(low=0,high=1.0,size=np.shape(x)[0]))
>>> distribution=ElectronSampler(central_value=np.array([[1,1,3],[3,2,3]]),f=test_f,seed=0,batch_no=2,steps=1000,)
>>> distribution.gauss_initialize_position(np.array([[1],[2]]))





>> print(distribution.x)
[[[[1.03528105 1.00800314 3.01957476]]


[[3.01900177 1.99697286 2.99793562]]

[[3.00821197 2.00288087 3.02908547]]]




[[[1.04481786 1.03735116 2.98045444]]


[[3.01522075 2.0024335  3.00887726]]

[[3.00667349 2.02988158 2.99589683]]]]




>>> distribution.move()
0.5115





>> print(distribution.x)
[[[[-0.32441754  1.23330263  2.67927645]]


[[ 3.42250997  2.23617126  3.55806632]]

[[ 3.37491385  1.54374006  3.13575241]]]




[[[ 0.49067726  1.03987841  3.70277884]]


[[ 3.5631939   1.68703947  2.5685874 ]]

[[ 2.84560249  1.73998364  3.41274181]]]]





	
__init__(central_value: ndarray, f: Callable[[ndarray], ndarray], batch_no: int = 10, x: ndarray = array([], dtype=float64), steps: int = 200, steps_per_update: int = 10, seed: int | None = None, symmetric: bool = True, simultaneous: bool = True)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/electron_sampler.py#L61-L110]

	
	Parameters:

	
	central_value (np.ndarray) – Contains each nucleus’ coordinates in a 2D array. The shape of the array should be(number_of_nucleus,3).Ex: [[1,2,3],[3,4,5],..]


	f (Callable[[np.ndarray],np.ndarray]) – A function that should give the twice the log probability of wavefunction of the molecular system when called. Should taken in a 4D array of electron’s positions(x) as argument and return a numpy array containing the log probabilities of each batch.


	batch_no (int, optional (default 10)) – Number of batches of the electron’s positions to be initialized.


	x (np.ndarray, optional (default np.ndarray([]))) – Contains the electron’s coordinates in a 4D array. The shape of the array should be(batch_no,no_of_electrons,1,3). Can be a 1D empty array, when electron’s positions are yet to be initialized.


	steps (int, optional (default 10)) – The number of MCMC steps to be performed when the moves are called.


	steps_per_update (int (default 10)) – The number of steps after which the parameters of the MCMC gets updated.


	seed (int, optional (default None)) – Random seed to use.


	symmetric (bool, optional(default True)) – If true, symmetric moves will be used, else asymmetric moves will be followed.


	simultaneous (bool, optional(default True)) – If true, MCMC steps will be performed on all the electrons, else only a single electron gets updated.









	
sampled_electrons[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/electron_sampler.py]

	Keeps track of the sampled electrons at every step, must be empty at start.


	Type:

	np.ndarray














	
harmonic_mean(y: ndarray) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/electron_sampler.py#L112-L128]

	Calculates the harmonic mean of the value ‘y’ from the self.central value. The numpy array returned is typically scaled up to get the standard deviation matrix.


	Parameters:

	y (np.ndarray) – Containing the data distribution. Shape of y should be (batch,no_of_electron,1,3)



	Returns:

	Contains the harmonic mean of the data distribution of each batch. Shape of the array obtained (batch_no, no_of_electrons,1,1)



	Return type:

	np.ndarray










	
log_prob_gaussian(y: ndarray, mu: ndarray, sigma: ndarray) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/electron_sampler.py#L130-L151]

	Calculates the log probability of a gaussian distribution, given the mean and standard deviation


	Parameters:

	
	y (np.ndarray) – data for which the log normal distribution is to be found


	mu (np.ndarray) – Means wrt which the log normal is calculated. Same shape as x or should be brodcastable to x


	sigma (np.ndarray,) – The standard deviation of the log normal distribution. Same shape as x or should be brodcastable to x






	Returns:

	Log probability of gaussian distribution, with the shape - (batch_no,).



	Return type:

	np.ndarray










	
gauss_initialize_position(no_sample: ndarray, stddev: float = 0.02)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/electron_sampler.py#L153-L179]

	Initializes the position around a central value as mean sampled from a gauss distribution and updates self.x.
:param no_sample: Contains the number of samples to initialize under each mean. should be in the form [[3],[2]..], where here it means 3 samples and 2 samples around the first entry and second entry,respectively in self.central_value is taken.
:type no_sample: np.ndarray,
:param stddev: contains the stddev with which the electrons’ coordinates are initialized
:type stddev: float, optional (default 0.02)






	
electron_update(lp1, lp2, move_prob, ratio, x2) → ndarray[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/electron_sampler.py#L181-L214]

	Performs sampling & parameter updates of electrons and appends the sampled electrons to self.sampled_electrons.


	Parameters:

	
	lp1 (np.ndarray) – Log probability of initial parameter state.


	lp2 (np.ndarray) – Log probability of the new sampled state.


	move_prob (np.ndarray) – Sampled log probabilty of the electron moving from the initial to final state, sampled assymetrically or symetrically.


	ratio (np.ndarray) – Ratio of lp1 and lp2 state.


	x2 (np.ndarray) – Numpy array of the new sampled electrons.






	Returns:

	lp1 – The update log probability of initial parameter state.



	Return type:

	np.ndarray










	
move(stddev: float = 0.02, asymmetric_func: Callable[[ndarray], ndarray] | None = None, index: int | None = None) → float[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/electron_sampler.py#L216-L313]

	Performs Metropolis-Hasting move for self.x(electrons). The type of moves to be followed -(simultaneous or single-electron, symmetric or asymmetric) have been specified when calling the class.
The self.x array is replaced with a new array at the end of each step containing the new electron’s positions.


	Parameters:

	
	asymmetric_func (Callable[[np.ndarray],np.ndarray], optional(default None)) – Should be specified for an asymmetric move.The function should take in only 1 argument- y: a numpy array wrt to which mean should be calculated.
This function should return the mean for the asymmetric proposal. For ferminet, this function is the harmonic mean of the distance between the electron and the nucleus.


	stddev (float, optional (default 0.02)) – Specifies the standard deviation in the case of symmetric moves and the scaling factor of the standard deviation matrix in the case of asymmetric moves.


	index (int, optional (default None)) – Specifies the index of the electron to be updated in the case of a single electron move.






	Returns:

	accepted move ratio of the MCMC steps.



	Return type:

	float















Density Functional Theory Utilities

The utilites here are used to create an object that contains information about a system’s self-consistent iteration steps and other processes.


	
class Lattice(a: Tensor)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/hamilton/intor/lattice.py#L7-L227]

	Lattice is an object that describe the periodicity of the lattice.
Note that this object does not know about atoms.
For the integrated object between the lattice and atoms, please see Sol

Examples

>>> import torch
>>> from deepchem.utils.dft_utils import Lattice
>>> a = torch.tensor([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]])
>>> lattice = Lattice(a)
>>> lattice.lattice_vectors()
tensor([[1., 0., 0.],
        [0., 1., 0.],
        [0., 0., 1.]])
>>> lattice.recip_vectors()
tensor([[6.2832, 0.0000, 0.0000],
        [0.0000, 6.2832, 0.0000],
        [0.0000, 0.0000, 6.2832]])
>>> lattice.volume() # volume of the unit cell
tensor(1.)
>>> lattice.get_lattice_ls(1.0) # get the neighboring lattice vectors
tensor([[ 0.,  0., -1.],
        [ 0., -1.,  0.],
        [-1.,  0.,  0.],
        [ 0.,  0.,  0.],
        [ 1.,  0.,  0.],
        [ 0.,  1.,  0.],
        [ 0.,  0.,  1.]])
>>> lattice.get_gvgrids(6.0) # get the neighboring G-vectors
(tensor([[ 0.0000,  0.0000, -6.2832],
        [ 0.0000, -6.2832,  0.0000],
        [-6.2832,  0.0000,  0.0000],
        [ 0.0000,  0.0000,  0.0000],
        [ 6.2832,  0.0000,  0.0000],
        [ 0.0000,  6.2832,  0.0000],
        [ 0.0000,  0.0000,  6.2832]]), tensor([1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000]))
>>> lattice.estimate_ewald_eta(1e-5) # estimate the ewald's sum eta
1.8






	
__init__(a: Tensor)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/hamilton/intor/lattice.py#L50-L67]

	Initialize the lattice object.

2D or 1D repetition are not implemented yet


	Parameters:

	a (torch.Tensor) – The lattice vectors with shape (ndim, ndim) with ndim == 3










	
lattice_vectors() → Tensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/hamilton/intor/lattice.py#L69-L71]

	Returns the 3D lattice vectors (nv, ndim) with nv == 3






	
recip_vectors() → Tensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/hamilton/intor/lattice.py#L73-L80]

	Returns the 3D reciprocal vectors with norm == 2 * pi with shape (nv, ndim)
with nv == 3

Note: torch.det(self.a) should not be equal to zero.






	
volume() → Tensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/hamilton/intor/lattice.py#L82-L84]

	Returns the volume of a lattice.






	
property params: Tuple[Tensor, ...][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils.py]

	Returns the list of parameters of this object






	
get_lattice_ls(rcut: float, exclude_zeros: bool = False) → Tensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/hamilton/intor/lattice.py#L91-L116]

	Returns a tensor that contains the coordinates of the neighboring
lattices.


	Parameters:

	
	rcut (float) – The threshold of the distance from the main cell to be included
in the neighbor.


	exclude_zeros (bool (default: False)) – If True, then it will exclude the vector that are all zeros.






	Returns:

	ls – Tensor with size (nb, ndim) containing the coordinates of the
neighboring cells.



	Return type:

	torch.Tensor










	
get_gvgrids(gcut: float, exclude_zeros: bool = False) → Tuple[Tensor, Tensor][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/hamilton/intor/lattice.py#L118-L152]

	Returns a tensor that contains the coordinate in reciprocal space of the
neighboring Brillouin zones.


	Parameters:

	
	gcut (float) – Cut off for generating the G-points.


	exclude_zeros (bool (default: False)) – If True, then it will exclude the vector that are all zeros.






	Returns:

	
	gvgrids (torch.Tensor) – Tensor with size (ng, ndim) containing the G-coordinates of the
Brillouin zones.


	weights (torch.Tensor) – Tensor with size (ng) representing the weights of the G-points.















	
estimate_ewald_eta(precision: float) → float[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/hamilton/intor/lattice.py#L154-L173]

	estimate the ewald’s sum eta for nuclei interaction energy the
precision is assumed to be relative precision this formula is obtained
by estimating the sum as an integral.


	Parameters:

	precision (float) – The precision of the ewald’s sum.



	Returns:

	eta – The estimated eta.



	Return type:

	float














	
class SpinParam(u: T, d: T)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/data/datastruct.py#L23-L69]

	Data structure to store different values for spin-up and spin-down electrons.

Examples

>>> import torch
>>> from deepchem.utils.dft_utils import SpinParam
>>> dens_u = torch.ones(1)
>>> dens_d = torch.zeros(1)
>>> sp = SpinParam(u=dens_u, d=dens_d)
>>> sp.u
tensor([1.])
>>> sp.sum()
tensor([1.])
>>> sp.reduce(torch.multiply)
tensor([0.])






	
__init__(u: T, d: T)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/data/datastruct.py#L43-L55]

	Initialize the SpinParam object.


	Parameters:

	
	u (any type) – The parameters that corresponds to the spin-up electrons.


	d (any type) – The parameters that corresponds to the spin-down electrons.













	
sum()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/data/datastruct.py#L61-L64]

	Returns the sum of up and down parameters.






	
reduce(fcn: Callable) → T[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/data/datastruct.py#L66-L69]

	Reduce up and down parameters with the given function.










	
class ValGrad(value: Tensor, grad: Tensor | None = None, lapl: Tensor | None = None, kin: Tensor | None = None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/data/datastruct.py#L72-L144]

	Data structure that contains local information about density profiles.
Data structure used as a umbrella class for density profiles and the
derivative of the potential w.r.t. density profiles.

Examples

>>> import torch
>>> from deepchem.utils.dft_utils import ValGrad
>>> dens = torch.ones(1)
>>> grad = torch.zeros(1)
>>> lapl = torch.ones(1)
>>> kin = torch.ones(1)
>>> vg = ValGrad(value=dens, grad=grad, lapl=lapl, kin=kin)
>>> vg + vg
ValGrad(value=tensor([2.]), grad=tensor([0.]), lapl=tensor([2.]), kin=tensor([2.]))
>>> vg * 5
ValGrad(value=tensor([5.]), grad=tensor([0.]), lapl=tensor([5.]), kin=tensor([5.]))






	
__init__(value: Tensor, grad: Tensor | None = None, lapl: Tensor | None = None, kin: Tensor | None = None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/data/datastruct.py#L94-L119]

	Initialize the ValGrad object.


	Parameters:

	
	value (torch.Tensor) – Tensors containing the value of the local information.


	grad (torch.Tensor or None) – If tensor, it represents the gradient of the local information with
shape (..., 3) where ... should be the same shape as value.


	lapl (torch.Tensor or None) – If tensor, represents the laplacian value of the local information.
It should have the same shape as value.


	kin (torch.Tensor or None) – If tensor, represents the local kinetic energy density.
It should have the same shape as value.













	
__add__(b)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/data/datastruct.py#L121-L128]

	Add two ValGrad objects together.






	
__mul__(f: float | int | Tensor)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/data/datastruct.py#L130-L141]

	Multiply the ValGrad object with a scalar.










	
class CGTOBasis(angmom: int, alphas: Tensor, coeffs: Tensor)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/data/datastruct.py#L147-L230]

	Data structure that contains information about a contracted gaussian
type orbital (CGTO).

Examples

>>> import torch
>>> from deepchem.utils.dft_utils import CGTOBasis
>>> alphas = torch.ones(1)
>>> coeffs = torch.ones(1)
>>> cgto = CGTOBasis(angmom=0, alphas=alphas, coeffs=coeffs)
>>> cgto.wfnormalize_()
CGTOBasis(angmom=0, alphas=tensor([1.]), coeffs=tensor([2.5265]), normalized=True)






	
__init__(angmom: int, alphas: Tensor, coeffs: Tensor)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/data/datastruct.py#L164-L180]

	Initialize the CGTOBasis object.


	Parameters:

	
	angmom (int) – The angular momentum of the basis.


	alphas (torch.Tensor) – The gaussian exponents of the basis. Shape: (nbasis,)


	coeffs (torch.Tensor) – The coefficients of the basis. Shape: (nbasis,)













	
wfnormalize_() → CGTOBasis[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/data/datastruct.py#L197-L230]

	Wavefunction normalization

The normalization is obtained from CINTgto_norm from
libcint/src/misc.c, or
https://github.com/sunqm/libcint/blob/b8594f1d27c3dad9034984a2a5befb9d607d4932/src/misc.c#L80

Please note that the square of normalized wavefunctions do not integrate
to 1, but e.g. for s: 4*pi, p: (4*pi/3)










	
class AtomCGTOBasis(atomz: int | float | Tensor, bases: List[CGTOBasis], pos: List[List[float]] | ndarray | Tensor)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/data/datastruct.py#L233-L281]

	Data structure that contains information about a atom and its contracted
gaussian type orbital (CGTO).

Examples

>>> import torch
>>> from deepchem.utils.dft_utils import AtomCGTOBasis, CGTOBasis
>>> alphas = torch.ones(1)
>>> coeffs = torch.ones(1)
>>> cgto = CGTOBasis(angmom=0, alphas=alphas, coeffs=coeffs)
>>> atomcgto = AtomCGTOBasis(atomz=1, bases=[cgto], pos=[[0.0, 0.0, 0.0]])
>>> atomcgto
AtomCGTOBasis(atomz=1, bases=[CGTOBasis(angmom=0, alphas=tensor([1.]), coeffs=tensor([1.]), normalized=False)], pos=tensor([[0., 0., 0.]]))






	
__init__(atomz: int | float | Tensor, bases: List[CGTOBasis], pos: List[List[float]] | ndarray | Tensor)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/data/datastruct.py#L251-L266]

	Initialize the AtomCGTOBasis object.


	Parameters:

	
	atomz (ZType) – Atomic number of the atom.


	bases (List[CGTOBasis]) – List of CGTOBasis objects.


	pos (AtomPosType) – Position of the atom. Shape: (ndim,)

















	
class BaseXC[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/xc/base_xc.py#L9-L515]

	This is the base class for the exchange-correlation (XC) functional.
The XC functional is used to calculate the exchange-correlation energy
and potential. The XC functional is usually divided into three families:
LDA, GGA, and Meta-GGA. The LDA is the simplest one, which only depends
on the density. The GGA depends on the density and its gradient. The
Meta-GGA depends on the density, its gradient, and its Laplacian.

Examples

>>> import torch
>>> from deepchem.utils.dft_utils import ValGrad, SpinParam
>>> from deepchem.utils.dft_utils import BaseXC
>>> class MyXC(BaseXC):
...     @property
...     def family(self) -> int:
...         return 1
...     def get_edensityxc(self, densinfo: Union[ValGrad, SpinParam[ValGrad]]) -> torch.Tensor:
...         if isinstance(densinfo, ValGrad):
...             return densinfo.value.pow(2)
...         else:
...             return densinfo.u.value.pow(2) + densinfo.d.value.pow(2)
...     def get_vxc(self, densinfo: Union[ValGrad, SpinParam[ValGrad]]) -> Union[ValGrad, SpinParam[ValGrad]]:
...         if isinstance(densinfo, ValGrad):
...             return ValGrad(value=2*densinfo.value)
...         else:
...             return SpinParam(u=ValGrad(value=2*densinfo.u.value),
...                              d=ValGrad(value=2*densinfo.d.value))
>>> xc = MyXC()
>>> densinfo = ValGrad(value=torch.tensor([1., 2., 3.], requires_grad=True))
>>> xc.get_edensityxc(densinfo)
tensor([1., 4., 9.], grad_fn=<PowBackward0>)
>>> xc.get_vxc(densinfo)
ValGrad(value=tensor([2., 4., 6.], grad_fn=<MulBackward0>), grad=None, lapl=None, kin=None)
>>> densinfo = SpinParam(u=ValGrad(value=torch.tensor([1., 2., 3.], requires_grad=True)),
...                      d=ValGrad(value=torch.tensor([4., 5., 6.], requires_grad=True)))
>>> xc.get_edensityxc(densinfo)
tensor([17., 29., 45.], grad_fn=<AddBackward0>)
>>> xc.get_vxc(densinfo)
SpinParam(u=ValGrad(value=tensor([2., 4., 6.], grad_fn=<MulBackward0>), grad=None, lapl=None, kin=None), d=ValGrad(value=tensor([ 8., 10., 12.], grad_fn=<MulBackward0>), grad=None, lapl=None, kin=None))






	
abstract property family: int[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils.py]

	Returns 1 for LDA, 2 for GGA, and 4 for Meta-GGA.






	
abstract get_edensityxc(densinfo: ValGrad | SpinParam[ValGrad]) → Tensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/xc/base_xc.py#L58-L82]

	Returns the xc energy density (energy per unit volume)


	Parameters:

	densinfo (Union[ValGrad, SpinParam[ValGrad]]) – The density information.
If the XC is unpolarized, then densinfo is ValGrad.
If the XC is polarized, then densinfo is SpinParam[ValGrad].
The ValGrad contains the value and gradient of the density.
The SpinParam[ValGrad] contains the value and gradient of the density
for each spin channel.



	Returns:

	The energy density of the XC.



	Return type:

	torch.Tensor










	
get_vxc(densinfo: ValGrad | SpinParam[ValGrad])[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/xc/base_xc.py#L84-L231]

	Returns the ValGrad for the xc potential given the density info
for unpolarized case.

This is the default implementation of vxc if there is no implementation
in the specific class of XC.


	Parameters:

	densinfo (Union[ValGrad, SpinParam[ValGrad]]) – The density information.
If the XC is unpolarized, then densinfo is ValGrad.
If the XC is polarized, then densinfo is SpinParam[ValGrad].
The ValGrad contains the value and gradient of the density.
The SpinParam[ValGrad] contains the value and gradient of the density
for each spin channel.



	Returns:

	The ValGrad for the xc potential.
If the XC is unpolarized, then the return is ValGrad.
If the XC is polarized, then the return is SpinParam[ValGrad].



	Return type:

	Union[ValGrad, SpinParam[ValGrad]]










	
getparamnames(methodname: str, prefix: str = '') → List[str][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/xc/base_xc.py#L233-L262]

	This method should list tensor names that affect the output of the
method with name indicated in methodname.
If the methodname is not on the list in this function, it should
raise KeyError.


	Parameters:

	
	methodname (str) – The name of the method of the class.


	prefix (str) – The prefix to be appended in front of the parameters name.
This usually contains the dots.






	Returns:

	Sequence of name of parameters affecting the output of the method.



	Return type:

	List[str]



	Raises:

	KeyError – If the list in this function does not contain methodname.










	
__add__(other: Any) → Any[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/xc/base_xc.py#L334-L391]

	Add two BaseXC together

Examples

>>> import torch
>>> from deepchem.utils.dft_utils import ValGrad, SpinParam
>>> from deepchem.utils.dft_utils import BaseXC, AddBaseXC
>>> class MyXC(BaseXC):
...     @property
...     def family(self) -> int:
...         return 1
...     def get_edensityxc(self, densinfo: Union[ValGrad, SpinParam[ValGrad]]) -> torch.Tensor:
...         if isinstance(densinfo, ValGrad):
...             return densinfo.value.pow(2)
...         else:
...             return densinfo.u.value.pow(2) + densinfo.d.value.pow(2)
...     def get_vxc(self, densinfo: Union[ValGrad, SpinParam[ValGrad]]) -> Union[ValGrad, SpinParam[ValGrad]]:
...         if isinstance(densinfo, ValGrad):
...             return ValGrad(value=2*densinfo.value)
...         else:
...             return SpinParam(u=ValGrad(value=2*densinfo.u.value),
...                              d=ValGrad(value=2*densinfo.d.value))
>>> xc = MyXC()
>>> densinfo = ValGrad(value=torch.tensor([1., 2., 3.], requires_grad=True))
>>> xc.get_edensityxc(densinfo)
tensor([1., 4., 9.], grad_fn=<PowBackward0>)
>>> xc.get_vxc(densinfo)
ValGrad(value=tensor([2., 4., 6.], grad_fn=<MulBackward0>), grad=None, lapl=None, kin=None)
>>> densinfo = SpinParam(u=ValGrad(value=torch.tensor([1., 2., 3.], requires_grad=True)),
...                      d=ValGrad(value=torch.tensor([4., 5., 6.], requires_grad=True)))
>>> xc.get_edensityxc(densinfo)
tensor([17., 29., 45.], grad_fn=<AddBackward0>)
>>> xc.get_vxc(densinfo)
SpinParam(u=ValGrad(value=tensor([2., 4., 6.], grad_fn=<MulBackward0>), grad=None, lapl=None, kin=None), d=ValGrad(value=tensor([ 8., 10., 12.], grad_fn=<MulBackward0>), grad=None, lapl=None, kin=None))
>>> xc2 = AddBaseXC(xc, xc)
>>> xc2.get_edensityxc(densinfo)
tensor([34., 58., 90.], grad_fn=<AddBackward0>)
>>> xc2.get_vxc(densinfo)
SpinParam(u=ValGrad(value=tensor([ 4.,  8., 12.], grad_fn=<AddBackward0>), grad=None, lapl=None, kin=None), d=ValGrad(value=tensor([16., 20., 24.], grad_fn=<AddBackward0>), grad=None, lapl=None, kin=None))
>>> xc3 = xc + xc
>>> xc3.get_edensityxc(densinfo)
tensor([34., 58., 90.], grad_fn=<AddBackward0>)
>>> xc3.get_vxc(densinfo)
SpinParam(u=ValGrad(value=tensor([ 4.,  8., 12.], grad_fn=<AddBackward0>), grad=None, lapl=None, kin=None), d=ValGrad(value=tensor([16., 20., 24.], grad_fn=<AddBackward0>), grad=None, lapl=None, kin=None))






	Parameters:

	other (BaseXC) – The BaseXC to be added with.



	Returns:

	The BaseXC that is the sum of the two BaseXC.



	Return type:

	BaseXC










	
__mul__(other: float | int | Tensor)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/xc/base_xc.py#L393-L456]

	Multiply a BaseXC with a float or a tensor.

Examples

>>> import torch
>>> from deepchem.utils.dft_utils import ValGrad, SpinParam
>>> from deepchem.utils.dft_utils import BaseXC, MulBaseXC
>>> class MyXC(BaseXC):
...     @property
...     def family(self) -> int:
...         return 1
...     def get_edensityxc(self, densinfo: Union[ValGrad, SpinParam[ValGrad]]) -> torch.Tensor:
...         if isinstance(densinfo, ValGrad):
...             return densinfo.value.pow(2)
...         else:
...             return densinfo.u.value.pow(2) + densinfo.d.value.pow(2)
...     def get_vxc(self, densinfo: Union[ValGrad, SpinParam[ValGrad]]) -> Union[ValGrad, SpinParam[ValGrad]]:
...         if isinstance(densinfo, ValGrad):
...             return ValGrad(value=2*densinfo.value)
...         else:
...             return SpinParam(u=ValGrad(value=2*densinfo.u.value),
...                              d=ValGrad(value=2*densinfo.d.value))
>>> xc = MyXC()
>>> densinfo = ValGrad(value=torch.tensor([1., 2., 3.], requires_grad=True))
>>> xc.get_edensityxc(densinfo)
tensor([1., 4., 9.], grad_fn=<PowBackward0>)
>>> xc.get_vxc(densinfo)
ValGrad(value=tensor([2., 4., 6.], grad_fn=<MulBackward0>), grad=None, lapl=None, kin=None)
>>> densinfo = SpinParam(u=ValGrad(value=torch.tensor([1., 2., 3.], requires_grad=True)),
...                      d=ValGrad(value=torch.tensor([4., 5., 6.], requires_grad=True)))
>>> xc.get_edensityxc(densinfo)
tensor([17., 29., 45.], grad_fn=<AddBackward0>)
>>> xc.get_vxc(densinfo)
SpinParam(u=ValGrad(value=tensor([2., 4., 6.], grad_fn=<MulBackward0>), grad=None, lapl=None, kin=None), d=ValGrad(value=tensor([ 8., 10., 12.], grad_fn=<MulBackward0>), grad=None, lapl=None, kin=None))
>>> xc2 = MulBaseXC(xc, 2.)
>>> xc2.get_edensityxc(densinfo)
tensor([34., 58., 90.], grad_fn=<MulBackward0>)
>>> xc2.get_vxc(densinfo)
SpinParam(u=ValGrad(value=tensor([ 4.,  8., 12.], grad_fn=<MulBackward0>), grad=None, lapl=None, kin=None), d=ValGrad(value=tensor([16., 20., 24.], grad_fn=<MulBackward0>), grad=None, lapl=None, kin=None))
>>> xc3 = xc * 2.
>>> xc3.get_edensityxc(densinfo)
tensor([34., 58., 90.], grad_fn=<MulBackward0>)
>>> xc3.get_vxc(densinfo)
SpinParam(u=ValGrad(value=tensor([ 4.,  8., 12.], grad_fn=<MulBackward0>), grad=None, lapl=None, kin=None), d=ValGrad(value=tensor([16., 20., 24.], grad_fn=<MulBackward0>), grad=None, lapl=None, kin=None))






	Parameters:

	other (Union[float, int, torch.Tensor]) – The float or tensor to be multiplied with.



	Returns:

	The BaseXC that is the product of the BaseXC and the float or tensor.



	Return type:

	BaseXC










	
__rmul__(other: float | int | Tensor)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/xc/base_xc.py#L458-L515]

	Multiply a BaseXC with a float or a tensor.

Examples

>>> import torch
>>> from deepchem.utils.dft_utils import ValGrad, SpinParam
>>> from deepchem.utils.dft_utils import BaseXC, MulBaseXC
>>> class MyXC(BaseXC):
...     @property
...     def family(self) -> int:
...         return 1
...     def get_edensityxc(self, densinfo: Union[ValGrad, SpinParam[ValGrad]]) -> torch.Tensor:
...         if isinstance(densinfo, ValGrad):
...             return densinfo.value.pow(2)
...         else:
...             return densinfo.u.value.pow(2) + densinfo.d.value.pow(2)
...     def get_vxc(self, densinfo: Union[ValGrad, SpinParam[ValGrad]]) -> Union[ValGrad, SpinParam[ValGrad]]:
...         if isinstance(densinfo, ValGrad):
...             return ValGrad(value=2*densinfo.value)
...         else:
...             return SpinParam(u=ValGrad(value=2*densinfo.u.value),
...                              d=ValGrad(value=2*densinfo.d.value))
>>> xc = MyXC()
>>> densinfo = ValGrad(value=torch.tensor([1., 2., 3.], requires_grad=True))
>>> xc.get_edensityxc(densinfo)
tensor([1., 4., 9.], grad_fn=<PowBackward0>)
>>> xc.get_vxc(densinfo)
ValGrad(value=tensor([2., 4., 6.], grad_fn=<MulBackward0>), grad=None, lapl=None, kin=None)
>>> densinfo = SpinParam(u=ValGrad(value=torch.tensor([1., 2., 3.], requires_grad=True)),
...                      d=ValGrad(value=torch.tensor([4., 5., 6.], requires_grad=True)))
>>> xc.get_edensityxc(densinfo)
tensor([17., 29., 45.], grad_fn=<AddBackward0>)
>>> xc.get_vxc(densinfo)
SpinParam(u=ValGrad(value=tensor([2., 4., 6.], grad_fn=<MulBackward0>), grad=None, lapl=None, kin=None), d=ValGrad(value=tensor([ 8., 10., 12.], grad_fn=<MulBackward0>), grad=None, lapl=None, kin=None))
>>> xc2 = MulBaseXC(xc, 2.)
>>> xc2.get_edensityxc(densinfo)
tensor([34., 58., 90.], grad_fn=<MulBackward0>)
>>> xc2.get_vxc(densinfo)
SpinParam(u=ValGrad(value=tensor([ 4.,  8., 12.], grad_fn=<MulBackward0>), grad=None, lapl=None, kin=None), d=ValGrad(value=tensor([16., 20., 24.], grad_fn=<MulBackward0>), grad=None, lapl=None, kin=None))
>>> xc3 = 2. * xc
>>> xc3.get_edensityxc(densinfo)
tensor([34., 58., 90.], grad_fn=<MulBackward0>)
>>> xc3.get_vxc(densinfo)
SpinParam(u=ValGrad(value=tensor([ 4.,  8., 12.], grad_fn=<MulBackward0>), grad=None, lapl=None, kin=None), d=ValGrad(value=tensor([16., 20., 24.], grad_fn=<MulBackward0>), grad=None, lapl=None, kin=None))






	Parameters:

	other (Union[float, int, torch.Tensor]) – The float or tensor to be multiplied with.



	Returns:

	The BaseXC that is the product of the BaseXC and the float or tensor.



	Return type:

	BaseXC














	
class AddBaseXC(a: BaseXC, b: BaseXC)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/xc/base_xc.py#L518-L667]

	Add two BaseXC together

Examples

>>> import torch
>>> from deepchem.utils.dft_utils import ValGrad, SpinParam
>>> from deepchem.utils.dft_utils import BaseXC, AddBaseXC
>>> class MyXC(BaseXC):
...     @property
...     def family(self) -> int:
...         return 1
...     def get_edensityxc(self, densinfo: Union[ValGrad, SpinParam[ValGrad]]) -> torch.Tensor:
...         if isinstance(densinfo, ValGrad):
...             return densinfo.value.pow(2)
...         else:
...             return densinfo.u.value.pow(2) + densinfo.d.value.pow(2)
...     def get_vxc(self, densinfo: Union[ValGrad, SpinParam[ValGrad]]) -> Union[ValGrad, SpinParam[ValGrad]]:
...         if isinstance(densinfo, ValGrad):
...             return ValGrad(value=2*densinfo.value)
...         else:
...             return SpinParam(u=ValGrad(value=2*densinfo.u.value),
...                              d=ValGrad(value=2*densinfo.d.value))
>>> xc = MyXC()
>>> densinfo = ValGrad(value=torch.tensor([1., 2., 3.], requires_grad=True))
>>> xc.get_edensityxc(densinfo)
tensor([1., 4., 9.], grad_fn=<PowBackward0>)
>>> xc.get_vxc(densinfo)
ValGrad(value=tensor([2., 4., 6.], grad_fn=<MulBackward0>), grad=None, lapl=None, kin=None)
>>> densinfo = SpinParam(u=ValGrad(value=torch.tensor([1., 2., 3.], requires_grad=True)),
...                      d=ValGrad(value=torch.tensor([4., 5., 6.], requires_grad=True)))
>>> xc.get_edensityxc(densinfo)
tensor([17., 29., 45.], grad_fn=<AddBackward0>)
>>> xc.get_vxc(densinfo)
SpinParam(u=ValGrad(value=tensor([2., 4., 6.], grad_fn=<MulBackward0>), grad=None, lapl=None, kin=None), d=ValGrad(value=tensor([ 8., 10., 12.], grad_fn=<MulBackward0>), grad=None, lapl=None, kin=None))
>>> xc2 = AddBaseXC(xc, xc)
>>> xc2.get_edensityxc(densinfo)
tensor([34., 58., 90.], grad_fn=<AddBackward0>)
>>> xc2.get_vxc(densinfo)
SpinParam(u=ValGrad(value=tensor([ 4.,  8., 12.], grad_fn=<AddBackward0>), grad=None, lapl=None, kin=None), d=ValGrad(value=tensor([16., 20., 24.], grad_fn=<AddBackward0>), grad=None, lapl=None, kin=None))
>>> xc3 = xc + xc
>>> xc3.get_edensityxc(densinfo)
tensor([34., 58., 90.], grad_fn=<AddBackward0>)
>>> xc3.get_vxc(densinfo)
SpinParam(u=ValGrad(value=tensor([ 4.,  8., 12.], grad_fn=<AddBackward0>), grad=None, lapl=None, kin=None), d=ValGrad(value=tensor([16., 20., 24.], grad_fn=<AddBackward0>), grad=None, lapl=None, kin=None))






	
__init__(a: BaseXC, b: BaseXC) → None[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/xc/base_xc.py#L566-L579]

	Initialize the AddBaseXC


	Parameters:

	
	a (BaseXC) – BaseXC to be added to.


	b (BaseXC) – BaseXC to be added with.













	
property family[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils.py]

	Returns 1 for LDA, 2 for GGA, and 4 for Meta-GGA.






	
get_vxc(densinfo: ValGrad | SpinParam[ValGrad]) → ValGrad | SpinParam[ValGrad][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/xc/base_xc.py#L586-L616]

	Returns the ValGrad for the xc potential given the density info
for unpolarized case.


	Parameters:

	densinfo (Union[ValGrad, SpinParam[ValGrad]]) – The density information.
If the XC is unpolarized, then densinfo is ValGrad.
If the XC is polarized, then densinfo is SpinParam[ValGrad].
The ValGrad contains the value and gradient of the density.
The SpinParam[ValGrad] contains the value and gradient of the density
for each spin channel.



	Returns:

	The ValGrad for the xc potential.
If the XC is unpolarized, then the return is ValGrad.
If the XC is polarized, then the return is SpinParam[ValGrad].



	Return type:

	Union[ValGrad, SpinParam[ValGrad]]










	
get_edensityxc(densinfo: ValGrad | SpinParam[ValGrad]) → Tensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/xc/base_xc.py#L618-L638]

	Returns the xc energy density (energy per unit volume)


	Parameters:

	densinfo (Union[ValGrad, SpinParam[ValGrad]]) – The density information.
If the XC is unpolarized, then densinfo is ValGrad.
If the XC is polarized, then densinfo is SpinParam[ValGrad].
The ValGrad contains the value and gradient of the density.
The SpinParam[ValGrad] contains the value and gradient of the density
for each spin channel.



	Returns:

	The energy density of the XC.



	Return type:

	torch.Tensor










	
getparamnames(methodname: str, prefix: str = '') → List[str][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/xc/base_xc.py#L640-L667]

	This method should list tensor names that affect the output of the
method with name indicated in methodname.
If the methodname is not on the list in this function, it should
raise KeyError.


	Parameters:

	
	methodname (str) – The name of the method of the class.


	prefix (str) – The prefix to be appended in front of the parameters name.
This usually contains the dots.






	Returns:

	Sequence of name of parameters affecting the output of the method.



	Return type:

	List[str]



	Raises:

	KeyError – If the list in this function does not contain methodname.














	
class MulBaseXC(a: BaseXC, b: float | Tensor)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/xc/base_xc.py#L670-L821]

	Multiply a BaseXC with a float or a tensor

Examples

>>> import torch
>>> from deepchem.utils.dft_utils import ValGrad, SpinParam
>>> from deepchem.utils.dft_utils import BaseXC, MulBaseXC
>>> class MyXC(BaseXC):
...     @property
...     def family(self) -> int:
...         return 1
...     def get_edensityxc(self, densinfo: Union[ValGrad, SpinParam[ValGrad]]) -> torch.Tensor:
...         if isinstance(densinfo, ValGrad):
...             return densinfo.value.pow(2)
...         else:
...             return densinfo.u.value.pow(2) + densinfo.d.value.pow(2)
...     def get_vxc(self, densinfo: Union[ValGrad, SpinParam[ValGrad]]) -> Union[ValGrad, SpinParam[ValGrad]]:
...         if isinstance(densinfo, ValGrad):
...             return ValGrad(value=2*densinfo.value)
...         else:
...             return SpinParam(u=ValGrad(value=2*densinfo.u.value),
...                              d=ValGrad(value=2*densinfo.d.value))
>>> xc = MyXC()
>>> densinfo = ValGrad(value=torch.tensor([1., 2., 3.], requires_grad=True))
>>> xc.get_edensityxc(densinfo)
tensor([1., 4., 9.], grad_fn=<PowBackward0>)
>>> xc.get_vxc(densinfo)
ValGrad(value=tensor([2., 4., 6.], grad_fn=<MulBackward0>), grad=None, lapl=None, kin=None)
>>> densinfo = SpinParam(u=ValGrad(value=torch.tensor([1., 2., 3.], requires_grad=True)),
...                      d=ValGrad(value=torch.tensor([4., 5., 6.], requires_grad=True)))
>>> xc.get_edensityxc(densinfo)
tensor([17., 29., 45.], grad_fn=<AddBackward0>)
>>> xc.get_vxc(densinfo)
SpinParam(u=ValGrad(value=tensor([2., 4., 6.], grad_fn=<MulBackward0>), grad=None, lapl=None, kin=None), d=ValGrad(value=tensor([ 8., 10., 12.], grad_fn=<MulBackward0>), grad=None, lapl=None, kin=None))
>>> xc2 = MulBaseXC(xc, 2.)
>>> xc2.get_edensityxc(densinfo)
tensor([34., 58., 90.], grad_fn=<MulBackward0>)
>>> xc2.get_vxc(densinfo)
SpinParam(u=ValGrad(value=tensor([ 4.,  8., 12.], grad_fn=<MulBackward0>), grad=None, lapl=None, kin=None), d=ValGrad(value=tensor([16., 20., 24.], grad_fn=<MulBackward0>), grad=None, lapl=None, kin=None))
>>> xc3 = xc * 2.
>>> xc3.get_edensityxc(densinfo)
tensor([34., 58., 90.], grad_fn=<MulBackward0>)
>>> xc3.get_vxc(densinfo)
SpinParam(u=ValGrad(value=tensor([ 4.,  8., 12.], grad_fn=<MulBackward0>), grad=None, lapl=None, kin=None), d=ValGrad(value=tensor([16., 20., 24.], grad_fn=<MulBackward0>), grad=None, lapl=None, kin=None))






	
__init__(a: BaseXC, b: float | Tensor) → None[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/xc/base_xc.py#L717-L732]

	Initialize the MulBaseXC


	Parameters:

	
	a (BaseXC) – BaseXC to be multiplied to.


	b (Union[float, torch.Tensor]) – float or tensor to be multiplied with.













	
property family[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/xc/base_xc.py]

	Returns 1 for LDA, 2 for GGA, and 4 for Meta-GGA.






	
get_vxc(densinfo: ValGrad | SpinParam[ValGrad]) → ValGrad | SpinParam[ValGrad][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/xc/base_xc.py#L739-L768]

	Returns the ValGrad for the xc potential given the density info
for unpolarized case.


	Parameters:

	densinfo (Union[ValGrad, SpinParam[ValGrad]]) – The density information.
If the XC is unpolarized, then densinfo is ValGrad.
If the XC is polarized, then densinfo is SpinParam[ValGrad].
The ValGrad contains the value and gradient of the density.
The SpinParam[ValGrad] contains the value and gradient of the density
for each spin channel.



	Returns:

	The ValGrad for the xc potential.
If the XC is unpolarized, then the return is ValGrad.
If the XC is polarized, then the return is SpinParam[ValGrad].



	Return type:

	Union[ValGrad, SpinParam[ValGrad]]










	
get_edensityxc(densinfo: ValGrad | SpinParam[ValGrad]) → Tensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/xc/base_xc.py#L770-L790]

	Returns the xc energy density (energy per unit volume)


	Parameters:

	densinfo (Union[ValGrad, SpinParam[ValGrad]]) – The density information.
If the XC is unpolarized, then densinfo is ValGrad.
If the XC is polarized, then densinfo is SpinParam[ValGrad].
The ValGrad contains the value and gradient of the density.
The SpinParam[ValGrad] contains the value and gradient of the density
for each spin channel.



	Returns:

	The energy density of the XC.



	Return type:

	torch.Tensor










	
getparamnames(methodname: str, prefix: str = '') → List[str][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/xc/base_xc.py#L792-L821]

	This method should list tensor names that affect the output of the
method with name indicated in methodname.
If the methodname is not on the list in this function, it should
raise KeyError.


	Parameters:

	
	methodname (str) – The name of the method of the class.


	prefix (str) – The prefix to be appended in front of the parameters name.
This usually contains the dots.






	Returns:

	Sequence of name of parameters affecting the output of the method.



	Return type:

	List[str]



	Raises:

	KeyError – If the list in this function does not contain methodname.














	
class BaseGrid[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/grid/base_grid.py#L7-L127]

	BaseGrid is a class that regulates the integration points over the spatial
dimensions.

Examples

>>> import torch
>>> from deepchem.utils.dft_utils import BaseGrid
>>> class Grid(BaseGrid):
...     def __init__(self):
...         super(Grid, self).__init__()
...         self.ngrid = 10
...         self.ndim = 3
...         self.dvolume = torch.ones(self.ngrid, dtype=self.dtype, device=self.device)
...         self.rgrid = torch.ones((self.ngrid, self.ndim), dtype=self.dtype, device=self.device)
...     def get_dvolume(self):
...         return self.dvolume
...     def get_rgrid(self):
...         return self.rgrid
>>> grid = Grid()
>>> grid.get_dvolume()
tensor([1., 1., 1., 1., 1., 1., 1., 1., 1., 1.])
>>> grid.get_rgrid()
tensor([[1., 1., 1.],
        [1., 1., 1.],
        [1., 1., 1.],
        [1., 1., 1.],
        [1., 1., 1.],
        [1., 1., 1.],
        [1., 1., 1.],
        [1., 1., 1.],
        [1., 1., 1.],
        [1., 1., 1.]])





References

Kasim, Muhammad F., and Sam M. Vinko. “Learning the exchange-correlation
functional from nature with fully differentiable density functional theory.”
Physical Review Letters 127.12 (2021): 126403.
https://github.com/diffqc/dqc/blob/0fe821fc92cb3457fb14f6dff0c223641c514ddb/dqc/grid/base_grid.py


	
abstract property dtype: dtype[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils.py]

	dtype of the grid points.


	Returns:

	dtype of the grid points



	Return type:

	torch.dtype










	
abstract property device: device[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils.py]

	device of the grid points


	Returns:

	device of the grid points



	Return type:

	torch.device










	
abstract property coord_type: str[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils.py]

	type of the coordinate returned in get_rgrid. It can be ‘cartesian’
or ‘spherical’.


	Returns:

	
	str – type of the coordinate returned in get_rgrid. It can be ‘cartesian’


	or ‘spherical’.















	
abstract get_dvolume() → Tensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/grid/base_grid.py#L89-L99]

	Obtain the torch.tensor containing the dV elements for the integration.


	Returns:

	The dV elements for the integration. *BG is the length of the BaseGrid.



	Return type:

	torch.tensor (*BG, ngrid)










	
abstract get_rgrid() → Tensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/grid/base_grid.py#L101-L113]

	Returns the grid points position in the specified coordinate in
self.coord_type.


	Returns:

	The grid points position. *BG is the length of the BaseGrid.



	Return type:

	torch.tensor (*BG, ngrid, ndim)










	
abstract getparamnames(methodname: str, prefix: str = '') → List[str][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/grid/base_grid.py#L115-L127]

	Return a list with the parameter names corresponding to the given method
(methodname)


	Returns:

	List of parameter names of methodname



	Return type:

	List[str]














	
class BaseDF[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/df/base_df.py#L8-L124]

	BaseDF represents the density fitting object used in calculating the
electron repulsion (and xc energy) in Hamiltonian.

Density fitting in density functional theory (DFT) is a technique used to
reduce the computational cost of evaluating electron repulsion integrals.
In DFT, the key quantity is the electron density rather than the wave
function, and the electron repulsion integrals involve four-electron
interactions, making them computationally demanding.

Density fitting exploits the fact that many-electron integrals can be
expressed as a sum of two-electron integrals involving auxiliary basis
functions. By approximating these auxiliary basis functions, often referred
to as fitting functions, the computational cost can be significantly reduced.

Examples

>>> from deepchem.utils.dft_utils import BaseDF
>>> import torch
>>> class MyDF(BaseDF):
...     def __init__(self):
...         super(MyDF, self).__init__()
...     def get_j2c(self):
...         return torch.ones((3, 3))
...     def get_j3c(self):
...         return torch.ones((3, 3, 3))
>>> df = MyDF()
>>> df.get_j2c()
tensor([[1., 1., 1.],
        [1., 1., 1.],
        [1., 1., 1.]])






	
abstract build() → BaseDF[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/df/base_df.py#L43-L55]

	Construct the matrices required to perform the calculation and return
self.


	Returns:

	The constructed density fitting object.



	Return type:

	BaseDF










	
abstract get_elrep(dm: Tensor) → LinearOperator[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/df/base_df.py#L57-L74]

	Construct the electron repulsion linear operator from the given density
matrix using the density fitting method.


	Parameters:

	dm (torch.Tensor) – The density matrix.



	Returns:

	The electron repulsion linear operator.



	Return type:

	LinearOperator










	
abstract property j2c: Tensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/df/base_df.py]

	Returns the 2-centre 2-electron integrals of the auxiliary basis.


	Returns:

	The 2-centre 2-electron integrals of the auxiliary basis.



	Return type:

	torch.Tensor










	
abstract property j3c: Tensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/df/base_df.py]

	Return the 3-centre 2-electron integrals of the auxiliary basis and the
basis.


	Returns:

	The 3-centre 2-electron integrals of the auxiliary basis and the
basis.



	Return type:

	torch.Tensor










	
abstract getparamnames(methodname: str, prefix: str = '') → List[str][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/df/base_df.py#L104-L124]

	This method should list tensor names that affect the output of the
method with name indicated in methodname.


	Parameters:

	
	methodname (str) – The name of the method of the class.


	prefix (str (default="")) – The prefix to be appended in front of the parameters name.
This usually contains the dots.






	Returns:

	Sequence of name of parameters affecting the output of the method.



	Return type:

	List[str]














	
class BaseHamilton[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/hamilton/base_hamilton.py#L12-L502]

	Hamilton is a class that provides the LinearOperator of the Hamiltonian
components.

The Hamiltonian represents the total energy operator for a system of
interacting electrons. The Kohn-Sham DFT approach introduces a set of
fictitious non-interacting electrons that move in an effective potential.
The total energy functional, which includes the kinetic energy of these
fictitious electrons and their interaction with an effective potential
(including the electron-electron interaction), is minimized to obtain the
ground-state electronic structure.

The Kohn-Sham Hamiltonian is a key component of this approach, representing
the operator that governs the evolution of the Kohn-Sham orbitals. It
includes terms for the kinetic energy of electrons, the external potential
(usually from nuclei), and the exchange-correlation potential that accounts
for the electron-electron interactions.

The Fock matrix represents the one-electron part of the Hamiltonian matrix. Its
components include kinetic energy, nuclear attraction, and electron-electron
repulsion integrals. The Fock matrix is pivotal in solving the electronic
Schrödinger equation and determining the electronic structure of molecular
systems.

Examples

>>> from deepchem.utils.dft_utils import BaseHamilton
>>> class MyHamilton(BaseHamilton):
...    def __init__(self):
...        self._nao = 2
...        self._kpts = torch.tensor([[0.0, 0.0, 0.0]])
...        self._df = None
...    @property
...    def nao(self):
...        return self._nao
...    @property
...    def kpts(self):
...        return self._kpts
...    @property
...    def df(self):
...        return self._df
...    def build(self):
...        return self
...    def get_nuclattr(self):
...        return torch.ones((1, 1, self.nao, self.nao))
>>> ham = MyHamilton()
>>> hamilton = ham.build()
>>> hamilton.get_nuclattr()
tensor([[[[1., 1.],
          [1., 1.]]]])






	
abstract property nao: int[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/hamilton/base_hamilton.py]

	Number of atomic orbital basis.


	Returns:

	Number of atomic orbital basis.



	Return type:

	int










	
abstract property kpts: Tensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/hamilton/base_hamilton.py]

	List of k-points in the Hamiltonian.


	Returns:

	List of k-points in the Hamiltonian. Shape: (nkpts, ndim)



	Return type:

	torch.Tensor










	
abstract property df: BaseDF | None[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/hamilton/base_hamilton.py]

	Returns the density fitting object (if any) attached to this
Hamiltonian object.


	Returns:

	Returns the density fitting object (if any) attached to this
Hamiltonian object.



	Return type:

	Optional[BaseDF]










	
abstract build()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/hamilton/base_hamilton.py#L107-L114]

	Construct the elements needed for the Hamiltonian.
Heavy-lifting operations should be put here.






	
abstract setup_grid(grid: BaseGrid, xc: BaseXC | None = None) → None[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/hamilton/base_hamilton.py#L116-L132]

	Setup the basis (with its grad) in the spatial grid and prepare the
gradient of atomic orbital according to the ones required by the xc.
If xc is not given, then only setup the grid with ao (without any
gradients of ao)


	Parameters:

	
	grid (BaseGrid) – Grid used to setup this Hamilton.


	xc (Optional[BaseXC] (default None)) – Exchange Corelation functional of this Hamiltonian.













	
abstract get_nuclattr() → LinearOperator[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/hamilton/base_hamilton.py#L135-L152]

	LinearOperator of the nuclear Coulomb attraction.

Nuclear Coulomb attraction is the electrostatic force binding electrons
to a nucleus. Positively charged protons attract negatively charged
electrons, creating stability in quantum systems. This force plays a
fundamental role in determining the structure and behavior of atoms,
contributing significantly to the overall potential energy in atomic
physics.


	Returns:

	LinearOperator of the nuclear Coulomb attraction. Shape: (*BH, nao, nao)



	Return type:

	LinearOperator










	
abstract get_kinnucl() → LinearOperator[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/hamilton/base_hamilton.py#L154-L169]

	Returns the LinearOperator of the one-electron operator (i.e. kinetic
and nuclear attraction). Action of a LinearOperator on a function is a
linear transformation. In the case of one-electron operators, these
transformations are essential for solving the Schrödinger equation and
understanding the behavior of electrons in an atomic or molecular system.


	Returns:

	LinearOperator of the one-electron operator. Shape: (*BH, nao, nao)



	Return type:

	LinearOperator










	
abstract get_overlap() → LinearOperator[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/hamilton/base_hamilton.py#L171-L185]

	Returns the LinearOperator representing the overlap of the basis.
The overlap of the basis refers to the degree to which atomic or
molecular orbitals in a quantum mechanical system share common space.


	Returns:

	LinearOperator representing the overlap of the basis.
Shape: (*BH, nao, nao)



	Return type:

	LinearOperator










	
abstract get_elrep(dm: Tensor) → LinearOperator[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/hamilton/base_hamilton.py#L187-L210]

	Obtains the LinearOperator of the Coulomb electron repulsion operator.
Known as the J-matrix.

In the context of electronic structure theory, it accounts for the
repulsive interaction between electrons in a many-electron system. The
J-matrix elements involve the Coulombic interactions between pairs of
electrons, influencing the total energy and behavior of the system.


	Parameters:

	dm (torch.Tensor) – Density matrix. Shape: (*BD, nao, nao)



	Returns:

	LinearOperator of the Coulomb electron repulsion operator.
Shape: (*BDH, nao, nao)



	Return type:

	LinearOperator










	
abstract get_exchange(dm: Tensor | SpinParam[Tensor]) → LinearOperator | SpinParam[LinearOperator][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/hamilton/base_hamilton.py#L212-L236]

	Obtains the LinearOperator of the exchange operator.
It is -0.5 * K where K is the K matrix obtained from 2-electron integral.

Exchange operator is a mathematical representation of the exchange
interaction between identical particles, such as electrons. The
exchange operator quantifies the effect of interchanging the
positions of two particles.


	Parameters:

	dm (Union[torch.Tensor, SpinParam[torch.Tensor]]) – Density matrix. Shape: (*BD, nao, nao)



	Returns:

	LinearOperator of the exchange operator. Shape: (*BDH, nao, nao)



	Return type:

	Union[LinearOperator, SpinParam[LinearOperator]]










	
abstract get_vext(vext: Tensor) → LinearOperator[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/hamilton/base_hamilton.py#L238-L262]

	Returns a LinearOperator of the external potential in the grid.


\[\mathbf{V}_{ij} = \int b_i(\mathbf{r}) V(\mathbf{r}) b_j(\mathbf{r})\ d\mathbf{r}\]

External potential energy that a particle experiences in a discretized
space or grid. In quantum mechanics or computational physics, when
solving for the behavior of particles, an external potential is often
introduced to represent the influence of external forces.


	Parameters:

	vext (torch.Tensor) – External potential in the grid. Shape: (*BR, ngrid)



	Returns:

	LinearOperator of the external potential in the grid. Shape: (*BRH, nao, nao)



	Return type:

	LinearOperator










	
abstract get_vxc(dm: Tensor | SpinParam[Tensor]) → LinearOperator | SpinParam[LinearOperator][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/hamilton/base_hamilton.py#L264-L294]

	Returns a LinearOperator for the exchange-correlation potential

The exchange-correlation potential combines two effects:

1. Exchange potential: Arises from the antisymmetry of the electron
wave function. It quantifies the tendency of electrons to avoid each
other due to their indistinguishability.

2. Correlation potential: Accounts for the electron-electron
correlation effects that arise from the repulsion between electrons.

TODO: check if what we need for Meta-GGA involving kinetics and for
exact-exchange


	Parameters:

	dm (Union[torch.Tensor, SpinParam[torch.Tensor]]) – Density matrix. Shape: (*BD, nao, nao)



	Returns:

	LinearOperator for the exchange-correlation potential. Shape: (*BDH, nao, nao)



	Return type:

	Union[LinearOperator, SpinParam[LinearOperator]]










	
abstract ao_orb2dm(orb: Tensor, orb_weight: Tensor) → Tensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/hamilton/base_hamilton.py#L297-L315]

	Convert the atomic orbital to the density matrix.


	Parameters:

	
	orb (torch.Tensor) – Atomic orbital. Shape: (*BO, nao, norb)


	orb_weight (torch.Tensor) – Orbital weight. Shape: (*BW, norb)






	Returns:

	Density matrix. Shape: (*BOWH, nao, nao)



	Return type:

	torch.Tensor










	
abstract aodm2dens(dm: Tensor, xyz: Tensor) → Tensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/hamilton/base_hamilton.py#L317-L334]

	Get the density value in the Cartesian coordinate.


	Parameters:

	
	dm (torch.Tensor) – Density matrix. Shape: (*BD, nao, nao)


	xyz (torch.Tensor) – Cartesian coordinate. Shape: (*BR, ndim)






	Returns:

	Density value in the Cartesian coordinate. Shape: (*BRD)



	Return type:

	torch.Tensor










	
abstract get_e_hcore(dm: Tensor) → Tensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/hamilton/base_hamilton.py#L337-L354]

	Get the energy from the one-electron Hamiltonian. The input is total
density matrix.


	Parameters:

	dm (torch.Tensor) – Total Density matrix.



	Returns:

	Energy from the one-electron Hamiltonian.



	Return type:

	torch.Tensor










	
abstract get_e_elrep(dm: Tensor) → Tensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/hamilton/base_hamilton.py#L356-L373]

	Get the energy from the electron repulsion. The input is total density
matrix.


	Parameters:

	dm (torch.Tensor) – Total Density matrix.



	Returns:

	Energy from the one-electron Hamiltonian.



	Return type:

	torch.Tensor










	
abstract get_e_exchange(dm: Tensor | SpinParam[Tensor]) → Tensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/hamilton/base_hamilton.py#L375-L392]

	Get the energy from the exact exchange.


	Parameters:

	dm (Union[torch.Tensor, SpinParam[torch.Tensor]]) – Density matrix.



	Returns:

	Energy from the exact exchange.



	Return type:

	torch.Tensor










	
abstract get_e_xc(dm: Tensor | SpinParam[Tensor]) → Tensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/hamilton/base_hamilton.py#L394-L413]

	Returns the exchange-correlation energy using the xc object given in
.setup_grid()


	Parameters:

	dm (Union[torch.Tensor, SpinParam[torch.Tensor]]) – Density matrix. Shape: (*BD, nao, nao)



	Returns:

	Exchange-correlation energy.



	Return type:

	torch.Tensor










	
abstract ao_orb_params2dm(ao_orb_params: Tensor, ao_orb_coeffs: Tensor, orb_weight: Tensor, with_penalty: float | None = None) → List[Tensor][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/hamilton/base_hamilton.py#L416-L456]

	Convert the atomic orbital free parameters (parametrized in such a way
so it is not bounded) to the density matrix.


	Parameters:

	
	ao_orb_params (torch.Tensor) – The tensor that parametrized atomic orbital in an unbounded space.


	ao_orb_coeffs (torch.Tensor) – The tensor that helps ao_orb_params in describing the orbital.
The difference with ao_orb_params is that ao_orb_coeffs is
not differentiable and not to be optimized in variational method.


	orb_weight (torch.Tensor) – The orbital weights.


	with_penalty (float or None) – If a float, it returns a tuple of tensors where the first element is
dm, and the second element is the penalty multiplied by the
penalty weights. The penalty is to compensate the overparameterization
of ao_orb_params, stabilizing the Hessian for gradient calculation.






	Returns:

	The density matrix from the orbital parameters and (if with_penalty)
the penalty of the overparameterization of ao_orb_params.



	Return type:

	torch.Tensor or tuple of torch.Tensor





Notes


	The penalty should be 0 if ao_orb_params is from dm2ao_orb_params.


	The density matrix should be recoverable when put through dm2ao_orb_params
and ao_orb_params2dm.









	
abstract dm2ao_orb_params(dm: Tensor, norb: int) → Tuple[Tensor, Tensor][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/hamilton/base_hamilton.py#L458-L482]

	Convert from the density matrix to the orbital parameters.
The map is not one-to-one, but instead one-to-many where there might
be more than one orbital parameters to describe the same density matrix.
For restricted systems, only one of the dm (dm.u or dm.d) is
sufficient.


	Parameters:

	
	dm (torch.Tensor) – The density matrix.


	norb (int) – The number of orbitals for the system.






	Returns:

	The atomic orbital parameters for the first returned value and the
atomic orbital coefficients for the second value.



	Return type:

	tuple of 2 torch.Tensor










	
abstract getparamnames(methodname: str, prefix: str = '') → List[str][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/hamilton/base_hamilton.py#L485-L502]

	Return the paramnames


	Parameters:

	
	methodname (str) – The name of the method.


	prefix (str (default "")) – The prefix of the paramnames.






	Returns:

	The paramnames.



	Return type:

	List[str]














	
class _Config(THRESHOLD_MEMORY: int = 10737418240, CHUNK_MEMORY: int = 16777216, VERBOSE: int = 0)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/config.py#L10-L39]

	Contains the configuration for the DFT module

Examples

>>> from deepchem.utils.dft_utils.config import config
>>> Memory_usage = 1024**4 # Sample Memory usage by some Object/Matrix
>>> if Memory_usage > config.THRESHOLD_MEMORY :
...     print("Overload")
Overload






	
THRESHOLD_MEMORY[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/config.py]

	Threshold memory (matrix above this size should not be constructed)


	Type:

	int (default=10*1024**3)










	
CHUNK_MEMORY[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/config.py]

	The memory for splitting big tensors into chunks.


	Type:

	int (default=16*1024**2)










	
VERBOSE[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/config.py]

	Allowed Verbosity level (Defines the level of detail)
Used by Looger for maintaining Logs.


	Type:

	int (default=0)










	
Usage[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/config.py]

	




	
-----

	




	
1. HamiltonCGTO

	
	Type:

	Usage it for splitting big tensors into chunks.










	
__init__(THRESHOLD_MEMORY: int = 10737418240, CHUNK_MEMORY: int = 16777216, VERBOSE: int = 0) → None[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/config.py]

	








	
class BaseOrbParams[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/hamilton/orbparams.py#L10-L85]

	Class that provides free-parameterization of orthogonal orbitals.

Examples

>>> import torch
>>> from deepchem.utils.dft_utils import BaseOrbParams
>>> class MyOrbParams(BaseOrbParams):
...     @staticmethod
...     def params2orb(params, coeffs, with_penalty):
...         return params, coeffs
...     @staticmethod
...     def orb2params(orb):
...         return orb, torch.tensor([0], dtype=orb.dtype, device=orb.device)
>>> params = torch.randn(3, 4, 5)
>>> coeffs = torch.randn(3, 4, 5)
>>> with_penalty = 0.1
>>> orb, penalty = MyOrbParams.params2orb(params, coeffs, with_penalty)
>>> params2, coeffs2 = MyOrbParams.orb2params(orb)
>>> torch.allclose(params, params2)
True






	
static params2orb(params: Tensor, coeffs: Tensor, with_penalty: float = 0.0) → List[Tensor][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/hamilton/orbparams.py#L34-L63]

	Convert the parameters & coefficients to the orthogonal orbitals.
params is the tensor to be optimized in variational method, while
coeffs is a tensor that is needed to get the orbital, but it is not
optimized in the variational method.


	Parameters:

	
	params (torch.Tensor) – The free parameters to be optimized.


	coeffs (torch.Tensor) – The coefficients to get the orthogonal orbitals.


	with_penalty (float (default 0.0)) – If not 0.0, return the penalty term for the free parameters.






	Returns:

	
	orb (torch.Tensor) – The orthogonal orbitals.


	penalty (torch.Tensor) – The penalty term for the free parameters. If with_penalty is 0.0,
this is not returned.















	
static orb2params(orb: Tensor) → List[Tensor][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/hamilton/orbparams.py#L65-L85]

	Get the free parameters from the orthogonal orbitals. Returns params
and coeffs described in params2orb.


	Parameters:

	orb (torch.Tensor) – The orthogonal orbitals.



	Returns:

	
	params (torch.Tensor) – The free parameters to be optimized.


	coeffs (torch.Tensor) – The coefficients to get the orthogonal orbitals.



















	
class QROrbParams[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/hamilton/orbparams.py#L88-L171]

	Orthogonal orbital parameterization using QR decomposition.
The orthogonal orbital is represented by:

P = QR

Where Q is the parameters defining the rotation of the orthogonal tensor,
and R is the coefficients tensor.

Examples

>>> import torch
>>> from deepchem.utils.dft_utils import QROrbParams
>>> params = torch.randn(3, 3)
>>> coeffs = torch.randn(4, 3)
>>> with_penalty = 0.1
>>> orb, penalty = QROrbParams.params2orb(params, coeffs, with_penalty)
>>> params2, coeffs2 = QROrbParams.orb2params(orb)






	
static params2orb(params: Tensor, coeffs: Tensor, with_penalty: float = 0.0) → List[Tensor][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/hamilton/orbparams.py#L110-L149]

	Convert the parameters & coefficients to the orthogonal orbitals.
params is the tensor to be optimized in variational method, while
coeffs is a tensor that is needed to get the orbital, but it is not
optimized in the variational method.


	Parameters:

	
	params (torch.Tensor) – The free parameters to be optimized.


	coeffs (torch.Tensor) – The coefficients to get the orthogonal orbitals.


	with_penalty (float (default 0.0)) – If not 0.0, return the penalty term for the free parameters.






	Returns:

	
	orb (torch.Tensor) – The orthogonal orbitals.


	penalty (torch.Tensor) – The penalty term for the free parameters. If with_penalty is 0.0,
this is not returned.















	
static orb2params(orb: Tensor) → List[Tensor][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/hamilton/orbparams.py#L151-L171]

	Get the free parameters from the orthogonal orbitals. Returns params
and coeffs described in params2orb.


	Parameters:

	orb (torch.Tensor) – The orthogonal orbitals.



	Returns:

	
	params (torch.Tensor) – The free parameters to be optimized.


	coeffs (torch.Tensor) – The coefficients to get the orthogonal orbitals.



















	
class MatExpOrbParams[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/hamilton/orbparams.py#L174-L276]

	Orthogonal orbital parameterization using matrix exponential.
The orthogonal orbital is represented by:


P = matrix_exp(Q) @ C




where C is an orthogonal coefficient tensor, and Q is the parameters defining
the rotation of the orthogonal tensor.

Examples

>>> from deepchem.utils.dft_utils import MatExpOrbParams
>>> params = torch.randn(3, 3)
>>> coeffs = torch.randn(4, 3)
>>> with_penalty = 0.1
>>> orb, penalty = MatExpOrbParams.params2orb(params, coeffs, with_penalty)
>>> params2, coeffs2 = MatExpOrbParams.orb2params(orb)






	
static params2orb(params: Tensor, coeffs: Tensor, with_penalty: float = 0.0) → List[Tensor][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/hamilton/orbparams.py#L195-L245]

	Convert the parameters & coefficients to the orthogonal orbitals.
params is the tensor to be optimized in variational method, while
coeffs is a tensor that is needed to get the orbital, but it is not
optimized in the variational method.


	Parameters:

	
	params (torch.Tensor) – The free parameters to be optimized. (*, nparams)


	coeffs (torch.Tensor) – The coefficients to get the orthogonal orbitals. (*, nao, norb)


	with_penalty (float (default 0.0)) – If not 0.0, return the penalty term for the free parameters.






	Returns:

	
	orb (torch.Tensor) – The orthogonal orbitals.


	penalty (torch.Tensor) – The penalty term for the free parameters. If with_penalty is 0.0,
this is not returned.















	
static orb2params(orb: Tensor) → List[Tensor][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/hamilton/orbparams.py#L247-L276]

	Get the free parameters from the orthogonal orbitals. Returns params
and coeffs described in params2orb.


	Parameters:

	orb (torch.Tensor) – The orthogonal orbitals.



	Returns:

	
	params (torch.Tensor) – The free parameters to be optimized.


	coeffs (torch.Tensor) – The coefficients to get the orthogonal orbitals.



















	
class parse_moldesc(moldesc: str | Tuple[List[str] | List[int | float | Tensor] | Tensor, List[List[float]] | ndarray | Tensor], dtype: dtype = torch.float64, device: device = device(type='cpu'))[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/api/parser.py#L9-L84]

	Parse the string of molecular descriptor and returns tensors of atomzs and
atom positions.
.. rubric:: Examples

>>> from deepchem.utils.dft_utils import parse_moldesc
>>> system = {
...     'type': 'mol',
...     'kwargs': {
...         'moldesc': 'H 0.86625 0 0; F -0.86625 0 0',
...         'basis': '6-311++G(3df,3pd)'
...     }
... }
>>> atomzs, atomposs = parse_moldesc(system["kwargs"]["moldesc"])
>>> atomzs
tensor([1., 9.], dtype=torch.float64)
>>> atomposs
tensor([[ 0.8662,  0.0000,  0.0000],
        [-0.8662,  0.0000,  0.0000]], dtype=torch.float64)






	Parameters:

	
	moldesc (Union[str, Tuple[AtomZsType, AtomPosType]]) – String that describes the system, e.g. "H -1 0 0; H 1 0 0" for H2
molecule separated by 2 Bohr.


	dtype (torch.dtype (default torch.float64)) – The datatype of the returned atomic positions.


	device (torch.device (default torch.device('cpu'))) – The device to store the returned tensors.






	Returns:

	
	atomzs (torch.Tensor) – The tensor of atomzs [Atom Number].


	atompos (torch.Tensor) – The tensor of atomic positions [Bohr].















	
class BaseSystem[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/system/base_system.py#L9-L269]

	System is a class describing the environment before doing the quantum
chemistry calculation. It contains the information of the atoms, the
external electric field, the spin, the charge, etc. It also contains the
Hamiltonian object and the grid object for the calculation. The system
object is also responsible for setting up the cache for the parameters
that can be read/written from/to the cache file.

Examples

>>> from deepchem.utils.dft_utils import BaseSystem
>>> from deepchem.utils.dft_utils import BaseHamilton
>>> from deepchem.utils.dft_utils import BaseGrid
>>> class MySystem(BaseSystem):
...     def __init__(self):
...         self.hamiltonian = BaseHamilton()
...         self.grid = BaseGrid()
...     def get_hamiltonian(self):
...         return self.hamiltonian
...     def get_grid(self):
...         return self.grid
...     def requires_grid(self):
...         return True
>>> system = MySystem()
>>> system.requires_grid()
True






	
abstract densityfit(method: str | None = None, auxbasis: str | List[CGTOBasis] | List[str] | List[List[CGTOBasis]] | Dict[str | int, List[CGTOBasis] | str] | None = None) → BaseSystem[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/system/base_system.py#L39-L58]

	Indicate that the system’s Hamiltonian will use density fitting.


	Parameters:

	
	method (Optional[str] (default None)) – The density fitting method to use.


	auxbasis (Optional[BasisInpType] (default None)) – Auxiliary basis set to use for density fitting.






	Returns:

	The system with density fitting enabled.



	Return type:

	BaseSystem










	
abstract get_hamiltonian() → BaseHamilton[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/system/base_system.py#L60-L70]

	Hamiltonian object for the system.


	Returns:

	Hamiltonian object for the system.



	Return type:

	BaseHamilton










	
abstract set_cache(fname: str, paramnames: List[str] | None = None) → BaseSystem[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/system/base_system.py#L72-L94]

	Set up the cache to read/write some parameters from the given files.
If paramnames is not given, then read/write all cache-able parameters
specified by each class.


	Parameters:

	
	fname (str) – The file name of the cache file.


	paramnames (Optional[List[str]] (default None)) – The list of parameter names to read/write from the cache file.






	Returns:

	The system with cache enabled.



	Return type:

	BaseSystem










	
abstract get_orbweight(polarized: bool = False) → Tensor | SpinParam[Tensor][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/system/base_system.py#L96-L117]

	Returns the atomic orbital weights. If polarized == False, then it
returns the total orbital weights. Otherwise, it returns a tuple of
orbital weights for spin-up and spin-down.


	Parameters:

	polarized (bool (default False)) – Whether to return the orbital weights for each spin.



	Returns:

	The orbital weights. Shape (*BS, norb)



	Return type:

	Union[torch.Tensor, SpinParam[torch.Tensor]]










	
abstract get_nuclei_energy() → Tensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/system/base_system.py#L119-L129]

	Returns the nuclei-nuclei repulsion energy.


	Returns:

	The nuclei-nuclei repulsion energy.



	Return type:

	torch.Tensor










	
abstract setup_grid() → None[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/system/base_system.py#L131-L134]

	Construct the integration grid for the system.






	
abstract get_grid() → BaseGrid[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/system/base_system.py#L136-L141]

	Returns the grid of the system






	
abstract requires_grid() → bool[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/system/base_system.py#L143-L149]

	True if the system needs the grid to be constructed. Otherwise, returns
False






	
abstract getparamnames(methodname: str, prefix: str = '') → List[str][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/system/base_system.py#L151-L169]

	Return a list with the parameter names corresponding to the given method
(methodname)


	Parameters:

	
	methodname (str) – The name of the method.


	prefix (str (default "")) – The prefix of the parameter names.






	Returns:

	List of parameter names of methodname



	Return type:

	List[str]










	
abstract make_copy(**kwargs) → BaseSystem[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/system/base_system.py#L171-L188]

	Copy of the system identical to the orginal except for new parameters
set in the kwargs.


	Parameters:

	kwargs – New parameters to set in the copy.



	Returns:

	Copy of the system identical to the orginal except for new parameters
set in the kwargs.



	Return type:

	BaseSystem










	
abstract property atompos: Tensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/system/base_system.py]

	Atom positions with shape (natoms, ndim).


	Returns:

	Atom positions with shape (natoms, ndim).



	Return type:

	torch.Tensor










	
abstract property atomzs: Tensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/system/base_system.py]

	Atomic number with shape (natoms,).


	Returns:

	Atomic number with shape (natoms,).



	Return type:

	torch.Tensor










	
abstract property atommasses: Tensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/system/base_system.py]

	Atomic mass with shape (natoms) in atomic unit.


	Returns:

	Atomic mass with shape (natoms) in atomic unit.



	Return type:

	torch.Tensor










	
abstract property spin: int | float | Tensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/system/base_system.py]

	Total spin of the system.


	Returns:

	Total spin of the system.



	Return type:

	ZType










	
abstract property charge: int | float | Tensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/system/base_system.py]

	Charge of the system.


	Returns:

	Charge of the system.



	Return type:

	ZType










	
abstract property numel: int | float | Tensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/system/base_system.py]

	Total number of the electrons in the system.


	Returns:

	Total number of the electrons in the system.



	Return type:

	ZType










	
abstract property efield: Tuple[Tensor, ...] | None[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/system/base_system.py]

	External electric field of the system, or None if there is no electric
field.










	
class RadialGrid(ngrid: int, grid_integrator: str = 'chebyshev', grid_transform: str | BaseGridTransform = 'logm3', dtype: dtype = torch.float64, device: device = device(type='cpu'))[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/grid/radial_grid.py#L9-L174]

	Grid for radially symmetric system. This grid consists grid_integrator
and grid_transform specifiers.

grid_integrator is to specify how to perform an integration on a fixed
interval from -1 to 1.

grid_transform is to transform the integration from the coordinate of
grid_integrator to the actual coordinate.

Examples

>>> grid = RadialGrid(100, grid_integrator="chebyshev",
...                   grid_transform="logm3")
>>> grid.get_rgrid().shape
torch.Size([100, 1])
>>> grid.get_dvolume().shape
torch.Size([100])






	
__init__(ngrid: int, grid_integrator: str = 'chebyshev', grid_transform: str | BaseGridTransform = 'logm3', dtype: dtype = torch.float64, device: device = device(type='cpu'))[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/grid/radial_grid.py#L31-L74]

	Initialize the RadialGrid.


	Parameters:

	
	ngrid (int) – Number of grid points.


	grid_integrator (str (default "chebyshev")) – The grid integrator to use. Available options are “chebyshev”,
“chebyshev2”, and “uniform”.


	grid_transform (Union[str, BaseGridTransform] (default "logm3")) – The grid transformation to use. Available options are “logm3”,
“de2”, and “treutlerm4”.


	dtype (torch.dtype, optional (default torch.float64)) – The data type to use for the grid.


	device (torch.device, optional (default torch.device('cpu'))) – The device to use for the grid.













	
property coord_type[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/grid/radial_grid.py]

	Returns the coordinate type of the grid.


	Returns:

	The coordinate type of the grid. For RadialGrid, this is “radial”.



	Return type:

	str










	
property dtype[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/grid/radial_grid.py]

	Returns the data type of the grid.


	Returns:

	The data type of the grid.



	Return type:

	torch.dtype










	
property device[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/grid/radial_grid.py]

	Returns the device of the grid.


	Returns:

	The device of the grid.



	Return type:

	torch.device










	
get_dvolume() → Tensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/grid/radial_grid.py#L112-L121]

	Returns the integration element of the grid.


	Returns:

	The integration element of the grid.



	Return type:

	torch.Tensor










	
get_rgrid() → Tensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/grid/radial_grid.py#L123-L132]

	Returns the grid points.


	Returns:

	The grid points.



	Return type:

	torch.Tensor










	
__getitem__(key: int | slice) → RadialGrid[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/grid/radial_grid.py#L134-L151]

	Returns a sliced RadialGrid.


	Parameters:

	key (Union[int, slice]) – The index or slice to use for slicing the grid.



	Returns:

	The sliced RadialGrid.



	Return type:

	RadialGrid










	
getparamnames(methodname: str, prefix: str = '')[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/grid/radial_grid.py#L153-L174]

	Returns the parameter names for the given method.


	Parameters:

	
	methodname (str) – The name of the method.


	prefix (str, optional (default "")) – The prefix to use for the parameter names.






	Returns:

	The parameter names for the given method.



	Return type:

	List[str]














	
class get_xw_integration(n: int, s0: str)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/grid/radial_grid.py#L177-L239]

	returns n points of integration from -1 to 1 and its integration
weights

Examples

>>> x, w = get_xw_integration(100, "chebyshev")
>>> x.shape
(100,)
>>> w.shape
(100,)






	Parameters:

	
	n (int) – Number of grid points.


	s0 (str) – The grid integrator to use. Available options are chebyshev,
chebyshev2, and uniform.






	Returns:

	The integration points and weights.



	Return type:

	Tuple[np.ndarray, np.ndarray]





References



[1]
chebyshev polynomial eq (9) & (10) https://doi.org/10.1063/1.475719



[2]
Handbook of Mathematical Functions (Abramowitz & Stegun) p. 889








	
class SlicedRadialGrid(obj: RadialGrid, key: slice)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/grid/radial_grid.py#L242-L259]

	Internal class to represent the sliced radial grid


	
__init__(obj: RadialGrid, key: slice)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/grid/radial_grid.py#L245-L259]

	Initialize the SlicedRadialGrid.


	Parameters:

	
	obj (RadialGrid) – The original RadialGrid.


	key (slice) – The slice to use for slicing the grid.

















	
class BaseGridTransform[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/grid/radial_grid.py#L265-L307]

	Base class for grid transformation
Grid transformation is to transform the integration from the coordinate of
grid_integrator to the actual coordinate.

It is used as a base class for other grid transformations.
x2r and get_drdx are abstract methods that need to be implemented.


	
abstract x2r(x: Tensor) → Tensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/grid/radial_grid.py#L275-L290]

	Transform from x to r coordinate


	Parameters:

	x (torch.Tensor) – The coordinate from -1 to 1.



	Returns:

	r – The coordinate from 0 to inf.



	Return type:

	torch.Tensor










	
abstract get_drdx(x: Tensor) → Tensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/grid/radial_grid.py#L292-L307]

	Returns the dr/dx


	Parameters:

	x (torch.Tensor) – The coordinate from -1 to 1.



	Returns:

	drdx – The dr/dx.



	Return type:

	torch.Tensor














	
class DE2Transformation(alpha: float = 1.0, rmin: float = 1e-07, rmax: float = 20)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/grid/radial_grid.py#L310-L375]

	Double exponential formula grid transformation

Examples

>>> x = torch.linspace(-1, 1, 100)
>>> r = DE2Transformation().x2r(x)
>>> r.shape
torch.Size([100])
>>> drdx = DE2Transformation().get_drdx(x)
>>> drdx.shape
torch.Size([100])





References



[1]
eq (31) in https://link.springer.com/article/10.1007/s00214-011-0985-x




	
__init__(alpha: float = 1.0, rmin: float = 1e-07, rmax: float = 20)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/grid/radial_grid.py#L329-L336]

	




	
x2r(x: Tensor) → Tensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/grid/radial_grid.py#L338-L356]

	Transform from x to r coordinate


	Parameters:

	x (torch.Tensor) – The coordinate from -1 to 1.



	Returns:

	r – The coordinate from 0 to inf.



	Return type:

	torch.Tensor










	
get_drdx(x: Tensor) → Tensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/grid/radial_grid.py#L358-L375]

	Returns the dr/dx


	Parameters:

	x (torch.Tensor) – The coordinate from -1 to 1.



	Returns:

	drdx – The dr/dx.



	Return type:

	torch.Tensor














	
class LogM3Transformation(ra: float = 1.0, eps: float = 1e-15)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/grid/radial_grid.py#L378-L442]

	LogM3 grid transformation

Examples

>>> x = torch.linspace(-1, 1, 100)
>>> r = LogM3Transformation().x2r(x)
>>> r.shape
torch.Size([100])
>>> drdx = LogM3Transformation().get_drdx(x)
>>> drdx.shape
torch.Size([100])





References



[1]
eq (12) in https://aip.scitation.org/doi/pdf/10.1063/1.475719




	
__init__(ra: float = 1.0, eps: float = 1e-15)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/grid/radial_grid.py#L397-L410]

	Initialize the LogM3Transformation.


	Parameters:

	
	ra (float (default 1.0)) – The parameter to control the range of the grid.


	eps (float (default 1e-15)) – The parameter to avoid numerical instability.













	
x2r(x: Tensor) → Tensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/grid/radial_grid.py#L412-L426]

	Transform from x to r coordinate


	Parameters:

	x (torch.Tensor) – The coordinate from -1 to 1.



	Returns:

	The coordinate from 0 to inf.



	Return type:

	torch.Tensor










	
get_drdx(x: Tensor) → Tensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/grid/radial_grid.py#L428-L442]

	Returns the dr/dx


	Parameters:

	x (torch.Tensor) – The coordinate from -1 to 1.



	Returns:

	The dr/dx.



	Return type:

	torch.Tensor














	
class TreutlerM4Transformation(xi: float = 1.0, alpha: float = 0.6, eps: float = 1e-15)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/grid/radial_grid.py#L445-L520]

	Treutler M4 grid transformation

Examples

>>> x = torch.linspace(-1, 1, 100)
>>> r = TreutlerM4Transformation().x2r(x)
>>> r.shape
torch.Size([100])
>>> drdx = TreutlerM4Transformation().get_drdx(x)
>>> drdx.shape
torch.Size([100])





References



[1]
eq (19) in https://doi.org/10.1063/1.469408




	
__init__(xi: float = 1.0, alpha: float = 0.6, eps: float = 1e-15)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/grid/radial_grid.py#L464-L480]

	Initialize the TreutlerM4Transformation.


	Parameters:

	
	xi (float (default 1.0)) – The parameter to control the range of the grid.


	alpha (float (default 0.6)) – The parameter to control the range of the grid.


	eps (float (default 1e-15)) – The parameter to avoid numerical instability.













	
x2r(x: Tensor) → Tensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/grid/radial_grid.py#L482-L499]

	Transform from x to r coordinate


	Parameters:

	x (torch.Tensor) – The coordinate from -1 to 1.



	Returns:

	The coordinate from 0 to inf.



	Return type:

	torch.Tensor










	
get_drdx(x: Tensor) → Tensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/grid/radial_grid.py#L501-L520]

	Returns the dr/dx


	Parameters:

	x (torch.Tensor) – The coordinate from -1 to 1.



	Returns:

	The dr/dx.



	Return type:

	torch.Tensor














	
class get_grid_transform(s0: str | BaseGridTransform)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/dft_utils/grid/radial_grid.py#L523-L560]

	grid transformation object from the input

Examples

>>> transform = get_grid_transform("logm3")
>>> transform.x2r(torch.tensor([0.5]))
tensor([2.])






	Parameters:

	s0 (Union[str, BaseGridTransform]) – The grid transformation to use. Available options are logm3,
de2, and treutlerm4.



	Returns:

	The grid transformation object.



	Return type:

	BaseGridTransform



	Raises:

	RuntimeError – If the input is not a valid grid transformation.










	
class EditableModule[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/editable_module.py#L18-L474]

	EditableModule is a base class to enable classes that it inherits be
converted to pure functions for higher order derivatives purpose.


Usage

To use this class, the user must implement the getparamnames method
which returns a list of tensor names that affect the output of the method
with name indicated in methodname.

Used in:


	Classes of Density Functional Theory (DFT).


	It can also be used in other classes that need to be converted to pure
functions for higher order derivatives purpose.




Examples

>>> import torch
>>> from deepchem.utils.differentiation_utils import EditableModule
>>> class A(EditableModule):
...     def __init__(self, a):
...         self.b = a*a
...
...     def mult(self, x):
...         return self.b * x
...
...     def getparamnames(self, methodname, prefix=""):
...         if methodname == "mult":
...             return [prefix+"b"]
...         else:
...             raise KeyError()
>>> a = torch.tensor(2.0).requires_grad_()
>>> x = torch.tensor(0.4).requires_grad_()
>>> alpha = A(a)
>>> alpha.mult(x)
tensor(1.6000, grad_fn=<MulBackward0>)
>>> alpha.getparamnames("mult")
['b']
>>> alpha.assertparams(alpha.mult, x)
"mult" method check done






	
getparams(methodname: str) → Sequence[Tensor][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/editable_module.py#L63-L81]

	Returns a list of tensor parameters used in the object’s operations.
Requires the getparamnames method to be implemented.


	Parameters:

	methodname (str) – The name of the method of the class.



	Returns:

	Sequence of tensors that are involved in the specified method of the
object.



	Return type:

	Sequence[torch.Tensor]










	
setparams(methodname: str, *params) → int[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/editable_module.py#L83-L108]

	Set the input parameters to the object’s parameters to make a copy of
the operations.


	Parameters:

	
	methodname (str) – The name of the method of the class.


	*params – The parameters to be set to the object’s parameters.






	Returns:

	The number of parameters that are set to the object’s parameters.



	Return type:

	int










	
cached_getparamnames(methodname: str, refresh: bool = False) → List[str][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/editable_module.py#L110-L133]

	getparamnames, but cached, so it is only called once


	Parameters:

	
	methodname (str) – The name of the method of the class.


	refresh (bool) – If True, the cache is refreshed.






	Returns:

	Sequence of name of parameters affecting the output of the method.



	Return type:

	List[str]










	
abstract getparamnames(methodname: str, prefix: str = '') → List[str][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/editable_module.py#L135-L162]

	This method should list tensor names that affect the output of the
method with name indicated in methodname.
If the methodname is not on the list in this function, it should
raise KeyError.


	Parameters:

	
	methodname (str) – The name of the method of the class.


	prefix (str) – The prefix to be appended in front of the parameters name.
This usually contains the dots.






	Returns:

	Sequence of name of parameters affecting the output of the method.



	Return type:

	List[str]



	Raises:

	KeyError – If the list in this function does not contain methodname.










	
getuniqueparams(methodname: str, onlyleaves: bool = False) → List[Tensor][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/editable_module.py#L164-L189]

	Returns the list of unique parameters involved in the method
specified by methodname.


	Parameters:

	
	methodname (str) – Name of the method where the returned parameters play roles.


	onlyleaves (bool) – If True, only returns leaf tensors. Otherwise, returns all tensors.






	Returns:

	List of tensors that are involved in the specified method of the
object.



	Return type:

	List[torch.Tensor]










	
setuniqueparams(methodname: str, *uniqueparams) → int[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/editable_module.py#L191-L223]

	Set the input parameters to the object’s parameters to make a copy of
the operations. The input parameters are unique parameters, i.e. they
are not necessarily the same tensors as the object’s parameters.

Note: This function can only be run after running getuniqueparams.


	Parameters:

	
	methodname (str) – The name of the method of the class.


	*uniqueparams – The parameters to be set to the object’s parameters. The number of
parameters must be the same as the number of unique parameters
returned by getuniqueparams.






	Returns:

	The number of parameters that are set to the object’s parameters.



	Return type:

	int










	
assertparams(method: Callable, *args, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/editable_module.py#L283-L316]

	Perform a rigorous check on the implemented getparamnames
in the class for a given method and its parameters as well as keyword
Parameters.
It raises warnings if there are missing or excess parameters in the
getparamnames implementation.


	Parameters:

	
	method (Callable) – The method of this class to be tested


	*args – Parameters of the method


	**kwargs – Keyword parameters of the method


















	
normalize_bcast_dims(*shapes)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/bcast.py#L6-L29]

	Normalize the lengths of the input shapes to have the same length.
The shapes are padded at the front by 1 to make the lengths equal.

Examples

>>> normalize_bcast_dims([1, 2, 3], [2, 3])
[[1, 2, 3], [1, 2, 3]]






	Parameters:

	shapes (List[List[int]]) – The shapes to normalize.



	Returns:

	The normalized shapes.



	Return type:

	List[List[int]]










	
get_bcasted_dims(*shapes)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/bcast.py#L32-L52]

	Return the broadcasted shape of the given shapes.

Examples

>>> get_bcasted_dims([1, 2, 5], [2, 3, 4])
[2, 3, 5]






	Parameters:

	shapes (List[List[int]]) – The shapes to broadcast.



	Returns:

	The broadcasted shape.



	Return type:

	List[int]










	
match_dim(*xs: Tensor, contiguous: bool = False) → Tuple[Tensor, ...][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/bcast.py#L55-L75]

	match the N-1 dimensions of x and xq for searchsorted and gather with dim=-1

Examples

>>> x = torch.randn(10, 5)
>>> xq = torch.randn(10, 3)
>>> x_new, xq_new = match_dim(x, xq)
>>> x_new.shape
torch.Size([10, 5])
>>> xq_new.shape
torch.Size([10, 3])










	
class LinearOperator(*args, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/linop.py#L14-L842]

	LinearOperator is a base class designed to behave as a linear operator
without explicitly determining the matrix. This LinearOperator should
be able to operate as batched linear operators where its shape is
(B1,B2,...,Bb,p,q) with B* as the (optional) batch dimensions.
For a user-defined class to behave as LinearOperator, it must use
LinearOperator as one of the parent and it has to have ._mv()
method implemented and ._getparamnames() if used in xitorch’s
functionals with torch grad enabled.

Examples

>>> import torch
>>> seed = torch.manual_seed(100)
>>> class MyLinOp(LinearOperator):
...     def __init__(self, shape):
...         super(MyLinOp, self).__init__(shape)
...         self.param = torch.rand(shape)
...     def _getparamnames(self, prefix=""):
...         return [prefix + "param"]
...     def _mv(self, x):
...         return torch.matmul(self.param, x)
...     def _rmv(self, x):
...         return torch.matmul(self.param.transpose(-2,-1).conj(), x)
...     def _mm(self, x):
...         return torch.matmul(self.param, x)
...     def _rmm(self, x):
...         return torch.matmul(self.param.transpose(-2,-1).conj(), x)
...     def _fullmatrix(self):
...         return self.param
>>> linop = MyLinOp((1,3,1,2))
>>> print(linop)
LinearOperator (MyLinOp) with shape (1, 3, 1, 2), dtype = torch.float32, device = cpu
>>> x = torch.rand(1,3,2,2)
>>> linop.mv(x)
tensor([[[[0.1991, 0.1011]],

         [[0.3764, 0.5742]],

         [[1.0345, 1.1802]]]])
>>> x = torch.rand(1,3,1,1)
>>> linop.rmv(x)
tensor([[[[0.0250],
          [0.1827]],

         [[0.0794],
          [0.1463]],

         [[0.1207],
          [0.1345]]]])
>>> x = torch.rand(1,3,2,2)
>>> linop.mm(x)
tensor([[[[0.8891, 0.4243]],

         [[0.4856, 0.3128]],

         [[0.6601, 0.9532]]]])
>>> x = torch.rand(1,3,1,2)
>>> linop.rmm(x)
tensor([[[[0.0473, 0.0019],
          [0.3455, 0.0138]],

         [[0.0580, 0.2504],
          [0.1069, 0.4614]],

         [[0.4779, 0.1102],
          [0.5326, 0.1228]]]])
>>> linop.fullmatrix()
tensor([[[[0.1117, 0.8158]],

         [[0.2626, 0.4839]],

         [[0.6765, 0.7539]]]])






	
static __new__(self, *args, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/linop.py#L98-L116]

	Check the implemented functions in the class.






	
classmethod m(mat: Tensor, is_hermitian: bool | None = None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/linop.py#L118-L164]

	Class method to wrap a matrix into LinearOperator.


	Parameters:

	
	mat (torch.Tensor) – Matrix to be wrapped in the LinearOperator.


	is_hermitian (bool or None) – Indicating if the matrix is Hermitian. If None, the symmetry
will be checked. If supplied as a bool, there is no check performed.






	Returns:

	Linear operator object that represents the matrix.



	Return type:

	LinearOperator





Example

>>> import torch
>>> from deepchem.utils.differentiation_utils import LinearOperator
>>> seed = torch.manual_seed(100)
>>> mat = torch.rand(1,3,1,2)  # 1x2 matrix with (1,3) batch dimensions
>>> linop = LinearOperator.m(mat)
>>> print(linop)
MatrixLinearOperator with shape (1, 3, 1, 2):
   tensor([[[[0.1117, 0.8158]],

            [[0.2626, 0.4839]],

            [[0.6765, 0.7539]]]])










	
__init__(shape: Sequence[int], is_hermitian: bool = False, dtype: dtype | None = None, device: device | None = None, _suppress_hermit_warning: bool = False) → None[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/linop.py#L180-L224]

	Initialize the LinearOperator.


	Parameters:

	
	shape (Sequence[int]) – The shape of the linear operator.


	is_hermitian (bool) – Whether the linear operator is Hermitian.


	dtype (torch.dtype or None) – The dtype of the linear operator.


	device (torch.device or None) – The device of the linear operator.


	_suppress_hermit_warning (bool) – Whether to suppress the warning when the linear operator is
Hermitian but the .rmv() or .rmm() is implemented.













	
getlinopparams() → Sequence[Tensor][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/linop.py#L349-L351]

	Get the parameters that affects most of the methods (i.e. mm, mv, rmm, rmv).






	
uselinopparams(*params)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/../../../../../../../.asdf/installs/python/3.9.18/lib/python3.9/contextlib.py#L353-L363]

	Context manager to temporarily set the parameters that affects most of
the methods (i.e. mm, mv, rmm, rmv).






	
mv(x: Tensor) → Tensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/linop.py#L366-L389]

	Apply the matrix-vector operation to vector x with shape (...,q).
The batch dimensions of x need not be the same as the batch dimensions
of the LinearOperator, but it must be broadcastable.


	Parameters:

	x (torch.tensor) – The vector with shape (...,q) where the linear operation is operated on



	Returns:

	y – The result of the linear operation with shape (...,p)



	Return type:

	torch.tensor










	
mm(x: Tensor) → Tensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/linop.py#L391-L431]

	Apply the matrix-matrix operation to matrix x with shape (...,q,r).
The batch dimensions of x need not be the same as the batch dimensions
of the LinearOperator, but it must be broadcastable.


	Parameters:

	x (torch.tensor) – The matrix with shape (...,q,r) where the linear operation is
operated on.



	Returns:

	y – The result of the linear operation with shape (...,p,r)



	Return type:

	torch.tensor










	
rmv(x: Tensor) → Tensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/linop.py#L433-L461]

	Apply the matrix-vector adjoint operation to vector x with shape (...,p),
i.e. A^H x.
The batch dimensions of x need not be the same as the batch dimensions
of the LinearOperator, but it must be broadcastable.


	Parameters:

	x (torch.tensor) – The vector of shape (...,p) where the adjoint linear operation is operated at.



	Returns:

	y – The result of the adjoint linear operation with shape (...,q)



	Return type:

	torch.tensor










	
rmm(x: Tensor) → Tensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/linop.py#L463-L507]

	Apply the matrix-matrix adjoint operation to matrix x with shape (...,p,r),
i.e. A^H X.
The batch dimensions of x need not be the same as the batch dimensions
of the LinearOperator, but it must be broadcastable.


	Parameters:

	x (torch.Tensor) – The matrix of shape (...,p,r) where the adjoint linear operation is operated on.



	Returns:

	y – The result of the adjoint linear operation with shape (...,q,r).



	Return type:

	torch.Tensor










	
fullmatrix() → Tensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/linop.py#L509-L517]

	Full matrix representation of the linear operator.






	
scipy_linalg_op()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/linop.py#L519-L531]

	Return the scipy.sparse.linalg.LinearOperator object of the linear operator.






	
getparamnames(methodname: str, prefix: str = '') → List[str][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/linop.py#L533-L540]

	Get the parameter names that affects the method.






	
property H[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/linop.py]

	Returns a LinearOperator representing the Hermite / transposed of the
self LinearOperator.


	Returns:

	The Hermite / transposed LinearOperator



	Return type:

	LinearOperator










	
matmul(b: LinearOperator, is_hermitian: bool = False)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/linop.py#L559-L610]

	Returns a LinearOperator representing self @ b.

Examples

>>> import torch
>>> seed = torch.manual_seed(100)
>>> class MyLinOp(LinearOperator):
...     def __init__(self, shape):
...         super(MyLinOp, self).__init__(shape)
...         self.param = torch.rand(shape)
...     def _getparamnames(self, prefix=""):
...         return [prefix + "param"]
...     def _mv(self, x):
...         return torch.matmul(self.param, x)
>>> linop1 = MyLinOp((1,3,1,2))
>>> linop2 = MyLinOp((1,3,2,1))
>>> linop = linop1.matmul(linop2)
>>> print(linop)
MatmulLinearOperator with shape (1, 3, 1, 1) of:
 * LinearOperator (MyLinOp) with shape (1, 3, 1, 2), dtype = torch.float32, device = cpu
 * LinearOperator (MyLinOp) with shape (1, 3, 2, 1), dtype = torch.float32, device = cpu
>>> x = torch.rand(1,3,1,1)
>>> linop.mv(x)
tensor([[[[0.0458]],

         [[0.0880]],

         [[0.2664]]]])






	Parameters:

	
	b (LinearOperator) – Other linear operator


	is_hermitian (bool) – Flag to indicate if the resulting LinearOperator is Hermitian.






	Returns:

	LinearOperator representing self @ b



	Return type:

	LinearOperator










	
__add__(b: LinearOperator)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/linop.py#L612-L671]

	Addition with another linear operator.

Examples

>>> class Operator(LinearOperator):
...     def __init__(self, mat: torch.Tensor, is_hermitian: bool) -> None:
...         super(Operator, self).__init__(
...             shape=mat.shape,
...             is_hermitian=is_hermitian,
...             dtype=mat.dtype,
...             device=mat.device,
...             _suppress_hermit_warning=True,
...         )
...         self.mat = mat
...     def _mv(self, x: torch.Tensor) -> torch.Tensor:
...         return torch.matmul(self.mat, x.unsqueeze(-1)).squeeze(-1)
...     def _mm(self, x: torch.Tensor) -> torch.Tensor:
...         return torch.matmul(self.mat, x)
...     def _rmv(self, x: torch.Tensor) -> torch.Tensor:
...         return torch.matmul(self.mat.transpose(-3, -1).conj(), x.unsqueeze(-1)).squeeze(-1)
...     def _rmm(self, x: torch.Tensor) -> torch.Tensor:
...         return torch.matmul(self.mat.transpose(-2, -1).conj(), x)
...     def _fullmatrix(self) -> torch.Tensor:
...         return self.mat
...     def _getparamnames(self, prefix: str = "") -> List[str]:
...         return [prefix + "mat"]
>>> op = Operator(torch.tensor([[1, 2.],
...                             [3, 4]]), is_hermitian=False)
>>> x = torch.tensor([[2, 2],
...                   [1, 2.]])
>>> op.mm(x)
tensor([[ 4.,  6.],
        [10., 14.]])
>>> op2 = op + op
>>> op2.mm(x)
tensor([[ 8., 12.],
        [20., 28.]])






	Parameters:

	b (LinearOperator) – The linear operator to be added.



	Returns:

	The result of the addition.



	Return type:

	LinearOperator










	
__sub__(b: LinearOperator)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/linop.py#L673-L735]

	Subtraction with another linear operator.

Examples

>>> class Operator(LinearOperator):
...     def __init__(self, mat: torch.Tensor, is_hermitian: bool) -> None:
...         super(Operator, self).__init__(
...             shape=mat.shape,
...             is_hermitian=is_hermitian,
...             dtype=mat.dtype,
...             device=mat.device,
...             _suppress_hermit_warning=True,
...         )
...         self.mat = mat
...     def _mv(self, x: torch.Tensor) -> torch.Tensor:
...         return torch.matmul(self.mat, x.unsqueeze(-1)).squeeze(-1)
...     def _mm(self, x: torch.Tensor) -> torch.Tensor:
...         return torch.matmul(self.mat, x)
...     def _rmv(self, x: torch.Tensor) -> torch.Tensor:
...         return torch.matmul(self.mat.transpose(-3, -1).conj(), x.unsqueeze(-1)).squeeze(-1)
...     def _rmm(self, x: torch.Tensor) -> torch.Tensor:
...         return torch.matmul(self.mat.transpose(-2, -1).conj(), x)
...     def _fullmatrix(self) -> torch.Tensor:
...         return self.mat
...     def _getparamnames(self, prefix: str = "") -> List[str]:
...         return [prefix + "mat"]
>>> op = Operator(torch.tensor([[1, 2.],
...                             [3, 4]]), is_hermitian=False)
>>> op1 = Operator(torch.tensor([[0, 1.],
...                              [1, 2]]), is_hermitian=False)
>>> x = torch.tensor([[2, 2],
...                   [1, 2.]])
>>> op.mm(x)
tensor([[ 4.,  6.],
        [10., 14.]])
>>> op2 = op - op1
>>> op2.mm(x)
tensor([[3., 4.],
        [6., 8.]])






	Parameters:

	b (LinearOperator) – The linear operator to be subtracted.



	Returns:

	The result of the subtraction.



	Return type:

	LinearOperator










	
property dtype: dtype[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/linop.py]

	The dtype of the linear operator.






	
property device: device[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/linop.py]

	The device of the linear operator.






	
property shape: Sequence[int][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/linop.py]

	The shape of the linear operator.






	
property is_hermitian: bool[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/linop.py]

	Whether the linear operator is Hermitian.






	
property is_mv_implemented: bool[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/linop.py]

	Whether the .mv() method is implemented.






	
property is_mm_implemented: bool[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/linop.py]

	Whether the .mm() method is implemented.






	
property is_rmv_implemented: bool[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/linop.py]

	Whether the .rmv() method is implemented.






	
property is_rmm_implemented: bool[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/linop.py]

	Whether the .rmm() method is implemented.






	
property is_fullmatrix_implemented: bool[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/linop.py]

	Whether the .fullmatrix() method is implemented.






	
property is_getparamnames_implemented: bool[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/linop.py]

	Whether the ._getparamnames() method is implemented.










	
class AddLinearOperator(*args, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/linop.py#L1007-L1161]

	Adds two linear operators.

Examples

>>> import torch
>>> seed = torch.manual_seed(100)
>>> class MyLinOp(LinearOperator):
...     def __init__(self, shape):
...         super(MyLinOp, self).__init__(shape)
...         self.param = torch.rand(shape)
...     def _getparamnames(self, prefix=""):
...         return [prefix + "param"]
...     def _mv(self, x):
...         return torch.matmul(self.param, x)
...     def _rmv(self, x):
...         return torch.matmul(self.param.transpose(-2,-1).conj(), x)
...     def _mm(self, x):
...         return torch.matmul(self.param, x)
...     def _rmm(self, x):
...         return torch.matmul(self.param.transpose(-2,-1).conj(), x)
...     def _fullmatrix(self):
...         return self.param
>>> linop1 = MyLinOp((1,3,1,2))
>>> linop2 = MyLinOp((1,3,1,2))
>>> linop = AddLinearOperator(linop1, linop2)
>>> print(linop)
AddLinearOperator with shape (1, 3, 1, 2) of:
 * LinearOperator (MyLinOp) with shape (1, 3, 1, 2), dtype = torch.float32, device = cpu
 * LinearOperator (MyLinOp) with shape (1, 3, 1, 2), dtype = torch.float32, device = cpu
>>> x = torch.rand(1,3,2,2)
>>> linop.mv(x)
tensor([[[[0.6256, 1.0689]],

         [[0.6039, 0.5380]],

         [[0.9702, 2.1129]]]])
>>> x = torch.rand(1,3,1,1)
>>> linop.rmv(x)
tensor([[[[0.1662],
          [0.3813]],

         [[0.4460],
          [0.5705]],

         [[0.5942],
          [1.1089]]]])
>>> x = torch.rand(1,2,2,1)
>>> linop.mm(x)
tensor([[[[0.7845],
          [0.5439]]],


        [[[0.6518],
          [0.4318]]],


        [[[1.4336],
          [0.9796]]]])






	
__init__(a: LinearOperator, b: LinearOperator, mul: int = 1)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/linop.py#L1069-L1096]

	Initialize the AddLinearOperator.


	Parameters:

	
	a (LinearOperator) – The first linear operator to be added.


	b (LinearOperator) – The second linear operator to be added.


	mul (int) – The multiplier of the second linear operator. Default to 1.
If -1, then the second linear operator will be subtracted.

















	
class MulLinearOperator(*args, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/linop.py#L1164-L1288]

	Multiply a linear operator with a scalar.

Examples

>>> import torch
>>> seed = torch.manual_seed(100)
>>> class MyLinOp(LinearOperator):
...     def __init__(self, shape):
...         super(MyLinOp, self).__init__(shape)
...         self.param = torch.rand(shape)
...     def _getparamnames(self, prefix=""):
...         return [prefix + "param"]
...     def _mv(self, x):
...         return torch.matmul(self.param, x)
>>> linop = MyLinOp((1,3,1,2))
>>> print(linop)
LinearOperator (MyLinOp) with shape (1, 3, 1, 2), dtype = torch.float32, device = cpu
>>> x = torch.rand(1,3,2,2)
>>> linop.mv(x)
tensor([[[[0.1991, 0.1011]],

         [[0.3764, 0.5742]],

         [[1.0345, 1.1802]]]])
>>> linop2 = linop * 2
>>> linop2.mv(x)
tensor([[[[0.3981, 0.2022]],

         [[0.7527, 1.1485]],

         [[2.0691, 2.3603]]]])






	
__init__(a: LinearOperator, f: int | float)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/linop.py#L1199-L1220]

	Initialize the MulLinearOperator.


	Parameters:

	
	a (LinearOperator) – Linear operator to be multiplied.


	f (Union[int, float]) – Integer or floating point number to be multiplied.

















	
class AdjointLinearOperator(*args, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/linop.py#L1419-L1554]

	Adjoint of a LinearOperator.

This is used to calculate the adjoint of a LinearOperator without
explicitly constructing the adjoint matrix. This is useful when the
adjoint matrix is not explicitly constructed, e.g. when the LinearOperator
is a function of other parameters.

Examples

>>> import torch
>>> seed = torch.manual_seed(100)
>>> class MyLinOp(LinearOperator):
...     def __init__(self, shape):
...         super(MyLinOp, self).__init__(shape)
...         self.param = torch.rand(shape)
...     def _getparamnames(self, prefix=""):
...         return [prefix + "param"]
...     def _mv(self, x):
...         return torch.matmul(self.param, x)
...     def _rmv(self, x):
...         return torch.matmul(self.param.transpose(-2,-1).conj(), x)
>>> linop = MyLinOp((1,3,1,2))
>>> print(linop)
LinearOperator (MyLinOp) with shape (1, 3, 1, 2), dtype = torch.float32, device = cpu
>>> x = torch.rand(1,3,1,1)
>>> linop.rmv(x)
tensor([[[[0.0293],
          [0.2143]],

         [[0.0112],
          [0.0207]],

         [[0.1407],
          [0.1568]]]])
>>> linop2 = linop.H
>>> linop2.mv(x)
tensor([[[[0.0293],
          [0.2143]],

         [[0.0112],
          [0.0207]],

         [[0.1407],
          [0.1568]]]])






	
__init__(obj: LinearOperator)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/linop.py#L1467-L1483]

	Initialize the AdjointLinearOperator.


	Parameters:

	obj (LinearOperator) – The linear operator to be adjointed.










	
property H[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/linop.py]

	Adjoint of the linear operator.


	Returns:

	Adjoint of the linear operator.



	Return type:

	LinearOperator














	
class MatmulLinearOperator(*args, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/linop.py#L1291-L1416]

	Matrix-matrix multiplication of two linear operators.

Examples

>>> import torch
>>> seed = torch.manual_seed(100)
>>> class MyLinOp(LinearOperator):
...     def __init__(self, shape):
...         super(MyLinOp, self).__init__(shape)
...         self.param = torch.rand(shape)
...     def _getparamnames(self, prefix=""):
...         return [prefix + "param"]
...     def _mv(self, x):
...         return torch.matmul(self.param, x)
>>> linop1 = MyLinOp((1,3,2,2))
>>> linop2 = MyLinOp((1,3,2,2))
>>> linop = MatmulLinearOperator(linop1, linop2)
>>> print(linop)
MatmulLinearOperator with shape (1, 3, 2, 2) of:
 * LinearOperator (MyLinOp) with shape (1, 3, 2, 2), dtype = torch.float32, device = cpu
 * LinearOperator (MyLinOp) with shape (1, 3, 2, 2), dtype = torch.float32, device = cpu
>>> x = torch.rand(1,2,2,1)
>>> linop.mm(x)
tensor([[[[0.7998],
          [0.8016]],

         [[0.6515],
          [0.6835]]],


        [[[0.9251],
          [1.1611]],

         [[0.2781],
          [0.3609]]],


        [[[0.2591],
          [0.2376]],

         [[0.8009],
          [0.8087]]]])






	
__init__(a: LinearOperator, b: LinearOperator, is_hermitian: bool = False)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/linop.py#L1338-L1364]

	Initialize the MatmulLinearOperator.


	Parameters:

	
	a (LinearOperator) – The first linear operator to be multiplied.


	b (LinearOperator) – The second linear operator to be multiplied.


	is_hermitian (bool) – Whether the result is Hermitian. Default to False.

















	
class MatrixLinearOperator(*args, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/linop.py#L846-L1004]

	Class method to wrap a matrix into LinearOperator.
It is a standard linear operator, used in many operations.

Examples

>>> import torch
>>> seed = torch.manual_seed(100)
>>> mat = torch.rand(3, 2)
>>> linop = MatrixLinearOperator(mat, is_hermitian=False)
>>> print(linop)
MatrixLinearOperator with shape (3, 2):
   tensor([[0.1117, 0.8158],
           [0.2626, 0.4839],
           [0.6765, 0.7539]])
>>> x = torch.rand(2, 2)
>>> linop.mm(x)
tensor([[0.1991, 0.1011],
        [0.1696, 0.0684],
        [0.3345, 0.1180]])
>>> x = torch.rand(3, 2)
>>> linop.mv(x)
tensor([[0.6137, 0.3879, 0.6369],
        [0.7220, 0.5680, 1.0753],
        [0.7821, 0.5460, 0.9626]])






	
__init__(mat: Tensor, is_hermitian: bool) → None[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/linop.py#L874-L894]

	Initialize the MatrixLinearOperator.


	Parameters:

	
	mat (torch.Tensor) – The matrix to be wrapped.


	is_hermitian (bool) – Indicating if the matrix is Hermitian. If None, the symmetry
will be checked. If supplied as a bool, there is no check performed.

















	
class PureFunction(fcntocall: Callable)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/pure_function.py#L11-L160]

	PureFunction class wraps methods to make it stateless and expose the pure
function to take inputs of the original inputs (params) and the object’s
states (objparams).
For functions, this class only acts as a thin wrapper.

Restore stack stores list of (objparams, identical) everytime the objparams
are set, it will store the old objparams and indication if the old and new
objparams are identical.

For Using this Class we first need to implement _get_all_obj_params_init
and _set_all_obj_params.

Examples

>>> class WrapperFunction(PureFunction):
...     def _get_all_obj_params_init(self):
...         return []
...     def _set_all_obj_params(self, objparams):
...         pass
>>> def fcn(x, y):
...    return x + y
>>> pfunc = WrapperFunction(fcn)
>>> pfunc(1, 2)
3






	
__init__(fcntocall: Callable)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/pure_function.py#L40-L54]

	Initialize the PureFunction.


	Parameters:

	fcntocall (Callable) – The function to be wrapped










	
objparams() → List[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/pure_function.py#L97-L106]

	Get the current object parameters.


	Returns:

	The current object parameters



	Return type:

	List










	
set_objparams(objparams: List)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/pure_function.py#L108-L124]

	Set the object parameters.


	Parameters:

	
	objparams (List) – The object parameters to be set


	TODO (check if identical with current object parameters) – 













	
restore_objparams()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/pure_function.py#L126-L132]

	Restore the object parameters to the previous state.






	
useobjparams(objparams: List)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/../../../../../../../.asdf/installs/python/3.9.18/lib/python3.9/contextlib.py#L134-L150]

	Context manager to temporarily set the object parameters.


	Parameters:

	objparams (List) – The object parameters to be set temporarily










	
disable_state_change()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/../../../../../../../.asdf/installs/python/3.9.18/lib/python3.9/contextlib.py#L152-L160]

	Context manager to temporarily disable the state change.










	
class FunctionPureFunction(fcntocall: Callable)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/pure_function.py#L163-L197]

	Implementation of PureFunction for functions.
It just acts as a thin wrapper for the function.

Examples

>>> def fcn(x, y):
...     return x + y
>>> pfunc = FunctionPureFunction(fcn)
>>> pfunc(1, 2)
3










	
class EditableModulePureFunction(obj: EditableModule, method: Callable)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/pure_function.py#L200-L260]

	Implementation of PureFunction for EditableModule.

Examples

>>> import torch
>>> from deepchem.utils.differentiation_utils import EditableModule, get_pure_function
>>> class A(EditableModule):
...     def __init__(self, a):
...         self.b = a*a
...     def mult(self, x):
...         return self.b * x
...     def getparamnames(self, methodname, prefix=""):
...         if methodname == "mult":
...             return [prefix+"b"]
...         else:
...             raise KeyError()
>>> B = A(4)
>>> m = get_pure_function(B.mult)
>>> m.set_objparams([3])
>>> m(2)
6






	
__init__(obj: EditableModule, method: Callable)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/pure_function.py#L225-L238]

	Initialize the EditableModulePureFunction.


	Parameters:

	
	obj (EditableModule) – The object to be wrapped


	method (Callable) – The method to be wrapped

















	
class TorchNNPureFunction(obj: Module, method: Callable)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/pure_function.py#L263-L332]

	Implementation of PureFunction for torch.nn.Module.

Examples

>>> import torch
>>> from deepchem.utils.differentiation_utils import get_pure_function
>>> class A(torch.nn.Module):
...     def __init__(self, a):
...         super().__init__()
...         self.b = torch.nn.Parameter(torch.tensor(a*a))
...     def forward(self, x):
...         return self.b * x
>>> B = A(4.)
>>> m = get_pure_function(B.forward)
>>> m.set_objparams([3.])
>>> m(2)
6.0






	
__init__(obj: Module, method: Callable)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/pure_function.py#L284-L297]

	Initialize the TorchNNPureFunction.


	Parameters:

	
	obj (torch.nn.Module) – Object to be wrapped


	method (Callable) – Method to be wrapped

















	
class PureFunction(fcntocall: Callable)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/pure_function.py#L11-L160]

	PureFunction class wraps methods to make it stateless and expose the pure
function to take inputs of the original inputs (params) and the object’s
states (objparams).
For functions, this class only acts as a thin wrapper.

Restore stack stores list of (objparams, identical) everytime the objparams
are set, it will store the old objparams and indication if the old and new
objparams are identical.

For Using this Class we first need to implement _get_all_obj_params_init
and _set_all_obj_params.

Examples

>>> class WrapperFunction(PureFunction):
...     def _get_all_obj_params_init(self):
...         return []
...     def _set_all_obj_params(self, objparams):
...         pass
>>> def fcn(x, y):
...    return x + y
>>> pfunc = WrapperFunction(fcn)
>>> pfunc(1, 2)
3






	
__init__(fcntocall: Callable)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/pure_function.py#L40-L54]

	Initialize the PureFunction.


	Parameters:

	fcntocall (Callable) – The function to be wrapped










	
objparams() → List[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/pure_function.py#L97-L106]

	Get the current object parameters.


	Returns:

	The current object parameters



	Return type:

	List










	
set_objparams(objparams: List)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/pure_function.py#L108-L124]

	Set the object parameters.


	Parameters:

	
	objparams (List) – The object parameters to be set


	TODO (check if identical with current object parameters) – 













	
restore_objparams()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/pure_function.py#L126-L132]

	Restore the object parameters to the previous state.






	
useobjparams(objparams: List)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/../../../../../../../.asdf/installs/python/3.9.18/lib/python3.9/contextlib.py#L134-L150]

	Context manager to temporarily set the object parameters.


	Parameters:

	objparams (List) – The object parameters to be set temporarily










	
disable_state_change()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/../../../../../../../.asdf/installs/python/3.9.18/lib/python3.9/contextlib.py#L152-L160]

	Context manager to temporarily disable the state change.










	
_check_identical_objs(objs1: List, objs2: List) → bool[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/pure_function.py#L335-L361]

	Check if the two lists of objects are identical.

Examples

>>> l1 = [2, 2, 3]
>>> l2 = [1, 2, 3]
>>> _check_identical_objs(l1, l2)
False






	Parameters:

	
	objs1 (List) – The first list of objects


	objs2 (List) – The second list of objects






	Returns:

	True if the two lists of objects are identical, False otherwise



	Return type:

	bool










	
get_pure_function(fcn) → PureFunction[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/pure_function.py#L469-L521]

	Get the pure function form of the function or method fcn.

Examples

>>> import torch
>>> from deepchem.utils.differentiation_utils import get_pure_function
>>> def fcn(x, y):
...     return x + y
>>> pfunc = get_pure_function(fcn)
>>> pfunc(1, 2)
3






	Parameters:

	fcn (function or method) – Function or method to be converted into a PureFunction by exposing
the hidden parameters affecting its outputs.



	Returns:

	The pure function wrapper



	Return type:

	PureFunction










	
set_default_option(defopt: Dict, opt: Dict) → Dict[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/misc.py#L6-L30]

	return a dictionary based on the options and if no item from option,
take it from defopt make a shallow copy to detach the results from defopt

Examples

>>> set_default_option({'a': 1, 'b': 2}, {'a': 3})
{'a': 3, 'b': 2}






	Parameters:

	
	defopt (dict) – Default options


	opt (dict) – Options






	Returns:

	Merged options



	Return type:

	dict










	
get_and_pop_keys(dct: Dict, keys: List) → Dict[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/misc.py#L33-L57]

	Get and pop keys from a dictionary

Examples

>>> get_and_pop_keys({'a': 1, 'b': 2}, ['a'])
{'a': 1}






	Parameters:

	
	dct (dict) – Dictionary to pop from


	keys (list) – Keys to pop






	Returns:

	Dictionary containing the popped keys



	Return type:

	dict










	
get_method(algname: str, methods: Mapping[str, Callable], method: str | Callable) → Callable[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/misc.py#L60-L100]

	Get a method from a dictionary of methods

Examples

>>> get_method('foo', {'bar': lambda: 1}, 'bar')()
1






	Parameters:

	
	algname (str) – Name of the algorithm


	methods (dict) – Dictionary of methods


	method (str or callable) – Method to get






	Returns:

	The method



	Return type:

	callable










	
dummy_context_manager()[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/../../../../../../../.asdf/installs/python/3.9.18/lib/python3.9/contextlib.py#L103-L106]

	Dummy context manager






	
assert_runtime(cond, msg='')[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/misc.py#L109-L133]

	Assert at runtime

Examples

>>> assert_runtime(False, "This is a test")
Traceback (most recent call last):
...
RuntimeError: This is a test






	Parameters:

	
	cond (bool) – Condition to assert


	msg (str) – Message to raise if condition is not met






	Raises:

	RuntimeError – If condition is not met










	
_set_initial_v(vinit_type: str, dtype: dtype, device: device, batch_dims: Sequence, na: int, nguess: int, M: LinearOperator | None = None) → Tensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/symeig.py#L901-L995]

	Set the initial guess for the eigenvectors.

Examples

>>> import torch
>>> vinit_type = "eye"
>>> dtype = torch.float64
>>> device = torch.device("cpu")
>>> batch_dims = (2, 3)
>>> na = 4
>>> nguess = 2
>>> M = None
>>> V = _set_initial_v(vinit_type, dtype, device, batch_dims, na, nguess, M)
>>> V
tensor([[[[1., 0.],
          [0., 1.],
          [0., 0.],
          [0., 0.]],

         [[1., 0.],
          [0., 1.],
          [0., 0.],
          [0., 0.]],

         [[1., 0.],
          [0., 1.],
          [0., 0.],
          [0., 0.]]],


        [[[1., 0.],
          [0., 1.],
          [0., 0.],
          [0., 0.]],

         [[1., 0.],
          [0., 1.],
          [0., 0.],
          [0., 0.]],

         [[1., 0.],
          [0., 1.],
          [0., 0.],
          [0., 0.]]]], dtype=torch.float64)






	Parameters:

	
	vinit_type (str) – Mode of the initial guess ("randn", "rand", "eye")


	dtype (torch.dtype) – Data type of the initial guess.


	device (torch.device) – Device of the initial guess.


	batch_dims (Sequence) – Batch dimensions of the initial guess.


	na (int) – Number of basis functions.


	nguess (int) – Number of initial guesses.


	M (Optional[LinearOperator] (default None)) – The overlap matrix. If None, identity matrix is used.






	Returns:

	V – Initial guess for the eigenvectors.



	Return type:

	torch.Tensor










	
_take_eigpairs(eival: Tensor, eivec: Tensor, neig: int, mode: str)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/symeig.py#L998-L1048]

	Take the eigenpairs from the eigendecomposition.

Examples

>>> import torch
>>> eival = torch.tensor([[1., 2., 3.], [4., 5., 6.]])
>>> eivec = torch.tensor([[[1., 2., 3.], [4., 5., 6.], [7., 8., 9.]],
...                       [[1., 2., 3.], [4., 5., 6.], [7., 8., 9.]]])
>>> neig = 2
>>> mode = "lowest"
>>> eival, eivec = _take_eigpairs(eival, eivec, neig, mode)
>>> eival
tensor([[1., 2.],
        [4., 5.]])
>>> eivec
tensor([[[1., 2.],
         [4., 5.],
         [7., 8.]],

        [[1., 2.],
         [4., 5.],
         [7., 8.]]])






	Parameters:

	
	eival (torch.Tensor) – Eigenvalues of the linear operator. Shape: (*BV, na).


	eivec (torch.Tensor) – Eigenvectors of the linear operator. Shape: (*BV, na, na).


	neig (int) – Number of eigenvalues and eigenvectors to be calculated.


	mode (str) – Mode of the eigenvalues to be calculated ("lowest", "uppest")






	Returns:

	
	eival (torch.Tensor) – Eigenvalues of the linear operator.


	eivec (torch.Tensor) – Eigenvectors of the linear operator.















	
exacteig(A: LinearOperator, neig: int, mode: str, M: LinearOperator | None) → Tuple[Tensor, Tensor][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/symeig.py#L588-L656]

	Eigendecomposition using explicit matrix construction.
No additional option for this method.

Examples

>>> import torch
>>> import numpy as np
>>> from deepchem.utils.differentiation_utils import LinearOperator
>>> A = LinearOperator.m(torch.rand(2, 2))
>>> neig = 2
>>> mode = "lowest"
>>> M = None
>>> evals, evecs = exacteig(A, neig, mode, M)
>>> evals.shape
torch.Size([2])
>>> evecs.shape
torch.Size([2, 2])






	Parameters:

	
	A (LinearOperator) – Linear operator to be diagonalized. Shape: (*BA, q, q).


	neig (int) – Number of eigenvalues and eigenvectors to be calculated.


	mode (str) – Mode of the eigenvalues to be calculated ("lowest", "uppest")


	M (Optional[LinearOperator] (default None)) – The overlap matrix. If None, identity matrix is used. Shape: (*BM, q, q).






	Returns:

	
	evals (torch.Tensor) – Eigenvalues of the linear operator.


	evecs (torch.Tensor) – Eigenvectors of the linear operator.











Warning


	As this method construct the linear operators explicitly, it might requires
a large memory.











	
degen_symeig(*args, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/symeig.py#L660-L739]

	A wrapper for torch.linalg.eigh to avoid complex eigenvalues for degenerate case.

Examples

>>> import torch
>>> import numpy as np
>>> from deepchem.utils.differentiation_utils import LinearOperator
>>> A = LinearOperator.m(torch.rand(2, 2))
>>> evals, evecs = degen_symeig.apply(A.fullmatrix())
>>> evals.shape
torch.Size([2])
>>> evecs.shape
torch.Size([2, 2])










	
davidson(A: LinearOperator, neig: int, mode: str, M: LinearOperator | None = None, max_niter: int = 1000, nguess: int | None = None, v_init: str = 'randn', max_addition: int | None = None, min_eps: float = 1e-06, verbose: bool = False, **unused) → Tuple[Tensor, Tensor][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/symeig.py#L742-L898]

	Using Davidson method for large sparse matrix eigendecomposition [2]_.

Examples

>>> import torch
>>> import numpy as np
>>> from deepchem.utils.differentiation_utils import LinearOperator
>>> A = LinearOperator.m(torch.rand(2, 2))
>>> neig = 2
>>> mode = "lowest"
>>> eigen_val, eigen_vec = davidson(A, neig, mode)






	Parameters:

	
	A (LinearOperator) – Linear operator to be diagonalized. Shape: (*BA, q, q).


	neig (int) – Number of eigenvalues and eigenvectors to be calculated.


	mode (str) – Mode of the eigenvalues to be calculated ("lowest", "uppest")


	M (Optional[LinearOperator] (default None)) – The overlap matrix. If None, identity matrix is used. Shape: (*BM, q, q).


	max_niter (int) – Maximum number of iterations


	v_init (str) – Mode of the initial guess ("randn", "rand", "eye")


	max_addition (int or None) – Maximum number of new guesses to be added to the collected vectors.
If None, set to neig.


	min_eps (float) – Minimum residual error to be stopped


	verbose (bool) – Option to be verbose






	Returns:

	
	evals (torch.Tensor) – Eigenvalues of the linear operator.


	evecs (torch.Tensor) – Eigenvectors of the linear operator.










References



[2]
P. Arbenz, “Lecture Notes on Solving Large Scale Eigenvalue Problems”
http://people.inf.ethz.ch/arbenz/ewp/Lnotes/chapter12.pdf








	
lsymeig(A: LinearOperator, neig: int | None = None, M: LinearOperator | None = None, bck_options: Mapping[str, Any] = {}, method: Callable | str | None = None, **fwd_options) → Tuple[Tensor, Tensor][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/symeig.py#L9-L22]

	Obtain neig lowest eigenvalues and eigenvectors of a linear operator






	
usymeig(A: LinearOperator, neig: int | None = None, M: LinearOperator | None = None, bck_options: Mapping[str, Any] = {}, method: Callable | str | None = None, **fwd_options) → Tuple[Tensor, Tensor][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/symeig.py#L25-L38]

	Obtain neig uppest eigenvalues and eigenvectors of a linear operator






	
symeig(A: LinearOperator, neig: int | None = None, mode: str = 'lowest', M: LinearOperator | None = None, bck_options: Mapping[str, Any] = {}, method: Callable | str | None = None, **fwd_options) → Tuple[Tensor, Tensor][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/symeig.py#L41-L161]

	Obtain neig lowest eigenvalues and eigenvectors of a linear operator,

Examples

>>> import torch
>>> from deepchem.utils.differentiation_utils import LinearOperator
>>> A = LinearOperator.m(torch.tensor([[3, -1j], [1j, 4]]))
>>> evals, evecs = symeig(A)
>>> evals.shape
torch.Size([2])
>>> evecs.shape
torch.Size([2, 2])






\[\mathbf{AX = MXE}\]

where \(\mathbf{A}, \mathbf{M}\) are linear operators,
\(\mathbf{E}\) is a diagonal matrix containing the eigenvalues, and
\(\mathbf{X}\) is a matrix containing the eigenvectors.
This function can handle derivatives for degenerate cases by setting non-zero
degen_atol and degen_rtol in the backward option using the expressions
in [1]_.


	Parameters:

	
	A (LinearOperator) – The linear operator object on which the eigenpairs are constructed.
It must be a Hermitian linear operator with shape (*BA, q, q)


	neig (int or None) – The number of eigenpairs to be retrieved. If None, all eigenpairs are
retrieved


	mode (str) – "lowest" or "uppermost"/"uppest". If "lowest",
it will take the lowest neig eigenpairs.
If "uppest", it will take the uppermost neig.


	M (LinearOperator) – The transformation on the right hand side. If None, then M=I.
If specified, it must be a Hermitian with shape (*BM, q, q).


	bck_options (dict) – Method-specific options for solve() which used in backpropagation
calculation with some additional arguments for computing the backward
derivatives:


	degen_atol (float or None): Minimum absolute difference between
two eigenvalues to be treated as degenerate. If None, it is
torch.finfo(dtype).eps**0.6. If 0.0, no special treatment on
degeneracy is applied. (default: None)


	degen_rtol (float or None): Minimum relative difference between
two eigenvalues to be treated as degenerate. If None, it is
torch.finfo(dtype).eps**0.4. If 0.0, no special treatment on
degeneracy is applied. (default: None)




Note: the default values of degen_atol and degen_rtol are going
to change in the future. So, for future compatibility, please specify
the specific values.




	method (str or callable or None) – Method for the eigendecomposition. If None, it will choose
"exacteig".


	**fwd_options – Method-specific options (see method section below).






	Returns:

	It will return eigenvalues and eigenvectors with shapes respectively
(*BAM, neig) and (*BAM, na, neig), where *BAM is the
broadcasted shape of *BA and *BM.



	Return type:

	tuple of tensors (eigenvalues, eigenvectors)





References



[1]
Muhammad F. Kasim,
“Derivatives of partial eigendecomposition of a real symmetric matrix for degenerate cases”.
arXiv:2011.04366 (2020)
https://arxiv.org/abs/2011.04366








	
class symeig_torchfcn(*args, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/symeig.py#L281-L482]

	A wrapper for symeig to be used in torch.autograd.Function


	
static forward(ctx, A, neig, mode, M, fwd_options, bck_options, na, *amparams)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/symeig.py#L284-L348]

	Calculate the eigenvalues and eigenvectors of a linear operator


	Parameters:

	
	A (LinearOperator) – The linear operator object on which the eigenpairs are constructed.
It must be a Hermitian linear operator with shape (*BA, q, q)


	neig (int) – The number of eigenpairs to be retrieved. If None, all eigenpairs are
retrieved


	mode (str) – "lowest" or "uppermost"/"uppest". If "lowest",
it will take the lowest neig eigenpairs.
If "uppest", it will take the uppermost neig.


	M (xitorch.LinearOperator) – The transformation on the right hand side. If None, then M=I.
If specified, it must be a Hermitian with shape (*BM, q, q).


	fwd_options (dict) – Method-specific options (see method section below).


	bck_options (dict) – Method-specific options for solve() which used in backpropagation
calculation with some additional arguments for computing the backward
derivatives: degen_atol and degen_rtol.


	na (int) – Number of parameters of A (and M if M is not None)


	*amparams (torch.Tensor) – Parameters of A (and M if M is not None)













	
static backward(ctx, grad_evals, grad_evecs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/symeig.py#L350-L482]

	Calculate the gradient of the eigenvalues and eigenvectors of a linear operator


	Parameters:

	
	grad_evals (torch.Tensor) – The gradient of the eigenvalues. Shape: (*BAM, neig)


	grad_evecs (torch.Tensor) – The gradient of the eigenvectors. Shape: (*BAM, na, neig)

















	
_check_degen(evals: Tensor, degen_atol: float, degen_rtol: float) → Tuple[Tensor, bool][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/symeig.py#L485-L526]

	Check the degeneracy of the eigenvalues

Examples

>>> import torch
>>> evals = torch.tensor([1, 1, 2, 3, 3, 3, 4, 5, 5])
>>> degen_atol = 0.1
>>> degen_rtol = 0.1
>>> idx_degen, isdegenerate = _check_degen(evals, degen_atol, degen_rtol)
>>> idx_degen.shape
torch.Size([9, 9])
>>> isdegenerate
True






	Parameters:

	
	evals (torch.Tensor) – Eigenvalues of the linear operator. Shape: (*BAM, neig)


	degen_atol (float) – Minimum absolute difference between two eigenvalues to be treated as degenerate.


	degen_rtol (float) – Minimum relative difference between two eigenvalues to be treated as degenerate.






	Returns:

	
	idx_degen (torch.Tensor) – The degeneracy map. Shape: (*BAM, neig, neig)


	isdegenerate (bool) – Whether the eigenvalues are degenerate















	
ortho(A: Tensor, B: Tensor, *, D: Tensor | None = None, M: LinearOperator | None = None, mright: bool = False) → Tensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/symeig.py#L529-L585]

	Orthogonalize A w.r.t. B

Examples

>>> import torch
>>> A = torch.tensor([[1, 2], [3, 4]])
>>> B = torch.tensor([[1, 0], [0, 1]])
>>> ortho(A, B)
tensor([[0, 2],
        [3, 0]])






	Parameters:

	
	A (torch.Tensor) – The tensor to be orthogonalized. Shape: (*BAM, na, neig)


	B (torch.Tensor) – The tensor to be orthogonalized against. Shape: (*BAM, na, neig)


	D (torch.Tensor or None) – The degeneracy map. If None, it is identity matrix. Shape: (*BAM, neig, neig)


	M (LinearOperator or None) – The overlap matrix. If None, identity matrix is used. Shape: (*BM, q, q)


	mright (bool) – Whether to operate M at the right or at the left






	Returns:

	The orthogonalized tensor. Shape: (*BAM, na, neig)



	Return type:

	torch.Tensor










	
jac(fcn: Callable[[...], Tensor], params: Sequence[Any], idxs: None | int | Sequence[int] = None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/grad.py#L8-L53]

	Returns the LinearOperator that acts as the jacobian of the params.
The shape of LinearOperator is (nout, nin) where nout and nin are the
total number of elements in the output and the input, respectively.

Examples

>>> import torch
>>> from deepchem.utils.differentiation_utils import jac
>>> def fcn(x, y):
...     return x * y
>>> x = torch.tensor([1.0, 2.0, 3.0], requires_grad=True)
>>> y = torch.tensor([4.0, 5.0, 6.0], requires_grad=True)
>>> jac(fcn, [x, y])
[LinearOperator (_Jac) with shape (3, 3), dtype = torch.float32, device = cpu, LinearOperator (_Jac) with shape (3, 3), dtype = torch.float32, device = cpu]






	Parameters:

	
	fcn (Callable[...,torch.Tensor]) – Callable with tensor output and arbitrary numbers of input parameters.


	params (Sequence[Any]) – List of input parameters of the function.


	idxs (int or list of int or None) – List of the parameters indices to get the jacobian.
The pointed parameters in params must be tensors and requires_grad.
If it is None, then it will return all jacobian for all parameters that
are tensor which requires_grad.






	Returns:

	linops – List of LinearOperator of the jacobian



	Return type:

	Union[LinearOperator, List]










	
class _Jac(*args, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/grad.py#L56-L252]

	Jacobian of a function with respect to a parameter in the function.

Examples

>>> import torch
>>> def fcn(x, y):
...     return x * y
>>> x = torch.tensor([1.0, 2.0, 3.0], requires_grad=True)
>>> y = torch.tensor([4.0, 5.0, 6.0], requires_grad=True)
>>> pfcn = get_pure_function(fcn)
>>> _Jac(pfcn, [x, y], 1)
LinearOperator (_Jac) with shape (3, 3), dtype = torch.float32, device = cpu






	
__init__(fcn: PureFunction, params: Sequence[Any], idx: int, is_hermitian=False) → None[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/grad.py#L72-L127]

	Initialize the _Jac object.


	Parameters:

	
	fcn (PureFunction) – The function that will be differentiated.


	params (Sequence[Any]) – List of input parameters of the function.


	idx (int) – The index of the parameter to be differentiated.


	is_hermitian (bool) – If True, then the LinearOperator is hermitian.

















	
_setup_idxs(idxs: None | int | Sequence[int], params: Sequence[Any]) → Sequence[int][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/grad.py#L284-L324]

	Check the idxs and return the list of indices.

Examples

>>> import torch
>>> import numpy as np
>>> x = torch.tensor([1.0, 2.0, 3.0], requires_grad=True)
>>> y = torch.tensor([4.0, 5.0, 6.0], requires_grad=True)
>>> _setup_idxs(None, [x, y])
[0, 1]






	Parameters:

	
	idxs (int or list of int or None) – List of the parameters indices to get the jacobian.
The pointed parameters in params must be tensors and requires_grad.
If it is None, then it will return all jacobian for all parameters that
are tensor which requires_grad.


	params (Sequence[Any]) – List of input parameters of the function.






	Returns:

	idxs – List of the parameters indices to get the jacobian.



	Return type:

	list of int










	
connect_graph(out: Tensor, params: Sequence[Any])[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/grad.py#L255-L281]

	Just to have a dummy graph, in case there is a parameter that
is disconnected in calculating df/dy.

Examples

>>> import torch
>>> x = torch.tensor([1.0, 2.0, 3.0], requires_grad=True)
>>> y = torch.tensor([4.0, 5.0, 6.0], requires_grad=True)
>>> out = x * y
>>> connect_graph(out, [x, y])
tensor([ 4., 10., 18.], grad_fn=<AddBackward0>)






	Parameters:

	
	out (torch.Tensor) – The output tensor. It will be added with a dummy graph.


	params (Sequence[Any]) – List of parameters that will be added with a dummy graph.






	Returns:

	out – The output tensor with a dummy graph.



	Return type:

	torch.Tensor










	
wrap_gmres(A, B, E=None, M=None, min_eps=1e-09, max_niter=None, **unused)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/solve.py#L271-L347]

	Using SciPy’s gmres method to solve the linear equation.

Examples

>>> import torch
>>> from deepchem.utils.differentiation_utils import LinearOperator
>>> A = LinearOperator.m(torch.tensor([[1., 2], [3, 4]]))
>>> B = torch.tensor([[[5., 6], [7, 8]]])
>>> wrap_gmres(A, B, None, None)
tensor([[[-3.0000, -4.0000],
         [ 4.0000,  5.0000]]])






	Parameters:

	
	A (LinearOperator) – The linear operator A to be solved. Shape: (*BA, na, na)


	B (torch.Tensor) – Batched matrix B. Shape: (*BB, na, ncols)


	E (torch.Tensor or None) – Batched vector E. Shape: (*BE, ncols)


	M (LinearOperator or None) – The linear operator M. Shape: (*BM, na, na)


	min_eps (float) – Relative tolerance for stopping conditions


	max_niter (int or None) – Maximum number of iterations. If None, default to twice of the
number of columns of A.






	Returns:

	The Solution matrix X. Shape: (*BBE, na, ncols)



	Return type:

	torch.Tensor










	
exactsolve(A: LinearOperator, B: Tensor, E: Tensor | None, M: LinearOperator | None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/solve.py#L350-L403]

	Solve the linear equation by contructing the full matrix of LinearOperators.

Examples

>>> import torch
>>> from deepchem.utils.differentiation_utils import LinearOperator
>>> A = LinearOperator.m(torch.tensor([[1., 2], [3, 4]]))
>>> B = torch.tensor([[5., 6], [7, 8]])
>>> exactsolve(A, B, None, None)
tensor([[-3., -4.],
        [ 4.,  5.]])






	Parameters:

	
	A (LinearOperator) – The linear operator A to be solved. Shape: (*BA, na, na)


	B (torch.Tensor) – Batched matrix B. Shape: (*BB, na, ncols)


	E (torch.Tensor or None) – Batched vector E. Shape: (*BE, ncols)


	M (LinearOperator or None) – The linear operator M. Shape: (*BM, na, na)






	Returns:

	The Solution matrix X. Shape: (*BBE, na, ncols)



	Return type:

	torch.Tensor






Warning


	As this method construct the linear operators explicitly, it might requires
a large memory.











	
solve_ABE(A: Tensor, B: Tensor, E: Tensor)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/solve.py#L406-L445]

	Solve the linear equation AX = B - diag(E)X.

Examples

>>> import torch
>>> A = torch.tensor([[1., 2], [3, 4]])
>>> B = torch.tensor([[5., 6], [7, 8]])
>>> E = torch.tensor([1., 2])
>>> solve_ABE(A, B, E)
tensor([[-0.1667,  0.5000],
        [ 2.5000,  3.2500]])






	Parameters:

	
	A (torch.Tensor) – The batched matrix A. Shape: (*BA, na, na)


	B (torch.Tensor) – The batched matrix B. Shape: (*BB, na, ncols)


	E (torch.Tensor) – The batched vector E. Shape: (*BE, ncols)






	Returns:

	The batched matrix X.



	Return type:

	torch.Tensor










	
get_batchdims(A: LinearOperator, B: Tensor, E: Tensor | None, M: LinearOperator | None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/solve.py#L877-L913]

	Get the batch dimensions of the linear operator and the matrix B

Examples

>>> from deepchem.utils.differentiation_utils import MatrixLinearOperator
>>> import torch
>>> A = MatrixLinearOperator(torch.randn(4, 3, 3), True)
>>> B = torch.randn(3, 3, 2)
>>> get_batchdims(A, B, None, None)
[4]






	Parameters:

	
	A (LinearOperator) – The linear operator. It can be a batched linear operator.


	B (torch.Tensor) – The matrix B. It can be a batched matrix.


	E (Union[torch.Tensor, None]) – The matrix E. It can be a batched matrix.


	M (Union[LinearOperator, None]) – The linear operator M. It can be a batched linear operator.






	Returns:

	The batch dimensions of the linear operator and the matrix B



	Return type:

	List[int]










	
setup_precond(precond: LinearOperator | None = None) → Callable[[Tensor], Tensor][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/solve.py#L916-L953]

	Setup the preconditioning function

Examples

>>> from deepchem.utils.differentiation_utils import MatrixLinearOperator
>>> import torch
>>> A = MatrixLinearOperator(torch.randn(4, 3, 3), True)
>>> B = torch.randn(4, 3, 2)
>>> cond = setup_precond(A)
>>> cond(B).shape
torch.Size([4, 3, 2])






	Parameters:

	precond (Optional[LinearOperator]) – The preconditioning linear operator. If None, no preconditioning is
applied.



	Returns:

	The preconditioning function. It takes a tensor and returns a tensor.



	Return type:

	Callable[[torch.Tensor], torch.Tensor]










	
dot(r: Tensor, z: Tensor) → Tensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/solve.py#L1126-L1151]

	Dot product of two vectors. r and z must have the same shape.
Then sums it up across the last dimension.

Examples

>>> import torch
>>> r = torch.tensor([[1, 2], [3, 4]])
>>> z = torch.tensor([[5, 6], [7, 8]])
>>> dot(r, z)
tensor([[26, 44]])






	Parameters:

	
	r (torch.Tensor) – The first vector. Shape: (*BR, nr, nc)


	z (torch.Tensor) – The second vector. Shape: (*BR, nr, nc)






	Returns:

	The dot product of r and z. Shape: (*BR, 1, nc)



	Return type:

	torch.Tensor










	
gmres(A: LinearOperator, B: Tensor, E: Tensor | None = None, M: LinearOperator | None = None, posdef: bool | None = None, max_niter: int | None = None, rtol: float = 1e-06, atol: float = 1e-08, eps: float = 1e-12, **unused) → Tensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/solve.py#L733-L873]

	Solve the linear equations using Generalised minial residual method.

Examples

>>> import torch
>>> from deepchem.utils.differentiation_utils import LinearOperator
>>> A = LinearOperator.m(torch.tensor([[1., 2], [3, 4]]))
>>> B = torch.tensor([[5., 6], [7, 8]])
>>> gmres(A, B)
tensor([[0.8959, 1.0697],
        [1.2543, 1.4263]])






	Parameters:

	
	A (LinearOperator) – The linear operator A to be solved. Shape: (*BA, na, na)


	B (torch.Tensor) – Batched matrix B. Shape: (*BB, na, ncols)


	E (torch.Tensor or None) – Batched vector E. Shape: (*BE, ncols)


	M (LinearOperator or None) – The linear operator M. Shape: (*BM, na, na)


	posdef (bool or None) – Indicating if the operation \(\mathbf{AX-MXE}\) a positive
definite for all columns and batches.
If None, it will be determined by power iterations.


	max_niter (int or None) – Maximum number of iteration. If None, it is set to int(1.5 * A.shape[-1])


	rtol (float) – Relative tolerance for stopping condition w.r.t. norm of B


	atol (float) – Absolute tolerance for stopping condition w.r.t. norm of B


	eps (float) – Substitute the absolute zero in the algorithm’s denominator with this
value to avoid nan.






	Returns:

	The solution matrix X. Shape: (*BBE, na, ncols)



	Return type:

	torch.Tensor










	
setup_linear_problem(A: LinearOperator, B: Tensor, E: Tensor | None, M: LinearOperator | None, batchdims: Sequence[int], posdef: bool | None, need_hermit: bool) → Tuple[Callable[[Tensor], Tensor], Callable[[Tensor], Tensor], Tensor, bool][source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/solve.py#L956-L1094]

	Setup the linear problem for solving AX = B

Examples

>>> from deepchem.utils.differentiation_utils import MatrixLinearOperator
>>> import torch
>>> A = MatrixLinearOperator(torch.randn(4, 3, 3), True)
>>> B = torch.randn(4, 3, 2)
>>> A_fcn, AT_fcn, B_new, col_swapped = setup_linear_problem(A, B, None, None, [4], None, False)
>>> A_fcn(B).shape
torch.Size([4, 3, 2])






	Parameters:

	
	A (LinearOperator) – The linear operator A. It can be a batched linear operator.


	B (torch.Tensor) – The matrix B. It can be a batched matrix.


	E (Optional[torch.Tensor]) – The matrix E. It can be a batched matrix.


	M (Optional[LinearOperator]) – The linear operator M. It can be a batched linear operator.


	batchdims (Sequence[int]) – The batch dimensions of the linear operator and the matrix B


	posdef (Optional[bool]) – Whether the linear operator is positive definite. If None, it will be
estimated.


	need_hermit (bool) – Whether the linear operator is Hermitian. If True, it will be estimated.






	Returns:

	
	Callable[[torch.Tensor], torch.Tensor],
	torch.Tensor, bool]





The function A, its transposed function, the matrix B, and whether the
columns of B are swapped.





	Return type:

	Tuple[Callable[[torch.Tensor], torch.Tensor],










	
safedenom(r: Tensor, eps: float) → Tensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/solve.py#L1098-L1123]

	Make sure the denominator is not zero

Examples

>>> import torch
>>> r = torch.tensor([[0., 2], [3, 4]])
>>> safedenom(r, 1e-9)
tensor([[1.0000e-09, 2.0000e+00],
        [3.0000e+00, 4.0000e+00]])






	Parameters:

	
	r (torch.Tensor) – The input tensor. Shape: (*BR, nr, nc)


	eps (float) – The small number to replace the zero denominator






	Returns:

	The tensor with non-zero denominator. Shape: (*BR, nr, nc)



	Return type:

	torch.Tensor










	
get_largest_eival(Afcn: Callable, x: Tensor) → Tensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/solve.py#L1260-L1302]

	Get the largest eigenvalue of the linear operator Afcn

Examples

>>> import torch
>>> def Afcn(x):
...     return 10 * x
>>> x = torch.tensor([[1., 2], [3, 4]])
>>> get_largest_eival(Afcn, x)
tensor([[10., 10.]])






	Parameters:

	
	Afcn (Callable) – The linear operator A. It takes a tensor and returns a tensor.


	x (torch.Tensor) – The input tensor. Shape: (*, nr, nc)






	Returns:

	The largest eigenvalue. Shape: (*, 1, nc)



	Return type:

	torch.Tensor










	
solve(A: LinearOperator, B: Tensor, E: Tensor | None = None, M: LinearOperator | None = None, bck_options: Mapping[str, Any] = {}, method: Callable | str | None = None, **fwd_options) → Tensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/solve.py#L12-L124]

	Performing iterative method to solve the equation.

Examples

>>> import torch
>>> from deepchem.utils.differentiation_utils import LinearOperator
>>> A = LinearOperator.m(torch.tensor([[1., 2], [3, 4]]))
>>> B = torch.tensor([[5., 6], [7, 8]])
>>> solve(A, B)
tensor([[-3., -4.],
        [ 4.,  5.]])






\[\mathbf{AX=B}\]

or


\[\mathbf{AX-MXE=B}\]

where \(\mathbf{E}\) is a diagonal matrix.
This function can also solve batched multiple inverse equation at the
same time by applying \(\mathbf{A}\) to a tensor \(\mathbf{X}\)
with shape (...,na,ncols).
The applied \(\mathbf{E}\) are not necessarily identical for each column.


	Parameters:

	
	A (LinearOperator) – A linear operator that takes an input X and produce the vectors in the same
space as B.
It should have the shape of (*BA, na, na)


	B (torch.Tensor) – The tensor on the right hand side with shape (*BB, na, ncols)


	E (Union[torch.Tensor, None]) – If a tensor, it will solve \(\mathbf{AX-MXE = B}\).
It will be regarded as the diagonal of the matrix.
Otherwise, it just solves \(\mathbf{AX = B}\) and M is ignored.
If it is a tensor, it should have shape of (*BE, ncols).


	M (Optional[LinearOperator]) – The transformation on the E side. If E is None,
then this argument is ignored.
If E is not None and M is None, then M=I.
If LinearOperator, it must be Hermitian with shape (*BM, na, na).


	bck_options (dict) – Options of the iterative solver in the backward calculation.


	method (Union[str, Callable, None]) – The method of linear equation solver. If None, it will choose
"cg" or "bicgstab" based on the matrices symmetry.
Note: default method will be changed quite frequently, so if you want
future compatibility, please specify a method.


	**fwd_options – Method-specific options






	Returns:

	The tensor \(\mathbf{X}\) that satisfies \(\mathbf{AX-MXE=B}\).



	Return type:

	torch.Tensor










	
broyden1_solve(fcn: Callable, x0: Tensor, params, method: str, alpha=None, uv0=None, max_rank=None, maxiter=None, f_tol=None, f_rtol=None, x_tol=None, x_rtol=None, line_search=True, verbose=False, custom_terminator=None, **unused)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/solve.py#L14-L180]

	Solve the root finder or linear equation using the first Broyden method [1]_.
It can be used to solve minimization by finding the root of the
function’s gradient.

Examples

>>> def fcn(x):
...    return x**2 - 4
>>> x0 = torch.tensor(0.0, requires_grad=True)
>>> x = broyden1(fcn, x0)
>>> x
tensor(-2.0000, grad_fn=<ViewBackward0>)






	Parameters:

	
	fcn (callable) – The function to solve. It should take a tensor and return a tensor.


	x0 (torch.Tensor) – The initial guess of the solution.


	params (tuple) – The parameters to pass to the function.








References



[1]
B.A. van der Rotten, PhD thesis,
“A limited memory Broyden method to solve high-dimensional systems of nonlinear equations”.
Mathematisch Instituut, Universiteit Leiden, The Netherlands (2003).
https://web.archive.org/web/20161022015821/http://www.math.leidenuniv.nl/scripties/Rotten.pdf



[2]
https://github.com/xitorch/xitorch








	
_rootfinder_solve(alg: str, A: LinearOperator, B: Tensor, E: Tensor | None = None, M: LinearOperator | None = None, **options)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/solve.py#L1194-L1257]

	Solve the linear equations using rootfinder algorithm

Examples

>>> import torch
>>> A = torch.tensor([[1., 2], [3, 4]])
>>> B = torch.tensor([[5., 6], [7, 8]])
>>> _rootfinder_solve("broyden1", A, B)
tensor([[-3.0000, -4.0000],
        [ 4.0000,  5.0000]])






	Parameters:

	
	alg (str) – The algorithm to use. Currently, only “broyden1” is supported.


	A (torch.Tensor) – The matrix A. Shape: (*BA, nr, nr)


	B (torch.Tensor) – The matrix B. Shape: (*BB, nr, ncols)


	E (torch.Tensor or None) – The matrix E. Shape: (*BE, ncols)


	M (torch.Tensor or None) – The matrix M. Shape: (*BM, nr, nr)


	options (dict) – The options for the rootfinder algorithm






	Returns:

	The solution matrix X. Shape: (*BBE, nr, ncols)



	Return type:

	torch.Tensor










	
cg(A: LinearOperator, B: Tensor, E: Tensor | None = None, M: LinearOperator | None = None, posdef: bool | None = None, precond: LinearOperator | None = None, max_niter: int | None = None, rtol: float = 1e-06, atol: float = 1e-08, eps: float = 1e-12, resid_calc_every: int = 10, verbose: bool = False, **unused) → Tensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/solve.py#L448-L589]

	Solve the linear equations using Conjugate-Gradient (CG) method.


	Parameters:

	
	A (LinearOperator) – A linear operator that takes an input X and produce the vectors in the same
space as B.
It should have the shape of (*BA, na, na)


	B (torch.Tensor) – The tensor on the right hand side with shape (*BB, na, ncols)


	E (Union[torch.Tensor, None]) – If a tensor, it will solve \(\mathbf{AX-MXE = B}\).
It will be regarded as the diagonal of the matrix.
Otherwise, it just solves \(\mathbf{AX = B}\) and M is ignored.
If it is a tensor, it should have shape of (*BE, ncols).


	M (Optional[LinearOperator]) – The transformation on the E side. If E is None,
then this argument is ignored.
If E is not None and M is None, then M=I.


	posdef (bool or None) – Indicating if the operation \(\mathbf{AX-MXE}\) a positive
definite for all columns and batches.
If None, it will be determined by power iterations.


	precond (LinearOperator or None) – LinearOperator for the preconditioning. If None, no preconditioner is
applied.


	max_niter (int or None) – Maximum number of iteration. If None, it is set to int(1.5 * A.shape[-1])


	rtol (float) – Relative tolerance for stopping condition w.r.t. norm of B


	atol (float) – Absolute tolerance for stopping condition w.r.t. norm of B


	eps (float) – Substitute the absolute zero in the algorithm’s denominator with this
value to avoid nan.


	resid_calc_every (int) – Calculate the residual in its actual form instead of substitution form
with this frequency, to avoid rounding error accummulation.
If your linear operator has bad numerical precision, set this to be low.
If 0, then never calculate the residual in its actual form.


	verbose (bool) – Verbosity of the algorithm.













	
bicgstab(A: LinearOperator, B: Tensor, E: Tensor | None = None, M: LinearOperator | None = None, posdef: bool | None = None, precond_l: LinearOperator | None = None, precond_r: LinearOperator | None = None, max_niter: int | None = None, rtol: float = 1e-06, atol: float = 1e-08, eps: float = 1e-12, verbose: bool = False, resid_calc_every: int = 10, **unused) → Tensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/solve.py#L592-L730]

	Solve the linear equations using stabilized Biconjugate-Gradient method.


	Parameters:

	
	posdef (bool or None) – Indicating if the operation \(\mathbf{AX-MXE}\) a positive
definite for all columns and batches.
If None, it will be determined by power iterations.


	precond_l (LinearOperator or None) – LinearOperator for the left preconditioning. If None, no
preconditioner is applied.


	precond_r (LinearOperator or None) – LinearOperator for the right preconditioning. If None, no
preconditioner is applied.


	max_niter (int or None) – Maximum number of iteration. If None, it is set to int(1.5 * A.shape[-1])


	rtol (float) – Relative tolerance for stopping condition w.r.t. norm of B


	atol (float) – Absolute tolerance for stopping condition w.r.t. norm of B


	eps (float) – Substitute the absolute zero in the algorithm’s denominator with this
value to avoid nan.


	resid_calc_every (int) – Calculate the residual in its actual form instead of substitution form
with this frequency, to avoid rounding error accummulation.
If your linear operator has bad numerical precision, set this to be low.
If 0, then never calculate the residual in its actual form.


	verbose (bool) – Verbosity of the algorithm.













	
class solve_torchfcn(*args, **kwargs)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/solve.py#L127-L267]

	
	
static forward(ctx, A, B, E, M, method, fwd_options, bck_options, na, *all_params)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/solve.py#L129-L199]

	Forward calculation of the solve function.


	Parameters:

	
	A (LinearOperator) – A linear operator that takes an input X and produce the vectors in the same
space as B.
It should have the shape of (*BA, na, na)


	B (torch.Tensor) – The tensor on the right hand side with shape (*BB, na, ncols)


	E (Union[torch.Tensor, None]) – If a tensor, it will solve \(\mathbf{AX-MXE = B}\).
It will be regarded as the diagonal of the matrix.
Otherwise, it just solves \(\mathbf{AX = B}\) and M is ignored.
If it is a tensor, it should have shape of (*BE, ncols).


	M (Optional[LinearOperator]) – The transformation on the E side. If E is None,
then this argument is ignored.
If E is not None and M is None, then M=I.


	method (Union[str, Callable, None]) – The method of linear equation solver. If None, it will choose
"cg" or "bicgstab" based on the matrices symmetry.
Note: default method will be changed quite frequently, so if you want
future compatibility, please specify a method.


	fwd_options – Method-specific options


	bck_options (dict) – Options of the iterative solver in the backward calculation.


	na (int) – Number of parameters of A


	all_params (Sequence[torch.Tensor]) – All the parameters of M and A













	
static backward(ctx, grad_x)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/solve.py#L201-L267]

	Define a formula for differentiating the operation with backward mode automatic differentiation.

This function is to be overridden by all subclasses.
(Defining this function is equivalent to defining the vjp function.)

It must accept a context ctx as the first argument, followed by
as many outputs as the forward() returned (None will be passed in
for non tensor outputs of the forward function),
and it should return as many tensors, as there were inputs to
forward(). Each argument is the gradient w.r.t the given output,
and each returned value should be the gradient w.r.t. the
corresponding input. If an input is not a Tensor or is a Tensor not
requiring grads, you can just pass None as a gradient for that input.

The context can be used to retrieve tensors saved during the forward
pass. It also has an attribute ctx.needs_input_grad as a tuple
of booleans representing whether each input needs gradient. E.g.,
backward() will have ctx.needs_input_grad[0] = True if the
first input to forward() needs gradient computed w.r.t. the
output.










	
anderson_acc(fcn: Callable[[...], Tensor], x0: Tensor, params: List, feat_ndims: int = 1, msize: int = 5, beta: float = 1.0, lmbda: float = 0.0001, maxiter=None, f_tol=None, f_rtol=None, x_tol=None, x_rtol=None, custom_terminator=None, verbose: bool = False) → Tensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/optimize/equilibrium.py#L9-L161]

	Solve the equilibrium (or fixed-point iteration) problem using Anderson acceleration.

Examples

>>> import torch
>>> def fcn(x):
...     return x
>>> x0 = torch.tensor([0.0], requires_grad=True)
>>> x = anderson_acc(fcn, x0, [], 2, 10, maxiter=1000)
>>> x
tensor([0.], requires_grad=True)






	Parameters:

	
	feat_ndims (int) – The number of dimensions at the end that describe the features (i.e. non-batch dimensions)


	msize (int) – The maximum number of previous iterations we should save for the algorithm


	beta (float) – The damped or overcompensated parameters


	lmbda (float) – Small number to ensure invertability of the matrix


	maxiter (int or None) – Maximum number of iterations, or inf if it is set to None.


	f_tol (float or None) – The absolute tolerance of the norm of the output f - x.


	f_rtol (float or None) – The relative tolerance of the norm of the output f - x.


	x_tol (float or None) – The absolute tolerance of the norm of the input x.


	x_rtol (float or None) – The relative tolerance of the norm of the input x.


	verbose (bool) – Options for verbosity








References



[1]
H. F. Walker and P. Ni,
“Anderson Acceleration for Fixed-Point Iterations”.
Siam J. Numer. Anal.
https://users.wpi.edu/~walker/Papers/Walker-Ni,SINUM,V49,1715-1735.pdf








	
gd(fcn: Callable[[...], Tensor], x0: Tensor, params: List, step: float = 0.001, gamma: float = 0.9, maxiter: int = 1000, f_tol: float = 0.0, f_rtol: float = 1e-08, x_tol: float = 0.0, x_rtol: float = 1e-08, verbose=False, **unused)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/optimize/minimizer.py#L6-L87]

	Vanilla gradient descent with momentum. The stopping conditions use OR criteria.
The update step is following the equations below.

Examples

>>> import torch
>>> from deepchem.utils.differentiation_utils.optimize.minimizer import gd
>>> def fcn(x):
...     return (x - 2) ** 2, 2 * (x - 2)
>>> x0 = torch.tensor(0.0, requires_grad=True)
>>> x = gd(fcn, x0, [])
>>> x
tensor(2.0000)






\[\begin{split}\mathbf{v}_{t+1} &= \gamma \mathbf{v}_t - \eta \nabla_{\mathbf{x}} f(\mathbf{x}_t) \\
\mathbf{x}_{t+1} &= \mathbf{x}_t + \mathbf{v}_{t+1}\end{split}\]


	Parameters:

	
	fcn (callable) – The objective function to minimize. It should take a tensor and return a
tensor and its gradient.


	x0 (torch.Tensor) – The initial guess.


	step (float) – The step size towards the steepest descent direction, i.e. \(\eta\) in
the equations above.


	gamma (float) – The momentum factor, i.e. \(\gamma\) in the equations above.


	maxiter (int) – Maximum number of iterations.


	f_tol (float or None) – The absolute tolerance of the output f.


	f_rtol (float or None) – The relative tolerance of the output f.


	x_tol (float or None) – The absolute tolerance of the norm of the input x.


	x_rtol (float or None) – The relative tolerance of the norm of the input x.













	
adam(fcn: Callable[[...], Tensor], x0: Tensor, params: List, step: float = 0.001, beta1: float = 0.9, beta2: float = 0.999, eps: float = 1e-08, maxiter: int = 1000, f_tol: float = 0.0, f_rtol: float = 1e-08, x_tol: float = 0.0, x_rtol: float = 1e-08, verbose=False, **unused)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/optimize/minimizer.py#L90-L183]

	Adam optimizer by Kingma & Ba (2015). The stopping conditions use OR criteria.
The update step is following the equations below.

Examples

>>> from deepchem.utils.differentiation_utils.optimize.minimizer import adam
>>> def fcn(x):
...     return (x - 4) * 2, (x * 2) + 3
>>> x0 = torch.tensor(0.0, requires_grad=True)
>>> x = adam(fcn, x0, [], maxiter=10000)
>>> x
tensor(-1.4999)






\[\begin{split}\mathbf{g}_t &= \nabla_{\mathbf{x}} f(\mathbf{x}_{t-1}) \\
\mathbf{m}_t &= \beta_1 \mathbf{m}_{t-1} + (1 - \beta_1) \mathbf{g}_t \\
\mathbf{v}_t &= \beta_2 \mathbf{v}_{t-1} + (1 - \beta_2) \mathbf{g}_t^2 \\
\hat{\mathbf{m}}_t &= \mathbf{m}_t / (1 - \beta_1^t) \\
\hat{\mathbf{v}}_t &= \mathbf{v}_t / (1 - \beta_2^t) \\
\mathbf{x}_t &= \mathbf{x}_{t-1} - \alpha \hat{\mathbf{m}}_t / (\sqrt{\hat{\mathbf{v}}_t} + \epsilon)\end{split}\]


	Parameters:

	
	step (float) – The step size towards the descent direction, i.e. \(\alpha\) in
the equations above.


	beta1 (float) – Exponential decay rate for the first moment estimate.


	beta2 (float) – Exponential decay rate for the first moment estimate.


	eps (float) – Small number to prevent division by 0.


	maxiter (int) – Maximum number of iterations.


	f_tol (float or None) – The absolute tolerance of the output f.


	f_rtol (float or None) – The relative tolerance of the output f.


	x_tol (float or None) – The absolute tolerance of the norm of the input x.


	x_rtol (float or None) – The relative tolerance of the norm of the input x.













	
TerminationCondition(f_tol: float, f_rtol: float, x_tol: float, x_rtol: float, verbose: bool)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/optimize/minimizer.py#L186-L306]

	The class to handle the stopping conditions.

Examples

>>> stop_cond = TerminationCondition(1e-8, 1e-8, 1e-8, 1e-8, True)










	
_nonlin_solver(fcn: Callable, x0: Tensor, params, method: str, alpha=None, uv0=None, max_rank=None, maxiter=None, f_tol=None, f_rtol=None, x_tol=None, x_rtol=None, line_search=True, verbose=False, custom_terminator=None, **unused)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/optimize/rootsolver.py#L14-L180]

	
	Parameters:

	
	alpha (float or None) – The initial guess of inverse Jacobian is - alpha * I + u v^T.


	uv0 (tuple of tensors or str or None) – The initial guess of inverse Jacobian is - alpha * I + u v^T.
If "svd", then it uses 1-rank svd to obtain u and v.
If None, then u and v are zeros.


	max_rank (int or None) – The maximum rank of inverse Jacobian approximation. If None, it
is inf.


	maxiter (int or None) – Maximum number of iterations, or inf if it is set to None.


	f_tol (float or None) – The absolute tolerance of the norm of the output f.


	f_rtol (float or None) – The relative tolerance of the norm of the output f.


	x_tol (float or None) – The absolute tolerance of the norm of the input x.


	x_rtol (float or None) – The relative tolerance of the norm of the input x.


	line_search (bool or str) – Options to perform line search. If True, it is set to "armijo".


	verbose (bool) – Options for verbosity













	
broyden1(fcn: Callable, x0: Tensor, params, method: str, alpha=None, uv0=None, max_rank=None, maxiter=None, f_tol=None, f_rtol=None, x_tol=None, x_rtol=None, line_search=True, verbose=False, custom_terminator=None, **unused)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/optimize/rootsolver.py#L14-L180]

	Solve the root finder or linear equation using the first Broyden method [1]_.
It can be used to solve minimization by finding the root of the
function’s gradient.

Examples

>>> def fcn(x):
...    return x**2 - 4
>>> x0 = torch.tensor(0.0, requires_grad=True)
>>> x = broyden1(fcn, x0)
>>> x
tensor(-2.0000, grad_fn=<ViewBackward0>)






	Parameters:

	
	fcn (callable) – The function to solve. It should take a tensor and return a tensor.


	x0 (torch.Tensor) – The initial guess of the solution.


	params (tuple) – The parameters to pass to the function.








References



[1]
B.A. van der Rotten, PhD thesis,
“A limited memory Broyden method to solve high-dimensional systems of nonlinear equations”.
Mathematisch Instituut, Universiteit Leiden, The Netherlands (2003).
https://web.archive.org/web/20161022015821/http://www.math.leidenuniv.nl/scripties/Rotten.pdf



[2]
https://github.com/xitorch/xitorch








	
broyden2(fcn: Callable, x0: Tensor, params, method: str, alpha=None, uv0=None, max_rank=None, maxiter=None, f_tol=None, f_rtol=None, x_tol=None, x_rtol=None, line_search=True, verbose=False, custom_terminator=None, **unused)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/optimize/rootsolver.py#L14-L180]

	Solve the root finder or linear equation using the second Broyden method [2]_.
It can be used to solve minimization by finding the root of the
function’s gradient.

Examples

>>> def fcn(x):
...    return x**2 - 4
>>> x0 = torch.tensor(0.0, requires_grad=True)
>>> x = broyden1(fcn, x0)
>>> x
tensor(-2.0000, grad_fn=<ViewBackward0>)






	Parameters:

	
	fcn (callable) – The function to solve. It should take a tensor and return a tensor.


	x0 (torch.Tensor) – The initial guess of the solution.


	params (tuple) – The parameters to pass to the function.








References



[1]
B.A. van der Rotten, PhD thesis,
“A limited memory Broyden method to solve high-dimensional systems of nonlinear equations”.
Mathematisch Instituut, Universiteit Leiden, The Netherlands (2003).
https://web.archive.org/web/20161022015821/http://www.math.leidenuniv.nl/scripties/Rotten.pdf



[2]
https://github.com/xitorch/xitorch








	
linearmixing(fcn: Callable, x0: Tensor, params=(), alpha=None, maxiter=None, f_tol=None, f_rtol=None, x_tol=None, x_rtol=None, line_search=True, verbose=False, **unused)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/optimize/rootsolver.py#L258-L328]

	Solve the root finding problem by approximating the inverse of Jacobian
to be a constant scalar.

Examples

>>> def fcn(x):
...    return x**2 - 4
>>> x0 = torch.tensor(0.0, requires_grad=True)
>>> x = broyden1(fcn, x0)
>>> x
tensor(-2.0000, grad_fn=<ViewBackward0>)






	Parameters:

	
	fcn (Callable) – The function to solve. It should take a tensor and return a tensor.


	x0 (torch.Tensor) – The initial guess of the solution.


	params (tuple) – The parameters to pass to the function.


	alpha (float or None) – The initial guess of inverse Jacobian is -alpha * I.


	maxiter (int or None) – Maximum number of iterations, or inf if it is set to None.


	f_tol (float or None) – The absolute tolerance of the norm of the output f.


	f_rtol (float or None) – The relative tolerance of the norm of the output f.


	x_tol (float or None) – The absolute tolerance of the norm of the input x.


	x_rtol (float or None) – The relative tolerance of the norm of the input x.


	line_search (bool or str) – Options to perform line search. If True, it is set to "armijo".


	verbose (bool) – Options for verbosity








References



[1]
https://github.com/xitorch/xitorch








	
_safe_norm(v)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/optimize/rootsolver.py#L331-L335]

	Compute the norm of a vector, checking for finite values.






	
_nonline_line_search(func: Callable, x: Tensor, y: Tensor, dx: Tensor, search_type='armijo', rdiff=1e-08, smin=0.01)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/optimize/rootsolver.py#L338-L412]

	Find a suitable step length for a line search.


	Parameters:

	
	func (Callable) – The function to minimize.


	x (torch.Tensor) – The current point.


	y (torch.Tensor) – The function value at the current point.


	dx (torch.Tensor) – The search direction.


	search_type (str) – The type of line search to perform. Currently, only “armijo” is supported.


	rdiff (float) – The relative difference to compute the derivative.


	smin (float) – The minimum step length to take.






	Returns:

	
	s (float) – The step length.


	x (torch.Tensor) – The new point.


	y (torch.Tensor) – The function value at the new point.


	y_norm (float) – The norm of the function value at the new point.















	
_scalar_search_armijo(phi: Callable, phi0: float, derphi0: float, c1: float = 0.0001, alpha0=1, amin=0, max_niter=20)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/optimize/rootsolver.py#L415-L495]

	Minimize over alpha, the function phi(s) at the current point and
the derivative derphi(s) at the current point.


	Parameters:

	
	phi (callable) – The function to minimize.


	phi0 (float) – The value of phi at 0.


	derphi0 (float) – The value of the derivative of phi at 0.


	c1 (float) – The Armijo condition parameter.


	alpha0 (float) – The initial guess of the step length.


	amin (float) – The minimum step length to take.


	max_niter (int) – The maximum number of iterations to take.






	Returns:

	
	alpha (float) – The step length.


	phi (float) – The value of the function at the step length.















	
TerminationCondition(f_tol: float, f_rtol: float, f0_norm: float, x_tol: float, x_rtol: float)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/optimize/rootsolver.py#L498-L558]

	Class to check the termination condition of the root finder.






	
class Jacobian[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/optimize/jacobian.py#L9-L37]

	Base class for the Jacobians used in rootfinder algorithms.

A Jacobian can best be defined as a determinant which is defined
for a finite number of functions of the same number of variables
in which each row consists of the first partial derivatives of
the same function with respect to each of the variables.

References

[1].. https://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant
[2].. Kasim, Muhammad & Vinko, Sam. (2020). xi$-torch: differentiable scientific computing library.


	
abstract setup(x0: Tensor, y0: Tensor, func: Callable)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/optimize/jacobian.py#L24-L27]

	Setup the Jacobian for the rootfinder.






	
abstract solve(v: Tensor, tol: Any = 0)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/optimize/jacobian.py#L29-L32]

	Solve the linear system J dx = v.






	
abstract update(x: Tensor, y: Tensor)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/optimize/jacobian.py#L34-L37]

	Update the Jacobian approximation.










	
class BroydenFirst(alpha: Tensor | None = None, uv0: Any | None = None, max_rank: float | None = None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/optimize/jacobian.py#L40-L196]

	Approximating the Jacobian based on Broyden’s first approximation.

Examples

>>> from deepchem.utils.differentiation_utils.optimize.jacobian import BroydenFirst
>>> jacobian = BroydenFirst()
>>> x0 = torch.tensor([1.0, 1.0], requires_grad=True)
>>> def func(x):
...     return torch.tensor([x[0]**2 + x[1]**2 - 1.0, x[0] - x[1]])
>>> y0 = func(x0)
>>> v = torch.tensor([1.0, 1.0])
>>> jacobian.setup(x0, y0, func)
>>> jacobian.solve(v)
tensor([-0.7071, -0.7071], grad_fn=<MulBackward0>)





References


	[1].. B.A. van der Rotten, PhD thesis,
	“A limited memory Broyden method to solve high-dimensional
systems of nonlinear equations”. Mathematisch Instituut,
Universiteit Leiden, The Netherlands (2003).






	
__init__(alpha: Tensor | None = None, uv0: Any | None = None, max_rank: float | None = None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/optimize/jacobian.py#L66-L88]

	The initial guess of inverse Jacobian is -alpha * I + u v^T.
max_rank indicates the maximum rank of the Jacoabian before
reducing it


	Parameters:

	
	alpha (Union[torch.Tensor, None]) – The initial guess of inverse Jacobian is -alpha * I.
If None, it is set to -1.0.


	uv0 (tuple, optional) – The initial guess of the inverse Jacobian.


	max_rank (Union[float, None]) – The maximum rank of the Jacobian before reducing it.
If None, it is set to inf.













	
setup(x0: Tensor, y0: Tensor, func: Callable)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/optimize/jacobian.py#L90-L121]

	Setup the Jacobian for the rootfinder.


	Parameters:

	
	x0 – The initial guess of the root.


	y0 – The function value at the initial guess.


	func – The function to find the root.













	
solve(v: Tensor, tol=0) → Tensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/optimize/jacobian.py#L131-L148]

	Solve the linear system J dx = v.


	Parameters:

	
	v (torch.Tensor) – The right-hand side of the linear system.


	tol (torch.Tensor) – The tolerance for the linear system.






	Returns:

	res – The solution of the linear system.



	Return type:

	torch.Tensor










	
update(x: Tensor, y: Tensor)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/optimize/jacobian.py#L150-L167]

	Update the Jacobian approximation.


	Parameters:

	
	x (torch.Tensor) – The current point.


	y (torch.Tensor) – The function value at the current point.

















	
class BroydenSecond(alpha: Tensor | None = None, uv0: Any | None = None, max_rank: float | None = None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/optimize/jacobian.py#L199-L252]

	Inverse Jacobian approximation based on Broyden’s second method.

Examples

>>> from deepchem.utils.differentiation_utils.optimize.jacobian import BroydenSecond
>>> jacobian = BroydenSecond()
>>> x0 = torch.tensor([1.0, 1.0], requires_grad=True)
>>> def func(x):
...     return torch.tensor([x[0]**2 + x[1]**2 - 1.0, x[0] - x[1]])
>>> y0 = func(x0)
>>> v = torch.tensor([1.0, 1.0])
>>> jacobian.setup(x0, y0, func)
>>> jacobian.solve(v)
tensor([-0.7071, -0.7071], grad_fn=<MulBackward0>)





References


	[1] B.A. van der Rotten, PhD thesis,
	“A limited memory Broyden method to solve high-dimensional
systems of nonlinear equations”. Mathematisch Instituut,
Universiteit Leiden, The Netherlands (2003).










	
class LinearMixing(alpha: float | None = None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/optimize/jacobian.py#L255-L327]

	Approximating the Jacobian based on linear mixing.
It acts as a simple check for the functionality of the rootfinder.

Examples

>>> from deepchem.utils.differentiation_utils.optimize.jacobian import LinearMixing
>>> jacobian = LinearMixing()
>>> x0 = torch.tensor([1.0, 1.0], requires_grad=True)
>>> def func(x):
...     return torch.tensor([x[0]**2 + x[1]**2 - 1.0, x[0] - x[1]])
>>> y0 = func(x0)
>>> v = torch.tensor([1.0, 1.0])
>>> jacobian.setup(x0, y0, func)
>>> jacobian.solve(v)
tensor([1., 1.])






	
__init__(alpha: float | None = None)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/optimize/jacobian.py#L274-L286]

	The initial guess of inverse Jacobian is -alpha * I


	Parameters:

	alpha (float, optional) – The initial guess of inverse Jacobian is -alpha * I.
If None, it is set to -1.0.










	
setup(x0: Tensor, y0: Tensor, func: Callable)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/optimize/jacobian.py#L288-L301]

	Setup the Jacobian for the rootfinder.


	Parameters:

	
	x0 (torch.Tensor) – The initial guess of the root.


	y0 (torch.Tensor) – The function value at the initial guess.


	func (Callable) – The function to find the root.













	
solve(v: Tensor, tol=0) → Tensor[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/optimize/jacobian.py#L303-L314]

	Solve the linear system J dx = v.


	Parameters:

	
	v (torch.Tensor) – The right-hand side of the linear system.


	tol – The tolerance for the linear system.













	
update(x: Tensor, y: Tensor)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/optimize/jacobian.py#L316-L327]

	Update the Jacobian approximation.


	Parameters:

	
	x (torch.Tensor) – The current point.


	y (torch.Tensor) – The function value at the current point.

















	
class LowRankMatrix(alpha: Tensor, uv0, reduce_method: str)[source] [https://github.com/deepchem/deepchem/blob/2.8.0/deepchem/utils/differentiation_utils/optimize/jacobian.py#L330-L450]
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Licensing and Commercial Uses

DeepChem is licensed under the MIT License. We actively support
commercial users. Note that any novel molecules, materials, or other
discoveries powered by DeepChem belong entirely to the user and not to
DeepChem developers.

That said, we would very much appreciate a citation if you find our tools useful.
You can cite DeepChem with the following reference.

@book{Ramsundar-et-al-2019,
    title={Deep Learning for the Life Sciences},
    author={Bharath Ramsundar and Peter Eastman and Patrick Walters and Vijay Pande and Karl Leswing and Zhenqin Wu},
    publisher={O'Reilly Media},
    note={\url{https://www.amazon.com/Deep-Learning-Life-Sciences-Microscopy/dp/1492039837}},
    year={2019}
}
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Contibuting to DeepChem as a Scientist

The scientific community in many ways is quite traditional.
Students typically learn in apprenticeship from advisors who
teach a small number of students directly. This system has endured
for centuries and allows for expert scientists to teach their ways of
thinking to new students.

For more context, most scientific research today is done in “labs”
run in this mostly traditional fashion. A principal investigator (PI)
will run the lab and work with undergraduate, graduate, and
postdoctoral students who produce research papers. Labs are funded by
“grants,” typically from governments and philanthropic agencies.
Papers and citations are the critical currencies of this system, and a
strong publication record is necessary for any scientist to establish
themselves.

This traditional model can find it difficult to fund the development
of high quality software for a few reasons. First, students are in a
lab for limited periods of time (3-5 years often). This means there’s
high turnover, and critical knowledge can be lost when a student moves
on. Second, grants for software are still new and not broadly
available. A lab might very reasonably choose to focus on scientific
discovery rather than on necessary software engineering. (Although,
it’s worth noting there are many exceptions that prove the rule!
DeepChem was born in an academic lab like many other quality
projects.)

We believe that contributing to and using DeepChem can be highly
valuable for scientific careers. DeepChem can help maintain new
scientific algorithms for the long term, making sure that your
discoveries continue to be used after students graduate. We’ve seen
too many brilliant projects flounder after students move on, and we’d
like to help you make sure that your algorithms have the most impact.


Scientist FAQ


Contents


	Wouldn’t it be better for my career to make my own package rather than use DeepChem?


	Is there a DeepChem PI?


	Do I need to add DeepChem team members as co-authors to my paper?


	I want to establish my scientific niche. How can I do that as a DeepChem contributor? Won’t my contribution be lost in the noise?


	I’m an aspiring scientist, not part of a lab. Can I join DeepChem?


	Is there DeepChem Grant Money?


	I’m an industry researcher. Can I participate too?


	What about intellectual property?


	If I use DeepChem on my organization’s data, do I have to release the data?


	What if I want to release data? Can DeepChem help?


	Is MoleculeNet just about molecules?


	Does MoleculeNet allow for releasing data under different licenses?






Wouldn’t it be better for my career to make my own package rather than use DeepChem?

The answer to this really depends on what you’re looking for out of
your career! Making and maintaining good software is hard. It requires
careful testing and continued maintenance. Your code will bitrot over
time without attention. If your focus is on new inventions and you
find software engineering less compelling, working with DeepChem may
enable you to go further in your career by letting you focus on new
algorithms and leveraging the DeepChem Project’s infrastructure to
maintain your inventions.

In addition, you may find considerable inspiration from participating
in the DeepChem community. Looking at how other scientists solve
problems, and connecting with new collaborators across the world can
help you look at problems in a new way. Longtime DeepChem contributors
find that they often end up writing papers together!

All that said, there may be very solid reasons for you to build your
own project! Especially if you want to explore designs that we haven’t
or can’t easily. In that case, we’d still love to collaborate with
you. DeepChem depends on a broad constellation of scientific packages
and we’d love to make your package’s features accessible to our users.



Is there a DeepChem PI?

While DeepChem was born in the Pande lab at Stanford,
the project now lives as a “decentralized research organization.”
It would be more accurate to say that there are informally multiple “DeepChem PIs,”
who use it in their work. You too can be a DeepChem PI!



Do I need to add DeepChem team members as co-authors to my paper?

Our suggestion is to use good judgment and usual scientific etiquette.
If a particular DeepChem team member has contributed a lot to your effort,
adding them might make sense. If no one person has contributed sufficiently,
an acknowledgment or citation would be great!



I want to establish my scientific niche. How can I do that as a DeepChem contributor? Won’t my contribution be lost in the noise?

It’s critically important for a new scientist to establish themselves and
their contributions in order to launch a scientific career. We believe that
DeepChem can help you do this! If you add a significant set of new features to DeepChem,
it might be appropriate for you to write a paper (as lead or corresponding author or however makes sense)
that introduces the new feature and your contribution.

As a decentralized research organization, we want to help you launch
your careers. We’re very open to other collaboration structures that
work for your career needs.



I’m an aspiring scientist, not part of a lab. Can I join DeepChem?

Yes! DeepChem’s core mission is to democratize the use of deep learning for the sciences.
This means no barriers, no walls. Anyone is welcome to join and contribute.
Join our developer calls, chat one-on-one with our scientists,
many of whom are glad to work with new students. You may form connections that
help you join a more traditional lab, or you may choose to form your own path.
We’re glad to support either.



Is there DeepChem Grant Money?

Not yet, but we’re actively looking into getting grants to support DeepChem researchers.
If you’re a PI who wants to collaborate with us, please get in touch!



I’m an industry researcher. Can I participate too?

Yes! The most powerful features of DeepChem is its community.
Becoming part of the DeepChem project can let you build a network that lasts across jobs and roles.
Lifelong employment at a corporation is less and less common. Joining our community will
let you build bonds that cross jobs and could help you do your job today better too!



What about intellectual property?

One of the core goals for DeepChem is to build a shared set of
scientific resources and techniques that aren’t locked up by patents.
Our hope is to enable your company or organization to leverage
techniques with less worry about patent infringement.

We ask in return that you act as a responsible community member
and put in as much as you get out. If you find DeepChem very
valuable, please consider contributing back some innovations or
improvements so others can benefit. If you’re getting a patent on your
invention, try to make sure that you don’t infringe on anything in
DeepChem. Lots of things sneak past patent review. As an open source
community, we don’t have the resources to actively defend ourselves
and we rely on your good judgment and help!



If I use DeepChem on my organization’s data, do I have to release the data?

Not at all! DeepChem is released with a permissive MIT license. Any
analyses you perform belong entirely to you. You are under no
obligation to release your proprietary data or inventions.



What if I want to release data? Can DeepChem help?

If you are interested in open sourcing data, the DeepChem project
maintains the
[MoleculeNet](https://deepchem.readthedocs.io/en/latest/moleculenet.html)
suite of datasets. Adding your dataset to MoleculeNet can be a
powerful way to ensure that a broad community of users can access your
released data in convenient fashion. It’s important to note that
MoleculeNet provides programmatic access to data, which may not be
appropriate for all types of data (especially for clinical or patient
data which may be governed by regulations/laws). Open source
datasets can be a powerful resource, but need to be handled with care.



Is MoleculeNet just about molecules?

Not anymore! Any scientific datasets are welcome in MoleculeNet. At
some point in the future, we may rename the effort to avoid confusion,
but for now, we emphasize that non-molecular datasets are welcome too.



Does MoleculeNet allow for releasing data under different licenses?

MoleculeNet already supports datasets released under different
licenses. We can make work with you to use your license of choice.
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Coding Conventions


Pre-Commit

We use pre-commit [https://pre-commit.com/] to ensure that we’re always keeping up with the best
practices when it comes to linting, standard code conventions and type
annotations. Although it may seem time consuming at first as to why is one
supposed to run all these tests and checks but it helps in identifying simple
issues before submission to code review. We’ve already specified a configuration
file with a list of hooks that will get executed before every commit.

First you’ll need to setup the git hook scripts by installing them.

pre-commit install





Now whenever you commit, pre-commit will run the necessary hooks on the modified
files.



Code Formatting

We use YAPF [https://github.com/google/yapf] to format all of the code in DeepChem.  Although it sometimes
produces slightly awkward formatting, it does have two major benefits.  First,
it ensures complete consistency throughout the entire codebase.  And second, it
avoids disagreements about how a piece of code should be formatted.

Whenever you modify a file, run yapf on it to reformat it before
checking it in.

yapf -i <modified file>





YAPF is run on every pull request to make sure the formatting is correct, so if
you forget to do this the continuous integration system will remind you.
Because different versions of YAPF can produce different results, it is
essential to use the same version that is being run on CI.  At present, that
is 0.32.  We periodically update it to newer versions.



Linting

We use Flake8 [https://github.com/pycqa/flake8] to check our code syntax. Lint tools basically provide these benefits.


	Prevent things like syntax errors or typos


	Save our review time (no need to check unused codes or typos)




Whenever you modify a file, run flake8 on it.

flake8 <modified file> --count





If the command returns 0, it means your code passes the Flake8 check.



Docstrings

All classes and functions should include docstrings describing their purpose and
intended usage.  When in doubt about how much information to include, always err
on the side of including more rather than less.  Explain what problem a class is
intended to solve, what algorithms it uses, and how to use it correctly.  When
appropriate, cite the relevant publications.

All docstrings should follow the numpy [https://numpydoc.readthedocs.io/en/latest/format.html#docstring-standard] docstring formatting conventions. To
ensure that the code examples in the docstrings are working as expected, run

python -m doctest <modified file>







Unit Tests

Having an extensive collection of test cases is essential to ensure the code
works correctly.  If you haven’t written tests for a feature, that means the
feature isn’t finished yet.  Untested code is code that probably doesn’t work.

Complex numerical code is sometimes challenging to fully test.  When an
algorithm produces a result, it sometimes is not obvious how to tell whether the
result is correct or not.  As far as possible, try to find simple examples for
which the correct answer is exactly known.  Sometimes we rely on stochastic
tests which will probably pass if the code is correct and probably fail if
the code is broken.  This means these tests are expected to fail a small
fraction of the time.  Such tests can be marked with the @flaky
annotation.  If they fail during continuous integration, they will be run a
second time and an error only reported if they fail again.

If possible, each test should run in no more than a few seconds.  Occasionally
this is not possible.  In that case, mark the test with the @pytest.mark.slow
annotation.  Slow tests are skipped during continuous integration, so changes
that break them may sometimes slip through and get merged into the repository.
We still try to run them regularly, so hopefully the problem will be discovered
fairly soon.

The full suite of slow tests can be run from the root directory of the source code as

pytest -v -m 'slow' deepchem





To test your code locally, you will have to setup a symbolic link to your
current development directory. To do this, simply run

python setup.py develop





while installing the package from source. This will let you see changes that you
make to the source code when you import the package and, in particular, it
allows you to import the new classes/methods for unit tests.

Ensure that the tests pass locally! Check this by running

python -m pytest <modified file>







Testing Machine Learning Models

Testing the correctness of a machine learning model can be quite
tricky to do in practice. When adding a new machine learning model to
DeepChem, you should add at least a few basic types of unit tests:


	Overfitting test: Create a small synthetic dataset and test that
your model can learn this datasest with high accuracy. For regression
and classification task, this should correspond to low training error
on the dataset. For generative tasks, this should correspond to low
training loss on the dataset.


	Reloading test: Check that a trained model can be saved to disk and
reloaded correctly. This should involve checking that predictions from
the saved and reloaded models matching exactly.




Note that unit tests are not sufficient to gauge the real performance
of a model. You should benchmark your model on larger datasets as well
and report your benchmarking tests in the PR comments.

For testing tensorflow models and pytorch models, we recommend testing in
different conda environments. Tensorflow 2.6 supports numpy 1.19 while
pytorch supports numpy 1.21. This version mismatch on numpy dependency
sometimes causes trouble in installing tensorflow and pytorch backends in
the same environment.

For testing tensorflow models of deepchem, we create a tensorflow test environment
and then run the test as follows:

conda create -n tf-test python=3.8
conda activate tf-test
pip install conda-merge
conda-merge requirements/tensorflow/env_tensorflow.yml requirements/env_test.yml > env.yml
conda env update --file env.yml --prune
pytest -v -m 'tensorflow' deepchem





For testing pytorch models of deepchem, first create a pytorch test environment
and then run the tests as follows:

conda create -n pytorch-test python=3.8
conda activate pytorch-test
pip install conda-merge
conda-merge requirements/torch/env_torch.yml requirements/torch/env_torch.cpu.yml requirements/env_test.yml > env.yml
conda env update --file env.yml --prune
pytest -v -m 'torch' deepchem







Type Annotations

Type annotations are an important tool for avoiding bugs.  All new code should
provide type annotations for function arguments and return types.  When you make
significant changes to existing code that does not have type annotations, please
consider adding them at the same time.

We use the mypy [http://mypy-lang.org/] static type checker to verify code correctness.  It is
automatically run on every pull request.  If you want to run it locally to make
sure you are using types correctly before checking in your code, cd to
the top level directory of the repository and execute the command

mypy -p deepchem --ignore-missing-imports





Because Python is such a dynamic language, it sometimes is not obvious what type
to specify.  A good rule of thumb is to be permissive about input types and
strict about output types.  For example, many functions are documented as taking
a list as an argument, but actually work just as well with a tuple.  In those
cases, it is best to specify the input type as Sequence to accept either
one.  But if a function returns a list, specify the type as List because
we can guarantee the return value will always have that exact type.

Another important case is NumPy arrays.  Many functions are documented as taking
an array, but actually can accept any array-like object: a list of numbers, a
list of lists of numbers, a list of arrays, etc.  In that case, specify the type
as Sequence to accept any of these.  On the other hand, if the function
truly requires an array and will fail with any other input, specify it as
np.ndarray.

The deepchem.utils.typing module contains definitions of some types that
appear frequently in the DeepChem API.  You may find them useful when annotating
code.
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Understanding DeepChem CI

Continuous Integration(CI) is used to continuously build and run tests
for the code in your repository to make sure that the changes introduced
by the commits doesn’t introduce errors. DeepChem runs a number of CI tests(jobs)
using workflows provided by Github Actions. When all CI tests in a workflow pass,
it implies that the changes introduced by a commit does not introduce any errors.

When creating a PR to master branch or when pushing to master branch, around 35 CI
tests are run from the following workflows.


	
	Tests for DeepChem Core - The jobs are defined in the .github/workflows/main.yml file. The following jobs are performed in this workflow:
	
	Building and installation of DeepChem in latest Ubuntu OS and Python 3.8-3.11 and it checks for import deepchem


	These tests run on Ubuntu latest version using Python 3.8-3.11 and on windows latest version using Python 3.8. The jobs are run for checking coding conventions using yapf, flake8 and mypy. It also includes tests for doctest and code-coverage.


	Tests for pypi-build and docker-build are also include but they are mostly skipped.










	
	Tests for DeepChem Common - The jobs are defined in the .github/workflows/common_setup.yml file. The following tests are performed in this workflow:
	
	For build environments of Python 3.8, 3.9, 3.10, 3.11, DeepChem is built and import checking is performed.


	The tests are run for checking pytest. All pytests which are not marked as jax, tensorflow or pytorch is run on ubuntu latest with Python 3.8, 3.9, 3.10, 3.11 and 3.9 and on windows latest, it is run with Python 3.9.










	
	Tests for DeepChem Jax/Tensorflow/PyTorch
	
	Jax - DeepChem with jax backend is installed and import check is performed for deepchem and jax. The tests for pytests with jax markers are run on ubuntu latest with Python 3.9-3.11.


	Tensorflow - DeepChem with tensorflow backend is installed and import check is performed for DeepChem and tensorflow. The tests for pytests with tensorflow markers are run on ubuntu latest with Python 3.8-3.11 and on windows latest, it is run with Python 3.9.


	PyTorch - DeepChem with pytorch backend is installed and import check is performed for DeepChem and torch. The tests for pytests with pytorch markers are run on ubuntu latest with Python 3.8-3.11 and on windows latest, it is run with Python 3.9.










	
	Tests for documents
	
	These tests are used for checking docs build. It is run on ubuntu latest with Python 3.9.










	
	Tests for Release
	
	These tests are run only when pushing a tag. It is run on ubuntu latest with Python 3.9.












General recommendations


	Handling additional or external files in unittest




When a new feature is added to DeepChem, the respective unittest should included too.
Sometimes, this test functions uses an external or additional file. To avoid problems in the CI
the absolute path of the file has to be included. For example, for the use of a file called
“Test_data_feature.csv”, the unittest function should manage the absolute path as :

import os
current_dir = os.path.dirname(os.path.abspath(__file__))
data_dir = os.path.join(current_dir, "Test_data_feature.csv")
result = newFeature(data_dir)






Notes on Requirement Files

DeepChem’s CI as well as installation procedures use requirement files defined in
requirements directory. Currently, there are a number of requirement files. Their
purposes are listed here.
+ env_common.yml - this file lists the scientific dependencies used by DeepChem like rdkit.
+ env_ubuntu.yml and env_mac.yml contain scientific dependencies which are have OS specific support. Currently, vina
+ env_test.yml - it is mostly used for the purpose of testing in development purpose. It contains the test dependencies.
+ The installation files in tensorflow, torch and jax directories contain the installation command for backend deep learning frameworks. For torch and jax, installation command is different for CPU and GPU. Hence, we use different installation files for CPU and GPU respectively.
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Infrastructures

The DeepChem project maintains supporting infrastructure on a number of
different services. This infrastructure is maintained by the DeepChem
development team.


GitHub

The core DeepChem repositories are maintained in the deepchem [https://github.com/deepchem] GitHub organization.
And, we use GitHub Actions to build a continuous integration pipeline.

DeepChem developers have write access to the repositories on this repo and
technical steering committee members have admin access.



Conda Forge

The DeepChem feedstock [https://github.com/conda-forge/deepchem-feedstock] repo maintains the build recipe for conda-forge.



Docker Hub

DeepChem hosts major releases and nightly docker build instances on Docker Hub [https://hub.docker.com/r/deepchemio/deepchem].



PyPI

DeepChem hosts major releases and nightly builds on PyPI [https://pypi.org/project/deepchem/].



Amazon Web Services

DeepChem’s website infrastructure is all managed on AWS through different AWS
services. All DeepChem developers have access to these services through the
deepchem-developers IAM role. (An IAM role controls access permissions.) At
present, @rbharath is the only developer with admin access to the IAM role, but
longer term we should migrate this so other folks have access to the roles.


S3

Amazon’s S3 allows for storage of data on “buckets” (Think of buckets like folders.)
There are two core deepchem S3 buckets:



	deepchemdata: This bucket hosts the MoleculeNet datasets, pre-featurized datasets,
and pretrained models.


	deepchemforum: This bucket hosts backups for the forums. The bucket is private for security reasons.
The forums themselves are hosted on a digital ocean instance that only @rbharath currently has access to.
Longer term, we should migrate the forums onto AWS so all DeepChem developers can access the forums.
The forums themselves are a discord instance. The forums upload their backups to this S3 bucket once a day.
If the forums crash, they can be restored from the backups in this bucket.









Route 53

DNS for the deepchem.io website is handled by Route 53. The “hosted zone”
deepchem.io holds all DNS information for the website.



Certificate Manager

The AWS certificate manager issues the SSL/TLS certificate for the
*.deepchem.io and deepchem.io domains.



GitHub Pages

We make use of GitHub Pages to serve our static website. GitHub Pages
connects to the certificate in Certificate Manager. We set CNAME for
www.deepchem.io, and an A-record for deepchem.io.

The GitHub Pages repository is [deepchem/deepchem.github.io](https://github.com/deepchem/deepchem.github.io).




GoDaddy

The deepchem.io domain is registered with GoDaddy. If you change the name
servers in AWS Route 53, you will need to update the GoDaddy record. At
present, only @rbharath has access to the GoDaddy account that owns the
deepchem.io domain name. We should explore how to provide access to the domain
name for other DeepChem developers.



Digital Ocean

The forums are hosted on a digital ocean instance. At present, only @rbharath
has access to this instance. We should migrate this instance onto AWS so other
DeepChem developers can help maintain the forums.
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      	union() (in module deepchem.utils.coordinate_box_utils)


      	Uniquifier (class in deepchem.utils.misc_utils)


      	unit_vector() (in module deepchem.utils.geometry_utils)


      	unk_token (RobertaFeaturizer property)


      	unk_token_id (RobertaFeaturizer property)


      	unsorted_segment_sum() (in module deepchem.utils.pytorch_utils)


      	untargz_file() (in module deepchem.utils.data_utils)


      	untransform() (BalancingTransformer method)

      
        	(CDFTransformer method)


        	(ClippingTransformer method)


        	(CoulombFitTransformer method)


        	(DAGTransformer method)


        	(DuplicateBalancingTransformer method)


        	(FeaturizationTransformer method)


        	(ImageTransformer method)


        	(IRVTransformer method)


        	(LogTransformer method)


        	(MinMaxTransformer method)


        	(NormalizationTransformer method)


        	(OneHotFeaturizer method)


        	(PowerTransformer method)


        	(RxnSplitTransformer method)


        	(SparseMatrixOneHotFeaturizer method)


        	(Transformer method)


      


  

  	
      	untransform_grad() (NormalizationTransformer method)


      	unzip_file() (in module deepchem.utils.data_utils)


      	update() (BroydenFirst method)

      
        	(Jacobian method)


        	(LinearMixing method)


      


      	update_function() (Net3DLayer method)


      	Usage (_Config attribute)


      	uselinopparams() (LinearOperator method)


      	useobjparams() (PureFunction method), [1]


      	UserCSVLoader (class in deepchem.data)


      	UserDefinedFeaturizer (class in deepchem.feat)


      	usymeig() (in module deepchem.utils.differentiation_utils.symeig)


  





V


  	
      	VAE_ELBO (class in deepchem.models.losses)


      	VAE_KLDivergence (class in deepchem.models.losses)


      	ValGrad (class in deepchem.utils.dft_utils)


      	variables (MetaLearner property)


      	VariationalRandomizer (class in deepchem.models.torch_models.layers)


      	vectorize() (in module deepchem.utils.hash_utils)


      	VERBOSE (_Config attribute)


      	vina_energy_term() (in module deepchem.dock.pose_scoring)


      	vina_gaussian_first() (in module deepchem.dock.pose_scoring)


      	vina_gaussian_second() (in module deepchem.dock.pose_scoring)


      	vina_hbond() (in module deepchem.dock.pose_scoring)


  

  	
      	vina_hydrophobic() (in module deepchem.dock.pose_scoring)


      	vina_nonlinearity() (in module deepchem.dock.pose_scoring)


      	vina_repulsion() (in module deepchem.dock.pose_scoring)


      	VinaFreeEnergy (class in deepchem.models.layers)


      	VinaPoseGenerator (class in deepchem.dock.pose_generation)


      	vocab_size (RobertaFeaturizer property)

      
        	(SmilesTokenizer property)


      


      	VocabularyBuilder (class in deepchem.feat.vocabulary_builders.vocabulary_builder)


      	volume() (CoordinateBox method)

      
        	(Lattice method)


      


      	voxelize() (in module deepchem.utils.voxel_utils)


  





W


  	
      	w (Dataset property)

      
        	(DiskDataset property)


        	(ImageDataset property)


        	(NumpyDataset property)


      


      	Weave (class in deepchem.models.torch_models)


      	WeaveFeaturizer (class in deepchem.feat)


      	WeaveGather (class in deepchem.models.layers)

      
        	(class in deepchem.models.torch_models.layers)


      


      	WeaveLayer (class in deepchem.models.layers)

      
        	(class in deepchem.models.torch_models.layers)


      


      	WeaveModel (class in deepchem.models)

      
        	(class in deepchem.models.torch_models)


      


  

  	
      	WeaveMol (class in deepchem.feat.mol_graphs)


      	WeightedLinearCombo (class in deepchem.models.layers)


      	wfnormalize_() (CGTOBasis method)


      	WGAN (class in deepchem.models)


      	WGANModel (class in deepchem.models.torch_models)


      	wigner_D() (in module deepchem.utils.equivariance_utils)


      	wrap_gmres() (in module deepchem.utils.differentiation_utils.solve)


      	write_data_to_disk() (DiskDataset static method)


      	write_gnina_conf() (in module deepchem.utils.docking_utils)


      	write_molecule() (in module deepchem.utils.rdkit_utils)


      	write_vina_conf() (in module deepchem.utils.docking_utils)


  





X


  	
      	X (Dataset property)

      
        	(DiskDataset property)


        	(ImageDataset property)


        	(NumpyDataset property)


      


      	x2r() (BaseGridTransform method)

      
        	(DE2Transformation method)


        	(LogM3Transformation method)


        	(TreutlerM4Transformation method)


      


  

  	
      	X_transform() (CoulombFitTransformer method)

      
        	(IRVTransformer method)


      


  





Y


  	
      	y (Dataset property)

      
        	(DiskDataset property)


        	(ImageDataset property)


        	(NumpyDataset property)
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Layers Cheatsheet

The “layers cheatsheet” lists various scientifically relevant differentiable layers implemented in DeepChem.

Note that some layers implemented for specific model architectures such as GROVER
and Attention layers, this is indicated in the Model column of the table.

In order to use the layers, make sure that the backend (Keras and tensorflow, Pytorch or Jax) is installed.

Tensorflow Keras Layers

These layers are subclasses of the tensorflow.keras.layers.Layer class.


Custom Keras Layers

	Layer

	Reference

	Model





	InteratomicL2Distances

	
	


	GraphConv

	ref [https://arxiv.org/abs/1509.09292]

	


	GraphPool

	ref [https://arxiv.org/abs/1509.09292]

	


	GraphGather

	ref [https://arxiv.org/abs/1509.09292]

	


	MolGANConvolutionLayer

	ref [https://arxiv.org/abs/1805.11973]

	MolGan



	MolGANAggregationLayer

	ref [https://arxiv.org/abs/1805.11973]

	MolGan



	MolGANMultiConvolutionLayer

	ref [https://arxiv.org/abs/1805.11973]

	MolGan



	MolGANEncoderLayer

	ref [https://arxiv.org/abs/1805.11973]

	MolGan



	LSTMStep

	
	


	AttnLSTMEmbedding

	ref [https://arxiv.org/abs/1606.04080]

	


	IterRefLSTMEmbedding

	
	


	SwitchedDropout

	
	


	WeightedLinearCombo

	
	


	CombineMeanSt

	
	


	Stack

	
	


	VinaFreeEnergy

	
	


	NeighborList

	
	


	AtomicConvolution

	ref [https://arxiv.org/abs/1703.10603]

	


	AlphaShareLayer

	
	Sluice Network



	SluiceLoss

	
	Sluice Network



	BetaShare

	
	Sluice Network



	ANIFeat

	
	


	GraphEmbedPoolLayer

	ref [https://arxiv.org/abs/1703.00792]

	


	Highway

	ref [https://arxiv.org/abs/11505.00387]

	


	WeaveLayer

	ref [https://pubmed.ncbi.nlm.nih.gov/27558503/]

	


	WeaveGather

	ref [https://pubmed.ncbi.nlm.nih.gov/27558503/]

	


	DTNNEmbedding

	
	


	DTNNStep

	
	


	DTNNGather

	
	


	DAGLayer

	ref [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3739985/]

	


	DAGGather

	
	


	MessagePassing

	ref [https://arxiv.org/abs/1511.06391]

	


	EdgeNetwork

	ref [https://arxiv.org/abs/1511.06391]

	MessagePassing



	GatedRecurrentUnit

	ref [https://arxiv.org/abs/1511.06391]

	MessagePassing



	SetGather

	
	





PyTorch

These layers are subclasses of the torch.nn.Module class.


Custom PyTorch Layers

	Layer

	Reference

	Model





	MultilayerPerceptron

	
	


	ScaleNorm

	ref [https://arxiv.org/abs/2002.08264]

	Molecular Attention Transformer



	MATEncoderLayer

	ref [https://arxiv.org/abs/2002.08264]

	Molecular Attention Transformer



	MultiHeadedMATAttention

	ref [https://arxiv.org/abs/2002.08264]

	Molecular Attention Transformer



	SublayerConnection

	ref [https://arxiv.org/abs/1706.03762]

	Transformer



	MATEmbedding

	ref [https://arxiv.org/abs/2002.08264]

	Molecular Attention Transformer



	MATGenerator

	ref [https://arxiv.org/abs/2002.08264]

	Molecular Attention Transformer



	Affine

	ref [http://arxiv.org/abs/2110.15828]

	Normalizing Flow



	RealNVPLayer

	ref [http://arxiv.org/abs/2110.15828]

	Normalizing Flow



	DMPNNEncoderLayer

	ref [https://arxiv.org/pdf/1904.01561.pdf]

	Normalizing Flow



	PositionwiseFeedForward

	ref [https://arxiv.org/abs/2002.08264]

	Molecular Attention Transformer



	GraphPool

	ref [https://arxiv.org/abs/1509.09292]

	


	GroverMPNEncoder

	ref [https://drug.ai.tencent.com/publications/GROVER.pdf]

	Grover



	GroverAttentionHead

	ref [https://drug.ai.tencent.com/publications/GROVER.pdf]

	Grover



	GroverMTBlock

	ref [https://drug.ai.tencent.com/publications/GROVER.pdf]

	Grover



	GroverTransEncoder

	ref [https://drug.ai.tencent.com/publications/GROVER.pdf]

	Grover



	GroverEmbedding

	ref [https://drug.ai.tencent.com/publications/GROVER.pdf]

	Grover



	GroverAtomVocabPredictor

	ref [https://drug.ai.tencent.com/publications/GROVER.pdf]

	Grover



	GroverBondVocabPredictor

	ref [https://drug.ai.tencent.com/publications/GROVER.pdf]

	Grover



	GroverFunctionalGroupPredictor

	ref [https://drug.ai.tencent.com/publications/GROVER.pdf]

	Grover



	ScaledDotProductAttention

	ref [https://arxiv.org/abs/1706.03762]

	Transformer



	SelfAttention

	ref [https://arxiv.org/abs/1706.03762]

	Transformer



	GroverReadout

	ref [https://drug.ai.tencent.com/publications/GROVER.pdf]

	Grover



	DFTXC

	ref [https://arxiv.org/abs/2102.04229]

	XCModel-DFT



	NNLDA

	ref [https://arxiv.org/abs/2102.04229]

	XCModel-DFT



	HybridXC

	ref [https://arxiv.org/abs/2102.04229]

	XCModel-DFT



	XCNNSCF

	ref [https://arxiv.org/abs/2102.04229]

	XCModel-DFT



	AtomEncoder

	`https://arxiv.org/abs/2110.04126`_

	3D InfoMax



	BondEncoder

	`https://arxiv.org/abs/2110.04126`_

	3D InfoMax



	Net3DLayer

	`https://arxiv.org/abs/2110.04126`_

	3D InfoMax



	Net3D

	`https://arxiv.org/abs/2110.04126`_

	3D InfoMax



	PNALayer

	`https://arxiv.org/abs/2004.05718`_

	Principal Neighbourhood Aggregation



	PNAGNN

	`https://arxiv.org/abs/2004.05718`_

	Principal Neighbourhood Aggregation



	EdgeNetwork

	ref [https://arxiv.org/abs/1704.01212]

	Message Passing Neural Network



	WeaveLayer

	ref [https://pubmed.ncbi.nlm.nih.gov/27558503/]

	WeaveModel



	WeaveGather

	ref [https://pubmed.ncbi.nlm.nih.gov/27558503/]

	WeaveModel



	GradientPenalty

	ref [https://arxiv.org/abs/1704.00028]

	WGANModel



	MolGANConvolutionLayer

	ref [https://arxiv.org/abs/1805.11973]

	MolGan



	MolGANAggregationLayer

	ref [https://arxiv.org/abs/1805.11973]

	MolGan



	MolGANMultiConvolutionLayer

	ref [https://arxiv.org/abs/1805.11973]

	MolGan



	MolGANEncoderLayer

	ref [https://arxiv.org/abs/1805.11973]

	MolGan



	DTNNEmbedding

	ref`<https://arxiv.org/abs/1609.08259>`_

	DTNNModel



	DTNNStep

	ref`<https://arxiv.org/abs/1609.08259>`_

	DTNNModel



	DTNNGather

	ref`<https://arxiv.org/abs/1609.08259>`_

	DTNNModel



	MXMNetGlobalMessagePassing

	ref [https://arxiv.org/pdf/2011.07457]

	MXMNetModel



	MXMNetBesselBasisLayer

	ref [https://arxiv.org/pdf/2011.07457]

	MXMNetModel



	VariationalRandomizer

	ref [https://arxiv.org/abs/1511.06349]

	SeqToSeqModel



	EncoderRNN

	ref [https://arxiv.org/abs/1409.3215]

	SeqToSeqModel



	DecoderRNN

	ref [https://arxiv.org/abs/1409.3215]

	SeqToSeqModel



	FerminetElectronFeature

	ref [https://arxiv.org/pdf/1909.02487.pdf]

	FerminetModel



	FerminetEnvelope

	ref [https://arxiv.org/pdf/1909.02487.pdf]

	FerminetModel



	MXMNetLocalMessagePassing

	ref [https://arxiv.org/pdf/2011.07457]

	MXMNetModel



	MXMNetModelMXMNetSphericalBasisLayer

	ref`<https://arxiv.org/pdf/2011.07457>`_

	MXMNetModel



	HighwayLayer

	ref [https://arxiv.org/abs/1507.06228]
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Model Cheatsheet

If you’re just getting started with DeepChem, you’re probably interested in the
basics. The place to get started is this “model cheatsheet” that lists various
types of custom DeepChem models. Note that some wrappers like SklearnModel
and GBDTModel which wrap external machine learning libraries are excluded,
but this table should otherwise be complete.

As a note about how to read these tables: Each row describes what’s needed to
invoke a given model. Some models must be applied with given Transformer or
Featurizer objects. Most models can be trained calling model.fit,
otherwise the name of the fit_method is given in the Comment column.
In order to run the models, make sure that the backend (Keras and tensorflow
or Pytorch or Jax) is installed.
You can thus read off what’s needed to train the model from the table below.

General purpose


General purpose models

	Model

	Reference

	Classifier/Regressor

	Acceptable Featurizers

	Backend

	Comment





	CNN

	
	Classifier/ Regressor

	
	Keras

	


	MultitaskClassifier

	
	Classifier

	CircularFingerprint RDKitDescriptors CoulombMatrixEig RdkitGridFeaturizer BindingPocketFeaturizer ElementPropertyFingerprint

	PyTorch

	


	MultitaskFitTransformRegressor

	
	Regressor

	CircularFingerprint RDKitDescriptors CoulombMatrixEig RdkitGridFeaturizer BindingPocketFeaturizer ElementPropertyFingerprint

	PyTorch

	any Transformer can be used



	MultitaskIRVClassifier

	
	Classifier

	CircularFingerprint RDKitDescriptors CoulombMatrixEig RdkitGridFeaturizer BindingPocketFeaturizer ElementPropertyFingerprint

	Keras

	use IRVTransformer



	MultitaskRegressor

	
	Regressor

	CircularFingerprint RDKitDescriptors CoulombMatrixEig RdkitGridFeaturizer BindingPocketFeaturizer ElementPropertyFingerprint

	Torch

	


	ProgressiveMultitaskClassifier

	ref [https://arxiv.org/abs/1606.04671]

	Classifier

	CircularFingerprint RDKitDescriptors CoulombMatrixEig RdkitGridFeaturizer BindingPocketFeaturizer ElementPropertyFingerprint

	Keras

	


	ProgressiveMultitaskRegressor

	ref [https://arxiv.org/abs/1606.04671]

	Regressor

	CircularFingerprint RDKitDescriptors CoulombMatrixEig RdkitGridFeaturizer BindingPocketFeaturizer ElementPropertyFingerprint

	Keras

	


	RobustMultitaskClassifier

	ref [https://pubs.acs.org/doi/abs/10.1021/acs.jcim.7b00146]

	Classifier

	CircularFingerprint RDKitDescriptors CoulombMatrixEig RdkitGridFeaturizer BindingPocketFeaturizer ElementPropertyFingerprint

	Keras

	


	RobustMultitaskRegressor

	ref [https://pubs.acs.org/doi/abs/10.1021/acs.jcim.7b00146]

	Regressor

	CircularFingerprint RDKitDescriptors CoulombMatrixEig RdkitGridFeaturizer BindingPocketFeaturizer ElementPropertyFingerprint

	Keras

	


	SeqToSeq

	ref [https://arxiv.org/abs/1409.3215]

	
	
	PyTorch

	fit method: fit_sequences



	WGAN

	ref [https://arxiv.org/abs/1701.07875]

	Adversarial

	
	Keras

	fit method: fit_gan






Molecules

Many models implemented in DeepChem were designed for small to medium-sized organic molecules,
most often drug-like compounds.
If your data is very different (e.g. molecules contain ‘exotic’ elements not present in the original dataset)
or cannot be represented well using SMILES (e.g. metal complexes, crystals), some adaptations to the
featurization and/or model might be needed to get reasonable results.


Molecular models

	Model

	Reference

	Type

	Acceptable Featurizers

	Backend

	Comment

	




	ScScoreModel

	ref [https://pubs.acs.org/doi/abs/10.1021/acs.jcim.7b00622]

	Classifier

	CircularFingerprint

	Keras

	
	


	AtomicConvModel

	ref [https://arxiv.org/abs/1703.10603]

	Classifier/ Regressor

	ComplexNeighborListFragmentAtomicCoordinates

	Keras

	
	


	AttentiveFPModel

	ref [https://pubs.acs.org/doi/10.1021/acs.jmedchem.9b00959]

	Classifier/ Regressor

	MolGraphConvFeaturizer

	PyTorch

	
	


	ChemCeption

	ref [https://arxiv.org/abs/1706.06689]

	Classifier/ Regressor

	SmilesToImage

	Keras

	
	


	DAGModel

	ref [https://pubs.acs.org/doi/abs/10.1021/ci400187y]

	Classifier/ Regressor

	ConvMolFeaturizer

	Keras

	use DAGTransformer

	


	GATModel

	ref [https://arxiv.org/abs/1710.10903]

	Classifier/ Regressor

	MolGraphConvFeaturizer

	DGL/PyTorch

	
	


	GCNModel

	ref [https://arxiv.org/abs/1609.02907]

	Classifier/ Regressor

	MolGraphConvFeaturizer

	DGL/PyTorch

	
	


	GraphConvModel

	ref [https://arxiv.org/abs/1509.09292]

	Classifier/ Regressor

	ConvMolFeaturizer

	Keras

	
	


	MEGNetModel

	ref [https://arxiv.org/abs/1812.05055]

	Classifier/ Regressor

	
	PyTorch/PyTorch Geometric

	
	


	MPNNModel

	ref [https://arxiv.org/abs/1704.01212]

	Classifier/ Regressor

	MolGraphConvFeaturizer

	DGL/PyTorch

	
	


	PagtnModel

	ref [https://arxiv.org/abs/1905.12712]

	Classifier/ Regressor

	PagtnMolGraphFeaturizer MolGraphConvFeaturizer

	DGL/PyTorch

	
	


	Smiles2Vec

	ref [https://arxiv.org/abs/1712.02034]

	Classifier/ Regressor

	SmilesToSeq

	Keras

	
	


	TextCNNModel

	ref [https://arxiv.org/abs/1705.10843]

	Classifier/ Regressor

	
	Keras/PyTorch

	
	


	DTNNModel

	ref [https://arxiv.org/abs/1609.08259]

	Regressor

	CoulombMatrix

	PyTorch

	
	


	MATModel

	ref [https://arxiv.org/abs/2002.08264]

	Regressor

	MATFeaturizer

	PyTorch

	
	


	WeaveModel

	ref [https://arxiv.org/abs/1603.00856]

	Regressor

	WeaveFeaturizer

	Keras

	
	


	BasicMolGANModel

	ref [https://arxiv.org/abs/1805.11973]

	Generator

	MolGanFeaturizer

	Keras

	fit method: fit_gan

	


	DMPNNModel

	ref [https://arxiv.org/pdf/1904.01561.pdf]

	Classifier/ Regressor

	DMPNNFeaturizer

	PyTorch

	
	


	InfoGraph

	ref [https://arxiv.org/abs/1908.01000]

	Classifier/ Regressor

	MolGraphConvFeaturizer

	PyTorch

	
	


	InfoGraphStar

	ref [https://arxiv.org/abs/1908.01000]

	Classifier/ Regressor

	MolGraphConvFeaturizer

	PyTorch

	
	


	GNNModular

	ref [https://arxiv.org/abs/1905.12265]

	Classifier/ Regressor

	SNAPFeaturizer

	PyTorch

	
	


	InfoMax3DModular

	ref [https://arxiv.org/abs/2110.04126]

	Unsupervised

	RDKitConformerFeaturizer

	PyTorch

	
	


	Chemberta

	ref [https://arxiv.org/abs/2209.01712]

	Classifier/ Regressor

	RobertaTokenizer

	PyTorch

	
	


	ProgressiveMultitaskModel

	ref [https://arxiv.org/abs/1606.04671]

	Classifier/ Regressor

	CircularFingerprint RDKitDescriptors CoulombMatrixEig RdkitGridFeaturizer BindingPocketFeaturizer ElementPropertyFingerprint

	PyTorch

	
	





Materials

The following models were designed specifically for (inorganic) materials.


Material models

	Model

	Reference

	Type

	Acceptable Featurizers

	Backend

	Comment





	CGCNNModel

	ref [https://arxiv.org/abs/1710.10324]

	Classifier/Regressor

	CGCNNFEaturizer

	DGL/PTorch

	crystal graph CNN



	MEGNetModel

	ref [https://arxiv.org/abs/1812.05055]

	Classifier/Regressor

	
	PyTorch/PyTorch Geometric

	


	LCNNModel

	ref [https://pubs.acs.org/doi/10.1021/acs.jpcc.9b03370]

	Regressor

	LCNNFeaturizer

	PyTorch

	lattice CNN
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MoleculeNet Cheatsheet

When training a model or performing a benchmark, the user needs specific datasets.
However, at the beginning, this search can be exhaustive and confusing. The
following cheatsheet is aimed at helping DeepChem users identify more easily which
dataset to use depending on their purposes.

Each row reprents a dataset where a brief description is given. Also, the columns
represents the type of the data; depending on molecule properties, images or
materials and how many data points they have. Each dataset is referenced with a
link of the paper. Finally, there are some entries that need further information.

Cheatsheet


MoleculeNet description

	Name

	Description

	Type

	Data Points

	Reference





	BACE (Regression)

	Provides bindings results for a set of inhibitors of human beta-secretase (BACE-1)

	Molecules

	1513

	ref [https://pubs.rsc.org/en/content/articlehtml/2018/sc/c7sc02664a]



	BACE (Classification)

	Provides bindings results for a set of inhibitors of human beta-secretase (BACE-1)

	Molecules

	1513

	ref [https://pubs.rsc.org/en/content/articlehtml/2018/sc/c7sc02664a]



	BBBC (BBBC001)

	Images of HT29 colon cancer cells

	Images

	6

	ref [https://data.broadinstitute.org/bbbc/BBBC001/]



	BBBC (BBBC002)

	Images of Drosophilia Kc167 cells

	Images

	50

	ref [https://data.broadinstitute.org/bbbc/BBBC002/]



	BBBC (BBBC003)

	DIC Images of Mouse Embryos

	Images

	15

	ref [https://data.broadinstitute.org/bbbc/BBBC003/]



	BBBC (BBBC004)

	Synthetic Images of clustered nuclei

	Images

	20

	ref [https://data.broadinstitute.org/bbbc/BBBC004/]



	BBBC (BBBC004)

	Synthetic Images of clustered nuclei

	Images

	19200

	ref [https://data.broadinstitute.org/bbbc/BBBC005/]



	BBBP

	Blood-Brain Barrier Penetration designed for the modeling and prediction of barrier permeability

	Binary labels on permeability properties

	2000

	ref [https://pubs.rsc.org/en/content/articlehtml/2018/sc/c7sc02664a]



	Cell Counting

	Synthetic emulations of fluorescence microscopic images of bacterial cells

	Images

	200

	ref [http://www.robots.ox.ac.uk/~vgg/research/counting/index_org.html.]



	ChEMBL (set = ‘sparse’)

	A sparse subset of ChEMBL with activity data for one target

	Molecules

	244 245

	ref [https://www.ebi.ac.uk/chembl/.]



	ChEMBL (set = ‘5thresh’)

	A subset of ChEMBL with activity data for at least five targets

	Molecules

	23 871

	ref [https://www.ebi.ac.uk/chembl/.]



	ChEMBL25

	
	Molecules

	
	ref [https://www.ebi.ac.uk/chembl/.]



	Clearance

	
	
	
	ref [https://arxiv.org/abs/1703.00564]



	Clintox

	Compares drugs approved by the FDA and drugs that have failed clinical trials for toxicity reasons.

	Molecules

	1491

	ref [https://pubs.rsc.org/en/content/articlehtml/2018/sc/c7sc02664a]



	Delaney

	A regression dataset containing structures and water solubility data

	Molecules

	1128

	ref [https://arxiv.org/abs/1703.00564]



	Factors

	Merck in-house compounds that were measured for IC50 of inhibition on 12 serine proteases

	Molecules

	1500

	


	Freesolv

	A collection of experimental and calculated hydration free energies for small molecules in water

	Molecules

	643

	ref [https://pubs.rsc.org/en/content/articlehtml/2018/sc/c7sc02664a]



	HIV

	A dataset wich tested the ability to inhibit HIV replication

	Molecules

	40 000

	ref [https://pubs.rsc.org/en/content/articlehtml/2018/sc/c7sc02664a]



	HOPV

	Harvard Organic Photovoltaic dataset utilized as p-type materials

	Molecules

	350

	


	HPPB

	Thermosynamic solubility datasets

	
	
	


	KAGGLE

	in-house compounds that were measured on 15 enzyme inhibition and ADME/TOX datasets.

	Molecules

	100 000

	ref [https://pubmed.ncbi.nlm.nih.gov/25635324/]



	KINASE

	In-house compounds that were measured for IC50 of inhibition on 99 protein kinases

	Molecules

	2 500

	


	LIPO

	Experimental results of octanol/water distribution coefficient (logD at pH 7.4)

	Molecules

	4 200

	ref [https://arxiv.org/abs/1703.00564]



	Band Gap

	Experimentally measured band gaps for inorganic crystal structure

	Materials

	4 604

	ref [https://pubs.acs.org/doi/10.1021/acs.jpclett.8b00124]



	Perovskite

	Contains Perovskite structures and their formation energies

	Materials

	18 928

	ref [https://pubs.rsc.org/en/content/articlelanding/2012/ee/c2ee22341d]



	MP Formation Energy

	Contains calculated formation energies and inorganic crystal structures from the Materials Project database

	Materials

	132 752

	ref [https://pubs.aip.org/aip/apm/article/1/1/011002/119685/Commentary-The-Materials-Project-A-materials]



	MP Metallicity

	Contains inorganic crystal structures from the Materials Project database labeled as metals or nonmetals

	Materials

	106 113

	ref [https://pubs.aip.org/aip/apm/article/1/1/011002/119685/Commentary-The-Materials-Project-A-materials]



	MUV

	Benchmark dataset selected from PubChem BioAssay by applying a refined nearest neighbor analysis

	Molecules

	90 000

	ref [https://arxiv.org/abs/1703.00564]



	NCI

	
	
	
	


	PCBA

	Database consisting of biological activities of small molecules generated by high-throughput screening

	Molecules

	400 000

	ref [https://pubs.rsc.org/en/content/articlehtml/2018/sc/c7sc02664a]



	PDBBIND

	Experimental binding affinity data and structures of protein-ligand complexes

	Molecules

	“refined set”  4 852 - “general set” 12 800 - “core set” 193

	ref [https://pubmed.ncbi.nlm.nih.gov/19358517/]



	PPB

	
	
	
	


	QM7

	Subset of GDB-13  containing up to 7 heavy atoms CNOS

	Molecules

	7 165

	ref [https://pubs.rsc.org/en/content/articlehtml/2018/sc/c7sc02664a]



	QM8

	Dataset used in a study on modeling quantum mechanical calculations of electronic spectra and excited state energy of small molecules

	Molecules

	20 000

	ref [https://pubs.rsc.org/en/content/articlehtml/2018/sc/c7sc02664a]



	QM9

	Dataset that provides geometric/energetic/electronic and thermodynamic properties for a subset of GDB-17 database

	Molecules

	134 000

	ref [https://pubs.rsc.org/en/content/articlehtml/2018/sc/c7sc02664a]



	SAMPL

	Similat to FreeSolv dataset which provides experimental and calculated hydration free energy of small molecules in water

	
	
	


	SIDER

	The Side Effect Resource (SIDER) is a database of marketed drugs and adverse drug reactions (ADR)

	Molecules

	1 427

	ref [https://pubs.rsc.org/en/content/articlehtml/2018/sc/c7sc02664a]



	Thermosol

	Thermodynamic solubility datasets

	
	
	


	Tox21

	The “Toxicology in the 21st Century” (Tox21) initiative created a public database measuring the toxicity of compounds

	Molecules

	8 000

	ref [https://pubs.rsc.org/en/content/articlehtml/2018/sc/c7sc02664a]



	Toxcast

	Toxicology data for an extensive library of compounds based on in vitro high-throughput screening

	Molecules

	8 000

	ref [https://pubs.rsc.org/en/content/articlehtml/2018/sc/c7sc02664a]



	USPTO

	Subsets of USPTO dataset of organic chemical reactions extracted from US patents and patent applications

	Chemical reactions SMILES

	MIT  479 000  - STEREO  1 M - 50K  50 000

	ref [https://doi.org/10.6084/m9.figshare.5104873.v1]



	UV

	The UV dataset tests Merck’s internal compounds on 190 absorption wavelengths between 210 and 400 nm

	Molecules

	10 000

	


	ZINC15

	Purchasable compounds for virtual screening of small molecules to identify structures that are likely to bind to drug targets

	Molecules

	250K - 1M - 10M

	ref [http://pubs.acs.org/doi/abs/10.1021/acs.jcim.5b00559.]



	Platinum Adsorption

	Different configurations of Adsorbates (i.e N and NO) on Platinum surface represented as Lattice and their formation energy

	Adsorbate Configurations

	648
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