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The DeepChem project aims to democratize deep learning for science.
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2 GET STARTED



CHAPTER

ONE

WHAT IS DEEPCHEM?

The DeepChem project aims to build high quality tools to democratize the use of deep learning in the sciences. The
origin of DeepChem focused on applications of deep learning to chemistry, but the project has slowly evolved past its
roots to broader applications of deep learning to the sciences.

The core DeepChem Repo serves as a monorepo that organizes the DeepChem suite of scientific tools. As the project
matures, smaller more focused tool will be surfaced in more targeted repos. DeepChem is primarily developed in
Python, but we are experimenting with adding support for other languages.

What are some of the things you can use DeepChem to do? Here’s a few examples:

• Predict the solubility of small drug-like molecules

• Predict binding affinity for small molecule to protein targets

• Predict physical properties of simple materials

• Analyze protein structures and extract useful descriptors

• Count the number of cells in a microscopy image

• More coming soon. . .

We should clarify one thing up front though. DeepChem is a machine learning library, so it gives you the tools to
solve each of the applications mentioned above yourself. DeepChem may or may not have prebaked models which
can solve these problems out of the box.

Over time, we hope to grow the set of scientific applications DeepChem can address. This means we need lots of help!
If you’re a scientist who’s interested in open source, please pitch on building DeepChem.
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CHAPTER

TWO

QUICK START

The fastest way to get up and running with DeepChem is to run it on Google Colab. Check out one of the DeepChem
Tutorials or this forum post for Colab quick start guides.

If you’d like to install DeepChem locally, we recommend installing deepchem which is nightly version and RDKit.
RDKit is a soft requirement package, but many useful methods depend on it.

pip install tensorflow~=2.4
pip install --pre deepchem
conda install -y -c conda-forge rdkit

Then open your python and try running.

import deepchem

5
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CHAPTER

THREE

ABOUT US

DeepChem is managed by a team of open source contributors. Anyone is free to join and contribute! DeepChem has
weekly developer calls. You can find meeting minutes on our forums.

DeepChem developer calls are open to the public! To listen in, please email X.Y@gmail.com, where X=bharath and
Y=ramsundar to introduce yourself and ask for an invite.

Important:

Join our community gitter to discuss DeepChem.
Sign up for our forums to talk about research, development, and general questions.

3.1 Installation

3.1.1 Stable version

Please install tensorflow ~2.4 before installing deepchem.

pip install tensorflow~=2.4

Then, you install deepchem via pip or conda.

pip install deepchem

or

conda install -c conda-forge deepchem

RDKit is a soft requirement package, but many useful methods like molnet depend on it. We recommend installing
RDKit with deepchem if you use conda.

conda install -y -c conda-forge rdkit

7
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3.1.2 Nightly build version

You install the nightly build version via pip. The nightly version is built by the HEAD of DeepChem.

pip install tensorflow~=2.4
pip install --pre deepchem

3.1.3 Google Colab

The fastest way to get up and running with DeepChem is to run it on Google Colab. Check out one of the DeepChem
Tutorials or this forum post for Colab quick start guides.

3.1.4 Docker

If you want to install using a docker, you can pull two kinds of images from DockerHub.

• deepchemio/deepchem:x.x.x

– Image built by using a conda (x.x.x is a version of deepchem)

– This image is built when we push x.x.x. tag

– Dockerfile is put in `docker/tag`_ directory

• deepchemio/deepchem:latest

– Image built from source codes

– This image is built every time we commit to the master branch

– Dockerfile is put in `docker/nightly`_ directory

First, you pull the image you want to use.

docker pull deepchemio/deepchem:latest

Then, you create a container based on the image.

docker run --rm -it deepchemio/deepchem:latest

If you want GPU support:

# If nvidia-docker is installed
nvidia-docker run --rm -it deepchemio/deepchem:latest
docker run --runtime nvidia --rm -it deepchemio/deepchem:latest

# If nvidia-container-toolkit is installed
docker run --gpus all --rm -it deepchemio/deepchem:latest

You are now in a docker container which deepchem was installed. You can start playing with it in the command line.

(deepchem) root@xxxxxxxxxxxxx:~/mydir# python
Python 3.6.10 |Anaconda, Inc.| (default, May 8 2020, 02:54:21)
[GCC 7.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import deepchem as dc

If you want to check the tox21 benchmark:
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# you can run our tox21 benchmark
(deepchem) root@xxxxxxxxxxxxx:~/mydir# wget https://raw.githubusercontent.com/
→˓deepchem/deepchem/master/examples/benchmark.py
(deepchem) root@xxxxxxxxxxxxx:~/mydir# python benchmark.py -d tox21 -m graphconv -s
→˓random

3.1.5 From source with conda

Installing via these steps will ensure you are installing from the source.

Prerequisite

• Shell: Bash, Zsh, PowerShell

• Conda: >4.6

First, please clone the deepchem repository from GitHub.

git clone https://github.com/deepchem/deepchem.git
cd deepchem

Then, execute the shell script. The shell scripts require two arguments, python version and gpu/cpu.

source scripts/install_deepchem_conda.sh 3.7 cpu

If you want GPU support (we supports only CUDA 10.1):

source scripts/install_deepchem_conda.sh 3.7 gpu

If you are using the Windows and the PowerShell:

. .\scripts\install_deepchem_conda.ps1 3.7 cpu

Before activating deepchem environment, make sure conda has been initialized.
Check if there is a (XXXX) in your command line.
If not, use conda init <YOUR_SHELL_NAME> to activate it, then:

conda activate deepchem
pip install -e .
pytest -m "not slow" deepchem # optional

3.2 Requirements

3.2.1 Hard requirements

DeepChem officially supports Python 3.6 through 3.7 and requires these packages on any condition.

• joblib

• NumPy

• pandas

3.2. Requirements 9
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• scikit-learn

• SciPy

• TensorFlow

– deepchem>=2.4.0 depends on TensorFlow v2 (2.3.x)

– deepchem<2.4.0 depends on TensorFlow v1 (>=1.14)

3.2.2 Soft requirements

DeepChem has a number of “soft” requirements.

Package name Version Location where this package is used (dc: deepchem)
BioPython latest dc.utlis.genomics_utils
Deep Graph Library 0.5.x dc.feat.graph_data, dc.models.

torch_models
DGL-LifeSci 0.2.x dc.models.torch_models
HuggingFace Trans-
formers

Not Testing dc.feat.smiles_tokenizer

LightGBM latest dc.models.gbdt_models
matminer latest dc.feat.materials_featurizers
MDTraj latest dc.utils.pdbqt_utils
Mol2vec latest dc.utils.molecule_featurizers
Mordred latest dc.utils.molecule_featurizers
NetworkX latest dc.utils.rdkit_utils
OpenAI Gym Not Testing dc.rl
OpenMM latest dc.utils.rdkit_utils
PDBFixer latest dc.utils.rdkit_utils
Pillow latest dc.data.data_loader, dc.trans.

transformers
PubChemPy latest dc.feat.molecule_featurizers
pyGPGO latest dc.hyper.gaussian_process
Pymatgen latest dc.feat.materials_featurizers
PyTorch 1.6.0 dc.data.datasets
PyTorch Geometric 1.6.x (with PyTorch

1.6.0)
dc.feat.graph_data dc.models.
torch_models

RDKit latest Many modules (we recommend you to instal)
simdna latest dc.metrics.genomic_metrics, dc.molnet.

dnasim
Tensorflow Probability 0.11.x dc.rl
Weights & Biases Not Testing dc.models.keras_model, dc.models.

callbacks
XGBoost latest dc.models.gbdt_models
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https://scikit-learn.org/stable/
https://www.scipy.org/
https://www.tensorflow.org/
https://biopython.org/wiki/Documentation
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3.3 Tutorials

If you’re new to DeepChem, you probably want to know the basics. What is DeepChem? Why should you care about
using it? The short answer is that DeepChem is a scientific machine learning library. (The “Chem” indicates the
historical fact that DeepChem initially focused on chemical applications, but we aim to support all types of scientific
applications more broadly).

Why would you want to use DeepChem instead of another machine learning library? Simply put, DeepChem maintains
an extensive collection of utilities to enable scientific deep learning including classes for loading scientific datasets,
processing them, transforming them, splitting them up, and learning from them. Behind the scenes DeepChem uses
a variety of other machine learning frameworks such as scikit-learn, TensorFlow, and XGBoost. We are also ex-
perimenting with adding additional models implemented in PyTorch and JAX. Our focus is to facilitate scientific
experimentation using whatever tools are available at hand.

In the rest of this tutorials, we’ll provide a rapid fire overview of DeepChem’s API. DeepChem is a big library so we
won’t cover everything, but we should give you enough to get started.

Contents

• Data Handling

• Feature Engineering

• Data Splitting

• Model Training and Evaluating

• More Tutorials

3.3.1 Data Handling

The dc.data module contains utilities to handle Dataset objects. These Dataset objects are the heart of
DeepChem. A Dataset is an abstraction of a dataset in machine learning. That is, a collection of features, la-
bels, weights, alongside associated identifiers. Rather than explaining further, we’ll just show you.

>>> import deepchem as dc
>>> import numpy as np
>>> N_samples = 50
>>> n_features = 10
>>> X = np.random.rand(N_samples, n_features)
>>> y = np.random.rand(N_samples)
>>> dataset = dc.data.NumpyDataset(X, y)
>>> dataset.X.shape
(50, 10)
>>> dataset.y.shape
(50,)

Here we’ve used the NumpyDataset class which stores datasets in memory. This works fine for smaller datasets and
is very convenient for experimentation, but is less convenient for larger datasets. For that we have the DiskDataset
class.

>>> dataset = dc.data.DiskDataset.from_numpy(X, y)
>>> dataset.X.shape
(50, 10)

(continues on next page)
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(continued from previous page)

>>> dataset.y.shape
(50,)

In this example we haven’t specified a data directory, so this DiskDataset is written to a temporary folder. Note
that dataset.X and dataset.y load data from disk underneath the hood! So this can get very expensive for larger
datasets.

3.3.2 Feature Engineering

“Featurizer” is a chunk of code which transforms raw input data into a processed form suitable for machine learn-
ing. The dc.feat module contains an extensive collection of featurizers for molecules, molecular complexes and
inorganic crystals. We’ll show you the example about the usage of featurizers.

>>> smiles = [
... 'O=Cc1ccc(O)c(OC)c1',
... 'CN1CCC[C@H]1c2cccnc2',
... 'C1CCCCC1',
... 'c1ccccc1',
... 'CC(=O)O',
... ]
>>> properties = [0.4, -1.5, 3.2, -0.2, 1.7]
>>> featurizer = dc.feat.CircularFingerprint(size=1024)
>>> ecfp = featurizer.featurize(smiles)
>>> ecfp.shape
(5, 1024)
>>> dataset = dc.data.NumpyDataset(X=ecfp, y=np.array(properties))
>>> len(dataset)
5

Here, we’ve used the CircularFingerprint and converted SMILES to ECFP. The ECFP is a fingerprint which
is a bit vector made by chemical structure information and we can use it as the input for various models.

And then, you may have a CSV file which contains SMILES and property like HOMO-LUMO gap. In such a case, by
using DataLoader, you can load and featurize your data at once.

>>> import pandas as pd
>>> # make a dataframe object for creating a CSV file
>>> df = pd.DataFrame(list(zip(smiles, properties)), columns=["SMILES", "property"])
>>> import tempfile
>>> with dc.utils.UniversalNamedTemporaryFile(mode='w') as tmpfile:
... # dump the CSV file
... df.to_csv(tmpfile.name)
... # initizalize the featurizer
... featurizer = dc.feat.CircularFingerprint(size=1024)
... # initizalize the dataloader
... loader = dc.data.CSVLoader(["property"], feature_field="SMILES",
→˓featurizer=featurizer)
... # load and featurize the data from the CSV file
... dataset = loader.create_dataset(tmpfile.name)
... len(dataset)
5
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3.3.3 Data Splitting

The dc.splits module contains a collection of scientifically aware splitters. Generally, we need to split the original
data to training, validation and test data in order to tune the model and evaluate the model’s performance. We’ll show
you the example about the usage of splitters.

>>> splitter = dc.splits.RandomSplitter()
>>> # split 5 datapoints in the ratio of train:valid:test = 3:1:1
>>> train_dataset, valid_dataset, test_dataset = splitter.train_valid_test_split(
... dataset=dataset, frac_train=0.6, frac_valid=0.2, frac_test=0.2
... )
>>> len(train_dataset)
3
>>> len(valid_dataset)
1
>>> len(test_dataset)
1

Here, we’ve used the RandomSplitter and splitted the data randomly in the ratio of train:valid:test = 3:1:1. But, the
random splitting sometimes overestimates model’s performance, especially for small data or imbalance data. Please
be careful for model evaluation. The dc.splits provides more methods and algorithms to evaluate the model’s
performance appropriately, like cross validation or splitting using molecular scaffolds.

3.3.4 Model Training and Evaluating

The dc.models conteins an extensive collection of models for scientific applications. Most of all models inherits
dc.models.Model and we can train them by just calling fit method. You don’t need to care about how to use
specific framework APIs. We’ll show you the example about the usage of models.

>>> from sklearn.ensemble import RandomForestRegressor
>>> rf = RandomForestRegressor()
>>> model = dc.models.SklearnModel(model=rf)
>>> # model training
>>> model.fit(train_dataset)
>>> valid_preds = model.predict(valid_dataset)
>>> valid_preds.shape
(1,)
>>> test_preds = model.predict(test_dataset)
>>> test_preds.shape
(1,)

Here, we’ve used the SklearnModel and trained the model. Even if you want to train a deep learning model which
is implemented by TensorFlow or PyTorch, calling fit method is all you need!

And then, if you use dc.metrics.Metric, you can evaluate your model by just calling evaluate method.

>>> # initialze the metric
>>> metric = dc.metrics.Metric(dc.metrics.mae_score)
>>> # evaluate the model
>>> train_score = model.evaluate(train_dataset, [metric])
>>> valid_score = model.evaluate(valid_dataset, [metric])
>>> test_score = model.evaluate(test_dataset, [metric])

3.3. Tutorials 13
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3.3.5 More Tutorials

DeepChem maintains an extensive collection of addition tutorials that are meant to be run on Google Colab, an online
platform that allows you to execute Jupyter notebooks. Once you’ve finished this introductory tutorial, we recommend
working through these more involved tutorials.

3.4 Examples

We show a bunch of examples for DeepChem by the doctest style.

• We match against doctest’s ... wildcard on code where output is usually ignored

• We often use threshold assertions (e.g: score['mean-pearson_r2_score'] > 0.92), as this is what
matters for model training code.

Contents

• Delaney (ESOL)

– MultitaskRegressor

– GraphConvModel

• ChEMBL

– MultitaskRegressor

– GraphConvModel

Before jumping in to examples, we’ll import our libraries and ensure our doctests are reproducible:

>>> import numpy as np
>>> import tensorflow as tf
>>> import deepchem as dc
>>>
>>> # Run before every test for reproducibility
>>> def seed_all():
... np.random.seed(123)
... tf.random.set_seed(123)

3.4.1 Delaney (ESOL)

Examples of training models on the Delaney (ESOL) dataset included in MoleculeNet.

We’ll be using its smiles field to train models to predict its experimentally measured solvation energy (expt).

14 Chapter 3. About Us
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MultitaskRegressor

First, we’ll load the dataset with load_delaney() and fit a MultitaskRegressor:

>>> seed_all()
>>> # Load dataset with default 'scaffold' splitting
>>> tasks, datasets, transformers = dc.molnet.load_delaney()
>>> tasks
['measured log solubility in mols per litre']
>>> train_dataset, valid_dataset, test_dataset = datasets
>>>
>>> # We want to know the pearson R squared score, averaged across tasks
>>> avg_pearson_r2 = dc.metrics.Metric(dc.metrics.pearson_r2_score, np.mean)
>>>
>>> # We'll train a multitask regressor (fully connected network)
>>> model = dc.models.MultitaskRegressor(
... len(tasks),
... n_features=1024,
... layer_sizes=[500])
>>>
>>> model.fit(train_dataset)
0...
>>>
>>> # We now evaluate our fitted model on our training and validation sets
>>> train_scores = model.evaluate(train_dataset, [avg_pearson_r2], transformers)
>>> assert train_scores['mean-pearson_r2_score'] > 0.7, train_scores
>>>
>>> valid_scores = model.evaluate(valid_dataset, [avg_pearson_r2], transformers)
>>> assert valid_scores['mean-pearson_r2_score'] > 0.3, valid_scores

GraphConvModel

The default featurizer for Delaney is ECFP, short for “Extended-connectivity fingerprints.” For a GraphConvModel,
we’ll reload our datasets with featurizer='GraphConv':

>>> seed_all()
>>> tasks, datasets, transformers = dc.molnet.load_delaney(featurizer='GraphConv')
>>> train_dataset, valid_dataset, test_dataset = datasets
>>>
>>> model = dc.models.GraphConvModel(len(tasks), mode='regression', dropout=0.5)
>>>
>>> model.fit(train_dataset, nb_epoch=30)
0...
>>>
>>> # We now evaluate our fitted model on our training and validation sets
>>> train_scores = model.evaluate(train_dataset, [avg_pearson_r2], transformers)
>>> assert train_scores['mean-pearson_r2_score'] > 0.5, train_scores
>>>
>>> valid_scores = model.evaluate(valid_dataset, [avg_pearson_r2], transformers)
>>> assert valid_scores['mean-pearson_r2_score'] > 0.3, valid_scores

3.4. Examples 15
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3.4.2 ChEMBL

Examples of training models on ChEMBL dataset included in MoleculeNet.

ChEMBL is a manually curated database of bioactive molecules with drug-like properties. It brings together chemical,
bioactivity and genomic data to aid the translation of genomic information into effective new drugs.

MultitaskRegressor

>>> seed_all()
>>> # Load ChEMBL 5thresh dataset with random splitting
>>> chembl_tasks, datasets, transformers = dc.molnet.load_chembl(
... shard_size=2000, featurizer="ECFP", set="5thresh", split="random")
>>> train_dataset, valid_dataset, test_dataset = datasets
>>> len(chembl_tasks)
691
>>> f'Compound train/valid/test split: {len(train_dataset)}/{len(valid_dataset)}/
→˓{len(test_dataset)}'
'Compound train/valid/test split: 19096/2387/2388'
>>>
>>> # We want to know the RMS, averaged across tasks
>>> avg_rms = dc.metrics.Metric(dc.metrics.rms_score, np.mean)
>>>
>>> # Create our model
>>> n_layers = 3
>>> model = dc.models.MultitaskRegressor(
... len(chembl_tasks),
... n_features=1024,
... layer_sizes=[1000] * n_layers,
... dropouts=[.25] * n_layers,
... weight_init_stddevs=[.02] * n_layers,
... bias_init_consts=[1.] * n_layers,
... learning_rate=.0003,
... weight_decay_penalty=.0001,
... batch_size=100)
>>>
>>> model.fit(train_dataset, nb_epoch=5)
0...
>>>
>>> # We now evaluate our fitted model on our training and validation sets
>>> train_scores = model.evaluate(train_dataset, [avg_rms], transformers)
>>> assert train_scores['mean-rms_score'] < 10.00
>>>
>>> valid_scores = model.evaluate(valid_dataset, [avg_rms], transformers)
>>> assert valid_scores['mean-rms_score'] < 10.00

16 Chapter 3. About Us
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GraphConvModel

>>> # Load ChEMBL dataset
>>> chembl_tasks, datasets, transformers = dc.molnet.load_chembl(
... shard_size=2000, featurizer="GraphConv", set="5thresh", split="random")
>>> train_dataset, valid_dataset, test_dataset = datasets
>>>
>>> # RMS, averaged across tasks
>>> avg_rms = dc.metrics.Metric(dc.metrics.rms_score, np.mean)
>>>
>>> model = dc.models.GraphConvModel(
... len(chembl_tasks), batch_size=128, mode='regression')
>>>
>>> # Fit trained model
>>> model.fit(train_dataset, nb_epoch=5)
0...
>>>
>>> # We now evaluate our fitted model on our training and validation sets
>>> train_scores = model.evaluate(train_dataset, [avg_rms], transformers)
>>> assert train_scores['mean-rms_score'] < 10.00
>>>
>>> valid_scores = model.evaluate(valid_dataset, [avg_rms], transformers)
>>> assert valid_scores['mean-rms_score'] < 10.00

3.5 Known Issues & Limitations

3.5.1 Broken features

A small number of Deepchem features are known to be broken. The Deepchem team will either fix or deprecate these
broken features. It is impossible to know of every possible bug in a large project like Deepchem, but we hope to save
you some headache by listing features that we know are partially or completely broken.

Note: This list is likely to be non-exhaustive. If we missed something, please let us know
[here](https://github.com/deepchem/deepchem/issues/2376).

3.5.2 Experimental features

Deepchem features usually undergo rigorous code review and testing to ensure that they are ready for production
environments. The following Deepchem features have not been thoroughly tested to the level of other Deepchem
modules, and could be potentially problematic in production environments.

Note: This list is likely to be non-exhaustive. If we missed something, please let us know
[here](https://github.com/deepchem/deepchem/issues/2376).

Feature Tracker and notes
Mol2 Loading Needs more testing.
Interaction Fingerprints Needs more testing.

If you would like to help us address these known issues, please consider contributing to Deepchem!

3.5. Known Issues & Limitations 17
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3.6 Licensing and Commercial Uses

DeepChem is licensed under the MIT License. We actively support commercial users. Note that any novel molecules,
materials, or other discoveries powered by DeepChem belong entirely to the user and not to DeepChem developers.

That said, we would very much appreciate a citation if you find our tools useful. You can cite DeepChem with the
following reference.

@book{Ramsundar-et-al-2019,
title={Deep Learning for the Life Sciences},
author={Bharath Ramsundar and Peter Eastman and Patrick Walters and Vijay Pande

→˓and Karl Leswing and Zhenqin Wu},
publisher={O'Reilly Media},
note={\url{https://www.amazon.com/Deep-Learning-Life-Sciences-Microscopy/dp/

→˓1492039837}},
year={2019}

}

3.7 Contibuting to DeepChem as a Scientist

The scientific community in many ways is quite traditional. Students typically learn in apprenticeship from from
advisors who teach a small number of students directly. This system has endured for centuries and allows for expert
scientists to teach their ways of thinking to new students.

For more context, most scientific research today is done in “labs” run in this mostly traditional fashion. A principal
investigator (PI) will run the lab and work with undergraduate, graduate, and postdoctoral students who produce
research papers. Labs are funded by “grants,” typically from governments and philanthropic agencies. Papers and
citations are the critical currencies of this system, and a strong publication record is necessary for any scientist to
establish themselves.

This traditional model can find it difficult to fund the development of high quality software for a few reasons. First,
students are in a lab for limited periods of time (3-5 years often). This means there’s high turnover, and critical
knowledge can be lost when a student moves on. Second, grants for software are still new and not broadly available.
A lab might very reasonably choose to focus on scientific discovery rather than on necessary software engineering.
(Although, it’s worth noting there are many exceptions that prove the rule! DeepChem was born in an academic lab
like many other quality projects.)

We believe that contributing to and using DeepChem can be highly valuable for scientific careers. DeepChem can
help maintain new scientific algorithms for the long term, making sure that your discoveries continue to be used after
students graduate. We’ve seen too many brilliant projects flounder after students move on, and we’d like to help you
make sure that your algorithms have the most impact.

3.7.1 Scientist FAQ

Contents

• Wouldn’t it be better for my career to make my own package rather than use DeepChem?

• Is there a DeepChem PI?

• Do I need to add DeepChem team members as co-authors to my paper?
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• I want to establish my scientific niche. How can I do that as a DeepChem contributor? Won’t my contribution
be lost in the noise?

• I’m an aspiring scientist, not part of a lab. Can I join DeepChem?

• Is there DeepChem Grant Money?

• I’m an industry researcher. Can I participate too?

• What about intellectual property?

• If I use DeepChem on my organization’s data, do I have to release the data?

• What if I want to release data? Can DeepChem help?

• Is MoleculeNet just about molecules?

• Does MoleculeNet allow for releasing data under different licenses?

Wouldn’t it be better for my career to make my own package rather than use DeepChem?

The answer to this really depends on what you’re looking for out of your career! Making and maintaining good soft-
ware is hard. It requires careful testing and continued maintenance. Your code will bitrot over time without attention.
If your focus is on new inventions and you find software engineering less compelling, working with DeepChem may
enable you to go further in your career by letting you focus on new algorithms and leveraging the DeepChem Project’s
infrastructure to maintain your inventions.

In addition, you may find considerable inspiration from participating in the DeepChem community. Looking at how
other scientists solve problems, and connecting with new collaborators across the world can help you look at problems
in a new way. Longtime DeepChem contributors find that they often end up writing papers together!

All that said, there may be very solid reasons for you to build your own project! Especially if you want to explore
designs that we haven’t or can’t easily. In that case, we’d still love to collaborate with you. DeepChem depends on a
broad constellation of scientific packages and we’d love to make your package’s features accessible to our users.

Is there a DeepChem PI?

While DeepChem was born in the Pande lab at Stanford, the project now lives as a “decentralized research organiza-
tion.” It would be more accurate to say that there are informally multiple “DeepChem PIs,” who use it in their work.
You too can be a DeepChem PI!

Do I need to add DeepChem team members as co-authors to my paper?

Our suggestion is to use good judgment and usual scientific etiquette. If a particular DeepChem team member has
contributed a lot to your effort, adding them might make sense. If no one person has contributed sufficiently, an
acknowledgment or citation would be great!
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I want to establish my scientific niche. How can I do that as a DeepChem contributor? Won’t my
contribution be lost in the noise?

It’s critically important for a new scientist to establish themselves and their contributions in order to launch a scientific
career. We believe that DeepChem can help you do this! If you add a significant set of new features to DeepChem, it
might be appropriate for you to write a paper (as lead or corresponding author or however makes sense) that introduces
the new feature and your contribution.

As a decentralized research organization, we want to help you launch your careers. We’re very open to other collabo-
ration structures that work for your career needs.

I’m an aspiring scientist, not part of a lab. Can I join DeepChem?

Yes! DeepChem’s core mission is to democratize the use of deep learning for the sciences. This means no barriers, no
walls. Anyone is welcome to join and contribute. Join our developer calls, chat one-on-one with our scientists, many
of whom are glad to work with new students. You may form connections that help you join a more traditional lab, or
you may choose to form your own path. We’re glad to support either.

Is there DeepChem Grant Money?

Not yet, but we’re actively looking into getting grants to support DeepChem researchers. If you’re a PI who wants to
collaborate with us, please get in touch!

I’m an industry researcher. Can I participate too?

Yes! The most powerful features of DeepChem is its community. Becoming part of the DeepChem project can let
you build a network that lasts across jobs and roles. Lifelong employment at a corporation is less and less common.
Joining our community will let you build bonds that cross jobs and could help you do your job today better too!

What about intellectual property?

One of the core goals for DeepChem is to build a shared set of scientific resources and techniques that aren’t locked up
by patents. Our hope is to enable your company or organization to leverage techniques with less worry about patent
infringement.

We ask in return that you act as a responsible community member and put in as much as you get out. If you find
DeepChem very valuable, please consider contributing back some innovations or improvements so others can benefit.
If you’re getting a patent on your invention, try to make sure that you don’t infringe on anything in DeepChem. Lots
of things sneak past patent review. As an open source community, we don’t have the resources to actively defend
ourselves and we rely on your good judgment and help!

If I use DeepChem on my organization’s data, do I have to release the data?

Not at all! DeepChem is released with a permissive MIT license. Any analyses you perform belong entirely to you.
You are under no obligation to release your proprietary data or inventions.
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What if I want to release data? Can DeepChem help?

If you are interested in open sourcing data, the DeepChem project maintains the [MoleculeNet](https://deepchem.
readthedocs.io/en/latest/moleculenet.html) suite of datasets. Adding your dataset to MoleculeNet can be a powerful
way to ensure that a broad community of users can access your released data in convenient fashion. It’s important
to note that MoleculeNet provides programmatic access to data, which may not be appropriate for all types of data
(especially for clinical or patient data which may be governed by regulations/laws). Open source datasets can be a
powerful resource, but need to be handled with care.

Is MoleculeNet just about molecules?

Not anymore! Any scientific datasets are welcome in MoleculeNet. At some point in the future, we may rename the
effort to avoid confusion, but for now, we emphasize that non-molecular datasets are welcome too.

Does MoleculeNet allow for releasing data under different licenses?

MoleculeNet already supports datasets released under different licenses. We can make work with you to use your
license of choice.

3.8 Coding Conventions

3.8.1 Code Formatting

We use YAPF to format all of the code in DeepChem. Although it sometimes produces slightly awkward formatting,
it does have two major benefits. First, it ensures complete consistency throughout the entire codebase. And second, it
avoids disagreements about how a piece of code should be formatted.

Whenever you modify a file, run yapf on it to reformat it before checking it in.

yapf -i <modified file>

YAPF is run on every pull request to make sure the formatting is correct, so if you forget to do this the continuous
integration system will remind you. Because different versions of YAPF can produce different results, it is essential to
use the same version that is being run on CI. At present, that is 0.22. We periodically update it to newer versions.

3.8.2 Linting

We use Flake8 to check our code syntax. Lint tools basically provide these benefits.

• Prevent things like syntax errors or typos

• Save our review time (no need to check unused codes or typos)

Whenever you modify a file, run flake8 on it.

flake8 <modified file> --count

If the command return 0, it means your code pass Flake8 check.
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3.8.3 Docstrings

All classes and functions should include docstrings describing their purpose and intended usage. When in doubt about
how much information to include, always err on the side of including more rather than less. Explain what problem
a class is intended to solve, what algorithms it uses, and how to use it correctly. When appropriate, cite the relevant
publications.

All docstrings should follow the numpy docstring formatting conventions.

3.8.4 Unit Tests

Having an extensive collection of test cases is essential to ensure the code works correctly. If you haven’t written tests
for a feature, that means the feature isn’t finished yet. Untested code is code that probably doesn’t work.

Complex numerical code is sometimes challenging to fully test. When an algorithm produces a result, it sometimes is
not obvious how to tell whether the result is correct or not. As far as possible, try to find simple examples for which
the correct answer is exactly known. Sometimes we rely on stochastic tests which will probably pass if the code is
correct and probably fail if the code is broken. This means these tests are expected to fail a small fraction of the time.
Such tests can be marked with the @flaky annotation. If they fail during continuous integration, they will be run a
second time and an error only reported if they fail again.

If possible, each test should run in no more than a few seconds. Occasionally this is not possible. In that case, mark the
test with the @pytest.mark.slow annotation. Slow tests are skipped during continuous integration, so changes
that break them may sometimes slip through and get merged into the repository. We still try to run them regularly, so
hopefully the problem will be discovered fairly soon.

3.8.5 Testing Machine Learning Models

Testing the correctness of a machine learning model can be quite tricky to do in practice. When adding a new machine
learning model to DeepChem, you should add at least a few basic types of unit tests:

• Overfitting test: Create a small synthetic dataset and test that your model can learn this datasest with high
accuracy. For regression and classification task, this should correspond to low training error on the dataset. For
generative tasks, this should correspond to low training loss on the dataset.

• Reloading test: Check that a trained model can be saved to disk and reloaded correctly. This should involve
checking that predictions from the saved and reloaded models matching exactly.

Note that unit tests are not sufficient to gauge the real performance of a model. You should benchmark your model on
larger datasets as well and report your benchmarking tests in the PR comments.

3.8.6 Type Annotations

Type annotations are an important tool for avoiding bugs. All new code should provide type annotations for function
arguments and return types. When you make significant changes to existing code that does not have type annotations,
please consider adding them at the same time.

We use the mypy static type checker to verify code correctness. It is automatically run on every pull request. If you
want to run it locally to make sure you are using types correctly before checking in your code, cd to the top level
directory of the repository and execute the command

mypy -p deepchem --ignore-missing-imports
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Because Python is such a dynamic language, it sometimes is not obvious what type to specify. A good rule of thumb
is to be permissive about input types and strict about output types. For example, many functions are documented as
taking a list as an argument, but actually work just as well with a tuple. In those cases, it is best to specify the input
type as Sequence to accept either one. But if a function returns a list, specify the type as List because we can
guarantee the return value will always have that exact type.

Another important case is NumPy arrays. Many functions are documented as taking an array, but actually can accept
any array-like object: a list of numbers, a list of lists of numbers, a list of arrays, etc. In that case, specify the type
as Sequence to accept any of these. On the other hand, if the function truly requires an array and will fail with any
other input, specify it as np.ndarray.

The deepchem.utils.typing module contains definitions of some types that appear frequently in the
DeepChem API. You may find them useful when annotating code.

3.9 Infrastructures

The DeepChem project maintains supporting infrastructure on a number of different services. This infrastructure is
maintained by the DeepChem development team.

3.9.1 GitHub

The core DeepChem repositories are maintained in the deepchem GitHub organization. And, we use GitHub Actions
to build a continuous integration pipeline.

DeepChem developers have write access to the repositories on this repo and technical steering committee members
have admin access.

3.9.2 Conda Forge

The DeepChem feedstock repo maintains the build recipe for conda-forge.

3.9.3 Docker Hub

DeepChem hosts major releases and nightly docker build instances on Docker Hub.

3.9.4 PyPI

DeepChem hosts major releases and nightly builds on PyPI.

3.9.5 Amazon Web Services

DeepChem’s website infrastructure is all managed on AWS through different AWS services. All DeepChem de-
velopers have access to these services through the deepchem-developers IAM role. (An IAM role controls access
permissions.) At present, @rbharath is the only developer with access to the IAM role, but longer term we should
migrate this so other folks have access to the roles.
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S3

Amazon’s S3 allows for storage of data on “buckets” (Think of buckets like folders.) There are two core deepchem S3
buckets:

• deepchemdata: This bucket hosts the deepchem.io website, MoleculeNet datasets, pre-featurized datasets, and
pretrained models. This bucket is set up to host a static website (at static).

• deepchemforum: This bucket hosts backups for the forums. The bucket is private for security reasons. The
forums themselves are hosted on a digital ocean instance that only @rbharath currently has access to. Longer
term, we should migrate the forums onto AWS so all DeepChem developers can access the forums. The forums
themselves are a discord instance. The forums upload their backups to this S3 bucket once a day. If the forums
crash, they can be restored from the backups in this bucket

Route 53

DNS for the deepchem.io website is handled by Route 53. The “hosted zone” deepchem.io holds all DNS information
for the website.

Certificate Manager

The AWS certificate manager issues the SSL/TLS certificate for the *.deepchem.io and deepchem.io domains.

Cloudfront

We make use of a cloudfront distribution to serve our static website. The cloudfront distribution connects to the
certificate in Certificate Manager and uses the deepchemdata bucket as the origin domain. We set CNAME for
www.deepchem.io and deepchem.io

3.9.6 GoDaddy

The deepchem.io domain is registered with GoDaddy. If you change the name servers in AWS Route 53, you will
need to update the GoDaddy record. At present, only @rbharath has access to the GoDaddy account that owns the
deepchem.io domain name. We should explore how to provide access to the domain name for other DeepChem
developers.

3.9.7 Digital Ocean

The forums are hosted on a digital ocean instance. At present, only @rbharath has access to this instance. We should
migrate this instance onto AWS so other DeepChem developers can help maintain the forums.
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3.10 Data

DeepChem dc.data provides APIs for handling your data.

If your data is stored by the file like CSV and SDF, you can use the Data Loaders. The Data Loaders read your data,
convert them to features (ex: SMILES to ECFP) and save the features to Dataset class. If your data is python objects
like Numpy arrays or Pandas DataFrames, you can use the Datasets directly.

Contents

• Datasets

– NumpyDataset

– DiskDataset

– ImageDataset

• Data Loaders

– CSVLoader

– UserCSVLoader

– ImageLoader

– JsonLoader

– SDFLoader

– FASTALoader

– InMemoryLoader

• Data Classes

– Graph Data

• Base Classes (for develop)

– Dataset

– DataLoader

3.10.1 Datasets

DeepChem dc.data.Dataset objects are one of the core building blocks of DeepChem programs. Dataset
objects hold representations of data for machine learning and are widely used throughout DeepChem.

The goal of the Dataset class is to be maximally interoperable with other common representations of machine
learning datasets. For this reason we provide interconversion methods mapping from Dataset objects to pandas
DataFrames, TensorFlow Datasets, and PyTorch datasets.
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NumpyDataset

The dc.data.NumpyDataset class provides an in-memory implementation of the abstract Dataset which
stores its data in numpy.ndarray objects.

class NumpyDataset(X: Union[numpy.ndarray, Sequence], y: Optional[Union[numpy.ndarray, Se-
quence]] = None, w: Optional[Union[numpy.ndarray, Sequence]] = None, ids:
Optional[Union[numpy.ndarray, Sequence]] = None, n_tasks: int = 1)

A Dataset defined by in-memory numpy arrays.

This subclass of Dataset stores arrays X,y,w,ids in memory as numpy arrays. This makes it very easy to construct
NumpyDataset objects.

Examples

>>> import numpy as np
>>> dataset = NumpyDataset(X=np.random.rand(5, 3), y=np.random.rand(5,), ids=np.
→˓arange(5))

__init__(X: Union[numpy.ndarray, Sequence], y: Optional[Union[numpy.ndarray, Sequence]]
= None, w: Optional[Union[numpy.ndarray, Sequence]] = None, ids: Op-
tional[Union[numpy.ndarray, Sequence]] = None, n_tasks: int = 1)→ None

Initialize this object.

Parameters

• X (np.ndarray) – Input features. A numpy array of shape (n_samples,. . . ).

• y (np.ndarray, optional (default None)) – Labels. A numpy array of
shape (n_samples, . . . ). Note that each label can have an arbitrary shape.

• w (np.ndarray, optional (default None)) – Weights. Should either be 1D
array of shape (n_samples,) or if there’s more than one task, of shape (n_samples, n_tasks).

• ids (np.ndarray, optional (default None)) – Identifiers. A numpy array
of shape (n_samples,)

• n_tasks (int, default 1) – Number of learning tasks.

__len__()→ int
Get the number of elements in the dataset.

get_shape()→ Tuple[Tuple[int, . . . ], Tuple[int, . . . ], Tuple[int, . . . ], Tuple[int, . . . ]]
Get the shape of the dataset.

Returns four tuples, giving the shape of the X, y, w, and ids arrays.

get_task_names()→ numpy.ndarray
Get the names of the tasks associated with this dataset.

property X
Get the X vector for this dataset as a single numpy array.

property y
Get the y vector for this dataset as a single numpy array.

property ids
Get the ids vector for this dataset as a single numpy array.

property w
Get the weight vector for this dataset as a single numpy array.
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iterbatches(batch_size: Optional[int] = None, epochs: int = 1, deterministic: bool =
False, pad_batches: bool = False) → Iterator[Tuple[numpy.ndarray, numpy.ndarray,
numpy.ndarray, numpy.ndarray]]

Get an object that iterates over minibatches from the dataset.

Each minibatch is returned as a tuple of four numpy arrays: (X, y, w, ids).

Parameters

• batch_size (int, optional (default None)) – Number of elements in each
batch.

• epochs (int, default 1) – Number of epochs to walk over dataset.

• deterministic (bool, optional (default False)) – If True, follow de-
terministic order.

• pad_batches (bool, optional (default False)) – If True, pad each batch
to batch_size.

Returns Generator which yields tuples of four numpy arrays (X, y, w, ids).

Return type Iterator[Batch]

itersamples()→ Iterator[Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]]
Get an object that iterates over the samples in the dataset.

Returns Iterator which yields tuples of four numpy arrays (X, y, w, ids).

Return type Iterator[Batch]

Examples

>>> dataset = NumpyDataset(np.ones((2,2)))
>>> for x, y, w, id in dataset.itersamples():
... print(x.tolist(), y.tolist(), w.tolist(), id)
[1.0, 1.0] [0.0] [0.0] 0
[1.0, 1.0] [0.0] [0.0] 1

transform(transformer: transformers.Transformer, **args) →
deepchem.data.datasets.NumpyDataset

Construct a new dataset by applying a transformation to every sample in this dataset.

The argument is a function that can be called as follows: >> newx, newy, neww = fn(x, y, w)

It might be called only once with the whole dataset, or multiple times with different subsets of the data.
Each time it is called, it should transform the samples and return the transformed data.

Parameters transformer (dc.trans.Transformer) – The transformation to apply to
each sample in the dataset

Returns A newly constructed NumpyDataset object

Return type NumpyDataset

select(indices: Sequence[int], select_dir: Optional[str] = None) →
deepchem.data.datasets.NumpyDataset

Creates a new dataset from a selection of indices from self.

Parameters

• indices (List[int]) – List of indices to select.
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• select_dir (str, optional (default None)) – Used to provide same API
as DiskDataset. Ignored since NumpyDataset is purely in-memory.

Returns A selected NumpyDataset object

Return type NumpyDataset

make_pytorch_dataset(epochs: int = 1, deterministic: bool = False, batch_size: Optional[int] =
None)

Create a torch.utils.data.IterableDataset that iterates over the data in this Dataset.

Each value returned by the Dataset’s iterator is a tuple of (X, y, w, id) containing the data for one batch, or
for a single sample if batch_size is None.

Parameters

• epochs (int, default 1) – The number of times to iterate over the Dataset

• deterministic (bool, default False) – If True, the data is produced in order.
If False, a different random permutation of the data is used for each epoch.

• batch_size (int, optional (default None)) – The number of samples to
return in each batch. If None, each returned value is a single sample.

Returns torch.utils.data.IterableDataset that iterates over the data in this dataset.

Return type torch.utils.data.IterableDataset

Note: This method requires PyTorch to be installed.

static from_DiskDataset(ds: deepchem.data.datasets.DiskDataset) →
deepchem.data.datasets.NumpyDataset

Convert DiskDataset to NumpyDataset.

Parameters ds (DiskDataset) – DiskDataset to transform to NumpyDataset.

Returns A new NumpyDataset created from DiskDataset.

Return type NumpyDataset

static to_json(self, fname: str)→ None
Dump NumpyDataset to the json file .

Parameters fname (str) – The name of the json file.

static from_json(fname: str)→ deepchem.data.datasets.NumpyDataset
Create NumpyDataset from the json file.

Parameters fname (str) – The name of the json file.

Returns A new NumpyDataset created from the json file.

Return type NumpyDataset

static merge(datasets: Sequence[deepchem.data.datasets.Dataset]) →
deepchem.data.datasets.NumpyDataset

Merge multiple NumpyDatasets.

Parameters datasets (List[Dataset]) – List of datasets to merge.

Returns A single NumpyDataset containing all the samples from all datasets.

Return type NumpyDataset
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static from_dataframe(df: pandas.core.frame.DataFrame, X: Optional[Union[str, Se-
quence[str]]] = None, y: Optional[Union[str, Sequence[str]]] = None,
w: Optional[Union[str, Sequence[str]]] = None, ids: Optional[str] =
None)

Construct a Dataset from the contents of a pandas DataFrame.

Parameters

• df (pd.DataFrame) – The pandas DataFrame

• X (str or List[str], optional (default None)) – The name of the col-
umn or columns containing the X array. If this is None, it will look for default column
names that match those produced by to_dataframe().

• y (str or List[str], optional (default None)) – The name of the col-
umn or columns containing the y array. If this is None, it will look for default column
names that match those produced by to_dataframe().

• w (str or List[str], optional (default None)) – The name of the col-
umn or columns containing the w array. If this is None, it will look for default column
names that match those produced by to_dataframe().

• ids (str, optional (default None)) – The name of the column containing the
ids. If this is None, it will look for default column names that match those produced by
to_dataframe().

get_statistics(X_stats: bool = True, y_stats: bool = True)→ Tuple[float, . . . ]
Compute and return statistics of this dataset.

Uses self.itersamples() to compute means and standard deviations of the dataset. Can compute on large
datasets that don’t fit in memory.

Parameters

• X_stats (bool, optional (default True)) – If True, compute feature-level
mean and standard deviations.

• y_stats (bool, optional (default True)) – If True, compute label-level
mean and standard deviations.

Returns

• If X_stats == True, returns (X_means, X_stds).

• If y_stats == True, returns (y_means, y_stds).

• If both are true, returns (X_means, X_stds, y_means, y_stds).

Return type Tuple

make_tf_dataset(batch_size: int = 100, epochs: int = 1, deterministic: bool = False, pad_batches:
bool = False)

Create a tf.data.Dataset that iterates over the data in this Dataset.

Each value returned by the Dataset’s iterator is a tuple of (X, y, w) for one batch.

Parameters

• batch_size (int, default 100) – The number of samples to include in each
batch.

• epochs (int, default 1) – The number of times to iterate over the Dataset.

• deterministic (bool, default False) – If True, the data is produced in order.
If False, a different random permutation of the data is used for each epoch.

3.10. Data 29



deepchem, Release 2.5.0

• pad_batches (bool, default False) – If True, batches are padded as necessary
to make the size of each batch exactly equal batch_size.

Returns TensorFlow Dataset that iterates over the same data.

Return type tf.data.Dataset

Note: This class requires TensorFlow to be installed.

to_dataframe()→ pandas.core.frame.DataFrame
Construct a pandas DataFrame containing the data from this Dataset.

Returns Pandas dataframe. If there is only a single feature per datapoint, will have column “X”
else will have columns “X1,X2,. . . ” for features. If there is only a single label per datapoint,
will have column “y” else will have columns “y1,y2,. . . ” for labels. If there is only a single
weight per datapoint will have column “w” else will have columns “w1,w2,. . . ”. Will have
column “ids” for identifiers.

Return type pd.DataFrame

DiskDataset

The dc.data.DiskDataset class allows for the storage of larger datasets on disk. Each DiskDataset is
associated with a directory in which it writes its contents to disk. Note that a DiskDataset can be very large, so
some of the utility methods to access fields of a Dataset can be prohibitively expensive.

class DiskDataset(data_dir: str)
A Dataset that is stored as a set of files on disk.

The DiskDataset is the workhorse class of DeepChem that facilitates analyses on large datasets. Use this class
whenever you’re working with a large dataset that can’t be easily manipulated in RAM.

On disk, a DiskDataset has a simple structure. All files for a given DiskDataset are stored in a data_dir. The
contents of data_dir should be laid out as follows:

data_dir/
|
—> metadata.csv.gzip
|
—> tasks.json
|
—> shard-0-X.npy
|
—> shard-0-y.npy
|
—> shard-0-w.npy
|
—> shard-0-ids.npy
|
—> shard-1-X.npy
.
.
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.

The metadata is constructed by static method DiskDataset._construct_metadata and saved to disk by Disk-
Dataset._save_metadata. The metadata itself consists of a csv file which has columns (‘ids’, ‘X’, ‘y’, ‘w’,
‘ids_shape’, ‘X_shape’, ‘y_shape’, ‘w_shape’). tasks.json consists of a list of task names for this dataset.

The actual data is stored in .npy files (numpy array files) of the form ‘shard-0-X.npy’, ‘shard-0-y.npy’, etc.

The basic structure of DiskDataset is quite robust and will likely serve you well for datasets up to about 100 GB
or larger. However note that DiskDataset has not been tested for very large datasets at the terabyte range and
beyond. You may be better served by implementing a custom Dataset class for those use cases.

Examples

Let’s walk through a simple example of constructing a new DiskDataset.

>>> import deepchem as dc
>>> import numpy as np
>>> X = np.random.rand(10, 10)
>>> dataset = dc.data.DiskDataset.from_numpy(X)

If you have already saved a DiskDataset to data_dir, you can reinitialize it with

>> data_dir = “/path/to/my/data” >> dataset = dc.data.DiskDataset(data_dir)

Once you have a dataset you can access its attributes as follows

>>> X = np.random.rand(10, 10)
>>> y = np.random.rand(10,)
>>> w = np.ones_like(y)
>>> dataset = dc.data.DiskDataset.from_numpy(X)
>>> X, y, w = dataset.X, dataset.y, dataset.w

One thing to beware of is that dataset.X, dataset.y, dataset.w are loading data from disk! If you have a large
dataset, these operations can be extremely slow. Instead try iterating through the dataset instead.

>>> for (xi, yi, wi, idi) in dataset.itersamples():
... pass

data_dir
Location of directory where this DiskDataset is stored to disk

Type str

metadata_df
Pandas Dataframe holding metadata for this DiskDataset

Type pd.DataFrame

legacy_metadata
Whether this DiskDataset uses legacy format.

Type bool

Note: DiskDataset originally had a simpler metadata format without shape information. Older DiskDataset
objects had metadata files with columns (‘ids’, ‘X’, ‘y’, ‘w’) and not additional shape columns. DiskDataset
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maintains backwards compatibility with this older metadata format, but we recommend for performance reasons
not using legacy metadata for new projects.

__init__(data_dir: str)→ None
Load a constructed DiskDataset from disk

Note that this method cannot construct a new disk dataset. Instead use static methods Disk-
Dataset.create_dataset or DiskDataset.from_numpy for that purpose. Use this constructor instead to load
a DiskDataset that has already been created on disk.

Parameters data_dir (str) – Location on disk of an existing DiskDataset.

static create_dataset(shard_generator: Iterable[Tuple[numpy.ndarray, numpy.ndarray,
numpy.ndarray, numpy.ndarray]], data_dir: Optional[str] =
None, tasks: Optional[Union[numpy.ndarray, Sequence]] = []) →
deepchem.data.datasets.DiskDataset

Creates a new DiskDataset

Parameters

• shard_generator (Iterable[Batch]) – An iterable (either a list or generator)
that provides tuples of data (X, y, w, ids). Each tuple will be written to a separate shard on
disk.

• data_dir (str, optional (default None)) – Filename for data directory.
Creates a temp directory if none specified.

• tasks (Sequence, optional (default [])) – List of tasks for this dataset.

Returns A new DiskDataset constructed from the given data

Return type DiskDataset

load_metadata()→ Tuple[List[str], pandas.core.frame.DataFrame]
Helper method that loads metadata from disk.

static write_data_to_disk(data_dir: str, basename: str, X: Optional[numpy.ndarray]
= None, y: Optional[numpy.ndarray] = None, w: Op-
tional[numpy.ndarray] = None, ids: Optional[numpy.ndarray] =
None)→ List[Any]

Static helper method to write data to disk.

This helper method is used to write a shard of data to disk.

Parameters

• data_dir (str) – Data directory to write shard to.

• basename (str) – Basename for the shard in question.

• X (np.ndarray, optional (default None)) – The features array.

• y (np.ndarray, optional (default None)) – The labels array.

• w (np.ndarray, optional (default None)) – The weights array.

• ids (np.ndarray, optional (default None)) – The identifiers array.

Returns List with values [out_ids, out_X, out_y, out_w, out_ids_shape, out_X_shape,
out_y_shape, out_w_shape] with filenames of locations to disk which these respective ar-
rays were written.

Return type List[Optional[str]]
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save_to_disk()→ None
Save dataset to disk.

move(new_data_dir: str, delete_if_exists: Optional[bool] = True)→ None
Moves dataset to new directory.

Parameters

• new_data_dir (str) – The new directory name to move this to dataset to.

• delete_if_exists (bool, optional (default True)) – If this option is
set, delete the destination directory if it exists before moving. This is set to True by default
to be backwards compatible with behavior in earlier versions of DeepChem.

Note: This is a stateful operation! self.data_dir will be moved into new_data_dir. If delete_if_exists is
set to True (by default this is set True), then new_data_dir is deleted if it’s a pre-existing directory.

copy(new_data_dir: str)→ deepchem.data.datasets.DiskDataset
Copies dataset to new directory.

Parameters new_data_dir (str) – The new directory name to copy this to dataset to.

Returns A copied DiskDataset object.

Return type DiskDataset

Note: This is a stateful operation! Any data at new_data_dir will be deleted and self.data_dir will be
deep copied into new_data_dir.

get_task_names()→ numpy.ndarray
Gets learning tasks associated with this dataset.

reshard(shard_size: int)→ None
Reshards data to have specified shard size.

Parameters shard_size (int) – The size of shard.

Examples

>>> import deepchem as dc
>>> import numpy as np
>>> X = np.random.rand(100, 10)
>>> d = dc.data.DiskDataset.from_numpy(X)
>>> d.reshard(shard_size=10)
>>> d.get_number_shards()
10

Note: If this DiskDataset is in legacy_metadata format, reshard will convert this dataset to have non-
legacy metadata.

get_data_shape()→ Tuple[int, . . . ]
Gets array shape of datapoints in this dataset.

get_shard_size()→ int
Gets size of shards on disk.
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get_number_shards()→ int
Returns the number of shards for this dataset.

itershards()→ Iterator[Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]]
Return an object that iterates over all shards in dataset.

Datasets are stored in sharded fashion on disk. Each call to next() for the generator defined by this function
returns the data from a particular shard. The order of shards returned is guaranteed to remain fixed.

Returns Generator which yields tuples of four numpy arrays (X, y, w, ids).

Return type Iterator[Batch]

iterbatches(batch_size: Optional[int] = None, epochs: int = 1, deterministic: bool =
False, pad_batches: bool = False) → Iterator[Tuple[numpy.ndarray, numpy.ndarray,
numpy.ndarray, numpy.ndarray]]

Get an object that iterates over minibatches from the dataset.

It is guaranteed that the number of batches returned is math.ceil(len(dataset)/batch_size). Each minibatch
is returned as a tuple of four numpy arrays: (X, y, w, ids).

Parameters

• batch_size (int, optional (default None)) – Number of elements in a
batch. If None, then it yields batches with size equal to the size of each individual shard.

• epoch (int, default 1) – Number of epochs to walk over dataset

• deterministic (bool, default False) – Whether or not we should should
shuffle each shard before generating the batches. Note that this is only local in the sense
that it does not ever mix between different shards.

• pad_batches (bool, default False) – Whether or not we should pad the last
batch, globally, such that it has exactly batch_size elements.

Returns Generator which yields tuples of four numpy arrays (X, y, w, ids).

Return type Iterator[Batch]

itersamples()→ Iterator[Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]]
Get an object that iterates over the samples in the dataset.

Returns Generator which yields tuples of four numpy arrays (X, y, w, ids).

Return type Iterator[Batch]

Examples

>>> dataset = DiskDataset.from_numpy(np.ones((2,2)), np.ones((2,1)))
>>> for x, y, w, id in dataset.itersamples():
... print(x.tolist(), y.tolist(), w.tolist(), id)
[1.0, 1.0] [1.0] [1.0] 0
[1.0, 1.0] [1.0] [1.0] 1

transform(transformer: transformers.Transformer, parallel: bool = False, out_dir: Optional[str] =
None, **args)→ deepchem.data.datasets.DiskDataset

Construct a new dataset by applying a transformation to every sample in this dataset.

The argument is a function that can be called as follows: >> newx, newy, neww = fn(x, y, w)

It might be called only once with the whole dataset, or multiple times with different subsets of the data.
Each time it is called, it should transform the samples and return the transformed data.
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Parameters

• transformer (dc.trans.Transformer) – The transformation to apply to each
sample in the dataset.

• parallel (bool, default False) – If True, use multiple processes to transform
the dataset in parallel.

• out_dir (str, optional (default None)) – The directory to save the new
dataset in. If this is omitted, a temporary directory is created automaticall.

Returns A newly constructed Dataset object

Return type DiskDataset

make_pytorch_dataset(epochs: int = 1, deterministic: bool = False, batch_size: Optional[int] =
None)

Create a torch.utils.data.IterableDataset that iterates over the data in this Dataset.

Each value returned by the Dataset’s iterator is a tuple of (X, y, w, id) containing the data for one batch, or
for a single sample if batch_size is None.

Parameters

• epochs (int, default 1) – The number of times to iterate over the Dataset

• deterministic (bool, default False) – If True, the data is produced in order.
If False, a different random permutation of the data is used for each epoch.

• batch_size (int, optional (default None)) – The number of samples to
return in each batch. If None, each returned value is a single sample.

Returns torch.utils.data.IterableDataset that iterates over the data in this dataset.

Return type torch.utils.data.IterableDataset

Note: This method requires PyTorch to be installed.

static from_numpy(X: Union[numpy.ndarray, Sequence], y: Optional[Union[numpy.ndarray,
Sequence]] = None, w: Optional[Union[numpy.ndarray, Sequence]] =
None, ids: Optional[Union[numpy.ndarray, Sequence]] = None, tasks: Op-
tional[Union[numpy.ndarray, Sequence]] = None, data_dir: Optional[str] =
None)→ deepchem.data.datasets.DiskDataset

Creates a DiskDataset object from specified Numpy arrays.

Parameters

• X (np.ndarray) – Feature array.

• y (np.ndarray, optional (default None)) – Labels array.

• w (np.ndarray, optional (default None)) – Weights array.

• ids (np.ndarray, optional (default None)) – Identifiers array.

• tasks (Sequence, optional (default None)) – Tasks in this dataset

• data_dir (str, optional (default None)) – The directory to write this
dataset to. If none is specified, will use a temporary directory instead.

Returns A new DiskDataset constructed from the provided information.

Return type DiskDataset
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static merge(datasets: Iterable[deepchem.data.datasets.Dataset], merge_dir: Optional[str] =
None)→ deepchem.data.datasets.DiskDataset

Merges provided datasets into a merged dataset.

Parameters

• datasets (Iterable[Dataset]) – List of datasets to merge.

• merge_dir (str, optional (default None)) – The new directory path to
store the merged DiskDataset.

Returns A merged DiskDataset.

Return type DiskDataset

subset(shard_nums: Sequence[int], subset_dir: Optional[str] = None) →
deepchem.data.datasets.DiskDataset

Creates a subset of the original dataset on disk.

Parameters

• shard_nums (Sequence[int]) – The indices of shard to extract from the original
DiskDataset.

• subset_dir (str, optional (default None)) – The new directory path to
store the subset DiskDataset.

Returns A subset DiskDataset.

Return type DiskDataset

sparse_shuffle()→ None
Shuffling that exploits data sparsity to shuffle large datasets.

If feature vectors are sparse, say circular fingerprints or any other representation that contains few nonzero
values, it can be possible to exploit the sparsity of the vector to simplify shuffles. This method implements
a sparse shuffle by compressing sparse feature vectors down into a compressed representation, then shuffles
this compressed dataset in memory and writes the results to disk.

Note: This method only works for 1-dimensional feature vectors (does not work for tensorial featuriza-
tions). Note that this shuffle is performed in place.

complete_shuffle(data_dir: Optional[str] = None)→ deepchem.data.datasets.Dataset
Completely shuffle across all data, across all shards.

Note: The algorithm used for this complete shuffle is O(N^2) where N is the number of shards. It simply
constructs each shard of the output dataset one at a time. Since the complete shuffle can take a long time,
it’s useful to watch the logging output. Each shuffled shard is constructed using select() which logs as it
selects from each original shard. This will results in O(N^2) logging statements, one for each extraction
of shuffled shard i’s contributions from original shard j.

Parameters data_dir (Optional[str], (default None)) – Directory to write the
shuffled dataset to. If none is specified a temporary directory will be used.

Returns A DiskDataset whose data is a randomly shuffled version of this dataset.

Return type DiskDataset
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shuffle_each_shard(shard_basenames: Optional[List[str]] = None)→ None
Shuffles elements within each shard of the dataset.

Parameters shard_basenames (List[str], optional (default None)) – The
basenames for each shard. If this isn’t specified, will assume the basenames of form “shard-i”
used by create_dataset and reshard.

shuffle_shards()→ None
Shuffles the order of the shards for this dataset.

get_shard(i: int)→ Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]
Retrieves data for the i-th shard from disk.

Parameters i (int) – Shard index for shard to retrieve batch from.

Returns A batch data for i-th shard.

Return type Batch

get_shard_ids(i: int)→ numpy.ndarray
Retrieves the list of IDs for the i-th shard from disk.

Parameters i (int) – Shard index for shard to retrieve weights from.

Returns A numpy array of ids for i-th shard.

Return type np.ndarray

get_shard_y(i: int)→ numpy.ndarray
Retrieves the labels for the i-th shard from disk.

Parameters i (int) – Shard index for shard to retrieve labels from.

Returns A numpy array of labels for i-th shard.

Return type np.ndarray

get_shard_w(i: int)→ numpy.ndarray
Retrieves the weights for the i-th shard from disk.

Parameters i (int) – Shard index for shard to retrieve weights from.

Returns A numpy array of weights for i-th shard.

Return type np.ndarray

add_shard(X: numpy.ndarray, y: Optional[numpy.ndarray] = None, w: Optional[numpy.ndarray] =
None, ids: Optional[numpy.ndarray] = None)→ None

Adds a data shard.

Parameters

• X (np.ndarray) – Feature array.

• y (np.ndarray, optioanl (default None)) – Labels array.

• w (np.ndarray, optioanl (default None)) – Weights array.

• ids (np.ndarray, optioanl (default None)) – Identifiers array.

set_shard(shard_num: int, X: numpy.ndarray, y: Optional[numpy.ndarray] = None, w: Op-
tional[numpy.ndarray] = None, ids: Optional[numpy.ndarray] = None)→ None

Writes data shard to disk.

Parameters

• shard_num (int) – Shard index for shard to set new data.
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• X (np.ndarray) – Feature array.

• y (np.ndarray, optioanl (default None)) – Labels array.

• w (np.ndarray, optioanl (default None)) – Weights array.

• ids (np.ndarray, optioanl (default None)) – Identifiers array.

select(indices: Sequence[int], select_dir: Optional[str] = None, select_shard_size: Optional[int] =
None, output_numpy_dataset: Optional[bool] = False)→ deepchem.data.datasets.Dataset

Creates a new dataset from a selection of indices from self.

Examples

>>> import numpy as np
>>> X = np.random.rand(10, 10)
>>> dataset = dc.data.DiskDataset.from_numpy(X)
>>> selected = dataset.select([1, 3, 4])
>>> len(selected)
3

Parameters

• indices (Sequence) – List of indices to select.

• select_dir (str, optional (default None)) – Path to new directory that
the selected indices will be copied to.

• select_shard_size (Optional[int], (default None)) – If specified, the
shard-size to use for output selected DiskDataset. If not output_numpy_dataset, then this
is set to this current dataset’s shard size if not manually specified.

• output_numpy_dataset (Optional[bool], (default False)) – If True,
output an in-memory NumpyDataset instead of a DiskDataset. Note that select_dir and
select_shard_size must be None if this is True

Returns A dataset containing the selected samples. The default dataset is DiskDataset. If out-
put_numpy_dataset is True, the dataset is NumpyDataset.

Return type Dataset

property ids
Get the ids vector for this dataset as a single numpy array.

property X
Get the X vector for this dataset as a single numpy array.

property y
Get the y vector for this dataset as a single numpy array.

property w
Get the weight vector for this dataset as a single numpy array.

property memory_cache_size
Get the size of the memory cache for this dataset, measured in bytes.

__len__()→ int
Finds number of elements in dataset.
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get_shape()→ Tuple[Tuple[int, . . . ], Tuple[int, . . . ], Tuple[int, . . . ], Tuple[int, . . . ]]
Finds shape of dataset.

Returns four tuples, giving the shape of the X, y, w, and ids arrays.

get_label_means()→ pandas.core.frame.DataFrame
Return pandas series of label means.

get_label_stds()→ pandas.core.frame.DataFrame
Return pandas series of label stds.

static from_dataframe(df: pandas.core.frame.DataFrame, X: Optional[Union[str, Se-
quence[str]]] = None, y: Optional[Union[str, Sequence[str]]] = None,
w: Optional[Union[str, Sequence[str]]] = None, ids: Optional[str] =
None)

Construct a Dataset from the contents of a pandas DataFrame.

Parameters

• df (pd.DataFrame) – The pandas DataFrame

• X (str or List[str], optional (default None)) – The name of the col-
umn or columns containing the X array. If this is None, it will look for default column
names that match those produced by to_dataframe().

• y (str or List[str], optional (default None)) – The name of the col-
umn or columns containing the y array. If this is None, it will look for default column
names that match those produced by to_dataframe().

• w (str or List[str], optional (default None)) – The name of the col-
umn or columns containing the w array. If this is None, it will look for default column
names that match those produced by to_dataframe().

• ids (str, optional (default None)) – The name of the column containing the
ids. If this is None, it will look for default column names that match those produced by
to_dataframe().

get_statistics(X_stats: bool = True, y_stats: bool = True)→ Tuple[float, . . . ]
Compute and return statistics of this dataset.

Uses self.itersamples() to compute means and standard deviations of the dataset. Can compute on large
datasets that don’t fit in memory.

Parameters

• X_stats (bool, optional (default True)) – If True, compute feature-level
mean and standard deviations.

• y_stats (bool, optional (default True)) – If True, compute label-level
mean and standard deviations.

Returns

• If X_stats == True, returns (X_means, X_stds).

• If y_stats == True, returns (y_means, y_stds).

• If both are true, returns (X_means, X_stds, y_means, y_stds).

Return type Tuple

make_tf_dataset(batch_size: int = 100, epochs: int = 1, deterministic: bool = False, pad_batches:
bool = False)

Create a tf.data.Dataset that iterates over the data in this Dataset.
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Each value returned by the Dataset’s iterator is a tuple of (X, y, w) for one batch.

Parameters

• batch_size (int, default 100) – The number of samples to include in each
batch.

• epochs (int, default 1) – The number of times to iterate over the Dataset.

• deterministic (bool, default False) – If True, the data is produced in order.
If False, a different random permutation of the data is used for each epoch.

• pad_batches (bool, default False) – If True, batches are padded as necessary
to make the size of each batch exactly equal batch_size.

Returns TensorFlow Dataset that iterates over the same data.

Return type tf.data.Dataset

Note: This class requires TensorFlow to be installed.

to_dataframe()→ pandas.core.frame.DataFrame
Construct a pandas DataFrame containing the data from this Dataset.

Returns Pandas dataframe. If there is only a single feature per datapoint, will have column “X”
else will have columns “X1,X2,. . . ” for features. If there is only a single label per datapoint,
will have column “y” else will have columns “y1,y2,. . . ” for labels. If there is only a single
weight per datapoint will have column “w” else will have columns “w1,w2,. . . ”. Will have
column “ids” for identifiers.

Return type pd.DataFrame

ImageDataset

The dc.data.ImageDataset class is optimized to allow for convenient processing of image based datasets.

class ImageDataset(X: Union[numpy.ndarray, List[str]], y: Optional[Union[numpy.ndarray,
List[str]]], w: Optional[Union[numpy.ndarray, Sequence]] = None, ids:
Optional[Union[numpy.ndarray, Sequence]] = None)

A Dataset that loads data from image files on disk.

__init__(X: Union[numpy.ndarray, List[str]], y: Optional[Union[numpy.ndarray, List[str]]], w: Op-
tional[Union[numpy.ndarray, Sequence]] = None, ids: Optional[Union[numpy.ndarray, Se-
quence]] = None)→ None

Create a dataset whose X and/or y array is defined by image files on disk.

Parameters

• X (np.ndarray or List[str]) – The dataset’s input data. This may be either a
single NumPy array directly containing the data, or a list containing the paths to the image
files

• y (np.ndarray or List[str]) – The dataset’s labels. This may be either a single
NumPy array directly containing the data, or a list containing the paths to the image files

• w (np.ndarray, optional (default None)) – a 1D or 2D array containing
the weights for each sample or sample/task pair

• ids (np.ndarray, optional (default None)) – the sample IDs
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__len__()→ int
Get the number of elements in the dataset.

get_shape()→ Tuple[Tuple[int, . . . ], Tuple[int, . . . ], Tuple[int, . . . ], Tuple[int, . . . ]]
Get the shape of the dataset.

Returns four tuples, giving the shape of the X, y, w, and ids arrays.

get_task_names()→ numpy.ndarray
Get the names of the tasks associated with this dataset.

property X
Get the X vector for this dataset as a single numpy array.

property y
Get the y vector for this dataset as a single numpy array.

property ids
Get the ids vector for this dataset as a single numpy array.

property w
Get the weight vector for this dataset as a single numpy array.

iterbatches(batch_size: Optional[int] = None, epochs: int = 1, deterministic: bool =
False, pad_batches: bool = False) → Iterator[Tuple[numpy.ndarray, numpy.ndarray,
numpy.ndarray, numpy.ndarray]]

Get an object that iterates over minibatches from the dataset.

Each minibatch is returned as a tuple of four numpy arrays: (X, y, w, ids).

Parameters

• batch_size (int, optional (default None)) – Number of elements in each
batch.

• epochs (int, default 1) – Number of epochs to walk over dataset.

• deterministic (bool, default False) – If True, follow deterministic order.

• pad_batches (bool, default False) – If True, pad each batch to batch_size.

Returns Generator which yields tuples of four numpy arrays (X, y, w, ids).

Return type Iterator[Batch]

itersamples()→ Iterator[Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]]
Get an object that iterates over the samples in the dataset.

Returns Iterator which yields tuples of four numpy arrays (X, y, w, ids).

Return type Iterator[Batch]

transform(transformer: transformers.Transformer, **args) →
deepchem.data.datasets.NumpyDataset

Construct a new dataset by applying a transformation to every sample in this dataset.

The argument is a function that can be called as follows:

>> newx, newy, neww = fn(x, y, w)

It might be called only once with the whole dataset, or multiple times with different subsets of the data.
Each time it is called, it should transform the samples and return the transformed data.

Parameters transformer (dc.trans.Transformer) – The transformation to apply to
each sample in the dataset

Returns A newly constructed NumpyDataset object
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Return type NumpyDataset

select(indices: Sequence[int], select_dir: Optional[str] = None) →
deepchem.data.datasets.ImageDataset

Creates a new dataset from a selection of indices from self.

Parameters

• indices (Sequence) – List of indices to select.

• select_dir (str, optional (default None)) – Used to provide same API
as DiskDataset. Ignored since ImageDataset is purely in-memory.

Returns A selected ImageDataset object

Return type ImageDataset

make_pytorch_dataset(epochs: int = 1, deterministic: bool = False, batch_size: Optional[int] =
None)

Create a torch.utils.data.IterableDataset that iterates over the data in this Dataset.

Each value returned by the Dataset’s iterator is a tuple of (X, y, w, id) containing the data for one batch, or
for a single sample if batch_size is None.

Parameters

• epochs (int, default 1) – The number of times to iterate over the Dataset.

• deterministic (bool, default False) – If True, the data is produced in order.
If False, a different random permutation of the data is used for each epoch.

• batch_size (int, optional (default None)) – The number of samples to
return in each batch. If None, each returned value is a single sample.

Returns torch.utils.data.IterableDataset that iterates over the data in this dataset.

Return type torch.utils.data.IterableDataset

Note: This method requires PyTorch to be installed.

static from_dataframe(df: pandas.core.frame.DataFrame, X: Optional[Union[str, Se-
quence[str]]] = None, y: Optional[Union[str, Sequence[str]]] = None,
w: Optional[Union[str, Sequence[str]]] = None, ids: Optional[str] =
None)

Construct a Dataset from the contents of a pandas DataFrame.

Parameters

• df (pd.DataFrame) – The pandas DataFrame

• X (str or List[str], optional (default None)) – The name of the col-
umn or columns containing the X array. If this is None, it will look for default column
names that match those produced by to_dataframe().

• y (str or List[str], optional (default None)) – The name of the col-
umn or columns containing the y array. If this is None, it will look for default column
names that match those produced by to_dataframe().

• w (str or List[str], optional (default None)) – The name of the col-
umn or columns containing the w array. If this is None, it will look for default column
names that match those produced by to_dataframe().
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• ids (str, optional (default None)) – The name of the column containing the
ids. If this is None, it will look for default column names that match those produced by
to_dataframe().

get_statistics(X_stats: bool = True, y_stats: bool = True)→ Tuple[float, . . . ]
Compute and return statistics of this dataset.

Uses self.itersamples() to compute means and standard deviations of the dataset. Can compute on large
datasets that don’t fit in memory.

Parameters

• X_stats (bool, optional (default True)) – If True, compute feature-level
mean and standard deviations.

• y_stats (bool, optional (default True)) – If True, compute label-level
mean and standard deviations.

Returns

• If X_stats == True, returns (X_means, X_stds).

• If y_stats == True, returns (y_means, y_stds).

• If both are true, returns (X_means, X_stds, y_means, y_stds).

Return type Tuple

make_tf_dataset(batch_size: int = 100, epochs: int = 1, deterministic: bool = False, pad_batches:
bool = False)

Create a tf.data.Dataset that iterates over the data in this Dataset.

Each value returned by the Dataset’s iterator is a tuple of (X, y, w) for one batch.

Parameters

• batch_size (int, default 100) – The number of samples to include in each
batch.

• epochs (int, default 1) – The number of times to iterate over the Dataset.

• deterministic (bool, default False) – If True, the data is produced in order.
If False, a different random permutation of the data is used for each epoch.

• pad_batches (bool, default False) – If True, batches are padded as necessary
to make the size of each batch exactly equal batch_size.

Returns TensorFlow Dataset that iterates over the same data.

Return type tf.data.Dataset

Note: This class requires TensorFlow to be installed.

to_dataframe()→ pandas.core.frame.DataFrame
Construct a pandas DataFrame containing the data from this Dataset.

Returns Pandas dataframe. If there is only a single feature per datapoint, will have column “X”
else will have columns “X1,X2,. . . ” for features. If there is only a single label per datapoint,
will have column “y” else will have columns “y1,y2,. . . ” for labels. If there is only a single
weight per datapoint will have column “w” else will have columns “w1,w2,. . . ”. Will have
column “ids” for identifiers.

Return type pd.DataFrame
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3.10.2 Data Loaders

Processing large amounts of input data to construct a dc.data.Dataset object can require some amount of hack-
ing. To simplify this process for you, you can use the dc.data.DataLoader classes. These classes provide
utilities for you to load and process large amounts of data.

CSVLoader

class CSVLoader(tasks: List[str], featurizer: deepchem.feat.base_classes.Featurizer, feature_field: Op-
tional[str] = None, id_field: Optional[str] = None, smiles_field: Optional[str] = None,
log_every_n: int = 1000)

Creates Dataset objects from input CSV files.

This class provides conveniences to load data from CSV files. It’s possible to directly featurize data from CSV
files using pandas, but this class may prove useful if you’re processing large CSV files that you don’t want to
manipulate directly in memory.

Examples

Let’s suppose we have some smiles and labels

>>> smiles = ["C", "CCC"]
>>> labels = [1.5, 2.3]

Let’s put these in a dataframe.

>>> import pandas as pd
>>> df = pd.DataFrame(list(zip(smiles, labels)), columns=["smiles", "task1"])

Let’s now write this to disk somewhere. We can now use CSVLoader to process this CSV dataset.

>>> import tempfile
>>> import deepchem as dc
>>> with dc.utils.UniversalNamedTemporaryFile(mode='w') as tmpfile:
... df.to_csv(tmpfile.name)
... loader = dc.data.CSVLoader(["task1"], feature_field="smiles",
... featurizer=dc.feat.CircularFingerprint())
... dataset = loader.create_dataset(tmpfile.name)
>>> len(dataset)
2

Of course in practice you should already have your data in a CSV file if you’re using CSVLoader. If your data
is already in memory, use InMemoryLoader instead.

__init__(tasks: List[str], featurizer: deepchem.feat.base_classes.Featurizer, feature_field: Op-
tional[str] = None, id_field: Optional[str] = None, smiles_field: Optional[str] = None,
log_every_n: int = 1000)

Initializes CSVLoader.

Parameters

• tasks (List[str]) – List of task names

• featurizer (Featurizer) – Featurizer to use to process data.

• feature_field (str, optional (default None)) – Field with data to be
featurized.
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• id_field (str, optional, (default None)) – CSV column that holds sam-
ple identifier

• smiles_field (str, optional (default None) (DEPRECATED)) –
Name of field that holds smiles string.

• log_every_n (int, optional (default 1000)) – Writes a logging statement
this often.

create_dataset(inputs: Union[Any, Sequence[Any]], data_dir: Optional[str] = None, shard_size:
Optional[int] = 8192)→ deepchem.data.datasets.Dataset

Creates and returns a Dataset object by featurizing provided files.

Reads in inputs and uses self.featurizer to featurize the data in these inputs. For large files, automatically
shards into smaller chunks of shard_size datapoints for convenience. Returns a Dataset object that contains
the featurized dataset.

This implementation assumes that the helper methods _get_shards and _featurize_shard are implemented
and that each shard returned by _get_shards is a pandas dataframe. You may choose to reuse or override
this method in your subclass implementations.

Parameters

• inputs (List) – List of inputs to process. Entries can be filenames or arbitrary objects.

• data_dir (str, optional (default None)) – Directory to store featurized
dataset.

• shard_size (int, optional (default 8192)) – Number of examples stored
in each shard.

Returns A DiskDataset object containing a featurized representation of data from inputs.

Return type DiskDataset

UserCSVLoader

class UserCSVLoader(tasks: List[str], featurizer: deepchem.feat.base_classes.Featurizer, feature_field:
Optional[str] = None, id_field: Optional[str] = None, smiles_field: Optional[str]
= None, log_every_n: int = 1000)

Handles loading of CSV files with user-defined features.

This is a convenience class that allows for descriptors already present in a CSV file to be extracted without any
featurization necessary.

Examples

Let’s suppose we have some descriptors and labels. (Imagine that these descriptors have been computed by an
external program.)

>>> desc1 = [1, 43]
>>> desc2 = [-2, -22]
>>> labels = [1.5, 2.3]
>>> ids = ["cp1", "cp2"]

Let’s put these in a dataframe.

>>> import pandas as pd
>>> df = pd.DataFrame(list(zip(ids, desc1, desc2, labels)), columns=["id", "desc1
→˓", "desc2", "task1"])
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Let’s now write this to disk somewhere. We can now use UserCSVLoader to process this CSV dataset.

>>> import tempfile
>>> import deepchem as dc
>>> featurizer = dc.feat.UserDefinedFeaturizer(["desc1", "desc2"])
>>> with dc.utils.UniversalNamedTemporaryFile(mode='w') as tmpfile:
... df.to_csv(tmpfile.name)
... loader = dc.data.UserCSVLoader(["task1"], id_field="id",
... featurizer=featurizer)
... dataset = loader.create_dataset(tmpfile.name)
>>> len(dataset)
2
>>> dataset.X[0, 0]
1

The difference between UserCSVLoader and CSVLoader is that our descriptors (our features) have already been
computed for us, but are spread across multiple columns of the CSV file.

Of course in practice you should already have your data in a CSV file if you’re using UserCSVLoader. If your
data is already in memory, use InMemoryLoader instead.

__init__(tasks: List[str], featurizer: deepchem.feat.base_classes.Featurizer, feature_field: Op-
tional[str] = None, id_field: Optional[str] = None, smiles_field: Optional[str] = None,
log_every_n: int = 1000)

Initializes CSVLoader.

Parameters

• tasks (List[str]) – List of task names

• featurizer (Featurizer) – Featurizer to use to process data.

• feature_field (str, optional (default None)) – Field with data to be
featurized.

• id_field (str, optional, (default None)) – CSV column that holds sam-
ple identifier

• smiles_field (str, optional (default None) (DEPRECATED)) –
Name of field that holds smiles string.

• log_every_n (int, optional (default 1000)) – Writes a logging statement
this often.

create_dataset(inputs: Union[Any, Sequence[Any]], data_dir: Optional[str] = None, shard_size:
Optional[int] = 8192)→ deepchem.data.datasets.Dataset

Creates and returns a Dataset object by featurizing provided files.

Reads in inputs and uses self.featurizer to featurize the data in these inputs. For large files, automatically
shards into smaller chunks of shard_size datapoints for convenience. Returns a Dataset object that contains
the featurized dataset.

This implementation assumes that the helper methods _get_shards and _featurize_shard are implemented
and that each shard returned by _get_shards is a pandas dataframe. You may choose to reuse or override
this method in your subclass implementations.

Parameters

• inputs (List) – List of inputs to process. Entries can be filenames or arbitrary objects.

• data_dir (str, optional (default None)) – Directory to store featurized
dataset.

46 Chapter 3. About Us



deepchem, Release 2.5.0

• shard_size (int, optional (default 8192)) – Number of examples stored
in each shard.

Returns A DiskDataset object containing a featurized representation of data from inputs.

Return type DiskDataset

ImageLoader

class ImageLoader(tasks: Optional[List[str]] = None)
Handles loading of image files.

This class allows for loading of images in various formats. For user convenience, also accepts zip-files and
directories of images and uses some limited intelligence to attempt to traverse subdirectories which contain
images.

__init__(tasks: Optional[List[str]] = None)
Initialize image loader.

At present, custom image featurizers aren’t supported by this loader class.

Parameters tasks (List[str], optional (default None)) – List of task names
for image labels.

create_dataset(inputs: Union[str, Sequence[str], Tuple[Any]], data_dir: Optional[str] =
None, shard_size: Optional[int] = 8192, in_memory: bool = False) →
deepchem.data.datasets.Dataset

Creates and returns a Dataset object by featurizing provided image files and labels/weights.

Parameters

• inputs (Union[OneOrMany[str], Tuple[Any]]) – The inputs provided should be one of
the following

– filename

– list of filenames

– Tuple (list of filenames, labels)

– Tuple (list of filenames, labels, weights)

Each file in a given list of filenames should either be of a supported image format (.png,
.tif only for now) or of a compressed folder of image files (only .zip for now). If labels or
weights are provided, they must correspond to the sorted order of all filenames provided,
with one label/weight per file.

• data_dir (str, optional (default None)) – Directory to store featurized
dataset.

• shard_size (int, optional (default 8192)) – Shard size when loading
data.

• in_memory (bool, optioanl (default False)) – If true, return in-memory
NumpyDataset. Else return ImageDataset.

Returns

• if in_memory == False, the return value is ImageDataset.

• if in_memory == True and data_dir is None, the return value is NumpyDataset.

• if in_memory == True and data_dir is not None, the return value is DiskDataset.
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Return type ImageDataset or NumpyDataset or DiskDataset

JsonLoader

JSON is a flexible file format that is human-readable, lightweight, and more compact than other open standard formats
like XML. JSON files are similar to python dictionaries of key-value pairs. All keys must be strings, but values can
be any of (string, number, object, array, boolean, or null), so the format is more flexible than CSV. JSON is used for
describing structured data and to serialize objects. It is conveniently used to read/write Pandas dataframes with the
pandas.read_json and pandas.write_json methods.

class JsonLoader(tasks: List[str], feature_field: str, featurizer: deepchem.feat.base_classes.Featurizer,
label_field: Optional[str] = None, weight_field: Optional[str] = None, id_field: Op-
tional[str] = None, log_every_n: int = 1000)

Creates Dataset objects from input json files.

This class provides conveniences to load data from json files. It’s possible to directly featurize data from json
files using pandas, but this class may prove useful if you’re processing large json files that you don’t want to
manipulate directly in memory.

It is meant to load JSON files formatted as “records” in line delimited format, which allows for sharding. list
like [{column -> value}, ... , {column -> value}].

Examples

Let’s create the sample dataframe.

>>> composition = ["LiCoO2", "MnO2"]
>>> labels = [1.5, 2.3]
>>> import pandas as pd
>>> df = pd.DataFrame(list(zip(composition, labels)), columns=["composition",
→˓"task"])

Dump the dataframe to the JSON file formatted as “records” in line delimited format and load the json file by
JsonLoader.

>>> import tempfile
>>> import deepchem as dc
>>> with dc.utils.UniversalNamedTemporaryFile(mode='w') as tmpfile:
... df.to_json(tmpfile.name, orient='records', lines=True)
... featurizer = dc.feat.ElementPropertyFingerprint()
... loader = dc.data.JsonLoader(["task"], feature_field="composition",
→˓featurizer=featurizer)
... dataset = loader.create_dataset(tmpfile.name)
>>> len(dataset)
2

__init__(tasks: List[str], feature_field: str, featurizer: deepchem.feat.base_classes.Featurizer, la-
bel_field: Optional[str] = None, weight_field: Optional[str] = None, id_field: Optional[str]
= None, log_every_n: int = 1000)

Initializes JsonLoader.

Parameters

• tasks (List[str]) – List of task names

• feature_field (str) – JSON field with data to be featurized.

• featurizer (Featurizer) – Featurizer to use to process data
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• label_field (str, optional (default None)) – Field with target variables.

• weight_field (str, optional (default None)) – Field with weights.

• id_field (str, optional (default None)) – Field for identifying samples.

• log_every_n (int, optional (default 1000)) – Writes a logging statement
this often.

create_dataset(input_files: Union[str, Sequence[str]], data_dir: Optional[str] = None, shard_size:
Optional[int] = 8192)→ deepchem.data.datasets.DiskDataset

Creates a Dataset from input JSON files.

Parameters

• input_files (OneOrMany[str]) – List of JSON filenames.

• data_dir (Optional[str], default None) – Name of directory where featur-
ized data is stored.

• shard_size (int, optional (default 8192)) – Shard size when loading
data.

Returns A DiskDataset object containing a featurized representation of data from input_files.

Return type DiskDataset

SDFLoader

class SDFLoader(tasks: List[str], featurizer: deepchem.feat.base_classes.Featurizer, sanitize: bool =
False, log_every_n: int = 1000)

Creates a Dataset object from SDF input files.

This class provides conveniences to load and featurize data from Structure Data Files (SDFs). SDF is a standard
format for structural information (3D coordinates of atoms and bonds) of molecular compounds.

Examples

>>> import deepchem as dc
>>> import os
>>> current_dir = os.path.dirname(os.path.realpath(__file__))
>>> featurizer = dc.feat.CircularFingerprint(size=16)
>>> loader = dc.data.SDFLoader(["LogP(RRCK)"], featurizer=featurizer,
→˓sanitize=True)
>>> dataset = loader.create_dataset(os.path.join(current_dir, "tests", "membrane_
→˓permeability.sdf"))
>>> len(dataset)
2

__init__(tasks: List[str], featurizer: deepchem.feat.base_classes.Featurizer, sanitize: bool = False,
log_every_n: int = 1000)

Initialize SDF Loader

Parameters

• tasks (list[str]) – List of tasknames. These will be loaded from the SDF file.

• featurizer (Featurizer) – Featurizer to use to process data

• sanitize (bool, optional (default False)) – Whether to sanitize
molecules.
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• log_every_n (int, optional (default 1000)) – Writes a logging statement
this often.

create_dataset(inputs: Union[Any, Sequence[Any]], data_dir: Optional[str] = None, shard_size:
Optional[int] = 8192)→ deepchem.data.datasets.Dataset

Creates and returns a Dataset object by featurizing provided files.

Reads in inputs and uses self.featurizer to featurize the data in these inputs. For large files, automatically
shards into smaller chunks of shard_size datapoints for convenience. Returns a Dataset object that contains
the featurized dataset.

This implementation assumes that the helper methods _get_shards and _featurize_shard are implemented
and that each shard returned by _get_shards is a pandas dataframe. You may choose to reuse or override
this method in your subclass implementations.

Parameters

• inputs (List) – List of inputs to process. Entries can be filenames or arbitrary objects.

• data_dir (str, optional (default None)) – Directory to store featurized
dataset.

• shard_size (int, optional (default 8192)) – Number of examples stored
in each shard.

Returns A DiskDataset object containing a featurized representation of data from inputs.

Return type DiskDataset

FASTALoader

class FASTALoader
Handles loading of FASTA files.

FASTA files are commonly used to hold sequence data. This class provides convenience files to lead FASTA
data and one-hot encode the genomic sequences for use in downstream learning tasks.

__init__()
Initialize loader.

create_dataset(input_files: Union[str, Sequence[str]], data_dir: Optional[str] = None, shard_size:
Optional[int] = None)→ deepchem.data.datasets.DiskDataset

Creates a Dataset from input FASTA files.

At present, FASTA support is limited and only allows for one-hot featurization, and doesn’t allow for
sharding.

Parameters

• input_files (List[str]) – List of fasta files.

• data_dir (str, optional (default None)) – Name of directory where fea-
turized data is stored.

• shard_size (int, optional (default None)) – For now, this argument is
ignored and each FASTA file gets its own shard.

Returns A DiskDataset object containing a featurized representation of data from input_files.

Return type DiskDataset
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InMemoryLoader

The dc.data.InMemoryLoader is designed to facilitate the processing of large datasets where you already hold
the raw data in-memory (say in a pandas dataframe).

class InMemoryLoader(tasks: List[str], featurizer: deepchem.feat.base_classes.Featurizer, id_field:
Optional[str] = None, log_every_n: int = 1000)

Facilitate Featurization of In-memory objects.

When featurizing a dataset, it’s often the case that the initial set of data (pre-featurization) fits handily within
memory. (For example, perhaps it fits within a column of a pandas DataFrame.) In this case, it would be
convenient to directly be able to featurize this column of data. However, the process of featurization often
generates large arrays which quickly eat up available memory. This class provides convenient capabilities to
process such in-memory data by checkpointing generated features periodically to disk.

Example

Here’s an example with only datapoints and no labels or weights.

>>> import deepchem as dc
>>> smiles = ["C", "CC", "CCC", "CCCC"]
>>> featurizer = dc.feat.CircularFingerprint()
>>> loader = dc.data.InMemoryLoader(tasks=["task1"], featurizer=featurizer)
>>> dataset = loader.create_dataset(smiles, shard_size=2)
>>> len(dataset)
4

Here’s an example with both datapoints and labels

>>> import deepchem as dc
>>> smiles = ["C", "CC", "CCC", "CCCC"]
>>> labels = [1, 0, 1, 0]
>>> featurizer = dc.feat.CircularFingerprint()
>>> loader = dc.data.InMemoryLoader(tasks=["task1"], featurizer=featurizer)
>>> dataset = loader.create_dataset(zip(smiles, labels), shard_size=2)
>>> len(dataset)
4

Here’s an example with datapoints, labels, weights and ids all provided.

>>> import deepchem as dc
>>> smiles = ["C", "CC", "CCC", "CCCC"]
>>> labels = [1, 0, 1, 0]
>>> weights = [1.5, 0, 1.5, 0]
>>> ids = ["C", "CC", "CCC", "CCCC"]
>>> featurizer = dc.feat.CircularFingerprint()
>>> loader = dc.data.InMemoryLoader(tasks=["task1"], featurizer=featurizer)
>>> dataset = loader.create_dataset(zip(smiles, labels, weights, ids), shard_
→˓size=2)
>>> len(dataset)
4

__init__(tasks: List[str], featurizer: deepchem.feat.base_classes.Featurizer, id_field: Optional[str] =
None, log_every_n: int = 1000)

Construct a DataLoader object.

This constructor is provided as a template mainly. You shouldn’t ever call this constructor directly as a
user.
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Parameters

• tasks (List[str]) – List of task names

• featurizer (Featurizer) – Featurizer to use to process data.

• id_field (str, optional (default None)) – Name of field that holds sample
identifier. Note that the meaning of “field” depends on the input data type and can have a
different meaning in different subclasses. For example, a CSV file could have a field as a
column, and an SDF file could have a field as molecular property.

• log_every_n (int, optional (default 1000)) – Writes a logging statement
this often.

create_dataset(inputs: Sequence[Any], data_dir: Optional[str] = None, shard_size: Optional[int]
= 8192)→ deepchem.data.datasets.DiskDataset

Creates and returns a Dataset object by featurizing provided files.

Reads in inputs and uses self.featurizer to featurize the data in these input files. For large files, automat-
ically shards into smaller chunks of shard_size datapoints for convenience. Returns a Dataset object that
contains the featurized dataset.

This implementation assumes that the helper methods _get_shards and _featurize_shard are implemented
and that each shard returned by _get_shards is a pandas dataframe. You may choose to reuse or override
this method in your subclass implementations.

Parameters

• inputs (Sequence[Any]) – List of inputs to process. Entries can be arbitrary objects
so long as they are understood by self.featurizer

• data_dir (str, optional (default None)) – Directory to store featurized
dataset.

• shard_size (int, optional (default 8192)) – Number of examples stored
in each shard.

Returns A DiskDataset object containing a featurized representation of data from inputs.

Return type DiskDataset

3.10.3 Data Classes

DeepChem featurizers often transform members into “data classes”. These are classes that hold all the informa-
tion needed to train a model on that data point. Models then transform these into the tensors for training in their
default_generator methods.

Graph Data

These classes document the data classes for graph convolutions. We plan to simplify these classes (ConvMol,
MultiConvMol, WeaveMol) into a joint data representation (GraphData) for all graph convolutions in a future
version of DeepChem, so these APIs may not remain stable.

The graph convolution models which inherit KerasModel depend on ConvMol, MultiConvMol, or WeaveMol.
On the other hand, the graph convolution models which inherit TorchModel depend on GraphData.

class ConvMol(atom_features, adj_list, max_deg=10, min_deg=0)
Holds information about a molecules.

Resorts order of atoms internally to be in order of increasing degree. Note that only heavy atoms (hydrogens
excluded) are considered here.
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__init__(atom_features, adj_list, max_deg=10, min_deg=0)

Parameters

• atom_features (np.ndarray) – Has shape (n_atoms, n_feat)

• adj_list (list) – List of length n_atoms, with neighor indices of each atom.

• max_deg (int, optional) – Maximum degree of any atom.

• min_deg (int, optional) – Minimum degree of any atom.

get_atoms_with_deg(deg)
Retrieves atom_features with the specific degree

get_num_atoms_with_deg(deg)
Returns the number of atoms with the given degree

get_atom_features()
Returns canonicalized version of atom features.

Features are sorted by atom degree, with original order maintained when degrees are same.

get_adjacency_list()
Returns a canonicalized adjacency list.

Canonicalized means that the atoms are re-ordered by degree.

Returns Canonicalized form of adjacency list.

Return type list

get_deg_adjacency_lists()
Returns adjacency lists grouped by atom degree.

Returns Has length (max_deg+1-min_deg). The element at position deg is itself a list of the
neighbor-lists for atoms with degree deg.

Return type list

get_deg_slice()
Returns degree-slice tensor.

The deg_slice tensor allows indexing into a flattened version of the molecule’s atoms. Assume atoms
are sorted in order of degree. Then deg_slice[deg][0] is the starting position for atoms of degree deg in
flattened list, and deg_slice[deg][1] is the number of atoms with degree deg.

Note deg_slice has shape (max_deg+1-min_deg, 2).

Returns deg_slice – Shape (max_deg+1-min_deg, 2)

Return type np.ndarray

static get_null_mol(n_feat, max_deg=10, min_deg=0)
Constructs a null molecules

Get one molecule with one atom of each degree, with all the atoms connected to themselves, and containing
n_feat features.

Parameters n_feat (int) – number of features for the nodes in the null molecule

static agglomerate_mols(mols, max_deg=10, min_deg=0)
Concatenates list of ConvMol’s into one mol object that can be used to feed into tensorflow placeholders.
The indexing of the molecules are preseved during the combination, but the indexing of the atoms are
greatly changed.

Parameters mols (list) – ConvMol objects to be combined into one molecule.
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class MultiConvMol(nodes, deg_adj_lists, deg_slice, membership, num_mols)
Holds information about multiple molecules, for use in feeding information into tensorflow. Generated using
the agglomerate_mols function

__init__(nodes, deg_adj_lists, deg_slice, membership, num_mols)
Initialize self. See help(type(self)) for accurate signature.

get_deg_adjacency_lists()

get_atom_features()

get_num_atoms()

get_num_molecules()

__module__ = 'deepchem.feat.mol_graphs'

class WeaveMol(nodes, pairs, pair_edges)
Molecular featurization object for weave convolutions.

These objects are produced by WeaveFeaturizer, and feed into WeaveModel. The underlying implementation is
inspired by1.

References

__init__(nodes, pairs, pair_edges)
Initialize self. See help(type(self)) for accurate signature.

get_pair_edges()

get_pair_features()

get_atom_features()

get_num_atoms()

get_num_features()

__module__ = 'deepchem.feat.mol_graphs'

class GraphData(node_features: numpy.ndarray, edge_index: numpy.ndarray, edge_features: Op-
tional[numpy.ndarray] = None, node_pos_features: Optional[numpy.ndarray] =
None)

GraphData class

This data class is almost same as torch_geometric.data.Data.

node_features
Node feature matrix with shape [num_nodes, num_node_features]

Type np.ndarray

edge_index
Graph connectivity in COO format with shape [2, num_edges]

Type np.ndarray, dtype int

edge_features
Edge feature matrix with shape [num_edges, num_edge_features]

Type np.ndarray, optional (default None)

1 Kearnes, Steven, et al. “Molecular graph convolutions: moving beyond fingerprints.” Journal of computer-aided molecular design 30.8 (2016):
595-608.
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node_pos_features
Node position matrix with shape [num_nodes, num_dimensions].

Type np.ndarray, optional (default None)

num_nodes
The number of nodes in the graph

Type int

num_node_features
The number of features per node in the graph

Type int

num_edges
The number of edges in the graph

Type int

num_edges_features
The number of features per edge in the graph

Type int, optional (default None)

Examples

>>> import numpy as np
>>> node_features = np.random.rand(5, 10)
>>> edge_index = np.array([[0, 1, 2, 3, 4], [1, 2, 3, 4, 0]], dtype=np.int64)
>>> graph = GraphData(node_features=node_features, edge_index=edge_index)

__init__(node_features: numpy.ndarray, edge_index: numpy.ndarray, edge_features: Op-
tional[numpy.ndarray] = None, node_pos_features: Optional[numpy.ndarray] = None)

Parameters

• node_features (np.ndarray) – Node feature matrix with shape [num_nodes,
num_node_features]

• edge_index (np.ndarray, dtype int) – Graph connectivity in COO format
with shape [2, num_edges]

• edge_features (np.ndarray, optional (default None)) – Edge feature
matrix with shape [num_edges, num_edge_features]

• node_pos_features (np.ndarray, optional (default None)) – Node
position matrix with shape [num_nodes, num_dimensions].

to_pyg_graph()
Convert to PyTorch Geometric graph data instance

Returns Graph data for PyTorch Geometric

Return type torch_geometric.data.Data

Note: This method requires PyTorch Geometric to be installed.

to_dgl_graph(self_loop: bool = False)
Convert to DGL graph data instance
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Returns

• dgl.DGLGraph – Graph data for DGL

• self_loop (bool) – Whether to add self loops for the nodes, i.e. edges from nodes to
themselves. Default to False.

Note: This method requires DGL to be installed.

3.10.4 Base Classes (for develop)

Dataset

The dc.data.Dataset class is the abstract parent class for all datasets. This class should never be directly initial-
ized, but contains a number of useful method implementations.

class Dataset
Abstract base class for datasets defined by X, y, w elements.

Dataset objects are used to store representations of a dataset as used in a machine learning task. Datasets contain
features X, labels y, weights w and identifiers ids. Different subclasses of Dataset may choose to hold X, y, w,
ids in memory or on disk.

The Dataset class attempts to provide for strong interoperability with other machine learning representations for
datasets. Interconversion methods allow for Dataset objects to be converted to and from numpy arrays, pandas
dataframes, tensorflow datasets, and pytorch datasets (only to and not from for pytorch at present).

Note that you can never instantiate a Dataset object directly. Instead you will need to instantiate one of the
concrete subclasses.

__init__()→ None
Initialize self. See help(type(self)) for accurate signature.

__len__()→ int
Get the number of elements in the dataset.

Returns The number of elements in the dataset.

Return type int

get_shape()→ Tuple[Tuple[int, . . . ], Tuple[int, . . . ], Tuple[int, . . . ], Tuple[int, . . . ]]
Get the shape of the dataset.

Returns four tuples, giving the shape of the X, y, w, and ids arrays.

Returns The tuple contains four elements, which are the shapes of the X, y, w, and ids arrays.

Return type Tuple

get_task_names()→ numpy.ndarray
Get the names of the tasks associated with this dataset.

property X
Get the X vector for this dataset as a single numpy array.

Returns A numpy array of identifiers X.

Return type np.ndarray
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Note: If data is stored on disk, accessing this field may involve loading data from disk and could poten-
tially be slow. Using iterbatches() or itersamples() may be more efficient for larger datasets.

property y
Get the y vector for this dataset as a single numpy array.

Returns A numpy array of identifiers y.

Return type np.ndarray

Note: If data is stored on disk, accessing this field may involve loading data from disk and could poten-
tially be slow. Using iterbatches() or itersamples() may be more efficient for larger datasets.

property ids
Get the ids vector for this dataset as a single numpy array.

Returns A numpy array of identifiers ids.

Return type np.ndarray

Note: If data is stored on disk, accessing this field may involve loading data from disk and could poten-
tially be slow. Using iterbatches() or itersamples() may be more efficient for larger datasets.

property w
Get the weight vector for this dataset as a single numpy array.

Returns A numpy array of weights w.

Return type np.ndarray

Note: If data is stored on disk, accessing this field may involve loading data from disk and could poten-
tially be slow. Using iterbatches() or itersamples() may be more efficient for larger datasets.

iterbatches(batch_size: Optional[int] = None, epochs: int = 1, deterministic: bool =
False, pad_batches: bool = False) → Iterator[Tuple[numpy.ndarray, numpy.ndarray,
numpy.ndarray, numpy.ndarray]]

Get an object that iterates over minibatches from the dataset.

Each minibatch is returned as a tuple of four numpy arrays: (X, y, w, ids).

Parameters

• batch_size (int, optional (default None)) – Number of elements in each
batch.

• epochs (int, optional (default 1)) – Number of epochs to walk over
dataset.

• deterministic (bool, optional (default False)) – If True, follow de-
terministic order.

• pad_batches (bool, optional (default False)) – If True, pad each batch
to batch_size.

Returns Generator which yields tuples of four numpy arrays (X, y, w, ids).

Return type Iterator[Batch]
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itersamples()→ Iterator[Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]]
Get an object that iterates over the samples in the dataset.

Examples

>>> dataset = NumpyDataset(np.ones((2,2)))
>>> for x, y, w, id in dataset.itersamples():
... print(x.tolist(), y.tolist(), w.tolist(), id)
[1.0, 1.0] [0.0] [0.0] 0
[1.0, 1.0] [0.0] [0.0] 1

transform(transformer: transformers.Transformer, **args)→ deepchem.data.datasets.Dataset
Construct a new dataset by applying a transformation to every sample in this dataset.

The argument is a function that can be called as follows: >> newx, newy, neww = fn(x, y, w)

It might be called only once with the whole dataset, or multiple times with different subsets of the data.
Each time it is called, it should transform the samples and return the transformed data.

Parameters transformer (dc.trans.Transformer) – The transformation to apply to
each sample in the dataset.

Returns A newly constructed Dataset object.

Return type Dataset

select(indices: Sequence[int], select_dir: Optional[str] = None)→ deepchem.data.datasets.Dataset
Creates a new dataset from a selection of indices from self.

Parameters

• indices (Sequence) – List of indices to select.

• select_dir (str, optional (default None)) – Path to new directory that
the selected indices will be copied to.

get_statistics(X_stats: bool = True, y_stats: bool = True)→ Tuple[float, . . . ]
Compute and return statistics of this dataset.

Uses self.itersamples() to compute means and standard deviations of the dataset. Can compute on large
datasets that don’t fit in memory.

Parameters

• X_stats (bool, optional (default True)) – If True, compute feature-level
mean and standard deviations.

• y_stats (bool, optional (default True)) – If True, compute label-level
mean and standard deviations.

Returns

• If X_stats == True, returns (X_means, X_stds).

• If y_stats == True, returns (y_means, y_stds).

• If both are true, returns (X_means, X_stds, y_means, y_stds).

Return type Tuple

make_tf_dataset(batch_size: int = 100, epochs: int = 1, deterministic: bool = False, pad_batches:
bool = False)

Create a tf.data.Dataset that iterates over the data in this Dataset.
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Each value returned by the Dataset’s iterator is a tuple of (X, y, w) for one batch.

Parameters

• batch_size (int, default 100) – The number of samples to include in each
batch.

• epochs (int, default 1) – The number of times to iterate over the Dataset.

• deterministic (bool, default False) – If True, the data is produced in order.
If False, a different random permutation of the data is used for each epoch.

• pad_batches (bool, default False) – If True, batches are padded as necessary
to make the size of each batch exactly equal batch_size.

Returns TensorFlow Dataset that iterates over the same data.

Return type tf.data.Dataset

Note: This class requires TensorFlow to be installed.

make_pytorch_dataset(epochs: int = 1, deterministic: bool = False, batch_size: Optional[int] =
None)

Create a torch.utils.data.IterableDataset that iterates over the data in this Dataset.

Each value returned by the Dataset’s iterator is a tuple of (X, y, w, id) containing the data for one batch, or
for a single sample if batch_size is None.

Parameters

• epochs (int, default 1) – The number of times to iterate over the Dataset.

• deterministic (bool, default False) – If True, the data is produced in order.
If False, a different random permutation of the data is used for each epoch.

• batch_size (int, optional (default None)) – The number of samples to
return in each batch. If None, each returned value is a single sample.

Returns torch.utils.data.IterableDataset that iterates over the data in this dataset.

Return type torch.utils.data.IterableDataset

Note: This class requires PyTorch to be installed.

to_dataframe()→ pandas.core.frame.DataFrame
Construct a pandas DataFrame containing the data from this Dataset.

Returns Pandas dataframe. If there is only a single feature per datapoint, will have column “X”
else will have columns “X1,X2,. . . ” for features. If there is only a single label per datapoint,
will have column “y” else will have columns “y1,y2,. . . ” for labels. If there is only a single
weight per datapoint will have column “w” else will have columns “w1,w2,. . . ”. Will have
column “ids” for identifiers.

Return type pd.DataFrame

static from_dataframe(df: pandas.core.frame.DataFrame, X: Optional[Union[str, Se-
quence[str]]] = None, y: Optional[Union[str, Sequence[str]]] = None,
w: Optional[Union[str, Sequence[str]]] = None, ids: Optional[str] =
None)

Construct a Dataset from the contents of a pandas DataFrame.
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Parameters

• df (pd.DataFrame) – The pandas DataFrame

• X (str or List[str], optional (default None)) – The name of the col-
umn or columns containing the X array. If this is None, it will look for default column
names that match those produced by to_dataframe().

• y (str or List[str], optional (default None)) – The name of the col-
umn or columns containing the y array. If this is None, it will look for default column
names that match those produced by to_dataframe().

• w (str or List[str], optional (default None)) – The name of the col-
umn or columns containing the w array. If this is None, it will look for default column
names that match those produced by to_dataframe().

• ids (str, optional (default None)) – The name of the column containing the
ids. If this is None, it will look for default column names that match those produced by
to_dataframe().

DataLoader

The dc.data.DataLoader class is the abstract parent class for all dataloaders. This class should never be directly
initialized, but contains a number of useful method implementations.

class DataLoader(tasks: List[str], featurizer: deepchem.feat.base_classes.Featurizer, id_field: Op-
tional[str] = None, log_every_n: int = 1000)

Handles loading/featurizing of data from disk.

The main use of DataLoader and its child classes is to make it easier to load large datasets into Dataset objects.`

DataLoader is an abstract superclass that provides a general framework for loading data into DeepChem. This
class should never be instantiated directly. To load your own type of data, make a subclass of DataLoader and
provide your own implementation for the create_dataset() method.

To construct a Dataset from input data, first instantiate a concrete data loader (that is, an object which is an
instance of a subclass of DataLoader) with a given Featurizer object. Then call the data loader’s create_dataset()
method on a list of input files that hold the source data to process. Note that each subclass of DataLoader is
specialized to handle one type of input data so you will have to pick the loader class suitable for your input data
type.

Note that it isn’t necessary to use a data loader to process input data. You can directly use Featurizer objects to
featurize provided input into numpy arrays, but note that this calculation will be performed in memory, so you
will have to write generators that walk the source files and write featurized data to disk yourself. DataLoader
and its subclasses make this process easier for you by performing this work under the hood.

__init__(tasks: List[str], featurizer: deepchem.feat.base_classes.Featurizer, id_field: Optional[str] =
None, log_every_n: int = 1000)

Construct a DataLoader object.

This constructor is provided as a template mainly. You shouldn’t ever call this constructor directly as a
user.

Parameters

• tasks (List[str]) – List of task names

• featurizer (Featurizer) – Featurizer to use to process data.

• id_field (str, optional (default None)) – Name of field that holds sample
identifier. Note that the meaning of “field” depends on the input data type and can have a
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different meaning in different subclasses. For example, a CSV file could have a field as a
column, and an SDF file could have a field as molecular property.

• log_every_n (int, optional (default 1000)) – Writes a logging statement
this often.

featurize(inputs: Union[Any, Sequence[Any]], data_dir: Optional[str] = None, shard_size: Op-
tional[int] = 8192)→ deepchem.data.datasets.Dataset

Featurize provided files and write to specified location.

DEPRECATED: This method is now a wrapper for create_dataset() and calls that method under the hood.

For large datasets, automatically shards into smaller chunks for convenience. This implementation assumes
that the helper methods _get_shards and _featurize_shard are implemented and that each shard returned
by _get_shards is a pandas dataframe. You may choose to reuse or override this method in your subclass
implementations.

Parameters

• inputs (List) – List of inputs to process. Entries can be filenames or arbitrary objects.

• data_dir (str, default None) – Directory to store featurized dataset.

• shard_size (int, optional (default 8192)) – Number of examples stored
in each shard.

Returns A Dataset object containing a featurized representation of data from inputs.

Return type Dataset

create_dataset(inputs: Union[Any, Sequence[Any]], data_dir: Optional[str] = None, shard_size:
Optional[int] = 8192)→ deepchem.data.datasets.Dataset

Creates and returns a Dataset object by featurizing provided files.

Reads in inputs and uses self.featurizer to featurize the data in these inputs. For large files, automatically
shards into smaller chunks of shard_size datapoints for convenience. Returns a Dataset object that contains
the featurized dataset.

This implementation assumes that the helper methods _get_shards and _featurize_shard are implemented
and that each shard returned by _get_shards is a pandas dataframe. You may choose to reuse or override
this method in your subclass implementations.

Parameters

• inputs (List) – List of inputs to process. Entries can be filenames or arbitrary objects.

• data_dir (str, optional (default None)) – Directory to store featurized
dataset.

• shard_size (int, optional (default 8192)) – Number of examples stored
in each shard.

Returns A DiskDataset object containing a featurized representation of data from inputs.

Return type DiskDataset
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3.11 MoleculeNet

The DeepChem library is packaged alongside the MoleculeNet suite of datasets. One of the most important parts
of machine learning applications is finding a suitable dataset. The MoleculeNet suite has curated a whole range of
datasets and loaded them into DeepChem dc.data.Dataset objects for convenience.

3.11.1 Contributing a new dataset to MoleculeNet

If you are proposing a new dataset to be included in the MoleculeNet benchmarking suite, please follow the instructions
below. Please review the datasets already available in MolNet before contributing.

0. Read the Contribution guidelines.

1. Open an issue to discuss the dataset you want to add to MolNet.

2. Implement a function in the deepchem.molnet.load_function module following the template function
deepchem.molnet.load_function.load_dataset_template. Specify which featurizers, transformers, and splitters
(available from deepchem.molnet.defaults) are supported for your dataset.

3. Add your load function to deepchem.molnet.__init__.py for easy importing.

4. Prepare your dataset as a .tar.gz or .zip file. Accepted filetypes include CSV, JSON, and SDF.

5. Ask a member of the technical steering committee to add your .tar.gz or .zip file to the DeepChem AWS bucket.
Modify your load function to pull down the dataset from AWS.

6. Submit a [WIP] PR (Work in progress pull request) following the PR template.

3.11.2 BACE Dataset

load_bace_classification(featurizer: Union[deepchem.feat.base_classes.Featurizer, str] = 'ECFP',
splitter: Optional[Union[deepchem.splits.splitters.Splitter, str]] = 'scaf-
fold', transformers: List[Union[deepchem.molnet.load_function.molnet_loader.TransformerGenerator,
str]] = ['balancing'], reload: bool = True, data_dir: Optional[str] =
None, save_dir: Optional[str] = None, **kwargs)→ Tuple[List[str], Tu-
ple[deepchem.data.datasets.Dataset, . . . ], List[transformers.Transformer]]

Load BACE dataset, classification labels

BACE dataset with classification labels (“class”).

Parameters

• featurizer (Featurizer or str) – the featurizer to use for processing the data.
Alternatively you can pass one of the names from dc.molnet.featurizers as a shortcut.

• splitter (Splitter or str) – the splitter to use for splitting the data into train-
ing, validation, and test sets. Alternatively you can pass one of the names from
dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single
dataset.

• transformers (list of TransformerGenerators or strings) – the
Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a
shortcut, one of the names from dc.molnet.transformers.

• reload (bool) – if True, the first call for a particular featurizer and splitter will cache the
datasets to disk, and subsequent calls will reload the cached datasets.

• data_dir (str) – a directory to save the raw data in
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• save_dir (str) – a directory to save the dataset in

load_bace_regression(featurizer: Union[deepchem.feat.base_classes.Featurizer, str] = 'ECFP', split-
ter: Optional[Union[deepchem.splits.splitters.Splitter, str]] = 'scaffold', trans-
formers: List[Union[deepchem.molnet.load_function.molnet_loader.TransformerGenerator,
str]] = ['normalization'], reload: bool = True, data_dir: Optional[str]
= None, save_dir: Optional[str] = None, **kwargs) → Tuple[List[str],
Tuple[deepchem.data.datasets.Dataset, . . . ], List[transformers.Transformer]]

Load BACE dataset, regression labels

The BACE dataset provides quantitative IC50 and qualitative (binary label) binding results for a set of inhibitors
of human beta-secretase 1 (BACE-1).

All data are experimental values reported in scientific literature over the past decade, some with detailed crystal
structures available. A collection of 1522 compounds is provided, along with the regression labels of IC50.

Scaffold splitting is recommended for this dataset.

The raw data csv file contains columns below:

• “mol” - SMILES representation of the molecular structure

• “pIC50” - Negative log of the IC50 binding affinity

• “class” - Binary labels for inhibitor

Parameters

• featurizer (Featurizer or str) – the featurizer to use for processing the data.
Alternatively you can pass one of the names from dc.molnet.featurizers as a shortcut.

• splitter (Splitter or str) – the splitter to use for splitting the data into train-
ing, validation, and test sets. Alternatively you can pass one of the names from
dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single
dataset.

• transformers (list of TransformerGenerators or strings) – the
Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a
shortcut, one of the names from dc.molnet.transformers.

• reload (bool) – if True, the first call for a particular featurizer and splitter will cache the
datasets to disk, and subsequent calls will reload the cached datasets.

• data_dir (str) – a directory to save the raw data in

• save_dir (str) – a directory to save the dataset in

References

3.11.3 BBBC Datasets

load_bbbc001(splitter: Optional[Union[deepchem.splits.splitters.Splitter, str]] = 'index', transformers:
List[Union[deepchem.molnet.load_function.molnet_loader.TransformerGenerator, str]] =
[], reload: bool = True, data_dir: Optional[str] = None, save_dir: Optional[str]
= None, **kwargs) → Tuple[List[str], Tuple[deepchem.data.datasets.Dataset, . . . ],
List[transformers.Transformer]]

Load BBBC001 dataset

This dataset contains 6 images of human HT29 colon cancer cells. The task is to learn to predict the cell counts
in these images. This dataset is too small to serve to train algorithms, but might serve as a good test dataset.
https://data.broadinstitute.org/bbbc/BBBC001/

3.11. MoleculeNet 63

https://data.broadinstitute.org/bbbc/BBBC001/


deepchem, Release 2.5.0

Parameters

• splitter (Splitter or str) – the splitter to use for splitting the data into train-
ing, validation, and test sets. Alternatively you can pass one of the names from
dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single
dataset.

• transformers (list of TransformerGenerators or strings) – the
Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a
shortcut, one of the names from dc.molnet.transformers.

• reload (bool) – if True, the first call for a particular featurizer and splitter will cache the
datasets to disk, and subsequent calls will reload the cached datasets.

• data_dir (str) – a directory to save the raw data in

• save_dir (str) – a directory to save the dataset in

load_bbbc002(splitter: Optional[Union[deepchem.splits.splitters.Splitter, str]] = 'index', transformers:
List[Union[deepchem.molnet.load_function.molnet_loader.TransformerGenerator, str]] =
[], reload: bool = True, data_dir: Optional[str] = None, save_dir: Optional[str]
= None, **kwargs) → Tuple[List[str], Tuple[deepchem.data.datasets.Dataset, . . . ],
List[transformers.Transformer]]

Load BBBC002 dataset

This dataset contains data corresponding to 5 samples of Drosophilia Kc167 cells. There are 10 fields of view
for each sample, each an image of size 512x512. Ground truth labels contain cell counts for this dataset. Full
details about this dataset are present at https://data.broadinstitute.org/bbbc/BBBC002/.

Parameters

• splitter (Splitter or str) – the splitter to use for splitting the data into train-
ing, validation, and test sets. Alternatively you can pass one of the names from
dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single
dataset.

• transformers (list of TransformerGenerators or strings) – the
Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a
shortcut, one of the names from dc.molnet.transformers.

• reload (bool) – if True, the first call for a particular featurizer and splitter will cache the
datasets to disk, and subsequent calls will reload the cached datasets.

• data_dir (str) – a directory to save the raw data in

• save_dir (str) – a directory to save the dataset in

3.11.4 BBBP Datasets

BBBP stands for Blood-Brain-Barrier Penetration

load_bbbp(featurizer: Union[deepchem.feat.base_classes.Featurizer, str] = 'ECFP', splitter:
Optional[Union[deepchem.splits.splitters.Splitter, str]] = 'scaffold', transformers:
List[Union[deepchem.molnet.load_function.molnet_loader.TransformerGenerator, str]] =
['balancing'], reload: bool = True, data_dir: Optional[str] = None, save_dir: Op-
tional[str] = None, **kwargs) → Tuple[List[str], Tuple[deepchem.data.datasets.Dataset,
. . . ], List[transformers.Transformer]]

Load BBBP dataset

The blood-brain barrier penetration (BBBP) dataset is designed for the modeling and prediction of barrier per-
meability. As a membrane separating circulating blood and brain extracellular fluid, the blood-brain barrier
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blocks most drugs, hormones and neurotransmitters. Thus penetration of the barrier forms a long-standing issue
in development of drugs targeting central nervous system.

This dataset includes binary labels for over 2000 compounds on their permeability properties.

Scaffold splitting is recommended for this dataset.

The raw data csv file contains columns below:

• “name” - Name of the compound

• “smiles” - SMILES representation of the molecular structure

• “p_np” - Binary labels for penetration/non-penetration

Parameters

• featurizer (Featurizer or str) – the featurizer to use for processing the data.
Alternatively you can pass one of the names from dc.molnet.featurizers as a shortcut.

• splitter (Splitter or str) – the splitter to use for splitting the data into train-
ing, validation, and test sets. Alternatively you can pass one of the names from
dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single
dataset.

• transformers (list of TransformerGenerators or strings) – the
Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a
shortcut, one of the names from dc.molnet.transformers.

• reload (bool) – if True, the first call for a particular featurizer and splitter will cache the
datasets to disk, and subsequent calls will reload the cached datasets.

• data_dir (str) – a directory to save the raw data in

• save_dir (str) – a directory to save the dataset in

References

3.11.5 Cell Counting Datasets

load_cell_counting(splitter: Optional[Union[deepchem.splits.splitters.Splitter, str]] = None, trans-
formers: List[Union[deepchem.molnet.load_function.molnet_loader.TransformerGenerator,
str]] = [], reload: bool = True, data_dir: Optional[str] = None,
save_dir: Optional[str] = None, **kwargs) → Tuple[List[str], Tu-
ple[deepchem.data.datasets.Dataset, . . . ], List[transformers.Transformer]]

Load Cell Counting dataset.

Loads the cell counting dataset from http://www.robots.ox.ac.uk/~vgg/research/counting/index_org.html.

Parameters

• splitter (Splitter or str) – the splitter to use for splitting the data into train-
ing, validation, and test sets. Alternatively you can pass one of the names from
dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single
dataset.

• transformers (list of TransformerGenerators or strings) – the
Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a
shortcut, one of the names from dc.molnet.transformers.

• reload (bool) – if True, the first call for a particular featurizer and splitter will cache the
datasets to disk, and subsequent calls will reload the cached datasets.
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• data_dir (str) – a directory to save the raw data in

• save_dir (str) – a directory to save the dataset in

3.11.6 Chembl Datasets

load_chembl(featurizer: Union[deepchem.feat.base_classes.Featurizer, str] = 'ECFP', splitter:
Optional[Union[deepchem.splits.splitters.Splitter, str]] = 'scaffold', transformers:
List[Union[deepchem.molnet.load_function.molnet_loader.TransformerGenerator, str]]
= ['normalization'], set: str = '5thresh', reload: bool = True, data_dir: Op-
tional[str] = None, save_dir: Optional[str] = None, **kwargs) → Tuple[List[str],
Tuple[deepchem.data.datasets.Dataset, . . . ], List[transformers.Transformer]]

Load the ChEMBL dataset.

This dataset is based on release 22.1 of the data from https://www.ebi.ac.uk/chembl/. Two subsets of the data
are available, depending on the “set” argument. “sparse” is a large dataset with 244,245 compounds. As the
name suggests, the data is extremely sparse, with most compounds having activity data for only one target.
“5thresh” is a much smaller set (23,871 compounds) that includes only compounds with activity data for at least
five targets.

Parameters

• featurizer (Featurizer or str) – the featurizer to use for processing the data.
Alternatively you can pass one of the names from dc.molnet.featurizers as a shortcut.

• splitter (Splitter or str) – the splitter to use for splitting the data into train-
ing, validation, and test sets. Alternatively you can pass one of the names from
dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single
dataset.

• transformers (list of TransformerGenerators or strings) – the
Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a
shortcut, one of the names from dc.molnet.transformers.

• set (str) – the subset to load, either “sparse” or “5thresh”

• reload (bool) – if True, the first call for a particular featurizer and splitter will cache the
datasets to disk, and subsequent calls will reload the cached datasets.

• data_dir (str) – a directory to save the raw data in

• save_dir (str) – a directory to save the dataset in

3.11.7 Chembl25 Datasets

load_chembl25(featurizer: Union[deepchem.feat.base_classes.Featurizer, str] = 'ECFP', splitter:
Optional[Union[deepchem.splits.splitters.Splitter, str]] = 'scaffold', transformers:
List[Union[deepchem.molnet.load_function.molnet_loader.TransformerGenerator, str]] =
['normalization'], reload: bool = True, data_dir: Optional[str] = None, save_dir: Op-
tional[str] = None, **kwargs) → Tuple[List[str], Tuple[deepchem.data.datasets.Dataset,
. . . ], List[transformers.Transformer]]

Loads the ChEMBL25 dataset, featurizes it, and does a split.

Parameters

• featurizer (Featurizer or str) – the featurizer to use for processing the data.
Alternatively you can pass one of the names from dc.molnet.featurizers as a shortcut.
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• splitter (Splitter or str) – the splitter to use for splitting the data into train-
ing, validation, and test sets. Alternatively you can pass one of the names from
dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single
dataset.

• transformers (list of TransformerGenerators or strings) – the
Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a
shortcut, one of the names from dc.molnet.transformers.

• reload (bool) – if True, the first call for a particular featurizer and splitter will cache the
datasets to disk, and subsequent calls will reload the cached datasets.

• data_dir (str) – a directory to save the raw data in

• save_dir (str) – a directory to save the dataset in

3.11.8 Clearance Datasets

load_clearance(featurizer: Union[deepchem.feat.base_classes.Featurizer, str] = 'ECFP', splitter:
Optional[Union[deepchem.splits.splitters.Splitter, str]] = 'scaffold', transformers:
List[Union[deepchem.molnet.load_function.molnet_loader.TransformerGenerator, str]]
= ['normalization'], reload: bool = True, data_dir: Optional[str] = None, save_dir: Op-
tional[str] = None, **kwargs)→ Tuple[List[str], Tuple[deepchem.data.datasets.Dataset,
. . . ], List[transformers.Transformer]]

Load clearance datasets.

Parameters

• featurizer (Featurizer or str) – the featurizer to use for processing the data.
Alternatively you can pass one of the names from dc.molnet.featurizers as a shortcut.

• splitter (Splitter or str) – the splitter to use for splitting the data into train-
ing, validation, and test sets. Alternatively you can pass one of the names from
dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single
dataset.

• transformers (list of TransformerGenerators or strings) – the
Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a
shortcut, one of the names from dc.molnet.transformers.

• reload (bool) – if True, the first call for a particular featurizer and splitter will cache the
datasets to disk, and subsequent calls will reload the cached datasets.

• data_dir (str) – a directory to save the raw data in

• save_dir (str) – a directory to save the dataset in

3.11.9 Clintox Datasets

load_clintox(featurizer: Union[deepchem.feat.base_classes.Featurizer, str] = 'ECFP', splitter:
Optional[Union[deepchem.splits.splitters.Splitter, str]] = 'scaffold', transformers:
List[Union[deepchem.molnet.load_function.molnet_loader.TransformerGenerator, str]]
= ['balancing'], reload: bool = True, data_dir: Optional[str] = None, save_dir: Op-
tional[str] = None, **kwargs) → Tuple[List[str], Tuple[deepchem.data.datasets.Dataset,
. . . ], List[transformers.Transformer]]

Load ClinTox dataset

The ClinTox dataset compares drugs approved by the FDA and drugs that have failed clinical trials for toxicity
reasons. The dataset includes two classification tasks for 1491 drug compounds with known chemical structures:
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1. clinical trial toxicity (or absence of toxicity)

2. FDA approval status.

List of FDA-approved drugs are compiled from the SWEETLEAD database, and list of drugs that failed clinical
trials for toxicity reasons are compiled from the Aggregate Analysis of ClinicalTrials.gov(AACT) database.

Random splitting is recommended for this dataset.

The raw data csv file contains columns below:

• “smiles” - SMILES representation of the molecular structure

• “FDA_APPROVED” - FDA approval status

• “CT_TOX” - Clinical trial results

Parameters

• featurizer (Featurizer or str) – the featurizer to use for processing the data.
Alternatively you can pass one of the names from dc.molnet.featurizers as a shortcut.

• splitter (Splitter or str) – the splitter to use for splitting the data into train-
ing, validation, and test sets. Alternatively you can pass one of the names from
dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single
dataset.

• transformers (list of TransformerGenerators or strings) – the
Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a
shortcut, one of the names from dc.molnet.transformers.

• reload (bool) – if True, the first call for a particular featurizer and splitter will cache the
datasets to disk, and subsequent calls will reload the cached datasets.

• data_dir (str) – a directory to save the raw data in

• save_dir (str) – a directory to save the dataset in

References

3.11.10 Delaney Datasets

load_delaney(featurizer: Union[deepchem.feat.base_classes.Featurizer, str] = 'ECFP', splitter:
Optional[Union[deepchem.splits.splitters.Splitter, str]] = 'scaffold', transformers:
List[Union[deepchem.molnet.load_function.molnet_loader.TransformerGenerator, str]] =
['normalization'], reload: bool = True, data_dir: Optional[str] = None, save_dir: Op-
tional[str] = None, **kwargs) → Tuple[List[str], Tuple[deepchem.data.datasets.Dataset,
. . . ], List[transformers.Transformer]]

Load Delaney dataset

The Delaney (ESOL) dataset a regression dataset containing structures and water solubility data for 1128 com-
pounds. The dataset is widely used to validate machine learning models on estimating solubility directly from
molecular structures (as encoded in SMILES strings).

Scaffold splitting is recommended for this dataset.

The raw data csv file contains columns below:

• “Compound ID” - Name of the compound

• “smiles” - SMILES representation of the molecular structure

• “measured log solubility in mols per litre” - Log-scale water solubility of the compound, used as label
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Parameters

• featurizer (Featurizer or str) – the featurizer to use for processing the data.
Alternatively you can pass one of the names from dc.molnet.featurizers as a shortcut.

• splitter (Splitter or str) – the splitter to use for splitting the data into train-
ing, validation, and test sets. Alternatively you can pass one of the names from
dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single
dataset.

• transformers (list of TransformerGenerators or strings) – the
Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a
shortcut, one of the names from dc.molnet.transformers.

• reload (bool) – if True, the first call for a particular featurizer and splitter will cache the
datasets to disk, and subsequent calls will reload the cached datasets.

• data_dir (str) – a directory to save the raw data in

• save_dir (str) – a directory to save the dataset in

References

3.11.11 Factors Datasets

load_factors(shard_size=2000, featurizer=None, split=None, reload=True)
Loads FACTOR dataset; does not do train/test split

The Factors dataset is an in-house dataset from Merck that was first introduced in the following paper: Ram-
sundar, Bharath, et al. “Is multitask deep learning practical for pharma?.” Journal of chemical information and
modeling 57.8 (2017): 2068-2076.

It contains 1500 Merck in-house compounds that were measured for IC50 of inhibition on 12 serine proteases.
Unlike most of the other datasets featured in MoleculeNet, the Factors collection does not have structures for
the compounds tested since they were proprietary Merck compounds. However, the collection does feature
pre-computed descriptors for these compounds.

Note that the original train/valid/test split from the source data was preserved here, so this function doesn’t allow
for alternate modes of splitting. Similarly, since the source data came pre-featurized, it is not possible to apply
alternative featurizations.

Parameters

• shard_size (int, optional) – Size of the DiskDataset shards to write on disk

• featurizer (optional) – Ignored since featurization pre-computed

• split (optional) – Ignored since split pre-computed

• reload (bool, optional) – Whether to automatically re-load from disk
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3.11.12 HIV Datasets

load_hiv(featurizer: Union[deepchem.feat.base_classes.Featurizer, str] = 'ECFP', splitter:
Optional[Union[deepchem.splits.splitters.Splitter, str]] = 'scaffold', transformers:
List[Union[deepchem.molnet.load_function.molnet_loader.TransformerGenerator, str]] =
['balancing'], reload: bool = True, data_dir: Optional[str] = None, save_dir: Op-
tional[str] = None, **kwargs) → Tuple[List[str], Tuple[deepchem.data.datasets.Dataset,
. . . ], List[transformers.Transformer]]

Load HIV dataset

The HIV dataset was introduced by the Drug Therapeutics Program (DTP) AIDS Antiviral Screen, which tested
the ability to inhibit HIV replication for over 40,000 compounds. Screening results were evaluated and placed
into three categories: confirmed inactive (CI),confirmed active (CA) and confirmed moderately active (CM). We
further combine the latter two labels, making it a classification task between inactive (CI) and active (CA and
CM).

Scaffold splitting is recommended for this dataset.

The raw data csv file contains columns below:

• “smiles”: SMILES representation of the molecular structure

• “activity”: Three-class labels for screening results: CI/CM/CA

• “HIV_active”: Binary labels for screening results: 1 (CA/CM) and 0 (CI)

Parameters

• featurizer (Featurizer or str) – the featurizer to use for processing the data.
Alternatively you can pass one of the names from dc.molnet.featurizers as a shortcut.

• splitter (Splitter or str) – the splitter to use for splitting the data into train-
ing, validation, and test sets. Alternatively you can pass one of the names from
dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single
dataset.

• transformers (list of TransformerGenerators or strings) – the
Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a
shortcut, one of the names from dc.molnet.transformers.

• reload (bool) – if True, the first call for a particular featurizer and splitter will cache the
datasets to disk, and subsequent calls will reload the cached datasets.

• data_dir (str) – a directory to save the raw data in

• save_dir (str) – a directory to save the dataset in

References

3.11.13 HOPV Datasets

HOPV stands for the Harvard Organic Photovoltaic Dataset.

load_hopv(featurizer: Union[deepchem.feat.base_classes.Featurizer, str] = 'ECFP', splitter:
Optional[Union[deepchem.splits.splitters.Splitter, str]] = 'scaffold', transformers:
List[Union[deepchem.molnet.load_function.molnet_loader.TransformerGenerator, str]] =
['normalization'], reload: bool = True, data_dir: Optional[str] = None, save_dir: Op-
tional[str] = None, **kwargs) → Tuple[List[str], Tuple[deepchem.data.datasets.Dataset, . . . ],
List[transformers.Transformer]]

Load HOPV datasets. Does not do train/test split
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The HOPV datasets consist of the “Harvard Organic Photovoltaic Dataset. This dataset includes 350 small
molecules and polymers that were utilized as p-type materials in OPVs. Experimental properties include:
HOMO [a.u.], LUMO [a.u.], Electrochemical gap [a.u.], Optical gap [a.u.], Power conversion efficiency [%],
Open circuit potential [V], Short circuit current density [mA/cm^2], and fill factor [%]. Theoretical calculations
in the original dataset have been removed (for now).

Lopez, Steven A., et al. “The Harvard organic photovoltaic dataset.” Scientific data 3.1 (2016): 1-7.

Parameters

• featurizer (Featurizer or str) – the featurizer to use for processing the data.
Alternatively you can pass one of the names from dc.molnet.featurizers as a shortcut.

• splitter (Splitter or str) – the splitter to use for splitting the data into train-
ing, validation, and test sets. Alternatively you can pass one of the names from
dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single
dataset.

• transformers (list of TransformerGenerators or strings) – the
Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a
shortcut, one of the names from dc.molnet.transformers.

• reload (bool) – if True, the first call for a particular featurizer and splitter will cache the
datasets to disk, and subsequent calls will reload the cached datasets.

• data_dir (str) – a directory to save the raw data in

• save_dir (str) – a directory to save the dataset in

3.11.14 HPPB Datasets

load_hppb(featurizer: Union[deepchem.feat.base_classes.Featurizer, str] = 'ECFP', splitter:
Optional[Union[deepchem.splits.splitters.Splitter, str]] = 'scaffold', transformers:
List[Union[deepchem.molnet.load_function.molnet_loader.TransformerGenerator, str]]
= [], reload: bool = True, data_dir: Optional[str] = None, save_dir: Optional[str]
= None, **kwargs) → Tuple[List[str], Tuple[deepchem.data.datasets.Dataset, . . . ],
List[transformers.Transformer]]

Loads the thermodynamic solubility datasets.

Parameters

• featurizer (Featurizer or str) – the featurizer to use for processing the data.
Alternatively you can pass one of the names from dc.molnet.featurizers as a shortcut.

• splitter (Splitter or str) – the splitter to use for splitting the data into train-
ing, validation, and test sets. Alternatively you can pass one of the names from
dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single
dataset.

• transformers (list of TransformerGenerators or strings) – the
Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a
shortcut, one of the names from dc.molnet.transformers.

• reload (bool) – if True, the first call for a particular featurizer and splitter will cache the
datasets to disk, and subsequent calls will reload the cached datasets.

• data_dir (str) – a directory to save the raw data in

• save_dir (str) – a directory to save the dataset in
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3.11.15 KAGGLE Datasets

load_kaggle(shard_size=2000, featurizer=None, split=None, reload=True)
Loads kaggle datasets. Generates if not stored already.

The Kaggle dataset is an in-house dataset from Merck that was first introduced in the following paper:

Ma, Junshui, et al. “Deep neural nets as a method for quantitative structure–activity relationships.” Journal of
chemical information and modeling 55.2 (2015): 263-274.

It contains 100,000 unique Merck in-house compounds that were measured on 15 enzyme inhibition and
ADME/TOX datasets. Unlike most of the other datasets featured in MoleculeNet, the Kaggle collection does
not have structures for the compounds tested since they were proprietary Merck compounds. However, the
collection does feature pre-computed descriptors for these compounds.

Note that the original train/valid/test split from the source data was preserved here, so this function doesn’t allow
for alternate modes of splitting. Similarly, since the source data came pre-featurized, it is not possible to apply
alternative featurizations.

Parameters

• shard_size (int, optional) – Size of the DiskDataset shards to write on disk

• featurizer (optional) – Ignored since featurization pre-computed

• split (optional) – Ignored since split pre-computed

• reload (bool, optional) – Whether to automatically re-load from disk

3.11.16 Kinase Datasets

load_kinase(shard_size=2000, featurizer=None, split=None, reload=True)
Loads Kinase datasets, does not do train/test split

The Kinase dataset is an in-house dataset from Merck that was first introduced in the following paper: Ram-
sundar, Bharath, et al. “Is multitask deep learning practical for pharma?.” Journal of chemical information and
modeling 57.8 (2017): 2068-2076.

It contains 2500 Merck in-house compounds that were measured for IC50 of inhibition on 99 protein kinases.
Unlike most of the other datasets featured in MoleculeNet, the Kinase collection does not have structures for
the compounds tested since they were proprietary Merck compounds. However, the collection does feature
pre-computed descriptors for these compounds.

Note that the original train/valid/test split from the source data was preserved here, so this function doesn’t allow
for alternate modes of splitting. Similarly, since the source data came pre-featurized, it is not possible to apply
alternative featurizations.

Parameters

• shard_size (int, optional) – Size of the DiskDataset shards to write on disk

• featurizer (optional) – Ignored since featurization pre-computed

• split (optional) – Ignored since split pre-computed

• reload (bool, optional) – Whether to automatically re-load from disk
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3.11.17 Lipo Datasets

load_lipo(featurizer: Union[deepchem.feat.base_classes.Featurizer, str] = 'ECFP', splitter:
Optional[Union[deepchem.splits.splitters.Splitter, str]] = 'scaffold', transformers:
List[Union[deepchem.molnet.load_function.molnet_loader.TransformerGenerator, str]] =
['normalization'], reload: bool = True, data_dir: Optional[str] = None, save_dir: Op-
tional[str] = None, **kwargs) → Tuple[List[str], Tuple[deepchem.data.datasets.Dataset, . . . ],
List[transformers.Transformer]]

Load Lipophilicity dataset

Lipophilicity is an important feature of drug molecules that affects both membrane permeability and solubil-
ity. The lipophilicity dataset, curated from ChEMBL database, provides experimental results of octanol/water
distribution coefficient (logD at pH 7.4) of 4200 compounds.

Scaffold splitting is recommended for this dataset.

The raw data csv file contains columns below:

• “smiles” - SMILES representation of the molecular structure

• “exp” - Measured octanol/water distribution coefficient (logD) of the compound, used as label

Parameters

• featurizer (Featurizer or str) – the featurizer to use for processing the data.
Alternatively you can pass one of the names from dc.molnet.featurizers as a shortcut.

• splitter (Splitter or str) – the splitter to use for splitting the data into train-
ing, validation, and test sets. Alternatively you can pass one of the names from
dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single
dataset.

• transformers (list of TransformerGenerators or strings) – the
Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a
shortcut, one of the names from dc.molnet.transformers.

• reload (bool) – if True, the first call for a particular featurizer and splitter will cache the
datasets to disk, and subsequent calls will reload the cached datasets.

• data_dir (str) – a directory to save the raw data in

• save_dir (str) – a directory to save the dataset in

References

3.11.18 Materials Datasets

Materials datasets include inorganic crystal structures, chemical compositions, and target properties like formation
energies and band gaps. Machine learning problems in materials science commonly include predicting the value of
a continuous (regression) or categorical (classification) property of a material based on its chemical composition or
crystal structure. “Inverse design” is also of great interest, in which ML methods generate crystal structures that
have a desired property. Other areas where ML is applicable in materials include: discovering new or modified
phenomenological models that describe material behavior
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load_bandgap(featurizer: Union[deepchem.feat.base_classes.Featurizer, str] = El-
ementPropertyFingerprint[data_source='matminer'], splitter: Op-
tional[Union[deepchem.splits.splitters.Splitter, str]] = 'random', transformers:
List[Union[deepchem.molnet.load_function.molnet_loader.TransformerGenerator, str]] =
['normalization'], reload: bool = True, data_dir: Optional[str] = None, save_dir: Op-
tional[str] = None, **kwargs) → Tuple[List[str], Tuple[deepchem.data.datasets.Dataset,
. . . ], List[transformers.Transformer]]

Load band gap dataset.

Contains 4604 experimentally measured band gaps for inorganic crystal structure compositions. In benchmark
studies, random forest models achieved a mean average error of 0.45 eV during five-fold nested cross validation
on this dataset.

For more details on the dataset see [1]_. For more details on previous benchmarks for this dataset, see [2]_.

Parameters

• featurizer (Featurizer or str) – the featurizer to use for processing the data.
Alternatively you can pass one of the names from dc.molnet.featurizers as a shortcut.

• splitter (Splitter or str) – the splitter to use for splitting the data into train-
ing, validation, and test sets. Alternatively you can pass one of the names from
dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single
dataset.

• transformers (list of TransformerGenerators or strings) – the
Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a
shortcut, one of the names from dc.molnet.transformers.

• reload (bool) – if True, the first call for a particular featurizer and splitter will cache the
datasets to disk, and subsequent calls will reload the cached datasets.

• data_dir (str) – a directory to save the raw data in

• save_dir (str) – a directory to save the dataset in

Returns

tasks, datasets, transformers –

tasks [list] Column names corresponding to machine learning target variables.

datasets [tuple] train, validation, test splits of data as deepchem.data.datasets.
Dataset instances.

transformers [list] deepchem.trans.transformers.Transformer instances ap-
plied to dataset.

Return type tuple

References

Examples

>>>
>> import deepchem as dc
>> tasks, datasets, transformers = dc.molnet.load_bandgap()
>> train_dataset, val_dataset, test_dataset = datasets
>> n_tasks = len(tasks)
>> n_features = train_dataset.get_data_shape()[0]
>> model = dc.models.MultitaskRegressor(n_tasks, n_features)
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load_perovskite(featurizer: Union[deepchem.feat.base_classes.Featurizer, str] =
SineCoulombMatrix[max_atoms=100, flatten=True], splitter: Op-
tional[Union[deepchem.splits.splitters.Splitter, str]] = 'random', transformers:
List[Union[deepchem.molnet.load_function.molnet_loader.TransformerGenerator,
str]] = ['normalization'], reload: bool = True, data_dir: Optional[str] =
None, save_dir: Optional[str] = None, **kwargs) → Tuple[List[str], Tu-
ple[deepchem.data.datasets.Dataset, . . . ], List[transformers.Transformer]]

Load perovskite dataset.

Contains 18928 perovskite structures and their formation energies. In benchmark studies, random forest models
and crystal graph neural networks achieved mean average error of 0.23 and 0.05 eV/atom, respectively, during
five-fold nested cross validation on this dataset.

For more details on the dataset see [1]_. For more details on previous benchmarks for this dataset, see [2]_.

Parameters

• featurizer (Featurizer or str) – the featurizer to use for processing the data.
Alternatively you can pass one of the names from dc.molnet.featurizers as a shortcut.

• splitter (Splitter or str) – the splitter to use for splitting the data into train-
ing, validation, and test sets. Alternatively you can pass one of the names from
dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single
dataset.

• transformers (list of TransformerGenerators or strings) – the
Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a
shortcut, one of the names from dc.molnet.transformers.

• reload (bool) – if True, the first call for a particular featurizer and splitter will cache the
datasets to disk, and subsequent calls will reload the cached datasets.

• data_dir (str) – a directory to save the raw data in

• save_dir (str) – a directory to save the dataset in

Returns

tasks, datasets, transformers –

tasks [list] Column names corresponding to machine learning target variables.

datasets [tuple] train, validation, test splits of data as deepchem.data.datasets.
Dataset instances.

transformers [list] deepchem.trans.transformers.Transformer instances ap-
plied to dataset.

Return type tuple

References

Examples

>>>
>> import deepchem as dc
>> tasks, datasets, transformers = dc.molnet.load_perovskite()
>> train_dataset, val_dataset, test_dataset = datasets
>> n_tasks = len(tasks)
>> n_features = train_dataset.get_data_shape()[0]
>> model = dc.models.MultitaskRegressor(n_tasks, n_features)
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load_mp_formation_energy(featurizer: Union[deepchem.feat.base_classes.Featurizer, str] =
SineCoulombMatrix[max_atoms=100, flatten=True], splitter: Op-
tional[Union[deepchem.splits.splitters.Splitter, str]] = 'random', trans-
formers: List[Union[deepchem.molnet.load_function.molnet_loader.TransformerGenerator,
str]] = ['normalization'], reload: bool = True, data_dir: Optional[str] =
None, save_dir: Optional[str] = None, **kwargs)→ Tuple[List[str], Tu-
ple[deepchem.data.datasets.Dataset, . . . ], List[transformers.Transformer]]

Load mp formation energy dataset.

Contains 132752 calculated formation energies and inorganic crystal structures from the Materials Project
database. In benchmark studies, random forest models achieved a mean average error of 0.116 eV/atom during
five-folded nested cross validation on this dataset.

For more details on the dataset see [1]_. For more details on previous benchmarks for this dataset, see [2]_.

Parameters

• featurizer (Featurizer or str) – the featurizer to use for processing the data.
Alternatively you can pass one of the names from dc.molnet.featurizers as a shortcut.

• splitter (Splitter or str) – the splitter to use for splitting the data into train-
ing, validation, and test sets. Alternatively you can pass one of the names from
dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single
dataset.

• transformers (list of TransformerGenerators or strings) – the
Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a
shortcut, one of the names from dc.molnet.transformers.

• reload (bool) – if True, the first call for a particular featurizer and splitter will cache the
datasets to disk, and subsequent calls will reload the cached datasets.

• data_dir (str) – a directory to save the raw data in

• save_dir (str) – a directory to save the dataset in

Returns

tasks, datasets, transformers –

tasks [list] Column names corresponding to machine learning target variables.

datasets [tuple] train, validation, test splits of data as deepchem.data.datasets.
Dataset instances.

transformers [list] deepchem.trans.transformers.Transformer instances ap-
plied to dataset.

Return type tuple

References

Examples

>>>
>> import deepchem as dc
>> tasks, datasets, transformers = dc.molnet.load_mp_formation_energy()
>> train_dataset, val_dataset, test_dataset = datasets
>> n_tasks = len(tasks)
>> n_features = train_dataset.get_data_shape()[0]
>> model = dc.models.MultitaskRegressor(n_tasks, n_features)
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load_mp_metallicity(featurizer: Union[deepchem.feat.base_classes.Featurizer, str] =
SineCoulombMatrix[max_atoms=100, flatten=True], splitter: Op-
tional[Union[deepchem.splits.splitters.Splitter, str]] = 'random', transformers:
List[Union[deepchem.molnet.load_function.molnet_loader.TransformerGenerator,
str]] = ['balancing'], reload: bool = True, data_dir: Optional[str] =
None, save_dir: Optional[str] = None, **kwargs) → Tuple[List[str], Tu-
ple[deepchem.data.datasets.Dataset, . . . ], List[transformers.Transformer]]

Load mp formation energy dataset.

Contains 106113 inorganic crystal structures from the Materials Project database labeled as metals or nonmetals.
In benchmark studies, random forest models achieved a mean ROC-AUC of 0.9 during five-folded nested cross
validation on this dataset.

For more details on the dataset see [1]_. For more details on previous benchmarks for this dataset, see [2]_.

Parameters

• featurizer (Featurizer or str) – the featurizer to use for processing the data.
Alternatively you can pass one of the names from dc.molnet.featurizers as a shortcut.

• splitter (Splitter or str) – the splitter to use for splitting the data into train-
ing, validation, and test sets. Alternatively you can pass one of the names from
dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single
dataset.

• transformers (list of TransformerGenerators or strings) – the
Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a
shortcut, one of the names from dc.molnet.transformers.

• reload (bool) – if True, the first call for a particular featurizer and splitter will cache the
datasets to disk, and subsequent calls will reload the cached datasets.

• data_dir (str) – a directory to save the raw data in

• save_dir (str) – a directory to save the dataset in

Returns

tasks, datasets, transformers –

tasks [list] Column names corresponding to machine learning target variables.

datasets [tuple] train, validation, test splits of data as deepchem.data.datasets.
Dataset instances.

transformers [list] deepchem.trans.transformers.Transformer instances ap-
plied to dataset.

Return type tuple

References

Examples

>>>
>> import deepchem as dc
>> tasks, datasets, transformers = dc.molnet.load_mp_metallicity()
>> train_dataset, val_dataset, test_dataset = datasets
>> n_tasks = len(tasks)
>> n_features = train_dataset.get_data_shape()[0]
>> model = dc.models.MultitaskRegressor(n_tasks, n_features)
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3.11.19 MUV Datasets

load_muv(featurizer: Union[deepchem.feat.base_classes.Featurizer, str] = 'ECFP', splitter:
Optional[Union[deepchem.splits.splitters.Splitter, str]] = 'scaffold', transformers:
List[Union[deepchem.molnet.load_function.molnet_loader.TransformerGenerator, str]] =
['balancing'], reload: bool = True, data_dir: Optional[str] = None, save_dir: Op-
tional[str] = None, **kwargs) → Tuple[List[str], Tuple[deepchem.data.datasets.Dataset,
. . . ], List[transformers.Transformer]]

Load MUV dataset

The Maximum Unbiased Validation (MUV) group is a benchmark dataset selected from PubChem BioAssay by
applying a refined nearest neighbor analysis.

The MUV dataset contains 17 challenging tasks for around 90 thousand compounds and is specifically designed
for validation of virtual screening techniques.

Scaffold splitting is recommended for this dataset.

The raw data csv file contains columns below:

• “mol_id” - PubChem CID of the compound

• “smiles” - SMILES representation of the molecular structure

• “MUV-XXX” - Measured results (Active/Inactive) for bioassays

Parameters

• featurizer (Featurizer or str) – the featurizer to use for processing the data.
Alternatively you can pass one of the names from dc.molnet.featurizers as a shortcut.

• splitter (Splitter or str) – the splitter to use for splitting the data into train-
ing, validation, and test sets. Alternatively you can pass one of the names from
dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single
dataset.

• transformers (list of TransformerGenerators or strings) – the
Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a
shortcut, one of the names from dc.molnet.transformers.

• reload (bool) – if True, the first call for a particular featurizer and splitter will cache the
datasets to disk, and subsequent calls will reload the cached datasets.

• data_dir (str) – a directory to save the raw data in

• save_dir (str) – a directory to save the dataset in

References

3.11.20 NCI Datasets

load_nci(featurizer: Union[deepchem.feat.base_classes.Featurizer, str] = 'ECFP', splitter:
Optional[Union[deepchem.splits.splitters.Splitter, str]] = 'random', transformers:
List[Union[deepchem.molnet.load_function.molnet_loader.TransformerGenerator, str]] =
['normalization'], reload: bool = True, data_dir: Optional[str] = None, save_dir: Op-
tional[str] = None, **kwargs) → Tuple[List[str], Tuple[deepchem.data.datasets.Dataset, . . . ],
List[transformers.Transformer]]

Load NCI dataset.

Parameters
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• featurizer (Featurizer or str) – the featurizer to use for processing the data.
Alternatively you can pass one of the names from dc.molnet.featurizers as a shortcut.

• splitter (Splitter or str) – the splitter to use for splitting the data into train-
ing, validation, and test sets. Alternatively you can pass one of the names from
dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single
dataset.

• transformers (list of TransformerGenerators or strings) – the
Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a
shortcut, one of the names from dc.molnet.transformers.

• reload (bool) – if True, the first call for a particular featurizer and splitter will cache the
datasets to disk, and subsequent calls will reload the cached datasets.

• data_dir (str) – a directory to save the raw data in

• save_dir (str) – a directory to save the dataset in

3.11.21 PCBA Datasets

load_pcba(featurizer: Union[deepchem.feat.base_classes.Featurizer, str] = 'ECFP', splitter:
Optional[Union[deepchem.splits.splitters.Splitter, str]] = 'scaffold', transformers:
List[Union[deepchem.molnet.load_function.molnet_loader.TransformerGenerator, str]] =
['balancing'], reload: bool = True, data_dir: Optional[str] = None, save_dir: Op-
tional[str] = None, **kwargs) → Tuple[List[str], Tuple[deepchem.data.datasets.Dataset,
. . . ], List[transformers.Transformer]]

Load PCBA dataset

PubChem BioAssay (PCBA) is a database consisting of biological activities of small molecules generated by
high-throughput screening. We use a subset of PCBA, containing 128 bioassays measured over 400 thousand
compounds, used by previous work to benchmark machine learning methods.

Random splitting is recommended for this dataset.

The raw data csv file contains columns below:

• “mol_id” - PubChem CID of the compound

• “smiles” - SMILES representation of the molecular structure

• “PCBA-XXX” - Measured results (Active/Inactive) for bioassays: search for the assay ID at https://
pubchem.ncbi.nlm.nih.gov/search/#collection=bioassays for details

Parameters

• featurizer (Featurizer or str) – the featurizer to use for processing the data.
Alternatively you can pass one of the names from dc.molnet.featurizers as a shortcut.

• splitter (Splitter or str) – the splitter to use for splitting the data into train-
ing, validation, and test sets. Alternatively you can pass one of the names from
dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single
dataset.

• transformers (list of TransformerGenerators or strings) – the
Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a
shortcut, one of the names from dc.molnet.transformers.

• reload (bool) – if True, the first call for a particular featurizer and splitter will cache the
datasets to disk, and subsequent calls will reload the cached datasets.
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• data_dir (str) – a directory to save the raw data in

• save_dir (str) – a directory to save the dataset in

References

3.11.22 PDBBIND Datasets

load_pdbbind(featurizer: deepchem.feat.base_classes.ComplexFeaturizer, splitter: Op-
tional[Union[deepchem.splits.splitters.Splitter, str]] = 'random', transformers:
List[Union[deepchem.molnet.load_function.molnet_loader.TransformerGenerator, str]]
= ['normalization'], reload: bool = True, data_dir: Optional[str] = None, save_dir:
Optional[str] = None, pocket: bool = True, set_name: str = 'core', **kwargs) → Tu-
ple[List[str], Tuple[deepchem.data.datasets.Dataset, . . . ], List[transformers.Transformer]]

Load PDBBind dataset.

The PDBBind dataset includes experimental binding affinity data and structures for 4852 protein-ligand com-
plexes from the “refined set” and 12800 complexes from the “general set” in PDBBind v2019 and 193 complexes
from the “core set” in PDBBind v2013. The refined set removes data with obvious problems in 3D structure,
binding data, or other aspects and should therefore be a better starting point for docking/scoring studies. Details
on the criteria used to construct the refined set can be found in [4]_. The general set does not include the refined
set. The core set is a subset of the refined set that is not updated annually.

Random splitting is recommended for this dataset.

The raw dataset contains the columns below:

• “ligand” - SDF of the molecular structure

• “protein” - PDB of the protein structure

• “CT_TOX” - Clinical trial results

Parameters

• featurizer (ComplexFeaturizer or str) – the complex featurizer to use for
processing the data. Alternatively you can pass one of the names from dc.molnet.featurizers
as a shortcut.

• splitter (Splitter or str) – the splitter to use for splitting the data into train-
ing, validation, and test sets. Alternatively you can pass one of the names from
dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single
dataset.

• transformers (list of TransformerGenerators or strings) – the
Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a
shortcut, one of the names from dc.molnet.transformers.

• reload (bool) – if True, the first call for a particular featurizer and splitter will cache the
datasets to disk, and subsequent calls will reload the cached datasets.

• data_dir (str) – a directory to save the raw data in

• save_dir (str) – a directory to save the dataset in

• pocket (bool (default True)) – If true, use only the binding pocket for featuriza-
tion.

• set_name (str (default 'core')) – Name of dataset to download. ‘refined’,
‘general’, and ‘core’ are supported.
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Returns

tasks, datasets, transformers –

tasks: list Column names corresponding to machine learning target variables.

datasets: tuple train, validation, test splits of data as deepchem.data.datasets.
Dataset instances.

transformers: list deepchem.trans.transformers.Transformer instances
applied to dataset.

Return type tuple

References

3.11.23 PPB Datasets

load_ppb(featurizer: Union[deepchem.feat.base_classes.Featurizer, str] = 'ECFP', splitter:
Optional[Union[deepchem.splits.splitters.Splitter, str]] = 'scaffold', transformers:
List[Union[deepchem.molnet.load_function.molnet_loader.TransformerGenerator, str]] =
['normalization'], reload: bool = True, data_dir: Optional[str] = None, save_dir: Op-
tional[str] = None, **kwargs) → Tuple[List[str], Tuple[deepchem.data.datasets.Dataset, . . . ],
List[transformers.Transformer]]

Load PPB datasets.

Parameters

• featurizer (Featurizer or str) – the featurizer to use for processing the data.
Alternatively you can pass one of the names from dc.molnet.featurizers as a shortcut.

• splitter (Splitter or str) – the splitter to use for splitting the data into train-
ing, validation, and test sets. Alternatively you can pass one of the names from
dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single
dataset.

• transformers (list of TransformerGenerators or strings) – the
Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a
shortcut, one of the names from dc.molnet.transformers.

• reload (bool) – if True, the first call for a particular featurizer and splitter will cache the
datasets to disk, and subsequent calls will reload the cached datasets.

• data_dir (str) – a directory to save the raw data in

• save_dir (str) – a directory to save the dataset in

3.11.24 QM7 Datasets

load_qm7(featurizer: Union[deepchem.feat.base_classes.Featurizer, str] = CoulombMatrix[max_atoms=23,
remove_hydrogens=False, randomize=False, upper_tri=False, n_samples=1, seed=None],
splitter: Optional[Union[deepchem.splits.splitters.Splitter, str]] = 'random', transformers:
List[Union[deepchem.molnet.load_function.molnet_loader.TransformerGenerator, str]] = ['nor-
malization'], reload: bool = True, data_dir: Optional[str] = None, save_dir: Op-
tional[str] = None, **kwargs) → Tuple[List[str], Tuple[deepchem.data.datasets.Dataset, . . . ],
List[transformers.Transformer]]

Load QM7 dataset
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QM7 is a subset of GDB-13 (a database of nearly 1 billion stable and synthetically accessible organic molecules)
containing up to 7 heavy atoms C, N, O, and S. The 3D Cartesian coordinates of the most stable conformations
and their atomization energies were determined using ab-initio density functional theory (PBE0/tier2 basis set).
This dataset also provided Coulomb matrices as calculated in [Rupp et al. PRL, 2012]:

Stratified splitting is recommended for this dataset.

The data file (.mat format, we recommend using scipy.io.loadmat for python users to load this original data)
contains five arrays:

• “X” - (7165 x 23 x 23), Coulomb matrices

• “T” - (7165), atomization energies (unit: kcal/mol)

• “P” - (5 x 1433), cross-validation splits as used in [Montavon et al. NIPS, 2012]

• “Z” - (7165 x 23), atomic charges

• “R” - (7165 x 23 x 3), cartesian coordinate (unit: Bohr) of each atom in the molecules

Parameters

• featurizer (Featurizer or str) – the featurizer to use for processing the data.
Alternatively you can pass one of the names from dc.molnet.featurizers as a shortcut.

• splitter (Splitter or str) – the splitter to use for splitting the data into train-
ing, validation, and test sets. Alternatively you can pass one of the names from
dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single
dataset.

• transformers (list of TransformerGenerators or strings) – the
Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a
shortcut, one of the names from dc.molnet.transformers.

• reload (bool) – if True, the first call for a particular featurizer and splitter will cache the
datasets to disk, and subsequent calls will reload the cached datasets.

• data_dir (str) – a directory to save the raw data in

• save_dir (str) – a directory to save the dataset in

Note: DeepChem 2.4.0 has turned on sanitization for this dataset by default. For the QM7 dataset, this means
that calling this function will return 6838 compounds instead of 7160 in the source dataset file. This appears
to be due to valence specification mismatches in the dataset that weren’t caught in earlier more lax versions of
RDKit. Note that this may subtly affect benchmarking results on this dataset.

References

3.11.25 QM8 Datasets

load_qm8(featurizer: Union[deepchem.feat.base_classes.Featurizer, str] = CoulombMatrix[max_atoms=26,
remove_hydrogens=False, randomize=False, upper_tri=False, n_samples=1, seed=None],
splitter: Optional[Union[deepchem.splits.splitters.Splitter, str]] = 'random', transformers:
List[Union[deepchem.molnet.load_function.molnet_loader.TransformerGenerator, str]] = ['nor-
malization'], reload: bool = True, data_dir: Optional[str] = None, save_dir: Op-
tional[str] = None, **kwargs) → Tuple[List[str], Tuple[deepchem.data.datasets.Dataset, . . . ],
List[transformers.Transformer]]

Load QM8 dataset
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QM8 is the dataset used in a study on modeling quantum mechanical calculations of electronic spectra and
excited state energy of small molecules. Multiple methods, including time-dependent density functional theories
(TDDFT) and second-order approximate coupled-cluster (CC2), are applied to a collection of molecules that
include up to eight heavy atoms (also a subset of the GDB-17 database). In our collection, there are four excited
state properties calculated by four different methods on 22 thousand samples:

S0 -> S1 transition energy E1 and the corresponding oscillator strength f1

S0 -> S2 transition energy E2 and the corresponding oscillator strength f2

E1, E2, f1, f2 are in atomic units. f1, f2 are in length representation

Random splitting is recommended for this dataset.

The source data contain:

• qm8.sdf: molecular structures

• qm8.sdf.csv: tables for molecular properties

– Column 1: Molecule ID (gdb9 index) mapping to the .sdf file

– Columns 2-5: RI-CC2/def2TZVP

– Columns 6-9: LR-TDPBE0/def2SVP

– Columns 10-13: LR-TDPBE0/def2TZVP

– Columns 14-17: LR-TDCAM-B3LYP/def2TZVP

Parameters

• featurizer (Featurizer or str) – the featurizer to use for processing the data.
Alternatively you can pass one of the names from dc.molnet.featurizers as a shortcut.

• splitter (Splitter or str) – the splitter to use for splitting the data into train-
ing, validation, and test sets. Alternatively you can pass one of the names from
dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single
dataset.

• transformers (list of TransformerGenerators or strings) – the
Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a
shortcut, one of the names from dc.molnet.transformers.

• reload (bool) – if True, the first call for a particular featurizer and splitter will cache the
datasets to disk, and subsequent calls will reload the cached datasets.

• data_dir (str) – a directory to save the raw data in

• save_dir (str) – a directory to save the dataset in

Note: DeepChem 2.4.0 has turned on sanitization for this dataset by default. For the QM8 dataset, this means
that calling this function will return 21747 compounds instead of 21786 in the source dataset file. This appears
to be due to valence specification mismatches in the dataset that weren’t caught in earlier more lax versions of
RDKit. Note that this may subtly affect benchmarking results on this dataset.
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References

3.11.26 QM9 Datasets

load_qm9(featurizer: Union[deepchem.feat.base_classes.Featurizer, str] = CoulombMatrix[max_atoms=29,
remove_hydrogens=False, randomize=False, upper_tri=False, n_samples=1, seed=None],
splitter: Optional[Union[deepchem.splits.splitters.Splitter, str]] = 'random', transformers:
List[Union[deepchem.molnet.load_function.molnet_loader.TransformerGenerator, str]] = ['nor-
malization'], reload: bool = True, data_dir: Optional[str] = None, save_dir: Op-
tional[str] = None, **kwargs) → Tuple[List[str], Tuple[deepchem.data.datasets.Dataset, . . . ],
List[transformers.Transformer]]

Load QM9 dataset

QM9 is a comprehensive dataset that provides geometric, energetic, electronic and thermodynamic properties
for a subset of GDB-17 database, comprising 134 thousand stable organic molecules with up to 9 heavy atoms.
All molecules are modeled using density functional theory (B3LYP/6-31G(2df,p) based DFT).

Random splitting is recommended for this dataset.

The source data contain:

• qm9.sdf: molecular structures

• qm9.sdf.csv: tables for molecular properties

– “mol_id” - Molecule ID (gdb9 index) mapping to the .sdf file

– “A” - Rotational constant (unit: GHz)

– “B” - Rotational constant (unit: GHz)

– “C” - Rotational constant (unit: GHz)

– “mu” - Dipole moment (unit: D)

– “alpha” - Isotropic polarizability (unit: Bohr^3)

– “homo” - Highest occupied molecular orbital energy (unit: Hartree)

– “lumo” - Lowest unoccupied molecular orbital energy (unit: Hartree)

– “gap” - Gap between HOMO and LUMO (unit: Hartree)

– “r2” - Electronic spatial extent (unit: Bohr^2)

– “zpve” - Zero point vibrational energy (unit: Hartree)

– “u0” - Internal energy at 0K (unit: Hartree)

– “u298” - Internal energy at 298.15K (unit: Hartree)

– “h298” - Enthalpy at 298.15K (unit: Hartree)

– “g298” - Free energy at 298.15K (unit: Hartree)

– “cv” - Heat capavity at 298.15K (unit: cal/(mol*K))

– “u0_atom” - Atomization energy at 0K (unit: kcal/mol)

– “u298_atom” - Atomization energy at 298.15K (unit: kcal/mol)

– “h298_atom” - Atomization enthalpy at 298.15K (unit: kcal/mol)

– “g298_atom” - Atomization free energy at 298.15K (unit: kcal/mol)
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“u0_atom” ~ “g298_atom” (used in MoleculeNet) are calculated from the differences between “u0” ~ “g298”
and sum of reference energies of all atoms in the molecules, as given in https://figshare.com/articles/Atomref%
3A_Reference_thermochemical_energies_of_H%2C_C%2C_N%2C_O%2C_F_atoms./1057643

Parameters

• featurizer (Featurizer or str) – the featurizer to use for processing the data.
Alternatively you can pass one of the names from dc.molnet.featurizers as a shortcut.

• splitter (Splitter or str) – the splitter to use for splitting the data into train-
ing, validation, and test sets. Alternatively you can pass one of the names from
dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single
dataset.

• transformers (list of TransformerGenerators or strings) – the
Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a
shortcut, one of the names from dc.molnet.transformers.

• reload (bool) – if True, the first call for a particular featurizer and splitter will cache the
datasets to disk, and subsequent calls will reload the cached datasets.

• data_dir (str) – a directory to save the raw data in

• save_dir (str) – a directory to save the dataset in

Note: DeepChem 2.4.0 has turned on sanitization for this dataset by default. For the QM9 dataset, this means
that calling this function will return 132480 compounds instead of 133885 in the source dataset file. This appears
to be due to valence specification mismatches in the dataset that weren’t caught in earlier more lax versions of
RDKit. Note that this may subtly affect benchmarking results on this dataset.

References

3.11.27 SAMPL Datasets

load_sampl(featurizer: Union[deepchem.feat.base_classes.Featurizer, str] = 'ECFP', splitter:
Optional[Union[deepchem.splits.splitters.Splitter, str]] = 'scaffold', transformers:
List[Union[deepchem.molnet.load_function.molnet_loader.TransformerGenerator, str]] =
['normalization'], reload: bool = True, data_dir: Optional[str] = None, save_dir: Op-
tional[str] = None, **kwargs)→ Tuple[List[str], Tuple[deepchem.data.datasets.Dataset, . . . ],
List[transformers.Transformer]]

Load SAMPL(FreeSolv) dataset

The Free Solvation Database, FreeSolv(SAMPL), provides experimental and calculated hydration free energy
of small molecules in water. The calculated values are derived from alchemical free energy calculations using
molecular dynamics simulations. The experimental values are included in the benchmark collection.

Random splitting is recommended for this dataset.

The raw data csv file contains columns below:

• “iupac” - IUPAC name of the compound

• “smiles” - SMILES representation of the molecular structure

• “expt” - Measured solvation energy (unit: kcal/mol) of the compound, used as label

• “calc” - Calculated solvation energy (unit: kcal/mol) of the compound

Parameters
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• featurizer (Featurizer or str) – the featurizer to use for processing the data.
Alternatively you can pass one of the names from dc.molnet.featurizers as a shortcut.

• splitter (Splitter or str) – the splitter to use for splitting the data into train-
ing, validation, and test sets. Alternatively you can pass one of the names from
dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single
dataset.

• transformers (list of TransformerGenerators or strings) – the
Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a
shortcut, one of the names from dc.molnet.transformers.

• reload (bool) – if True, the first call for a particular featurizer and splitter will cache the
datasets to disk, and subsequent calls will reload the cached datasets.

• data_dir (str) – a directory to save the raw data in

• save_dir (str) – a directory to save the dataset in

References

3.11.28 SIDER Datasets

load_sider(featurizer: Union[deepchem.feat.base_classes.Featurizer, str] = 'ECFP', splitter:
Optional[Union[deepchem.splits.splitters.Splitter, str]] = 'scaffold', transformers:
List[Union[deepchem.molnet.load_function.molnet_loader.TransformerGenerator, str]]
= ['balancing'], reload: bool = True, data_dir: Optional[str] = None, save_dir: Op-
tional[str] = None, **kwargs)→ Tuple[List[str], Tuple[deepchem.data.datasets.Dataset, . . . ],
List[transformers.Transformer]]

Load SIDER dataset

The Side Effect Resource (SIDER) is a database of marketed drugs and adverse drug reactions (ADR). The
version of the SIDER dataset in DeepChem has grouped drug side effects into 27 system organ classes following
MedDRA classifications measured for 1427 approved drugs.

Random splitting is recommended for this dataset.

The raw data csv file contains columns below:

• “smiles”: SMILES representation of the molecular structure

• “Hepatobiliary disorders” ~ “Injury, poisoning and procedural complications”: Recorded side effects for
the drug. Please refer to http://sideeffects.embl.de/se/?page=98 for details on ADRs.

Parameters

• featurizer (Featurizer or str) – the featurizer to use for processing the data.
Alternatively you can pass one of the names from dc.molnet.featurizers as a shortcut.

• splitter (Splitter or str) – the splitter to use for splitting the data into train-
ing, validation, and test sets. Alternatively you can pass one of the names from
dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single
dataset.

• transformers (list of TransformerGenerators or strings) – the
Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a
shortcut, one of the names from dc.molnet.transformers.

• reload (bool) – if True, the first call for a particular featurizer and splitter will cache the
datasets to disk, and subsequent calls will reload the cached datasets.

86 Chapter 3. About Us

http://sideeffects.embl.de/se/?page=98


deepchem, Release 2.5.0

• data_dir (str) – a directory to save the raw data in

• save_dir (str) – a directory to save the dataset in

References

3.11.29 Thermosol Datasets

load_thermosol(featurizer: Union[deepchem.feat.base_classes.Featurizer, str] = 'ECFP', splitter:
Optional[Union[deepchem.splits.splitters.Splitter, str]] = 'scaffold', transformers:
List[Union[deepchem.molnet.load_function.molnet_loader.TransformerGenerator, str]]
= [], reload: bool = True, data_dir: Optional[str] = None, save_dir: Optional[str]
= None, **kwargs) → Tuple[List[str], Tuple[deepchem.data.datasets.Dataset, . . . ],
List[transformers.Transformer]]

Loads the thermodynamic solubility datasets.

Parameters

• featurizer (Featurizer or str) – the featurizer to use for processing the data.
Alternatively you can pass one of the names from dc.molnet.featurizers as a shortcut.

• splitter (Splitter or str) – the splitter to use for splitting the data into train-
ing, validation, and test sets. Alternatively you can pass one of the names from
dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single
dataset.

• transformers (list of TransformerGenerators or strings) – the
Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a
shortcut, one of the names from dc.molnet.transformers.

• reload (bool) – if True, the first call for a particular featurizer and splitter will cache the
datasets to disk, and subsequent calls will reload the cached datasets.

• data_dir (str) – a directory to save the raw data in

• save_dir (str) – a directory to save the dataset in

3.11.30 Tox21 Datasets

load_tox21(featurizer: Union[deepchem.feat.base_classes.Featurizer, str] = 'ECFP', splitter:
Optional[Union[deepchem.splits.splitters.Splitter, str]] = 'scaffold', transformers:
List[Union[deepchem.molnet.load_function.molnet_loader.TransformerGenerator, str]]
= ['balancing'], reload: bool = True, data_dir: Optional[str] = None, save_dir: Op-
tional[str] = None, **kwargs)→ Tuple[List[str], Tuple[deepchem.data.datasets.Dataset, . . . ],
List[transformers.Transformer]]

Load Tox21 dataset

The “Toxicology in the 21st Century” (Tox21) initiative created a public database measuring toxicity of com-
pounds, which has been used in the 2014 Tox21 Data Challenge. This dataset contains qualitative toxicity
measurements for 8k compounds on 12 different targets, including nuclear receptors and stress response path-
ways.

Random splitting is recommended for this dataset.

The raw data csv file contains columns below:

• “smiles” - SMILES representation of the molecular structure

• “NR-XXX” - Nuclear receptor signaling bioassays results
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• “SR-XXX” - Stress response bioassays results

please refer to https://tripod.nih.gov/tox21/challenge/data.jsp for details.

Parameters

• featurizer (Featurizer or str) – the featurizer to use for processing the data.
Alternatively you can pass one of the names from dc.molnet.featurizers as a shortcut.

• splitter (Splitter or str) – the splitter to use for splitting the data into train-
ing, validation, and test sets. Alternatively you can pass one of the names from
dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single
dataset.

• transformers (list of TransformerGenerators or strings) – the
Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a
shortcut, one of the names from dc.molnet.transformers.

• reload (bool) – if True, the first call for a particular featurizer and splitter will cache the
datasets to disk, and subsequent calls will reload the cached datasets.

• data_dir (str) – a directory to save the raw data in

• save_dir (str) – a directory to save the dataset in

References

3.11.31 Toxcast Datasets

load_toxcast(featurizer: Union[deepchem.feat.base_classes.Featurizer, str] = 'ECFP', splitter:
Optional[Union[deepchem.splits.splitters.Splitter, str]] = 'scaffold', transformers:
List[Union[deepchem.molnet.load_function.molnet_loader.TransformerGenerator, str]]
= ['balancing'], reload: bool = True, data_dir: Optional[str] = None, save_dir: Op-
tional[str] = None, **kwargs) → Tuple[List[str], Tuple[deepchem.data.datasets.Dataset,
. . . ], List[transformers.Transformer]]

Load Toxcast dataset

ToxCast is an extended data collection from the same initiative as Tox21, providing toxicology data for a large
library of compounds based on in vitro high-throughput screening. The processed collection includes qualitative
results of over 600 experiments on 8k compounds.

Random splitting is recommended for this dataset.

The raw data csv file contains columns below:

• “smiles”: SMILES representation of the molecular structure

• “ACEA_T47D_80hr_Negative” ~ “Tanguay_ZF_120hpf_YSE_up”: Bioassays results. Please re-
fer to the section “high-throughput assay information” at https://www.epa.gov/chemical-research/
toxicity-forecaster-toxcasttm-data for details.

Parameters

• featurizer (Featurizer or str) – the featurizer to use for processing the data.
Alternatively you can pass one of the names from dc.molnet.featurizers as a shortcut.

• splitter (Splitter or str) – the splitter to use for splitting the data into train-
ing, validation, and test sets. Alternatively you can pass one of the names from
dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single
dataset.
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• transformers (list of TransformerGenerators or strings) – the
Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a
shortcut, one of the names from dc.molnet.transformers.

• reload (bool) – if True, the first call for a particular featurizer and splitter will cache the
datasets to disk, and subsequent calls will reload the cached datasets.

• data_dir (str) – a directory to save the raw data in

• save_dir (str) – a directory to save the dataset in

References

3.11.32 USPTO Datasets

load_uspto(featurizer='plain', split=None, num_to_load=10000, reload=True, verbose=False,
data_dir=None, save_dir=None, **kwargs)

Load USPTO dataset.

For now, only loads the subset of data for 2008-2011 reactions. See https://figshare.com/
articles/Chemical_reactions_from_US_patents_1976-Sep2016_/5104873 for more details. The full dataset
contains some 400K reactions. This causes an out-of-memory error on development laptop if full dataset is
featurized. For now, return a truncated subset of dataset. Reloading is not entirely supported for this dataset.

3.11.33 UV Datasets

load_uv(shard_size=2000, featurizer=None, split=None, reload=True)
Load UV dataset; does not do train/test split

The UV dataset is an in-house dataset from Merck that was first introduced in the following paper: Ramsundar,
Bharath, et al. “Is multitask deep learning practical for pharma?.” Journal of chemical information and modeling
57.8 (2017): 2068-2076.

The UV dataset tests 10,000 of Merck’s internal compounds on 190 absorption wavelengths between 210 and
400 nm. Unlike most of the other datasets featured in MoleculeNet, the UV collection does not have structures
for the compounds tested since they were proprietary Merck compounds. However, the collection does feature
pre-computed descriptors for these compounds.

Note that the original train/valid/test split from the source data was preserved here, so this function doesn’t allow
for alternate modes of splitting. Similarly, since the source data came pre-featurized, it is not possible to apply
alternative featurizations.

Parameters

• shard_size (int, optional) – Size of the DiskDataset shards to write on disk

• featurizer (optional) – Ignored since featurization pre-computed

• split (optional) – Ignored since split pre-computed

• reload (bool, optional) – Whether to automatically re-load from disk
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3.11.34 ZINC15 Datasets

load_zinc15(featurizer: Union[deepchem.feat.base_classes.Featurizer, str] = 'OneHot', splitter:
Optional[Union[deepchem.splits.splitters.Splitter, str]] = 'random', transformers:
List[Union[deepchem.molnet.load_function.molnet_loader.TransformerGenerator, str]]
= ['normalization'], reload: bool = True, data_dir: Optional[str] = None, save_dir: Op-
tional[str] = None, dataset_size: str = '250K', dataset_dimension: str = '2D', **kwargs)→
Tuple[List[str], Tuple[deepchem.data.datasets.Dataset, . . . ], List[transformers.Transformer]]

Load zinc15.

ZINC15 is a dataset of over 230 million purchasable compounds for virtual screening of small molecules to
identify structures that are likely to bind to drug targets. ZINC15 data is currently available in 2D (SMILES
string) format.

MolNet provides subsets of 250K, 1M, and 10M “lead-like” compounds from ZINC15. The full dataset of 270M
“goldilocks” compounds is also available. Compounds in ZINC15 are labeled by their molecular weight and
LogP (solubility) values. Each compound also has information about how readily available (purchasable) it is
and its reactivity. Lead-like compounds have molecular weight between 300 and 350 Daltons and LogP between
-1 and 3.5. Goldilocks compounds are lead-like compounds with LogP values further restricted to between 2
and 3.

If reload = True and data_dir (save_dir) is specified, the loader will attempt to load the raw dataset (featurized
dataset) from disk. Otherwise, the dataset will be downloaded from the DeepChem AWS bucket.

For more information on ZINC15, please see [1]_ and https://zinc15.docking.org/.

Parameters

• featurizer (Featurizer or str) – the featurizer to use for processing the data.
Alternatively you can pass one of the names from dc.molnet.featurizers as a shortcut.

• splitter (Splitter or str) – the splitter to use for splitting the data into train-
ing, validation, and test sets. Alternatively you can pass one of the names from
dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single
dataset.

• transformers (list of TransformerGenerators or strings) – the
Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a
shortcut, one of the names from dc.molnet.transformers.

• reload (bool) – if True, the first call for a particular featurizer and splitter will cache the
datasets to disk, and subsequent calls will reload the cached datasets.

• data_dir (str) – a directory to save the raw data in

• save_dir (str) – a directory to save the dataset in

• size (str (default '250K')) – Size of dataset to download. ‘250K’, ‘1M’, ‘10M’,
and ‘270M’ are supported.

• format (str (default '2D')) – Format of data to download. 2D SMILES strings
or 3D SDF files.

Returns

tasks, datasets, transformers –

tasks [list] Column names corresponding to machine learning target variables.

datasets [tuple] train, validation, test splits of data as deepchem.data.datasets.
Dataset instances.
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transformers [list] deepchem.trans.transformers.Transformer instances ap-
plied to dataset.

Return type tuple

Notes

The total ZINC dataset with SMILES strings contains hundreds of millions of compounds and is over 100GB!
ZINC250K is recommended for experimentation. The full set of 270M goldilocks compounds is 23GB.

References

3.11.35 Platinum Adsorption Dataset

load_Platinum_Adsorption(featurizer: Union[deepchem.feat.base_classes.Featurizer, str] =
SineCoulombMatrix[max_atoms=100, flatten=True], splitter: Op-
tional[Union[deepchem.splits.splitters.Splitter, str]] = 'random', trans-
formers: List[Union[deepchem.molnet.load_function.molnet_loader.TransformerGenerator,
str]] = [], reload: bool = True, data_dir: Optional[str] = None,
save_dir: Optional[str] = None, **kwargs) → Tuple[List[str], Tu-
ple[deepchem.data.datasets.Dataset, . . . ], List[transformers.Transformer]]

Load Platinum Adsorption Dataset

The dataset consist of diffrent configurations of Adsorbates (i.e N and NO) on Platinum surface represented as
Lattice and their formation energy. There are 648 diffrent adsorbate configuration in this datasets represented as
Pymatgen Structure objects.

1. Pymatgen structure object with site_properties with following key value.

• “SiteTypes”, mentioning if it is a active site “A1” or spectator site “S1”.

• “oss”, diffrent occupational sites. For spectator sites make it -1.

Parameters

• featurizer (Featurizer (default LCNNFeaturizer)) – the featurizer to
use for processing the data. Reccomended to use the LCNNFeaturiser.

• splitter (Splitter (default RandomSplitter)) – the splitter to use for
splitting the data into training, validation, and test sets. Alternatively you can pass one
of the names from dc.molnet.splitters as a shortcut. If this is None, all the data will be
included in a single dataset.

• transformers (list of TransformerGenerators or strings. the
Transformers to) – apply to the data and appropritate featuriser. Does’nt require any
transformation for LCNN_featuriser

• reload (bool) – if True, the first call for a particular featurizer and splitter will cache the
datasets to disk, and subsequent calls will reload the cached datasets.

• data_dir (str) – a directory to save the raw data in

• save_dir (str, optional (default None)) – a directory to save the dataset in
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References

Examples

>>>
>> import deepchem as dc
>> tasks, datasets, transformers = load_Platinum_Adsorption(
>> reload=True,
>> data_dir=data_path,
>> save_dir=data_path,
>> featurizer_kwargs=feat_args)
>> train_dataset, val_dataset, test_dataset = datasets

3.12 Featurizers

DeepChem contains an extensive collection of featurizers. If you haven’t run into this terminology before, a “featur-
izer” is chunk of code which transforms raw input data into a processed form suitable for machine learning. Machine
learning methods often need data to be pre-chewed for them to process. Think of this like a mama penguin chewing
up food so the baby penguin can digest it easily.

Now if you’ve watched a few introductory deep learning lectures, you might ask, why do we need something like a
featurizer? Isn’t part of the promise of deep learning that we can learn patterns directly from raw data?

Unfortunately it turns out that deep learning techniques need featurizers just like normal machine learning methods do.
Arguably, they are less dependent on sophisticated featurizers and more capable of learning sophisticated patterns from
simpler data. But nevertheless, deep learning systems can’t simply chew up raw files. For this reason, deepchem
provides an extensive collection of featurization methods which we will review on this page.

Contents

• Molecule Featurizers

– Graph Convolution Featurizers

* ConvMolFeaturizer

* WeaveFeaturizer

* MolGanFeaturizer

* MolGraphConvFeaturizer

* Utilities

– MACCSKeysFingerprint

– CircularFingerprint

– PubChemFingerprint

– Mol2VecFingerprint

– RDKitDescriptors

– MordredDescriptors

– CoulombMatrix

– CoulombMatrixEig
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– AtomCoordinates

– BPSymmetryFunctionInput

– SmilesToSeq

– SmilesToImage

– OneHotFeaturizer

– RawFeaturizer

• Molecular Complex Featurizers

– RdkitGridFeaturizer

– AtomicConvFeaturizer

• Inorganic Crystal Featurizers

– MaterialCompositionFeaturizer

* ElementPropertyFingerprint

* ElemNetFeaturizer

– MaterialStructureFeaturizer

* SineCoulombMatrix

* CGCNNFeaturizer

– LCNNFeaturizer

• MaterialCompositionFeaturizer

• Molecule Tokenizers

– SmilesTokenizer

– BasicSmilesTokenizer

• Other Featurizers

– BindingPocketFeaturizer

– UserDefinedFeaturizer

• Base Featurizers (for develop)

– Featurizer

– MolecularFeaturizer

– MaterialCompositionFeaturizer

– MaterialStructureFeaturizer

– ComplexFeaturizer
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3.12.1 Molecule Featurizers

These featurizers work with datasets of molecules.

Graph Convolution Featurizers

We are simplifying our graph convolution models by a joint data representation (GraphData) in a future version of
DeepChem, so we provide several featurizers.

ConvMolFeaturizer and WeaveFeaturizer are used with graph convolution models which inher-
ited KerasModel. ConvMolFeaturizer is used with graph convolution models except WeaveModel.
WeaveFeaturizer are only used with WeaveModel. On the other hand, MolGraphConvFeaturizer is
used with graph convolution models which inherited TorchModel. :code: MolGanFeaturizer will be used with
MolGAN model, a GAN model for generation of small molecules.

ConvMolFeaturizer

class ConvMolFeaturizer(master_atom: bool = False, use_chirality: bool = False, atom_properties:
Iterable[str] = [], per_atom_fragmentation: bool = False)

This class implements the featurization to implement Duvenaud graph convolutions.

Duvenaud graph convolutions [1]_ construct a vector of descriptors for each atom in a molecule. The featurizer
computes that vector of local descriptors.

Examples

>>> import deepchem as dc
>>> smiles = ["C", "CCC"]
>>> featurizer=dc.feat.ConvMolFeaturizer(per_atom_fragmentation=False)
>>> f = featurizer.featurize(smiles)
>>> # Using ConvMolFeaturizer to create featurized fragments derived from
→˓molecules of interest.
... # This is used only in the context of performing interpretation of models
→˓using atomic
... # contributions (atom-based model interpretation)
... smiles = ["C", "CCC"]
>>> featurizer=dc.feat.ConvMolFeaturizer(per_atom_fragmentation=True)
>>> f = featurizer.featurize(smiles)
>>> len(f) # contains 2 lists with featurized fragments from 2 mols
2

See also:

Detailed
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References

Note: This class requires RDKit to be installed.

__init__(master_atom: bool = False, use_chirality: bool = False, atom_properties: Iterable[str] =
[], per_atom_fragmentation: bool = False)

Parameters

• master_atom (Boolean) – if true create a fake atom with bonds to every other atom.
the initialization is the mean of the other atom features in the molecule. This technique is
briefly discussed in Neural Message Passing for Quantum Chemistry https://arxiv.org/pdf/
1704.01212.pdf

• use_chirality (Boolean) – if true then make the resulting atom features aware of
the chirality of the molecules in question

• atom_properties (list of string or None) – properties in the RDKit Mol
object to use as additional atom-level features in the larger molecular feature. If None,
then no atom-level properties are used. Properties should be in the RDKit mol object
should be in the form atom XXXXXXXX NAME where XXXXXXXX is a zero-padded
8 digit number coresponding to the zero-indexed atom index of each atom and NAME is
the name of the property provided in atom_properties. So “atom 00000000 sasa” would be
the name of the molecule level property in mol where the solvent accessible surface area
of atom 0 would be stored.

• per_atom_fragmentation (Boolean) – If True, then multiple “atom-depleted”
versions of each molecule will be created (using featurize() method). For each molecule,
atoms are removed one at a time and the resulting molecule is featurized. The result is a
list of ConvMol objects, one with each heavy atom removed. This is useful for subsequent
model interpretation: finding atoms favorable/unfavorable for (modelled) activity. This
option is typically used in combination with a FlatteningTransformer to split the lists into
separate samples.

• ConvMol is an object and not a numpy array (Since) –

• to set dtype to (need) –

• object. –

featurize(molecules: Union[Any, str, Iterable[Any], Iterable[str]], log_every_n: int = 1000) →
numpy.ndarray

Override parent: aim is to add handling atom-depleted molecules featurization

Parameters

• molecules (rdkit.Chem.rdchem.Mol / SMILES string / iterable) –
RDKit Mol, or SMILES string or iterable sequence of RDKit mols/SMILES strings.

• log_every_n (int, default 1000) – Logging messages reported every
log_every_n samples.

Returns features – A numpy array containing a featurized representation of datapoints.

Return type np.ndarray
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WeaveFeaturizer

class WeaveFeaturizer(graph_distance: bool = True, explicit_H: bool = False, use_chirality: bool =
False, max_pair_distance: Optional[int] = None)

This class implements the featurization to implement Weave convolutions.

Weave convolutions were introduced in [1]_. Unlike Duvenaud graph convolutions, weave convolutions require
a quadratic matrix of interaction descriptors for each pair of atoms. These extra descriptors may provide for
additional descriptive power but at the cost of a larger featurized dataset.

Examples

>>> import deepchem as dc
>>> mols = ["C", "CCC"]
>>> featurizer = dc.feat.WeaveFeaturizer()
>>> X = featurizer.featurize(mols)

References

Note: This class requires RDKit to be installed.

__init__(graph_distance: bool = True, explicit_H: bool = False, use_chirality: bool = False,
max_pair_distance: Optional[int] = None)

Initialize this featurizer with set parameters.

Parameters

• graph_distance (bool, (default True)) – If True, use graph distance for dis-
tance features. Otherwise, use Euclidean distance. Note that this means that molecules that
this featurizer is invoked on must have valid conformer information if this option is set.

• explicit_H (bool, (default False)) – If true, model hydrogens in the
molecule.

• use_chirality (bool, (default False)) – If true, use chiral information in
the featurization

• max_pair_distance (Optional[int], (default None)) – This value can
be a positive integer or None. This parameter determines the maximum graph distance
at which pair features are computed. For example, if max_pair_distance==2, then pair
features are computed only for atoms at most graph distance 2 apart. If max_pair_distance
is None, all pairs are considered (effectively infinite max_pair_distance)

featurize(molecules, log_every_n=1000)→ numpy.ndarray
Calculate features for molecules.

Parameters

• molecules (rdkit.Chem.rdchem.Mol / SMILES string / iterable) –
RDKit Mol, or SMILES string or iterable sequence of RDKit mols/SMILES strings.

• log_every_n (int, default 1000) – Logging messages reported every
log_every_n samples.

Returns features – A numpy array containing a featurized representation of datapoints.

Return type np.ndarray
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MolGanFeaturizer

class MolGanFeaturizer(max_atom_count: int = 9, kekulize: bool = True, bond_labels: Op-
tional[List[Any]] = None, atom_labels: Optional[List[int]] = None)

Featurizer for MolGAN de-novo molecular generation [1]_. The default representation is in form of GraphMa-
trix object. It is wrapper for two matrices containing atom and bond type information. The class also provides
reverse capabilities.

__init__(max_atom_count: int = 9, kekulize: bool = True, bond_labels: Optional[List[Any]] = None,
atom_labels: Optional[List[int]] = None)

Parameters

• max_atom_count (int, default 9) – Maximum number of atoms used for cre-
ation of adjacency matrix. Molecules cannot have more atoms than this number Implicit
hydrogens do not count.

• kekulize (bool, default True) – Should molecules be kekulized. Solves num-
ber of issues with defeaturization when used.

• bond_labels (List[RDKitBond]) – List of types of bond used for generation of
adjacency matrix

• atom_labels (List[int]) – List of atomic numbers used for generation of node
features

References

for small molecular graphs`<https://arxiv.org/abs/1805.11973>`”

featurize(molecules, log_every_n=1000)→ numpy.ndarray
Calculate features for molecules.

Parameters

• molecules (rdkit.Chem.rdchem.Mol / SMILES string / iterable) –
RDKit Mol, or SMILES string or iterable sequence of RDKit mols/SMILES strings.

• log_every_n (int, default 1000) – Logging messages reported every
log_every_n samples.

Returns features – A numpy array containing a featurized representation of datapoints.

Return type np.ndarray

defeaturize(graphs: Union[deepchem.feat.molecule_featurizers.molgan_featurizer.GraphMatrix,
Sequence[deepchem.feat.molecule_featurizers.molgan_featurizer.GraphMatrix]],
log_every_n: int = 1000)→ numpy.ndarray

Calculates molecules from corresponding GraphMatrix objects.

Parameters

• graphs (GraphMatrix / iterable) – GraphMatrix object or corresponding iter-
able

• log_every_n (int, default 1000) – Logging messages reported every
log_every_n samples.

Returns features – A numpy array containing RDKitMol objext.

Return type np.ndarray
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MolGraphConvFeaturizer

class MolGraphConvFeaturizer(use_edges: bool = False, use_chirality: bool = False,
use_partial_charge: bool = False)

This class is a featurizer of general graph convolution networks for molecules.

The default node(atom) and edge(bond) representations are based on WeaveNet paper. If you want to use your
own representations, you could use this class as a guide to define your original Featurizer. In many cases, it’s
enough to modify return values of construct_atom_feature or construct_bond_feature.

The default node representation are constructed by concatenating the following values, and the feature length is
30.

• Atom type: A one-hot vector of this atom, “C”, “N”, “O”, “F”, “P”, “S”, “Cl”, “Br”, “I”, “other atoms”.

• Formal charge: Integer electronic charge.

• Hybridization: A one-hot vector of “sp”, “sp2”, “sp3”.

• Hydrogen bonding: A one-hot vector of whether this atom is a hydrogen bond donor or acceptor.

• Aromatic: A one-hot vector of whether the atom belongs to an aromatic ring.

• Degree: A one-hot vector of the degree (0-5) of this atom.

• Number of Hydrogens: A one-hot vector of the number of hydrogens (0-4) that this atom connected.

• Chirality: A one-hot vector of the chirality, “R” or “S”. (Optional)

• Partial charge: Calculated partial charge. (Optional)

The default edge representation are constructed by concatenating the following values, and the feature length is
11.

• Bond type: A one-hot vector of the bond type, “single”, “double”, “triple”, or “aromatic”.

• Same ring: A one-hot vector of whether the atoms in the pair are in the same ring.

• Conjugated: A one-hot vector of whether this bond is conjugated or not.

• Stereo: A one-hot vector of the stereo configuration of a bond.

If you want to know more details about features, please check the paper [1]_ and utilities in
deepchem.utils.molecule_feature_utils.py.

Examples

>>> smiles = ["C1CCC1", "C1=CC=CN=C1"]
>>> featurizer = MolGraphConvFeaturizer(use_edges=True)
>>> out = featurizer.featurize(smiles)
>>> type(out[0])
<class 'deepchem.feat.graph_data.GraphData'>
>>> out[0].num_node_features
30
>>> out[0].num_edge_features
11
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References

Note: This class requires RDKit to be installed.

__init__(use_edges: bool = False, use_chirality: bool = False, use_partial_charge: bool = False)

Parameters

• use_edges (bool, default False) – Whether to use edge features or not.

• use_chirality (bool, default False) – Whether to use chirality information
or not. If True, featurization becomes slow.

• use_partial_charge (bool, default False) – Whether to use partial charge
data or not. If True, this featurizer computes gasteiger charges. Therefore, there is a
possibility to fail to featurize for some molecules and featurization becomes slow.

featurize(molecules, log_every_n=1000)→ numpy.ndarray
Calculate features for molecules.

Parameters

• molecules (rdkit.Chem.rdchem.Mol / SMILES string / iterable) –
RDKit Mol, or SMILES string or iterable sequence of RDKit mols/SMILES strings.

• log_every_n (int, default 1000) – Logging messages reported every
log_every_n samples.

Returns features – A numpy array containing a featurized representation of datapoints.

Return type np.ndarray

Utilities

Here are some constants that are used by the graph convolutional featurizers for molecules.

class GraphConvConstants
This class defines a collection of constants which are useful for graph convolutions on molecules.

possible_atom_list = ['C', 'N', 'O', 'S', 'F', 'P', 'Cl', 'Mg', 'Na', 'Br', 'Fe', 'Ca', 'Cu', 'Mc', 'Pd', 'Pb', 'K', 'I', 'Al', 'Ni', 'Mn']
Allowed Numbers of Hydrogens

possible_numH_list = [0, 1, 2, 3, 4]
Allowed Valences for Atoms

possible_valence_list = [0, 1, 2, 3, 4, 5, 6]
Allowed Formal Charges for Atoms

possible_formal_charge_list = [-3, -2, -1, 0, 1, 2, 3]
This is a placeholder for documentation. These will be replaced with corresponding values of the rdkit
HybridizationType

possible_hybridization_list = ['SP', 'SP2', 'SP3', 'SP3D', 'SP3D2']
Allowed number of radical electrons.

possible_number_radical_e_list = [0, 1, 2]
Allowed types of Chirality

possible_chirality_list = ['R', 'S']
The set of all values allowed.
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reference_lists = [['C', 'N', 'O', 'S', 'F', 'P', 'Cl', 'Mg', 'Na', 'Br', 'Fe', 'Ca', 'Cu', 'Mc', 'Pd', 'Pb', 'K', 'I', 'Al', 'Ni', 'Mn'], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4, 5, 6], [-3, -2, -1, 0, 1, 2, 3], [0, 1, 2], ['SP', 'SP2', 'SP3', 'SP3D', 'SP3D2'], ['R', 'S']]
The number of different values that can be taken. See get_intervals()

intervals = [1, 6, 48, 384, 1536, 9216, 27648]
Possible stereochemistry. We use E-Z notation for stereochemistry https://en.wikipedia.org/wiki/E%E2%
80%93Z_notation

possible_bond_stereo = ['STEREONONE', 'STEREOANY', 'STEREOZ', 'STEREOE']
Number of different bond types not counting stereochemistry.

bond_fdim_base = 6

__module__ = 'deepchem.feat.graph_features'

There are a number of helper methods used by the graph convolutional classes which we document here.

one_of_k_encoding(x, allowable_set)
Encodes elements of a provided set as integers.

Parameters

• x (object) – Must be present in allowable_set.

• allowable_set (list) – List of allowable quantities.

Example

>>> import deepchem as dc
>>> dc.feat.graph_features.one_of_k_encoding("a", ["a", "b", "c"])
[True, False, False]

Raises ValueError –

one_of_k_encoding_unk(x, allowable_set)
Maps inputs not in the allowable set to the last element.

Unlike one_of_k_encoding, if x is not in allowable_set, this method pretends that x is the last element of allow-
able_set.

Parameters

• x (object) – Must be present in allowable_set.

• allowable_set (list) – List of allowable quantities.

Examples

>>> dc.feat.graph_features.one_of_k_encoding_unk("s", ["a", "b", "c"])
[False, False, True]

get_intervals(l)
For list of lists, gets the cumulative products of the lengths

Note that we add 1 to the lengths of all lists (to avoid an empty list propagating a 0).

Parameters l (list of lists) – Returns the cumulative product of these lengths.
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Examples

>>> dc.feat.graph_features.get_intervals([[1], [1, 2], [1, 2, 3]])
[1, 3, 12]

>>> dc.feat.graph_features.get_intervals([[1], [], [1, 2], [1, 2, 3]])
[1, 1, 3, 12]

safe_index(l, e)
Gets the index of e in l, providing an index of len(l) if not found

Parameters

• l (list) – List of values

• e (object) – Object to check whether e is in l

Examples

>>> dc.feat.graph_features.safe_index([1, 2, 3], 1)
0
>>> dc.feat.graph_features.safe_index([1, 2, 3], 7)
3

get_feature_list(atom)
Returns a list of possible features for this atom.

Parameters atom (RDKit.rdchem.Atom) – Atom to get features for

Examples

>>> from rdkit import Chem
>>> mol = Chem.MolFromSmiles("C")
>>> atom = mol.GetAtoms()[0]
>>> dc.feat.graph_features.get_feature_list(atom)
[0, 4, 4, 3, 0, 2]

Note: This method requires RDKit to be installed.

Returns features – List of length 6. The i-th value in this list provides the index of the atom in the
corresponding feature value list. The 6 feature values lists for this function are [GraphCon-
vConstants.possible_atom_list, GraphConvConstants.possible_numH_list, GraphConvCon-
stants.possible_valence_list, GraphConvConstants.possible_formal_charge_list, GraphCon-
vConstants.possible_num_radical_e_list].

Return type list

features_to_id(features, intervals)
Convert list of features into index using spacings provided in intervals

Parameters

• features (list) – List of features as returned by get_feature_list()
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• intervals (list) – List of intervals as returned by get_intervals()

Returns id – The index in a feature vector given by the given set of features.

Return type int

id_to_features(id, intervals)
Given an index in a feature vector, return the original set of features.

Parameters

• id (int) – The index in a feature vector given by the given set of features.

• intervals (list) – List of intervals as returned by get_intervals()

Returns features – List of features as returned by get_feature_list()

Return type list

atom_to_id(atom)
Return a unique id corresponding to the atom type

Parameters atom (RDKit.rdchem.Atom) – Atom to convert to ids.

Returns id – The index in a feature vector given by the given set of features.

Return type int

This function helps compute distances between atoms from a given base atom.

find_distance(a1: Any, num_atoms: int, bond_adj_list, max_distance=7)→ numpy.ndarray
Computes distances from provided atom.

Parameters

• a1 (RDKit atom) – The source atom to compute distances from.

• num_atoms (int) – The total number of atoms.

• bond_adj_list (list of lists) – bond_adj_list[i] is a list of the atom indices that
atom i shares a bond with. This list is symmetrical so if j in bond_adj_list[i] then i in
bond_adj_list[j].

• max_distance (int, optional (default 7)) – The max distance to search.

Returns distances – Of shape (num_atoms, max_distance). Provides a one-hot encoding of the
distances. That is, distances[i] is a one-hot encoding of the distance from a1 to atom i.

Return type np.ndarray

This function is important and computes per-atom feature vectors used by graph convolutional featurizers.

atom_features(atom, bool_id_feat=False, explicit_H=False, use_chirality=False)
Helper method used to compute per-atom feature vectors.

Many different featurization methods compute per-atom features such as ConvMolFeaturizer, WeaveFeaturizer.
This method computes such features.

Parameters

• bool_id_feat (bool, optional) – Return an array of unique identifiers corre-
sponding to atom type.

• explicit_H (bool, optional) – If true, model hydrogens explicitly

• use_chirality (bool, optional) – If true, use chirality information.

Returns
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Return type np.ndarray of per-atom features.

This function computes the bond features used by graph convolutional featurizers.

bond_features(bond, use_chirality=False)
Helper method used to compute bond feature vectors.

Many different featurization methods compute bond features such as WeaveFeaturizer. This method computes
such features.

Parameters use_chirality (bool, optional) – If true, use chirality information.

Note: This method requires RDKit to be installed.

Returns bond_feats – Array of bond features. This is a 1-D array of length 6 if use_chirality is
False else of length 10 with chirality encoded.

Return type np.ndarray

This function computes atom-atom features (for atom pairs which may not have bonds between them.)

pair_features(mol: Any, bond_features_map: dict, bond_adj_list: List, bt_len: int = 6, graph_distance:
bool = True, max_pair_distance: Optional[int] = None)→ numpy.ndarray

Helper method used to compute atom pair feature vectors.

Many different featurization methods compute atom pair features such as WeaveFeaturizer. Note that atom pair
features could be for pairs of atoms which aren’t necessarily bonded to one another.

Parameters

• mol (RDKit Mol) – Molecule to compute features on.

• bond_features_map (dict) – Dictionary that maps pairs of atom ids (say (2, 3) for a
bond between atoms 2 and 3) to the features for the bond between them.

• bond_adj_list (list of lists) – bond_adj_list[i] is a list of the atom indices that
atom i shares a bond with . This list is symmetrical so if j in bond_adj_list[i] then i in
bond_adj_list[j].

• bt_len (int, optional (default 6)) – The number of different bond types to
consider.

• graph_distance (bool, optional (default True)) – If true, use graph dis-
tance between molecules. Else use euclidean distance. The specified mol must have a
conformer. Atomic positions will be retrieved by calling mol.getConformer(0).

• max_pair_distance (Optional[int], (default None)) – This value can be
a positive integer or None. This parameter determines the maximum graph distance at which
pair features are computed. For example, if max_pair_distance==2, then pair features are
computed only for atoms at most graph distance 2 apart. If max_pair_distance is None, all
pairs are considered (effectively infinite max_pair_distance)

Note: This method requires RDKit to be installed.

Returns

• features (np.ndarray) – Of shape (N_edges, bt_len + max_distance + 1). This is the ar-
ray of pairwise features for all atom pairs, where N_edges is the number of edges within
max_pair_distance of one another in this molecules.
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• pair_edges (np.ndarray) – Of shape (2, num_pairs) where num_pairs is the total number of
pairs within max_pair_distance of one another.

MACCSKeysFingerprint

class MACCSKeysFingerprint
MACCS Keys Fingerprint.

The MACCS (Molecular ACCess System) keys are one of the most commonly used structural keys. Please
confirm the details in [1]_, [2]_.

References

Note: This class requires RDKit to be installed.

__init__()
Initialize this featurizer.

CircularFingerprint

class CircularFingerprint(radius: int = 2, size: int = 2048, chiral: bool = False, bonds: bool
= True, features: bool = False, sparse: bool = False, smiles: bool =
False)

Circular (Morgan) fingerprints.

Extended Connectivity Circular Fingerprints compute a bag-of-words style representation of a molecule by
breaking it into local neighborhoods and hashing into a bit vector of the specified size. See [1]_ for more details.

References

Note: This class requires RDKit to be installed.

__init__(radius: int = 2, size: int = 2048, chiral: bool = False, bonds: bool = True, features: bool =
False, sparse: bool = False, smiles: bool = False)

Parameters

• radius (int, optional (default 2)) – Fingerprint radius.

• size (int, optional (default 2048)) – Length of generated bit vector.

• chiral (bool, optional (default False)) – Whether to consider chirality
in fingerprint generation.

• bonds (bool, optional (default True)) – Whether to consider bond order in
fingerprint generation.

• features (bool, optional (default False)) – Whether to use feature in-
formation instead of atom information; see RDKit docs for more info.

• sparse (bool, optional (default False)) – Whether to return a dict for
each molecule containing the sparse fingerprint.
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• smiles (bool, optional (default False)) – Whether to calculate SMILES
strings for fragment IDs (only applicable when calculating sparse fingerprints).

featurize(molecules, log_every_n=1000)→ numpy.ndarray
Calculate features for molecules.

Parameters

• molecules (rdkit.Chem.rdchem.Mol / SMILES string / iterable) –
RDKit Mol, or SMILES string or iterable sequence of RDKit mols/SMILES strings.

• log_every_n (int, default 1000) – Logging messages reported every
log_every_n samples.

Returns features – A numpy array containing a featurized representation of datapoints.

Return type np.ndarray

PubChemFingerprint

class PubChemFingerprint
PubChem Fingerprint.

The PubChem fingerprint is a 881 bit structural key, which is used by PubChem for similarity searching. Please
confirm the details in [1]_.

References

Note: This class requires RDKit and PubChemPy to be installed. PubChemPy use REST API to get the
fingerprint, so you need the internet access.

__init__()
Initialize this featurizer.

Mol2VecFingerprint

class Mol2VecFingerprint(pretrain_model_path: Optional[str] = None, radius: int = 1, unseen: str
= 'UNK')

Mol2Vec fingerprints.

This class convert molecules to vector representations by using Mol2Vec. Mol2Vec is an unsupervised ma-
chine learning approach to learn vector representations of molecular substructures and the algorithm is based on
Word2Vec, which is one of the most popular technique to learn word embeddings using neural network in NLP.
Please see the details from [1]_.

The Mol2Vec requires the pretrained model, so we use the model which is put on the mol2vec github repository
[2]_. The default model was trained on 20 million compounds downloaded from ZINC using the following
paramters.

• radius 1

• UNK to replace all identifiers that appear less than 4 times

• skip-gram and window size of 10

• embeddings size 300
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References

Note: This class requires mol2vec to be installed.

__init__(pretrain_model_path: Optional[str] = None, radius: int = 1, unseen: str = 'UNK')

Parameters

• pretrain_file (str, optional) – The path for pretrained model. If this value is
None, we use the model which is put on github repository (https://github.com/samoturk/
mol2vec/tree/master/examples/models). The model is trained on 20 million compounds
downloaded from ZINC.

• radius (int, optional (default 1)) – The fingerprint radius. The default
value was used to train the model which is put on github repository.

• unseen (str, optional (default 'UNK')) – The string to used to replace un-
common words/identifiers while training.

featurize(molecules, log_every_n=1000)→ numpy.ndarray
Calculate features for molecules.

Parameters

• molecules (rdkit.Chem.rdchem.Mol / SMILES string / iterable) –
RDKit Mol, or SMILES string or iterable sequence of RDKit mols/SMILES strings.

• log_every_n (int, default 1000) – Logging messages reported every
log_every_n samples.

Returns features – A numpy array containing a featurized representation of datapoints.

Return type np.ndarray

RDKitDescriptors

class RDKitDescriptors(use_fragment=True, ipc_avg=True)
RDKit descriptors.

This class computes a list of chemical descriptors using RDKit.

descriptors
List of RDKit descriptor names used in this class.

Type List[str]

Note: This class requires RDKit to be installed.

__init__(use_fragment=True, ipc_avg=True)
Initialize this featurizer.

Parameters

• use_fragment (bool, optional (default True)) – If True, the return value
includes the fragment binary descriptors like ‘fr_XXX’.

• ipc_avg (bool, optional (default True)) – If True, the IPC descriptor cal-
culates with avg=True option. Please see this issue: https://github.com/rdkit/rdkit/issues/
1527.
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featurize(molecules, log_every_n=1000)→ numpy.ndarray
Calculate features for molecules.

Parameters

• molecules (rdkit.Chem.rdchem.Mol / SMILES string / iterable) –
RDKit Mol, or SMILES string or iterable sequence of RDKit mols/SMILES strings.

• log_every_n (int, default 1000) – Logging messages reported every
log_every_n samples.

Returns features – A numpy array containing a featurized representation of datapoints.

Return type np.ndarray

MordredDescriptors

class MordredDescriptors(ignore_3D: bool = True)
Mordred descriptors.

This class computes a list of chemical descriptors using Mordred. Please see the details about all descriptors
from [1]_, [2]_.

descriptors
List of Mordred descriptor names used in this class.

Type List[str]

References

Note: This class requires Mordred to be installed.

__init__(ignore_3D: bool = True)

Parameters ignore_3D (bool, optional (default True)) – Whether to use 3D
information or not.

featurize(molecules, log_every_n=1000)→ numpy.ndarray
Calculate features for molecules.

Parameters

• molecules (rdkit.Chem.rdchem.Mol / SMILES string / iterable) –
RDKit Mol, or SMILES string or iterable sequence of RDKit mols/SMILES strings.

• log_every_n (int, default 1000) – Logging messages reported every
log_every_n samples.

Returns features – A numpy array containing a featurized representation of datapoints.

Return type np.ndarray
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CoulombMatrix

class CoulombMatrix(max_atoms: int, remove_hydrogens: bool = False, randomize: bool = False,
upper_tri: bool = False, n_samples: int = 1, seed: Optional[int] = None)

Calculate Coulomb matrices for molecules.

Coulomb matrices provide a representation of the electronic structure of a molecule. This method is described
in [1]_.

Examples

>>> import deepchem as dc
>>> featurizers = dc.feat.CoulombMatrix(max_atoms=23)
>>> input_file = 'deepchem/feat/tests/data/water.sdf' # really backed by water.
→˓sdf.csv
>>> tasks = ["atomization_energy"]
>>> loader = dc.data.SDFLoader(tasks, featurizer=featurizers)
>>> dataset = loader.create_dataset(input_file)

References

Note: This class requires RDKit to be installed.

__init__(max_atoms: int, remove_hydrogens: bool = False, randomize: bool = False, upper_tri: bool
= False, n_samples: int = 1, seed: Optional[int] = None)

Initialize this featurizer.

Parameters

• max_atoms (int) – The maximum number of atoms expected for molecules this featur-
izer will process.

• remove_hydrogens (bool, optional (default False)) – If True, remove
hydrogens before processing them.

• randomize (bool, optional (default False)) – If True, use method ran-
domize_coulomb_matrices to randomize Coulomb matrices.

• upper_tri (bool, optional (default False)) – Generate only upper trian-
gle part of Coulomb matrices.

• n_samples (int, optional (default 1)) – If randomize is set to True, the
number of random samples to draw.

• seed (int, optional (default None)) – Random seed to use.

coulomb_matrix(mol: Any)→ numpy.ndarray
Generate Coulomb matrices for each conformer of the given molecule.

Parameters mol (rdkit.Chem.rdchem.Mol) – RDKit Mol object

Returns The coulomb matrices of the given molecule

Return type np.ndarray

randomize_coulomb_matrix(m: numpy.ndarray)→ List[numpy.ndarray]
Randomize a Coulomb matrix as decribed in [1]_:
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1. Compute row norms for M in a vector row_norms.

2. Sample a zero-mean unit-variance noise vector e with dimension equal to row_norms.

3. Permute the rows and columns of M with the permutation that sorts row_norms + e.

Parameters m (np.ndarray) – Coulomb matrix.

Returns List of the random coulomb matrix

Return type List[np.ndarray]

References

static get_interatomic_distances(conf: Any)→ numpy.ndarray
Get interatomic distances for atoms in a molecular conformer.

Parameters conf (rdkit.Chem.rdchem.Conformer) – Molecule conformer.

Returns The distances matrix for all atoms in a molecule

Return type np.ndarray

featurize(molecules, log_every_n=1000)→ numpy.ndarray
Calculate features for molecules.

Parameters

• molecules (rdkit.Chem.rdchem.Mol / SMILES string / iterable) –
RDKit Mol, or SMILES string or iterable sequence of RDKit mols/SMILES strings.

• log_every_n (int, default 1000) – Logging messages reported every
log_every_n samples.

Returns features – A numpy array containing a featurized representation of datapoints.

Return type np.ndarray

CoulombMatrixEig

class CoulombMatrixEig(max_atoms: int, remove_hydrogens: bool = False, randomize: bool = False,
n_samples: int = 1, seed: Optional[int] = None)

Calculate the eigenvalues of Coulomb matrices for molecules.

This featurizer computes the eigenvalues of the Coulomb matrices for provided molecules. Coulomb matrices
are described in [1]_.

Examples

>>> import deepchem as dc
>>> featurizers = dc.feat.CoulombMatrixEig(max_atoms=23)
>>> input_file = 'deepchem/feat/tests/data/water.sdf' # really backed by water.
→˓sdf.csv
>>> tasks = ["atomization_energy"]
>>> loader = dc.data.SDFLoader(tasks, featurizer=featurizers)
>>> dataset = loader.create_dataset(input_file)
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References

__init__(max_atoms: int, remove_hydrogens: bool = False, randomize: bool = False, n_samples: int
= 1, seed: Optional[int] = None)

Initialize this featurizer.

Parameters

• max_atoms (int) – The maximum number of atoms expected for molecules this featur-
izer will process.

• remove_hydrogens (bool, optional (default False)) – If True, remove
hydrogens before processing them.

• randomize (bool, optional (default False)) – If True, use method ran-
domize_coulomb_matrices to randomize Coulomb matrices.

• n_samples (int, optional (default 1)) – If randomize is set to True, the
number of random samples to draw.

• seed (int, optional (default None)) – Random seed to use.

coulomb_matrix(mol: Any)→ numpy.ndarray
Generate Coulomb matrices for each conformer of the given molecule.

Parameters mol (rdkit.Chem.rdchem.Mol) – RDKit Mol object

Returns The coulomb matrices of the given molecule

Return type np.ndarray

featurize(molecules, log_every_n=1000)→ numpy.ndarray
Calculate features for molecules.

Parameters

• molecules (rdkit.Chem.rdchem.Mol / SMILES string / iterable) –
RDKit Mol, or SMILES string or iterable sequence of RDKit mols/SMILES strings.

• log_every_n (int, default 1000) – Logging messages reported every
log_every_n samples.

Returns features – A numpy array containing a featurized representation of datapoints.

Return type np.ndarray

static get_interatomic_distances(conf: Any)→ numpy.ndarray
Get interatomic distances for atoms in a molecular conformer.

Parameters conf (rdkit.Chem.rdchem.Conformer) – Molecule conformer.

Returns The distances matrix for all atoms in a molecule

Return type np.ndarray

randomize_coulomb_matrix(m: numpy.ndarray)→ List[numpy.ndarray]
Randomize a Coulomb matrix as decribed in [1]_:

1. Compute row norms for M in a vector row_norms.

2. Sample a zero-mean unit-variance noise vector e with dimension equal to row_norms.

3. Permute the rows and columns of M with the permutation that sorts row_norms + e.

Parameters m (np.ndarray) – Coulomb matrix.

Returns List of the random coulomb matrix
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Return type List[np.ndarray]

References

AtomCoordinates

class AtomicCoordinates(use_bohr: bool = False)
Calculate atomic coordinates.

Note: This class requires RDKit to be installed.

__init__(use_bohr: bool = False)

Parameters use_bohr (bool, optional (default False)) – Whether to use bohr
or angstrom as a coordinate unit.

featurize(molecules, log_every_n=1000)→ numpy.ndarray
Calculate features for molecules.

Parameters

• molecules (rdkit.Chem.rdchem.Mol / SMILES string / iterable) –
RDKit Mol, or SMILES string or iterable sequence of RDKit mols/SMILES strings.

• log_every_n (int, default 1000) – Logging messages reported every
log_every_n samples.

Returns features – A numpy array containing a featurized representation of datapoints.

Return type np.ndarray

BPSymmetryFunctionInput

class BPSymmetryFunctionInput(max_atoms: int)
Calculate symmetry function for each atom in the molecules

This method is described in [1]_

References

Note: This class requires RDKit to be installed.

__init__(max_atoms: int)
Initialize this featurizer.

Parameters max_atoms (int) – The maximum number of atoms expected for molecules this
featurizer will process.

featurize(molecules, log_every_n=1000)→ numpy.ndarray
Calculate features for molecules.

Parameters

• molecules (rdkit.Chem.rdchem.Mol / SMILES string / iterable) –
RDKit Mol, or SMILES string or iterable sequence of RDKit mols/SMILES strings.
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• log_every_n (int, default 1000) – Logging messages reported every
log_every_n samples.

Returns features – A numpy array containing a featurized representation of datapoints.

Return type np.ndarray

SmilesToSeq

class SmilesToSeq(char_to_idx: Dict[str, int], max_len: int = 250, pad_len: int = 10)
SmilesToSeq Featurizer takes a SMILES string, and turns it into a sequence. Details taken from [1]_.

SMILES strings smaller than a specified max length (max_len) are padded using the PAD token while those
larger than the max length are not considered. Based on the paper, there is also the option to add extra padding
(pad_len) on both sides of the string after length normalization. Using a character to index (char_to_idx) map-
ping, the SMILES characters are turned into indices and the resulting sequence of indices serves as the input for
an embedding layer.

References

Note: This class requires RDKit to be installed.

__init__(char_to_idx: Dict[str, int], max_len: int = 250, pad_len: int = 10)
Initialize this class.

Parameters

• char_to_idx (Dict) – Dictionary containing character to index mappings for unique
characters

• max_len (int, default 250) – Maximum allowed length of the SMILES string.

• pad_len (int, default 10) – Amount of padding to add on either side of the
SMILES seq

to_seq(smile: List[str])→ numpy.ndarray
Turns list of smiles characters into array of indices

remove_pad(characters: List[str])→ List[str]
Removes PAD_TOKEN from the character list.

smiles_from_seq(seq: List[int])→ str
Reconstructs SMILES string from sequence.

featurize(molecules, log_every_n=1000)→ numpy.ndarray
Calculate features for molecules.

Parameters

• molecules (rdkit.Chem.rdchem.Mol / SMILES string / iterable) –
RDKit Mol, or SMILES string or iterable sequence of RDKit mols/SMILES strings.

• log_every_n (int, default 1000) – Logging messages reported every
log_every_n samples.

Returns features – A numpy array containing a featurized representation of datapoints.

Return type np.ndarray
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SmilesToImage

class SmilesToImage(img_size: int = 80, res: float = 0.5, max_len: int = 250, img_spec: str = 'std')
Convert SMILES string to an image.

SmilesToImage Featurizer takes a SMILES string, and turns it into an image. Details taken from [1]_.

The default size of for the image is 80 x 80. Two image modes are currently supported - std & engd. std is
the gray scale specification, with atomic numbers as pixel values for atom positions and a constant value of 2
for bond positions. engd is a 4-channel specification, which uses atom properties like hybridization, valency,
charges in addition to atomic number. Bond type is also used for the bonds.

The coordinates of all atoms are computed, and lines are drawn between atoms to indicate bonds. For the
respective channels, the atom and bond positions are set to the property values as mentioned in the paper.

References

Note: This class requires RDKit to be installed.

__init__(img_size: int = 80, res: float = 0.5, max_len: int = 250, img_spec: str = 'std')

Parameters

• img_size (int, default 80) – Size of the image tensor

• res (float, default 0.5) – Displays the resolution of each pixel in Angstrom

• max_len (int, default 250) – Maximum allowed length of SMILES string

• img_spec (str, default std) – Indicates the channel organization of the image
tensor

featurize(molecules, log_every_n=1000)→ numpy.ndarray
Calculate features for molecules.

Parameters

• molecules (rdkit.Chem.rdchem.Mol / SMILES string / iterable) –
RDKit Mol, or SMILES string or iterable sequence of RDKit mols/SMILES strings.

• log_every_n (int, default 1000) – Logging messages reported every
log_every_n samples.

Returns features – A numpy array containing a featurized representation of datapoints.

Return type np.ndarray

OneHotFeaturizer

class OneHotFeaturizer(charset: List[str] = ['#', ')', '(', '+', '-', '/', '1', '3', '2', '5', '4', '7', '6', '8', '=', '@',
'C', 'B', 'F', 'I', 'H', 'O', 'N', 'S', '[', ']', '\\', 'c', 'l', 'o', 'n', 'p', 's', 'r'], max_length:
int = 100)

Encodes SMILES as a one-hot array.

This featurizer encodes SMILES string as a one-hot array.

Note: This class requires RDKit to be installed.
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__init__(charset: List[str] = ['#', ')', '(', '+', '-', '/', '1', '3', '2', '5', '4', '7', '6', '8', '=', '@', 'C', 'B', 'F', 'I',
'H', 'O', 'N', 'S', '[', ']', '\\', 'c', 'l', 'o', 'n', 'p', 's', 'r'], max_length: int = 100)

Initialize featurizer.

Parameters

• charset (List[str], optional (default ZINC_CHARSET)) – A list of
strings, where each string is length 1 and unique.

• max_length (int, optional (default 100)) – The max length for SMILES
string. If the length of SMILES string is shorter than max_length, the SMILES is padded
using space.

pad_smile(smiles: str)→ str
Pad SMILES string to self.pad_length

Parameters smiles (str) – The smiles string to be padded.

Returns SMILES string space padded to self.pad_length

Return type str

untransform(one_hot_vectors: numpy.ndarray)→ str
Convert from one hot representation back to SMILES

Parameters one_hot_vectors (np.ndarray) – An array of one hot encoded features.

Returns SMILES string for an one hot encoded array.

Return type str

featurize(molecules, log_every_n=1000)→ numpy.ndarray
Calculate features for molecules.

Parameters

• molecules (rdkit.Chem.rdchem.Mol / SMILES string / iterable) –
RDKit Mol, or SMILES string or iterable sequence of RDKit mols/SMILES strings.

• log_every_n (int, default 1000) – Logging messages reported every
log_every_n samples.

Returns features – A numpy array containing a featurized representation of datapoints.

Return type np.ndarray

RawFeaturizer

class RawFeaturizer(smiles: bool = False)
Encodes a molecule as a SMILES string or RDKit mol.

This featurizer can be useful when you’re trying to transform a large collection of RDKit mol objects as Smiles
strings, or alternatively as a “no-op” featurizer in your molecular pipeline.

Note: This class requires RDKit to be installed.

__init__(smiles: bool = False)
Initialize this featurizer.

Parameters smiles (bool, optional (default False)) – If True, encode this
molecule as a SMILES string. Else as a RDKit mol.
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featurize(molecules, log_every_n=1000)→ numpy.ndarray
Calculate features for molecules.

Parameters

• molecules (rdkit.Chem.rdchem.Mol / SMILES string / iterable) –
RDKit Mol, or SMILES string or iterable sequence of RDKit mols/SMILES strings.

• log_every_n (int, default 1000) – Logging messages reported every
log_every_n samples.

Returns features – A numpy array containing a featurized representation of datapoints.

Return type np.ndarray

3.12.2 Molecular Complex Featurizers

These featurizers work with three dimensional molecular complexes.

RdkitGridFeaturizer

class RdkitGridFeaturizer(nb_rotations=0, feature_types=None, ecfp_degree=2, ecfp_power=3,
splif_power=3, box_width=16.0, voxel_width=1.0, flatten=False, ver-
bose=True, sanitize=False, **kwargs)

Featurizes protein-ligand complex using flat features or a 3D grid (in which each voxel is described with a vector
of features).

__init__(nb_rotations=0, feature_types=None, ecfp_degree=2, ecfp_power=3, splif_power=3,
box_width=16.0, voxel_width=1.0, flatten=False, verbose=True, sanitize=False,
**kwargs)

Parameters

• nb_rotations (int, optional (default 0)) – Number of additional random
rotations of a complex to generate.

• feature_types (list, optional (default ['ecfp'])) –

Types of features to calculate. Available types are flat features -> ‘ecfp_ligand’,
‘ecfp_hashed’, ‘splif_hashed’, ‘hbond_count’ voxel features -> ‘ecfp’, ‘splif’, ‘sybyl’,
‘salt_bridge’, ‘charge’, ‘hbond’, ‘pi_stack, ‘cation_pi’

There are also 3 predefined sets of features ’flat_combined’, ‘voxel_combined’, and
‘all_combined’.

Calculated features are concatenated and their order is preserved (features in predefined
sets are in alphabetical order).

• ecfp_degree (int, optional (default 2)) – ECFP radius.

• ecfp_power (int, optional (default 3)) – Number of bits to store ECFP
features (resulting vector will be 2^ecfp_power long)

• splif_power (int, optional (default 3)) – Number of bits to store SPLIF
features (resulting vector will be 2^splif_power long)

• box_width (float, optional (default 16.0)) – Size of a box in which
voxel features are calculated. Box is centered on a ligand centroid.

• voxel_width (float, optional (default 1.0)) – Size of a 3D voxel in a
grid.
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• flatten (bool, optional (defaul False)) – Indicate whether calculated
features should be flattened. Output is always flattened if flat features are specified in
feature_types.

• verbose (bool, optional (defaul True)) – Verbolity for logging

• sanitize (bool, optional (defaul False)) – If set to True molecules will
be sanitized. Note that calculating some features (e.g. aromatic interactions) require sani-
tized molecules.

• **kwargs (dict, optional) – Keyword arguments can be usaed to specify custom
cutoffs and bins (see default values below).

• cutoffs and bins (Default) –

• ------------------------ –

• hbond_dist_bins ([(2.2, 2.5), (2.5, 3.2), (3.2, 4.0)]) –

• hbond_angle_cutoffs ([5, 50, 90]) –

• splif_contact_bins ([(0, 2.0), (2.0, 3.0), (3.0, 4.5)]) –

• ecfp_cutoff (4.5) –

• sybyl_cutoff (7.0) –

• salt_bridges_cutoff (5.0) –

• pi_stack_dist_cutoff (4.4) –

• pi_stack_angle_cutoff (30.0) –

• cation_pi_dist_cutoff (6.5) –

• cation_pi_angle_cutoff (30.0) –

featurize(complexes: Iterable[Tuple[str, str]], log_every_n: int = 100)→ numpy.ndarray
Calculate features for mol/protein complexes.

Parameters complexes (Iterable[Tuple[str, str]]) – List of filenames (PDB,
SDF, etc.) for ligand molecules and proteins. Each element should be a tuple of the form
(ligand_filename, protein_filename).

Returns features – Array of features

Return type np.ndarray

AtomicConvFeaturizer

class AtomicConvFeaturizer(frag1_num_atoms, frag2_num_atoms, complex_num_atoms,
max_num_neighbors, neighbor_cutoff, strip_hydrogens=True)

This class computes the featurization that corresponds to AtomicConvModel.

This class computes featurizations needed for AtomicConvModel. Given two molecular structures, it computes
a number of useful geometric features. In particular, for each molecule and the global complex, it computes a
coordinates matrix of size (N_atoms, 3) where N_atoms is the number of atoms. It also computes a neighbor-list,
a dictionary with N_atoms elements where neighbor-list[i] is a list of the atoms the i-th atom has as neighbors.
In addition, it computes a z-matrix for the molecule which is an array of shape (N_atoms,) that contains the
atomic number of that atom.

Since the featurization computes these three quantities for each of the two molecules and the complex, a total of
9 quantities are returned for each complex. Note that for efficiency, fragments of the molecules can be provided
rather than the full molecules themselves.
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__init__(frag1_num_atoms, frag2_num_atoms, complex_num_atoms, max_num_neighbors, neigh-
bor_cutoff, strip_hydrogens=True)

Parameters

• frag1_num_atoms (int) – Maximum number of atoms in fragment 1.

• frag2_num_atoms (int) – Maximum number of atoms in fragment 2.

• complex_num_atoms (int) – Maximum number of atoms in complex of frag1/frag2
together.

• max_num_neighbors (int) – Maximum number of atoms considered as neighbors.

• neighbor_cutoff (float) – Maximum distance (angstroms) for two atoms to be
considered as neighbors. If more than max_num_neighbors atoms fall within this cutoff,
the closest max_num_neighbors will be used.

• strip_hydrogens (bool (default True)) – Remove hydrogens before com-
puting featurization.

featurize(complexes: Iterable[Tuple[str, str]], log_every_n: int = 100)→ numpy.ndarray
Calculate features for mol/protein complexes.

Parameters complexes (Iterable[Tuple[str, str]]) – List of filenames (PDB,
SDF, etc.) for ligand molecules and proteins. Each element should be a tuple of the form
(ligand_filename, protein_filename).

Returns features – Array of features

Return type np.ndarray

3.12.3 Inorganic Crystal Featurizers

These featurizers work with datasets of inorganic crystals.

MaterialCompositionFeaturizer

Material Composition Featurizers are those that work with datasets of crystal compositions with periodic boundary
conditions. For inorganic crystal structures, these featurizers operate on chemical compositions (e.g. “MoS2”). They
should be applied on systems that have periodic boundary conditions. Composition featurizers are not designed to
work with molecules.

ElementPropertyFingerprint

class ElementPropertyFingerprint(data_source: str = 'matminer')
Fingerprint of elemental properties from composition.

Based on the data source chosen, returns properties and statistics (min, max, range, mean, standard devia-
tion, mode) for a compound based on elemental stoichiometry. E.g., the average electronegativity of atoms
in a crystal structure. The chemical fingerprint is a vector of these statistics. For a full list of properties
and statistics, see matminer.featurizers.composition.ElementProperty(data_source).
feature_labels().

This featurizer requires the optional dependencies pymatgen and matminer. It may be useful when only crystal
compositions are available (and not 3D coordinates).
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See references [1]_, [2]_,3,4 for more details.

References

Examples

>>> import pymatgen as mg
>>> comp = mg.Composition("Fe2O3")
>>> featurizer = ElementPropertyFingerprint()
>>> features = featurizer.featurize([comp])

Note: This class requires matminer and Pymatgen to be installed. NaN feature values are automatically
converted to 0 by this featurizer.

__init__(data_source: str = 'matminer')

Parameters data_source (str of "matminer", "magpie" or "deml"
(default "matminer")) – Source for element property data.

featurize(compositions: Iterable[str], log_every_n: int = 1000)→ numpy.ndarray
Calculate features for crystal compositions.

Parameters

• compositions (Iterable[str]) – Iterable sequence of composition strings, e.g.
“MoS2”.

• log_every_n (int, default 1000) – Logging messages reported every
log_every_n samples.

Returns features – A numpy array containing a featurized representation of compositions.

Return type np.ndarray

ElemNetFeaturizer

class ElemNetFeaturizer
Fixed size vector of length 86 containing raw fractional elemental compositions in the compound. The 86 chosen
elements are based on the original implementation at https://github.com/NU-CUCIS/ElemNet.

Returns a vector containing fractional compositions of each element in the compound.

References

Examples

>>> import pymatgen as mg
>>> comp = "Fe2O3"
>>> featurizer = ElemNetFeaturizer()
>>> features = featurizer.featurize([comp])

3 Matminer: Ward, L. et al. Comput. Mater. Sci. 152, 60-69 (2018).
4 Pymatgen: Ong, S.P. et al. Comput. Mater. Sci. 68, 314-319 (2013).
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Note: This class requires Pymatgen to be installed.

get_vector(comp: DefaultDict)→ Optional[numpy.ndarray]
Converts a dictionary containing element names and corresponding compositional fractions into a vector
of fractions.

Parameters comp (collections.defaultdict object) – Dictionary mapping ele-
ment names to fractional compositions.

Returns fractions – Vector of fractional compositions of each element.

Return type np.ndarray

MaterialStructureFeaturizer

Material Structure Featurizers are those that work with datasets of crystals with periodic boundary conditions. For
inorganic crystal structures, these featurizers operate on pymatgen.Structure objects, which include a lattice and 3D
coordinates that specify a periodic crystal structure. They should be applied on systems that have periodic boundary
conditions. Structure featurizers are not designed to work with molecules.

SineCoulombMatrix

class SineCoulombMatrix(max_atoms: int = 100, flatten: bool = True)
Calculate sine Coulomb matrix for crystals.

A variant of Coulomb matrix for periodic crystals.

The sine Coulomb matrix is identical to the Coulomb matrix, except that the inverse distance function is replaced
by the inverse of sin**2 of the vector between sites which are periodic in the dimensions of the crystal lattice.

Features are flattened into a vector of matrix eigenvalues by default for ML-readiness. To ensure that all feature
vectors are equal length, the maximum number of atoms (eigenvalues) in the input dataset must be specified.

This featurizer requires the optional dependencies pymatgen and matminer. It may be useful when crystal
structures with 3D coordinates are available.

See [1]_ for more details.

References

Examples

>>> import pymatgen as mg
>>> lattice = mg.Lattice.cubic(4.2)
>>> structure = mg.Structure(lattice, ["Cs", "Cl"], [[0, 0, 0], [0.5, 0.5, 0.5]])
>>> featurizer = SineCoulombMatrix(max_atoms=2)
>>> features = featurizer.featurize([structure])

Note: This class requires matminer and Pymatgen to be installed.

__init__(max_atoms: int = 100, flatten: bool = True)

Parameters
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• max_atoms (int (default 100)) – Maximum number of atoms for any crystal in
the dataset. Used to pad the Coulomb matrix.

• flatten (bool (default True)) – Return flattened vector of matrix eigenvalues.

featurize(structures: Iterable[Union[Dict[str, Any], Any]], log_every_n: int = 1000) →
numpy.ndarray

Calculate features for crystal structures.

Parameters

• structures (Iterable[Union[Dict, pymatgen.Structure]]) – Iterable
sequence of pymatgen structure dictionaries or pymatgen.Structure. Please confirm the
dictionary representations of pymatgen.Structure from https://pymatgen.org/pymatgen.
core.structure.html.

• log_every_n (int, default 1000) – Logging messages reported every
log_every_n samples.

Returns features – A numpy array containing a featurized representation of structures.

Return type np.ndarray

CGCNNFeaturizer

class CGCNNFeaturizer(radius: float = 8.0, max_neighbors: float = 12, step: float = 0.2)
Calculate structure graph features for crystals.

Based on the implementation in Crystal Graph Convolutional Neural Networks (CGCNN). The method con-
structs a crystal graph representation including atom features and bond features (neighbor distances). Neighbors
are determined by searching in a sphere around atoms in the unit cell. A Gaussian filter is applied to neighbor
distances. All units are in angstrom.

This featurizer requires the optional dependency pymatgen. It may be useful when 3D coordinates are available
and when using graph network models and crystal graph convolutional networks.

See [1]_ for more details.

References

Examples

>>> import pymatgen as mg
>>> lattice = mg.Lattice.cubic(4.2)
>>> structure = mg.Structure(lattice, ["Cs", "Cl"], [[0, 0, 0], [0.5, 0.5, 0.5]])
>>> featurizer = CGCNNFeaturizer()
>>> features = featurizer.featurize([structure])
>>> feature = features[0]
>>> print(type(feature))
<class 'deepchem.feat.graph_data.GraphData'>

Note: This class requires Pymatgen to be installed.

__init__(radius: float = 8.0, max_neighbors: float = 12, step: float = 0.2)

Parameters
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• radius (float (default 8.0)) – Radius of sphere for finding neighbors of atoms
in unit cell.

• max_neighbors (int (default 12)) – Maximum number of neighbors to con-
sider when constructing graph.

• step (float (default 0.2)) – Step size for Gaussian filter. This value is used
when building edge features.

featurize(structures: Iterable[Union[Dict[str, Any], Any]], log_every_n: int = 1000) →
numpy.ndarray

Calculate features for crystal structures.

Parameters

• structures (Iterable[Union[Dict, pymatgen.Structure]]) – Iterable
sequence of pymatgen structure dictionaries or pymatgen.Structure. Please confirm the
dictionary representations of pymatgen.Structure from https://pymatgen.org/pymatgen.
core.structure.html.

• log_every_n (int, default 1000) – Logging messages reported every
log_every_n samples.

Returns features – A numpy array containing a featurized representation of structures.

Return type np.ndarray

LCNNFeaturizer

class LCNNFeaturizer(structure: Any, aos: List[str], pbc: List[bool], ns: int = 1, na: int = 1, cutoff:
float = 6.0)

Calculates the 2-D Surface graph features in 6 different permutations-

Based on the implementation of Lattice Graph Convolution Neural Network (LCNN). This method produces
the Atom wise features ( One Hot Encoding) and Adjacent neighbour in the specified order of permutations.
Neighbors are determined by first extracting a site local environment from the primitive cell, and perform graph
matching and distance matching to find neighbors. First, the template of the Primitive cell needs to be defined
along with periodic boundary conditions and active and spectator site details. structure(Data Point i.e different
configuration of adsorbate atoms) is passed for featurization.

This particular featurization produces a regular-graph (equal number of Neighbors) along with its permutation in
6 symmetric axis. This transformation can be applied when orderering of neighboring of nodes around a site play
an important role in the propert predictions. Due to consideration of local neighbor environment, this current
implementation would be fruitful in finding neighbors for calculating formation energy of adbsorption tasks
where the local. Adsorption turns out to be important in many applications such as catalyst and semiconductor
design.

The permuted neighbors are calculated using the Primitive cells i.e periodic cells in all the data points are built
via lattice transformation of the primitive cell.

Primitive cell Format:

1. Pymatgen structure object with site_properties key value

• “SiteTypes” mentioning if it is a active site “A1” or spectator site “S1”.

2. ns , the number of spectator types elements. For “S1” its 1.

3. na , the number of active types elements. For “A1” its 1.

4. aos, the different species of active elements “A1”.
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5. pbc, the periodic boundary conditions.

Data point Structure Format(Configuration of Atoms):

1. Pymatgen structure object with site_properties with following key value.

• “SiteTypes”, mentioning if it is a active site “A1” or spectator site “S1”.

• “oss”, different occupational sites. For spectator sites make it -1.

It is highly recommended that cells of data are directly redefined from the primitive cell, specifically, the relative
coordinates between sites are consistent so that the lattice is non-deviated.

References

Examples

>>> import deepchem as dc
>>> from pymatgen import Structure
>>> import numpy as np
>>> PRIMITIVE_CELL = {
... "lattice": [[2.818528, 0.0, 0.0],
... [-1.409264, 2.440917, 0.0],
... [0.0, 0.0, 25.508255]],
... "coords": [[0.66667, 0.33333, 0.090221],
... [0.33333, 0.66667, 0.18043936],
... [0.0, 0.0, 0.27065772],
... [0.66667, 0.33333, 0.36087608],
... [0.33333, 0.66667, 0.45109444],
... [0.0, 0.0, 0.49656991]],
... "species": ['H', 'H', 'H', 'H', 'H', 'He'],
... "site_properties": {'SiteTypes': ['S1', 'S1', 'S1', 'S1', 'S1', 'A1']}
... }
>>> PRIMITIVE_CELL_INF0 = {
... "cutoff": np.around(6.00),
... "structure": Structure(**PRIMITIVE_CELL),
... "aos": ['1', '0', '2'],
... "pbc": [True, True, False],
... "ns": 1,
... "na": 1
... }
>>> DATA_POINT = {
... "lattice": [[1.409264, -2.440917, 0.0],
... [4.227792, 2.440917, 0.0],
... [0.0, 0.0, 23.17559]],
... "coords": [[0.0, 0.0, 0.099299],
... [0.0, 0.33333, 0.198598],
... [0.5, 0.16667, 0.297897],
... [0.0, 0.0, 0.397196],
... [0.0, 0.33333, 0.496495],
... [0.5, 0.5, 0.099299],
... [0.5, 0.83333, 0.198598],
... [0.0, 0.66667, 0.297897],
... [0.5, 0.5, 0.397196],
... [0.5, 0.83333, 0.496495],
... [0.0, 0.66667, 0.54654766],

(continues on next page)
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(continued from previous page)

... [0.5, 0.16667, 0.54654766]],

... "species": ['H', 'H', 'H', 'H', 'H', 'H',

... 'H', 'H', 'H', 'H', 'He', 'He'],

... "site_properties": {

... "SiteTypes": ['S1', 'S1', 'S1', 'S1', 'S1',

... 'S1', 'S1', 'S1', 'S1', 'S1',

... 'A1', 'A1'],

... "oss": ['-1', '-1', '-1', '-1', '-1', '-1',

... '-1', '-1', '-1', '-1', '0', '2']

... }

... }
>>> featuriser = dc.feat.LCNNFeaturizer(**PRIMITIVE_CELL_INF0)
>>> print(type(featuriser._featurize(Structure(**DATA_POINT))))
<class 'deepchem.feat.graph_data.GraphData'>

Notes

This Class requires pymatgen , networkx , scipy installed.

__init__(structure: Any, aos: List[str], pbc: List[bool], ns: int = 1, na: int = 1, cutoff: float = 6.0)

Parameters

• structure (: PymatgenStructure) – Pymatgen Structure object of the prim-
itive cell used for calculating neighbors from lattice transformations.It also requires
site_properties attribute with “Sitetypes”(Active or spectator site).

• aos (List[str]) – A list of all the active site species. For the Pt, N, NO configuration
set it as [‘0’, ‘1’, ‘2’]

• pbc (List[bool]) – Periodic Boundary Condition

• ns (int (default 1)) – The number of spectator types elements. For “S1” its 1.

• na (int (default 1)) – the number of active types elements. For “A1” its 1.

• cutoff (float (default 6.00)) – Cutoff of radius for getting local environ-
ment.Only used down to 2 digits.

featurize(structures: Iterable[Union[Dict[str, Any], Any]], log_every_n: int = 1000) →
numpy.ndarray

Calculate features for crystal structures.

Parameters

• structures (Iterable[Union[Dict, pymatgen.Structure]]) – Iterable
sequence of pymatgen structure dictionaries or pymatgen.Structure. Please confirm the
dictionary representations of pymatgen.Structure from https://pymatgen.org/pymatgen.
core.structure.html.

• log_every_n (int, default 1000) – Logging messages reported every
log_every_n samples.

Returns features – A numpy array containing a featurized representation of structures.

Return type np.ndarray
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3.12.4 MaterialCompositionFeaturizer

3.12.5 Molecule Tokenizers

A tokenizer is in charge of preparing the inputs for a natural language processing model. For many scientific applica-
tions, it is possible to treat inputs as “words”/”sentences” and use NLP methods to make meaningful predictions. For
example, SMILES strings or DNA sequences have grammatical structure and can be usefully modeled with NLP tech-
niques. DeepChem provides some scientifically relevant tokenizers for use in different applications. These tokenizers
are based on those from the Huggingface transformers library (which DeepChem tokenizers inherit from).

The base classes PreTrainedTokenizer and PreTrainedTokenizerFast implements the common methods for encoding
string inputs in model inputs and instantiating/saving python tokenizers either from a local file or directory or from a
pretrained tokenizer provided by the library (downloaded from HuggingFace’s AWS S3 repository).

PreTrainedTokenizer (transformers.PreTrainedTokenizer) thus implements the main methods for using all the tokeniz-
ers:

• Tokenizing (spliting strings in sub-word token strings), converting tokens strings to ids and back, and encod-
ing/decoding (i.e. tokenizing + convert to integers)

• Adding new tokens to the vocabulary in a way that is independent of the underlying structure (BPE, Sentence-
Piece. . . )

• Managing special tokens like mask, beginning-of-sentence, etc tokens (adding them, assigning them to attributes
in the tokenizer for easy access and making sure they are not split during tokenization)

BatchEncoding holds the output of the tokenizer’s encoding methods (__call__, encode_plus and batch_encode_plus)
and is derived from a Python dictionary. When the tokenizer is a pure python tokenizer, this class behave just
like a standard python dictionary and hold the various model inputs computed by these methodes (input_ids, at-
tention_mask. . . ). For more details on the base tokenizers which the DeepChem tokenizers inherit from, please refer
to the following: HuggingFace tokenizers docs

Tokenization methods on string-based corpuses in the life sciences are becoming increasingly popular for NLP-based
applications to chemistry and biology. One such example is ChemBERTa, a transformer for molecular property pre-
diction. DeepChem offers a tutorial for utilizing ChemBERTa using an alternate tokenizer, a Byte-Piece Encoder,
which can be found here.

SmilesTokenizer

The dc.feat.SmilesTokenizer module inherits from the BertTokenizer class in transformers. It runs a Word-
Piece tokenization algorithm over SMILES strings using the tokenisation SMILES regex developed by Schwaller et.
al.

The SmilesTokenizer employs an atom-wise tokenization strategy using the following Regex expression:

SMI_REGEX_PATTERN = "(\[[^\]]+]|Br?|Cl?|N|O|S|P|F|I|b|c|n|o|s|p|\(|\)|\.|=|#||\+|\\\\\
→˓/|:||@|\?|>|\*|\$|\%[0-9]{2}|[0-9])"

To use, please install the transformers package using the following pip command:

pip install transformers

References:

• RXN Mapper: Unsupervised Attention-Guided Atom-Mapping

• Molecular Transformer: Unsupervised Attention-Guided Atom-Mapping
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class SmilesTokenizer(vocab_file: str = '', **kwargs)
Creates the SmilesTokenizer class. The tokenizer heavily inherits from the BertTokenizer implementation found
in Huggingface’s transformers library. It runs a WordPiece tokenization algorithm over SMILES strings using
the tokenisation SMILES regex developed by Schwaller et. al.

Please see https://github.com/huggingface/transformers and https://github.com/rxn4chemistry/rxnfp for more
details.

Examples

>>> from deepchem.feat.smiles_tokenizer import SmilesTokenizer
>>> current_dir = os.path.dirname(os.path.realpath(__file__))
>>> vocab_path = os.path.join(current_dir, 'tests/data', 'vocab.txt')
>>> tokenizer = SmilesTokenizer(vocab_path)
>>> print(tokenizer.encode("CC(=O)OC1=CC=CC=C1C(=O)O"))
[12, 16, 16, 17, 22, 19, 18, 19, 16, 20, 22, 16, 16, 22, 16, 16, 22, 16, 20, 16,
→˓17, 22, 19, 18, 19, 13]

References

Note: This class requires huggingface’s transformers and tokenizers libraries to be installed.

__init__(vocab_file: str = '', **kwargs)
Constructs a SmilesTokenizer.

Parameters vocab_file (str) – Path to a SMILES character per line vocabulary file. De-
fault vocab file is found in deepchem/feat/tests/data/vocab.txt

property vocab_size
Size of the base vocabulary (without the added tokens).

Type int

convert_tokens_to_string(tokens: List[str])
Converts a sequence of tokens (string) in a single string.

Parameters tokens (List[str]) – List of tokens for a given string sequence.

Returns out_string – Single string from combined tokens.

Return type str

add_special_tokens_ids_single_sequence(token_ids: List[int])
Adds special tokens to the a sequence for sequence classification tasks.

A BERT sequence has the following format: [CLS] X [SEP]

Parameters token_ids (list[int]) – list of tokenized input ids. Can be obtained using
the encode or encode_plus methods.

add_special_tokens_single_sequence(tokens: List[str])
Adds special tokens to the a sequence for sequence classification tasks. A BERT sequence has the follow-
ing format: [CLS] X [SEP]

Parameters tokens (List[str]) – List of tokens for a given string sequence.
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add_special_tokens_ids_sequence_pair(token_ids_0: List[int], token_ids_1: List[int])→
List[int]

Adds special tokens to a sequence pair for sequence classification tasks. A BERT sequence pair has the
following format: [CLS] A [SEP] B [SEP]

Parameters

• token_ids_0 (List[int]) – List of ids for the first string sequence in the sequence
pair (A).

• token_ids_1 (List[int]) – List of tokens for the second string sequence in the
sequence pair (B).

add_padding_tokens(token_ids: List[int], length: int, right: bool = True)→ List[int]
Adds padding tokens to return a sequence of length max_length. By default padding tokens are added to
the right of the sequence.

Parameters

• token_ids (list[int]) – list of tokenized input ids. Can be obtained using the
encode or encode_plus methods.

• length (int) – TODO

• right (bool, default True) – TODO

Returns TODO

Return type List[int]

save_vocabulary(vocab_path: str)
Save the tokenizer vocabulary to a file.

Parameters vocab_path (obj: str) – The directory in which to save the
SMILES character per line vocabulary file. Default vocab file is found in
deepchem/feat/tests/data/vocab.txt

Returns vocab_file – Paths to the files saved. typle with string to a SMILES character per line
vocabulary file. Default vocab file is found in deepchem/feat/tests/data/vocab.txt

Return type Tuple

BasicSmilesTokenizer

The dc.feat.BasicSmilesTokenizer module uses a regex tokenization pattern to tokenise SMILES strings.
The regex is developed by Schwaller et. al. The tokenizer is to be used on SMILES in cases where the user wishes to
not rely on the transformers API.

References:

• Molecular Transformer: Unsupervised Attention-Guided Atom-Mapping

class BasicSmilesTokenizer(regex_pattern: str = '(\\[[^\\]]+]|Br?|Cl?|N|O|S|P|F|I|b|c|n|o|s|p|\\(|\\)|\\.|=|\n#|-
|\\+|\\\\|\\/|:|~|@|\\?|>>?|\\*|\\$|\\%[0-9]{2}|[0-9])')

Run basic SMILES tokenization using a regex pattern developed by Schwaller et. al. This tokenizer is to be
used when a tokenizer that does not require the transformers library by HuggingFace is required.
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Examples

>>> from deepchem.feat.smiles_tokenizer import BasicSmilesTokenizer
>>> tokenizer = BasicSmilesTokenizer()
>>> print(tokenizer.tokenize("CC(=O)OC1=CC=CC=C1C(=O)O"))
['C', 'C', '(', '=', 'O', ')', 'O', 'C', '1', '=', 'C', 'C', '=', 'C', 'C', '=',
→˓'C', '1', 'C', '(', '=', 'O', ')', 'O']

References

__init__(regex_pattern: str = '(\\[[^\\]]+]|Br?|Cl?|N|O|S|P|F|I|b|c|n|o|s|p|\\(|\\)|\\.|=|\n#|-
|\\+|\\\\|\\/|:|~|@|\\?|>>?|\\*|\\$|\\%[0-9]{2}|[0-9])')

Constructs a BasicSMILESTokenizer.

Parameters regex (string) – SMILES token regex

tokenize(text)
Basic Tokenization of a SMILES.

3.12.6 Other Featurizers

BindingPocketFeaturizer

class BindingPocketFeaturizer
Featurizes binding pockets with information about chemical environments.

In many applications, it’s desirable to look at binding pockets on macromolecules which may be good targets
for potential ligands or other molecules to interact with. A BindingPocketFeaturizer expects to be given a
macromolecule, and a list of pockets to featurize on that macromolecule. These pockets should be of the form
produced by a dc.dock.BindingPocketFinder, that is as a list of dc.utils.CoordinateBox objects.

The base featurization in this class’s featurization is currently very simple and counts the number of residues of
each type present in the pocket. It’s likely that you’ll want to overwrite this implementation for more sophisti-
cated downstream usecases. Note that this class’s implementation will only work for proteins and not for other
macromolecules

Note: This class requires mdtraj to be installed.

featurize(protein_file: str, pockets: List[deepchem.utils.coordinate_box_utils.CoordinateBox]) →
numpy.ndarray

Calculate atomic coodinates.

Parameters

• protein_file (str) – Location of PDB file. Will be loaded by MDTraj

• pockets (List[CoordinateBox]) – List of dc.utils.CoordinateBox objects.

Returns A numpy array of shale (len(pockets), n_residues)

Return type np.ndarray
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UserDefinedFeaturizer

class UserDefinedFeaturizer(feature_fields)
Directs usage of user-computed featurizations.

__init__(feature_fields)
Creates user-defined-featurizer.

featurize(datapoints: Iterable[Any], log_every_n: int = 1000)→ numpy.ndarray
Calculate features for datapoints.

Parameters

• datapoints (Iterable[Any]) – A sequence of objects that you’d like to featurize.
Subclassses of Featurizer should instantiate the _featurize method that featurizes objects
in the sequence.

• log_every_n (int, default 1000) – Logs featurization progress every
log_every_n steps.

Returns A numpy array containing a featurized representation of datapoints.

Return type np.ndarray

3.12.7 Base Featurizers (for develop)

Featurizer

The dc.feat.Featurizer class is the abstract parent class for all featurizers.

class Featurizer
Abstract class for calculating a set of features for a datapoint.

This class is abstract and cannot be invoked directly. You’ll likely only interact with this class if you’re a
developer. In that case, you might want to make a child class which implements the _featurize method for
calculating features for a single datapoints if you’d like to make a featurizer for a new datatype.

featurize(datapoints: Iterable[Any], log_every_n: int = 1000)→ numpy.ndarray
Calculate features for datapoints.

Parameters

• datapoints (Iterable[Any]) – A sequence of objects that you’d like to featurize.
Subclassses of Featurizer should instantiate the _featurize method that featurizes objects
in the sequence.

• log_every_n (int, default 1000) – Logs featurization progress every
log_every_n steps.

Returns A numpy array containing a featurized representation of datapoints.

Return type np.ndarray
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MolecularFeaturizer

If you’re creating a new featurizer that featurizes molecules, you will want to inherit from the abstract
MolecularFeaturizer base class. This featurizer can take RDKit mol objects or SMILES as inputs.

class MolecularFeaturizer
Abstract class for calculating a set of features for a molecule.

The defining feature of a MolecularFeaturizer is that it uses SMILES strings and RDKit molecule objects to
represent small molecules. All other featurizers which are subclasses of this class should plan to process input
which comes as smiles strings or RDKit molecules.

Child classes need to implement the _featurize method for calculating features for a single molecule.

Note: The subclasses of this class require RDKit to be installed.

featurize(molecules, log_every_n=1000)→ numpy.ndarray
Calculate features for molecules.

Parameters

• molecules (rdkit.Chem.rdchem.Mol / SMILES string / iterable) –
RDKit Mol, or SMILES string or iterable sequence of RDKit mols/SMILES strings.

• log_every_n (int, default 1000) – Logging messages reported every
log_every_n samples.

Returns features – A numpy array containing a featurized representation of datapoints.

Return type np.ndarray

MaterialCompositionFeaturizer

If you’re creating a new featurizer that featurizes compositional formulas, you will want to inherit from the abstract
MaterialCompositionFeaturizer base class.

class MaterialCompositionFeaturizer
Abstract class for calculating a set of features for an inorganic crystal composition.

The defining feature of a MaterialCompositionFeaturizer is that it operates on 3D crystal chemical compositions.
Inorganic crystal compositions are represented by Pymatgen composition objects. Featurizers for inorganic
crystal compositions that are subclasses of this class should plan to process input which comes as Pymatgen
composition objects.

This class is abstract and cannot be invoked directly. You’ll likely only interact with this class if you’re a
developer. Child classes need to implement the _featurize method for calculating features for a single crystal
composition.

Note: Some subclasses of this class will require pymatgen and matminer to be installed.

featurize(compositions: Iterable[str], log_every_n: int = 1000)→ numpy.ndarray
Calculate features for crystal compositions.

Parameters

• compositions (Iterable[str]) – Iterable sequence of composition strings, e.g.
“MoS2”.
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• log_every_n (int, default 1000) – Logging messages reported every
log_every_n samples.

Returns features – A numpy array containing a featurized representation of compositions.

Return type np.ndarray

MaterialStructureFeaturizer

If you’re creating a new featurizer that featurizes inorganic crystal structure, you will want to inherit from the ab-
stract MaterialCompositionFeaturizer base class. This featurizer can take pymatgen structure objects or
dictionaries as inputs.

class MaterialStructureFeaturizer
Abstract class for calculating a set of features for an inorganic crystal structure.

The defining feature of a MaterialStructureFeaturizer is that it operates on 3D crystal structures with periodic
boundary conditions. Inorganic crystal structures are represented by Pymatgen structure objects. Featurizers
for inorganic crystal structures that are subclasses of this class should plan to process input which comes as
pymatgen structure objects.

This class is abstract and cannot be invoked directly. You’ll likely only interact with this class if you’re a
developer. Child classes need to implement the _featurize method for calculating features for a single crystal
structure.

Note: Some subclasses of this class will require pymatgen and matminer to be installed.

featurize(structures: Iterable[Union[Dict[str, Any], Any]], log_every_n: int = 1000) →
numpy.ndarray

Calculate features for crystal structures.

Parameters

• structures (Iterable[Union[Dict, pymatgen.Structure]]) – Iterable
sequence of pymatgen structure dictionaries or pymatgen.Structure. Please confirm the
dictionary representations of pymatgen.Structure from https://pymatgen.org/pymatgen.
core.structure.html.

• log_every_n (int, default 1000) – Logging messages reported every
log_every_n samples.

Returns features – A numpy array containing a featurized representation of structures.

Return type np.ndarray

ComplexFeaturizer

If you’re creating a new featurizer that featurizes a pair of ligand molecules and proteins, you will want to inherit from
the abstract ComplexFeaturizer base class. This featurizer can take a pair of PDB or SDF files which contain
ligand molecules and proteins.

class ComplexFeaturizer
” Abstract class for calculating features for mol/protein complexes.

featurize(complexes: Iterable[Tuple[str, str]], log_every_n: int = 100)→ numpy.ndarray
Calculate features for mol/protein complexes.
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Parameters complexes (Iterable[Tuple[str, str]]) – List of filenames (PDB,
SDF, etc.) for ligand molecules and proteins. Each element should be a tuple of the form
(ligand_filename, protein_filename).

Returns features – Array of features

Return type np.ndarray

3.13 Splitters

DeepChem dc.splits.Splitter objects are a tool to meaningfully split DeepChem datasets for machine learn-
ing testing. The core idea is that when evaluating a machine learning model, it’s useful to creating training, validation
and test splits of your source data. The training split is used to train models, the validation is used to benchmark
different model architectures. The test is ideally held out till the very end when it’s used to gauge a final estimate of
the model’s performance.

The dc.splits module contains a collection of scientifically aware splitters. In many cases, we want to evaluate
scientific deep learning models more rigorously than standard deep models since we’re looking for the ability to
generalize to new domains. Some of the implemented splitters here may help.

Contents

• General Splitters

– RandomSplitter

– RandomGroupSplitter

– RandomStratifiedSplitter

– SingletaskStratifiedSplitter

– IndexSplitter

– SpecifiedSplitter

– TaskSplitter

• Molecule Splitters

– ScaffoldSplitter

– MolecularWeightSplitter

– MaxMinSplitter

– ButinaSplitter

– FingerprintSplitter

• Base Splitter (for develop)
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3.13.1 General Splitters

RandomSplitter

class RandomSplitter
Class for doing random data splits.

split(dataset: deepchem.data.datasets.Dataset, frac_train: float = 0.8, frac_valid: float = 0.1,
frac_test: float = 0.1, seed: Optional[int] = None, log_every_n: Optional[int] = None) →
Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray]

Splits internal compounds randomly into train/validation/test.

Parameters

• dataset (Dataset) – Dataset to be split.

• seed (int, optional (default None)) – Random seed to use.

• frac_train (float, optional (default 0.8)) – The fraction of data to be
used for the training split.

• frac_valid (float, optional (default 0.1)) – The fraction of data to be
used for the validation split.

• frac_test (float, optional (default 0.1)) – The fraction of data to be
used for the test split.

• seed – Random seed to use.

• log_every_n (int, optional (default None)) – Log every n examples (not
currently used).

Returns A tuple of train indices, valid indices, and test indices. Each indices is a numpy array.

Return type Tuple[np.ndarray, np.ndarray, np.ndarray]

__repr__()→ str
Convert self to repr representation.

Returns The string represents the class.

Return type str

Examples

>>> import deepchem as dc
>>> dc.splits.RandomSplitter()
RandomSplitter[]

__str__()→ str
Convert self to str representation.

Returns The string represents the class.

Return type str
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Examples

>>> import deepchem as dc
>>> str(dc.splits.RandomSplitter())
'RandomSplitter'

__weakref__
list of weak references to the object (if defined)

k_fold_split(dataset: deepchem.data.datasets.Dataset, k: int, directories: Op-
tional[List[str]] = None, **kwargs) → List[Tuple[deepchem.data.datasets.Dataset,
deepchem.data.datasets.Dataset]]

Parameters

• dataset (Dataset) – Dataset to do a k-fold split

• k (int) – Number of folds to split dataset into.

• directories (List[str], optional (default None)) – List of length 2*k
filepaths to save the result disk-datasets.

Returns List of length k tuples of (train, cv) where train and cv are both Dataset.

Return type List[Tuple[Dataset, Dataset]]

train_test_split(dataset: deepchem.data.datasets.Dataset, train_dir: Optional[str] = None,
test_dir: Optional[str] = None, frac_train: float = 0.8, seed: Op-
tional[int] = None, **kwargs) → Tuple[deepchem.data.datasets.Dataset,
deepchem.data.datasets.Dataset]

Splits self into train/test sets.

Returns Dataset objects for train/test.

Parameters

• dataset (data like object) – Dataset to be split.

• train_dir (str, optional (default None)) – If specified, the directory in
which the generated training dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset) is True.

• test_dir (str, optional (default None)) – If specified, the directory in
which the generated test dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset) is True.

• frac_train (float, optional (default 0.8)) – The fraction of data to be
used for the training split.

• seed (int, optional (default None)) – Random seed to use.

Returns A tuple of train and test datasets as dc.data.Dataset objects.

Return type Tuple[Dataset, Dataset]

train_valid_test_split(dataset: deepchem.data.datasets.Dataset, train_dir: Optional[str]
= None, valid_dir: Optional[str] = None, test_dir: Optional[str]
= None, frac_train: float = 0.8, frac_valid: float = 0.1,
frac_test: float = 0.1, seed: Optional[int] = None, log_every_n:
int = 1000, **kwargs) → Tuple[deepchem.data.datasets.Dataset,
deepchem.data.datasets.Dataset, deepchem.data.datasets.Dataset]

Splits self into train/validation/test sets.

Returns Dataset objects for train, valid, test.
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Parameters

• dataset (Dataset) – Dataset to be split.

• train_dir (str, optional (default None)) – If specified, the directory in
which the generated training dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset)

• valid_dir (str, optional (default None)) – If specified, the directory in
which the generated valid dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset) is True.

• test_dir (str, optional (default None)) – If specified, the directory in
which the generated test dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset) is True.

• frac_train (float, optional (default 0.8)) – The fraction of data to be
used for the training split.

• frac_valid (float, optional (default 0.1)) – The fraction of data to be
used for the validation split.

• frac_test (float, optional (default 0.1)) – The fraction of data to be
used for the test split.

• seed (int, optional (default None)) – Random seed to use.

• log_every_n (int, optional (default 1000)) – Controls the logger by dic-
tating how often logger outputs will be produced.

Returns A tuple of train, valid and test datasets as dc.data.Dataset objects.

Return type Tuple[Dataset, Optional[Dataset], Dataset]

RandomGroupSplitter

class RandomGroupSplitter(groups: Sequence)
Random split based on groupings.

A splitter class that splits on groupings. An example use case is when there are multiple conformations of the
same molecule that share the same topology. This splitter subsequently guarantees that resulting splits preserve
groupings.

Note that it doesn’t do any dynamic programming or something fancy to try to maximize the choice such that
frac_train, frac_valid, or frac_test is maximized. It simply permutes the groups themselves. As such, use with
caution if the number of elements per group varies significantly.

__init__(groups: Sequence)
Initialize this object.

Parameters groups (Sequence) – An array indicating the group of each item. The length is
equals to len(dataset.X)

Note: The examples of groups is the following.

groups : 3 2 2 0 1 1 2 4 3
dataset.X : 0 1 2 3 4 5 6 7 8
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groups : a b b e q x a a r
dataset.X : 0 1 2 3 4 5 6 7 8

split(dataset: deepchem.data.datasets.Dataset, frac_train: float = 0.8, frac_valid: float = 0.1,
frac_test: float = 0.1, seed: Optional[int] = None, log_every_n: Optional[int] = None) →
Tuple[List[int], List[int], List[int]]

Return indices for specified split

Parameters

• dataset (Dataset) – Dataset to be split.

• frac_train (float, optional (default 0.8)) – The fraction of data to be
used for the training split.

• frac_valid (float, optional (default 0.1)) – The fraction of data to be
used for the validation split.

• frac_test (float, optional (default 0.1)) – The fraction of data to be
used for the test split.

• seed (int, optional (default None)) – Random seed to use.

• log_every_n (int, optional (default None)) – Log every n examples (not
currently used).

Returns A tuple (train_inds, valid_inds, test_inds of the indices (integers) for the various splits.

Return type Tuple[List[int], List[int], List[int]]

k_fold_split(dataset: deepchem.data.datasets.Dataset, k: int, directories: Op-
tional[List[str]] = None, **kwargs) → List[Tuple[deepchem.data.datasets.Dataset,
deepchem.data.datasets.Dataset]]

Parameters

• dataset (Dataset) – Dataset to do a k-fold split

• k (int) – Number of folds to split dataset into.

• directories (List[str], optional (default None)) – List of length 2*k
filepaths to save the result disk-datasets.

Returns List of length k tuples of (train, cv) where train and cv are both Dataset.

Return type List[Tuple[Dataset, Dataset]]

train_test_split(dataset: deepchem.data.datasets.Dataset, train_dir: Optional[str] = None,
test_dir: Optional[str] = None, frac_train: float = 0.8, seed: Op-
tional[int] = None, **kwargs) → Tuple[deepchem.data.datasets.Dataset,
deepchem.data.datasets.Dataset]

Splits self into train/test sets.

Returns Dataset objects for train/test.

Parameters

• dataset (data like object) – Dataset to be split.

• train_dir (str, optional (default None)) – If specified, the directory in
which the generated training dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset) is True.
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• test_dir (str, optional (default None)) – If specified, the directory in
which the generated test dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset) is True.

• frac_train (float, optional (default 0.8)) – The fraction of data to be
used for the training split.

• seed (int, optional (default None)) – Random seed to use.

Returns A tuple of train and test datasets as dc.data.Dataset objects.

Return type Tuple[Dataset, Dataset]

train_valid_test_split(dataset: deepchem.data.datasets.Dataset, train_dir: Optional[str]
= None, valid_dir: Optional[str] = None, test_dir: Optional[str]
= None, frac_train: float = 0.8, frac_valid: float = 0.1,
frac_test: float = 0.1, seed: Optional[int] = None, log_every_n:
int = 1000, **kwargs) → Tuple[deepchem.data.datasets.Dataset,
deepchem.data.datasets.Dataset, deepchem.data.datasets.Dataset]

Splits self into train/validation/test sets.

Returns Dataset objects for train, valid, test.

Parameters

• dataset (Dataset) – Dataset to be split.

• train_dir (str, optional (default None)) – If specified, the directory in
which the generated training dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset)

• valid_dir (str, optional (default None)) – If specified, the directory in
which the generated valid dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset) is True.

• test_dir (str, optional (default None)) – If specified, the directory in
which the generated test dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset) is True.

• frac_train (float, optional (default 0.8)) – The fraction of data to be
used for the training split.

• frac_valid (float, optional (default 0.1)) – The fraction of data to be
used for the validation split.

• frac_test (float, optional (default 0.1)) – The fraction of data to be
used for the test split.

• seed (int, optional (default None)) – Random seed to use.

• log_every_n (int, optional (default 1000)) – Controls the logger by dic-
tating how often logger outputs will be produced.

Returns A tuple of train, valid and test datasets as dc.data.Dataset objects.

Return type Tuple[Dataset, Optional[Dataset], Dataset]
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RandomStratifiedSplitter

class RandomStratifiedSplitter
RandomStratified Splitter class.

For sparse multitask datasets, a standard split offers no guarantees that the splits will have any active compounds.
This class tries to arrange that each split has a proportional number of the actives for each task. This is strictly
guaranteed only for single-task datasets, but for sparse multitask datasets it usually manages to produces a fairly
accurate division of the actives for each task.

Note: This splitter is primarily designed for boolean labeled data. It considers only whether a label is zero or
non-zero. When labels can take on multiple non-zero values, it does not try to give each split a proportional
fraction of the samples with each value.

split(dataset: deepchem.data.datasets.Dataset, frac_train: float = 0.8, frac_valid: float = 0.1,
frac_test: float = 0.1, seed: Optional[int] = None, log_every_n: Optional[int] = None) →
Tuple

Return indices for specified split

Parameters

• dataset (dc.data.Dataset) – Dataset to be split.

• seed (int, optional (default None)) – Random seed to use.

• frac_train (float, optional (default 0.8)) – The fraction of data to be
used for the training split.

• frac_valid (float, optional (default 0.1)) – The fraction of data to be
used for the validation split.

• frac_test (float, optional (default 0.1)) – The fraction of data to be
used for the test split.

• log_every_n (int, optional (default None)) – Controls the logger by dic-
tating how often logger outputs will be produced.

Returns A tuple (train_inds, valid_inds, test_inds) of the indices (integers) for the various splits.

Return type Tuple

__repr__()→ str
Convert self to repr representation.

Returns The string represents the class.

Return type str

Examples

>>> import deepchem as dc
>>> dc.splits.RandomSplitter()
RandomSplitter[]

__str__()→ str
Convert self to str representation.

Returns The string represents the class.

Return type str
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Examples

>>> import deepchem as dc
>>> str(dc.splits.RandomSplitter())
'RandomSplitter'

__weakref__
list of weak references to the object (if defined)

k_fold_split(dataset: deepchem.data.datasets.Dataset, k: int, directories: Op-
tional[List[str]] = None, **kwargs) → List[Tuple[deepchem.data.datasets.Dataset,
deepchem.data.datasets.Dataset]]

Parameters

• dataset (Dataset) – Dataset to do a k-fold split

• k (int) – Number of folds to split dataset into.

• directories (List[str], optional (default None)) – List of length 2*k
filepaths to save the result disk-datasets.

Returns List of length k tuples of (train, cv) where train and cv are both Dataset.

Return type List[Tuple[Dataset, Dataset]]

train_test_split(dataset: deepchem.data.datasets.Dataset, train_dir: Optional[str] = None,
test_dir: Optional[str] = None, frac_train: float = 0.8, seed: Op-
tional[int] = None, **kwargs) → Tuple[deepchem.data.datasets.Dataset,
deepchem.data.datasets.Dataset]

Splits self into train/test sets.

Returns Dataset objects for train/test.

Parameters

• dataset (data like object) – Dataset to be split.

• train_dir (str, optional (default None)) – If specified, the directory in
which the generated training dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset) is True.

• test_dir (str, optional (default None)) – If specified, the directory in
which the generated test dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset) is True.

• frac_train (float, optional (default 0.8)) – The fraction of data to be
used for the training split.

• seed (int, optional (default None)) – Random seed to use.

Returns A tuple of train and test datasets as dc.data.Dataset objects.

Return type Tuple[Dataset, Dataset]

train_valid_test_split(dataset: deepchem.data.datasets.Dataset, train_dir: Optional[str]
= None, valid_dir: Optional[str] = None, test_dir: Optional[str]
= None, frac_train: float = 0.8, frac_valid: float = 0.1,
frac_test: float = 0.1, seed: Optional[int] = None, log_every_n:
int = 1000, **kwargs) → Tuple[deepchem.data.datasets.Dataset,
deepchem.data.datasets.Dataset, deepchem.data.datasets.Dataset]

Splits self into train/validation/test sets.

Returns Dataset objects for train, valid, test.
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Parameters

• dataset (Dataset) – Dataset to be split.

• train_dir (str, optional (default None)) – If specified, the directory in
which the generated training dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset)

• valid_dir (str, optional (default None)) – If specified, the directory in
which the generated valid dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset) is True.

• test_dir (str, optional (default None)) – If specified, the directory in
which the generated test dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset) is True.

• frac_train (float, optional (default 0.8)) – The fraction of data to be
used for the training split.

• frac_valid (float, optional (default 0.1)) – The fraction of data to be
used for the validation split.

• frac_test (float, optional (default 0.1)) – The fraction of data to be
used for the test split.

• seed (int, optional (default None)) – Random seed to use.

• log_every_n (int, optional (default 1000)) – Controls the logger by dic-
tating how often logger outputs will be produced.

Returns A tuple of train, valid and test datasets as dc.data.Dataset objects.

Return type Tuple[Dataset, Optional[Dataset], Dataset]

SingletaskStratifiedSplitter

class SingletaskStratifiedSplitter(task_number: int = 0)
Class for doing data splits by stratification on a single task.

Examples

>>> n_samples = 100
>>> n_features = 10
>>> n_tasks = 10
>>> X = np.random.rand(n_samples, n_features)
>>> y = np.random.rand(n_samples, n_tasks)
>>> w = np.ones_like(y)
>>> dataset = DiskDataset.from_numpy(np.ones((100,n_tasks)), np.ones((100,n_
→˓tasks)))
>>> splitter = SingletaskStratifiedSplitter(task_number=5)
>>> train_dataset, test_dataset = splitter.train_test_split(dataset)

__init__(task_number: int = 0)
Creates splitter object.

Parameters task_number (int, optional (default 0)) – Task number for stratifi-
cation.
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k_fold_split(dataset: deepchem.data.datasets.Dataset, k: int, directories: Optional[List[str]] =
None, seed: Optional[int] = None, log_every_n: Optional[int] = None, **kwargs)→
List[deepchem.data.datasets.Dataset]

Splits compounds into k-folds using stratified sampling. Overriding base class k_fold_split.

Parameters

• dataset (Dataset) – Dataset to be split.

• k (int) – Number of folds to split dataset into.

• directories (List[str], optional (default None)) – List of length k
filepaths to save the result disk-datasets.

• seed (int, optional (default None)) – Random seed to use.

• log_every_n (int, optional (default None)) – Log every n examples (not
currently used).

Returns fold_datasets – List of dc.data.Dataset objects

Return type List[Dataset]

split(dataset: deepchem.data.datasets.Dataset, frac_train: float = 0.8, frac_valid: float = 0.1,
frac_test: float = 0.1, seed: Optional[int] = None, log_every_n: Optional[int] = None) →
Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray]

Splits compounds into train/validation/test using stratified sampling.

Parameters

• dataset (Dataset) – Dataset to be split.

• frac_train (float, optional (default 0.8)) – Fraction of dataset put into
training data.

• frac_valid (float, optional (default 0.1)) – Fraction of dataset put into
validation data.

• frac_test (float, optional (default 0.1)) – Fraction of dataset put into
test data.

• seed (int, optional (default None)) – Random seed to use.

• log_every_n (int, optional (default None)) – Log every n examples (not
currently used).

Returns A tuple of train indices, valid indices, and test indices. Each indices is a numpy array.

Return type Tuple[np.ndarray, np.ndarray, np.ndarray]

train_test_split(dataset: deepchem.data.datasets.Dataset, train_dir: Optional[str] = None,
test_dir: Optional[str] = None, frac_train: float = 0.8, seed: Op-
tional[int] = None, **kwargs) → Tuple[deepchem.data.datasets.Dataset,
deepchem.data.datasets.Dataset]

Splits self into train/test sets.

Returns Dataset objects for train/test.

Parameters

• dataset (data like object) – Dataset to be split.

• train_dir (str, optional (default None)) – If specified, the directory in
which the generated training dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset) is True.
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• test_dir (str, optional (default None)) – If specified, the directory in
which the generated test dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset) is True.

• frac_train (float, optional (default 0.8)) – The fraction of data to be
used for the training split.

• seed (int, optional (default None)) – Random seed to use.

Returns A tuple of train and test datasets as dc.data.Dataset objects.

Return type Tuple[Dataset, Dataset]

train_valid_test_split(dataset: deepchem.data.datasets.Dataset, train_dir: Optional[str]
= None, valid_dir: Optional[str] = None, test_dir: Optional[str]
= None, frac_train: float = 0.8, frac_valid: float = 0.1,
frac_test: float = 0.1, seed: Optional[int] = None, log_every_n:
int = 1000, **kwargs) → Tuple[deepchem.data.datasets.Dataset,
deepchem.data.datasets.Dataset, deepchem.data.datasets.Dataset]

Splits self into train/validation/test sets.

Returns Dataset objects for train, valid, test.

Parameters

• dataset (Dataset) – Dataset to be split.

• train_dir (str, optional (default None)) – If specified, the directory in
which the generated training dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset)

• valid_dir (str, optional (default None)) – If specified, the directory in
which the generated valid dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset) is True.

• test_dir (str, optional (default None)) – If specified, the directory in
which the generated test dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset) is True.

• frac_train (float, optional (default 0.8)) – The fraction of data to be
used for the training split.

• frac_valid (float, optional (default 0.1)) – The fraction of data to be
used for the validation split.

• frac_test (float, optional (default 0.1)) – The fraction of data to be
used for the test split.

• seed (int, optional (default None)) – Random seed to use.

• log_every_n (int, optional (default 1000)) – Controls the logger by dic-
tating how often logger outputs will be produced.

Returns A tuple of train, valid and test datasets as dc.data.Dataset objects.

Return type Tuple[Dataset, Optional[Dataset], Dataset]
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IndexSplitter

class IndexSplitter
Class for simple order based splits.

Use this class when the Dataset you have is already ordered sa you would like it to be processed. Then the first
frac_train proportion is used for training, the next frac_valid for validation, and the final frac_test for testing.
This class may make sense to use your Dataset is already time ordered (for example).

split(dataset: deepchem.data.datasets.Dataset, frac_train: float = 0.8, frac_valid: float = 0.1,
frac_test: float = 0.1, seed: Optional[int] = None, log_every_n: Optional[int] = None) →
Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray]

Splits internal compounds into train/validation/test in provided order.

Parameters

• dataset (Dataset) – Dataset to be split.

• frac_train (float, optional (default 0.8)) – The fraction of data to be
used for the training split.

• frac_valid (float, optional (default 0.1)) – The fraction of data to be
used for the validation split.

• frac_test (float, optional (default 0.1)) – The fraction of data to be
used for the test split.

• seed (int, optional (default None)) – Random seed to use.

• log_every_n (int, optional) – Log every n examples (not currently used).

Returns A tuple of train indices, valid indices, and test indices. Each indices is a numpy array.

Return type Tuple[np.ndarray, np.ndarray, np.ndarray]

__repr__()→ str
Convert self to repr representation.

Returns The string represents the class.

Return type str

Examples

>>> import deepchem as dc
>>> dc.splits.RandomSplitter()
RandomSplitter[]

__str__()→ str
Convert self to str representation.

Returns The string represents the class.

Return type str
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Examples

>>> import deepchem as dc
>>> str(dc.splits.RandomSplitter())
'RandomSplitter'

__weakref__
list of weak references to the object (if defined)

k_fold_split(dataset: deepchem.data.datasets.Dataset, k: int, directories: Op-
tional[List[str]] = None, **kwargs) → List[Tuple[deepchem.data.datasets.Dataset,
deepchem.data.datasets.Dataset]]

Parameters

• dataset (Dataset) – Dataset to do a k-fold split

• k (int) – Number of folds to split dataset into.

• directories (List[str], optional (default None)) – List of length 2*k
filepaths to save the result disk-datasets.

Returns List of length k tuples of (train, cv) where train and cv are both Dataset.

Return type List[Tuple[Dataset, Dataset]]

train_test_split(dataset: deepchem.data.datasets.Dataset, train_dir: Optional[str] = None,
test_dir: Optional[str] = None, frac_train: float = 0.8, seed: Op-
tional[int] = None, **kwargs) → Tuple[deepchem.data.datasets.Dataset,
deepchem.data.datasets.Dataset]

Splits self into train/test sets.

Returns Dataset objects for train/test.

Parameters

• dataset (data like object) – Dataset to be split.

• train_dir (str, optional (default None)) – If specified, the directory in
which the generated training dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset) is True.

• test_dir (str, optional (default None)) – If specified, the directory in
which the generated test dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset) is True.

• frac_train (float, optional (default 0.8)) – The fraction of data to be
used for the training split.

• seed (int, optional (default None)) – Random seed to use.

Returns A tuple of train and test datasets as dc.data.Dataset objects.

Return type Tuple[Dataset, Dataset]

train_valid_test_split(dataset: deepchem.data.datasets.Dataset, train_dir: Optional[str]
= None, valid_dir: Optional[str] = None, test_dir: Optional[str]
= None, frac_train: float = 0.8, frac_valid: float = 0.1,
frac_test: float = 0.1, seed: Optional[int] = None, log_every_n:
int = 1000, **kwargs) → Tuple[deepchem.data.datasets.Dataset,
deepchem.data.datasets.Dataset, deepchem.data.datasets.Dataset]

Splits self into train/validation/test sets.

Returns Dataset objects for train, valid, test.
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Parameters

• dataset (Dataset) – Dataset to be split.

• train_dir (str, optional (default None)) – If specified, the directory in
which the generated training dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset)

• valid_dir (str, optional (default None)) – If specified, the directory in
which the generated valid dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset) is True.

• test_dir (str, optional (default None)) – If specified, the directory in
which the generated test dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset) is True.

• frac_train (float, optional (default 0.8)) – The fraction of data to be
used for the training split.

• frac_valid (float, optional (default 0.1)) – The fraction of data to be
used for the validation split.

• frac_test (float, optional (default 0.1)) – The fraction of data to be
used for the test split.

• seed (int, optional (default None)) – Random seed to use.

• log_every_n (int, optional (default 1000)) – Controls the logger by dic-
tating how often logger outputs will be produced.

Returns A tuple of train, valid and test datasets as dc.data.Dataset objects.

Return type Tuple[Dataset, Optional[Dataset], Dataset]

SpecifiedSplitter

class SpecifiedSplitter(valid_indices: Optional[List[int]] = None, test_indices: Op-
tional[List[int]] = None)

Split data in the fashion specified by user.

For some applications, you will already know how you’d like to split the dataset. In this splitter, you simplify
specify valid_indices and test_indices and the datapoints at those indices are pulled out of the dataset. Note
that this is different from IndexSplitter which only splits based on the existing dataset ordering, while this
SpecifiedSplitter can split on any specified ordering.

__init__(valid_indices: Optional[List[int]] = None, test_indices: Optional[List[int]] = None)

Parameters

• valid_indices (List[int]) – List of indices of samples in the valid set

• test_indices (List[int]) – List of indices of samples in the test set

split(dataset: deepchem.data.datasets.Dataset, frac_train: float = 0.8, frac_valid: float = 0.1,
frac_test: float = 0.1, seed: Optional[int] = None, log_every_n: Optional[int] = None) →
Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray]

Splits internal compounds into train/validation/test in designated order.

Parameters

• dataset (Dataset) – Dataset to be split.

• frac_train (float, optional (default 0.8)) – Fraction of dataset put into
training data.
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• frac_valid (float, optional (default 0.1)) – Fraction of dataset put into
validation data.

• frac_test (float, optional (default 0.1)) – Fraction of dataset put into
test data.

• seed (int, optional (default None)) – Random seed to use.

• log_every_n (int, optional (default None)) – Log every n examples (not
currently used).

Returns A tuple of train indices, valid indices, and test indices. Each indices is a numpy array.

Return type Tuple[np.ndarray, np.ndarray, np.ndarray]

k_fold_split(dataset: deepchem.data.datasets.Dataset, k: int, directories: Op-
tional[List[str]] = None, **kwargs) → List[Tuple[deepchem.data.datasets.Dataset,
deepchem.data.datasets.Dataset]]

Parameters

• dataset (Dataset) – Dataset to do a k-fold split

• k (int) – Number of folds to split dataset into.

• directories (List[str], optional (default None)) – List of length 2*k
filepaths to save the result disk-datasets.

Returns List of length k tuples of (train, cv) where train and cv are both Dataset.

Return type List[Tuple[Dataset, Dataset]]

train_test_split(dataset: deepchem.data.datasets.Dataset, train_dir: Optional[str] = None,
test_dir: Optional[str] = None, frac_train: float = 0.8, seed: Op-
tional[int] = None, **kwargs) → Tuple[deepchem.data.datasets.Dataset,
deepchem.data.datasets.Dataset]

Splits self into train/test sets.

Returns Dataset objects for train/test.

Parameters

• dataset (data like object) – Dataset to be split.

• train_dir (str, optional (default None)) – If specified, the directory in
which the generated training dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset) is True.

• test_dir (str, optional (default None)) – If specified, the directory in
which the generated test dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset) is True.

• frac_train (float, optional (default 0.8)) – The fraction of data to be
used for the training split.

• seed (int, optional (default None)) – Random seed to use.

Returns A tuple of train and test datasets as dc.data.Dataset objects.

Return type Tuple[Dataset, Dataset]
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train_valid_test_split(dataset: deepchem.data.datasets.Dataset, train_dir: Optional[str]
= None, valid_dir: Optional[str] = None, test_dir: Optional[str]
= None, frac_train: float = 0.8, frac_valid: float = 0.1,
frac_test: float = 0.1, seed: Optional[int] = None, log_every_n:
int = 1000, **kwargs) → Tuple[deepchem.data.datasets.Dataset,
deepchem.data.datasets.Dataset, deepchem.data.datasets.Dataset]

Splits self into train/validation/test sets.

Returns Dataset objects for train, valid, test.

Parameters

• dataset (Dataset) – Dataset to be split.

• train_dir (str, optional (default None)) – If specified, the directory in
which the generated training dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset)

• valid_dir (str, optional (default None)) – If specified, the directory in
which the generated valid dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset) is True.

• test_dir (str, optional (default None)) – If specified, the directory in
which the generated test dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset) is True.

• frac_train (float, optional (default 0.8)) – The fraction of data to be
used for the training split.

• frac_valid (float, optional (default 0.1)) – The fraction of data to be
used for the validation split.

• frac_test (float, optional (default 0.1)) – The fraction of data to be
used for the test split.

• seed (int, optional (default None)) – Random seed to use.

• log_every_n (int, optional (default 1000)) – Controls the logger by dic-
tating how often logger outputs will be produced.

Returns A tuple of train, valid and test datasets as dc.data.Dataset objects.

Return type Tuple[Dataset, Optional[Dataset], Dataset]

TaskSplitter

class TaskSplitter
Provides a simple interface for splitting datasets task-wise.

For some learning problems, the training and test datasets should have different tasks entirely. This is a different
paradigm from the usual Splitter, which ensures that split datasets have different datapoints, not different tasks.

__init__()
Creates Task Splitter object.

train_valid_test_split(dataset, frac_train=0.8, frac_valid=0.1, frac_test=0.1)
Performs a train/valid/test split of the tasks for dataset.

If split is uneven, spillover goes to test.

Parameters

• dataset (dc.data.Dataset) – Dataset to be split
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• frac_train (float, optional) – Proportion of tasks to be put into train. Rounded
to nearest int.

• frac_valid (float, optional) – Proportion of tasks to be put into valid.
Rounded to nearest int.

• frac_test (float, optional) – Proportion of tasks to be put into test. Rounded
to nearest int.

k_fold_split(dataset, K)
Performs a K-fold split of the tasks for dataset.

If split is uneven, spillover goes to last fold.

Parameters

• dataset (dc.data.Dataset) – Dataset to be split

• K (int) – Number of splits to be made

split(dataset: deepchem.data.datasets.Dataset, frac_train: float = 0.8, frac_valid: float = 0.1,
frac_test: float = 0.1, seed: Optional[int] = None, log_every_n: Optional[int] = None) →
Tuple

Return indices for specified split

Parameters

• dataset (dc.data.Dataset) – Dataset to be split.

• seed (int, optional (default None)) – Random seed to use.

• frac_train (float, optional (default 0.8)) – The fraction of data to be
used for the training split.

• frac_valid (float, optional (default 0.1)) – The fraction of data to be
used for the validation split.

• frac_test (float, optional (default 0.1)) – The fraction of data to be
used for the test split.

• log_every_n (int, optional (default None)) – Controls the logger by dic-
tating how often logger outputs will be produced.

Returns A tuple (train_inds, valid_inds, test_inds) of the indices (integers) for the various splits.

Return type Tuple

train_test_split(dataset: deepchem.data.datasets.Dataset, train_dir: Optional[str] = None,
test_dir: Optional[str] = None, frac_train: float = 0.8, seed: Op-
tional[int] = None, **kwargs) → Tuple[deepchem.data.datasets.Dataset,
deepchem.data.datasets.Dataset]

Splits self into train/test sets.

Returns Dataset objects for train/test.

Parameters

• dataset (data like object) – Dataset to be split.

• train_dir (str, optional (default None)) – If specified, the directory in
which the generated training dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset) is True.

• test_dir (str, optional (default None)) – If specified, the directory in
which the generated test dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset) is True.
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• frac_train (float, optional (default 0.8)) – The fraction of data to be
used for the training split.

• seed (int, optional (default None)) – Random seed to use.

Returns A tuple of train and test datasets as dc.data.Dataset objects.

Return type Tuple[Dataset, Dataset]

3.13.2 Molecule Splitters

ScaffoldSplitter

class ScaffoldSplitter
Class for doing data splits based on the scaffold of small molecules.

Note: This class requires RDKit to be installed.

split(dataset: deepchem.data.datasets.Dataset, frac_train: float = 0.8, frac_valid: float = 0.1,
frac_test: float = 0.1, seed: Optional[int] = None, log_every_n: Optional[int] = 1000) →
Tuple[List[int], List[int], List[int]]

Splits internal compounds into train/validation/test by scaffold.

Parameters

• dataset (Dataset) – Dataset to be split.

• frac_train (float, optional (default 0.8)) – The fraction of data to be
used for the training split.

• frac_valid (float, optional (default 0.1)) – The fraction of data to be
used for the validation split.

• frac_test (float, optional (default 0.1)) – The fraction of data to be
used for the test split.

• seed (int, optional (default None)) – Random seed to use.

• log_every_n (int, optional (default 1000)) – Controls the logger by dic-
tating how often logger outputs will be produced.

Returns A tuple of train indices, valid indices, and test indices. Each indices is a list of integers.

Return type Tuple[List[int], List[int], List[int]]

generate_scaffolds(dataset: deepchem.data.datasets.Dataset, log_every_n: int = 1000) →
List[List[int]]

Returns all scaffolds from the dataset.

Parameters

• dataset (Dataset) – Dataset to be split.

• log_every_n (int, optional (default 1000)) – Controls the logger by dic-
tating how often logger outputs will be produced.

Returns scaffold_sets – List of indices of each scaffold in the dataset.

Return type List[List[int]]

__repr__()→ str
Convert self to repr representation.
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Returns The string represents the class.

Return type str

Examples

>>> import deepchem as dc
>>> dc.splits.RandomSplitter()
RandomSplitter[]

__str__()→ str
Convert self to str representation.

Returns The string represents the class.

Return type str

Examples

>>> import deepchem as dc
>>> str(dc.splits.RandomSplitter())
'RandomSplitter'

__weakref__
list of weak references to the object (if defined)

k_fold_split(dataset: deepchem.data.datasets.Dataset, k: int, directories: Op-
tional[List[str]] = None, **kwargs) → List[Tuple[deepchem.data.datasets.Dataset,
deepchem.data.datasets.Dataset]]

Parameters

• dataset (Dataset) – Dataset to do a k-fold split

• k (int) – Number of folds to split dataset into.

• directories (List[str], optional (default None)) – List of length 2*k
filepaths to save the result disk-datasets.

Returns List of length k tuples of (train, cv) where train and cv are both Dataset.

Return type List[Tuple[Dataset, Dataset]]

train_test_split(dataset: deepchem.data.datasets.Dataset, train_dir: Optional[str] = None,
test_dir: Optional[str] = None, frac_train: float = 0.8, seed: Op-
tional[int] = None, **kwargs) → Tuple[deepchem.data.datasets.Dataset,
deepchem.data.datasets.Dataset]

Splits self into train/test sets.

Returns Dataset objects for train/test.

Parameters

• dataset (data like object) – Dataset to be split.

• train_dir (str, optional (default None)) – If specified, the directory in
which the generated training dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset) is True.
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• test_dir (str, optional (default None)) – If specified, the directory in
which the generated test dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset) is True.

• frac_train (float, optional (default 0.8)) – The fraction of data to be
used for the training split.

• seed (int, optional (default None)) – Random seed to use.

Returns A tuple of train and test datasets as dc.data.Dataset objects.

Return type Tuple[Dataset, Dataset]

train_valid_test_split(dataset: deepchem.data.datasets.Dataset, train_dir: Optional[str]
= None, valid_dir: Optional[str] = None, test_dir: Optional[str]
= None, frac_train: float = 0.8, frac_valid: float = 0.1,
frac_test: float = 0.1, seed: Optional[int] = None, log_every_n:
int = 1000, **kwargs) → Tuple[deepchem.data.datasets.Dataset,
deepchem.data.datasets.Dataset, deepchem.data.datasets.Dataset]

Splits self into train/validation/test sets.

Returns Dataset objects for train, valid, test.

Parameters

• dataset (Dataset) – Dataset to be split.

• train_dir (str, optional (default None)) – If specified, the directory in
which the generated training dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset)

• valid_dir (str, optional (default None)) – If specified, the directory in
which the generated valid dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset) is True.

• test_dir (str, optional (default None)) – If specified, the directory in
which the generated test dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset) is True.

• frac_train (float, optional (default 0.8)) – The fraction of data to be
used for the training split.

• frac_valid (float, optional (default 0.1)) – The fraction of data to be
used for the validation split.

• frac_test (float, optional (default 0.1)) – The fraction of data to be
used for the test split.

• seed (int, optional (default None)) – Random seed to use.

• log_every_n (int, optional (default 1000)) – Controls the logger by dic-
tating how often logger outputs will be produced.

Returns A tuple of train, valid and test datasets as dc.data.Dataset objects.

Return type Tuple[Dataset, Optional[Dataset], Dataset]
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MolecularWeightSplitter

class MolecularWeightSplitter
Class for doing data splits by molecular weight.

Note: This class requires RDKit to be installed.

split(dataset: deepchem.data.datasets.Dataset, frac_train: float = 0.8, frac_valid: float = 0.1,
frac_test: float = 0.1, seed: Optional[int] = None, log_every_n: Optional[int] = None) →
Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray]

Splits on molecular weight.

Splits internal compounds into train/validation/test using the MW calculated by SMILES string.

Parameters

• dataset (Dataset) – Dataset to be split.

• frac_train (float, optional (default 0.8)) – The fraction of data to be
used for the training split.

• frac_valid (float, optional (default 0.1)) – The fraction of data to be
used for the validation split.

• frac_test (float, optional (default 0.1)) – The fraction of data to be
used for the test split.

• seed (int, optional (default None)) – Random seed to use.

• log_every_n (int, optional (default None)) – Log every n examples (not
currently used).

Returns A tuple of train indices, valid indices, and test indices. Each indices is a numpy array.

Return type Tuple[np.ndarray, np.ndarray, np.ndarray]

__repr__()→ str
Convert self to repr representation.

Returns The string represents the class.

Return type str

Examples

>>> import deepchem as dc
>>> dc.splits.RandomSplitter()
RandomSplitter[]

__str__()→ str
Convert self to str representation.

Returns The string represents the class.

Return type str

3.13. Splitters 151



deepchem, Release 2.5.0

Examples

>>> import deepchem as dc
>>> str(dc.splits.RandomSplitter())
'RandomSplitter'

__weakref__
list of weak references to the object (if defined)

k_fold_split(dataset: deepchem.data.datasets.Dataset, k: int, directories: Op-
tional[List[str]] = None, **kwargs) → List[Tuple[deepchem.data.datasets.Dataset,
deepchem.data.datasets.Dataset]]

Parameters

• dataset (Dataset) – Dataset to do a k-fold split

• k (int) – Number of folds to split dataset into.

• directories (List[str], optional (default None)) – List of length 2*k
filepaths to save the result disk-datasets.

Returns List of length k tuples of (train, cv) where train and cv are both Dataset.

Return type List[Tuple[Dataset, Dataset]]

train_test_split(dataset: deepchem.data.datasets.Dataset, train_dir: Optional[str] = None,
test_dir: Optional[str] = None, frac_train: float = 0.8, seed: Op-
tional[int] = None, **kwargs) → Tuple[deepchem.data.datasets.Dataset,
deepchem.data.datasets.Dataset]

Splits self into train/test sets.

Returns Dataset objects for train/test.

Parameters

• dataset (data like object) – Dataset to be split.

• train_dir (str, optional (default None)) – If specified, the directory in
which the generated training dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset) is True.

• test_dir (str, optional (default None)) – If specified, the directory in
which the generated test dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset) is True.

• frac_train (float, optional (default 0.8)) – The fraction of data to be
used for the training split.

• seed (int, optional (default None)) – Random seed to use.

Returns A tuple of train and test datasets as dc.data.Dataset objects.

Return type Tuple[Dataset, Dataset]

train_valid_test_split(dataset: deepchem.data.datasets.Dataset, train_dir: Optional[str]
= None, valid_dir: Optional[str] = None, test_dir: Optional[str]
= None, frac_train: float = 0.8, frac_valid: float = 0.1,
frac_test: float = 0.1, seed: Optional[int] = None, log_every_n:
int = 1000, **kwargs) → Tuple[deepchem.data.datasets.Dataset,
deepchem.data.datasets.Dataset, deepchem.data.datasets.Dataset]

Splits self into train/validation/test sets.

Returns Dataset objects for train, valid, test.
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Parameters

• dataset (Dataset) – Dataset to be split.

• train_dir (str, optional (default None)) – If specified, the directory in
which the generated training dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset)

• valid_dir (str, optional (default None)) – If specified, the directory in
which the generated valid dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset) is True.

• test_dir (str, optional (default None)) – If specified, the directory in
which the generated test dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset) is True.

• frac_train (float, optional (default 0.8)) – The fraction of data to be
used for the training split.

• frac_valid (float, optional (default 0.1)) – The fraction of data to be
used for the validation split.

• frac_test (float, optional (default 0.1)) – The fraction of data to be
used for the test split.

• seed (int, optional (default None)) – Random seed to use.

• log_every_n (int, optional (default 1000)) – Controls the logger by dic-
tating how often logger outputs will be produced.

Returns A tuple of train, valid and test datasets as dc.data.Dataset objects.

Return type Tuple[Dataset, Optional[Dataset], Dataset]

MaxMinSplitter

class MaxMinSplitter
Chemical diversity splitter.

Class for doing splits based on the MaxMin diversity algorithm. Intuitively, the test set is comprised of the most
diverse compounds of the entire dataset. Furthermore, the validation set is comprised of diverse compounds
under the test set.

Note: This class requires RDKit to be installed.

split(dataset: deepchem.data.datasets.Dataset, frac_train: float = 0.8, frac_valid: float = 0.1,
frac_test: float = 0.1, seed: Optional[int] = None, log_every_n: Optional[int] = None) →
Tuple[List[int], List[int], List[int]]

Splits internal compounds into train/validation/test using the MaxMin diversity algorithm.

Parameters

• dataset (Dataset) – Dataset to be split.

• frac_train (float, optional (default 0.8)) – The fraction of data to be
used for the training split.

• frac_valid (float, optional (default 0.1)) – The fraction of data to be
used for the validation split.
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• frac_test (float, optional (default 0.1)) – The fraction of data to be
used for the test split.

• seed (int, optional (default None)) – Random seed to use.

• log_every_n (int, optional (default None)) – Log every n examples (not
currently used).

Returns A tuple of train indices, valid indices, and test indices. Each indices is a list of integers.

Return type Tuple[List[int], List[int], List[int]]

__repr__()→ str
Convert self to repr representation.

Returns The string represents the class.

Return type str

Examples

>>> import deepchem as dc
>>> dc.splits.RandomSplitter()
RandomSplitter[]

__str__()→ str
Convert self to str representation.

Returns The string represents the class.

Return type str

Examples

>>> import deepchem as dc
>>> str(dc.splits.RandomSplitter())
'RandomSplitter'

__weakref__
list of weak references to the object (if defined)

k_fold_split(dataset: deepchem.data.datasets.Dataset, k: int, directories: Op-
tional[List[str]] = None, **kwargs) → List[Tuple[deepchem.data.datasets.Dataset,
deepchem.data.datasets.Dataset]]

Parameters

• dataset (Dataset) – Dataset to do a k-fold split

• k (int) – Number of folds to split dataset into.

• directories (List[str], optional (default None)) – List of length 2*k
filepaths to save the result disk-datasets.

Returns List of length k tuples of (train, cv) where train and cv are both Dataset.

Return type List[Tuple[Dataset, Dataset]]
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train_test_split(dataset: deepchem.data.datasets.Dataset, train_dir: Optional[str] = None,
test_dir: Optional[str] = None, frac_train: float = 0.8, seed: Op-
tional[int] = None, **kwargs) → Tuple[deepchem.data.datasets.Dataset,
deepchem.data.datasets.Dataset]

Splits self into train/test sets.

Returns Dataset objects for train/test.

Parameters

• dataset (data like object) – Dataset to be split.

• train_dir (str, optional (default None)) – If specified, the directory in
which the generated training dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset) is True.

• test_dir (str, optional (default None)) – If specified, the directory in
which the generated test dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset) is True.

• frac_train (float, optional (default 0.8)) – The fraction of data to be
used for the training split.

• seed (int, optional (default None)) – Random seed to use.

Returns A tuple of train and test datasets as dc.data.Dataset objects.

Return type Tuple[Dataset, Dataset]

train_valid_test_split(dataset: deepchem.data.datasets.Dataset, train_dir: Optional[str]
= None, valid_dir: Optional[str] = None, test_dir: Optional[str]
= None, frac_train: float = 0.8, frac_valid: float = 0.1,
frac_test: float = 0.1, seed: Optional[int] = None, log_every_n:
int = 1000, **kwargs) → Tuple[deepchem.data.datasets.Dataset,
deepchem.data.datasets.Dataset, deepchem.data.datasets.Dataset]

Splits self into train/validation/test sets.

Returns Dataset objects for train, valid, test.

Parameters

• dataset (Dataset) – Dataset to be split.

• train_dir (str, optional (default None)) – If specified, the directory in
which the generated training dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset)

• valid_dir (str, optional (default None)) – If specified, the directory in
which the generated valid dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset) is True.

• test_dir (str, optional (default None)) – If specified, the directory in
which the generated test dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset) is True.

• frac_train (float, optional (default 0.8)) – The fraction of data to be
used for the training split.

• frac_valid (float, optional (default 0.1)) – The fraction of data to be
used for the validation split.

• frac_test (float, optional (default 0.1)) – The fraction of data to be
used for the test split.
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• seed (int, optional (default None)) – Random seed to use.

• log_every_n (int, optional (default 1000)) – Controls the logger by dic-
tating how often logger outputs will be produced.

Returns A tuple of train, valid and test datasets as dc.data.Dataset objects.

Return type Tuple[Dataset, Optional[Dataset], Dataset]

ButinaSplitter

class ButinaSplitter(cutoff: float = 0.6)
Class for doing data splits based on the butina clustering of a bulk tanimoto fingerprint matrix.

Note: This class requires RDKit to be installed.

__init__(cutoff: float = 0.6)
Create a ButinaSplitter.

Parameters cutoff (float (default 0.6)) – The cutoff value for tanimoto similarity.
Molecules that are more similar than this will tend to be put in the same dataset.

split(dataset: deepchem.data.datasets.Dataset, frac_train: float = 0.8, frac_valid: float = 0.1,
frac_test: float = 0.1, seed: Optional[int] = None, log_every_n: Optional[int] = None) →
Tuple[List[int], List[int], List[int]]

Splits internal compounds into train and validation based on the butina clustering algorithm. This splitting
algorithm has an O(N^2) run time, where N is the number of elements in the dataset. The dataset is
expected to be a classification dataset.

This algorithm is designed to generate validation data that are novel chemotypes. Setting a small cut-
off value will generate smaller, finer clusters of high similarity, whereas setting a large cutoff value will
generate larger, coarser clusters of low similarity.

Parameters

• dataset (Dataset) – Dataset to be split.

• frac_train (float, optional (default 0.8)) – The fraction of data to be
used for the training split.

• frac_valid (float, optional (default 0.1)) – The fraction of data to be
used for the validation split.

• frac_test (float, optional (default 0.1)) – The fraction of data to be
used for the test split.

• seed (int, optional (default None)) – Random seed to use.

• log_every_n (int, optional (default None)) – Log every n examples (not
currently used).

Returns A tuple of train indices, valid indices, and test indices.

Return type Tuple[List[int], List[int], List[int]]

k_fold_split(dataset: deepchem.data.datasets.Dataset, k: int, directories: Op-
tional[List[str]] = None, **kwargs) → List[Tuple[deepchem.data.datasets.Dataset,
deepchem.data.datasets.Dataset]]

Parameters

• dataset (Dataset) – Dataset to do a k-fold split
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• k (int) – Number of folds to split dataset into.

• directories (List[str], optional (default None)) – List of length 2*k
filepaths to save the result disk-datasets.

Returns List of length k tuples of (train, cv) where train and cv are both Dataset.

Return type List[Tuple[Dataset, Dataset]]

train_test_split(dataset: deepchem.data.datasets.Dataset, train_dir: Optional[str] = None,
test_dir: Optional[str] = None, frac_train: float = 0.8, seed: Op-
tional[int] = None, **kwargs) → Tuple[deepchem.data.datasets.Dataset,
deepchem.data.datasets.Dataset]

Splits self into train/test sets.

Returns Dataset objects for train/test.

Parameters

• dataset (data like object) – Dataset to be split.

• train_dir (str, optional (default None)) – If specified, the directory in
which the generated training dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset) is True.

• test_dir (str, optional (default None)) – If specified, the directory in
which the generated test dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset) is True.

• frac_train (float, optional (default 0.8)) – The fraction of data to be
used for the training split.

• seed (int, optional (default None)) – Random seed to use.

Returns A tuple of train and test datasets as dc.data.Dataset objects.

Return type Tuple[Dataset, Dataset]

train_valid_test_split(dataset: deepchem.data.datasets.Dataset, train_dir: Optional[str]
= None, valid_dir: Optional[str] = None, test_dir: Optional[str]
= None, frac_train: float = 0.8, frac_valid: float = 0.1,
frac_test: float = 0.1, seed: Optional[int] = None, log_every_n:
int = 1000, **kwargs) → Tuple[deepchem.data.datasets.Dataset,
deepchem.data.datasets.Dataset, deepchem.data.datasets.Dataset]

Splits self into train/validation/test sets.

Returns Dataset objects for train, valid, test.

Parameters

• dataset (Dataset) – Dataset to be split.

• train_dir (str, optional (default None)) – If specified, the directory in
which the generated training dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset)

• valid_dir (str, optional (default None)) – If specified, the directory in
which the generated valid dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset) is True.

• test_dir (str, optional (default None)) – If specified, the directory in
which the generated test dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset) is True.
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• frac_train (float, optional (default 0.8)) – The fraction of data to be
used for the training split.

• frac_valid (float, optional (default 0.1)) – The fraction of data to be
used for the validation split.

• frac_test (float, optional (default 0.1)) – The fraction of data to be
used for the test split.

• seed (int, optional (default None)) – Random seed to use.

• log_every_n (int, optional (default 1000)) – Controls the logger by dic-
tating how often logger outputs will be produced.

Returns A tuple of train, valid and test datasets as dc.data.Dataset objects.

Return type Tuple[Dataset, Optional[Dataset], Dataset]

FingerprintSplitter

class FingerprintSplitter
Class for doing data splits based on the Tanimoto similarity between ECFP4 fingerprints.

This class tries to split the data such that the molecules in each dataset are as different as possible from the ones
in the other datasets. This makes it a very stringent test of models. Predicting the test and validation sets may
require extrapolating far outside the training data.

The running time for this splitter scales as O(n^2) in the number of samples. Splitting large datasets can take a
long time.

Note: This class requires RDKit to be installed.

split(dataset: deepchem.data.datasets.Dataset, frac_train: float = 0.8, frac_valid: float = 0.1,
frac_test: float = 0.1, seed: Optional[int] = None, log_every_n: Optional[int] = None) →
Tuple[List[int], List[int], List[int]]

Splits compounds into training, validation, and test sets based on the Tanimoto similarity of their ECFP4
fingerprints. This splitting algorithm has an O(N^2) run time, where N is the number of elements in the
dataset.

Parameters

• dataset (Dataset) – Dataset to be split.

• frac_train (float, optional (default 0.8)) – The fraction of data to be
used for the training split.

• frac_valid (float, optional (default 0.1)) – The fraction of data to be
used for the validation split.

• frac_test (float, optional (default 0.1)) – The fraction of data to be
used for the test split.

• seed (int, optional (default None)) – Random seed to use (ignored since
this algorithm is deterministic).

• log_every_n (int, optional (default None)) – Log every n examples (not
currently used).

Returns A tuple of train indices, valid indices, and test indices.

Return type Tuple[List[int], List[int], List[int]]

158 Chapter 3. About Us



deepchem, Release 2.5.0

__repr__()→ str
Convert self to repr representation.

Returns The string represents the class.

Return type str

Examples

>>> import deepchem as dc
>>> dc.splits.RandomSplitter()
RandomSplitter[]

__str__()→ str
Convert self to str representation.

Returns The string represents the class.

Return type str

Examples

>>> import deepchem as dc
>>> str(dc.splits.RandomSplitter())
'RandomSplitter'

__weakref__
list of weak references to the object (if defined)

k_fold_split(dataset: deepchem.data.datasets.Dataset, k: int, directories: Op-
tional[List[str]] = None, **kwargs) → List[Tuple[deepchem.data.datasets.Dataset,
deepchem.data.datasets.Dataset]]

Parameters

• dataset (Dataset) – Dataset to do a k-fold split

• k (int) – Number of folds to split dataset into.

• directories (List[str], optional (default None)) – List of length 2*k
filepaths to save the result disk-datasets.

Returns List of length k tuples of (train, cv) where train and cv are both Dataset.

Return type List[Tuple[Dataset, Dataset]]

train_test_split(dataset: deepchem.data.datasets.Dataset, train_dir: Optional[str] = None,
test_dir: Optional[str] = None, frac_train: float = 0.8, seed: Op-
tional[int] = None, **kwargs) → Tuple[deepchem.data.datasets.Dataset,
deepchem.data.datasets.Dataset]

Splits self into train/test sets.

Returns Dataset objects for train/test.

Parameters

• dataset (data like object) – Dataset to be split.

• train_dir (str, optional (default None)) – If specified, the directory in
which the generated training dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset) is True.
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• test_dir (str, optional (default None)) – If specified, the directory in
which the generated test dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset) is True.

• frac_train (float, optional (default 0.8)) – The fraction of data to be
used for the training split.

• seed (int, optional (default None)) – Random seed to use.

Returns A tuple of train and test datasets as dc.data.Dataset objects.

Return type Tuple[Dataset, Dataset]

train_valid_test_split(dataset: deepchem.data.datasets.Dataset, train_dir: Optional[str]
= None, valid_dir: Optional[str] = None, test_dir: Optional[str]
= None, frac_train: float = 0.8, frac_valid: float = 0.1,
frac_test: float = 0.1, seed: Optional[int] = None, log_every_n:
int = 1000, **kwargs) → Tuple[deepchem.data.datasets.Dataset,
deepchem.data.datasets.Dataset, deepchem.data.datasets.Dataset]

Splits self into train/validation/test sets.

Returns Dataset objects for train, valid, test.

Parameters

• dataset (Dataset) – Dataset to be split.

• train_dir (str, optional (default None)) – If specified, the directory in
which the generated training dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset)

• valid_dir (str, optional (default None)) – If specified, the directory in
which the generated valid dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset) is True.

• test_dir (str, optional (default None)) – If specified, the directory in
which the generated test dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset) is True.

• frac_train (float, optional (default 0.8)) – The fraction of data to be
used for the training split.

• frac_valid (float, optional (default 0.1)) – The fraction of data to be
used for the validation split.

• frac_test (float, optional (default 0.1)) – The fraction of data to be
used for the test split.

• seed (int, optional (default None)) – Random seed to use.

• log_every_n (int, optional (default 1000)) – Controls the logger by dic-
tating how often logger outputs will be produced.

Returns A tuple of train, valid and test datasets as dc.data.Dataset objects.

Return type Tuple[Dataset, Optional[Dataset], Dataset]
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3.13.3 Base Splitter (for develop)

The dc.splits.Splitter class is the abstract parent class for all splitters. This class should never be directly
instantiated.

class Splitter
Splitters split up Datasets into pieces for training/validation/testing.

In machine learning applications, it’s often necessary to split up a dataset into training/validation/test sets. Or
to k-fold split a dataset (that is, divide into k equal subsets) for cross-validation. The Splitter class is an abstract
superclass for all splitters that captures the common API across splitter classes.

Note that Splitter is an abstract superclass. You won’t want to instantiate this class directly. Rather you will
want to use a concrete subclass for your application.

k_fold_split(dataset: deepchem.data.datasets.Dataset, k: int, directories: Op-
tional[List[str]] = None, **kwargs) → List[Tuple[deepchem.data.datasets.Dataset,
deepchem.data.datasets.Dataset]]

Parameters

• dataset (Dataset) – Dataset to do a k-fold split

• k (int) – Number of folds to split dataset into.

• directories (List[str], optional (default None)) – List of length 2*k
filepaths to save the result disk-datasets.

Returns List of length k tuples of (train, cv) where train and cv are both Dataset.

Return type List[Tuple[Dataset, Dataset]]

train_valid_test_split(dataset: deepchem.data.datasets.Dataset, train_dir: Optional[str]
= None, valid_dir: Optional[str] = None, test_dir: Optional[str]
= None, frac_train: float = 0.8, frac_valid: float = 0.1,
frac_test: float = 0.1, seed: Optional[int] = None, log_every_n:
int = 1000, **kwargs) → Tuple[deepchem.data.datasets.Dataset,
deepchem.data.datasets.Dataset, deepchem.data.datasets.Dataset]

Splits self into train/validation/test sets.

Returns Dataset objects for train, valid, test.

Parameters

• dataset (Dataset) – Dataset to be split.

• train_dir (str, optional (default None)) – If specified, the directory in
which the generated training dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset)

• valid_dir (str, optional (default None)) – If specified, the directory in
which the generated valid dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset) is True.

• test_dir (str, optional (default None)) – If specified, the directory in
which the generated test dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset) is True.

• frac_train (float, optional (default 0.8)) – The fraction of data to be
used for the training split.

• frac_valid (float, optional (default 0.1)) – The fraction of data to be
used for the validation split.
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• frac_test (float, optional (default 0.1)) – The fraction of data to be
used for the test split.

• seed (int, optional (default None)) – Random seed to use.

• log_every_n (int, optional (default 1000)) – Controls the logger by dic-
tating how often logger outputs will be produced.

Returns A tuple of train, valid and test datasets as dc.data.Dataset objects.

Return type Tuple[Dataset, Optional[Dataset], Dataset]

train_test_split(dataset: deepchem.data.datasets.Dataset, train_dir: Optional[str] = None,
test_dir: Optional[str] = None, frac_train: float = 0.8, seed: Op-
tional[int] = None, **kwargs) → Tuple[deepchem.data.datasets.Dataset,
deepchem.data.datasets.Dataset]

Splits self into train/test sets.

Returns Dataset objects for train/test.

Parameters

• dataset (data like object) – Dataset to be split.

• train_dir (str, optional (default None)) – If specified, the directory in
which the generated training dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset) is True.

• test_dir (str, optional (default None)) – If specified, the directory in
which the generated test dataset should be stored. This is only considered if isin-
stance(dataset, dc.data.DiskDataset) is True.

• frac_train (float, optional (default 0.8)) – The fraction of data to be
used for the training split.

• seed (int, optional (default None)) – Random seed to use.

Returns A tuple of train and test datasets as dc.data.Dataset objects.

Return type Tuple[Dataset, Dataset]

split(dataset: deepchem.data.datasets.Dataset, frac_train: float = 0.8, frac_valid: float = 0.1,
frac_test: float = 0.1, seed: Optional[int] = None, log_every_n: Optional[int] = None) →
Tuple

Return indices for specified split

Parameters

• dataset (dc.data.Dataset) – Dataset to be split.

• seed (int, optional (default None)) – Random seed to use.

• frac_train (float, optional (default 0.8)) – The fraction of data to be
used for the training split.

• frac_valid (float, optional (default 0.1)) – The fraction of data to be
used for the validation split.

• frac_test (float, optional (default 0.1)) – The fraction of data to be
used for the test split.

• log_every_n (int, optional (default None)) – Controls the logger by dic-
tating how often logger outputs will be produced.

Returns A tuple (train_inds, valid_inds, test_inds) of the indices (integers) for the various splits.
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Return type Tuple

3.14 Transformers

DeepChem dc.trans.Transformer objects are another core building block of DeepChem programs. Often
times, machine learning systems are very delicate. They need their inputs and outputs to fit within a pre-specified
range or follow a clean mathematical distribution. Real data of course is wild and hard to control. What do you do if
you have a crazy dataset and need to bring its statistics to heel? Fear not for you have Transformer objects.

Contents

• General Transformers

– NormalizationTransformer

– MinMaxTransformer

– ClippingTransformer

– LogTransformer

– CDFTransformer

– PowerTransformer

– BalancingTransformer

– DuplicateBalancingTransformer

– ImageTransformer

– FeaturizationTransformer

• Specified Usecase Transformers

– CoulombFitTransformer

– IRVTransformer

– DAGTransformer

– ANITransformer

• Base Transformer (for develop)

3.14.1 General Transformers

NormalizationTransformer

class NormalizationTransformer(transform_X: bool = False, transform_y: bool =
False, transform_w: bool = False, dataset: Op-
tional[deepchem.data.datasets.Dataset] = None, trans-
form_gradients: bool = False, move_mean: bool = True)

Normalizes dataset to have zero mean and unit standard deviation

This transformer transforms datasets to have zero mean and unit standard deviation.

3.14. Transformers 163



deepchem, Release 2.5.0

Examples

>>> n_samples = 10
>>> n_features = 3
>>> n_tasks = 1
>>> ids = np.arange(n_samples)
>>> X = np.random.rand(n_samples, n_features)
>>> y = np.random.rand(n_samples, n_tasks)
>>> w = np.ones((n_samples, n_tasks))
>>> dataset = dc.data.NumpyDataset(X, y, w, ids)
>>> transformer = dc.trans.NormalizationTransformer(transform_y=True,
→˓dataset=dataset)
>>> dataset = transformer.transform(dataset)

Note: This class can only transform X or y and not w. So only one of transform_X or transform_y can be set.

Raises ValueError – if transform_X and transform_y are both set.

__init__(transform_X: bool = False, transform_y: bool = False, transform_w: bool = False, dataset:
Optional[deepchem.data.datasets.Dataset] = None, transform_gradients: bool = False,
move_mean: bool = True)

Initialize normalization transformation.

Parameters

• transform_X (bool, optional (default False)) – Whether to transform X

• transform_y (bool, optional (default False)) – Whether to transform y

• transform_w (bool, optional (default False)) – Whether to transform w

• dataset (dc.data.Dataset object, optional (default None)) –
Dataset to be transformed

transform_array(X: numpy.ndarray, y: numpy.ndarray, w: numpy.ndarray, ids: numpy.ndarray)
→ Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]

Transform the data in a set of (X, y, w) arrays.

Parameters

• X (np.ndarray) – Array of features

• y (np.ndarray) – Array of labels

• w (np.ndarray) – Array of weights.

• ids (np.ndarray) – Array of ids.

Returns

• Xtrans (np.ndarray) – Transformed array of features

• ytrans (np.ndarray) – Transformed array of labels

• wtrans (np.ndarray) – Transformed array of weights

• idstrans (np.ndarray) – Transformed array of ids

untransform(z: numpy.ndarray)→ numpy.ndarray
Undo transformation on provided data.

Parameters z (np.ndarray) – Array to transform back
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Returns z_out – Array with normalization undone.

Return type np.ndarray

untransform_grad(grad, tasks)
DEPRECATED. DO NOT USE.

transform(dataset: deepchem.data.datasets.Dataset, parallel: bool = False, out_dir: Optional[str] =
None, **kwargs)→ deepchem.data.datasets.Dataset

Transforms all internally stored data in dataset.

This method transforms all internal data in the provided dataset by using the Dataset.transform method.
Note that this method adds X-transform, y-transform columns to metadata. Specified keyword arguments
are passed on to Dataset.transform.

Parameters

• dataset (dc.data.Dataset) – Dataset object to be transformed.

• parallel (bool, optional (default False)) – if True, use multiple pro-
cesses to transform the dataset in parallel. For large datasets, this might be faster.

• out_dir (str, optional) – If out_dir is specified in kwargs and dataset is a Disk-
Dataset, the output dataset will be written to the specified directory.

Returns A newly transformed Dataset object

Return type Dataset

transform_on_array(X: numpy.ndarray, y: numpy.ndarray, w: numpy.ndarray, ids:
numpy.ndarray) → Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray,
numpy.ndarray]

Transforms numpy arrays X, y, and w

DEPRECATED. Use transform_array instead.

Parameters

• X (np.ndarray) – Array of features

• y (np.ndarray) – Array of labels

• w (np.ndarray) – Array of weights.

• ids (np.ndarray) – Array of identifiers.

Returns

• Xtrans (np.ndarray) – Transformed array of features

• ytrans (np.ndarray) – Transformed array of labels

• wtrans (np.ndarray) – Transformed array of weights

• idstrans (np.ndarray) – Transformed array of ids
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MinMaxTransformer

class MinMaxTransformer(transform_X: bool = False, transform_y: bool = False, dataset: Op-
tional[deepchem.data.datasets.Dataset] = None)

Ensure each value rests between 0 and 1 by using the min and max.

MinMaxTransformer transforms the dataset by shifting each axis of X or y (depending on whether transform_X
or transform_y is True), except the first one by the minimum value along the axis and dividing the result by the
range (maximum value - minimum value) along the axis. This ensures each axis is between 0 and 1. In case of
multi-task learning, it ensures each task is given equal importance.

Given original array A, the transformed array can be written as:

>>> import numpy as np
>>> A = np.random.rand(10, 10)
>>> A_min = np.min(A, axis=0)
>>> A_max = np.max(A, axis=0)
>>> A_t = np.nan_to_num((A - A_min)/(A_max - A_min))

Examples

>>> n_samples = 10
>>> n_features = 3
>>> n_tasks = 1
>>> ids = np.arange(n_samples)
>>> X = np.random.rand(n_samples, n_features)
>>> y = np.random.rand(n_samples, n_tasks)
>>> w = np.ones((n_samples, n_tasks))
>>> dataset = dc.data.NumpyDataset(X, y, w, ids)
>>> transformer = dc.trans.MinMaxTransformer(transform_y=True, dataset=dataset)
>>> dataset = transformer.transform(dataset)

Note: This class can only transform X or y and not w. So only one of transform_X or transform_y can be set.

Raises ValueError – if transform_X and transform_y are both set.

__init__(transform_X: bool = False, transform_y: bool = False, dataset: Op-
tional[deepchem.data.datasets.Dataset] = None)

Initialization of MinMax transformer.

Parameters

• transform_X (bool, optional (default False)) – Whether to transform X

• transform_y (bool, optional (default False)) – Whether to transform y

• dataset (dc.data.Dataset object, optional (default None)) –
Dataset to be transformed

transform_array(X: numpy.ndarray, y: numpy.ndarray, w: numpy.ndarray, ids: numpy.ndarray)
→ Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]

Transform the data in a set of (X, y, w, ids) arrays.

Parameters

• X (np.ndarray) – Array of features
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• y (np.ndarray) – Array of labels

• w (np.ndarray) – Array of weights.

• ids (np.ndarray) – Array of ids.

Returns

• Xtrans (np.ndarray) – Transformed array of features

• ytrans (np.ndarray) – Transformed array of labels

• wtrans (np.ndarray) – Transformed array of weights

• idstrans (np.ndarray) – Transformed array of ids

untransform(z: numpy.ndarray)→ numpy.ndarray
Undo transformation on provided data.

Parameters z (np.ndarray) – Transformed X or y array

Returns Array with min-max scaling undone.

Return type np.ndarray

transform(dataset: deepchem.data.datasets.Dataset, parallel: bool = False, out_dir: Optional[str] =
None, **kwargs)→ deepchem.data.datasets.Dataset

Transforms all internally stored data in dataset.

This method transforms all internal data in the provided dataset by using the Dataset.transform method.
Note that this method adds X-transform, y-transform columns to metadata. Specified keyword arguments
are passed on to Dataset.transform.

Parameters

• dataset (dc.data.Dataset) – Dataset object to be transformed.

• parallel (bool, optional (default False)) – if True, use multiple pro-
cesses to transform the dataset in parallel. For large datasets, this might be faster.

• out_dir (str, optional) – If out_dir is specified in kwargs and dataset is a Disk-
Dataset, the output dataset will be written to the specified directory.

Returns A newly transformed Dataset object

Return type Dataset

transform_on_array(X: numpy.ndarray, y: numpy.ndarray, w: numpy.ndarray, ids:
numpy.ndarray) → Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray,
numpy.ndarray]

Transforms numpy arrays X, y, and w

DEPRECATED. Use transform_array instead.

Parameters

• X (np.ndarray) – Array of features

• y (np.ndarray) – Array of labels

• w (np.ndarray) – Array of weights.

• ids (np.ndarray) – Array of identifiers.

Returns

• Xtrans (np.ndarray) – Transformed array of features

• ytrans (np.ndarray) – Transformed array of labels
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• wtrans (np.ndarray) – Transformed array of weights

• idstrans (np.ndarray) – Transformed array of ids

ClippingTransformer

class ClippingTransformer(transform_X: bool = False, transform_y: bool = False, dataset: Op-
tional[deepchem.data.datasets.Dataset] = None, x_max: float = 5.0,
y_max: float = 500.0)

Clip large values in datasets.

Examples

Let’s clip values from a synthetic dataset

>>> n_samples = 10
>>> n_features = 3
>>> n_tasks = 1
>>> ids = np.arange(n_samples)
>>> X = np.random.rand(n_samples, n_features)
>>> y = np.zeros((n_samples, n_tasks))
>>> w = np.ones((n_samples, n_tasks))
>>> dataset = dc.data.NumpyDataset(X, y, w, ids)
>>> transformer = dc.trans.ClippingTransformer(transform_X=True)
>>> dataset = transformer.transform(dataset)

__init__(transform_X: bool = False, transform_y: bool = False, dataset: Op-
tional[deepchem.data.datasets.Dataset] = None, x_max: float = 5.0, y_max: float =
500.0)

Initialize clipping transformation.

Parameters

• transform_X (bool, optional (default False)) – Whether to transform X

• transform_y (bool, optional (default False)) – Whether to transform y

• dataset (dc.data.Dataset object, optional) – Dataset to be transformed

• x_max (float, optional) – Maximum absolute value for X

• y_max (float, optional) – Maximum absolute value for y

Note: This transformer can transform X and y jointly, but does not transform w.

Raises ValueError – if transform_w is set.

transform_array(X: numpy.ndarray, y: numpy.ndarray, w: numpy.ndarray, ids: numpy.ndarray)
→ Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]

Transform the data in a set of (X, y, w) arrays.

Parameters

• X (np.ndarray) – Array of Features

• y (np.ndarray) – Array of labels

• w (np.ndarray) – Array of weights
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• ids (np.ndarray) – Array of ids.

Returns

• X (np.ndarray) – Transformed features

• y (np.ndarray) – Transformed tasks

• w (np.ndarray) – Transformed weights

• idstrans (np.ndarray) – Transformed array of ids

untransform(z)
Not implemented.

transform(dataset: deepchem.data.datasets.Dataset, parallel: bool = False, out_dir: Optional[str] =
None, **kwargs)→ deepchem.data.datasets.Dataset

Transforms all internally stored data in dataset.

This method transforms all internal data in the provided dataset by using the Dataset.transform method.
Note that this method adds X-transform, y-transform columns to metadata. Specified keyword arguments
are passed on to Dataset.transform.

Parameters

• dataset (dc.data.Dataset) – Dataset object to be transformed.

• parallel (bool, optional (default False)) – if True, use multiple pro-
cesses to transform the dataset in parallel. For large datasets, this might be faster.

• out_dir (str, optional) – If out_dir is specified in kwargs and dataset is a Disk-
Dataset, the output dataset will be written to the specified directory.

Returns A newly transformed Dataset object

Return type Dataset

transform_on_array(X: numpy.ndarray, y: numpy.ndarray, w: numpy.ndarray, ids:
numpy.ndarray) → Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray,
numpy.ndarray]

Transforms numpy arrays X, y, and w

DEPRECATED. Use transform_array instead.

Parameters

• X (np.ndarray) – Array of features

• y (np.ndarray) – Array of labels

• w (np.ndarray) – Array of weights.

• ids (np.ndarray) – Array of identifiers.

Returns

• Xtrans (np.ndarray) – Transformed array of features

• ytrans (np.ndarray) – Transformed array of labels

• wtrans (np.ndarray) – Transformed array of weights

• idstrans (np.ndarray) – Transformed array of ids
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LogTransformer

class LogTransformer(transform_X: bool = False, transform_y: bool = False, features: Op-
tional[List[int]] = None, tasks: Optional[List[str]] = None, dataset: Op-
tional[deepchem.data.datasets.Dataset] = None)

Computes a logarithmic transformation

This transformer computes the transformation given by

>>> import numpy as np
>>> A = np.random.rand(10, 10)
>>> A = np.log(A + 1)

Assuming that tasks/features are not specified. If specified, then transformations are only performed on specified
tasks/features.

Examples

>>> n_samples = 10
>>> n_features = 3
>>> n_tasks = 1
>>> ids = np.arange(n_samples)
>>> X = np.random.rand(n_samples, n_features)
>>> y = np.zeros((n_samples, n_tasks))
>>> w = np.ones((n_samples, n_tasks))
>>> dataset = dc.data.NumpyDataset(X, y, w, ids)
>>> transformer = dc.trans.LogTransformer(transform_X=True)
>>> dataset = transformer.transform(dataset)

Note: This class can only transform X or y and not w. So only one of transform_X or transform_y can be set.

Raises ValueError – if transform_w is set or transform_X and transform_y are both set.

__init__(transform_X: bool = False, transform_y: bool = False, features: Optional[List[int]] = None,
tasks: Optional[List[str]] = None, dataset: Optional[deepchem.data.datasets.Dataset] =
None)

Initialize log transformer.

Parameters

• transform_X (bool, optional (default False)) – Whether to transform X

• transform_y (bool, optional (default False)) – Whether to transform y

• features (list[Int]) – List of features indices to transform

• tasks (list[str]) – List of task names to transform.

• dataset (dc.data.Dataset object, optional (default None)) –
Dataset to be transformed

transform_array(X: numpy.ndarray, y: numpy.ndarray, w: numpy.ndarray, ids: numpy.ndarray)
→ Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]

Transform the data in a set of (X, y, w) arrays.

Parameters

• X (np.ndarray) – Array of features
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• y (np.ndarray) – Array of labels

• w (np.ndarray) – Array of weights.

• ids (np.ndarray) – Array of weights.

Returns

• Xtrans (np.ndarray) – Transformed array of features

• ytrans (np.ndarray) – Transformed array of labels

• wtrans (np.ndarray) – Transformed array of weights

• idstrans (np.ndarray) – Transformed array of ids

untransform(z: numpy.ndarray)→ numpy.ndarray
Undo transformation on provided data.

Parameters z (np.ndarray,) – Transformed X or y array

Returns Array with a logarithmic transformation undone.

Return type np.ndarray

transform(dataset: deepchem.data.datasets.Dataset, parallel: bool = False, out_dir: Optional[str] =
None, **kwargs)→ deepchem.data.datasets.Dataset

Transforms all internally stored data in dataset.

This method transforms all internal data in the provided dataset by using the Dataset.transform method.
Note that this method adds X-transform, y-transform columns to metadata. Specified keyword arguments
are passed on to Dataset.transform.

Parameters

• dataset (dc.data.Dataset) – Dataset object to be transformed.

• parallel (bool, optional (default False)) – if True, use multiple pro-
cesses to transform the dataset in parallel. For large datasets, this might be faster.

• out_dir (str, optional) – If out_dir is specified in kwargs and dataset is a Disk-
Dataset, the output dataset will be written to the specified directory.

Returns A newly transformed Dataset object

Return type Dataset

transform_on_array(X: numpy.ndarray, y: numpy.ndarray, w: numpy.ndarray, ids:
numpy.ndarray) → Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray,
numpy.ndarray]

Transforms numpy arrays X, y, and w

DEPRECATED. Use transform_array instead.

Parameters

• X (np.ndarray) – Array of features

• y (np.ndarray) – Array of labels

• w (np.ndarray) – Array of weights.

• ids (np.ndarray) – Array of identifiers.

Returns

• Xtrans (np.ndarray) – Transformed array of features

• ytrans (np.ndarray) – Transformed array of labels
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• wtrans (np.ndarray) – Transformed array of weights

• idstrans (np.ndarray) – Transformed array of ids

CDFTransformer

class CDFTransformer(transform_X: bool = False, transform_y: bool = False, dataset: Op-
tional[deepchem.data.datasets.Dataset] = None, bins: int = 2)

Histograms the data and assigns values based on sorted list.

Acts like a Cumulative Distribution Function (CDF). If given a dataset of samples from a continuous distribution
computes the CDF of this dataset and replaces values with their corresponding CDF values.

Examples

Let’s look at an example where we transform only features.

>>> N = 10
>>> n_feat = 5
>>> n_bins = 100

Note that we’re using 100 bins for our CDF histogram

>>> import numpy as np
>>> X = np.random.normal(size=(N, n_feat))
>>> y = np.random.randint(2, size=(N,))
>>> dataset = dc.data.NumpyDataset(X, y)
>>> cdftrans = dc.trans.CDFTransformer(transform_X=True, dataset=dataset, bins=n_
→˓bins)
>>> dataset = cdftrans.transform(dataset)

Note that you can apply this transformation to y as well

>>> X = np.random.normal(size=(N, n_feat))
>>> y = np.random.normal(size=(N,))
>>> dataset = dc.data.NumpyDataset(X, y)
>>> cdftrans = dc.trans.CDFTransformer(transform_y=True, dataset=dataset, bins=n_
→˓bins)
>>> dataset = cdftrans.transform(dataset)

__init__(transform_X: bool = False, transform_y: bool = False, dataset: Op-
tional[deepchem.data.datasets.Dataset] = None, bins: int = 2)

Initialize this transformer.

Parameters

• transform_X (bool, optional (default False)) – Whether to transform X

• transform_y (bool, optional (default False)) – Whether to transform y

• dataset (dc.data.Dataset object, optional (default None)) –
Dataset to be transformed

• bins (int, optional (default 2)) – Number of bins to use when computing
histogram.

transform_array(X: numpy.ndarray, y: numpy.ndarray, w: numpy.ndarray, ids: numpy.ndarray)
→ Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]

Performs CDF transform on data.
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Parameters

• X (np.ndarray) – Array of features

• y (np.ndarray) – Array of labels

• w (np.ndarray) – Array of weights.

• ids (np.ndarray) – Array of identifiers

Returns

• Xtrans (np.ndarray) – Transformed array of features

• ytrans (np.ndarray) – Transformed array of labels

• wtrans (np.ndarray) – Transformed array of weights

• idstrans (np.ndarray) – Transformed array of ids

untransform(z: numpy.ndarray)→ numpy.ndarray
Undo transformation on provided data.

Note that this transformation is only undone for y.

Parameters z (np.ndarray,) – Transformed y array

Returns Array with the transformation undone.

Return type np.ndarray

transform(dataset: deepchem.data.datasets.Dataset, parallel: bool = False, out_dir: Optional[str] =
None, **kwargs)→ deepchem.data.datasets.Dataset

Transforms all internally stored data in dataset.

This method transforms all internal data in the provided dataset by using the Dataset.transform method.
Note that this method adds X-transform, y-transform columns to metadata. Specified keyword arguments
are passed on to Dataset.transform.

Parameters

• dataset (dc.data.Dataset) – Dataset object to be transformed.

• parallel (bool, optional (default False)) – if True, use multiple pro-
cesses to transform the dataset in parallel. For large datasets, this might be faster.

• out_dir (str, optional) – If out_dir is specified in kwargs and dataset is a Disk-
Dataset, the output dataset will be written to the specified directory.

Returns A newly transformed Dataset object

Return type Dataset

transform_on_array(X: numpy.ndarray, y: numpy.ndarray, w: numpy.ndarray, ids:
numpy.ndarray) → Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray,
numpy.ndarray]

Transforms numpy arrays X, y, and w

DEPRECATED. Use transform_array instead.

Parameters

• X (np.ndarray) – Array of features

• y (np.ndarray) – Array of labels

• w (np.ndarray) – Array of weights.

• ids (np.ndarray) – Array of identifiers.
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Returns

• Xtrans (np.ndarray) – Transformed array of features

• ytrans (np.ndarray) – Transformed array of labels

• wtrans (np.ndarray) – Transformed array of weights

• idstrans (np.ndarray) – Transformed array of ids

PowerTransformer

class PowerTransformer(transform_X: bool = False, transform_y: bool = False, dataset: Op-
tional[deepchem.data.datasets.Dataset] = None, powers: List[int] = [1])

Takes power n transforms of the data based on an input vector.

Computes the specified powers of the dataset. This can be useful if you’re looking to add higher order features
of the form x_i^2, x_i^3 etc. to your dataset.

Examples

Let’s look at an example where we transform only X.

>>> N = 10
>>> n_feat = 5
>>> powers = [1, 2, 0.5]

So in this example, we’re taking the identity, squares, and square roots. Now let’s construct our matrices

>>> import numpy as np
>>> X = np.random.rand(N, n_feat)
>>> y = np.random.normal(size=(N,))
>>> dataset = dc.data.NumpyDataset(X, y)
>>> trans = dc.trans.PowerTransformer(transform_X=True, dataset=dataset,
→˓powers=powers)
>>> dataset = trans.transform(dataset)

Let’s now look at an example where we transform y. Note that the y transform expands out the feature dimen-
sions of y the same way it does for X so this transform is only well defined for singletask datasets.

>>> import numpy as np
>>> X = np.random.rand(N, n_feat)
>>> y = np.random.rand(N)
>>> dataset = dc.data.NumpyDataset(X, y)
>>> trans = dc.trans.PowerTransformer(transform_y=True, dataset=dataset,
→˓powers=powers)
>>> dataset = trans.transform(dataset)

__init__(transform_X: bool = False, transform_y: bool = False, dataset: Op-
tional[deepchem.data.datasets.Dataset] = None, powers: List[int] = [1])

Initialize this transformer

Parameters

• transform_X (bool, optional (default False)) – Whether to transform X

• transform_y (bool, optional (default False)) – Whether to transform y
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• dataset (dc.data.Dataset object, optional (default None)) –
Dataset to be transformed. Note that this argument is ignored since PowerTransformer
doesn’t require it to be specified.

• powers (list[int], optional (default [1])) – The list of powers of features/labels to com-
pute.

transform_array(X: numpy.ndarray, y: numpy.ndarray, w: numpy.ndarray, ids: numpy.ndarray)
→ Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]

Performs power transform on data.

Parameters

• X (np.ndarray) – Array of features

• y (np.ndarray) – Array of labels

• w (np.ndarray) – Array of weights.

• ids (np.ndarray) – Array of identifiers.

Returns

• Xtrans (np.ndarray) – Transformed array of features

• ytrans (np.ndarray) – Transformed array of labels

• wtrans (np.ndarray) – Transformed array of weights

• idstrans (np.ndarray) – Transformed array of ids

untransform(z: numpy.ndarray)→ numpy.ndarray
Undo transformation on provided data.

Parameters z (np.ndarray,) – Transformed y array

Returns Array with the power transformation undone.

Return type np.ndarray

transform(dataset: deepchem.data.datasets.Dataset, parallel: bool = False, out_dir: Optional[str] =
None, **kwargs)→ deepchem.data.datasets.Dataset

Transforms all internally stored data in dataset.

This method transforms all internal data in the provided dataset by using the Dataset.transform method.
Note that this method adds X-transform, y-transform columns to metadata. Specified keyword arguments
are passed on to Dataset.transform.

Parameters

• dataset (dc.data.Dataset) – Dataset object to be transformed.

• parallel (bool, optional (default False)) – if True, use multiple pro-
cesses to transform the dataset in parallel. For large datasets, this might be faster.

• out_dir (str, optional) – If out_dir is specified in kwargs and dataset is a Disk-
Dataset, the output dataset will be written to the specified directory.

Returns A newly transformed Dataset object

Return type Dataset

transform_on_array(X: numpy.ndarray, y: numpy.ndarray, w: numpy.ndarray, ids:
numpy.ndarray) → Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray,
numpy.ndarray]

Transforms numpy arrays X, y, and w
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DEPRECATED. Use transform_array instead.

Parameters

• X (np.ndarray) – Array of features

• y (np.ndarray) – Array of labels

• w (np.ndarray) – Array of weights.

• ids (np.ndarray) – Array of identifiers.

Returns

• Xtrans (np.ndarray) – Transformed array of features

• ytrans (np.ndarray) – Transformed array of labels

• wtrans (np.ndarray) – Transformed array of weights

• idstrans (np.ndarray) – Transformed array of ids

BalancingTransformer

class BalancingTransformer(dataset: deepchem.data.datasets.Dataset)
Balance positive and negative (or multiclass) example weights.

This class balances the sample weights so that the sum of all example weights from all classes is the same. This
can be useful when you’re working on an imbalanced dataset where there are far fewer examples of some classes
than others.

Examples

Here’s an example for a binary dataset.

>>> n_samples = 10
>>> n_features = 3
>>> n_tasks = 1
>>> n_classes = 2
>>> ids = np.arange(n_samples)
>>> X = np.random.rand(n_samples, n_features)
>>> y = np.random.randint(n_classes, size=(n_samples, n_tasks))
>>> w = np.ones((n_samples, n_tasks))
>>> dataset = dc.data.NumpyDataset(X, y, w, ids)
>>> transformer = dc.trans.BalancingTransformer(dataset=dataset)
>>> dataset = transformer.transform(dataset)

And here’s a multiclass dataset example.

>>> n_samples = 50
>>> n_features = 3
>>> n_tasks = 1
>>> n_classes = 5
>>> ids = np.arange(n_samples)
>>> X = np.random.rand(n_samples, n_features)
>>> y = np.random.randint(n_classes, size=(n_samples, n_tasks))
>>> w = np.ones((n_samples, n_tasks))
>>> dataset = dc.data.NumpyDataset(X, y, w, ids)
>>> transformer = dc.trans.BalancingTransformer(dataset=dataset)
>>> dataset = transformer.transform(dataset)
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See also:

deepchem.trans.DuplicateBalancingTransformer Balance by duplicating samples.

Note: This transformer is only meaningful for classification datasets where y takes on a limited set of values.
This class can only transform w and does not transform X or y.

Raises ValueError – if transform_X or transform_y are set. Also raises or if y or w aren’t of
shape (N,) or (N, n_tasks).

__init__(dataset: deepchem.data.datasets.Dataset)
Initializes transformation based on dataset statistics.

Parameters

• transform_X (bool, optional (default False)) – Whether to transform X

• transform_y (bool, optional (default False)) – Whether to transform y

• transform_w (bool, optional (default False)) – Whether to transform w

• transform_ids (bool, optional (default False)) – Whether to trans-
form ids

• dataset (dc.data.Dataset object, optional (default None)) –
Dataset to be transformed

transform_array(X: numpy.ndarray, y: numpy.ndarray, w: numpy.ndarray, ids: numpy.ndarray)
→ Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]

Transform the data in a set of (X, y, w) arrays.

Parameters

• X (np.ndarray) – Array of features

• y (np.ndarray) – Array of labels

• w (np.ndarray) – Array of weights.

• ids (np.ndarray) – Array of weights.

Returns

• Xtrans (np.ndarray) – Transformed array of features

• ytrans (np.ndarray) – Transformed array of labels

• wtrans (np.ndarray) – Transformed array of weights

• idstrans (np.ndarray) – Transformed array of ids

transform(dataset: deepchem.data.datasets.Dataset, parallel: bool = False, out_dir: Optional[str] =
None, **kwargs)→ deepchem.data.datasets.Dataset

Transforms all internally stored data in dataset.

This method transforms all internal data in the provided dataset by using the Dataset.transform method.
Note that this method adds X-transform, y-transform columns to metadata. Specified keyword arguments
are passed on to Dataset.transform.

Parameters

• dataset (dc.data.Dataset) – Dataset object to be transformed.
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• parallel (bool, optional (default False)) – if True, use multiple pro-
cesses to transform the dataset in parallel. For large datasets, this might be faster.

• out_dir (str, optional) – If out_dir is specified in kwargs and dataset is a Disk-
Dataset, the output dataset will be written to the specified directory.

Returns A newly transformed Dataset object

Return type Dataset

transform_on_array(X: numpy.ndarray, y: numpy.ndarray, w: numpy.ndarray, ids:
numpy.ndarray) → Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray,
numpy.ndarray]

Transforms numpy arrays X, y, and w

DEPRECATED. Use transform_array instead.

Parameters

• X (np.ndarray) – Array of features

• y (np.ndarray) – Array of labels

• w (np.ndarray) – Array of weights.

• ids (np.ndarray) – Array of identifiers.

Returns

• Xtrans (np.ndarray) – Transformed array of features

• ytrans (np.ndarray) – Transformed array of labels

• wtrans (np.ndarray) – Transformed array of weights

• idstrans (np.ndarray) – Transformed array of ids

untransform(transformed)
Reverses stored transformation on provided data.

Depending on whether transform_X or transform_y or transform_w was set, this will perform different
un-transformations. Note that this method may not always be defined since some transformations aren’t
1-1.

Parameters transformed (np.ndarray) – Array which was previously transformed by
this class.

DuplicateBalancingTransformer

class DuplicateBalancingTransformer(dataset: deepchem.data.datasets.Dataset)
Balance binary or multiclass datasets by duplicating rarer class samples.

This class balances a dataset by duplicating samples of the rarer class so that the sum of all example weights
from all classes is the same. (Up to integer rounding of course). This can be useful when you’re working on an
imabalanced dataset where there are far fewer examples of some classes than others.

This class differs from BalancingTransformer in that it actually duplicates rarer class samples rather than just
increasing their sample weights. This may be more friendly for models that are numerically fragile and can’t
handle imbalanced example weights.
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Examples

Here’s an example for a binary dataset.

>>> n_samples = 10
>>> n_features = 3
>>> n_tasks = 1
>>> n_classes = 2
>>> import deepchem as dc
>>> import numpy as np
>>> ids = np.arange(n_samples)
>>> X = np.random.rand(n_samples, n_features)
>>> y = np.random.randint(n_classes, size=(n_samples, n_tasks))
>>> w = np.ones((n_samples, n_tasks))
>>> dataset = dc.data.NumpyDataset(X, y, w, ids)
>>> transformer = dc.trans.DuplicateBalancingTransformer(dataset=dataset)
>>> dataset = transformer.transform(dataset)

And here’s a multiclass dataset example.

>>> n_samples = 50
>>> n_features = 3
>>> n_tasks = 1
>>> n_classes = 5
>>> ids = np.arange(n_samples)
>>> X = np.random.rand(n_samples, n_features)
>>> y = np.random.randint(n_classes, size=(n_samples, n_tasks))
>>> w = np.ones((n_samples, n_tasks))
>>> dataset = dc.data.NumpyDataset(X, y, w, ids)
>>> transformer = dc.trans.DuplicateBalancingTransformer(dataset=dataset)
>>> dataset = transformer.transform(dataset)

See also:

deepchem.trans.BalancingTransformer Balance by changing sample weights.

Note: This transformer is only well-defined for singletask datasets. (Since examples are actually duplicated,
there’s no meaningful way to duplicate across multiple tasks in a way that preserves the balance.)

This transformer is only meaningful for classification datasets where y takes on a limited set of values. This
class transforms all of X, y, w, ids.

Raises ValueError –

__init__(dataset: deepchem.data.datasets.Dataset)
Initializes transformation based on dataset statistics.

Parameters

• transform_X (bool, optional (default False)) – Whether to transform X

• transform_y (bool, optional (default False)) – Whether to transform y

• transform_w (bool, optional (default False)) – Whether to transform w

• transform_ids (bool, optional (default False)) – Whether to trans-
form ids
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• dataset (dc.data.Dataset object, optional (default None)) –
Dataset to be transformed

transform_array(X: numpy.ndarray, y: numpy.ndarray, w: numpy.ndarray, ids: numpy.ndarray)
→ Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]

Transform the data in a set of (X, y, w, id) arrays.

Parameters

• X (np.ndarray) – Array of features

• y (np.ndarray) – Array of labels

• w (np.ndarray) – Array of weights.

• ids (np.ndarray) – Array of identifiers

Returns

• Xtrans (np.ndarray) – Transformed array of features

• ytrans (np.ndarray) – Transformed array of labels

• wtrans (np.ndarray) – Transformed array of weights

• idtrans (np.ndarray) – Transformed array of identifiers

transform(dataset: deepchem.data.datasets.Dataset, parallel: bool = False, out_dir: Optional[str] =
None, **kwargs)→ deepchem.data.datasets.Dataset

Transforms all internally stored data in dataset.

This method transforms all internal data in the provided dataset by using the Dataset.transform method.
Note that this method adds X-transform, y-transform columns to metadata. Specified keyword arguments
are passed on to Dataset.transform.

Parameters

• dataset (dc.data.Dataset) – Dataset object to be transformed.

• parallel (bool, optional (default False)) – if True, use multiple pro-
cesses to transform the dataset in parallel. For large datasets, this might be faster.

• out_dir (str, optional) – If out_dir is specified in kwargs and dataset is a Disk-
Dataset, the output dataset will be written to the specified directory.

Returns A newly transformed Dataset object

Return type Dataset

transform_on_array(X: numpy.ndarray, y: numpy.ndarray, w: numpy.ndarray, ids:
numpy.ndarray) → Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray,
numpy.ndarray]

Transforms numpy arrays X, y, and w

DEPRECATED. Use transform_array instead.

Parameters

• X (np.ndarray) – Array of features

• y (np.ndarray) – Array of labels

• w (np.ndarray) – Array of weights.

• ids (np.ndarray) – Array of identifiers.

Returns
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• Xtrans (np.ndarray) – Transformed array of features

• ytrans (np.ndarray) – Transformed array of labels

• wtrans (np.ndarray) – Transformed array of weights

• idstrans (np.ndarray) – Transformed array of ids

untransform(transformed)
Reverses stored transformation on provided data.

Depending on whether transform_X or transform_y or transform_w was set, this will perform different
un-transformations. Note that this method may not always be defined since some transformations aren’t
1-1.

Parameters transformed (np.ndarray) – Array which was previously transformed by
this class.

ImageTransformer

class ImageTransformer(size: Tuple[int, int])
Convert an image into width, height, channel

Note: This class require Pillow to be installed.

__init__(size: Tuple[int, int])
Initializes ImageTransformer.

Parameters size (Tuple[int, int]) – The image size, a tuple of (width, height).

transform_array(X, y, w)
Transform the data in a set of (X, y, w, ids) arrays.

Parameters

• X (np.ndarray) – Array of features

• y (np.ndarray) – Array of labels

• w (np.ndarray) – Array of weights.

• ids (np.ndarray) – Array of identifiers.

Returns

• Xtrans (np.ndarray) – Transformed array of features

• ytrans (np.ndarray) – Transformed array of labels

• wtrans (np.ndarray) – Transformed array of weights

• idstrans (np.ndarray) – Transformed array of ids

transform(dataset: deepchem.data.datasets.Dataset, parallel: bool = False, out_dir: Optional[str] =
None, **kwargs)→ deepchem.data.datasets.Dataset

Transforms all internally stored data in dataset.

This method transforms all internal data in the provided dataset by using the Dataset.transform method.
Note that this method adds X-transform, y-transform columns to metadata. Specified keyword arguments
are passed on to Dataset.transform.

Parameters
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• dataset (dc.data.Dataset) – Dataset object to be transformed.

• parallel (bool, optional (default False)) – if True, use multiple pro-
cesses to transform the dataset in parallel. For large datasets, this might be faster.

• out_dir (str, optional) – If out_dir is specified in kwargs and dataset is a Disk-
Dataset, the output dataset will be written to the specified directory.

Returns A newly transformed Dataset object

Return type Dataset

transform_on_array(X: numpy.ndarray, y: numpy.ndarray, w: numpy.ndarray, ids:
numpy.ndarray) → Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray,
numpy.ndarray]

Transforms numpy arrays X, y, and w

DEPRECATED. Use transform_array instead.

Parameters

• X (np.ndarray) – Array of features

• y (np.ndarray) – Array of labels

• w (np.ndarray) – Array of weights.

• ids (np.ndarray) – Array of identifiers.

Returns

• Xtrans (np.ndarray) – Transformed array of features

• ytrans (np.ndarray) – Transformed array of labels

• wtrans (np.ndarray) – Transformed array of weights

• idstrans (np.ndarray) – Transformed array of ids

untransform(transformed)
Reverses stored transformation on provided data.

Depending on whether transform_X or transform_y or transform_w was set, this will perform different
un-transformations. Note that this method may not always be defined since some transformations aren’t
1-1.

Parameters transformed (np.ndarray) – Array which was previously transformed by
this class.

FeaturizationTransformer

class FeaturizationTransformer(dataset: Optional[deepchem.data.datasets.Dataset] = None,
featurizer: Optional[deepchem.feat.base_classes.Featurizer] =
None)

A transformer which runs a featurizer over the X values of a dataset.

Datasets used by this transformer must be compatible with the internal featurizer. The idea of this transformer
is that it allows for the application of a featurizer to an existing dataset.
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Examples

>>> smiles = ["C", "CC"]
>>> X = np.array(smiles)
>>> y = np.array([1, 0])
>>> dataset = dc.data.NumpyDataset(X, y)
>>> trans = dc.trans.FeaturizationTransformer(dataset, dc.feat.
→˓CircularFingerprint())
>>> dataset = trans.transform(dataset)

__init__(dataset: Optional[deepchem.data.datasets.Dataset] = None, featurizer: Op-
tional[deepchem.feat.base_classes.Featurizer] = None)

Initialization of FeaturizationTransformer

Parameters

• dataset (dc.data.Dataset object, optional (default None)) –
Dataset to be transformed

• featurizer (dc.feat.Featurizer object, optional (default
None)) – Featurizer applied to perform transformations.

transform_array(X: numpy.ndarray, y: numpy.ndarray, w: numpy.ndarray, ids: numpy.ndarray)
→ Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]

Transforms arrays of rdkit mols using internal featurizer.

Parameters

• X (np.ndarray) – Array of features

• y (np.ndarray) – Array of labels

• w (np.ndarray) – Array of weights.

• ids (np.ndarray) – Array of identifiers.

Returns

• Xtrans (np.ndarray) – Transformed array of features

• ytrans (np.ndarray) – Transformed array of labels

• wtrans (np.ndarray) – Transformed array of weights

• idstrans (np.ndarray) – Transformed array of ids

transform(dataset: deepchem.data.datasets.Dataset, parallel: bool = False, out_dir: Optional[str] =
None, **kwargs)→ deepchem.data.datasets.Dataset

Transforms all internally stored data in dataset.

This method transforms all internal data in the provided dataset by using the Dataset.transform method.
Note that this method adds X-transform, y-transform columns to metadata. Specified keyword arguments
are passed on to Dataset.transform.

Parameters

• dataset (dc.data.Dataset) – Dataset object to be transformed.

• parallel (bool, optional (default False)) – if True, use multiple pro-
cesses to transform the dataset in parallel. For large datasets, this might be faster.

• out_dir (str, optional) – If out_dir is specified in kwargs and dataset is a Disk-
Dataset, the output dataset will be written to the specified directory.

Returns A newly transformed Dataset object
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Return type Dataset

transform_on_array(X: numpy.ndarray, y: numpy.ndarray, w: numpy.ndarray, ids:
numpy.ndarray) → Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray,
numpy.ndarray]

Transforms numpy arrays X, y, and w

DEPRECATED. Use transform_array instead.

Parameters

• X (np.ndarray) – Array of features

• y (np.ndarray) – Array of labels

• w (np.ndarray) – Array of weights.

• ids (np.ndarray) – Array of identifiers.

Returns

• Xtrans (np.ndarray) – Transformed array of features

• ytrans (np.ndarray) – Transformed array of labels

• wtrans (np.ndarray) – Transformed array of weights

• idstrans (np.ndarray) – Transformed array of ids

untransform(transformed)
Reverses stored transformation on provided data.

Depending on whether transform_X or transform_y or transform_w was set, this will perform different
un-transformations. Note that this method may not always be defined since some transformations aren’t
1-1.

Parameters transformed (np.ndarray) – Array which was previously transformed by
this class.

3.14.2 Specified Usecase Transformers

CoulombFitTransformer

class CoulombFitTransformer(dataset: deepchem.data.datasets.Dataset)
Performs randomization and binarization operations on batches of Coulomb Matrix features during fit.

Examples

>>> n_samples = 10
>>> n_features = 3
>>> n_tasks = 1
>>> ids = np.arange(n_samples)
>>> X = np.random.rand(n_samples, n_features, n_features)
>>> y = np.zeros((n_samples, n_tasks))
>>> w = np.ones((n_samples, n_tasks))
>>> dataset = dc.data.NumpyDataset(X, y, w, ids)
>>> fit_transformers = [dc.trans.CoulombFitTransformer(dataset)]
>>> model = dc.models.MultitaskFitTransformRegressor(n_tasks,
... [n_features, n_features], batch_size=n_samples, fit_transformers=fit_
→˓transformers, n_evals=1)

(continues on next page)
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(continued from previous page)

>>> print(model.n_features)
12

__init__(dataset: deepchem.data.datasets.Dataset)
Initializes CoulombFitTransformer.

Parameters dataset (dc.data.Dataset) – Dataset object to be transformed.

realize(X: numpy.ndarray)→ numpy.ndarray
Randomize features.

Parameters X (np.ndarray) – Features

Returns X – Randomized features

Return type np.ndarray

normalize(X: numpy.ndarray)→ numpy.ndarray
Normalize features.

Parameters X (np.ndarray) – Features

Returns X – Normalized features

Return type np.ndarray

expand(X: numpy.ndarray)→ numpy.ndarray
Binarize features.

Parameters X (np.ndarray) – Features

Returns X – Binarized features

Return type np.ndarray

X_transform(X: numpy.ndarray)→ numpy.ndarray
Perform Coulomb Fit transform on features.

Parameters X (np.ndarray) – Features

Returns X – Transformed features

Return type np.ndarray

transform_array(X: numpy.ndarray, y: numpy.ndarray, w: numpy.ndarray, ids: numpy.ndarray)
→ Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]

Performs randomization and binarization operations on data.

Parameters

• X (np.ndarray) – Array of features

• y (np.ndarray) – Array of labels

• w (np.ndarray) – Array of weights.

• ids (np.ndarray) – Array of identifiers.

Returns

• Xtrans (np.ndarray) – Transformed array of features

• ytrans (np.ndarray) – Transformed array of labels

• wtrans (np.ndarray) – Transformed array of weights

• idstrans (np.ndarray) – Transformed array of ids
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untransform(z)
Not implemented.

transform(dataset: deepchem.data.datasets.Dataset, parallel: bool = False, out_dir: Optional[str] =
None, **kwargs)→ deepchem.data.datasets.Dataset

Transforms all internally stored data in dataset.

This method transforms all internal data in the provided dataset by using the Dataset.transform method.
Note that this method adds X-transform, y-transform columns to metadata. Specified keyword arguments
are passed on to Dataset.transform.

Parameters

• dataset (dc.data.Dataset) – Dataset object to be transformed.

• parallel (bool, optional (default False)) – if True, use multiple pro-
cesses to transform the dataset in parallel. For large datasets, this might be faster.

• out_dir (str, optional) – If out_dir is specified in kwargs and dataset is a Disk-
Dataset, the output dataset will be written to the specified directory.

Returns A newly transformed Dataset object

Return type Dataset

transform_on_array(X: numpy.ndarray, y: numpy.ndarray, w: numpy.ndarray, ids:
numpy.ndarray) → Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray,
numpy.ndarray]

Transforms numpy arrays X, y, and w

DEPRECATED. Use transform_array instead.

Parameters

• X (np.ndarray) – Array of features

• y (np.ndarray) – Array of labels

• w (np.ndarray) – Array of weights.

• ids (np.ndarray) – Array of identifiers.

Returns

• Xtrans (np.ndarray) – Transformed array of features

• ytrans (np.ndarray) – Transformed array of labels

• wtrans (np.ndarray) – Transformed array of weights

• idstrans (np.ndarray) – Transformed array of ids

IRVTransformer

class IRVTransformer(K: int, n_tasks: int, dataset: deepchem.data.datasets.Dataset)
Performs transform from ECFP to IRV features(K nearest neighbors).

This transformer is required by MultitaskIRVClassifier as a preprocessing step before training.
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Examples

Let’s start by defining the parameters of the dataset we’re about to transform.

>>> n_feat = 128
>>> N = 20
>>> n_tasks = 2

Let’s now make our dataset object

>>> import numpy as np
>>> import deepchem as dc
>>> X = np.random.randint(2, size=(N, n_feat))
>>> y = np.zeros((N, n_tasks))
>>> w = np.ones((N, n_tasks))
>>> dataset = dc.data.NumpyDataset(X, y, w)

And let’s apply our transformer with 10 nearest neighbors.

>>> K = 10
>>> trans = dc.trans.IRVTransformer(K, n_tasks, dataset)
>>> dataset = trans.transform(dataset)

Note: This class requires TensorFlow to be installed.

__init__(K: int, n_tasks: int, dataset: deepchem.data.datasets.Dataset)
Initializes IRVTransformer.

Parameters

• K (int) – number of nearest neighbours being count

• n_tasks (int) – number of tasks

• dataset (dc.data.Dataset object) – train_dataset

realize(similarity: numpy.ndarray, y: numpy.ndarray, w: numpy.ndarray)→ List
find samples with top ten similarity values in the reference dataset

Parameters

• similarity (np.ndarray) – similarity value between target dataset and reference
dataset should have size of (n_samples_in_target, n_samples_in_reference)

• y (np.array) – labels for a single task

• w (np.array) – weights for a single task

Returns features – n_samples * np.array of size (2*K,) each array includes K similarity values
and corresponding labels

Return type list

X_transform(X_target: numpy.ndarray)→ numpy.ndarray
Calculate similarity between target dataset(X_target) and reference dataset(X): #(1 in intersection)/#(1 in
union)

similarity = (X_target intersect X)/(X_target union X)

Parameters X_target (np.ndarray) – fingerprints of target dataset should have same
length with X in the second axis
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Returns X_target – features of size(batch_size, 2*K*n_tasks)

Return type np.ndarray

static matrix_mul(X1, X2, shard_size=5000)
Calculate matrix multiplication for big matrix, X1 and X2 are sliced into pieces with shard_size
rows(columns) then multiplied together and concatenated to the proper size

transform(dataset: deepchem.data.datasets.Dataset, parallel: bool = False, out_dir: Op-
tional[str] = None, **kwargs) → Union[deepchem.data.datasets.DiskDataset,
deepchem.data.datasets.NumpyDataset]

Transforms a given dataset

Parameters

• dataset (Dataset) – Dataset to transform

• parallel (bool, optional, (default False)) – Whether to parallelize this
transformation. Currently ignored.

• out_dir (str, optional (default None)) – Directory to write resulting
dataset.

Returns Dataset object that is transformed.

Return type DiskDataset or NumpyDataset

untransform(z)
Not implemented.

transform_array(X: numpy.ndarray, y: numpy.ndarray, w: numpy.ndarray, ids: numpy.ndarray)
→ Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]

Transform the data in a set of (X, y, w, ids) arrays.

Parameters

• X (np.ndarray) – Array of features

• y (np.ndarray) – Array of labels

• w (np.ndarray) – Array of weights.

• ids (np.ndarray) – Array of identifiers.

Returns

• Xtrans (np.ndarray) – Transformed array of features

• ytrans (np.ndarray) – Transformed array of labels

• wtrans (np.ndarray) – Transformed array of weights

• idstrans (np.ndarray) – Transformed array of ids

transform_on_array(X: numpy.ndarray, y: numpy.ndarray, w: numpy.ndarray, ids:
numpy.ndarray) → Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray,
numpy.ndarray]

Transforms numpy arrays X, y, and w

DEPRECATED. Use transform_array instead.

Parameters

• X (np.ndarray) – Array of features

• y (np.ndarray) – Array of labels

• w (np.ndarray) – Array of weights.
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• ids (np.ndarray) – Array of identifiers.

Returns

• Xtrans (np.ndarray) – Transformed array of features

• ytrans (np.ndarray) – Transformed array of labels

• wtrans (np.ndarray) – Transformed array of weights

• idstrans (np.ndarray) – Transformed array of ids

DAGTransformer

class DAGTransformer(max_atoms: int = 50)
Performs transform from ConvMol adjacency lists to DAG calculation orders

This transformer is used by DAGModel before training to transform its inputs to the correct shape. This expan-
sion turns a molecule with n atoms into n DAGs, each with root at a different atom in the molecule.

Examples

Let’s transform a small dataset of molecules.

>>> N = 10
>>> n_feat = 5
>>> import numpy as np
>>> feat = dc.feat.ConvMolFeaturizer()
>>> X = feat(["C", "CC"])
>>> y = np.random.rand(N)
>>> dataset = dc.data.NumpyDataset(X, y)
>>> trans = dc.trans.DAGTransformer(max_atoms=5)
>>> dataset = trans.transform(dataset)

__init__(max_atoms: int = 50)
Initializes DAGTransformer.

Parameters max_atoms (int, optional (Default 50)) – Maximum number of
atoms to allow

transform_array(X: numpy.ndarray, y: numpy.ndarray, w: numpy.ndarray, ids: numpy.ndarray)
→ Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]

Transform the data in a set of (X, y, w, ids) arrays.

Parameters

• X (np.ndarray) – Array of features

• y (np.ndarray) – Array of labels

• w (np.ndarray) – Array of weights.

• ids (np.ndarray) – Array of identifiers.

Returns

• Xtrans (np.ndarray) – Transformed array of features

• ytrans (np.ndarray) – Transformed array of labels

• wtrans (np.ndarray) – Transformed array of weights

• idstrans (np.ndarray) – Transformed array of ids
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untransform(z)
Not implemented.

UG_to_DAG(sample: deepchem.feat.mol_graphs.ConvMol)→ List
This function generates the DAGs for a molecule

Parameters sample (ConvMol) – Molecule to transform

Returns List of parent adjacency matrices

Return type List

transform(dataset: deepchem.data.datasets.Dataset, parallel: bool = False, out_dir: Optional[str] =
None, **kwargs)→ deepchem.data.datasets.Dataset

Transforms all internally stored data in dataset.

This method transforms all internal data in the provided dataset by using the Dataset.transform method.
Note that this method adds X-transform, y-transform columns to metadata. Specified keyword arguments
are passed on to Dataset.transform.

Parameters

• dataset (dc.data.Dataset) – Dataset object to be transformed.

• parallel (bool, optional (default False)) – if True, use multiple pro-
cesses to transform the dataset in parallel. For large datasets, this might be faster.

• out_dir (str, optional) – If out_dir is specified in kwargs and dataset is a Disk-
Dataset, the output dataset will be written to the specified directory.

Returns A newly transformed Dataset object

Return type Dataset

transform_on_array(X: numpy.ndarray, y: numpy.ndarray, w: numpy.ndarray, ids:
numpy.ndarray) → Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray,
numpy.ndarray]

Transforms numpy arrays X, y, and w

DEPRECATED. Use transform_array instead.

Parameters

• X (np.ndarray) – Array of features

• y (np.ndarray) – Array of labels

• w (np.ndarray) – Array of weights.

• ids (np.ndarray) – Array of identifiers.

Returns

• Xtrans (np.ndarray) – Transformed array of features

• ytrans (np.ndarray) – Transformed array of labels

• wtrans (np.ndarray) – Transformed array of weights

• idstrans (np.ndarray) – Transformed array of ids
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ANITransformer

class ANITransformer(max_atoms=23, radial_cutoff=4.6, angular_cutoff=3.1, ra-
dial_length=32, angular_length=8, atom_cases=[1, 6, 7, 8, 16],
atomic_number_differentiated=True, coordinates_in_bohr=True)

Performs transform from 3D coordinates to ANI symmetry functions

Note: This class requires TensorFlow to be installed.

__init__(max_atoms=23, radial_cutoff=4.6, angular_cutoff=3.1, radial_length=32, angu-
lar_length=8, atom_cases=[1, 6, 7, 8, 16], atomic_number_differentiated=True, co-
ordinates_in_bohr=True)

Only X can be transformed

transform_array(X, y, w)
Transform the data in a set of (X, y, w, ids) arrays.

Parameters

• X (np.ndarray) – Array of features

• y (np.ndarray) – Array of labels

• w (np.ndarray) – Array of weights.

• ids (np.ndarray) – Array of identifiers.

Returns

• Xtrans (np.ndarray) – Transformed array of features

• ytrans (np.ndarray) – Transformed array of labels

• wtrans (np.ndarray) – Transformed array of weights

• idstrans (np.ndarray) – Transformed array of ids

untransform(z)
Reverses stored transformation on provided data.

Depending on whether transform_X or transform_y or transform_w was set, this will perform different
un-transformations. Note that this method may not always be defined since some transformations aren’t
1-1.

Parameters transformed (np.ndarray) – Array which was previously transformed by
this class.

build()
tensorflow computation graph for transform

distance_matrix(coordinates, flags)
Generate distance matrix

distance_cutoff(d, cutoff, flags)
Generate distance matrix with trainable cutoff

radial_symmetry(d_cutoff, d, atom_numbers)
Radial Symmetry Function

angular_symmetry(d_cutoff, d, atom_numbers, coordinates)
Angular Symmetry Function
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transform(dataset: deepchem.data.datasets.Dataset, parallel: bool = False, out_dir: Optional[str] =
None, **kwargs)→ deepchem.data.datasets.Dataset

Transforms all internally stored data in dataset.

This method transforms all internal data in the provided dataset by using the Dataset.transform method.
Note that this method adds X-transform, y-transform columns to metadata. Specified keyword arguments
are passed on to Dataset.transform.

Parameters

• dataset (dc.data.Dataset) – Dataset object to be transformed.

• parallel (bool, optional (default False)) – if True, use multiple pro-
cesses to transform the dataset in parallel. For large datasets, this might be faster.

• out_dir (str, optional) – If out_dir is specified in kwargs and dataset is a Disk-
Dataset, the output dataset will be written to the specified directory.

Returns A newly transformed Dataset object

Return type Dataset

transform_on_array(X: numpy.ndarray, y: numpy.ndarray, w: numpy.ndarray, ids:
numpy.ndarray) → Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray,
numpy.ndarray]

Transforms numpy arrays X, y, and w

DEPRECATED. Use transform_array instead.

Parameters

• X (np.ndarray) – Array of features

• y (np.ndarray) – Array of labels

• w (np.ndarray) – Array of weights.

• ids (np.ndarray) – Array of identifiers.

Returns

• Xtrans (np.ndarray) – Transformed array of features

• ytrans (np.ndarray) – Transformed array of labels

• wtrans (np.ndarray) – Transformed array of weights

• idstrans (np.ndarray) – Transformed array of ids

3.14.3 Base Transformer (for develop)

The dc.trans.Transformer class is the abstract parent class for all transformers. This class should never be
directly initialized, but contains a number of useful method implementations.

class Transformer(transform_X: bool = False, transform_y: bool = False, transform_w: bool = False,
transform_ids: bool = False, dataset: Optional[deepchem.data.datasets.Dataset] =
None)

Abstract base class for different data transformation techniques.

A transformer is an object that applies a transformation to a given dataset. Think of a transformation as a math-
ematical operation which makes the source dataset more amenable to learning. For example, one transformer
could normalize the features for a dataset (ensuring they have zero mean and unit standard deviation). Another
transformer could for example threshold values in a dataset so that values outside a given range are truncated.
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Yet another transformer could act as a data augmentation routine, generating multiple different images from
each source datapoint (a transformation need not necessarily be one to one).

Transformers are designed to be chained, since data pipelines often chain multiple different transformations to a
dataset. Transformers are also designed to be scalable and can be applied to large dc.data.Dataset objects. Not
that Transformers are not usually thread-safe so you will have to be careful in processing very large datasets.

This class is an abstract superclass that isn’t meant to be directly instantiated. Instead, you will want to instantiate
one of the subclasses of this class inorder to perform concrete transformations.

__init__(transform_X: bool = False, transform_y: bool = False, transform_w: bool = False, trans-
form_ids: bool = False, dataset: Optional[deepchem.data.datasets.Dataset] = None)

Initializes transformation based on dataset statistics.

Parameters

• transform_X (bool, optional (default False)) – Whether to transform X

• transform_y (bool, optional (default False)) – Whether to transform y

• transform_w (bool, optional (default False)) – Whether to transform w

• transform_ids (bool, optional (default False)) – Whether to trans-
form ids

• dataset (dc.data.Dataset object, optional (default None)) –
Dataset to be transformed

transform(dataset: deepchem.data.datasets.Dataset, parallel: bool = False, out_dir: Optional[str] =
None, **kwargs)→ deepchem.data.datasets.Dataset

Transforms all internally stored data in dataset.

This method transforms all internal data in the provided dataset by using the Dataset.transform method.
Note that this method adds X-transform, y-transform columns to metadata. Specified keyword arguments
are passed on to Dataset.transform.

Parameters

• dataset (dc.data.Dataset) – Dataset object to be transformed.

• parallel (bool, optional (default False)) – if True, use multiple pro-
cesses to transform the dataset in parallel. For large datasets, this might be faster.

• out_dir (str, optional) – If out_dir is specified in kwargs and dataset is a Disk-
Dataset, the output dataset will be written to the specified directory.

Returns A newly transformed Dataset object

Return type Dataset

transform_array(X: numpy.ndarray, y: numpy.ndarray, w: numpy.ndarray, ids: numpy.ndarray)
→ Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]

Transform the data in a set of (X, y, w, ids) arrays.

Parameters

• X (np.ndarray) – Array of features

• y (np.ndarray) – Array of labels

• w (np.ndarray) – Array of weights.

• ids (np.ndarray) – Array of identifiers.

Returns

• Xtrans (np.ndarray) – Transformed array of features
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• ytrans (np.ndarray) – Transformed array of labels

• wtrans (np.ndarray) – Transformed array of weights

• idstrans (np.ndarray) – Transformed array of ids

transform_on_array(X: numpy.ndarray, y: numpy.ndarray, w: numpy.ndarray, ids:
numpy.ndarray) → Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray,
numpy.ndarray]

Transforms numpy arrays X, y, and w

DEPRECATED. Use transform_array instead.

Parameters

• X (np.ndarray) – Array of features

• y (np.ndarray) – Array of labels

• w (np.ndarray) – Array of weights.

• ids (np.ndarray) – Array of identifiers.

Returns

• Xtrans (np.ndarray) – Transformed array of features

• ytrans (np.ndarray) – Transformed array of labels

• wtrans (np.ndarray) – Transformed array of weights

• idstrans (np.ndarray) – Transformed array of ids

untransform(transformed)
Reverses stored transformation on provided data.

Depending on whether transform_X or transform_y or transform_w was set, this will perform different
un-transformations. Note that this method may not always be defined since some transformations aren’t
1-1.

Parameters transformed (np.ndarray) – Array which was previously transformed by
this class.

3.15 Model Classes

DeepChem maintains an extensive collection of models for scientific applications. DeepChem’s focus is on facilitating
scientific applications, so we support a broad range of different machine learning frameworks (currently scikit-learn,
xgboost, TensorFlow, and PyTorch) since different frameworks are more and less suited for different scientific appli-
cations.

3.15.1 Model Cheatsheet

If you’re just getting started with DeepChem, you’re probably interested in the basics. The place to get started
is this “model cheatsheet” that lists various types of custom DeepChem models. Note that some wrappers like
SklearnModel and GBDTModel which wrap external machine learning libraries are excluded, but this table is
otherwise complete.

As a note about how to read this table, each row describes what’s needed to invoke a given model. Some models must
be applied with given Transformer or Featurizer objects. Some models also have custom training methods.
You can read off what’s needed to train the model from the table below.
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Model Type Input Type Trans-
for-
ma-
tions

Acceptable Featurizers Fit
Method

AtomicConvModelClas-
sifier/
Re-
gres-
sor

Tuple ComplexNeighborListFragmentAtomicCoordinatesfit

ChemCeptionClas-
sifier/
Re-
gres-
sor

Tensor of shape
(N, M, c)

SmilesToImage fit

CNN Clas-
sifier/
Re-
gres-
sor

Tensor of shape
(N, c) or (N,
M, c) or (N,
M, L, c)

fit

DTNNModel Clas-
sifier/
Re-
gres-
sor

Matrix of shape
(N, N)

CoulombMatrix fit

DAGModel Clas-
sifier/
Re-
gres-
sor

ConvMol DAGTransformerConvMolFeaturizer fit

GraphConvModelClas-
sifier/
Re-
gres-
sor

ConvMol ConvMolFeaturizer fit

MPNNModel Clas-
sifier/
Re-
gres-
sor

WeaveMol WeaveFeaturizer fit

MultitaskClassifierClas-
sifier

Vector of shape
(N,)

CircularFingerprint,
RDKitDescriptors, CoulombMatrixEig,
RdkitGridFeaturizer,
BindingPocketFeaturizer,
ElementPropertyFingerprint,

fit

MultitaskRegressorRe-
gres-
sor

Vector of shape
(N,)

CircularFingerprint,
RDKitDescriptors, CoulombMatrixEig,
RdkitGridFeaturizer,
BindingPocketFeaturizer,
ElementPropertyFingerprint,

fit

MultitaskFitTransformRegressorRe-
gres-
sor

Vector of shape
(N,)

Any CircularFingerprint,
RDKitDescriptors, CoulombMatrixEig,
RdkitGridFeaturizer,
BindingPocketFeaturizer,
ElementPropertyFingerprint,

fit

MultitaskIRVClassifierClas-
sifier

Vector of shape
(N,)

IRVTransformerCircularFingerprint,
RDKitDescriptors, CoulombMatrixEig,
RdkitGridFeaturizer,
BindingPocketFeaturizer,
ElementPropertyFingerprint,

fit

ProgressiveMultitaskClassifierClas-
sifier

Vector of shape
(N,)

CircularFingerprint,
RDKitDescriptors, CoulombMatrixEig,
RdkitGridFeaturizer,
BindingPocketFeaturizer,
ElementPropertyFingerprint,

fit

ProgressiveMultitaskRegressorRe-
gres-
sor

Vector of shape
(N,)

CircularFingerprint,
RDKitDescriptors, CoulombMatrixEig,
RdkitGridFeaturizer,
BindingPocketFeaturizer,
ElementPropertyFingerprint,

fit

RobustMultitaskClassifierClas-
sifier

Vector of shape
(N,)

CircularFingerprint,
RDKitDescriptors, CoulombMatrixEig,
RdkitGridFeaturizer,
BindingPocketFeaturizer,
ElementPropertyFingerprint,

fit

RobustMultitaskRegressorRe-
gres-
sor

Vector of shape
(N,)

CircularFingerprint,
RDKitDescriptors, CoulombMatrixEig,
RdkitGridFeaturizer,
BindingPocketFeaturizer,
ElementPropertyFingerprint,

fit

ScScoreModelClas-
sifier

Vector of shape
(N,)

CircularFingerprint,
RDKitDescriptors, CoulombMatrixEig,
RdkitGridFeaturizer,
BindingPocketFeaturizer,
ElementPropertyFingerprint,

fit

SeqToSeq Se-
quence

Sequence fit_sequences

Smiles2Vec Clas-
sifier/
Re-
gres-
sor

Sequence SmilesToSeq fit

TextCNNModelClas-
sifier/
Re-
gres-
sor

String fit

WGAN Ad-
ver-
sarial

Pair fit_gan

CGCNNModel Clas-
sifier/
Re-
gres-
sor

GraphData CGCNNFeaturizer fit

GATModel Clas-
sifier/
Re-
gres-
sor

GraphData MolGraphConvFeaturizer fit

GCNModel Clas-
sifier/
Re-
gres-
sor

GraphData MolGraphConvFeaturizer fit

AttentiveFPModelClas-
sifier/
Re-
gres-
sor

GraphData MolGraphConvFeaturizer fit

LCCNModel Re-
gres-
sor

GraphData LCNNFeaturizer fit
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3.15.2 Model

class Model(model=None, model_dir: Optional[str] = None, **kwargs)
Abstract base class for DeepChem models.

__init__(model=None, model_dir: Optional[str] = None, **kwargs)→ None
Abstract class for all models.

This is intended only for convenience of subclass implementations and should not be invoked directly.

Parameters

• model (object) – Wrapper around ScikitLearn/Keras/Tensorflow model object.

• model_dir (str, optional (default None)) – Path to directory where model
will be stored. If not specified, model will be stored in a temporary directory.

fit_on_batch(X: Sequence, y: Sequence, w: Sequence)
Perform a single step of training.

Parameters

• X (np.ndarray) – the inputs for the batch

• y (np.ndarray) – the labels for the batch

• w (np.ndarray) – the weights for the batch

predict_on_batch(X: Union[numpy.ndarray, Sequence])
Makes predictions on given batch of new data.

Parameters X (np.ndarray) – Features

reload()→ None
Reload trained model from disk.

static get_model_filename(model_dir: str)→ str
Given model directory, obtain filename for the model itself.

static get_params_filename(model_dir: str)→ str
Given model directory, obtain filename for the model itself.

save()→ None
Dispatcher function for saving.

Each subclass is responsible for overriding this method.

fit(dataset: deepchem.data.datasets.Dataset)
Fits a model on data in a Dataset object.

Parameters dataset (Dataset) – the Dataset to train on

predict(dataset: deepchem.data.datasets.Dataset, transformers: List[transformers.Transformer] =
[])→ numpy.ndarray

Uses self to make predictions on provided Dataset object.

Parameters

• dataset (Dataset) – Dataset to make prediction on

• transformers (List[Transformer]) – Transformers that the input data has been
transformed by. The output is passed through these transformers to undo the transforma-
tions.

Returns A numpy array of predictions the model produces.

Return type np.ndarray
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evaluate(dataset: deepchem.data.datasets.Dataset, metrics: List[deepchem.metrics.metric.Metric],
transformers: List[transformers.Transformer] = [], per_task_metrics: bool = False,
use_sample_weights: bool = False, n_classes: int = 2)

Evaluates the performance of this model on specified dataset.

This function uses Evaluator under the hood to perform model evaluation. As a result, it inherits the same
limitations of Evaluator. Namely, that only regression and classification models can be evaluated in this
fashion. For generator models, you will need to overwrite this method to perform a custom evaluation.

Keyword arguments specified here will be passed to Evaluator.compute_model_performance.

Parameters

• dataset (Dataset) – Dataset object.

• metrics (Metric / List[Metric] / function) – The set of metrics pro-
vided. This class attempts to do some intelligent handling of input. If a single
dc.metrics.Metric object is provided or a list is provided, it will evaluate self.model on
these metrics. If a function is provided, it is assumed to be a metric function that this
method will attempt to wrap in a dc.metrics.Metric object. A metric function must accept
two arguments, y_true, y_pred both of which are np.ndarray objects and return a floating
point score. The metric function may also accept a keyword argument sample_weight to
account for per-sample weights.

• transformers (List[Transformer]) – List of dc.trans.Transformer objects.
These transformations must have been applied to dataset previously. The dataset will
be untransformed for metric evaluation.

• per_task_metrics (bool, optional (default False)) – If true, return
computed metric for each task on multitask dataset.

• use_sample_weights (bool, optional (default False)) – If set, use
per-sample weights w.

• n_classes (int, optional (default None)) – If specified, will use
n_classes as the number of unique classes in self.dataset. Note that this argument will
be ignored for regression metrics.

Returns

• multitask_scores (dict) – Dictionary mapping names of metrics to metric scores.

• all_task_scores (dict, optional) – If per_task_metrics == True is passed as a keyword
argument, then returns a second dictionary of scores for each task separately.

get_task_type()→ str
Currently models can only be classifiers or regressors.

get_num_tasks()→ int
Get number of tasks.
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3.16 Scikit-Learn Models

Scikit-learn’s models can be wrapped so that they can interact conveniently with DeepChem. Oftentimes scikit-learn
models are more robust and easier to train and are a nice first model to train.

3.16.1 SklearnModel

class SklearnModel(model: sklearn.base.BaseEstimator, model_dir: Optional[str] = None, **kwargs)
Wrapper class that wraps scikit-learn models as DeepChem models.

When you’re working with scikit-learn and DeepChem, at times it can be useful to wrap a scikit-learn model as a
DeepChem model. The reason for this might be that you want to do an apples-to-apples comparison of a scikit-
learn model to another DeepChem model, or perhaps you want to use the hyperparameter tuning capabilities in
dc.hyper. The SklearnModel class provides a wrapper around scikit-learn models that allows scikit-learn models
to be trained on Dataset objects and evaluated with the same metrics as other DeepChem models.

Notes

All SklearnModels perform learning solely in memory. This means that it may not be possible to train Sklearn-
Model on large `Dataset`s.

__init__(model: sklearn.base.BaseEstimator, model_dir: Optional[str] = None, **kwargs)

Parameters

• model (BaseEstimator) – The model instance which inherits a scikit-learn BaseEs-
timator Class.

• model_dir (str, optional (default None)) – If specified the model will be
stored in this directory. Else, a temporary directory will be used.

• model_instance (BaseEstimator (DEPRECATED)) – The model instance
which inherits a scikit-learn BaseEstimator Class.

• kwargs (dict) – kwargs[‘use_weights’] is a bool which determines if we pass weights
into self.model.fit().

fit(dataset: deepchem.data.datasets.Dataset)→ None
Fits scikit-learn model to data.

Parameters dataset (Dataset) – The Dataset to train this model on.

predict_on_batch(X: Union[numpy.ndarray, Sequence])→ numpy.ndarray
Makes predictions on batch of data.

Parameters X (np.ndarray) – A numpy array of features.

Returns The value is a return value of predict_proba or predict method of the scikit-learn
model. If the scikit-learn model has both methods, the value is always a return value of
predict_proba.

Return type np.ndarray

predict(X: deepchem.data.datasets.Dataset, transformers: List[transformers.Transformer] = []) →
numpy.ndarray

Makes predictions on dataset.

Parameters

• dataset (Dataset) – Dataset to make prediction on.
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• transformers (List[Transformer]) – Transformers that the input data has been
transformed by. The output is passed through these transformers to undo the transforma-
tions.

save()
Saves scikit-learn model to disk using joblib.

reload()
Loads scikit-learn model from joblib file on disk.

3.17 Gradient Boosting Models

Gradient Boosting Models (LightGBM and XGBoost) can be wrapped so they can interact with DeepChem.

3.17.1 GBDTModel

class GBDTModel(model: sklearn.base.BaseEstimator, model_dir: Optional[str] = None,
early_stopping_rounds: int = 50, eval_metric: Optional[Union[Callable, str]] =
None, **kwargs)

Wrapper class that wraps GBDT models as DeepChem models.

This class supports LightGBM/XGBoost models.

__init__(model: sklearn.base.BaseEstimator, model_dir: Optional[str] = None,
early_stopping_rounds: int = 50, eval_metric: Optional[Union[Callable, str]] = None,
**kwargs)

Parameters

• model (BaseEstimator) – The model instance of scikit-learn wrapper Light-
GBM/XGBoost models.

• model_dir (str, optional (default None)) – Path to directory where model
will be stored.

• early_stopping_rounds (int, optional (default 50)) – Acti-
vates early stopping. Validation metric needs to improve at least once in every
early_stopping_rounds round(s) to continue training.

• eval_metric (Union[str, Callbale]) – If string, it should be a built-in evalua-
tion metric to use. If callable, it should be a custom evaluation metric, see official note for
more details.

fit(dataset: deepchem.data.datasets.Dataset)
Fits GDBT model with all data.

First, this function splits all data into train and valid data (8:2), and finds the best n_estimators. And then,
we retrain all data using best n_estimators * 1.25.

Parameters dataset (Dataset) – The Dataset to train this model on.

fit_with_eval(train_dataset: deepchem.data.datasets.Dataset, valid_dataset:
deepchem.data.datasets.Dataset)

Fits GDBT model with valid data.

Parameters

• train_dataset (Dataset) – The Dataset to train this model on.

• valid_dataset (Dataset) – The Dataset to validate this model on.
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3.18 Deep Learning Infrastructure

DeepChem maintains a lightweight layer of common deep learning model infrastructure that can be used for models
built with different underlying frameworks. The losses and optimizers can be used for both TensorFlow and PyTorch
models.

3.18.1 Losses

class Loss
A loss function for use in training models.

class L1Loss
The absolute difference between the true and predicted values.

class L2Loss
The squared difference between the true and predicted values.

class HingeLoss
The hinge loss function.

The ‘output’ argument should contain logits, and all elements of ‘labels’ should equal 0 or 1.

class BinaryCrossEntropy
The cross entropy between pairs of probabilities.

The arguments should each have shape (batch_size) or (batch_size, tasks) and contain probabilities.

class CategoricalCrossEntropy
The cross entropy between two probability distributions.

The arguments should each have shape (batch_size, classes) or (batch_size, tasks, classes), and represent a
probability distribution over classes.

class SigmoidCrossEntropy
The cross entropy between pairs of probabilities.

The arguments should each have shape (batch_size) or (batch_size, tasks). The labels should be probabilities,
while the outputs should be logits that are converted to probabilities using a sigmoid function.

class SoftmaxCrossEntropy
The cross entropy between two probability distributions.

The arguments should each have shape (batch_size, classes) or (batch_size, tasks, classes). The labels should
be probabilities, while the outputs should be logits that are converted to probabilities using a softmax function.

class SparseSoftmaxCrossEntropy
The cross entropy between two probability distributions.

The labels should have shape (batch_size) or (batch_size, tasks), and be integer class labels. The outputs have
shape (batch_size, classes) or (batch_size, tasks, classes) and be logits that are converted to probabilities using
a softmax function.

class VAE_ELBO
The Variational AutoEncoder loss, KL Divergence Regularize + marginal log-likelihood.

This losses based on _[1]. ELBO(Evidence lower bound) lexically replaced Variational lower bound. BCE
means marginal log-likelihood, and KLD means KL divergence with normal distribution. Added hyper param-
eter ‘kl_scale’ for KLD.

The logvar and mu should have shape (batch_size, hidden_space). The x and reconstruction_x should have
(batch_size, attribute). The kl_scale should be float.
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Examples

Examples for calculating loss using constant tensor.

batch_size = 2, hidden_space = 2, num of original attribute = 3 >>> import numpy as np >>> import torch >>>
import tensorflow as tf >>> logvar = np.array([[1.0,1.3],[0.6,1.2]]) >>> mu = np.array([[0.2,0.7],[1.2,0.4]]) >>>
x = np.array([[0.9,0.4,0.8],[0.3,0,1]]) >>> reconstruction_x = np.array([[0.8,0.3,0.7],[0.2,0,0.9]])

Case tensorflow >>> VAE_ELBO()._compute_tf_loss(tf.constant(logvar), tf.constant(mu), tf.constant(x),
tf.constant(reconstruction_x)) <tf.Tensor: shape=(2,), dtype=float64, numpy=array([0.70165154,
0.76238271])>

Case pytorch >>> (VAE_ELBO()._create_pytorch_loss())(torch.tensor(logvar), torch.tensor(mu),
torch.tensor(x), torch.tensor(reconstruction_x)) tensor([0.7017, 0.7624], dtype=torch.float64)

References

class VAE_KLDivergence
The KL_divergence between hidden distribution and normal distribution.

This loss represents KL divergence losses between normal distribution(using parameter of distribution) based
on _[1].

The logvar should have shape (batch_size, hidden_space) and each term represents standard deviation of hid-
den distribution. The mean shuold have (batch_size, hidden_space) and each term represents mean of hidden
distribtuon.

Examples

Examples for calculating loss using constant tensor.

batch_size = 2, hidden_space = 2, >>> import numpy as np >>> import torch >>> import tensorflow as tf >>>
logvar = np.array([[1.0,1.3],[0.6,1.2]]) >>> mu = np.array([[0.2,0.7],[1.2,0.4]])

Case tensorflow >>> VAE_KLDivergence()._compute_tf_loss(tf.constant(logvar), tf.constant(mu)) <tf.Tensor:
shape=(2,), dtype=float64, numpy=array([0.17381787, 0.51425203])>

Case pytorch >>> (VAE_KLDivergence()._create_pytorch_loss())(torch.tensor(logvar), torch.tensor(mu)) ten-
sor([0.1738, 0.5143], dtype=torch.float64)

References

class ShannonEntropy
The ShannonEntropy of discrete-distribution.

This loss represents shannon entropy based on _[1].

The inputs should have shape (batch size, num of variable) and represents probabilites distribution.
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Examples

Examples for calculating loss using constant tensor.

batch_size = 2, num_of variable = variable, >>> import numpy as np >>> import torch >>> import tensorflow
as tf >>> inputs = np.array([[0.7,0.3],[0.9,0.1]])

Case tensorflow >>> ShannonEntropy()._compute_tf_loss(tf.constant(inputs)) <tf.Tensor: shape=(2,),
dtype=float64, numpy=array([0.30543215, 0.16254149])>

Case pytorch >>> (ShannonEntropy()._create_pytorch_loss())(torch.tensor(inputs)) tensor([0.3054, 0.1625],
dtype=torch.float64)

References

3.18.2 Optimizers

class Optimizer(learning_rate: Union[float, deepchem.models.optimizers.LearningRateSchedule])
An algorithm for optimizing a model.

This is an abstract class. Subclasses represent specific optimization algorithms.

__init__(learning_rate: Union[float, deepchem.models.optimizers.LearningRateSchedule])
This constructor should only be called by subclasses.

Parameters learning_rate (float or LearningRateSchedule) – the learning
rate to use for optimization

class LearningRateSchedule
A schedule for changing the learning rate over the course of optimization.

This is an abstract class. Subclasses represent specific schedules.

class AdaGrad(learning_rate: Union[float, deepchem.models.optimizers.LearningRateSchedule] =
0.001, initial_accumulator_value: float = 0.1, epsilon: float = 1e-07)

The AdaGrad optimization algorithm.

Adagrad is an optimizer with parameter-specific learning rates, which are adapted relative to how frequently a
parameter gets updated during training. The more updates a parameter receives, the smaller the updates. See
[1]_ for a full reference for the algorithm.

References

__init__(learning_rate: Union[float, deepchem.models.optimizers.LearningRateSchedule] = 0.001,
initial_accumulator_value: float = 0.1, epsilon: float = 1e-07)

Construct an AdaGrad optimizer. :param learning_rate: the learning rate to use for optimization :type
learning_rate: float or LearningRateSchedule :param initial_accumulator_value: a parameter of the Ada-
Grad algorithm :type initial_accumulator_value: float :param epsilon: a parameter of the AdaGrad algo-
rithm :type epsilon: float

class Adam(learning_rate: Union[float, deepchem.models.optimizers.LearningRateSchedule] = 0.001,
beta1: float = 0.9, beta2: float = 0.999, epsilon: float = 1e-08)

The Adam optimization algorithm.

__init__(learning_rate: Union[float, deepchem.models.optimizers.LearningRateSchedule] = 0.001,
beta1: float = 0.9, beta2: float = 0.999, epsilon: float = 1e-08)

Construct an Adam optimizer.

Parameters
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• learning_rate (float or LearningRateSchedule) – the learning rate to
use for optimization

• beta1 (float) – a parameter of the Adam algorithm

• beta2 (float) – a parameter of the Adam algorithm

• epsilon (float) – a parameter of the Adam algorithm

class RMSProp(learning_rate: Union[float, deepchem.models.optimizers.LearningRateSchedule] =
0.001, momentum: float = 0.0, decay: float = 0.9, epsilon: float = 1e-10)

RMSProp Optimization algorithm.

__init__(learning_rate: Union[float, deepchem.models.optimizers.LearningRateSchedule] = 0.001,
momentum: float = 0.0, decay: float = 0.9, epsilon: float = 1e-10)

Construct an RMSProp Optimizer.

Parameters

• learning_rate (float or LearningRateSchedule) – the learning_rate used
for optimization

• momentum (float, default 0.0) – a parameter of the RMSProp algorithm

• decay (float, default 0.9) – a parameter of the RMSProp algorithm

• epsilon (float, default 1e-10) – a parameter of the RMSProp algorithm

class GradientDescent(learning_rate: Union[float, deepchem.models.optimizers.LearningRateSchedule]
= 0.001)

The gradient descent optimization algorithm.

__init__(learning_rate: Union[float, deepchem.models.optimizers.LearningRateSchedule] = 0.001)
Construct a gradient descent optimizer.

Parameters learning_rate (float or LearningRateSchedule) – the learning
rate to use for optimization

class ExponentialDecay(initial_rate: float, decay_rate: float, decay_steps: int, staircase: bool =
True)

A learning rate that decreases exponentially with the number of training steps.

__init__(initial_rate: float, decay_rate: float, decay_steps: int, staircase: bool = True)
Create an exponentially decaying learning rate.

The learning rate starts as initial_rate. Every decay_steps training steps, it is multiplied by decay_rate.

Parameters

• initial_rate (float) – the initial learning rate

• decay_rate (float) – the base of the exponential

• decay_steps (int) – the number of training steps over which the rate decreases by
decay_rate

• staircase (bool) – if True, the learning rate decreases by discrete jumps every de-
cay_steps. if False, the learning rate decreases smoothly every step

class PolynomialDecay(initial_rate: float, final_rate: float, decay_steps: int, power: float = 1.0)
A learning rate that decreases from an initial value to a final value over a fixed number of training steps.

__init__(initial_rate: float, final_rate: float, decay_steps: int, power: float = 1.0)
Create a smoothly decaying learning rate.
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The learning rate starts as initial_rate. It smoothly decreases to final_rate over decay_steps training steps.
It decays as a function of (1-step/decay_steps)**power. Once the final rate is reached, it remains there for
the rest of optimization.

Parameters

• initial_rate (float) – the initial learning rate

• final_rate (float) – the final learning rate

• decay_steps (int) – the number of training steps over which the rate decreases from
initial_rate to final_rate

• power (float) – the exponent controlling the shape of the decay

class LinearCosineDecay(initial_rate: float, decay_steps: int, alpha: float = 0.0, beta: float = 0.001,
num_periods: float = 0.5)

Applies linear cosine decay to the learning rate

__init__(initial_rate: float, decay_steps: int, alpha: float = 0.0, beta: float = 0.001, num_periods:
float = 0.5)

Parameters

• learning_rate (float) –

• learning rate (initial) –

• decay_steps (int) –

• of steps to decay over (number) –

• num_periods (number of periods in the cosine part of the
decay) –

3.19 Keras Models

DeepChem extensively uses Keras to build deep learning models.

3.19.1 KerasModel

Training loss and validation metrics can be automatically logged to Weights & Biases with the following commands:

# Install wandb in shell
pip install wandb

# Login in shell (required only once)
wandb login

# Start a W&B run in your script (refer to docs for optional parameters)
wandb.init(project="my project")

# Set `wandb` arg when creating `KerasModel`
model = KerasModel(..., wandb=True)
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class KerasModel(model: tensorflow.python.keras.engine.training.Model, loss:
Union[deepchem.models.losses.Loss, Callable[[List, List, List], Any]], output_types:
Optional[List[str]] = None, batch_size: int = 100, model_dir: Optional[str] = None,
learning_rate: Union[float, deepchem.models.optimizers.LearningRateSchedule]
= 0.001, optimizer: Optional[deepchem.models.optimizers.Optimizer] = None,
tensorboard: bool = False, wandb: bool = False, log_frequency: int = 100,
**kwargs)

This is a DeepChem model implemented by a Keras model.

This class provides several advantages over using the Keras model’s fitting and prediction methods directly.

1. It provides better integration with the rest of DeepChem, such as direct support for Datasets and Trans-
formers.

2. It defines the loss in a more flexible way. In particular, Keras does not support multidimensional weight
matrices, which makes it impossible to implement most multitask models with Keras.

3. It provides various additional features not found in the Keras Model class, such as uncertainty prediction
and saliency mapping.

Here is a simple example of code that uses KerasModel to train a Keras model on a DeepChem dataset.

>> keras_model = tf.keras.Sequential([ >> tf.keras.layers.Dense(1000, activation=’tanh’), >>
tf.keras.layers.Dense(1) >> ]) >> model = KerasModel(keras_model, loss=dc.models.losses.L2Loss()) >>
model.fit(dataset)

The loss function for a model can be defined in two different ways. For models that have only a single output
and use a standard loss function, you can simply provide a dc.models.losses.Loss object. This defines the loss
for each sample or sample/task pair. The result is automatically multiplied by the weights and averaged over the
batch. Any additional losses computed by model layers, such as weight decay penalties, are also added.

For more complicated cases, you can instead provide a function that directly computes the total loss. It must be
of the form f(outputs, labels, weights), taking the list of outputs from the model, the expected values, and any
weight matrices. It should return a scalar equal to the value of the loss function for the batch. No additional
processing is done to the result; it is up to you to do any weighting, averaging, adding of penalty terms, etc.

You can optionally provide an output_types argument, which describes how to interpret the model’s outputs.
This should be a list of strings, one for each output. You can use an arbitrary output_type for a output, but some
output_types are special and will undergo extra processing:

• ‘prediction’: This is a normal output, and will be returned by predict(). If output types are not specified,
all outputs are assumed to be of this type.

• ‘loss’: This output will be used in place of the normal outputs for computing the loss function. For
example, models that output probability distributions usually do it by computing unbounded numbers (the
logits), then passing them through a softmax function to turn them into probabilities. When computing
the cross entropy, it is more numerically stable to use the logits directly rather than the probabilities.
You can do this by having the model produce both probabilities and logits as outputs, then specifying
output_types=[‘prediction’, ‘loss’]. When predict() is called, only the first output (the probabilities) will
be returned. But during training, it is the second output (the logits) that will be passed to the loss function.

• ‘variance’: This output is used for estimating the uncertainty in another output. To create a model that can
estimate uncertainty, there must be the same number of ‘prediction’ and ‘variance’ outputs. Each variance
output must have the same shape as the corresponding prediction output, and each element is an estimate
of the variance in the corresponding prediction. Also be aware that if a model supports uncertainty, it
MUST use dropout on every layer, and dropout most be enabled during uncertainty prediction. Otherwise,
the uncertainties it computes will be inaccurate.

• other: Arbitrary output_types can be used to extract outputs produced by the model, but will have no
additional processing performed.
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__init__(model: tensorflow.python.keras.engine.training.Model, loss:
Union[deepchem.models.losses.Loss, Callable[[List, List, List], Any]], output_types:
Optional[List[str]] = None, batch_size: int = 100, model_dir: Optional[str] = None,
learning_rate: Union[float, deepchem.models.optimizers.LearningRateSchedule] = 0.001,
optimizer: Optional[deepchem.models.optimizers.Optimizer] = None, tensorboard: bool =
False, wandb: bool = False, log_frequency: int = 100, **kwargs)→ None

Create a new KerasModel.

Parameters

• model (tf.keras.Model) – the Keras model implementing the calculation

• loss (dc.models.losses.Loss or function) – a Loss or function defining
how to compute the training loss for each batch, as described above

• output_types (list of strings) – the type of each output from the model, as
described above

• batch_size (int) – default batch size for training and evaluating

• model_dir (str) – the directory on disk where the model will be stored. If this is None,
a temporary directory is created.

• learning_rate (float or LearningRateSchedule) – the learning rate to
use for fitting. If optimizer is specified, this is ignored.

• optimizer (Optimizer) – the optimizer to use for fitting. If this is specified, learn-
ing_rate is ignored.

• tensorboard (bool) – whether to log progress to TensorBoard during training

• wandb (bool) – whether to log progress to Weights & Biases during training

• log_frequency (int) – The frequency at which to log data. Data is logged using
logging by default. If tensorboard is set, data is also logged to TensorBoard. If wandb is
set, data is also logged to Weights & Biases. Logging happens at global steps. Roughly,
a global step corresponds to one batch of training. If you’d like a printout every 10 batch
steps, you’d set log_frequency=10 for example.

fit(dataset: deepchem.data.datasets.Dataset, nb_epoch: int = 10, max_checkpoints_to_keep: int = 5,
checkpoint_interval: int = 1000, deterministic: bool = False, restore: bool = False, variables:
Optional[List[tensorflow.python.ops.variables.Variable]] = None, loss: Optional[Callable[[List,
List, List], Any]] = None, callbacks: Union[Callable, List[Callable]] = [], all_losses: Op-
tional[List[float]] = None)→ float
Train this model on a dataset.

Parameters

• dataset (Dataset) – the Dataset to train on

• nb_epoch (int) – the number of epochs to train for

• max_checkpoints_to_keep (int) – the maximum number of checkpoints to keep.
Older checkpoints are discarded.

• checkpoint_interval (int) – the frequency at which to write checkpoints, mea-
sured in training steps. Set this to 0 to disable automatic checkpointing.

• deterministic (bool) – if True, the samples are processed in order. If False, a
different random order is used for each epoch.

• restore (bool) – if True, restore the model from the most recent checkpoint and con-
tinue training from there. If False, retrain the model from scratch.
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• variables (list of tf.Variable) – the variables to train. If None (the default),
all trainable variables in the model are used.

• loss (function) – a function of the form f(outputs, labels, weights) that computes the
loss for each batch. If None (the default), the model’s standard loss function is used.

• callbacks (function or list of functions) – one or more functions of the
form f(model, step) that will be invoked after every step. This can be used to perform
validation, logging, etc.

• all_losses (Optional[List[float]], optional (default None)) –
If specified, all logged losses are appended into this list. Note that you can call fit() repeat-
edly with the same list and losses will continue to be appended.

Returns

Return type The average loss over the most recent checkpoint interval

fit_generator(generator: Iterable[Tuple[Any, Any, Any]], max_checkpoints_to_keep: int
= 5, checkpoint_interval: int = 1000, restore: bool = False, vari-
ables: Optional[List[tensorflow.python.ops.variables.Variable]] = None, loss: Op-
tional[Callable[[List, List, List], Any]] = None, callbacks: Union[Callable,
List[Callable]] = [], all_losses: Optional[List[float]] = None)→ float

Train this model on data from a generator.

Parameters

• generator (generator) – this should generate batches, each represented as a tuple
of the form (inputs, labels, weights).

• max_checkpoints_to_keep (int) – the maximum number of checkpoints to keep.
Older checkpoints are discarded.

• checkpoint_interval (int) – the frequency at which to write checkpoints, mea-
sured in training steps. Set this to 0 to disable automatic checkpointing.

• restore (bool) – if True, restore the model from the most recent checkpoint and con-
tinue training from there. If False, retrain the model from scratch.

• variables (list of tf.Variable) – the variables to train. If None (the default),
all trainable variables in the model are used.

• loss (function) – a function of the form f(outputs, labels, weights) that computes the
loss for each batch. If None (the default), the model’s standard loss function is used.

• callbacks (function or list of functions) – one or more functions of the
form f(model, step) that will be invoked after every step. This can be used to perform
validation, logging, etc.

• all_losses (Optional[List[float]], optional (default None)) –
If specified, all logged losses are appended into this list. Note that you can call fit() repeat-
edly with the same list and losses will continue to be appended.

Returns

Return type The average loss over the most recent checkpoint interval

fit_on_batch(X: Sequence, y: Sequence, w: Sequence, variables: Op-
tional[List[tensorflow.python.ops.variables.Variable]] = None, loss: Op-
tional[Callable[[List, List, List], Any]] = None, callbacks: Union[Callable,
List[Callable]] = [], checkpoint: bool = True, max_checkpoints_to_keep: int = 5)→
float

Perform a single step of training.
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Parameters

• X (ndarray) – the inputs for the batch

• y (ndarray) – the labels for the batch

• w (ndarray) – the weights for the batch

• variables (list of tf.Variable) – the variables to train. If None (the default),
all trainable variables in the model are used.

• loss (function) – a function of the form f(outputs, labels, weights) that computes the
loss for each batch. If None (the default), the model’s standard loss function is used.

• callbacks (function or list of functions) – one or more functions of the
form f(model, step) that will be invoked after every step. This can be used to perform
validation, logging, etc.

• checkpoint (bool) – if true, save a checkpoint after performing the training step

• max_checkpoints_to_keep (int) – the maximum number of checkpoints to keep.
Older checkpoints are discarded.

Returns

Return type the loss on the batch

predict_on_generator(generator: Iterable[Tuple[Any, Any, Any]], transform-
ers: List[transformers.Transformer] = [], outputs: Op-
tional[Union[tensorflow.python.framework.ops.Tensor, Se-
quence[tensorflow.python.framework.ops.Tensor]]] = None, output_types:
Optional[Union[str, Sequence[str]]] = None) → Union[numpy.ndarray,
Sequence[numpy.ndarray]]

Parameters

• generator (generator) – this should generate batches, each represented as a tuple
of the form (inputs, labels, weights).

• transformers (list of dc.trans.Transformers) – Transformers that the
input data has been transformed by. The output is passed through these transformers to
undo the transformations.

• outputs (Tensor or list of Tensors) – The outputs to return. If this is None,
the model’s standard prediction outputs will be returned. Alternatively one or more Ten-
sors within the model may be specified, in which case the output of those Tensors will be
returned. If outputs is specified, output_types must be None.

• output_types (String or list of Strings) – If specified, all outputs of this
type will be retrieved from the model. If output_types is specified, outputs must be None.

• Returns – a NumPy array of the model produces a single output, or a list of arrays if it
produces multiple outputs

predict_on_batch(X: Union[numpy.ndarray, Sequence], transformers:
List[transformers.Transformer] = [], outputs: Op-
tional[Union[tensorflow.python.framework.ops.Tensor, Se-
quence[tensorflow.python.framework.ops.Tensor]]] = None) →
Union[numpy.ndarray, Sequence[numpy.ndarray]]

Generates predictions for input samples, processing samples in a batch.

Parameters

• X (ndarray) – the input data, as a Numpy array.
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• transformers (list of dc.trans.Transformers) – Transformers that the
input data has been transformed by. The output is passed through these transformers to
undo the transformations.

• outputs (Tensor or list of Tensors) – The outputs to return. If this is None,
the model’s standard prediction outputs will be returned. Alternatively one or more Ten-
sors within the model may be specified, in which case the output of those Tensors will be
returned.

Returns

• a NumPy array of the model produces a single output, or a list of arrays

• if it produces multiple outputs

predict_uncertainty_on_batch(X: Sequence, masks: int = 50) →
Union[Tuple[numpy.ndarray, numpy.ndarray], Se-
quence[Tuple[numpy.ndarray, numpy.ndarray]]]

Predict the model’s outputs, along with the uncertainty in each one.

The uncertainty is computed as described in https://arxiv.org/abs/1703.04977. It involves repeating the
prediction many times with different dropout masks. The prediction is computed as the average over
all the predictions. The uncertainty includes both the variation among the predicted values (epistemic
uncertainty) and the model’s own estimates for how well it fits the data (aleatoric uncertainty). Not all
models support uncertainty prediction.

Parameters

• X (ndarray) – the input data, as a Numpy array.

• masks (int) – the number of dropout masks to average over

Returns

• for each output, a tuple (y_pred, y_std) where y_pred is the predicted

• value of the output, and each element of y_std estimates the standard

• deviation of the corresponding element of y_pred

predict(dataset: deepchem.data.datasets.Dataset, transformers: List[transformers.Transformer]
= [], outputs: Optional[Union[tensorflow.python.framework.ops.Tensor, Se-
quence[tensorflow.python.framework.ops.Tensor]]] = None, output_types: Op-
tional[List[str]] = None)→ Union[numpy.ndarray, Sequence[numpy.ndarray]]

Uses self to make predictions on provided Dataset object.

Parameters

• dataset (dc.data.Dataset) – Dataset to make prediction on

• transformers (list of dc.trans.Transformers) – Transformers that the
input data has been transformed by. The output is passed through these transformers to
undo the transformations.

• outputs (Tensor or list of Tensors) – The outputs to return. If this is None,
the model’s standard prediction outputs will be returned. Alternatively one or more Ten-
sors within the model may be specified, in which case the output of those Tensors will be
returned.

• output_types (String or list of Strings) – If specified, all outputs of this
type will be retrieved from the model. If output_types is specified, outputs must be None.

Returns

• a NumPy array of the model produces a single output, or a list of arrays
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• if it produces multiple outputs

predict_embedding(dataset: deepchem.data.datasets.Dataset) → Union[numpy.ndarray, Se-
quence[numpy.ndarray]]

Predicts embeddings created by underlying model if any exist. An embedding must be specified to have
output_type of ‘embedding’ in the model definition.

Parameters dataset (dc.data.Dataset) – Dataset to make prediction on

Returns

• a NumPy array of the embeddings model produces, or a list

• of arrays if it produces multiple embeddings

predict_uncertainty(dataset: deepchem.data.datasets.Dataset, masks: int =
50) → Union[Tuple[numpy.ndarray, numpy.ndarray], Se-
quence[Tuple[numpy.ndarray, numpy.ndarray]]]

Predict the model’s outputs, along with the uncertainty in each one.

The uncertainty is computed as described in https://arxiv.org/abs/1703.04977. It involves repeating the
prediction many times with different dropout masks. The prediction is computed as the average over
all the predictions. The uncertainty includes both the variation among the predicted values (epistemic
uncertainty) and the model’s own estimates for how well it fits the data (aleatoric uncertainty). Not all
models support uncertainty prediction.

Parameters

• dataset (dc.data.Dataset) – Dataset to make prediction on

• masks (int) – the number of dropout masks to average over

Returns

• for each output, a tuple (y_pred, y_std) where y_pred is the predicted

• value of the output, and each element of y_std estimates the standard

• deviation of the corresponding element of y_pred

evaluate_generator(generator: Iterable[Tuple[Any, Any, Any]], met-
rics: List[deepchem.metrics.metric.Metric], transformers:
List[transformers.Transformer] = [], per_task_metrics: bool = False)

Evaluate the performance of this model on the data produced by a generator.

Parameters

• generator (generator) – this should generate batches, each represented as a tuple
of the form (inputs, labels, weights).

• metric (list of deepchem.metrics.Metric) – Evaluation metric

• transformers (list of dc.trans.Transformers) – Transformers that the
input data has been transformed by. The output is passed through these transformers to
undo the transformations.

• per_task_metrics (bool) – If True, return per-task scores.

Returns Maps tasks to scores under metric.

Return type dict

compute_saliency(X: numpy.ndarray)→ Union[numpy.ndarray, Sequence[numpy.ndarray]]
Compute the saliency map for an input sample.
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This computes the Jacobian matrix with the derivative of each output element with respect to each input
element. More precisely,

• If this model has a single output, it returns a matrix of shape (output_shape, input_shape) with the
derivatives.

• If this model has multiple outputs, it returns a list of matrices, one for each output.

This method cannot be used on models that take multiple inputs.

Parameters X (ndarray) – the input data for a single sample

Returns

Return type the Jacobian matrix, or a list of matrices

default_generator(dataset: deepchem.data.datasets.Dataset, epochs: int = 1, mode: str = 'fit',
deterministic: bool = True, pad_batches: bool = True)→ Iterable[Tuple[List,
List, List]]

Create a generator that iterates batches for a dataset.

Subclasses may override this method to customize how model inputs are generated from the data.

Parameters

• dataset (Dataset) – the data to iterate

• epochs (int) – the number of times to iterate over the full dataset

• mode (str) – allowed values are ‘fit’ (called during training), ‘predict’ (called during
prediction), and ‘uncertainty’ (called during uncertainty prediction)

• deterministic (bool) – whether to iterate over the dataset in order, or randomly
shuffle the data for each epoch

• pad_batches (bool) – whether to pad each batch up to this model’s preferred batch
size

Returns

• a generator that iterates batches, each represented as a tuple of lists

• ([inputs], [outputs], [weights])

save_checkpoint(max_checkpoints_to_keep: int = 5, model_dir: Optional[str] = None)→ None
Save a checkpoint to disk.

Usually you do not need to call this method, since fit() saves checkpoints automatically. If you have
disabled automatic checkpointing during fitting, this can be called to manually write checkpoints.

Parameters

• max_checkpoints_to_keep (int) – the maximum number of checkpoints to keep.
Older checkpoints are discarded.

• model_dir (str, default None) – Model directory to save checkpoint to. If
None, revert to self.model_dir

get_checkpoints(model_dir: Optional[str] = None)
Get a list of all available checkpoint files.

Parameters model_dir (str, default None) – Directory to get list of checkpoints
from. Reverts to self.model_dir if None

restore(checkpoint: Optional[str] = None, model_dir: Optional[str] = None)→ None
Reload the values of all variables from a checkpoint file.
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Parameters

• checkpoint (str) – the path to the checkpoint file to load. If this is None, the most
recent checkpoint will be chosen automatically. Call get_checkpoints() to get a list of all
available checkpoints.

• model_dir (str, default None) – Directory to restore checkpoint from. If None,
use self.model_dir.

get_global_step()→ int
Get the number of steps of fitting that have been performed.

load_from_pretrained(source_model: deepchem.models.keras_model.KerasModel, assign-
ment_map: Optional[Dict[Any, Any]] = None, value_map: Op-
tional[Dict[Any, Any]] = None, checkpoint: Optional[str] = None,
model_dir: Optional[str] = None, include_top: bool = True, inputs:
Optional[Sequence[Any]] = None, **kwargs)→ None

Copies variable values from a pretrained model. source_model can either be a pretrained model or a model
with the same architecture. value_map is a variable-value dictionary. If no value_map is provided, the
variable values are restored to the source_model from a checkpoint and a default value_map is created.
assignment_map is a dictionary mapping variables from the source_model to the current model. If no
assignment_map is provided, one is made from scratch and assumes the model is composed of several
different layers, with the final one being a dense layer. include_top is used to control whether or not the
final dense layer is used. The default assignment map is useful in cases where the type of task is different
(classification vs regression) and/or number of tasks in the setting.

Parameters

• source_model (dc.KerasModel, required) – source_model can either be the
pretrained model or a dc.KerasModel with the same architecture as the pretrained model.
It is used to restore from a checkpoint, if value_map is None and to create a default as-
signment map if assignment_map is None

• assignment_map (Dict, default None) – Dictionary mapping the
source_model variables and current model variables

• value_map (Dict, default None) – Dictionary containing source_model train-
able variables mapped to numpy arrays. If value_map is None, the values are restored and
a default variable map is created using the restored values

• checkpoint (str, default None) – the path to the checkpoint file to load. If this
is None, the most recent checkpoint will be chosen automatically. Call get_checkpoints()
to get a list of all available checkpoints

• model_dir (str, default None) – Restore model from custom model directory
if needed

• include_top (bool, default True) – if True, copies the weights and bias asso-
ciated with the final dense layer. Used only when assignment map is None

• inputs (List, input tensors for model) – if not None, then the weights are
built for both the source and self. This option is useful only for models that are built by
subclassing tf.keras.Model, and not using the functional API by tf.keras
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3.19.2 MultitaskRegressor

class MultitaskRegressor(n_tasks: int, n_features: int, layer_sizes: Sequence[int] =
[1000], weight_init_stddevs: Union[float, Sequence[float]] =
0.02, bias_init_consts: Union[float, Sequence[float]] = 1.0,
weight_decay_penalty: float = 0.0, weight_decay_penalty_type: str
= 'l2', dropouts: Union[float, Sequence[float]] = 0.5, activation_fns:
Union[Callable, str, Sequence[Union[Callable, str]]] = <function relu>,
uncertainty: bool = False, residual: bool = False, **kwargs)

A fully connected network for multitask regression.

This class provides lots of options for customizing aspects of the model: the number and widths of layers, the
activation functions, regularization methods, etc.

It optionally can compose the model from pre-activation residual blocks, as described in https://arxiv.org/abs/
1603.05027, rather than a simple stack of dense layers. This often leads to easier training, especially when
using a large number of layers. Note that residual blocks can only be used when successive layers have the same
width. Wherever the layer width changes, a simple dense layer will be used even if residual=True.

__init__(n_tasks: int, n_features: int, layer_sizes: Sequence[int] = [1000], weight_init_stddevs:
Union[float, Sequence[float]] = 0.02, bias_init_consts: Union[float, Sequence[float]]
= 1.0, weight_decay_penalty: float = 0.0, weight_decay_penalty_type: str = 'l2',
dropouts: Union[float, Sequence[float]] = 0.5, activation_fns: Union[Callable, str, Se-
quence[Union[Callable, str]]] = <function relu>, uncertainty: bool = False, residual: bool
= False, **kwargs)→ None

Create a MultitaskRegressor.

In addition to the following arguments, this class also accepts all the keywork arguments from Tensor-
Graph.

Parameters

• n_tasks (int) – number of tasks

• n_features (int) – number of features

• layer_sizes (list) – the size of each dense layer in the network. The length of this
list determines the number of layers.

• weight_init_stddevs (list or float) – the standard deviation of the distri-
bution to use for weight initialization of each layer. The length of this list should equal
len(layer_sizes)+1. The final element corresponds to the output layer. Alternatively this
may be a single value instead of a list, in which case the same value is used for every layer.

• bias_init_consts (list or float) – the value to initialize the biases in each
layer to. The length of this list should equal len(layer_sizes)+1. The final element cor-
responds to the output layer. Alternatively this may be a single value instead of a list, in
which case the same value is used for every layer.

• weight_decay_penalty (float) – the magnitude of the weight decay penalty to
use

• weight_decay_penalty_type (str) – the type of penalty to use for weight decay,
either ‘l1’ or ‘l2’

• dropouts (list or float) – the dropout probablity to use for each layer. The
length of this list should equal len(layer_sizes). Alternatively this may be a single value
instead of a list, in which case the same value is used for every layer.

• activation_fns (list or object) – the Tensorflow activation function to apply
to each layer. The length of this list should equal len(layer_sizes). Alternatively this may
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be a single value instead of a list, in which case the same value is used for every layer.

• uncertainty (bool) – if True, include extra outputs and loss terms to enable the un-
certainty in outputs to be predicted

• residual (bool) – if True, the model will be composed of pre-activation residual
blocks instead of a simple stack of dense layers.

default_generator(dataset: deepchem.data.datasets.Dataset, epochs: int = 1, mode: str = 'fit',
deterministic: bool = True, pad_batches: bool = True)→ Iterable[Tuple[List,
List, List]]

Create a generator that iterates batches for a dataset.

Subclasses may override this method to customize how model inputs are generated from the data.

Parameters

• dataset (Dataset) – the data to iterate

• epochs (int) – the number of times to iterate over the full dataset

• mode (str) – allowed values are ‘fit’ (called during training), ‘predict’ (called during
prediction), and ‘uncertainty’ (called during uncertainty prediction)

• deterministic (bool) – whether to iterate over the dataset in order, or randomly
shuffle the data for each epoch

• pad_batches (bool) – whether to pad each batch up to this model’s preferred batch
size

Returns

• a generator that iterates batches, each represented as a tuple of lists

• ([inputs], [outputs], [weights])

3.19.3 MultitaskFitTransformRegressor

class MultitaskFitTransformRegressor(n_tasks: int, n_features: int, fit_transformers: Se-
quence[transformers.Transformer] = [], batch_size: int
= 50, **kwargs)

Implements a MultitaskRegressor that performs on-the-fly transformation during fit/predict.

Examples

>>> n_samples = 10
>>> n_features = 3
>>> n_tasks = 1
>>> ids = np.arange(n_samples)
>>> X = np.random.rand(n_samples, n_features, n_features)
>>> y = np.zeros((n_samples, n_tasks))
>>> w = np.ones((n_samples, n_tasks))
>>> dataset = dc.data.NumpyDataset(X, y, w, ids)
>>> fit_transformers = [dc.trans.CoulombFitTransformer(dataset)]
>>> model = dc.models.MultitaskFitTransformRegressor(n_tasks, [n_features, n_
→˓features],
... dropouts=[0.], learning_rate=0.003, weight_init_stddevs=[np.sqrt(6)/np.
→˓sqrt(1000)],
... batch_size=n_samples, fit_transformers=fit_transformers)

(continues on next page)
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(continued from previous page)

>>> model.n_features
12

__init__(n_tasks: int, n_features: int, fit_transformers: Sequence[transformers.Transformer] = [],
batch_size: int = 50, **kwargs)

Create a MultitaskFitTransformRegressor.

In addition to the following arguments, this class also accepts all the keywork arguments from Multi-
taskRegressor.

Parameters

• n_tasks (int) – number of tasks

• n_features (list or int) – number of features

• fit_transformers (list) – List of dc.trans.FitTransformer objects

default_generator(dataset: deepchem.data.datasets.Dataset, epochs: int = 1, mode: str = 'fit',
deterministic: bool = True, pad_batches: bool = True)→ Iterable[Tuple[List,
List, List]]

Create a generator that iterates batches for a dataset.

Subclasses may override this method to customize how model inputs are generated from the data.

Parameters

• dataset (Dataset) – the data to iterate

• epochs (int) – the number of times to iterate over the full dataset

• mode (str) – allowed values are ‘fit’ (called during training), ‘predict’ (called during
prediction), and ‘uncertainty’ (called during uncertainty prediction)

• deterministic (bool) – whether to iterate over the dataset in order, or randomly
shuffle the data for each epoch

• pad_batches (bool) – whether to pad each batch up to this model’s preferred batch
size

Returns

• a generator that iterates batches, each represented as a tuple of lists

• ([inputs], [outputs], [weights])

predict_on_generator(generator: Iterable[Tuple[Any, Any, Any]], transform-
ers: List[transformers.Transformer] = [], outputs: Op-
tional[Union[tensorflow.python.framework.ops.Tensor, Se-
quence[tensorflow.python.framework.ops.Tensor]]] = None, output_types:
Optional[Union[str, Sequence[str]]] = None) → Union[numpy.ndarray,
Sequence[numpy.ndarray]]

Parameters

• generator (generator) – this should generate batches, each represented as a tuple
of the form (inputs, labels, weights).

• transformers (list of dc.trans.Transformers) – Transformers that the
input data has been transformed by. The output is passed through these transformers to
undo the transformations.
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• outputs (Tensor or list of Tensors) – The outputs to return. If this is None,
the model’s standard prediction outputs will be returned. Alternatively one or more Ten-
sors within the model may be specified, in which case the output of those Tensors will be
returned. If outputs is specified, output_types must be None.

• output_types (String or list of Strings) – If specified, all outputs of this
type will be retrieved from the model. If output_types is specified, outputs must be None.

• Returns – a NumPy array of the model produces a single output, or a list of arrays if it
produces multiple outputs

3.19.4 MultitaskClassifier

class MultitaskClassifier(n_tasks: int, n_features: int, layer_sizes: Sequence[int] =
[1000], weight_init_stddevs: Union[float, Sequence[float]] =
0.02, bias_init_consts: Union[float, Sequence[float]] = 1.0,
weight_decay_penalty: float = 0.0, weight_decay_penalty_type:
str = 'l2', dropouts: Union[float, Sequence[float]] = 0.5, activation_fns:
Union[Callable, str, Sequence[Union[Callable, str]]] = <function
relu>, n_classes: int = 2, residual: bool = False, **kwargs)

A fully connected network for multitask classification.

This class provides lots of options for customizing aspects of the model: the number and widths of layers, the
activation functions, regularization methods, etc.

It optionally can compose the model from pre-activation residual blocks, as described in https://arxiv.org/abs/
1603.05027, rather than a simple stack of dense layers. This often leads to easier training, especially when
using a large number of layers. Note that residual blocks can only be used when successive layers have the same
width. Wherever the layer width changes, a simple dense layer will be used even if residual=True.

__init__(n_tasks: int, n_features: int, layer_sizes: Sequence[int] = [1000], weight_init_stddevs:
Union[float, Sequence[float]] = 0.02, bias_init_consts: Union[float, Sequence[float]]
= 1.0, weight_decay_penalty: float = 0.0, weight_decay_penalty_type: str = 'l2',
dropouts: Union[float, Sequence[float]] = 0.5, activation_fns: Union[Callable, str, Se-
quence[Union[Callable, str]]] = <function relu>, n_classes: int = 2, residual: bool = False,
**kwargs)→ None

Create a MultitaskClassifier.

In addition to the following arguments, this class also accepts all the keyword arguments from Tensor-
Graph.

Parameters

• n_tasks (int) – number of tasks

• n_features (int) – number of features

• layer_sizes (list) – the size of each dense layer in the network. The length of this
list determines the number of layers.

• weight_init_stddevs (list or float) – the standard deviation of the distri-
bution to use for weight initialization of each layer. The length of this list should equal
len(layer_sizes). Alternatively this may be a single value instead of a list, in which case
the same value is used for every layer.

• bias_init_consts (list or float) – the value to initialize the biases in each
layer to. The length of this list should equal len(layer_sizes). Alternatively this may be a
single value instead of a list, in which case the same value is used for every layer.
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• weight_decay_penalty (float) – the magnitude of the weight decay penalty to
use

• weight_decay_penalty_type (str) – the type of penalty to use for weight decay,
either ‘l1’ or ‘l2’

• dropouts (list or float) – the dropout probablity to use for each layer. The
length of this list should equal len(layer_sizes). Alternatively this may be a single value
instead of a list, in which case the same value is used for every layer.

• activation_fns (list or object) – the Tensorflow activation function to apply
to each layer. The length of this list should equal len(layer_sizes). Alternatively this may
be a single value instead of a list, in which case the same value is used for every layer.

• n_classes (int) – the number of classes

• residual (bool) – if True, the model will be composed of pre-activation residual
blocks instead of a simple stack of dense layers.

default_generator(dataset: deepchem.data.datasets.Dataset, epochs: int = 1, mode: str = 'fit',
deterministic: bool = True, pad_batches: bool = True)→ Iterable[Tuple[List,
List, List]]

Create a generator that iterates batches for a dataset.

Subclasses may override this method to customize how model inputs are generated from the data.

Parameters

• dataset (Dataset) – the data to iterate

• epochs (int) – the number of times to iterate over the full dataset

• mode (str) – allowed values are ‘fit’ (called during training), ‘predict’ (called during
prediction), and ‘uncertainty’ (called during uncertainty prediction)

• deterministic (bool) – whether to iterate over the dataset in order, or randomly
shuffle the data for each epoch

• pad_batches (bool) – whether to pad each batch up to this model’s preferred batch
size

Returns

• a generator that iterates batches, each represented as a tuple of lists

• ([inputs], [outputs], [weights])

3.19.5 TensorflowMultitaskIRVClassifier

class TensorflowMultitaskIRVClassifier(*args, **kwargs)

__init__(*args, **kwargs)
Initialize MultitaskIRVClassifier

Parameters

• n_tasks (int) – Number of tasks

• K (int) – Number of nearest neighbours used in classification

• penalty (float) – Amount of penalty (l2 or l1 applied)
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3.19.6 RobustMultitaskClassifier

class RobustMultitaskClassifier(n_tasks, n_features, layer_sizes=[1000],
weight_init_stddevs=0.02, bias_init_consts=1.0,
weight_decay_penalty=0.0, weight_decay_penalty_type='l2',
dropouts=0.5, activation_fns=<function relu>,
n_classes=2, bypass_layer_sizes=[100],
bypass_weight_init_stddevs=[0.02], by-
pass_bias_init_consts=[1.0], bypass_dropouts=[0.5],
**kwargs)

Implements a neural network for robust multitasking.

The key idea of this model is to have bypass layers that feed directly from features to task output. This might
provide some flexibility toroute around challenges in multitasking with destructive interference.

References

This technique was introduced in [1]_

__init__(n_tasks, n_features, layer_sizes=[1000], weight_init_stddevs=0.02, bias_init_consts=1.0,
weight_decay_penalty=0.0, weight_decay_penalty_type='l2', dropouts=0.5, ac-
tivation_fns=<function relu>, n_classes=2, bypass_layer_sizes=[100], by-
pass_weight_init_stddevs=[0.02], bypass_bias_init_consts=[1.0], bypass_dropouts=[0.5],
**kwargs)

Create a RobustMultitaskClassifier.

Parameters

• n_tasks (int) – number of tasks

• n_features (int) – number of features

• layer_sizes (list) – the size of each dense layer in the network. The length of this
list determines the number of layers.

• weight_init_stddevs (list or float) – the standard deviation of the distri-
bution to use for weight initialization of each layer. The length of this list should equal
len(layer_sizes). Alternatively this may be a single value instead of a list, in which case
the same value is used for every layer.

• bias_init_consts (list or loat) – the value to initialize the biases in each
layer to. The length of this list should equal len(layer_sizes). Alternatively this may be a
single value instead of a list, in which case the same value is used for every layer.

• weight_decay_penalty (float) – the magnitude of the weight decay penalty to
use

• weight_decay_penalty_type (str) – the type of penalty to use for weight decay,
either ‘l1’ or ‘l2’

• dropouts (list or float) – the dropout probablity to use for each layer. The
length of this list should equal len(layer_sizes). Alternatively this may be a single value
instead of a list, in which case the same value is used for every layer.

• activation_fns (list or object) – the Tensorflow activation function to apply
to each layer. The length of this list should equal len(layer_sizes). Alternatively this may
be a single value instead of a list, in which case the same value is used for every layer.

• n_classes (int) – the number of classes
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• bypass_layer_sizes (list) – the size of each dense layer in the bypass network.
The length of this list determines the number of bypass layers.

• bypass_weight_init_stddevs (list or float) – the standard deviation of
the distribution to use for weight initialization of bypass layers. same requirements as
weight_init_stddevs

• bypass_bias_init_consts (list or float) – the value to initialize the biases
in bypass layers same requirements as bias_init_consts

• bypass_dropouts (list or float) – the dropout probablity to use for bypass
layers. same requirements as dropouts

default_generator(dataset, epochs=1, mode='fit', deterministic=True, pad_batches=True)
Create a generator that iterates batches for a dataset.

Subclasses may override this method to customize how model inputs are generated from the data.

Parameters

• dataset (Dataset) – the data to iterate

• epochs (int) – the number of times to iterate over the full dataset

• mode (str) – allowed values are ‘fit’ (called during training), ‘predict’ (called during
prediction), and ‘uncertainty’ (called during uncertainty prediction)

• deterministic (bool) – whether to iterate over the dataset in order, or randomly
shuffle the data for each epoch

• pad_batches (bool) – whether to pad each batch up to this model’s preferred batch
size

Returns

• a generator that iterates batches, each represented as a tuple of lists

• ([inputs], [outputs], [weights])

3.19.7 RobustMultitaskRegressor

class RobustMultitaskRegressor(n_tasks, n_features, layer_sizes=[1000],
weight_init_stddevs=0.02, bias_init_consts=1.0,
weight_decay_penalty=0.0, weight_decay_penalty_type='l2',
dropouts=0.5, activation_fns=<function relu>, by-
pass_layer_sizes=[100], bypass_weight_init_stddevs=[0.02],
bypass_bias_init_consts=[1.0], bypass_dropouts=[0.5],
**kwargs)

Implements a neural network for robust multitasking.

The key idea of this model is to have bypass layers that feed directly from features to task output. This might
provide some flexibility toroute around challenges in multitasking with destructive interference.
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__init__(n_tasks, n_features, layer_sizes=[1000], weight_init_stddevs=0.02, bias_init_consts=1.0,
weight_decay_penalty=0.0, weight_decay_penalty_type='l2', dropouts=0.5, activa-
tion_fns=<function relu>, bypass_layer_sizes=[100], bypass_weight_init_stddevs=[0.02],
bypass_bias_init_consts=[1.0], bypass_dropouts=[0.5], **kwargs)

Create a RobustMultitaskRegressor.

Parameters

• n_tasks (int) – number of tasks

• n_features (int) – number of features

• layer_sizes (list) – the size of each dense layer in the network. The length of this
list determines the number of layers.

• weight_init_stddevs (list or float) – the standard deviation of the distri-
bution to use for weight initialization of each layer. The length of this list should equal
len(layer_sizes). Alternatively this may be a single value instead of a list, in which case
the same value is used for every layer.

• bias_init_consts (list or loat) – the value to initialize the biases in each
layer to. The length of this list should equal len(layer_sizes). Alternatively this may be a
single value instead of a list, in which case the same value is used for every layer.

• weight_decay_penalty (float) – the magnitude of the weight decay penalty to
use

• weight_decay_penalty_type (str) – the type of penalty to use for weight decay,
either ‘l1’ or ‘l2’

• dropouts (list or float) – the dropout probablity to use for each layer. The
length of this list should equal len(layer_sizes). Alternatively this may be a single value
instead of a list, in which case the same value is used for every layer.

• activation_fns (list or object) – the Tensorflow activation function to apply
to each layer. The length of this list should equal len(layer_sizes). Alternatively this may
be a single value instead of a list, in which case the same value is used for every layer.

• bypass_layer_sizes (list) – the size of each dense layer in the bypass network.
The length of this list determines the number of bypass layers.

• bypass_weight_init_stddevs (list or float) – the standard deviation of
the distribution to use for weight initialization of bypass layers. same requirements as
weight_init_stddevs

• bypass_bias_init_consts (list or float) – the value to initialize the biases
in bypass layers same requirements as bias_init_consts

• bypass_dropouts (list or float) – the dropout probablity to use for bypass
layers. same requirements as dropouts

default_generator(dataset: deepchem.data.datasets.Dataset, epochs: int = 1, mode: str = 'fit',
deterministic: bool = True, pad_batches: bool = True)→ Iterable[Tuple[List,
List, List]]

Create a generator that iterates batches for a dataset.

Subclasses may override this method to customize how model inputs are generated from the data.

Parameters

• dataset (Dataset) – the data to iterate
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• epochs (int) – the number of times to iterate over the full dataset

• mode (str) – allowed values are ‘fit’ (called during training), ‘predict’ (called during
prediction), and ‘uncertainty’ (called during uncertainty prediction)

• deterministic (bool) – whether to iterate over the dataset in order, or randomly
shuffle the data for each epoch

• pad_batches (bool) – whether to pad each batch up to this model’s preferred batch
size

Returns

• a generator that iterates batches, each represented as a tuple of lists

• ([inputs], [outputs], [weights])

3.19.8 ProgressiveMultitaskClassifier

class ProgressiveMultitaskClassifier(n_tasks, n_features, alpha_init_stddevs=0.02,
layer_sizes=[1000], weight_init_stddevs=0.02,
bias_init_consts=1.0, weight_decay_penalty=0.0,
weight_decay_penalty_type='l2', dropouts=0.5, activa-
tion_fns=<function relu>, **kwargs)

Implements a progressive multitask neural network for classification.

Progressive Networks: https://arxiv.org/pdf/1606.04671v3.pdf

Progressive networks allow for multitask learning where each task gets a new column of weights. As a result,
there is no exponential forgetting where previous tasks are ignored.

__init__(n_tasks, n_features, alpha_init_stddevs=0.02, layer_sizes=[1000],
weight_init_stddevs=0.02, bias_init_consts=1.0, weight_decay_penalty=0.0,
weight_decay_penalty_type='l2', dropouts=0.5, activation_fns=<function relu>,
**kwargs)

Creates a progressive network.

Only listing parameters specific to progressive networks here.

Parameters

• n_tasks (int) – Number of tasks

• n_features (int) – Number of input features

• alpha_init_stddevs (list) – List of standard-deviations for alpha in adapter lay-
ers.

• layer_sizes (list) – the size of each dense layer in the network. The length of this
list determines the number of layers.

• weight_init_stddevs (list or float) – the standard deviation of the distri-
bution to use for weight initialization of each layer. The length of this list should equal
len(layer_sizes)+1. The final element corresponds to the output layer. Alternatively this
may be a single value instead of a list, in which case the same value is used for every layer.

• bias_init_consts (list or float) – the value to initialize the biases in each
layer to. The length of this list should equal len(layer_sizes)+1. The final element cor-
responds to the output layer. Alternatively this may be a single value instead of a list, in
which case the same value is used for every layer.

3.19. Keras Models 221

https://arxiv.org/pdf/1606.04671v3.pdf


deepchem, Release 2.5.0

• weight_decay_penalty (float) – the magnitude of the weight decay penalty to
use

• weight_decay_penalty_type (str) – the type of penalty to use for weight decay,
either ‘l1’ or ‘l2’

• dropouts (list or float) – the dropout probablity to use for each layer. The
length of this list should equal len(layer_sizes). Alternatively this may be a single value
instead of a list, in which case the same value is used for every layer.

• activation_fns (list or object) – the Tensorflow activation function to apply
to each layer. The length of this list should equal len(layer_sizes). Alternatively this may
be a single value instead of a list, in which case the same value is used for every layer.

3.19.9 ProgressiveMultitaskRegressor

class ProgressiveMultitaskRegressor(n_tasks, n_features, alpha_init_stddevs=0.02,
layer_sizes=[1000], weight_init_stddevs=0.02,
bias_init_consts=1.0, weight_decay_penalty=0.0,
weight_decay_penalty_type='l2', dropouts=0.5, activa-
tion_fns=<function relu>, n_outputs=1, **kwargs)

Implements a progressive multitask neural network for regression.

Progressive networks allow for multitask learning where each task gets a new column of weights. As a result,
there is no exponential forgetting where previous tasks are ignored.

References

See [1]_ for a full description of the progressive architecture

__init__(n_tasks, n_features, alpha_init_stddevs=0.02, layer_sizes=[1000],
weight_init_stddevs=0.02, bias_init_consts=1.0, weight_decay_penalty=0.0,
weight_decay_penalty_type='l2', dropouts=0.5, activation_fns=<function relu>,
n_outputs=1, **kwargs)

Creates a progressive network.

Only listing parameters specific to progressive networks here.

Parameters

• n_tasks (int) – Number of tasks

• n_features (int) – Number of input features

• alpha_init_stddevs (list) – List of standard-deviations for alpha in adapter lay-
ers.

• layer_sizes (list) – the size of each dense layer in the network. The length of this
list determines the number of layers.

• weight_init_stddevs (list or float) – the standard deviation of the distri-
bution to use for weight initialization of each layer. The length of this list should equal
len(layer_sizes)+1. The final element corresponds to the output layer. Alternatively this
may be a single value instead of a list, in which case the same value is used for every layer.

• bias_init_consts (list or float) – the value to initialize the biases in each
layer to. The length of this list should equal len(layer_sizes)+1. The final element cor-
responds to the output layer. Alternatively this may be a single value instead of a list, in
which case the same value is used for every layer.
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• weight_decay_penalty (float) – the magnitude of the weight decay penalty to
use

• weight_decay_penalty_type (str) – the type of penalty to use for weight decay,
either ‘l1’ or ‘l2’

• dropouts (list or float) – the dropout probablity to use for each layer. The
length of this list should equal len(layer_sizes). Alternatively this may be a single value
instead of a list, in which case the same value is used for every layer.

• activation_fns (list or object) – the Tensorflow activation function to apply
to each layer. The length of this list should equal len(layer_sizes). Alternatively this may
be a single value instead of a list, in which case the same value is used for every layer.

add_adapter(all_layers, task, layer_num)
Add an adapter connection for given task/layer combo

fit(dataset, nb_epoch=10, max_checkpoints_to_keep=5, checkpoint_interval=1000, determinis-
tic=False, restore=False, **kwargs)
Train this model on a dataset.

Parameters

• dataset (Dataset) – the Dataset to train on

• nb_epoch (int) – the number of epochs to train for

• max_checkpoints_to_keep (int) – the maximum number of checkpoints to keep.
Older checkpoints are discarded.

• checkpoint_interval (int) – the frequency at which to write checkpoints, mea-
sured in training steps. Set this to 0 to disable automatic checkpointing.

• deterministic (bool) – if True, the samples are processed in order. If False, a
different random order is used for each epoch.

• restore (bool) – if True, restore the model from the most recent checkpoint and con-
tinue training from there. If False, retrain the model from scratch.

• variables (list of tf.Variable) – the variables to train. If None (the default),
all trainable variables in the model are used.

• loss (function) – a function of the form f(outputs, labels, weights) that computes the
loss for each batch. If None (the default), the model’s standard loss function is used.

• callbacks (function or list of functions) – one or more functions of the
form f(model, step) that will be invoked after every step. This can be used to perform
validation, logging, etc.

• all_losses (Optional[List[float]], optional (default None)) –
If specified, all logged losses are appended into this list. Note that you can call fit() repeat-
edly with the same list and losses will continue to be appended.

Returns

Return type The average loss over the most recent checkpoint interval

fit_task(dataset, task, nb_epoch=10, max_checkpoints_to_keep=5, checkpoint_interval=1000, de-
terministic=False, restore=False, **kwargs)

Fit one task.
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3.19.10 WeaveModel

class WeaveModel(n_tasks: int, n_atom_feat: Union[int, Sequence[int]] = 75, n_pair_feat:
Union[int, Sequence[int]] = 14, n_hidden: int = 50, n_graph_feat: int =
128, n_weave: int = 2, fully_connected_layer_sizes: List[int] = [2000, 100],
conv_weight_init_stddevs: Union[float, Sequence[float]] = 0.03, weight_init_stddevs:
Union[float, Sequence[float]] = 0.01, bias_init_consts: Union[float, Sequence[float]]
= 0.0, weight_decay_penalty: float = 0.0, weight_decay_penalty_type: str = 'l2',
dropouts: Union[float, Sequence[float]] = 0.25, final_conv_activation_fn: Op-
tional[Union[Callable, str]] = <function tanh>, activation_fns: Union[Callable, str,
Sequence[Union[Callable, str]]] = <function relu>, batch_normalize: bool = True,
batch_normalize_kwargs: Dict = {'fused': False, 'renorm': True}, gaussian_expand:
bool = True, compress_post_gaussian_expansion: bool = False, mode: str = 'classifi-
cation', n_classes: int = 2, batch_size: int = 100, **kwargs)

Implements Google-style Weave Graph Convolutions

This model implements the Weave style graph convolutions from [1]_.

The biggest difference between WeaveModel style convolutions and GraphConvModel style convolutions is that
Weave convolutions model bond features explicitly. This has the side effect that it needs to construct a NxN
matrix explicitly to model bond interactions. This may cause scaling issues, but may possibly allow for better
modeling of subtle bond effects.

Note that [1]_ introduces a whole variety of different architectures for Weave models. The default settings in
this class correspond to the W2N2 variant from [1]_ which is the most commonly used variant..

Examples

Here’s an example of how to fit a WeaveModel on a tiny sample dataset.

>>> import numpy as np
>>> import deepchem as dc
>>> featurizer = dc.feat.WeaveFeaturizer()
>>> X = featurizer(["C", "CC"])
>>> y = np.array([1, 0])
>>> dataset = dc.data.NumpyDataset(X, y)
>>> model = dc.models.WeaveModel(n_tasks=1, n_weave=2, fully_connected_layer_
→˓sizes=[2000, 1000], mode="classification")
>>> loss = model.fit(dataset)

Note: In general, the use of batch normalization can cause issues with NaNs. If you’re having trouble with
NaNs while using this model, consider setting batch_normalize_kwargs={“trainable”: False} or turning off
batch normalization entirely with batch_normalize=False.

224 Chapter 3. About Us



deepchem, Release 2.5.0

References

fingerprints.” Journal of computer-aided molecular design 30.8 (2016): 595-608.

__init__(n_tasks: int, n_atom_feat: Union[int, Sequence[int]] = 75, n_pair_feat: Union[int,
Sequence[int]] = 14, n_hidden: int = 50, n_graph_feat: int = 128, n_weave: int
= 2, fully_connected_layer_sizes: List[int] = [2000, 100], conv_weight_init_stddevs:
Union[float, Sequence[float]] = 0.03, weight_init_stddevs: Union[float, Sequence[float]]
= 0.01, bias_init_consts: Union[float, Sequence[float]] = 0.0, weight_decay_penalty: float
= 0.0, weight_decay_penalty_type: str = 'l2', dropouts: Union[float, Sequence[float]] =
0.25, final_conv_activation_fn: Optional[Union[Callable, str]] = <function tanh>, ac-
tivation_fns: Union[Callable, str, Sequence[Union[Callable, str]]] = <function relu>,
batch_normalize: bool = True, batch_normalize_kwargs: Dict = {'fused': False, 'renorm':
True}, gaussian_expand: bool = True, compress_post_gaussian_expansion: bool = False,
mode: str = 'classification', n_classes: int = 2, batch_size: int = 100, **kwargs)

Parameters

• n_tasks (int) – Number of tasks

• n_atom_feat (int, optional (default 75)) – Number of features per atom.
Note this is 75 by default and should be 78 if chirality is used by WeaveFeaturizer.

• n_pair_feat (int, optional (default 14)) – Number of features per pair
of atoms.

• n_hidden (int, optional (default 50)) – Number of units(convolution
depths) in corresponding hidden layer

• n_graph_feat (int, optional (default 128)) – Number of output features
for each molecule(graph)

• n_weave (int, optional (default 2)) – The number of weave layers in this
model.

• fully_connected_layer_sizes (list (default [2000, 100])) – The size of each
dense layer in the network. The length of this list determines the number of layers.

• conv_weight_init_stddevs (list or float (default 0.03)) – The
standard deviation of the distribution to use for weight initialization of each convolutional
layer. The length of this lisst should equal n_weave. Alternatively, this may be a single
value instead of a list, in which case the same value is used for each layer.

• weight_init_stddevs (list or float (default 0.01)) – The standard
deviation of the distribution to use for weight initialization of each fully connected layer.
The length of this list should equal len(layer_sizes). Alternatively this may be a single
value instead of a list, in which case the same value is used for every layer.

• bias_init_consts (list or float (default 0.0)) – The value to ini-
tialize the biases in each fully connected layer. The length of this list should equal
len(layer_sizes). Alternatively this may be a single value instead of a list, in which case
the same value is used for every layer.

• weight_decay_penalty (float (default 0.0)) – The magnitude of the
weight decay penalty to use

• weight_decay_penalty_type (str (default "l2")) – The type of penalty
to use for weight decay, either ‘l1’ or ‘l2’

• dropouts (list or float (default 0.25)) – The dropout probablity to use
for each fully connected layer. The length of this list should equal len(layer_sizes). Alter-
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natively this may be a single value instead of a list, in which case the same value is used
for every layer.

• final_conv_activation_fn (Optional[KerasActivationFn] (default tf.nn.tanh)) –
The Tensorflow activation funcntion to apply to the final convolution at the end of the
weave convolutions. If None, then no activate is applied (hence linear).

• activation_fns (list or object (default tf.nn.relu)) – The Tensorflow activation func-
tion to apply to each fully connected layer. The length of this list should equal
len(layer_sizes). Alternatively this may be a single value instead of a list, in which case
the same value is used for every layer.

• batch_normalize (bool, optional (default True)) – If this is turned on,
apply batch normalization before applying activation functions on convolutional and fully
connected layers.

• batch_normalize_kwargs (Dict, optional (default {“renorm”=True, “fused”:
False})) – Batch normalization is a complex layer which has many potential argu-
mentswhich change behavior. This layer accepts user-defined parameters which are passed
to all BatchNormalization layers in WeaveModel, WeaveLayer, and WeaveGather.

• gaussian_expand (boolean, optional (default True)) – Whether to ex-
pand each dimension of atomic features by gaussian histogram

• compress_post_gaussian_expansion (bool, optional (default
False)) – If True, compress the results of the Gaussian expansion back to the original
dimensions of the input.

• mode (str (default "classification")) – Either “classification” or “regres-
sion” for type of model.

• n_classes (int (default 2)) – Number of classes to predict (only used in clas-
sification mode)

• batch_size (int (default 100)) – Batch size used by this model for training.

compute_features_on_batch(X_b)
Compute tensors that will be input into the model from featurized representation.

The featurized input to WeaveModel is instances of WeaveMol created by WeaveFeaturizer. This method
converts input WeaveMol objects into tensors used by the Keras implementation to compute WeaveModel
outputs.

Parameters X_b (np.ndarray) – A numpy array with dtype=object where elements are
WeaveMol objects.

Returns

• atom_feat (np.ndarray) – Of shape (N_atoms, N_atom_feat).

• pair_feat (np.ndarray) – Of shape (N_pairs, N_pair_feat). Note that N_pairs will depend
on the number of pairs being considered. If max_pair_distance is None, then this will be
N_atoms**2. Else it will be the number of pairs within the specifed graph distance.

• pair_split (np.ndarray) – Of shape (N_pairs,). The i-th entry in this array will tell you the
originating atom for this pair (the “source”). Note that pairs are symmetric so for a pair
(a, b), both a and b will separately be sources at different points in this array.

• atom_split (np.ndarray) – Of shape (N_atoms,). The i-th entry in this array will be the
molecule with the i-th atom belongs to.
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• atom_to_pair (np.ndarray) – Of shape (N_pairs, 2). The i-th row in this array will be the
array [a, b] if (a, b) is a pair to be considered. (Note by symmetry, this implies some other
row will contain [b, a].

default_generator(dataset: deepchem.data.datasets.Dataset, epochs: int = 1, mode: str = 'fit',
deterministic: bool = True, pad_batches: bool = True)→ Iterable[Tuple[List,
List, List]]

Convert a dataset into the tensors needed for learning.

Parameters

• dataset (dc.data.Dataset) – Dataset to convert

• epochs (int, optional (Default 1)) – Number of times to walk over dataset

• mode (str, optional (Default 'fit')) – Ignored in this implementation.

• deterministic (bool, optional (Default True)) – Whether the dataset
should be walked in a deterministic fashion

• pad_batches (bool, optional (Default True)) – If true, each returned
batch will have size self.batch_size.

Returns

Return type Iterator which walks over the batches

3.19.11 DTNNModel

class DTNNModel(n_tasks, n_embedding=30, n_hidden=100, n_distance=100, distance_min=- 1, dis-
tance_max=18, output_activation=True, mode='regression', dropout=0.0, **kwargs)

Deep Tensor Neural Networks

This class implements deep tensor neural networks as first defined in [1]_

References

tensor neural networks.” Nature communications 8.1 (2017): 1-8.

__init__(n_tasks, n_embedding=30, n_hidden=100, n_distance=100, distance_min=- 1, dis-
tance_max=18, output_activation=True, mode='regression', dropout=0.0, **kwargs)

Parameters

• n_tasks (int) – Number of tasks

• n_embedding (int, optional) – Number of features per atom.

• n_hidden (int, optional) – Number of features for each molecule after
DTNNStep

• n_distance (int, optional) – granularity of distance matrix step size will be
(distance_max-distance_min)/n_distance

• distance_min (float, optional) – minimum distance of atom pairs, default =
-1 Angstorm

• distance_max (float, optional) – maximum distance of atom pairs, default =
18 Angstorm

• mode (str) – Only “regression” is currently supported.

• dropout (float) – the dropout probablity to use.
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compute_features_on_batch(X_b)
Computes the values for different Feature Layers on given batch

A tf.py_func wrapper is written around this when creating the input_fn for tf.Estimator

default_generator(dataset, epochs=1, mode='fit', deterministic=True, pad_batches=True)
Create a generator that iterates batches for a dataset.

Subclasses may override this method to customize how model inputs are generated from the data.

Parameters

• dataset (Dataset) – the data to iterate

• epochs (int) – the number of times to iterate over the full dataset

• mode (str) – allowed values are ‘fit’ (called during training), ‘predict’ (called during
prediction), and ‘uncertainty’ (called during uncertainty prediction)

• deterministic (bool) – whether to iterate over the dataset in order, or randomly
shuffle the data for each epoch

• pad_batches (bool) – whether to pad each batch up to this model’s preferred batch
size

Returns

• a generator that iterates batches, each represented as a tuple of lists

• ([inputs], [outputs], [weights])

3.19.12 DAGModel

class DAGModel(n_tasks, max_atoms=50, n_atom_feat=75, n_graph_feat=30, n_outputs=30,
layer_sizes=[100], layer_sizes_gather=[100], dropout=None, mode='classification',
n_classes=2, uncertainty=False, batch_size=100, **kwargs)

Directed Acyclic Graph models for molecular property prediction.

This model is based on the following paper:

Lusci, Alessandro, Gianluca Pollastri, and Pierre Baldi. “Deep architectures and deep learning in
chemoinformatics: the prediction of aqueous solubility for drug-like molecules.” Journal of chemical
information and modeling 53.7 (2013): 1563-1575.

The basic idea for this paper is that a molecule is usually viewed as an undirected graph. However, you
can convert it to a series of directed graphs. The idea is that for each atom, you make a DAG using that
atom as the vertex of the DAG and edges pointing “inwards” to it. This transformation is implemented in
dc.trans.transformers.DAGTransformer.UG_to_DAG.

This model accepts ConvMols as input, just as GraphConvModel does, but these ConvMol objects must be
transformed by dc.trans.DAGTransformer.

As a note, performance of this model can be a little sensitive to initialization. It might be worth training a few
different instantiations to get a stable set of parameters.

__init__(n_tasks, max_atoms=50, n_atom_feat=75, n_graph_feat=30, n_outputs=30,
layer_sizes=[100], layer_sizes_gather=[100], dropout=None, mode='classification',
n_classes=2, uncertainty=False, batch_size=100, **kwargs)

Parameters

• n_tasks (int) – Number of tasks.
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• max_atoms (int, optional) – Maximum number of atoms in a molecule, should
be defined based on dataset.

• n_atom_feat (int, optional) – Number of features per atom.

• n_graph_feat (int, optional) – Number of features for atom in the graph.

• n_outputs (int, optional) – Number of features for each molecule.

• layer_sizes (list of int, optional) – List of hidden layer size(s) in the
propagation step: length of this list represents the number of hidden layers, and each
element is the width of corresponding hidden layer.

• layer_sizes_gather (list of int, optional) – List of hidden layer size(s)
in the gather step.

• dropout (None or float, optional) – Dropout probability, applied after each
propagation step and gather step.

• mode (str, optional) – Either “classification” or “regression” for type of model.

• n_classes (int) – the number of classes to predict (only used in classification mode)

• uncertainty (bool) – if True, include extra outputs and loss terms to enable the un-
certainty in outputs to be predicted

default_generator(dataset, epochs=1, mode='fit', deterministic=True, pad_batches=True)
Convert a dataset into the tensors needed for learning

3.19.13 GraphConvModel

class GraphConvModel(n_tasks: int, graph_conv_layers: List[int] = [64, 64], dense_layer_size: int =
128, dropout: float = 0.0, mode: str = 'classification', number_atom_features:
int = 75, n_classes: int = 2, batch_size: int = 100, batch_normalize: bool =
True, uncertainty: bool = False, **kwargs)

Graph Convolutional Models.

This class implements the graph convolutional model from the following paper [1]_. These graph convolu-
tions start with a per-atom set of descriptors for each atom in a molecule, then combine and recombine these
descriptors over convolutional layers. following [1]_.

References

learning molecular fingerprints.” Advances in neural information processing systems. 2015.

__init__(n_tasks: int, graph_conv_layers: List[int] = [64, 64], dense_layer_size: int = 128, dropout:
float = 0.0, mode: str = 'classification', number_atom_features: int = 75, n_classes: int = 2,
batch_size: int = 100, batch_normalize: bool = True, uncertainty: bool = False, **kwargs)

The wrapper class for graph convolutions.

Note that since the underlying _GraphConvKerasModel class is specified using imperative subclassing
style, this model cannout make predictions for arbitrary outputs.

Parameters

• n_tasks (int) – Number of tasks

• graph_conv_layers (list of int) – Width of channels for the Graph Convolu-
tion Layers
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• dense_layer_size (int) – Width of channels for Atom Level Dense Layer before
GraphPool

• dropout (list or float) – the dropout probablity to use for each layer. The length
of this list should equal len(graph_conv_layers)+1 (one value for each convolution layer,
and one for the dense layer). Alternatively this may be a single value instead of a list, in
which case the same value is used for every layer.

• mode (str) – Either “classification” or “regression”

• number_atom_features (int) – 75 is the default number of atom features cre-
ated, but this can vary if various options are passed to the function atom_features in
graph_features

• n_classes (int) – the number of classes to predict (only used in classification mode)

• batch_normalize (True) – if True, apply batch normalization to model

• uncertainty (bool) – if True, include extra outputs and loss terms to enable the un-
certainty in outputs to be predicted

default_generator(dataset, epochs=1, mode='fit', deterministic=True, pad_batches=True)
Create a generator that iterates batches for a dataset.

Subclasses may override this method to customize how model inputs are generated from the data.

Parameters

• dataset (Dataset) – the data to iterate

• epochs (int) – the number of times to iterate over the full dataset

• mode (str) – allowed values are ‘fit’ (called during training), ‘predict’ (called during
prediction), and ‘uncertainty’ (called during uncertainty prediction)

• deterministic (bool) – whether to iterate over the dataset in order, or randomly
shuffle the data for each epoch

• pad_batches (bool) – whether to pad each batch up to this model’s preferred batch
size

Returns

• a generator that iterates batches, each represented as a tuple of lists

• ([inputs], [outputs], [weights])

3.19.14 MPNNModel

class MPNNModel(n_tasks, n_atom_feat=70, n_pair_feat=8, n_hidden=100, T=5, M=10,
mode='regression', dropout=0.0, n_classes=2, uncertainty=False, batch_size=100,
**kwargs)

Message Passing Neural Network,

Message Passing Neural Networks treat graph convolutional operations as an instantiation of a more general
message passing schem. Recall that message passing in a graph is when nodes in a graph send each other
“messages” and update their internal state as a consequence of these messages.

Ordering structures in this model are built according to [1]_
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References

Sequence to sequence for sets.” arXiv preprint arXiv:1511.06391 (2015).

__init__(n_tasks, n_atom_feat=70, n_pair_feat=8, n_hidden=100, T=5, M=10, mode='regression',
dropout=0.0, n_classes=2, uncertainty=False, batch_size=100, **kwargs)

Parameters

• n_tasks (int) – Number of tasks

• n_atom_feat (int, optional) – Number of features per atom.

• n_pair_feat (int, optional) – Number of features per pair of atoms.

• n_hidden (int, optional) – Number of units(convolution depths) in corresponding
hidden layer

• n_graph_feat (int, optional) – Number of output features for each
molecule(graph)

• dropout (float) – the dropout probablity to use.

• n_classes (int) – the number of classes to predict (only used in classification mode)

• uncertainty (bool) – if True, include extra outputs and loss terms to enable the un-
certainty in outputs to be predicted

default_generator(dataset, epochs=1, mode='fit', deterministic=True, pad_batches=True)
Create a generator that iterates batches for a dataset.

Subclasses may override this method to customize how model inputs are generated from the data.

Parameters

• dataset (Dataset) – the data to iterate

• epochs (int) – the number of times to iterate over the full dataset

• mode (str) – allowed values are ‘fit’ (called during training), ‘predict’ (called during
prediction), and ‘uncertainty’ (called during uncertainty prediction)

• deterministic (bool) – whether to iterate over the dataset in order, or randomly
shuffle the data for each epoch

• pad_batches (bool) – whether to pad each batch up to this model’s preferred batch
size

Returns

• a generator that iterates batches, each represented as a tuple of lists

• ([inputs], [outputs], [weights])
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3.19.15 ScScoreModel

class ScScoreModel(n_features, layer_sizes=[300, 300, 300], dropouts=0.0, **kwargs)
https://pubs.acs.org/doi/abs/10.1021/acs.jcim.7b00622 Several definitions of molecular complexity exist to fa-
cilitate prioritization of lead compounds, to identify diversity-inducing and complexifying reactions, and to
guide retrosynthetic searches. In this work, we focus on synthetic complexity and reformalize its definition to
correlate with the expected number of reaction steps required to produce a target molecule, with implicit knowl-
edge about what compounds are reasonable starting materials. We train a neural network model on 12 million
reactions from the Reaxys database to impose a pairwise inequality constraint enforcing the premise of this
definition: that on average, the products of published chemical reactions should be more synthetically complex
than their corresponding reactants. The learned metric (SCScore) exhibits highly desirable nonlinear behavior,
particularly in recognizing increases in synthetic complexity throughout a number of linear synthetic routes.

Our model here actually uses hingeloss instead of the shifted relu loss in https://github.com/connorcoley/scscore.

This could cause issues differentiation issues with compounds that are “close” to each other in “complexity”

__init__(n_features, layer_sizes=[300, 300, 300], dropouts=0.0, **kwargs)

Parameters

• n_features (int) – number of features per molecule

• layer_sizes (list of int) – size of each hidden layer

• dropouts (int) – droupout to apply to each hidden layer

• kwargs – This takes all kwards as TensorGraph

default_generator(dataset, epochs=1, mode='fit', deterministic=True, pad_batches=True)
Create a generator that iterates batches for a dataset.

Subclasses may override this method to customize how model inputs are generated from the data.

Parameters

• dataset (Dataset) – the data to iterate

• epochs (int) – the number of times to iterate over the full dataset

• mode (str) – allowed values are ‘fit’ (called during training), ‘predict’ (called during
prediction), and ‘uncertainty’ (called during uncertainty prediction)

• deterministic (bool) – whether to iterate over the dataset in order, or randomly
shuffle the data for each epoch

• pad_batches (bool) – whether to pad each batch up to this model’s preferred batch
size

Returns

• a generator that iterates batches, each represented as a tuple of lists

• ([inputs], [outputs], [weights])
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3.19.16 SeqToSeq

class SeqToSeq(input_tokens, output_tokens, max_output_length, encoder_layers=4, decoder_layers=4,
embedding_dimension=512, dropout=0.0, reverse_input=True, variational=False, an-
nealing_start_step=5000, annealing_final_step=10000, **kwargs)

Implements sequence to sequence translation models.

The model is based on the description in Sutskever et al., “Sequence to Sequence Learning with Neural Net-
works” (https://arxiv.org/abs/1409.3215), although this implementation uses GRUs instead of LSTMs. The goal
is to take sequences of tokens as input, and translate each one into a different output sequence. The input and
output sequences can both be of variable length, and an output sequence need not have the same length as the
input sequence it was generated from. For example, these models were originally developed for use in natural
language processing. In that context, the input might be a sequence of English words, and the output might be a
sequence of French words. The goal would be to train the model to translate sentences from English to French.

The model consists of two parts called the “encoder” and “decoder”. Each one consists of a stack of recurrent
layers. The job of the encoder is to transform the input sequence into a single, fixed length vector called
the “embedding”. That vector contains all relevant information from the input sequence. The decoder then
transforms the embedding vector into the output sequence.

These models can be used for various purposes. First and most obviously, they can be used for sequence to
sequence translation. In any case where you have sequences of tokens, and you want to translate each one into
a different sequence, a SeqToSeq model can be trained to perform the translation.

Another possible use case is transforming variable length sequences into fixed length vectors. Many types of
models require their inputs to have a fixed shape, which makes it difficult to use them with variable sized inputs
(for example, when the input is a molecule, and different molecules have different numbers of atoms). In that
case, you can train a SeqToSeq model as an autoencoder, so that it tries to make the output sequence identical to
the input one. That forces the embedding vector to contain all information from the original sequence. You can
then use the encoder for transforming sequences into fixed length embedding vectors, suitable to use as inputs
to other types of models.

Another use case is to train the decoder for use as a generative model. Here again you begin by training the
SeqToSeq model as an autoencoder. Once training is complete, you can supply arbitrary embedding vectors,
and transform each one into an output sequence. When used in this way, you typically train it as a variational
autoencoder. This adds random noise to the encoder, and also adds a constraint term to the loss that forces
the embedding vector to have a unit Gaussian distribution. You can then pick random vectors from a Gaussian
distribution, and the output sequences should follow the same distribution as the training data.

When training as a variational autoencoder, it is best to use KL cost annealing, as described in https://arxiv.
org/abs/1511.06349. The constraint term in the loss is initially set to 0, so the optimizer just tries to minimize
the reconstruction loss. Once it has made reasonable progress toward that, the constraint term can be gradually
turned back on. The range of steps over which this happens is configurable.

__init__(input_tokens, output_tokens, max_output_length, encoder_layers=4, decoder_layers=4,
embedding_dimension=512, dropout=0.0, reverse_input=True, variational=False, anneal-
ing_start_step=5000, annealing_final_step=10000, **kwargs)

Construct a SeqToSeq model.

In addition to the following arguments, this class also accepts all the keyword arguments from Tensor-
Graph.

Parameters

• input_tokens (list) – a list of all tokens that may appear in input sequences

• output_tokens (list) – a list of all tokens that may appear in output sequences

• max_output_length (int) – the maximum length of output sequence that may be
generated
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• encoder_layers (int) – the number of recurrent layers in the encoder

• decoder_layers (int) – the number of recurrent layers in the decoder

• embedding_dimension (int) – the width of the embedding vector. This also is the
width of all recurrent layers.

• dropout (float) – the dropout probability to use during training

• reverse_input (bool) – if True, reverse the order of input sequences before sending
them into the encoder. This can improve performance when working with long sequences.

• variational (bool) – if True, train the model as a variational autoencoder. This adds
random noise to the encoder, and also constrains the embedding to follow a unit Gaussian
distribution.

• annealing_start_step (int) – the step (that is, batch) at which to begin turning
on the constraint term for KL cost annealing

• annealing_final_step (int) – the step (that is, batch) at which to finish turning
on the constraint term for KL cost annealing

fit_sequences(sequences, max_checkpoints_to_keep=5, checkpoint_interval=1000, restore=False)
Train this model on a set of sequences

Parameters

• sequences (iterable) – the training samples to fit to. Each sample should be repre-
sented as a tuple of the form (input_sequence, output_sequence).

• max_checkpoints_to_keep (int) – the maximum number of checkpoints to keep.
Older checkpoints are discarded.

• checkpoint_interval (int) – the frequency at which to write checkpoints, mea-
sured in training steps.

• restore (bool) – if True, restore the model from the most recent checkpoint and con-
tinue training from there. If False, retrain the model from scratch.

predict_from_sequences(sequences, beam_width=5)
Given a set of input sequences, predict the output sequences.

The prediction is done using a beam search with length normalization.

Parameters

• sequences (iterable) – the input sequences to generate a prediction for

• beam_width (int) – the beam width to use for searching. Set to 1 to use a simple
greedy search.

predict_from_embeddings(embeddings, beam_width=5)
Given a set of embedding vectors, predict the output sequences.

The prediction is done using a beam search with length normalization.

Parameters

• embeddings (iterable) – the embedding vectors to generate predictions for

• beam_width (int) – the beam width to use for searching. Set to 1 to use a simple
greedy search.

predict_embeddings(sequences)
Given a set of input sequences, compute the embedding vectors.
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Parameters sequences (iterable) – the input sequences to generate an embedding vector
for

3.19.17 GAN

class GAN(n_generators=1, n_discriminators=1, **kwargs)
Implements Generative Adversarial Networks.

A Generative Adversarial Network (GAN) is a type of generative model. It consists of two parts called the
“generator” and the “discriminator”. The generator takes random noise as input and transforms it into an output
that (hopefully) resembles the training data. The discriminator takes a set of samples as input and tries to
distinguish the real training samples from the ones created by the generator. Both of them are trained together.
The discriminator tries to get better and better at telling real from false data, while the generator tries to get
better and better at fooling the discriminator.

In many cases there also are additional inputs to the generator and discriminator. In that case it is known as a
Conditional GAN (CGAN), since it learns a distribution that is conditional on the values of those inputs. They
are referred to as “conditional inputs”.

Many variations on this idea have been proposed, and new varieties of GANs are constantly being proposed.
This class tries to make it very easy to implement straightforward GANs of the most conventional types. At the
same time, it tries to be flexible enough that it can be used to implement many (but certainly not all) variations
on the concept.

To define a GAN, you must create a subclass that provides implementations of the following methods:

get_noise_input_shape() get_data_input_shapes() create_generator() create_discriminator()

If you want your GAN to have any conditional inputs you must also implement:

get_conditional_input_shapes()

The following methods have default implementations that are suitable for most conventional GANs. You can
override them if you want to customize their behavior:

create_generator_loss() create_discriminator_loss() get_noise_batch()

This class allows a GAN to have multiple generators and discriminators, a model known as MIX+GAN. It
is described in Arora et al., “Generalization and Equilibrium in Generative Adversarial Nets (GANs)” (https:
//arxiv.org/abs/1703.00573). This can lead to better models, and is especially useful for reducing mode collapse,
since different generators can learn different parts of the distribution. To use this technique, simply specify the
number of generators and discriminators when calling the constructor. You can then tell predict_gan_generator()
which generator to use for predicting samples.

__init__(n_generators=1, n_discriminators=1, **kwargs)
Construct a GAN.

In addition to the parameters listed below, this class accepts all the keyword arguments from KerasModel.

Parameters

• n_generators (int) – the number of generators to include

• n_discriminators (int) – the number of discriminators to include

get_noise_input_shape()
Get the shape of the generator’s noise input layer.

Subclasses must override this to return a tuple giving the shape of the noise input. The actual Input layer
will be created automatically. The dimension corresponding to the batch size should be omitted.
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get_data_input_shapes()
Get the shapes of the inputs for training data.

Subclasses must override this to return a list of tuples, each giving the shape of one of the inputs. The
actual Input layers will be created automatically. This list of shapes must also match the shapes of the
generator’s outputs. The dimension corresponding to the batch size should be omitted.

get_conditional_input_shapes()
Get the shapes of any conditional inputs.

Subclasses may override this to return a list of tuples, each giving the shape of one of the conditional
inputs. The actual Input layers will be created automatically. The dimension corresponding to the batch
size should be omitted.

The default implementation returns an empty list, meaning there are no conditional inputs.

get_noise_batch(batch_size)
Get a batch of random noise to pass to the generator.

This should return a NumPy array whose shape matches the one returned by get_noise_input_shape(). The
default implementation returns normally distributed values. Subclasses can override this to implement a
different distribution.

create_generator()
Create and return a generator.

Subclasses must override this to construct the generator. The returned value should be a tf.keras.Model
whose inputs are a batch of noise, followed by any conditional inputs. The number and shapes of its
outputs must match the return value from get_data_input_shapes(), since generated data must have the
same form as training data.

create_discriminator()
Create and return a discriminator.

Subclasses must override this to construct the discriminator. The returned value should be a tf.keras.Model
whose inputs are all data inputs, followed by any conditional inputs. Its output should be a one dimensional
tensor containing the probability of each sample being a training sample.

create_generator_loss(discrim_output)
Create the loss function for the generator.

The default implementation is appropriate for most cases. Subclasses can override this if the need to
customize it.

Parameters discrim_output (Tensor) – the output from the discriminator on a batch of
generated data. This is its estimate of the probability that each sample is training data.

Returns

Return type A Tensor equal to the loss function to use for optimizing the generator.

create_discriminator_loss(discrim_output_train, discrim_output_gen)
Create the loss function for the discriminator.

The default implementation is appropriate for most cases. Subclasses can override this if the need to
customize it.

Parameters

• discrim_output_train (Tensor) – the output from the discriminator on a batch
of training data. This is its estimate of the probability that each sample is training data.

• discrim_output_gen (Tensor) – the output from the discriminator on a batch of
generated data. This is its estimate of the probability that each sample is training data.
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Returns

Return type A Tensor equal to the loss function to use for optimizing the discriminator.

fit_gan(batches, generator_steps=1.0, max_checkpoints_to_keep=5, checkpoint_interval=1000, re-
store=False)

Train this model on data.

Parameters

• batches (iterable) – batches of data to train the discriminator on, each represented
as a dict that maps Inputs to values. It should specify values for all members of data_inputs
and conditional_inputs.

• generator_steps (float) – the number of training steps to perform for the generator
for each batch. This can be used to adjust the ratio of training steps for the generator and
discriminator. For example, 2.0 will perform two training steps for every batch, while 0.5
will only perform one training step for every two batches.

• max_checkpoints_to_keep (int) – the maximum number of checkpoints to keep.
Older checkpoints are discarded.

• checkpoint_interval (int) – the frequency at which to write checkpoints, mea-
sured in batches. Set this to 0 to disable automatic checkpointing.

• restore (bool) – if True, restore the model from the most recent checkpoint before
training it.

predict_gan_generator(batch_size=1, noise_input=None, conditional_inputs=[], genera-
tor_index=0)

Use the GAN to generate a batch of samples.

Parameters

• batch_size (int) – the number of samples to generate. If either noise_input or condi-
tional_inputs is specified, this argument is ignored since the batch size is then determined
by the size of that argument.

• noise_input (array) – the value to use for the generator’s noise input. If None (the
default), get_noise_batch() is called to generate a random input, so each call will produce
a new set of samples.

• conditional_inputs (list of arrays) – the values to use for all conditional
inputs. This must be specified if the GAN has any conditional inputs.

• generator_index (int) – the index of the generator (between 0 and n_generators-1)
to use for generating the samples.

Returns

• An array (if the generator has only one output) or list of arrays (if it has

• multiple outputs) containing the generated samples.
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WGAN

class WGAN(gradient_penalty=10.0, **kwargs)
Implements Wasserstein Generative Adversarial Networks.

This class implements Wasserstein Generative Adversarial Networks (WGANs) as described in Arjovsky et
al., “Wasserstein GAN” (https://arxiv.org/abs/1701.07875). A WGAN is conceptually rather different from a
conventional GAN, but in practical terms very similar. It reinterprets the discriminator (often called the “critic”
in this context) as learning an approximation to the Earth Mover distance between the training and generated
distributions. The generator is then trained to minimize that distance. In practice, this just means using slightly
different loss functions for training the generator and discriminator.

WGANs have theoretical advantages over conventional GANs, and they often work better in practice. In addi-
tion, the discriminator’s loss function can be directly interpreted as a measure of the quality of the model. That
is an advantage over conventional GANs, where the loss does not directly convey information about the quality
of the model.

The theory WGANs are based on requires the discriminator’s gradient to be bounded. The original paper
achieved this by clipping its weights. This class instead does it by adding a penalty term to the discriminator’s
loss, as described in https://arxiv.org/abs/1704.00028. This is sometimes found to produce better results.

There are a few other practical differences between GANs and WGANs. In a conventional GAN, the discrimi-
nator’s output must be between 0 and 1 so it can be interpreted as a probability. In a WGAN, it should produce
an unbounded output that can be interpreted as a distance.

When training a WGAN, you also should usually use a smaller value for generator_steps. Conventional GANs
rely on keeping the generator and discriminator “in balance” with each other. If the discriminator ever gets too
good, it becomes impossible for the generator to fool it and training stalls. WGANs do not have this problem,
and in fact the better the discriminator is, the easier it is for the generator to improve. It therefore usually works
best to perform several training steps on the discriminator for each training step on the generator.

__init__(gradient_penalty=10.0, **kwargs)
Construct a WGAN.

In addition to the following, this class accepts all the keyword arguments from GAN and KerasModel.

Parameters gradient_penalty (float) – the magnitude of the gradient penalty loss

create_generator_loss(discrim_output)
Create the loss function for the generator.

The default implementation is appropriate for most cases. Subclasses can override this if the need to
customize it.

Parameters discrim_output (Tensor) – the output from the discriminator on a batch of
generated data. This is its estimate of the probability that each sample is training data.

Returns

Return type A Tensor equal to the loss function to use for optimizing the generator.

create_discriminator_loss(discrim_output_train, discrim_output_gen)
Create the loss function for the discriminator.

The default implementation is appropriate for most cases. Subclasses can override this if the need to
customize it.

Parameters

• discrim_output_train (Tensor) – the output from the discriminator on a batch
of training data. This is its estimate of the probability that each sample is training data.
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• discrim_output_gen (Tensor) – the output from the discriminator on a batch of
generated data. This is its estimate of the probability that each sample is training data.

Returns

Return type A Tensor equal to the loss function to use for optimizing the discriminator.

3.19.18 CNN

class CNN(n_tasks, n_features, dims, layer_filters=[100], kernel_size=5, strides=1,
weight_init_stddevs=0.02, bias_init_consts=1.0, weight_decay_penalty=0.0,
weight_decay_penalty_type='l2', dropouts=0.5, activation_fns=<function relu>,
dense_layer_size=1000, pool_type='max', mode='classification', n_classes=2, uncer-
tainty=False, residual=False, padding='valid', **kwargs)

A 1, 2, or 3 dimensional convolutional network for either regression or classification.

The network consists of the following sequence of layers:

• A configurable number of convolutional layers

• A global pooling layer (either max pool or average pool)

• A final dense layer to compute the output

It optionally can compose the model from pre-activation residual blocks, as described in https://arxiv.org/abs/
1603.05027, rather than a simple stack of convolution layers. This often leads to easier training, especially when
using a large number of layers. Note that residual blocks can only be used when successive layers have the same
output shape. Wherever the output shape changes, a simple convolution layer will be used even if residual=True.

__init__(n_tasks, n_features, dims, layer_filters=[100], kernel_size=5, strides=1,
weight_init_stddevs=0.02, bias_init_consts=1.0, weight_decay_penalty=0.0,
weight_decay_penalty_type='l2', dropouts=0.5, activation_fns=<function relu>,
dense_layer_size=1000, pool_type='max', mode='classification', n_classes=2, uncer-
tainty=False, residual=False, padding='valid', **kwargs)

Create a CNN.

In addition to the following arguments, this class also accepts all the keyword arguments from Tensor-
Graph.

Parameters

• n_tasks (int) – number of tasks

• n_features (int) – number of features

• dims (int) – the number of dimensions to apply convolutions over (1, 2, or 3)

• layer_filters (list) – the number of output filters for each convolutional layer in
the network. The length of this list determines the number of layers.

• kernel_size (int, tuple, or list) – a list giving the shape of the convolu-
tional kernel for each layer. Each element may be either an int (use the same kernel width
for every dimension) or a tuple (the kernel width along each dimension). Alternatively this
may be a single int or tuple instead of a list, in which case the same kernel shape is used
for every layer.

• strides (int, tuple, or list) – a list giving the stride between applications of
the kernel for each layer. Each element may be either an int (use the same stride for every
dimension) or a tuple (the stride along each dimension). Alternatively this may be a single
int or tuple instead of a list, in which case the same stride is used for every layer.
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• weight_init_stddevs (list or float) – the standard deviation of the distri-
bution to use for weight initialization of each layer. The length of this list should equal
len(layer_filters)+1, where the final element corresponds to the dense layer. Alternatively
this may be a single value instead of a list, in which case the same value is used for every
layer.

• bias_init_consts (list or loat) – the value to initialize the biases in each
layer to. The length of this list should equal len(layer_filters)+1, where the final element
corresponds to the dense layer. Alternatively this may be a single value instead of a list, in
which case the same value is used for every layer.

• weight_decay_penalty (float) – the magnitude of the weight decay penalty to
use

• weight_decay_penalty_type (str) – the type of penalty to use for weight decay,
either ‘l1’ or ‘l2’

• dropouts (list or float) – the dropout probablity to use for each layer. The
length of this list should equal len(layer_filters). Alternatively this may be a single value
instead of a list, in which case the same value is used for every layer.

• activation_fns (list or object) – the Tensorflow activation function to apply
to each layer. The length of this list should equal len(layer_filters). Alternatively this may
be a single value instead of a list, in which case the same value is used for every layer.

• pool_type (str) – the type of pooling layer to use, either ‘max’ or ‘average’

• mode (str) – Either ‘classification’ or ‘regression’

• n_classes (int) – the number of classes to predict (only used in classification mode)

• uncertainty (bool) – if True, include extra outputs and loss terms to enable the un-
certainty in outputs to be predicted

• residual (bool) – if True, the model will be composed of pre-activation residual
blocks instead of a simple stack of convolutional layers.

• padding (str) – the type of padding to use for convolutional layers, either ‘valid’ or
‘same’

default_generator(dataset, epochs=1, mode='fit', deterministic=True, pad_batches=True)
Create a generator that iterates batches for a dataset.

Subclasses may override this method to customize how model inputs are generated from the data.

Parameters

• dataset (Dataset) – the data to iterate

• epochs (int) – the number of times to iterate over the full dataset

• mode (str) – allowed values are ‘fit’ (called during training), ‘predict’ (called during
prediction), and ‘uncertainty’ (called during uncertainty prediction)

• deterministic (bool) – whether to iterate over the dataset in order, or randomly
shuffle the data for each epoch

• pad_batches (bool) – whether to pad each batch up to this model’s preferred batch
size

Returns

• a generator that iterates batches, each represented as a tuple of lists

• ([inputs], [outputs], [weights])
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3.19.19 TextCNNModel

class TextCNNModel(n_tasks, char_dict, seq_length, n_embedding=75, kernel_sizes=[1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 15, 20], num_filters=[100, 200, 200, 200, 200, 100, 100, 100, 100, 100,
160, 160], dropout=0.25, mode='classification', **kwargs)

A Convolutional neural network on smiles strings

Reimplementation of the discriminator module in ORGAN [1]_ . Originated from2.

This model applies multiple 1D convolutional filters to the padded strings, then max-over-time pooling is applied
on all filters, extracting one feature per filter. All features are concatenated and transformed through several
hidden layers to form predictions.

This model is initially developed for sentence-level classification tasks, with words represented as vectors. In
this implementation, SMILES strings are dissected into characters and transformed to one-hot vectors in a
similar way. The model can be used for general molecular-level classification or regression tasks. It is also used
in the ORGAN model as discriminator.

Training of the model only requires SMILES strings input, all featurized datasets that include SMILES in the
ids attribute are accepted. PDBbind, QM7 and QM7b are not supported. To use the model, build_char_dict
should be called first before defining the model to build character dict of input dataset, example can be found in
examples/delaney/delaney_textcnn.py

References

__init__(n_tasks, char_dict, seq_length, n_embedding=75, kernel_sizes=[1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 15, 20], num_filters=[100, 200, 200, 200, 200, 100, 100, 100, 100, 100, 160, 160],
dropout=0.25, mode='classification', **kwargs)

Parameters

• n_tasks (int) – Number of tasks

• char_dict (dict) – Mapping from characters in smiles to integers

• seq_length (int) – Length of sequences(after padding)

• n_embedding (int, optional) – Length of embedding vector

• filter_sizes (list of int, optional) – Properties of filters used in the conv
net

• num_filters (list of int, optional) – Properties of filters used in the conv
net

• dropout (float, optional) – Dropout rate

• mode (str) – Either “classification” or “regression” for type of model.

static build_char_dict(dataset, default_dict={'#': 1, '(': 2, ')': 3, '+': 4, '-': 5, '/': 6, '1': 7, '2':
8, '3': 9, '4': 10, '5': 11, '6': 12, '7': 13, '8': 14, '=': 15, 'Br': 30, 'C': 16,
'Cl': 29, 'F': 17, 'H': 18, 'I': 19, 'N': 20, 'O': 21, 'P': 22, 'S': 23, '[': 24,
'\\': 25, ']': 26, '_': 27, 'c': 28, 'n': 31, 'o': 32, 's': 33})

Collect all unique characters(in smiles) from the dataset. This method should be called before defining the
model to build appropriate char_dict

smiles_to_seq_batch(ids_b)
Converts SMILES strings to np.array sequence.

A tf.py_func wrapper is written around this when creating the input_fn for make_estimator

2 Kim, Yoon. “Convolutional neural networks for sentence classification.” arXiv preprint arXiv:1408.5882 (2014).
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default_generator(dataset, epochs=1, mode='fit', deterministic=True, pad_batches=True)
Transfer smiles strings to fixed length integer vectors

smiles_to_seq(smiles)
Tokenize characters in smiles to integers

3.19.20 AtomicConvModel

class AtomicConvModel(n_tasks: int, frag1_num_atoms: int = 70, frag2_num_atoms: int =
634, complex_num_atoms: int = 701, max_num_neighbors: int = 12,
batch_size: int = 24, atom_types: Sequence[float] = [6, 7.0, 8.0, 9.0,
11.0, 12.0, 15.0, 16.0, 17.0, 20.0, 25.0, 30.0, 35.0, 53.0, -1.0], radial:
Sequence[Sequence[float]] = [[1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5,
6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0, 10.5, 11.0, 11.5, 12.0], [0.0,
4.0, 8.0], [0.4]], layer_sizes=[100], weight_init_stddevs: Union[float, Se-
quence[float]] = 0.02, bias_init_consts: Union[float, Sequence[float]] =
1.0, weight_decay_penalty: float = 0.0, weight_decay_penalty_type: str
= 'l2', dropouts: Union[float, Sequence[float]] = 0.5, activation_fns:
Union[Callable, str, Sequence[Union[Callable, str]]] = <function relu>,
residual: bool = False, learning_rate=0.001, **kwargs)

Implements an Atomic Convolution Model.

Implements the atomic convolutional networks as introduced in

Gomes, Joseph, et al. “Atomic convolutional networks for predicting protein-ligand binding affinity.” arXiv
preprint arXiv:1703.10603 (2017).

The atomic convolutional networks function as a variant of graph convolutions. The difference is that the
“graph” here is the nearest neighbors graph in 3D space. The AtomicConvModel leverages these connections in
3D space to train models that learn to predict energetic state starting from the spatial geometry of the model.

__init__(n_tasks: int, frag1_num_atoms: int = 70, frag2_num_atoms: int = 634, com-
plex_num_atoms: int = 701, max_num_neighbors: int = 12, batch_size: int = 24,
atom_types: Sequence[float] = [6, 7.0, 8.0, 9.0, 11.0, 12.0, 15.0, 16.0, 17.0, 20.0, 25.0,
30.0, 35.0, 53.0, -1.0], radial: Sequence[Sequence[float]] = [[1.5, 2.0, 2.5, 3.0, 3.5, 4.0,
4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0, 10.5, 11.0, 11.5, 12.0], [0.0, 4.0,
8.0], [0.4]], layer_sizes=[100], weight_init_stddevs: Union[float, Sequence[float]] = 0.02,
bias_init_consts: Union[float, Sequence[float]] = 1.0, weight_decay_penalty: float = 0.0,
weight_decay_penalty_type: str = 'l2', dropouts: Union[float, Sequence[float]] = 0.5, acti-
vation_fns: Union[Callable, str, Sequence[Union[Callable, str]]] = <function relu>, resid-
ual: bool = False, learning_rate=0.001, **kwargs)→ None

Parameters

• n_tasks (int) – number of tasks

• frag1_num_atoms (int) – Number of atoms in first fragment

• frag2_num_atoms (int) – Number of atoms in sec

• max_num_neighbors (int) – Maximum number of neighbors possible for an atom.
Recall neighbors are spatial neighbors.

• atom_types (list) – List of atoms recognized by model. Atoms are indicated by their
nuclear numbers.

• radial (list) – Radial parameters used in the atomic convolution transformation.

• layer_sizes (list) – the size of each dense layer in the network. The length of this
list determines the number of layers.
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• weight_init_stddevs (list or float) – the standard deviation of the distri-
bution to use for weight initialization of each layer. The length of this list should equal
len(layer_sizes). Alternatively this may be a single value instead of a list, in which case
the same value is used for every layer.

• bias_init_consts (list or float) – the value to initialize the biases in each
layer to. The length of this list should equal len(layer_sizes). Alternatively this may be a
single value instead of a list, in which case the same value is used for every layer.

• weight_decay_penalty (float) – the magnitude of the weight decay penalty to
use

• weight_decay_penalty_type (str) – the type of penalty to use for weight decay,
either ‘l1’ or ‘l2’

• dropouts (list or float) – the dropout probablity to use for each layer. The
length of this list should equal len(layer_sizes). Alternatively this may be a single value
instead of a list, in which case the same value is used for every layer.

• activation_fns (list or object) – the Tensorflow activation function to apply
to each layer. The length of this list should equal len(layer_sizes). Alternatively this may
be a single value instead of a list, in which case the same value is used for every layer.

• residual (bool) – if True, the model will be composed of pre-activation residual
blocks instead of a simple stack of dense layers.

• learning_rate (float) – Learning rate for the model.

default_generator(dataset, epochs=1, mode='fit', deterministic=True, pad_batches=True)
Create a generator that iterates batches for a dataset.

Subclasses may override this method to customize how model inputs are generated from the data.

Parameters

• dataset (Dataset) – the data to iterate

• epochs (int) – the number of times to iterate over the full dataset

• mode (str) – allowed values are ‘fit’ (called during training), ‘predict’ (called during
prediction), and ‘uncertainty’ (called during uncertainty prediction)

• deterministic (bool) – whether to iterate over the dataset in order, or randomly
shuffle the data for each epoch

• pad_batches (bool) – whether to pad each batch up to this model’s preferred batch
size

Returns

• a generator that iterates batches, each represented as a tuple of lists

• ([inputs], [outputs], [weights])
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3.19.21 Smiles2Vec

class Smiles2Vec(char_to_idx, n_tasks=10, max_seq_len=270, embedding_dim=50, n_classes=2,
use_bidir=True, use_conv=True, filters=192, kernel_size=3, strides=1,
rnn_sizes=[224, 384], rnn_types=['GRU', 'GRU'], mode='regression', **kwargs)

Implements the Smiles2Vec model, that learns neural representations of SMILES strings which can be used for
downstream tasks.

The model is based on the description in Goh et al., “SMILES2vec: An Interpretable General-Purpose Deep
Neural Network for Predicting Chemical Properties” (https://arxiv.org/pdf/1712.02034.pdf). The goal here is
to take SMILES strings as inputs, turn them into vector representations which can then be used in predicting
molecular properties.

The model consists of an Embedding layer that retrieves embeddings for each character in the SMILES string.
These embeddings are learnt jointly with the rest of the model. The output from the embedding layer is a tensor
of shape (batch_size, seq_len, embedding_dim). This tensor can optionally be fed through a 1D convolutional
layer, before being passed to a series of RNN cells (optionally bidirectional). The final output from the RNN
cells aims to have learnt the temporal dependencies in the SMILES string, and in turn information about the
structure of the molecule, which is then used for molecular property prediction.

In the paper, the authors also train an explanation mask to endow the model with interpretability and gain insights
into its decision making. This segment is currently not a part of this implementation as this was developed for
the purpose of investigating a transfer learning protocol, ChemNet (which can be found at https://arxiv.org/abs/
1712.02734).

__init__(char_to_idx, n_tasks=10, max_seq_len=270, embedding_dim=50, n_classes=2,
use_bidir=True, use_conv=True, filters=192, kernel_size=3, strides=1, rnn_sizes=[224,
384], rnn_types=['GRU', 'GRU'], mode='regression', **kwargs)

Parameters

• char_to_idx (dict,) – char_to_idx contains character to index mapping for SMILES
characters

• embedding_dim (int, default 50) – Size of character embeddings used.

• use_bidir (bool, default True) – Whether to use BiDirectional RNN Cells

• use_conv (bool, default True) – Whether to use a conv-layer

• kernel_size (int, default 3) – Kernel size for convolutions

• filters (int, default 192) – Number of filters

• strides (int, default 1) – Strides used in convolution

• rnn_sizes (list[int], default [224, 384]) – Number of hidden units in
the RNN cells

• mode (str, default regression) – Whether to use model for regression or clas-
sification

default_generator(dataset, epochs=1, mode='fit', deterministic=True, pad_batches=True)
Create a generator that iterates batches for a dataset.

Subclasses may override this method to customize how model inputs are generated from the data.

Parameters

• dataset (Dataset) – the data to iterate

• epochs (int) – the number of times to iterate over the full dataset
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• mode (str) – allowed values are ‘fit’ (called during training), ‘predict’ (called during
prediction), and ‘uncertainty’ (called during uncertainty prediction)

• deterministic (bool) – whether to iterate over the dataset in order, or randomly
shuffle the data for each epoch

• pad_batches (bool) – whether to pad each batch up to this model’s preferred batch
size

Returns

• a generator that iterates batches, each represented as a tuple of lists

• ([inputs], [outputs], [weights])

3.19.22 ChemCeption

class ChemCeption(img_spec='std', base_filters=16, inception_blocks={'A': 3, 'B': 3, 'C': 3},
n_tasks=10, n_classes=2, augment=False, mode='regression', **kwargs)

Implements the ChemCeption model that leverages the representational capacities of convolutional neural net-
works (CNNs) to predict molecular properties.

The model is based on the description in Goh et al., “Chemception: A Deep Neural Network with Minimal
Chemistry Knowledge Matches the Performance of Expert-developed QSAR/QSPR Models” (https://arxiv.org/
pdf/1706.06689.pdf). The authors use an image based representation of the molecule, where pixels encode
different atomic and bond properties. More details on the image repres- entations can be found at https://arxiv.
org/abs/1710.02238

The model consists of a Stem Layer that reduces the image resolution for the layers to follow. The output of
the Stem Layer is followed by a series of Inception-Resnet blocks & a Reduction layer. Layers in the Inception-
Resnet blocks process image tensors at multiple resolutions and use a ResNet style skip-connection, combining
features from different resolutions. The Reduction layers reduce the spatial extent of the image by max-pooling
and 2-strided convolutions. More details on these layers can be found in the ChemCeption paper referenced
above. The output of the final Reduction layer is subject to a Global Average Pooling, and a fully-connected
layer maps the features to downstream outputs.

In the ChemCeption paper, the authors perform real-time image augmentation by rotating images between 0 to
180 degrees. This can be done during model training by setting the augment argument to True.

__init__(img_spec='std', base_filters=16, inception_blocks={'A': 3, 'B': 3, 'C': 3}, n_tasks=10,
n_classes=2, augment=False, mode='regression', **kwargs)

Parameters

• img_spec (str, default std) – Image specification used

• base_filters (int, default 16) – Base filters used for the different inception
and reduction layers

• inception_blocks (dict,) – Dictionary containing number of blocks for every in-
ception layer

• n_tasks (int, default 10) – Number of classification or regression tasks

• n_classes (int, default 2) – Number of classes (used only for classification)

• augment (bool, default False) – Whether to augment images

• mode (str, default regression) – Whether the model is used for regression or
classification
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build_inception_module(inputs, type='A')
Inception module is a series of inception layers of similar type. This function builds that.

default_generator(dataset, epochs=1, mode='fit', deterministic=True, pad_batches=True)
Create a generator that iterates batches for a dataset.

Subclasses may override this method to customize how model inputs are generated from the data.

Parameters

• dataset (Dataset) – the data to iterate

• epochs (int) – the number of times to iterate over the full dataset

• mode (str) – allowed values are ‘fit’ (called during training), ‘predict’ (called during
prediction), and ‘uncertainty’ (called during uncertainty prediction)

• deterministic (bool) – whether to iterate over the dataset in order, or randomly
shuffle the data for each epoch

• pad_batches (bool) – whether to pad each batch up to this model’s preferred batch
size

Returns

• a generator that iterates batches, each represented as a tuple of lists

• ([inputs], [outputs], [weights])

3.19.23 NormalizingFlowModel

The purpose of a normalizing flow is to map a simple distribution (that is easy to sample from and evaluate probability
densities for) to a more complex distribution that is learned from data. Normalizing flows combine the advantages
of autoregressive models (which provide likelihood estimation but do not learn features) and variational autoencoders
(which learn feature representations but do not provide marginal likelihoods). They are effective for any application re-
quiring a probabilistic model with these capabilities, e.g. generative modeling, unsupervised learning, or probabilistic
inference.

class NormalizingFlowModel(model: deepchem.models.normalizing_flows.NormalizingFlow,
**kwargs)

A base distribution and normalizing flow for applying transformations.

Normalizing flows are effective for any application requiring a probabilistic model that can both sample from a
distribution and compute marginal likelihoods, e.g. generative modeling, unsupervised learning, or probabilistic
inference. For a thorough review of normalizing flows, see [1]_.

A distribution implements two main operations:

1. Sampling from the transformed distribution

2. Calculating log probabilities

A normalizing flow implements three main operations:

1. Forward transformation

2. Inverse transformation

3. Calculating the Jacobian

Deep Normalizing Flow models require normalizing flow layers where input and output dimensions are the
same, the transformation is invertible, and the determinant of the Jacobian is efficient to compute and differen-
tiable. The determinant of the Jacobian of the transformation gives a factor that preserves the probability volume
to 1 when transforming between probability densities of different random variables.
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References

__init__(model: deepchem.models.normalizing_flows.NormalizingFlow, **kwargs)→ None
Creates a new NormalizingFlowModel.

In addition to the following arguments, this class also accepts all the keyword arguments from KerasModel.

Parameters model (NormalizingFlow) – An instance of NormalizingFlow.

Examples

>> import tensorflow_probability as tfp >> tfd = tfp.distributions >> tfb = tfp.bijectors >> flow_layers
= [ .. tfb.RealNVP( .. num_masked=2, .. shift_and_log_scale_fn=tfb.real_nvp_default_template( .. hid-
den_layers=[8, 8])) ..] >> base_distribution = tfd.MultivariateNormalDiag(loc=[0., 0., 0.]) >> nf = Nor-
malizingFlow(base_distribution, flow_layers) >> nfm = NormalizingFlowModel(nf) >> dataset = Numpy-
Dataset( .. X=np.random.rand(5, 3).astype(np.float32), .. y=np.random.rand(5,), .. ids=np.arange(5)) >>
nfm.fit(dataset)

create_nll(input: Union[tensorflow.python.framework.ops.Tensor, Se-
quence[tensorflow.python.framework.ops.Tensor]]) → tensor-
flow.python.framework.ops.Tensor

Create the negative log likelihood loss function.

The default implementation is appropriate for most cases. Subclasses can override this if there is a need to
customize it.

Parameters input (OneOrMany[tf.Tensor]) – A batch of data.

Returns

Return type A Tensor equal to the loss function to use for optimization.

save()
Saves model to disk using joblib.

reload()
Loads model from joblib file on disk.

3.20 PyTorch Models

DeepChem supports the use of PyTorch to build deep learning models.

3.20.1 TorchModel

You can wrap an arbitrary torch.nn.Module in a TorchModel object.

class TorchModel(model: torch.nn.modules.module.Module, loss: Union[deepchem.models.losses.Loss,
Callable[[List, List, List], Any]], output_types: Optional[List[str]] = None,
batch_size: int = 100, model_dir: Optional[str] = None, learning_rate:
Union[float, deepchem.models.optimizers.LearningRateSchedule] = 0.001, opti-
mizer: Optional[deepchem.models.optimizers.Optimizer] = None, tensorboard:
bool = False, wandb: bool = False, log_frequency: int = 100, device: Op-
tional[torch.device] = None, **kwargs)

This is a DeepChem model implemented by a PyTorch model.

Here is a simple example of code that uses TorchModel to train a PyTorch model on a DeepChem dataset.

3.20. PyTorch Models 247

https://pytorch.org/


deepchem, Release 2.5.0

>> pytorch_model = torch.nn.Sequential( >> torch.nn.Linear(100, 1000), >> torch.nn.Tanh(), >>
torch.nn.Linear(1000, 1)) >> model = TorchModel(pytorch_model, loss=dc.models.losses.L2Loss()) >>
model.fit(dataset)

The loss function for a model can be defined in two different ways. For models that have only a single output
and use a standard loss function, you can simply provide a dc.models.losses.Loss object. This defines the loss
for each sample or sample/task pair. The result is automatically multiplied by the weights and averaged over the
batch.

For more complicated cases, you can instead provide a function that directly computes the total loss. It must be
of the form f(outputs, labels, weights), taking the list of outputs from the model, the expected values, and any
weight matrices. It should return a scalar equal to the value of the loss function for the batch. No additional
processing is done to the result; it is up to you to do any weighting, averaging, adding of penalty terms, etc.

You can optionally provide an output_types argument, which describes how to interpret the model’s outputs.
This should be a list of strings, one for each output. You can use an arbitrary output_type for a output, but some
output_types are special and will undergo extra processing:

• ‘prediction’: This is a normal output, and will be returned by predict(). If output types are not specified,
all outputs are assumed to be of this type.

• ‘loss’: This output will be used in place of the normal outputs for computing the loss function. For
example, models that output probability distributions usually do it by computing unbounded numbers (the
logits), then passing them through a softmax function to turn them into probabilities. When computing
the cross entropy, it is more numerically stable to use the logits directly rather than the probabilities.
You can do this by having the model produce both probabilities and logits as outputs, then specifying
output_types=[‘prediction’, ‘loss’]. When predict() is called, only the first output (the probabilities) will
be returned. But during training, it is the second output (the logits) that will be passed to the loss function.

• ‘variance’: This output is used for estimating the uncertainty in another output. To create a model that can
estimate uncertainty, there must be the same number of ‘prediction’ and ‘variance’ outputs. Each variance
output must have the same shape as the corresponding prediction output, and each element is an estimate
of the variance in the corresponding prediction. Also be aware that if a model supports uncertainty, it
MUST use dropout on every layer, and dropout most be enabled during uncertainty prediction. Otherwise,
the uncertainties it computes will be inaccurate.

• other: Arbitrary output_types can be used to extract outputs produced by the model, but will have no
additional processing performed.

__init__(model: torch.nn.modules.module.Module, loss: Union[deepchem.models.losses.Loss,
Callable[[List, List, List], Any]], output_types: Optional[List[str]] = None,
batch_size: int = 100, model_dir: Optional[str] = None, learning_rate: Union[float,
deepchem.models.optimizers.LearningRateSchedule] = 0.001, optimizer: Op-
tional[deepchem.models.optimizers.Optimizer] = None, tensorboard: bool = False,
wandb: bool = False, log_frequency: int = 100, device: Optional[torch.device] = None,
**kwargs)→ None

Create a new TorchModel.

Parameters

• model (torch.nn.Module) – the PyTorch model implementing the calculation

• loss (dc.models.losses.Loss or function) – a Loss or function defining
how to compute the training loss for each batch, as described above

• output_types (list of strings, optional (default None)) – the
type of each output from the model, as described above

• batch_size (int, optional (default 100)) – default batch size for training
and evaluating
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• model_dir (str, optional (default None)) – the directory on disk where
the model will be stored. If this is None, a temporary directory is created.

• learning_rate (float or LearningRateSchedule, optional
(default 0.001)) – the learning rate to use for fitting. If optimizer is speci-
fied, this is ignored.

• optimizer (Optimizer, optional (default None)) – the optimizer to use
for fitting. If this is specified, learning_rate is ignored.

• tensorboard (bool, optional (default False)) – whether to log progress
to TensorBoard during training

• wandb (bool, optional (default False)) – whether to log progress to
Weights & Biases during training

• log_frequency (int, optional (default 100)) – The frequency at which
to log data. Data is logged using logging by default. If tensorboard is set, data is also
logged to TensorBoard. If wandb is set, data is also logged to Weights & Biases. Logging
happens at global steps. Roughly, a global step corresponds to one batch of training. If
you’d like a printout every 10 batch steps, you’d set log_frequency=10 for example.

• device (torch.device, optional (default None)) – the device on which
to run computations. If None, a device is chosen automatically.

fit(dataset: deepchem.data.datasets.Dataset, nb_epoch: int = 10, max_checkpoints_to_keep: int = 5,
checkpoint_interval: int = 1000, deterministic: bool = False, restore: bool = False, variables:
Optional[List[torch.nn.parameter.Parameter]] = None, loss: Optional[Callable[[List, List, List],
Any]] = None, callbacks: Union[Callable, List[Callable]] = [], all_losses: Optional[List[float]] =
None)→ float
Train this model on a dataset.

Parameters

• dataset (Dataset) – the Dataset to train on

• nb_epoch (int) – the number of epochs to train for

• max_checkpoints_to_keep (int) – the maximum number of checkpoints to keep.
Older checkpoints are discarded.

• checkpoint_interval (int) – the frequency at which to write checkpoints, mea-
sured in training steps. Set this to 0 to disable automatic checkpointing.

• deterministic (bool) – if True, the samples are processed in order. If False, a
different random order is used for each epoch.

• restore (bool) – if True, restore the model from the most recent checkpoint and con-
tinue training from there. If False, retrain the model from scratch.

• variables (list of torch.nn.Parameter) – the variables to train. If None
(the default), all trainable variables in the model are used.

• loss (function) – a function of the form f(outputs, labels, weights) that computes the
loss for each batch. If None (the default), the model’s standard loss function is used.

• callbacks (function or list of functions) – one or more functions of the
form f(model, step) that will be invoked after every step. This can be used to perform
validation, logging, etc.

• all_losses (Optional[List[float]], optional (default None)) –
If specified, all logged losses are appended into this list. Note that you can call fit() repeat-
edly with the same list and losses will continue to be appended.
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Returns

Return type The average loss over the most recent checkpoint interval

fit_generator(generator: Iterable[Tuple[Any, Any, Any]], max_checkpoints_to_keep: int =
5, checkpoint_interval: int = 1000, restore: bool = False, variables: Op-
tional[List[torch.nn.parameter.Parameter]] = None, loss: Optional[Callable[[List,
List, List], Any]] = None, callbacks: Union[Callable, List[Callable]] = [],
all_losses: Optional[List[float]] = None)→ float

Train this model on data from a generator.

Parameters

• generator (generator) – this should generate batches, each represented as a tuple
of the form (inputs, labels, weights).

• max_checkpoints_to_keep (int) – the maximum number of checkpoints to keep.
Older checkpoints are discarded.

• checkpoint_interval (int) – the frequency at which to write checkpoints, mea-
sured in training steps. Set this to 0 to disable automatic checkpointing.

• restore (bool) – if True, restore the model from the most recent checkpoint and con-
tinue training from there. If False, retrain the model from scratch.

• variables (list of torch.nn.Parameter) – the variables to train. If None
(the default), all trainable variables in the model are used.

• loss (function) – a function of the form f(outputs, labels, weights) that computes the
loss for each batch. If None (the default), the model’s standard loss function is used.

• callbacks (function or list of functions) – one or more functions of the
form f(model, step) that will be invoked after every step. This can be used to perform
validation, logging, etc.

• all_losses (Optional[List[float]], optional (default None)) –
If specified, all logged losses are appended into this list. Note that you can call fit() repeat-
edly with the same list and losses will continue to be appended.

Returns

Return type The average loss over the most recent checkpoint interval

fit_on_batch(X: Sequence, y: Sequence, w: Sequence, variables: Op-
tional[List[torch.nn.parameter.Parameter]] = None, loss: Optional[Callable[[List,
List, List], Any]] = None, callbacks: Union[Callable, List[Callable]] = [], checkpoint:
bool = True, max_checkpoints_to_keep: int = 5)→ float

Perform a single step of training.

Parameters

• X (ndarray) – the inputs for the batch

• y (ndarray) – the labels for the batch

• w (ndarray) – the weights for the batch

• variables (list of torch.nn.Parameter) – the variables to train. If None
(the default), all trainable variables in the model are used.

• loss (function) – a function of the form f(outputs, labels, weights) that computes the
loss for each batch. If None (the default), the model’s standard loss function is used.
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• callbacks (function or list of functions) – one or more functions of the
form f(model, step) that will be invoked after every step. This can be used to perform
validation, logging, etc.

• checkpoint (bool) – if true, save a checkpoint after performing the training step

• max_checkpoints_to_keep (int) – the maximum number of checkpoints to keep.
Older checkpoints are discarded.

Returns

Return type the loss on the batch

predict_on_generator(generator: Iterable[Tuple[Any, Any, Any]], transformers:
List[transformers.Transformer] = [], output_types: Op-
tional[Union[str, Sequence[str]]] = None) → Union[numpy.ndarray,
Sequence[numpy.ndarray]]

Parameters

• generator (generator) – this should generate batches, each represented as a tuple
of the form (inputs, labels, weights).

• transformers (list of dc.trans.Transformers) – Transformers that the
input data has been transformed by. The output is passed through these transformers to
undo the transformations.

• output_types (String or list of Strings) – If specified, all outputs of this
type will be retrieved from the model. If output_types is specified, outputs must be None.

• Returns – a NumPy array of the model produces a single output, or a list of arrays if it
produces multiple outputs

predict_on_batch(X: Union[numpy.ndarray, Sequence], transformers:
List[transformers.Transformer] = []) → Union[numpy.ndarray, Se-
quence[numpy.ndarray]]

Generates predictions for input samples, processing samples in a batch.

Parameters

• X (ndarray) – the input data, as a Numpy array.

• transformers (list of dc.trans.Transformers) – Transformers that the
input data has been transformed by. The output is passed through these transformers to
undo the transformations.

Returns

• a NumPy array of the model produces a single output, or a list of arrays

• if it produces multiple outputs

predict_uncertainty_on_batch(X: Sequence, masks: int = 50) →
Union[Tuple[numpy.ndarray, numpy.ndarray], Se-
quence[Tuple[numpy.ndarray, numpy.ndarray]]]

Predict the model’s outputs, along with the uncertainty in each one.

The uncertainty is computed as described in https://arxiv.org/abs/1703.04977. It involves repeating the
prediction many times with different dropout masks. The prediction is computed as the average over
all the predictions. The uncertainty includes both the variation among the predicted values (epistemic
uncertainty) and the model’s own estimates for how well it fits the data (aleatoric uncertainty). Not all
models support uncertainty prediction.

Parameters
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• X (ndarray) – the input data, as a Numpy array.

• masks (int) – the number of dropout masks to average over

Returns

• for each output, a tuple (y_pred, y_std) where y_pred is the predicted

• value of the output, and each element of y_std estimates the standard

• deviation of the corresponding element of y_pred

predict(dataset: deepchem.data.datasets.Dataset, transformers: List[transformers.Transformer]
= [], output_types: Optional[List[str]] = None) → Union[numpy.ndarray, Se-
quence[numpy.ndarray]]

Uses self to make predictions on provided Dataset object.

Parameters

• dataset (dc.data.Dataset) – Dataset to make prediction on

• transformers (list of dc.trans.Transformers) – Transformers that the
input data has been transformed by. The output is passed through these transformers to
undo the transformations.

• output_types (String or list of Strings) – If specified, all outputs of this
type will be retrieved from the model. If output_types is specified, outputs must be None.

Returns

• a NumPy array of the model produces a single output, or a list of arrays

• if it produces multiple outputs

predict_embedding(dataset: deepchem.data.datasets.Dataset) → Union[numpy.ndarray, Se-
quence[numpy.ndarray]]

Predicts embeddings created by underlying model if any exist. An embedding must be specified to have
output_type of ‘embedding’ in the model definition.

Parameters dataset (dc.data.Dataset) – Dataset to make prediction on

Returns

• a NumPy array of the embeddings model produces, or a list

• of arrays if it produces multiple embeddings

predict_uncertainty(dataset: deepchem.data.datasets.Dataset, masks: int =
50) → Union[Tuple[numpy.ndarray, numpy.ndarray], Se-
quence[Tuple[numpy.ndarray, numpy.ndarray]]]

Predict the model’s outputs, along with the uncertainty in each one.

The uncertainty is computed as described in https://arxiv.org/abs/1703.04977. It involves repeating the
prediction many times with different dropout masks. The prediction is computed as the average over
all the predictions. The uncertainty includes both the variation among the predicted values (epistemic
uncertainty) and the model’s own estimates for how well it fits the data (aleatoric uncertainty). Not all
models support uncertainty prediction.

Parameters

• dataset (dc.data.Dataset) – Dataset to make prediction on

• masks (int) – the number of dropout masks to average over

Returns

• for each output, a tuple (y_pred, y_std) where y_pred is the predicted
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• value of the output, and each element of y_std estimates the standard

• deviation of the corresponding element of y_pred

evaluate_generator(generator: Iterable[Tuple[Any, Any, Any]], met-
rics: List[deepchem.metrics.metric.Metric], transformers:
List[transformers.Transformer] = [], per_task_metrics: bool = False)

Evaluate the performance of this model on the data produced by a generator.

Parameters

• generator (generator) – this should generate batches, each represented as a tuple
of the form (inputs, labels, weights).

• metric (list of deepchem.metrics.Metric) – Evaluation metric

• transformers (list of dc.trans.Transformers) – Transformers that the
input data has been transformed by. The output is passed through these transformers to
undo the transformations.

• per_task_metrics (bool) – If True, return per-task scores.

Returns Maps tasks to scores under metric.

Return type dict

compute_saliency(X: numpy.ndarray)→ Union[numpy.ndarray, Sequence[numpy.ndarray]]
Compute the saliency map for an input sample.

This computes the Jacobian matrix with the derivative of each output element with respect to each input
element. More precisely,

• If this model has a single output, it returns a matrix of shape (output_shape, input_shape) with the
derivatives.

• If this model has multiple outputs, it returns a list of matrices, one for each output.

This method cannot be used on models that take multiple inputs.

Parameters X (ndarray) – the input data for a single sample

Returns

Return type the Jacobian matrix, or a list of matrices

default_generator(dataset: deepchem.data.datasets.Dataset, epochs: int = 1, mode: str = 'fit',
deterministic: bool = True, pad_batches: bool = True)→ Iterable[Tuple[List,
List, List]]

Create a generator that iterates batches for a dataset.

Subclasses may override this method to customize how model inputs are generated from the data.

Parameters

• dataset (Dataset) – the data to iterate

• epochs (int) – the number of times to iterate over the full dataset

• mode (str) – allowed values are ‘fit’ (called during training), ‘predict’ (called during
prediction), and ‘uncertainty’ (called during uncertainty prediction)

• deterministic (bool) – whether to iterate over the dataset in order, or randomly
shuffle the data for each epoch

• pad_batches (bool) – whether to pad each batch up to this model’s preferred batch
size
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Returns

• a generator that iterates batches, each represented as a tuple of lists

• ([inputs], [outputs], [weights])

save_checkpoint(max_checkpoints_to_keep: int = 5, model_dir: Optional[str] = None)→ None
Save a checkpoint to disk.

Usually you do not need to call this method, since fit() saves checkpoints automatically. If you have
disabled automatic checkpointing during fitting, this can be called to manually write checkpoints.

Parameters

• max_checkpoints_to_keep (int) – the maximum number of checkpoints to keep.
Older checkpoints are discarded.

• model_dir (str, default None) – Model directory to save checkpoint to. If
None, revert to self.model_dir

get_checkpoints(model_dir: Optional[str] = None)
Get a list of all available checkpoint files.

Parameters model_dir (str, default None) – Directory to get list of checkpoints
from. Reverts to self.model_dir if None

restore(checkpoint: Optional[str] = None, model_dir: Optional[str] = None)→ None
Reload the values of all variables from a checkpoint file.

Parameters

• checkpoint (str) – the path to the checkpoint file to load. If this is None, the most
recent checkpoint will be chosen automatically. Call get_checkpoints() to get a list of all
available checkpoints.

• model_dir (str, default None) – Directory to restore checkpoint from. If None,
use self.model_dir. If checkpoint is not None, this is ignored.

get_global_step()→ int
Get the number of steps of fitting that have been performed.

load_from_pretrained(source_model: deepchem.models.torch_models.torch_model.TorchModel,
assignment_map: Optional[Dict[Any, Any]] = None, value_map: Op-
tional[Dict[Any, Any]] = None, checkpoint: Optional[str] = None,
model_dir: Optional[str] = None, include_top: bool = True, inputs: Op-
tional[Sequence[Any]] = None, **kwargs)→ None

Copies parameter values from a pretrained model. source_model can either be a pretrained model or a
model with the same architecture. value_map is a parameter-value dictionary. If no value_map is pro-
vided, the parameter values are restored to the source_model from a checkpoint and a default value_map is
created. assignment_map is a dictionary mapping parameters from the source_model to the current model.
If no assignment_map is provided, one is made from scratch and assumes the model is composed of several
different layers, with the final one being a dense layer. include_top is used to control whether or not the
final dense layer is used. The default assignment map is useful in cases where the type of task is different
(classification vs regression) and/or number of tasks in the setting.

Parameters

• source_model (dc.TorchModel, required) – source_model can either be the
pretrained model or a dc.TorchModel with the same architecture as the pretrained model.
It is used to restore from a checkpoint, if value_map is None and to create a default as-
signment map if assignment_map is None
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• assignment_map (Dict, default None) – Dictionary mapping the
source_model parameters and current model parameters

• value_map (Dict, default None) – Dictionary containing source_model train-
able parameters mapped to numpy arrays. If value_map is None, the values are restored
and a default parameter map is created using the restored values

• checkpoint (str, default None) – the path to the checkpoint file to load. If this
is None, the most recent checkpoint will be chosen automatically. Call get_checkpoints()
to get a list of all available checkpoints

• model_dir (str, default None) – Restore model from custom model directory
if needed

• include_top (bool, default True) – if True, copies the weights and bias asso-
ciated with the final dense layer. Used only when assignment map is None

• inputs (List, input tensors for model) – if not None, then the weights are
built for both the source and self.

3.20.2 CGCNNModel

class CGCNNModel(in_node_dim: int = 92, hidden_node_dim: int = 64, in_edge_dim: int = 41,
num_conv: int = 3, predictor_hidden_feats: int = 128, n_tasks: int = 1, mode: str
= 'regression', n_classes: int = 2, **kwargs)

Crystal Graph Convolutional Neural Network (CGCNN).

Here is a simple example of code that uses the CGCNNModel with materials dataset.

>> import deepchem as dc >> dataset_config = {“reload”: False, “featurizer”: dc.feat.CGCNNFeaturizer,
“transformers”: []} >> tasks, datasets, transformers = dc.molnet.load_perovskite(**dataset_config) >>
train, valid, test = datasets >> model = dc.models.CGCNNModel(mode=’regression’, batch_size=32, learn-
ing_rate=0.001) >> model.fit(train, nb_epoch=50)

This model takes arbitary crystal structures as an input, and predict material properties using the element infor-
mation and connection of atoms in the crystal. If you want to get some material properties which has a high
computational cost like band gap in the case of DFT, this model may be useful. This model is one of variants of
Graph Convolutional Networks. The main differences between other GCN models are how to construct graphs
and how to update node representations. This model defines the crystal graph from structures using distances
between atoms. The crystal graph is an undirected multigraph which is defined by nodes representing atom
properties and edges representing connections between atoms in a crystal. And, this model updates the node
representations using both neighbor node and edge representations. Please confirm the detail algorithms from
[1]_.

References

Notes

This class requires DGL and PyTorch to be installed.

__init__(in_node_dim: int = 92, hidden_node_dim: int = 64, in_edge_dim: int = 41, num_conv: int
= 3, predictor_hidden_feats: int = 128, n_tasks: int = 1, mode: str = 'regression', n_classes:
int = 2, **kwargs)

This class accepts all the keyword arguments from TorchModel.

Parameters
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• in_node_dim (int, default 92) – The length of the initial node feature vectors.
The 92 is based on length of vectors in the atom_init.json.

• hidden_node_dim (int, default 64) – The length of the hidden node feature
vectors.

• in_edge_dim (int, default 41) – The length of the initial edge feature vectors.
The 41 is based on default setting of CGCNNFeaturizer.

• num_conv (int, default 3) – The number of convolutional layers.

• predictor_hidden_feats (int, default 128) – The size for hidden repre-
sentations in the output MLP predictor.

• n_tasks (int, default 1) – The number of the output size.

• mode (str, default 'regression') – The model type, ‘classification’ or ‘re-
gression’.

• n_classes (int, default 2) – The number of classes to predict (only used in
classification mode).

• kwargs (Dict) – This class accepts all the keyword arguments from TorchModel.

3.20.3 GATModel

class GATModel(n_tasks: int, graph_attention_layers: Optional[list] = None, n_attention_heads: int = 8,
agg_modes: Optional[list] = None, activation=<function elu>, residual: bool = True,
dropout: float = 0.0, alpha: float = 0.2, predictor_hidden_feats: int = 128, predic-
tor_dropout: float = 0.0, mode: str = 'regression', number_atom_features: int = 30,
n_classes: int = 2, self_loop: bool = True, **kwargs)

Model for Graph Property Prediction Based on Graph Attention Networks (GAT).

This model proceeds as follows:

• Update node representations in graphs with a variant of GAT

• For each graph, compute its representation by 1) a weighted sum of the node representations in the graph,
where the weights are computed by applying a gating function to the node representations 2) a max pooling
of the node representations 3) concatenating the output of 1) and 2)

• Perform the final prediction using an MLP

Examples

>>>
>> import deepchem as dc
>> from deepchem.models import GATModel
>> featurizer = dc.feat.MolGraphConvFeaturizer()
>> tasks, datasets, transformers = dc.molnet.load_tox21(
.. reload=False, featurizer=featurizer, transformers=[])
>> train, valid, test = datasets
>> model = GATModel(mode='classification', n_tasks=len(tasks),
.. batch_size=32, learning_rate=0.001)
>> model.fit(train, nb_epoch=50)
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References

Notes

This class requires DGL (https://github.com/dmlc/dgl) and DGL-LifeSci (https://github.com/awslabs/
dgl-lifesci) to be installed.

__init__(n_tasks: int, graph_attention_layers: Optional[list] = None, n_attention_heads: int = 8,
agg_modes: Optional[list] = None, activation=<function elu>, residual: bool = True,
dropout: float = 0.0, alpha: float = 0.2, predictor_hidden_feats: int = 128, predic-
tor_dropout: float = 0.0, mode: str = 'regression', number_atom_features: int = 30,
n_classes: int = 2, self_loop: bool = True, **kwargs)

Parameters

• n_tasks (int) – Number of tasks.

• graph_attention_layers (list of int) – Width of channels per attention
head for GAT layers. graph_attention_layers[i] gives the width of channel for each
attention head for the i-th GAT layer. If both graph_attention_layers and
agg_modes are specified, they should have equal length. If not specified, the default
value will be [8, 8].

• n_attention_heads (int) – Number of attention heads in each GAT layer.

• agg_modes (list of str) – The way to aggregate multi-head attention results for
each GAT layer, which can be either ‘flatten’ for concatenating all-head results or ‘mean’
for averaging all-head results. agg_modes[i] gives the way to aggregate multi-head
attention results for the i-th GAT layer. If both graph_attention_layers and
agg_modes are specified, they should have equal length. If not specified, the model will
flatten multi-head results for intermediate GAT layers and compute mean of multi-head
results for the last GAT layer.

• activation (activation function or None) – The activation function to ap-
ply to the aggregated multi-head results for each GAT layer. If not specified, the default
value will be ELU.

• residual (bool) – Whether to add a residual connection within each GAT layer. De-
fault to True.

• dropout (float) – The dropout probability within each GAT layer. Default to 0.

• alpha (float) – A hyperparameter in LeakyReLU, which is the slope for negative
values. Default to 0.2.

• predictor_hidden_feats (int) – The size for hidden representations in the output
MLP predictor. Default to 128.

• predictor_dropout (float) – The dropout probability in the output MLP predictor.
Default to 0.

• mode (str) – The model type, ‘classification’ or ‘regression’. Default to ‘regression’.

• number_atom_features (int) – The length of the initial atom feature vectors. De-
fault to 30.

• n_classes (int) – The number of classes to predict per task (only used when mode is
‘classification’). Default to 2.

• self_loop (bool) – Whether to add self loops for the nodes, i.e. edges from nodes
to themselves. When input graphs have isolated nodes, self loops allow preserving the
original feature of them in message passing. Default to True.
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• kwargs – This can include any keyword argument of TorchModel.

3.20.4 GCNModel

class GCNModel(n_tasks: int, graph_conv_layers: Optional[list] = None, activation=None, residual: bool
= True, batchnorm: bool = False, dropout: float = 0.0, predictor_hidden_feats: int =
128, predictor_dropout: float = 0.0, mode: str = 'regression', number_atom_features=30,
n_classes: int = 2, self_loop: bool = True, **kwargs)

Model for Graph Property Prediction Based on Graph Convolution Networks (GCN).

This model proceeds as follows:

• Update node representations in graphs with a variant of GCN

• For each graph, compute its representation by 1) a weighted sum of the node representations in the graph,
where the weights are computed by applying a gating function to the node representations 2) a max pooling
of the node representations 3) concatenating the output of 1) and 2)

• Perform the final prediction using an MLP

Examples

>>>
>> import deepchem as dc
>> from deepchem.models import GCNModel
>> featurizer = dc.feat.MolGraphConvFeaturizer()
>> tasks, datasets, transformers = dc.molnet.load_tox21(
.. reload=False, featurizer=featurizer, transformers=[])
>> train, valid, test = datasets
>> model = GCNModel(mode='classification', n_tasks=len(tasks),
.. batch_size=32, learning_rate=0.001)
>> model.fit(train, nb_epoch=50)

References

Notes

This class requires DGL (https://github.com/dmlc/dgl) and DGL-LifeSci (https://github.com/awslabs/
dgl-lifesci) to be installed.

This model is different from deepchem.models.GraphConvModel as follows:

• For each graph convolution, the learnable weight in this model is shared across all nodes.
GraphConvModel employs separate learnable weights for nodes of different degrees. A learnable
weight is shared across all nodes of a particular degree.

• For GraphConvModel, there is an additional GraphPool operation after each graph convolution. The
operation updates the representation of a node by applying an element-wise maximum over the represen-
tations of its neighbors and itself.

• For computing graph-level representations, this model computes a weighted sum and an element-wise
maximum of the representations of all nodes in a graph and concatenates them. The node weights are
obtained by using a linear/dense layer followd by a sigmoid function. For GraphConvModel, the sum
over node representations is unweighted.

• There are various minor differences in using dropout, skip connection and batch normalization.
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__init__(n_tasks: int, graph_conv_layers: Optional[list] = None, activation=None, residual: bool =
True, batchnorm: bool = False, dropout: float = 0.0, predictor_hidden_feats: int = 128, pre-
dictor_dropout: float = 0.0, mode: str = 'regression', number_atom_features=30, n_classes:
int = 2, self_loop: bool = True, **kwargs)

Parameters

• n_tasks (int) – Number of tasks.

• graph_conv_layers (list of int) – Width of channels for GCN layers.
graph_conv_layers[i] gives the width of channel for the i-th GCN layer. If not specified,
the default value will be [64, 64].

• activation (callable) – The activation function to apply to the output of each GCN
layer. By default, no activation function will be applied.

• residual (bool) – Whether to add a residual connection within each GCN layer. De-
fault to True.

• batchnorm (bool) – Whether to apply batch normalization to the output of each GCN
layer. Default to False.

• dropout (float) – The dropout probability for the output of each GCN layer. Default
to 0.

• predictor_hidden_feats (int) – The size for hidden representations in the output
MLP predictor. Default to 128.

• predictor_dropout (float) – The dropout probability in the output MLP predictor.
Default to 0.

• mode (str) – The model type, ‘classification’ or ‘regression’. Default to ‘regression’.

• number_atom_features (int) – The length of the initial atom feature vectors. De-
fault to 30.

• n_classes (int) – The number of classes to predict per task (only used when mode is
‘classification’). Default to 2.

• self_loop (bool) – Whether to add self loops for the nodes, i.e. edges from nodes
to themselves. When input graphs have isolated nodes, self loops allow preserving the
original feature of them in message passing. Default to True.

• kwargs – This can include any keyword argument of TorchModel.

3.20.5 AttentiveFPModel

class AttentiveFPModel(n_tasks: int, num_layers: int = 2, num_timesteps: int = 2, graph_feat_size:
int = 200, dropout: float = 0.0, mode: str = 'regression', num-
ber_atom_features: int = 30, number_bond_features: int = 11, n_classes:
int = 2, self_loop: bool = True, **kwargs)

Model for Graph Property Prediction.

This model proceeds as follows:

• Combine node features and edge features for initializing node representations, which involves a round of
message passing

• Update node representations with multiple rounds of message passing

• For each graph, compute its representation by combining the representations of all nodes in it, which
involves a gated recurrent unit (GRU).
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• Perform the final prediction using a linear layer

Examples

>>>
>> import deepchem as dc
>> from deepchem.models import AttentiveFPModel
>> featurizer = dc.feat.MolGraphConvFeaturizer(use_edges=True)
>> tasks, datasets, transformers = dc.molnet.load_tox21(
.. reload=False, featurizer=featurizer, transformers=[])
>> train, valid, test = datasets
>> model = AttentiveFPModel(mode='classification', n_tasks=len(tasks),
.. batch_size=32, learning_rate=0.001)
>> model.fit(train, nb_epoch=50)

References

Notes

This class requires DGL (https://github.com/dmlc/dgl) and DGL-LifeSci (https://github.com/awslabs/
dgl-lifesci) to be installed.

__init__(n_tasks: int, num_layers: int = 2, num_timesteps: int = 2, graph_feat_size: int = 200,
dropout: float = 0.0, mode: str = 'regression', number_atom_features: int = 30, num-
ber_bond_features: int = 11, n_classes: int = 2, self_loop: bool = True, **kwargs)

Parameters

• n_tasks (int) – Number of tasks.

• num_layers (int) – Number of graph neural network layers, i.e. number of rounds of
message passing. Default to 2.

• num_timesteps (int) – Number of time steps for updating graph representations with
a GRU. Default to 2.

• graph_feat_size (int) – Size for graph representations. Default to 200.

• dropout (float) – Dropout probability. Default to 0.

• mode (str) – The model type, ‘classification’ or ‘regression’. Default to ‘regression’.

• number_atom_features (int) – The length of the initial atom feature vectors. De-
fault to 30.

• number_bond_features (int) – The length of the initial bond feature vectors. De-
fault to 11.

• n_classes (int) – The number of classes to predict per task (only used when mode is
‘classification’). Default to 2.

• self_loop (bool) – Whether to add self loops for the nodes, i.e. edges from nodes
to themselves. When input graphs have isolated nodes, self loops allow preserving the
original feature of them in message passing. Default to True.

• kwargs – This can include any keyword argument of TorchModel.
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3.20.6 MPNNModel

Note that this is an alternative implementation for MPNN and currently you can only import it from deepchem.
models.torch_models.

class MPNNModel(n_tasks: int, node_out_feats: int = 64, edge_hidden_feats: int = 128,
num_step_message_passing: int = 3, num_step_set2set: int = 6, num_layer_set2set: int
= 3, mode: str = 'regression', number_atom_features: int = 30, number_bond_features:
int = 11, n_classes: int = 2, self_loop: bool = False, **kwargs)

Model for graph property prediction

This model proceeds as follows:

• Combine latest node representations and edge features in updating node representations, which involves
multiple rounds of message passing

• For each graph, compute its representation by combining the representations of all nodes in it, which
involves a Set2Set layer.

• Perform the final prediction using an MLP

Examples

>>>
>> import deepchem as dc
>> from deepchem.models.torch_models import MPNNModel
>> featurizer = dc.feat.MolGraphConvFeaturizer(use_edges=True)
>> tasks, datasets, transformers = dc.molnet.load_tox21(
.. reload=False, featurizer=featurizer, transformers=[])
>> train, valid, test = datasets
>> model = MPNNModel(mode='classification', n_tasks=len(tasks),
.. batch_size=32, learning_rate=0.001)
>> model.fit(train, nb_epoch=50)

References

Notes

This class requires DGL (https://github.com/dmlc/dgl) and DGL-LifeSci (https://github.com/awslabs/
dgl-lifesci) to be installed.

__init__(n_tasks: int, node_out_feats: int = 64, edge_hidden_feats: int = 128,
num_step_message_passing: int = 3, num_step_set2set: int = 6, num_layer_set2set:
int = 3, mode: str = 'regression', number_atom_features: int = 30, number_bond_features:
int = 11, n_classes: int = 2, self_loop: bool = False, **kwargs)

Parameters

• n_tasks (int) – Number of tasks.

• node_out_feats (int) – The length of the final node representation vectors. Default
to 64.

• edge_hidden_feats (int) – The length of the hidden edge representation vectors.
Default to 128.

• num_step_message_passing (int) – The number of rounds of message passing.
Default to 3.
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• num_step_set2set (int) – The number of set2set steps. Default to 6.

• num_layer_set2set (int) – The number of set2set layers. Default to 3.

• mode (str) – The model type, ‘classification’ or ‘regression’. Default to ‘regression’.

• number_atom_features (int) – The length of the initial atom feature vectors. De-
fault to 30.

• number_bond_features (int) – The length of the initial bond feature vectors. De-
fault to 11.

• n_classes (int) – The number of classes to predict per task (only used when mode is
‘classification’). Default to 2.

• self_loop (bool) – Whether to add self loops for the nodes, i.e. edges from nodes to
themselves. Generally, an MPNNModel does not require self loops. Default to False.

• kwargs – This can include any keyword argument of TorchModel.

3.20.7 LCNNModel

class LCNNModel(n_occupancy: int = 3, n_neighbor_sites_list: int = 19, n_permutation_list: int = 6,
n_task: int = 1, dropout_rate: float = 0.4, n_conv: int = 2, n_features: int = 44,
sitewise_n_feature: int = 25, **kwargs)

Lattice Convolutional Neural Network (LCNN). Here is a simple example of code that uses the LCNNModel
with Platinum 2d Adsorption dataset.

This model takes arbitrary configurations of Molecules on an adsorbate and predicts their formation energy.
These formation energies are found using DFT calculations and LCNNModel is to automate that process. This
model defines a crystal graph using the distance between atoms. The crystal graph is an undirected regular graph
(equal neighbours) and different permutations of the neighbours are pre-computed using the LCNNFeaturizer.
On each node for each permutation, the neighbour nodes are concatenated which are further operated. This
model has only a node representation. Please confirm the detail algorithms from [1]_.

Examples

>>>
>> import deepchem as dc
>> from pymatgen import Structure
>> import numpy as np
>> from deepchem.feat import LCNNFeaturizer
>> from deepchem.molnet import load_Platinum_Adsorption
>> PRIMITIVE_CELL = {
.. "lattice": [[2.818528, 0.0, 0.0],
.. [-1.409264, 2.440917, 0.0],
.. [0.0, 0.0, 25.508255]],
.. "coords": [[0.66667, 0.33333, 0.090221],
.. [0.33333, 0.66667, 0.18043936],
.. [0.0, 0.0, 0.27065772],
.. [0.66667, 0.33333, 0.36087608],
.. [0.33333, 0.66667, 0.45109444],
.. [0.0, 0.0, 0.49656991]],
.. "species": ['H', 'H', 'H', 'H', 'H', 'He'],
.. "site_properties": {'SiteTypes': ['S1', 'S1', 'S1', 'S1', 'S1', 'A1']}
.. }
>> PRIMITIVE_CELL_INF0 = {

(continues on next page)
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.. "cutoff": np.around(6.00),

.. "structure": Structure(**PRIMITIVE_CELL),

.. "aos": ['1', '0', '2'],

.. "pbc": [True, True, False],

.. "ns": 1,

.. "na": 1

.. }
>> tasks, datasets, transformers = load_Platinum_Adsorption(
.. featurizer= LCNNFeaturizer( **PRIMITIVE_CELL_INF0)
.. )
>> train, val, test = datasets
>> model = LCNNModel(mode='regression',
.. batch_size=8,
.. learning_rate=0.001)
>> model = LCNN()
>> out = model(lcnn_feat)
>> model.fit(train, nb_epoch=10)

References

Notes

This class requires DGL and PyTorch to be installed.

__init__(n_occupancy: int = 3, n_neighbor_sites_list: int = 19, n_permutation_list: int = 6, n_task:
int = 1, dropout_rate: float = 0.4, n_conv: int = 2, n_features: int = 44, sitewise_n_feature:
int = 25, **kwargs)

This class accepts all the keyword arguments from TorchModel.

Parameters

• n_occupancy (int, default 3) – number of possible occupancy.

• n_neighbor_sites_list (int, default 19) – Number of neighbors of each
site.

• n_permutation (int, default 6) – Diffrent permutations taken along diffrent
directions.

• n_task (int, default 1) – Number of tasks.

• dropout_rate (float, default 0.4) – p value for dropout between 0.0 to 1.0

• nconv (int, default 2) – number of convolutions performed.

• n_feature (int, default 44) – number of feature for each site.

• sitewise_n_feature (int, default 25) – number of features for atoms for
site-wise activation.

• kwargs (Dict) – This class accepts all the keyword arguments from TorchModel.
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3.21 Layers

Deep learning models are often said to be made up of “layers”. Intuitively, a “layer” is a function which transforms
some tensor into another tensor. DeepChem maintains an extensive collection of layers which perform various useful
scientific transformations. For now, most layers are Keras only but over time we expect this support to expand to other
types of models and layers.

class InteratomicL2Distances(*args, **kwargs)
Compute (squared) L2 Distances between atoms given neighbors.

This class computes pairwise distances between its inputs.

Examples

>>> import numpy as np
>>> import deepchem as dc
>>> atoms = 5
>>> neighbors = 2
>>> coords = np.random.rand(atoms, 3)
>>> neighbor_list = np.random.randint(0, atoms, size=(atoms, neighbors))
>>> layer = InteratomicL2Distances(atoms, neighbors, 3)
>>> result = np.array(layer([coords, neighbor_list]))
>>> result.shape
(5, 2)

__init__(N_atoms: int, M_nbrs: int, ndim: int, **kwargs)
Constructor for this layer.

Parameters

• N_atoms (int) – Number of atoms in the system total.

• M_nbrs (int) – Number of neighbors to consider when computing distances.

• n_dim (int) – Number of descriptors for each atom.

get_config()→ Dict
Returns config dictionary for this layer.

call(inputs)
Invokes this layer.

Parameters inputs (list) – Should be of form inputs=[coords, nbr_list] where coords is a
tensor of shape (None, N, 3) and nbr_list is a list.

Returns

Return type Tensor of shape (N_atoms, M_nbrs) with interatomic distances.

class GraphConv(*args, **kwargs)
Graph Convolutional Layers

This layer implements the graph convolution introduced in [1]_. The graph convolution combines per-node
feature vectures in a nonlinear fashion with the feature vectors for neighboring nodes. This “blends” information
in local neighborhoods of a graph.
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References

__init__(out_channel: int, min_deg: int = 0, max_deg: int = 10, activation_fn: Optional[Callable] =
None, **kwargs)

Initialize a graph convolutional layer.

Parameters

• out_channel (int) – The number of output channels per graph node.

• min_deg (int, optional (default 0)) – The minimum allowed degree for
each graph node.

• max_deg (int, optional (default 10)) – The maximum allowed degree for
each graph node. Note that this is set to 10 to handle complex molecules (some
organometallic compounds have strange structures). If you’re using this for non-molecular
applications, you may need to set this much higher depending on your dataset.

• activation_fn (function) – A nonlinear activation function to apply. If you’re not
sure, tf.nn.relu is probably a good default for your application.

build(input_shape)
Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-
creation step in-between layer instantiation and layer call.

This is typically used to create the weights of Layer subclasses.

Parameters input_shape – Instance of TensorShape, or list of instances of TensorShape if
the layer expects a list of inputs (one instance per input).

get_config()
Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are
handled by Network (one layer of abstraction above).

Returns Python dictionary.

call(inputs)
This is where the layer’s logic lives.

Note here that call() method in tf.keras is little bit different from keras API. In keras API, you can pass
support masking for layers as additional arguments. Whereas tf.keras has compute_mask() method to
support masking.

Parameters

• inputs – Input tensor, or list/tuple of input tensors.

• **kwargs – Additional keyword arguments. Currently unused.

Returns A tensor or list/tuple of tensors.

sum_neigh(atoms, deg_adj_lists)
Store the summed atoms by degree

class GraphPool(*args, **kwargs)
A GraphPool gathers data from local neighborhoods of a graph.
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This layer does a max-pooling over the feature vectors of atoms in a neighborhood. You can think of this layer
as analogous to a max-pooling layer for 2D convolutions but which operates on graphs instead. This technique
is described in [1]_.

References

learning molecular fingerprints.” Advances in neural information processing systems. 2015. https://arxiv.org/
abs/1509.09292

__init__(min_degree=0, max_degree=10, **kwargs)
Initialize this layer

Parameters

• min_deg (int, optional (default 0)) – The minimum allowed degree for
each graph node.

• max_deg (int, optional (default 10)) – The maximum allowed degree for
each graph node. Note that this is set to 10 to handle complex molecules (some
organometallic compounds have strange structures). If you’re using this for non-molecular
applications, you may need to set this much higher depending on your dataset.

get_config()
Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are
handled by Network (one layer of abstraction above).

Returns Python dictionary.

call(inputs)
This is where the layer’s logic lives.

Note here that call() method in tf.keras is little bit different from keras API. In keras API, you can pass
support masking for layers as additional arguments. Whereas tf.keras has compute_mask() method to
support masking.

Parameters

• inputs – Input tensor, or list/tuple of input tensors.

• **kwargs – Additional keyword arguments. Currently unused.

Returns A tensor or list/tuple of tensors.

class GraphGather(*args, **kwargs)
A GraphGather layer pools node-level feature vectors to create a graph feature vector.

Many graph convolutional networks manipulate feature vectors per graph-node. For a molecule for example,
each node might represent an atom, and the network would manipulate atomic feature vectors that summarize
the local chemistry of the atom. However, at the end of the application, we will likely want to work with a
molecule level feature representation. The GraphGather layer creates a graph level feature vector by combining
all the node-level feature vectors.

One subtlety about this layer is that it depends on the batch_size. This is done for internal implementation
reasons. The GraphConv, and GraphPool layers pool all nodes from all graphs in a batch that’s being processed.
The GraphGather reassembles these jumbled node feature vectors into per-graph feature vectors.
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References

learning molecular fingerprints.” Advances in neural information processing systems. 2015. https://arxiv.org/
abs/1509.09292

__init__(batch_size, activation_fn=None, **kwargs)
Initialize this layer.

Parameters

• batch_size (int) – The batch size for this layer. Note that the layer’s behavior
changes depending on the batch size.

• activation_fn (function) – A nonlinear activation function to apply. If you’re not
sure, tf.nn.relu is probably a good default for your application.

get_config()
Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are
handled by Network (one layer of abstraction above).

Returns Python dictionary.

call(inputs)
Invoking this layer.

Parameters inputs (list) – This list should consist of inputs = [atom_features, deg_slice,
membership, deg_adj_list placeholders. . . ]. These are all tensors that are created/process by
GraphConv and GraphPool

class MolGANConvolutionLayer(*args, **kwargs)
Graph convolution layer used in MolGAN model. MolGAN is a WGAN type model for generation of small
molecules. Not used directly, higher level layers like MolGANMultiConvolutionLayer use it. This layer per-
forms basic convolution on one-hot encoded matrices containing atom and bond information. This layer also
accepts three inputs for the case when convolution is performed more than once and results of previous convo-
lution need to used. It was done in such a way to avoid creating another layer that accepts three inputs rather
than two. The last input layer is so-called hidden_layer and it hold results of the convolution while first two are
unchanged input tensors.

Example

See: MolGANMultiConvolutionLayer for using in layers.

>>> from tensorflow.keras import Model
>>> from tensorflow.keras.layers import Input
>>> vertices = 9
>>> nodes = 5
>>> edges = 5
>>> units = 128

>>> layer1 = MolGANConvolutionLayer(units=units,edges=edges)
>>> layer2 = MolGANConvolutionLayer(units=units,edges=edges)
>>> adjacency_tensor= Input(shape=(vertices, vertices, edges))
>>> node_tensor = Input(shape=(vertices,nodes))
>>> hidden1 = layer1([adjacency_tensor,node_tensor])

(continues on next page)
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(continued from previous page)

>>> output = layer2(hidden1)
>>> model = Model(inputs=[adjacency_tensor,node_tensor], outputs=[output])

References

for small molecular graphs”, https://arxiv.org/abs/1805.11973

__init__(units: int, activation: Callable = <function tanh>, dropout_rate: float = 0.0, edges: int = 5,
name: str = '', **kwargs)

Initialize this layer.

Parameters

• units (int) – Dimesion of dense layers used for convolution

• activation (function, optional (default=Tanh)) – activation function
used across model, default is Tanh

• dropout_rate (float, optional (default=0.0)) – Dropout rate used by
dropout layer

• edges (int, optional (default=5)) – How many dense layers to use in convo-
lution. Typically equal to number of bond types used in the model.

• name (string, optional (default="")) – Name of the layer

call(inputs, training=False)
Invoke this layer

Parameters

• inputs (list) – List of two input matrices, adjacency tensor and node features tensors
in one-hot encoding format.

• training (bool) – Should this layer be run in training mode. Typically decided by
main model, influences things like dropout.

Returns First and second are original input tensors Third is the result of convolution

Return type tuple(tf.Tensor,tf.Tensor,tf.Tensor)

get_config()→ Dict
Returns config dictionary for this layer.

class MolGANAggregationLayer(*args, **kwargs)
Graph Aggregation layer used in MolGAN model. MolGAN is a WGAN type model for generation of small
molecules. Performs aggregation on tensor resulting from convolution layers. Given its simple nature it might
be removed in future and moved to MolGANEncoderLayer.
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Example

>>> from tensorflow.keras import Model
>>> from tensorflow.keras.layers import Input
>>> vertices = 9
>>> nodes = 5
>>> edges = 5
>>> units = 128

>>> layer_1 = MolGANConvolutionLayer(units=units,edges=edges)
>>> layer_2 = MolGANConvolutionLayer(units=units,edges=edges)
>>> layer_3 = MolGANAggregationLayer(units=128)
>>> adjacency_tensor= Input(shape=(vertices, vertices, edges))
>>> node_tensor = Input(shape=(vertices,nodes))
>>> hidden_1 = layer_1([adjacency_tensor,node_tensor])
>>> hidden_2 = layer_2(hidden_1)
>>> output = layer_3(hidden_2[2])
>>> model = Model(inputs=[adjacency_tensor,node_tensor], outputs=[output])

Example

vertices = 9 nodes = 5 edges = 5 units = 128

layer_1 = MolGANConvolutionLayer(units=units,edges=edges) layer_2 = MolGANConvolution-
Layer(units=units,edges=edges) layer_3 = MolGANAggregationLayer(units=128) adjacency_tensor= lay-
ers.Input(shape=(vertices, vertices, edges)) node_tensor = layers.Input(shape=(vertices,nodes)) hidden_1 =
layer_1([adjacency_tensor,node_tensor]) hidden_2 = layer_2(hidden_1) output = layer_3(hidden_2[2]) model
= keras.Model(inputs=[adjacency_tensor,node_tensor], outputs=[output])

References

for small molecular graphs”, https://arxiv.org/abs/1805.11973

__init__(units: int = 128, activation: Callable = <function tanh>, dropout_rate: float = 0.0, name:
str = '', **kwargs)

Initialize the layer

Parameters

• units (int, optional (default=128)) – Dimesion of dense layers used for
aggregation

• activation (function, optional (default=Tanh)) – activation function
used across model, default is Tanh

• dropout_rate (float, optional (default=0.0)) – Used by dropout layer

• name (string, optional (default="")) – Name of the layer

call(inputs, training=False)
Invoke this layer

Parameters

• inputs (List) – Single tensor resulting from graph convolution layer

• training (bool) – Should this layer be run in training mode. Typically decided by
main model, influences things like dropout.

3.21. Layers 269

https://arxiv.org/abs/1805.11973


deepchem, Release 2.5.0

Returns aggregation tensor – Result of aggregation function on input convolution tensor.

Return type tf.Tensor

get_config()→ Dict
Returns config dictionary for this layer.

class MolGANMultiConvolutionLayer(*args, **kwargs)
Multiple pass convolution layer used in MolGAN model. MolGAN is a WGAN type model for generation of
small molecules. It takes outputs of previous convolution layer and uses them as inputs for the next one. It
simplifies the overall framework, but might be moved to MolGANEncoderLayer in the future in order to reduce
number of layers.

Example

>>> from tensorflow.keras import Model
>>> from tensorflow.keras.layers import Input
>>> vertices = 9
>>> nodes = 5
>>> edges = 5
>>> units = 128

>>> layer_1 = MolGANMultiConvolutionLayer(units=(128,64))
>>> layer_2 = MolGANAggregationLayer(units=128)
>>> adjacency_tensor= Input(shape=(vertices, vertices, edges))
>>> node_tensor = Input(shape=(vertices,nodes))
>>> hidden = layer_1([adjacency_tensor,node_tensor])
>>> output = layer_2(hidden)
>>> model = Model(inputs=[adjacency_tensor,node_tensor], outputs=[output])

Example

vertices = 9 nodes = 5 edges = 5 units = 128

layer_1 = MolGANMultiConvolutionLayer(units=(128,64)) layer_2 = MolGANAggregation-
Layer(units=128) adjacency_tensor= layers.Input(shape=(vertices, vertices, edges)) node_tensor = lay-
ers.Input(shape=(vertices,nodes)) hidden = layer_1([adjacency_tensor,node_tensor]) output = layer_2(hidden)
model = keras.Model(inputs=[adjacency_tensor,node_tensor], outputs=[output])

References

for small molecular graphs”, https://arxiv.org/abs/1805.11973

__init__(units: Tuple = (128, 64), activation: Callable = <function tanh>, dropout_rate: float = 0.0,
edges: int = 5, name: str = '', **kwargs)

Initialize the layer

Parameters

• units (Tuple, optional (default=(128,64)), min_length=2) – List
of dimensions used by consecutive convolution layers. The more values the more con-
volution layers invoked.

• activation (function, optional (default=tanh)) – activation function
used across model, default is Tanh

• dropout_rate (float, optional (default=0.0)) – Used by dropout layer
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• edges (int, optional (default=0)) – Controls how many dense layers use for
single convolution unit. Typically matches number of bond types used in the molecule.

• name (string, optional (default="")) – Name of the layer

call(inputs, training=False)
Invoke this layer

Parameters

• inputs (list) – List of two input matrices, adjacency tensor and node features tensors
in one-hot encoding format.

• training (bool) – Should this layer be run in training mode. Typically decided by
main model, influences things like dropout.

Returns convolution tensor – Result of input tensors going through convolution a number of
times.

Return type tf.Tensor

get_config()→ Dict
Returns config dictionary for this layer.

class MolGANEncoderLayer(*args, **kwargs)
Main learning layer used by MolGAN model. MolGAN is a WGAN type model for generation of small
molecules. It role is to further simplify model. This layer can be manually built by stacking graph convolu-
tion layers followed by graph aggregation.

Example

>>> from tensorflow.keras import Model
>>> from tensorflow.keras.layers import Input, Dropout,Dense
>>> vertices = 9
>>> edges = 5
>>> nodes = 5
>>> dropout_rate = .0
>>> adjacency_tensor= Input(shape=(vertices, vertices, edges))
>>> node_tensor = Input(shape=(vertices, nodes))

>>> graph = MolGANEncoderLayer(units = [(128,64),128], dropout_rate= dropout_rate,
→˓ edges=edges)([adjacency_tensor,node_tensor])
>>> dense = Dense(units=128, activation='tanh')(graph)
>>> dense = Dropout(dropout_rate)(dense)
>>> dense = Dense(units=64, activation='tanh')(dense)
>>> dense = Dropout(dropout_rate)(dense)
>>> output = Dense(units=1)(dense)

>>> model = Model(inputs=[adjacency_tensor,node_tensor], outputs=[output])
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References

for small molecular graphs”, https://arxiv.org/abs/1805.11973

__init__(units: List = [(128, 64), 128], activation: Callable = <function tanh>, dropout_rate: float
= 0.0, edges: int = 5, name: str = '', **kwargs)

Initialize the layer.

Parameters

• units (List, optional (default=[(128, 64), 128])) – List of units for
MolGANMultiConvolutionLayer and GraphAggregationLayer i.e. [(128,64),128] means
two convolution layers dims = [128,64] followed by aggregation layer dims=128

• activation (function, optional (default=Tanh)) – activation function
used across model, default is Tanh

• dropout_rate (float, optional (default=0.0)) – Used by dropout layer

• edges (int, optional (default=0)) – Controls how many dense layers use for
single convolution unit. Typically matches number of bond types used in the molecule.

• name (string, optional (default="")) – Name of the layer

call(inputs, training=False)
Invoke this layer

Parameters

• inputs (list) – List of two input matrices, adjacency tensor and node features tensors
in one-hot encoding format.

• training (bool) – Should this layer be run in training mode. Typically decided by
main model, influences things like dropout.

Returns encoder tensor – Tensor that been through number of convolutions followed by aggre-
gation.

Return type tf.Tensor

get_config()→ Dict
Returns config dictionary for this layer.

class LSTMStep(*args, **kwargs)
Layer that performs a single step LSTM update.

This layer performs a single step LSTM update. Note that it is not a full LSTM recurrent network. The LSTM-
Step layer is useful as a primitive for designing layers such as the AttnLSTMEmbedding or the IterRefLST-
MEmbedding below.

__init__(output_dim, input_dim, init_fn='glorot_uniform', inner_init_fn='orthogonal', activa-
tion_fn='tanh', inner_activation_fn='hard_sigmoid', **kwargs)

Parameters

• output_dim (int) – Dimensionality of output vectors.

• input_dim (int) – Dimensionality of input vectors.

• init_fn (str) – TensorFlow nitialization to use for W.

• inner_init_fn (str) – TensorFlow initialization to use for U.

• activation_fn (str) – TensorFlow activation to use for output.

• inner_activation_fn (str) – TensorFlow activation to use for inner steps.
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get_config()
Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are
handled by Network (one layer of abstraction above).

Returns Python dictionary.

build(input_shape)
Constructs learnable weights for this layer.

call(inputs)
Execute this layer on input tensors.

Parameters inputs (list) – List of three tensors (x, h_tm1, c_tm1). h_tm1 means “h, t-1”.

Returns Returns h, [h, c]

Return type list

class AttnLSTMEmbedding(*args, **kwargs)
Implements AttnLSTM as in matching networks paper.

The AttnLSTM embedding adjusts two sets of vectors, the “test” and “support” sets. The “support” consists
of a set of evidence vectors. Think of these as the small training set for low-data machine learning. The “test”
consists of the queries we wish to answer with the small amounts of available data. The AttnLSTMEmbdding
allows us to modify the embedding of the “test” set depending on the contents of the “support”. The AttnLST-
MEmbedding is thus a type of learnable metric that allows a network to modify its internal notion of distance.

See references [1]_2 for more details.

References

__init__(n_test, n_support, n_feat, max_depth, **kwargs)

Parameters

• n_support (int) – Size of support set.

• n_test (int) – Size of test set.

• n_feat (int) – Number of features per atom

• max_depth (int) – Number of “processing steps” used by sequence-to-sequence for
sets model.

get_config()
Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are
handled by Network (one layer of abstraction above).

Returns Python dictionary.

2 Vinyals, Oriol, Samy Bengio, and Manjunath Kudlur. “Order matters: Sequence to sequence for sets.” arXiv preprint arXiv:1511.06391 (2015).
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build(input_shape)
Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-
creation step in-between layer instantiation and layer call.

This is typically used to create the weights of Layer subclasses.

Parameters input_shape – Instance of TensorShape, or list of instances of TensorShape if
the layer expects a list of inputs (one instance per input).

call(inputs)
Execute this layer on input tensors.

Parameters inputs (list) – List of two tensors (X, Xp). X should be of shape (n_test,
n_feat) and Xp should be of shape (n_support, n_feat) where n_test is the size of the test set,
n_support that of the support set, and n_feat is the number of per-atom features.

Returns Returns two tensors of same shape as input. Namely the output shape will be [(n_test,
n_feat), (n_support, n_feat)]

Return type list

class IterRefLSTMEmbedding(*args, **kwargs)
Implements the Iterative Refinement LSTM.

Much like AttnLSTMEmbedding, the IterRefLSTMEmbedding is another type of learnable metric which adjusts
“test” and “support.” Recall that “support” is the small amount of data available in a low data machine learning
problem, and that “test” is the query. The AttnLSTMEmbedding only modifies the “test” based on the contents
of the support. However, the IterRefLSTM modifies both the “support” and “test” based on each other. This
allows the learnable metric to be more malleable than that from AttnLSTMEmbeding.

__init__(n_test, n_support, n_feat, max_depth, **kwargs)
Unlike the AttnLSTM model which only modifies the test vectors additively, this model allows for an
additive update to be performed to both test and support using information from each other.

Parameters

• n_support (int) – Size of support set.

• n_test (int) – Size of test set.

• n_feat (int) – Number of input atom features

• max_depth (int) – Number of LSTM Embedding layers.

get_config()
Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are
handled by Network (one layer of abstraction above).

Returns Python dictionary.

build(input_shape)
Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-
creation step in-between layer instantiation and layer call.

This is typically used to create the weights of Layer subclasses.
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Parameters input_shape – Instance of TensorShape, or list of instances of TensorShape if
the layer expects a list of inputs (one instance per input).

call(inputs)
Execute this layer on input tensors.

Parameters inputs (list) – List of two tensors (X, Xp). X should be of shape (n_test,
n_feat) and Xp should be of shape (n_support, n_feat) where n_test is the size of the test set,
n_support that of the support set, and n_feat is the number of per-atom features.

Returns

• Returns two tensors of same shape as input. Namely the output

• shape will be [(n_test, n_feat), (n_support, n_feat)]

class SwitchedDropout(*args, **kwargs)
Apply dropout based on an input.

This is required for uncertainty prediction. The standard Keras Dropout layer only performs dropout during
training, but we sometimes need to do it during prediction. The second input to this layer should be a scalar
equal to 0 or 1, indicating whether to perform dropout.

get_config()
Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are
handled by Network (one layer of abstraction above).

Returns Python dictionary.

call(inputs)
This is where the layer’s logic lives.

Note here that call() method in tf.keras is little bit different from keras API. In keras API, you can pass
support masking for layers as additional arguments. Whereas tf.keras has compute_mask() method to
support masking.

Parameters

• inputs – Input tensor, or list/tuple of input tensors.

• **kwargs – Additional keyword arguments. Currently unused.

Returns A tensor or list/tuple of tensors.

class WeightedLinearCombo(*args, **kwargs)
Computes a weighted linear combination of input layers, with the weights defined by trainable variables.

__init__(std=0.3, **kwargs)
Initialize this layer.

Parameters std (float, optional (default 0.3)) – The standard deviation to use
when randomly initializing weights.

get_config()
Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.
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The config of a layer does not include connectivity information, nor the layer class name. These are
handled by Network (one layer of abstraction above).

Returns Python dictionary.

build(input_shape)
Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-
creation step in-between layer instantiation and layer call.

This is typically used to create the weights of Layer subclasses.

Parameters input_shape – Instance of TensorShape, or list of instances of TensorShape if
the layer expects a list of inputs (one instance per input).

call(inputs)
This is where the layer’s logic lives.

Note here that call() method in tf.keras is little bit different from keras API. In keras API, you can pass
support masking for layers as additional arguments. Whereas tf.keras has compute_mask() method to
support masking.

Parameters

• inputs – Input tensor, or list/tuple of input tensors.

• **kwargs – Additional keyword arguments. Currently unused.

Returns A tensor or list/tuple of tensors.

class CombineMeanStd(*args, **kwargs)
Generate Gaussian nose.

__init__(training_only=False, noise_epsilon=1.0, **kwargs)
Create a CombineMeanStd layer.

This layer should have two inputs with the same shape, and its output also has the same shape. Each
element of the output is a Gaussian distributed random number whose mean is the corresponding element
of the first input, and whose standard deviation is the corresponding element of the second input.

Parameters

• training_only (bool) – if True, noise is only generated during training. During
prediction, the output is simply equal to the first input (that is, the mean of the distribution
used during training).

• noise_epsilon (float) – The noise is scaled by this factor

get_config()
Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are
handled by Network (one layer of abstraction above).

Returns Python dictionary.

call(inputs, training=True)
This is where the layer’s logic lives.
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Note here that call() method in tf.keras is little bit different from keras API. In keras API, you can pass
support masking for layers as additional arguments. Whereas tf.keras has compute_mask() method to
support masking.

Parameters

• inputs – Input tensor, or list/tuple of input tensors.

• **kwargs – Additional keyword arguments. Currently unused.

Returns A tensor or list/tuple of tensors.

class Stack(*args, **kwargs)
Stack the inputs along a new axis.

get_config()
Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are
handled by Network (one layer of abstraction above).

Returns Python dictionary.

call(inputs)
This is where the layer’s logic lives.

Note here that call() method in tf.keras is little bit different from keras API. In keras API, you can pass
support masking for layers as additional arguments. Whereas tf.keras has compute_mask() method to
support masking.

Parameters

• inputs – Input tensor, or list/tuple of input tensors.

• **kwargs – Additional keyword arguments. Currently unused.

Returns A tensor or list/tuple of tensors.

class VinaFreeEnergy(*args, **kwargs)
Computes free-energy as defined by Autodock Vina.

TODO(rbharath): Make this layer support batching.

get_config()
Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are
handled by Network (one layer of abstraction above).

Returns Python dictionary.

build(input_shape)
Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-
creation step in-between layer instantiation and layer call.

This is typically used to create the weights of Layer subclasses.
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Parameters input_shape – Instance of TensorShape, or list of instances of TensorShape if
the layer expects a list of inputs (one instance per input).

nonlinearity(c, w)
Computes non-linearity used in Vina.

repulsion(d)
Computes Autodock Vina’s repulsion interaction term.

hydrophobic(d)
Computes Autodock Vina’s hydrophobic interaction term.

hydrogen_bond(d)
Computes Autodock Vina’s hydrogen bond interaction term.

gaussian_first(d)
Computes Autodock Vina’s first Gaussian interaction term.

gaussian_second(d)
Computes Autodock Vina’s second Gaussian interaction term.

call(inputs)

Parameters

• X (tf.Tensor of shape (N, d)) – Coordinates/features.

• Z (tf.Tensor of shape (N)) – Atomic numbers of neighbor atoms.

Returns layer – The free energy of each complex in batch

Return type tf.Tensor of shape (B)

class NeighborList(*args, **kwargs)
Computes a neighbor-list in Tensorflow.

Neighbor-lists (also called Verlet Lists) are a tool for grouping atoms which are close to each other spatially.
This layer computes a Neighbor List from a provided tensor of atomic coordinates. You can think of this as a
general “k-means” layer, but optimized for the case k==3.

TODO(rbharath): Make this layer support batching.

__init__(N_atoms, M_nbrs, ndim, nbr_cutoff, start, stop, **kwargs)

Parameters

• N_atoms (int) – Maximum number of atoms this layer will neighbor-list.

• M_nbrs (int) – Maximum number of spatial neighbors possible for atom.

• ndim (int) – Dimensionality of space atoms live in. (Typically 3D, but sometimes will
want to use higher dimensional descriptors for atoms).

• nbr_cutoff (float) – Length in Angstroms (?) at which atom boxes are gridded.

get_config()
Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are
handled by Network (one layer of abstraction above).

Returns Python dictionary.
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call(inputs)
This is where the layer’s logic lives.

Note here that call() method in tf.keras is little bit different from keras API. In keras API, you can pass
support masking for layers as additional arguments. Whereas tf.keras has compute_mask() method to
support masking.

Parameters

• inputs – Input tensor, or list/tuple of input tensors.

• **kwargs – Additional keyword arguments. Currently unused.

Returns A tensor or list/tuple of tensors.

compute_nbr_list(coords)
Get closest neighbors for atoms.

Needs to handle padding for atoms with no neighbors.

Parameters coords (tf.Tensor) – Shape (N_atoms, ndim)

Returns nbr_list – Shape (N_atoms, M_nbrs) of atom indices

Return type tf.Tensor

get_atoms_in_nbrs(coords, cells)
Get the atoms in neighboring cells for each cells.

Returns

Return type atoms_in_nbrs = (N_atoms, n_nbr_cells, M_nbrs)

get_closest_atoms(coords, cells)
For each cell, find M_nbrs closest atoms.

Let N_atoms be the number of atoms.

Parameters

• coords (tf.Tensor) – (N_atoms, ndim) shape.

• cells (tf.Tensor) – (n_cells, ndim) shape.

Returns closest_inds – Of shape (n_cells, M_nbrs)

Return type tf.Tensor

get_cells_for_atoms(coords, cells)
Compute the cells each atom belongs to.

Parameters

• coords (tf.Tensor) – Shape (N_atoms, ndim)

• cells (tf.Tensor) – (n_cells, ndim) shape.

Returns cells_for_atoms – Shape (N_atoms, 1)

Return type tf.Tensor

get_neighbor_cells(cells)
Compute neighbors of cells in grid.

# TODO(rbharath): Do we need to handle periodic boundary conditions properly here? # TODO(rbharath):
This doesn’t handle boundaries well. We hard-code # looking for n_nbr_cells neighbors, which isn’t right
for boundary cells in # the cube.
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Parameters cells (tf.Tensor) – (n_cells, ndim) shape.

Returns nbr_cells – (n_cells, n_nbr_cells)

Return type tf.Tensor

get_cells()
Returns the locations of all grid points in box.

Suppose start is -10 Angstrom, stop is 10 Angstrom, nbr_cutoff is 1. Then would return a list of length
20^3 whose entries would be [(-10, -10, -10), (-10, -10, -9), . . . , (9, 9, 9)]

Returns cells – (n_cells, ndim) shape.

Return type tf.Tensor

class AtomicConvolution(*args, **kwargs)
Implements the atomic convolutional transform introduced in

Gomes, Joseph, et al. “Atomic convolutional networks for predicting protein-ligand binding affinity.” arXiv
preprint arXiv:1703.10603 (2017).

At a high level, this transform performs a graph convolution on the nearest neighbors graph in 3D space.

__init__(atom_types=None, radial_params=[], boxsize=None, **kwargs)
Atomic convolution layer

N = max_num_atoms, M = max_num_neighbors, B = batch_size, d = num_features l = num_radial_filters
* num_atom_types

Parameters

• atom_types (list or None) – Of length a, where a is number of atom types for
filtering.

• radial_params (list) – Of length l, where l is number of radial filters learned.

• boxsize (float or None) – Simulation box length [Angstrom].

get_config()
Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are
handled by Network (one layer of abstraction above).

Returns Python dictionary.

build(input_shape)
Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-
creation step in-between layer instantiation and layer call.

This is typically used to create the weights of Layer subclasses.

Parameters input_shape – Instance of TensorShape, or list of instances of TensorShape if
the layer expects a list of inputs (one instance per input).

call(inputs)

Parameters

• X (tf.Tensor of shape (B, N, d)) – Coordinates/features.
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• Nbrs (tf.Tensor of shape (B, N, M)) – Neighbor list.

• Nbrs_Z (tf.Tensor of shape (B, N, M)) – Atomic numbers of neighbor
atoms.

Returns layer – A new tensor representing the output of the atomic conv layer

Return type tf.Tensor of shape (B, N, l)

radial_symmetry_function(R, rc, rs, e)
Calculates radial symmetry function.

B = batch_size, N = max_num_atoms, M = max_num_neighbors, d = num_filters

Parameters

• R (tf.Tensor of shape (B, N, M)) – Distance matrix.

• rc (float) – Interaction cutoff [Angstrom].

• rs (float) – Gaussian distance matrix mean.

• e (float) – Gaussian distance matrix width.

Returns retval – Radial symmetry function (before summation)

Return type tf.Tensor of shape (B, N, M)

radial_cutoff(R, rc)
Calculates radial cutoff matrix.

B = batch_size, N = max_num_atoms, M = max_num_neighbors

Parameters

• [B (R) – Distance matrix.

• N (tf.Tensor) – Distance matrix.

• M] (tf.Tensor) – Distance matrix.

• rc (tf.Variable) – Interaction cutoff [Angstrom].

Returns FC [B, N, M] – Radial cutoff matrix.

Return type tf.Tensor

gaussian_distance_matrix(R, rs, e)
Calculates gaussian distance matrix.

B = batch_size, N = max_num_atoms, M = max_num_neighbors

Parameters

• [B (R) – Distance matrix.

• N (tf.Tensor) – Distance matrix.

• M] (tf.Tensor) – Distance matrix.

• rs (tf.Variable) – Gaussian distance matrix mean.

• e (tf.Variable) – Gaussian distance matrix width (e = .5/std**2).

Returns retval [B, N, M] – Gaussian distance matrix.

Return type tf.Tensor
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distance_tensor(X, Nbrs, boxsize, B, N, M, d)
Calculates distance tensor for batch of molecules.

B = batch_size, N = max_num_atoms, M = max_num_neighbors, d = num_features

Parameters

• X (tf.Tensor of shape (B, N, d)) – Coordinates/features tensor.

• Nbrs (tf.Tensor of shape (B, N, M)) – Neighbor list tensor.

• boxsize (float or None) – Simulation box length [Angstrom].

Returns D – Coordinates/features distance tensor.

Return type tf.Tensor of shape (B, N, M, d)

distance_matrix(D)
Calcuates the distance matrix from the distance tensor

B = batch_size, N = max_num_atoms, M = max_num_neighbors, d = num_features

Parameters D (tf.Tensor of shape (B, N, M, d)) – Distance tensor.

Returns R – Distance matrix.

Return type tf.Tensor of shape (B, N, M)

class AlphaShareLayer(*args, **kwargs)
Part of a sluice network. Adds alpha parameters to control sharing between the main and auxillary tasks

Factory method AlphaShare should be used for construction

Parameters in_layers (list of Layers or tensors) – tensors in list must be the same
size and list must include two or more tensors

Returns

• out_tensor (a tensor with shape [len(in_layers), x, y] where x, y were the original layer
dimensions)

• Distance matrix.

get_config()
Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are
handled by Network (one layer of abstraction above).

Returns Python dictionary.

build(input_shape)
Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-
creation step in-between layer instantiation and layer call.

This is typically used to create the weights of Layer subclasses.

Parameters input_shape – Instance of TensorShape, or list of instances of TensorShape if
the layer expects a list of inputs (one instance per input).
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call(inputs)
This is where the layer’s logic lives.

Note here that call() method in tf.keras is little bit different from keras API. In keras API, you can pass
support masking for layers as additional arguments. Whereas tf.keras has compute_mask() method to
support masking.

Parameters

• inputs – Input tensor, or list/tuple of input tensors.

• **kwargs – Additional keyword arguments. Currently unused.

Returns A tensor or list/tuple of tensors.

class SluiceLoss(*args, **kwargs)
Calculates the loss in a Sluice Network Every input into an AlphaShare should be used in SluiceLoss

get_config()
Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are
handled by Network (one layer of abstraction above).

Returns Python dictionary.

call(inputs)
This is where the layer’s logic lives.

Note here that call() method in tf.keras is little bit different from keras API. In keras API, you can pass
support masking for layers as additional arguments. Whereas tf.keras has compute_mask() method to
support masking.

Parameters

• inputs – Input tensor, or list/tuple of input tensors.

• **kwargs – Additional keyword arguments. Currently unused.

Returns A tensor or list/tuple of tensors.

class BetaShare(*args, **kwargs)
Part of a sluice network. Adds beta params to control which layer outputs are used for prediction

Parameters in_layers (list of Layers or tensors) – tensors in list must be the same
size and list must include two or more tensors

Returns output_layers – Distance matrix.

Return type list of Layers or tensors with same size as in_layers

get_config()
Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are
handled by Network (one layer of abstraction above).

Returns Python dictionary.
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build(input_shape)
Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-
creation step in-between layer instantiation and layer call.

This is typically used to create the weights of Layer subclasses.

Parameters input_shape – Instance of TensorShape, or list of instances of TensorShape if
the layer expects a list of inputs (one instance per input).

call(inputs)
Size of input layers must all be the same

class ANIFeat(*args, **kwargs)
Performs transform from 3D coordinates to ANI symmetry functions

__init__(max_atoms=23, radial_cutoff=4.6, angular_cutoff=3.1, radial_length=32, angu-
lar_length=8, atom_cases=[1, 6, 7, 8, 16], atomic_number_differentiated=True, co-
ordinates_in_bohr=True, **kwargs)

Only X can be transformed

get_config()
Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are
handled by Network (one layer of abstraction above).

Returns Python dictionary.

call(inputs)
In layers should be of shape dtype tf.float32, (None, self.max_atoms, 4)

distance_matrix(coordinates, flags)
Generate distance matrix

distance_cutoff(d, cutoff, flags)
Generate distance matrix with trainable cutoff

radial_symmetry(d_cutoff, d, atom_numbers)
Radial Symmetry Function

angular_symmetry(d_cutoff, d, atom_numbers, coordinates)
Angular Symmetry Function

class GraphEmbedPoolLayer(*args, **kwargs)
GraphCNNPool Layer from Robust Spatial Filtering with Graph Convolutional Neural Networks https://arxiv.
org/abs/1703.00792

This is a learnable pool operation It constructs a new adjacency matrix for a graph of specified number of nodes.

This differs from our other pool operations which set vertices to a function value without altering the adjacency
matrix.

..math:: V_{emb} = SpatialGraphCNN({V_{in}}) ..math:: V_{out} = sigma(V_{emb})^{T} * V_{in} ..math::
A_{out} = V_{emb}^{T} * A_{in} * V_{emb}

get_config()
Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.
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The config of a layer does not include connectivity information, nor the layer class name. These are
handled by Network (one layer of abstraction above).

Returns Python dictionary.

build(input_shape)
Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-
creation step in-between layer instantiation and layer call.

This is typically used to create the weights of Layer subclasses.

Parameters input_shape – Instance of TensorShape, or list of instances of TensorShape if
the layer expects a list of inputs (one instance per input).

call(inputs)

Parameters

• num_filters (int) – Number of filters to have in the output

• in_layers (list of Layers or tensors) – [V, A, mask] V are the vertex fea-
tures must be of shape (batch, vertex, channel)

A are the adjacency matrixes for each graph Shape (batch, from_vertex, adj_matrix,
to_vertex)

mask is optional, to be used when not every graph has the same number of vertices

Returns

• Returns a tf.tensor with a graph convolution applied

• The shape will be (batch, vertex, self.num_filters).

class GraphCNN(*args, **kwargs)
GraphCNN Layer from Robust Spatial Filtering with Graph Convolutional Neural Networks https://arxiv.org/
abs/1703.00792

Spatial-domain convolutions can be defined as H = h_0I + h_1A + h_2A^2 + . . . + hkAk, H R**(N×N)

We approximate it by H h_0I + h_1A

We can define a convolution as applying multiple these linear filters over edges of different types (think up,
down, left, right, diagonal in images) Where each edge type has its own adjacency matrix H h_0I + h_1A_1 +
h_2A_2 + . . . h_(L1)A_(L1)

V_out = sum_{c=1}^{C} H^{c} V^{c} + b

__init__(num_filters, **kwargs)

Parameters

• num_filters (int) – Number of filters to have in the output

• in_layers (list of Layers or tensors) – [V, A, mask] V are the vertex fea-
tures must be of shape (batch, vertex, channel)

A are the adjacency matrixes for each graph Shape (batch, from_vertex, adj_matrix,
to_vertex)

mask is optional, to be used when not every graph has the same number of vertices

• Returns (tf.tensor) –

• a tf.tensor with a graph convolution applied (Returns) –
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• shape will be (batch (The) –

• vertex –

• self.num_filters) –

get_config()
Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are
handled by Network (one layer of abstraction above).

Returns Python dictionary.

build(input_shape)
Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-
creation step in-between layer instantiation and layer call.

This is typically used to create the weights of Layer subclasses.

Parameters input_shape – Instance of TensorShape, or list of instances of TensorShape if
the layer expects a list of inputs (one instance per input).

call(inputs)
This is where the layer’s logic lives.

Note here that call() method in tf.keras is little bit different from keras API. In keras API, you can pass
support masking for layers as additional arguments. Whereas tf.keras has compute_mask() method to
support masking.

Parameters

• inputs – Input tensor, or list/tuple of input tensors.

• **kwargs – Additional keyword arguments. Currently unused.

Returns A tensor or list/tuple of tensors.

class Highway(*args, **kwargs)
Create a highway layer. y = H(x) * T(x) + x * (1 - T(x))

H(x) = activation_fn(matmul(W_H, x) + b_H) is the non-linear transformed output T(x) = sig-
moid(matmul(W_T, x) + b_T) is the transform gate

Implementation based on paper

Srivastava, Rupesh Kumar, Klaus Greff, and Jürgen Schmidhuber. “Highway networks.” arXiv preprint
arXiv:1505.00387 (2015).

This layer expects its input to be a two dimensional tensor of shape (batch size, # input features). Outputs will
be in the same shape.

__init__(activation_fn='relu', biases_initializer='zeros', weights_initializer=None, **kwargs)

Parameters

• activation_fn (object) – the Tensorflow activation function to apply to the output

• biases_initializer (callable object) – the initializer for bias values. This
may be None, in which case the layer will not include biases.

• weights_initializer (callable object) – the initializer for weight values
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get_config()
Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are
handled by Network (one layer of abstraction above).

Returns Python dictionary.

build(input_shape)
Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-
creation step in-between layer instantiation and layer call.

This is typically used to create the weights of Layer subclasses.

Parameters input_shape – Instance of TensorShape, or list of instances of TensorShape if
the layer expects a list of inputs (one instance per input).

call(inputs)
This is where the layer’s logic lives.

Note here that call() method in tf.keras is little bit different from keras API. In keras API, you can pass
support masking for layers as additional arguments. Whereas tf.keras has compute_mask() method to
support masking.

Parameters

• inputs – Input tensor, or list/tuple of input tensors.

• **kwargs – Additional keyword arguments. Currently unused.

Returns A tensor or list/tuple of tensors.

class WeaveLayer(*args, **kwargs)
This class implements the core Weave convolution from the Google graph convolution paper [1]_

This model contains atom features and bond features separately.Here, bond features are also called pair fea-
tures. There are 2 types of transformation, atom->atom, atom->pair, pair->atom, pair->pair that this model
implements.

Examples

This layer expects 4 inputs in a list of the form [atom_features, pair_features, pair_split, atom_to_pair]. We’ll
walk through the structure of these inputs. Let’s start with some basic definitions.

>>> import deepchem as dc
>>> import numpy as np

Suppose you have a batch of molecules

>>> smiles = ["CCC", "C"]

Note that there are 4 atoms in total in this system. This layer expects its input molecules to be batched together.

>>> total_n_atoms = 4

Let’s suppose that we have a featurizer that computes n_atom_feat features per atom.
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>>> n_atom_feat = 75

Then conceptually, atom_feat is the array of shape (total_n_atoms, n_atom_feat) of atomic features. For sim-
plicity, let’s just go with a random such matrix.

>>> atom_feat = np.random.rand(total_n_atoms, n_atom_feat)

Let’s suppose we have n_pair_feat pairwise features

>>> n_pair_feat = 14

For each molecule, we compute a matrix of shape (n_atoms*n_atoms, n_pair_feat) of pairwise features for each
pair of atoms in the molecule. Let’s construct this conceptually for our example.

>>> pair_feat = [np.random.rand(3*3, n_pair_feat), np.random.rand(1*1, n_pair_
→˓feat)]
>>> pair_feat = np.concatenate(pair_feat, axis=0)
>>> pair_feat.shape
(10, 14)

pair_split is an index into pair_feat which tells us which atom each row belongs to. In our case, we hve

>>> pair_split = np.array([0, 0, 0, 1, 1, 1, 2, 2, 2, 3])

That is, the first 9 entries belong to “CCC” and the last entry to “C”. The final entry atom_to_pair goes in a
little more in-depth than pair_split and tells us the precise pair each pair feature belongs to. In our case

>>> atom_to_pair = np.array([[0, 0],
... [0, 1],
... [0, 2],
... [1, 0],
... [1, 1],
... [1, 2],
... [2, 0],
... [2, 1],
... [2, 2],
... [3, 3]])

Let’s now define the actual layer

>>> layer = WeaveLayer()

And invoke it

>>> [A, P] = layer([atom_feat, pair_feat, pair_split, atom_to_pair])

The weave layer produces new atom/pair features. Let’s check their shapes

>>> A = np.array(A)
>>> A.shape
(4, 50)
>>> P = np.array(P)
>>> P.shape
(10, 50)

The 4 is total_num_atoms and the 10 is the total number of pairs. Where does 50 come from? It’s from the
default arguments n_atom_input_feat and n_pair_input_feat.
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References

fingerprints.” Journal of computer-aided molecular design 30.8 (2016): 595-608.

__init__(n_atom_input_feat: int = 75, n_pair_input_feat: int = 14, n_atom_output_feat: int = 50,
n_pair_output_feat: int = 50, n_hidden_AA: int = 50, n_hidden_PA: int = 50, n_hidden_AP:
int = 50, n_hidden_PP: int = 50, update_pair: bool = True, init: str = 'glorot_uniform',
activation: str = 'relu', batch_normalize: bool = True, batch_normalize_kwargs: Dict =
{'renorm': True}, **kwargs)

Parameters

• n_atom_input_feat (int, optional (default 75)) – Number of features
for each atom in input.

• n_pair_input_feat (int, optional (default 14)) – Number of features
for each pair of atoms in input.

• n_atom_output_feat (int, optional (default 50)) – Number of features
for each atom in output.

• n_pair_output_feat (int, optional (default 50)) – Number of features
for each pair of atoms in output.

• n_hidden_AA (int, optional (default 50)) – Number of units(convolution
depths) in corresponding hidden layer

• n_hidden_PA (int, optional (default 50)) – Number of units(convolution
depths) in corresponding hidden layer

• n_hidden_AP (int, optional (default 50)) – Number of units(convolution
depths) in corresponding hidden layer

• n_hidden_PP (int, optional (default 50)) – Number of units(convolution
depths) in corresponding hidden layer

• update_pair (bool, optional (default True)) – Whether to calculate for
pair features, could be turned off for last layer

• init (str, optional (default 'glorot_uniform')) – Weight initializa-
tion for filters.

• activation (str, optional (default 'relu')) – Activation function ap-
plied

• batch_normalize (bool, optional (default True)) – If this is turned on,
apply batch normalization before applying activation functions on convolutional layers.

• batch_normalize_kwargs (Dict, optional (default {renorm=True})) – Batch nor-
malization is a complex layer which has many potential argumentswhich change behavior.
This layer accepts user-defined parameters which are passed to all BatchNormalization
layers in WeaveModel, WeaveLayer, and WeaveGather.

get_config()→ Dict
Returns config dictionary for this layer.

build(input_shape)
Construct internal trainable weights.

Parameters input_shape (tuple) – Ignored since we don’t need the input shape to create
internal weights.

call(inputs: List)→ List
Creates weave tensors.
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Parameters inputs (List) – Should contain 4 tensors [atom_features, pair_features,
pair_split, atom_to_pair]

class WeaveGather(*args, **kwargs)
Implements the weave-gathering section of weave convolutions.

Implements the gathering layer from [1]_. The weave gathering layer gathers per-atom features to create a
molecule-level fingerprint in a weave convolutional network. This layer can also performs Gaussian histogram
expansion as detailed in [1]_. Note that the gathering function here is simply addition as in [1]_>

Examples

This layer expects 2 inputs in a list of the form [atom_features, pair_features]. We’ll walk through the structure
of these inputs. Let’s start with some basic definitions.

>>> import deepchem as dc
>>> import numpy as np

Suppose you have a batch of molecules

>>> smiles = ["CCC", "C"]

Note that there are 4 atoms in total in this system. This layer expects its input molecules to be batched together.

>>> total_n_atoms = 4

Let’s suppose that we have n_atom_feat features per atom.

>>> n_atom_feat = 75

Then conceptually, atom_feat is the array of shape (total_n_atoms, n_atom_feat) of atomic features. For sim-
plicity, let’s just go with a random such matrix.

>>> atom_feat = np.random.rand(total_n_atoms, n_atom_feat)

We then need to provide a mapping of indices to the atoms they belong to. In ours case this would be

>>> atom_split = np.array([0, 0, 0, 1])

Let’s now define the actual layer

>>> gather = WeaveGather(batch_size=2, n_input=n_atom_feat)
>>> output_molecules = gather([atom_feat, atom_split])
>>> len(output_molecules)
2

References

fingerprints.” Journal of computer-aided molecular design 30.8 (2016): 595-608.

Note: This class requires tensorflow_probability to be installed.

__init__(batch_size: int, n_input: int = 128, gaussian_expand: bool = True, com-
press_post_gaussian_expansion: bool = False, init: str = 'glorot_uniform', activation: str =
'tanh', **kwargs)
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Parameters

• batch_size (int) – number of molecules in a batch

• n_input (int, optional (default 128)) – number of features for each input
molecule

• gaussian_expand (boolean, optional (default True)) – Whether to ex-
pand each dimension of atomic features by gaussian histogram

• compress_post_gaussian_expansion (bool, optional (default
False)) – If True, compress the results of the Gaussian expansion back to the original
dimensions of the input by using a linear layer with specified activation function. Note
that this compression was not in the original paper, but was present in the original
DeepChem implementation so is left present for backwards compatibility.

• init (str, optional (default 'glorot_uniform')) – Weight initializa-
tion for filters if compress_post_gaussian_expansion is True.

• activation (str, optional (default 'tanh')) – Activation function ap-
plied for filters if compress_post_gaussian_expansion is True. Should be recognizable by
tf.keras.activations.

get_config()
Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are
handled by Network (one layer of abstraction above).

Returns Python dictionary.

build(input_shape)
Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-
creation step in-between layer instantiation and layer call.

This is typically used to create the weights of Layer subclasses.

Parameters input_shape – Instance of TensorShape, or list of instances of TensorShape if
the layer expects a list of inputs (one instance per input).

call(inputs: List)→ List
Creates weave tensors.

Parameters inputs (List) – Should contain 2 tensors [atom_features, atom_split]

Returns output_molecules – Each entry in this list is of shape (self.n_inputs,)

Return type List

gaussian_histogram(x)
Expands input into a set of gaussian histogram bins.

Parameters x (tf.Tensor) – Of shape (N, n_feat)
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Examples

This method uses 11 bins spanning portions of a Gaussian with zero mean and unit standard deviation.

>>> gaussian_memberships = [(-1.645, 0.283), (-1.080, 0.170),
... (-0.739, 0.134), (-0.468, 0.118),
... (-0.228, 0.114), (0., 0.114),
... (0.228, 0.114), (0.468, 0.118),
... (0.739, 0.134), (1.080, 0.170),
... (1.645, 0.283)]

We construct a Gaussian at gaussian_memberships[i][0] with standard deviation gaus-
sian_memberships[i][1]. Each feature in x is assigned the probability of falling in each Gaussian,
and probabilities are normalized across the 11 different Gaussians.

Returns outputs – Of shape (N, 11*n_feat)

Return type tf.Tensor

class DTNNEmbedding(*args, **kwargs)

__init__(n_embedding=30, periodic_table_length=30, init='glorot_uniform', **kwargs)

Parameters

• n_embedding (int, optional) – Number of features for each atom

• periodic_table_length (int, optional) – Length of embedding, 83=Bi

• init (str, optional) – Weight initialization for filters.

get_config()
Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are
handled by Network (one layer of abstraction above).

Returns Python dictionary.

build(input_shape)
Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-
creation step in-between layer instantiation and layer call.

This is typically used to create the weights of Layer subclasses.

Parameters input_shape – Instance of TensorShape, or list of instances of TensorShape if
the layer expects a list of inputs (one instance per input).

call(inputs)
parent layers: atom_number

class DTNNStep(*args, **kwargs)

__init__(n_embedding=30, n_distance=100, n_hidden=60, init='glorot_uniform', activation='tanh',
**kwargs)

Parameters
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• n_embedding (int, optional) – Number of features for each atom

• n_distance (int, optional) – granularity of distance matrix

• n_hidden (int, optional) – Number of nodes in hidden layer

• init (str, optional) – Weight initialization for filters.

• activation (str, optional) – Activation function applied

get_config()
Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are
handled by Network (one layer of abstraction above).

Returns Python dictionary.

build(input_shape)
Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-
creation step in-between layer instantiation and layer call.

This is typically used to create the weights of Layer subclasses.

Parameters input_shape – Instance of TensorShape, or list of instances of TensorShape if
the layer expects a list of inputs (one instance per input).

call(inputs)
parent layers: atom_features, distance, distance_membership_i, distance_membership_j

class DTNNGather(*args, **kwargs)

__init__(n_embedding=30, n_outputs=100, layer_sizes=[100], output_activation=True,
init='glorot_uniform', activation='tanh', **kwargs)

Parameters

• n_embedding (int, optional) – Number of features for each atom

• n_outputs (int, optional) – Number of features for each molecule(output)

• layer_sizes (list of int, optional(default=[1000])) – Structure of
hidden layer(s)

• init (str, optional) – Weight initialization for filters.

• activation (str, optional) – Activation function applied

get_config()
Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are
handled by Network (one layer of abstraction above).

Returns Python dictionary.
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build(input_shape)
Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-
creation step in-between layer instantiation and layer call.

This is typically used to create the weights of Layer subclasses.

Parameters input_shape – Instance of TensorShape, or list of instances of TensorShape if
the layer expects a list of inputs (one instance per input).

call(inputs)
parent layers: atom_features, atom_membership

class DAGLayer(*args, **kwargs)
DAG computation layer.

This layer generates a directed acyclic graph for each atom in a molecule. This layer is based on the algorithm
from the following paper:

Lusci, Alessandro, Gianluca Pollastri, and Pierre Baldi. “Deep architectures and deep learning in chemoin-
formatics: the prediction of aqueous solubility for drug-like molecules.” Journal of chemical information and
modeling 53.7 (2013): 1563-1575.

This layer performs a sort of inward sweep. Recall that for each atom, a DAG is generated that “points inward”
to that atom from the undirected molecule graph. Picture this as “picking up” the atom as the vertex and using
the natural tree structure that forms from gravity. The layer “sweeps inwards” from the leaf nodes of the DAG
upwards to the atom. This is batched so the transformation is done for each atom.

__init__(n_graph_feat=30, n_atom_feat=75, max_atoms=50, layer_sizes=[100],
init='glorot_uniform', activation='relu', dropout=None, batch_size=64, **kwargs)

Parameters

• n_graph_feat (int, optional) – Number of features for each node(and the whole
grah).

• n_atom_feat (int, optional) – Number of features listed per atom.

• max_atoms (int, optional) – Maximum number of atoms in molecules.

• layer_sizes (list of int, optional(default=[100])) – List of hidden
layer size(s): length of this list represents the number of hidden layers, and each element
is the width of corresponding hidden layer.

• init (str, optional) – Weight initialization for filters.

• activation (str, optional) – Activation function applied.

• dropout (float, optional) – Dropout probability in hidden layer(s).

• batch_size (int, optional) – number of molecules in a batch.

get_config()
Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are
handled by Network (one layer of abstraction above).

Returns Python dictionary.

build(input_shape)
“Construct internal trainable weights.
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call(inputs, training=True)
parent layers: atom_features, parents, calculation_orders, calculation_masks, n_atoms

class DAGGather(*args, **kwargs)

__init__(n_graph_feat=30, n_outputs=30, max_atoms=50, layer_sizes=[100], init='glorot_uniform',
activation='relu', dropout=None, **kwargs)

DAG vector gathering layer

Parameters

• n_graph_feat (int, optional) – Number of features for each atom.

• n_outputs (int, optional) – Number of features for each molecule.

• max_atoms (int, optional) – Maximum number of atoms in molecules.

• layer_sizes (list of int, optional) – List of hidden layer size(s): length of
this list represents the number of hidden layers, and each element is the width of corre-
sponding hidden layer.

• init (str, optional) – Weight initialization for filters.

• activation (str, optional) – Activation function applied.

• dropout (float, optional) – Dropout probability in the hidden layer(s).

get_config()
Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are
handled by Network (one layer of abstraction above).

Returns Python dictionary.

build(input_shape)
Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-
creation step in-between layer instantiation and layer call.

This is typically used to create the weights of Layer subclasses.

Parameters input_shape – Instance of TensorShape, or list of instances of TensorShape if
the layer expects a list of inputs (one instance per input).

call(inputs, training=True)
parent layers: atom_features, membership

class MessagePassing(*args, **kwargs)
General class for MPNN default structures built according to https://arxiv.org/abs/1511.06391

__init__(T, message_fn='enn', update_fn='gru', n_hidden=100, **kwargs)

Parameters

• T (int) – Number of message passing steps

• message_fn (str, optional) – message function in the model

• update_fn (str, optional) – update function in the model

• n_hidden (int, optional) – number of hidden units in the passing phase
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get_config()
Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are
handled by Network (one layer of abstraction above).

Returns Python dictionary.

build(input_shape)
Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-
creation step in-between layer instantiation and layer call.

This is typically used to create the weights of Layer subclasses.

Parameters input_shape – Instance of TensorShape, or list of instances of TensorShape if
the layer expects a list of inputs (one instance per input).

call(inputs)
Perform T steps of message passing

class EdgeNetwork(*args, **kwargs)
Submodule for Message Passing

get_config()
Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are
handled by Network (one layer of abstraction above).

Returns Python dictionary.

build(input_shape)
Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-
creation step in-between layer instantiation and layer call.

This is typically used to create the weights of Layer subclasses.

Parameters input_shape – Instance of TensorShape, or list of instances of TensorShape if
the layer expects a list of inputs (one instance per input).

call(inputs)
This is where the layer’s logic lives.

Note here that call() method in tf.keras is little bit different from keras API. In keras API, you can pass
support masking for layers as additional arguments. Whereas tf.keras has compute_mask() method to
support masking.

Parameters

• inputs – Input tensor, or list/tuple of input tensors.

• **kwargs – Additional keyword arguments. Currently unused.

Returns A tensor or list/tuple of tensors.
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class GatedRecurrentUnit(*args, **kwargs)
Submodule for Message Passing

get_config()
Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are
handled by Network (one layer of abstraction above).

Returns Python dictionary.

build(input_shape)
Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-
creation step in-between layer instantiation and layer call.

This is typically used to create the weights of Layer subclasses.

Parameters input_shape – Instance of TensorShape, or list of instances of TensorShape if
the layer expects a list of inputs (one instance per input).

call(inputs)
This is where the layer’s logic lives.

Note here that call() method in tf.keras is little bit different from keras API. In keras API, you can pass
support masking for layers as additional arguments. Whereas tf.keras has compute_mask() method to
support masking.

Parameters

• inputs – Input tensor, or list/tuple of input tensors.

• **kwargs – Additional keyword arguments. Currently unused.

Returns A tensor or list/tuple of tensors.

class SetGather(*args, **kwargs)
set2set gather layer for graph-based model

Models using this layer must set pad_batches=True.

__init__(M, batch_size, n_hidden=100, init='orthogonal', **kwargs)

Parameters

• M (int) – Number of LSTM steps

• batch_size (int) – Number of samples in a batch(all batches must have same size)

• n_hidden (int, optional) – number of hidden units in the passing phase

get_config()
Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer
can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are
handled by Network (one layer of abstraction above).

Returns Python dictionary.
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build(input_shape)
Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-
creation step in-between layer instantiation and layer call.

This is typically used to create the weights of Layer subclasses.

Parameters input_shape – Instance of TensorShape, or list of instances of TensorShape if
the layer expects a list of inputs (one instance per input).

call(inputs)
Perform M steps of set2set gather,

Detailed descriptions in: https://arxiv.org/abs/1511.06391

cosine_dist(x, y)
Computes the inner product (cosine similarity) between two tensors.

This assumes that the two input tensors contain rows of vectors where each column represents a different feature.
The output tensor will have elements that represent the inner product between pairs of normalized vectors in
the rows of x and y. The two tensors need to have the same number of columns, because one cannot take the
dot product between vectors of different lengths. For example, in sentence similarity and sentence classification
tasks, the number of columns is the embedding size. In these tasks, the rows of the input tensors would be
different test vectors or sentences. The input tensors themselves could be different batches. Using vectors or
tensors of all 0s should be avoided.

The vectors in the input tensors are first l2-normalized such that each vector

has length or magnitude of 1. The inner product (dot product) is then taken

between corresponding pairs of row vectors in the input tensors and returned.

Examples

The cosine similarity between two equivalent vectors will be 1. The cosine similarity between two equivalent
tensors (tensors where all the elements are the same) will be a tensor of 1s. In this scenario, if the input tensors
x and y are each of shape (n,p), where each element in x and y is the same, then the output tensor would be a
tensor of shape (n,n) with 1 in every entry.

>>> import tensorflow as tf
>>> import deepchem.models.layers as layers
>>> x = tf.ones((6, 4), dtype=tf.dtypes.float32, name=None)
>>> y_same = tf.ones((6, 4), dtype=tf.dtypes.float32, name=None)
>>> cos_sim_same = layers.cosine_dist(x,y_same)

x and y_same are the same tensor (equivalent at every element, in this case 1). As such, the pairwise inner
product of the rows in x and y will always be 1. The output tensor will be of shape (6,6).

>>> diff = cos_sim_same - tf.ones((6, 6), dtype=tf.dtypes.float32, name=None)
>>> tf.reduce_sum(diff) == 0 # True
<tf.Tensor: shape=(), dtype=bool, numpy=True>
>>> cos_sim_same.shape
TensorShape([6, 6])

The cosine similarity between two orthogonal vectors will be 0 (by definition). If every row in x is orthogonal
to every row in y, then the output will be a tensor of 0s. In the following example, each row in the tensor x1 is
orthogonal to each row in x2 because they are halves of an identity matrix.
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>>> identity_tensor = tf.eye(512, dtype=tf.dtypes.float32)
>>> x1 = identity_tensor[0:256,:]
>>> x2 = identity_tensor[256:512,:]
>>> cos_sim_orth = layers.cosine_dist(x1,x2)

Each row in x1 is orthogonal to each row in x2. As such, the pairwise inner product of the rows in x1`and `x2
will always be 0. Furthermore, because the shape of the input tensors are both of shape (256,512), the output
tensor will be of shape (256,256).

>>> tf.reduce_sum(cos_sim_orth) == 0 # True
<tf.Tensor: shape=(), dtype=bool, numpy=True>
>>> cos_sim_orth.shape
TensorShape([256, 256])

Parameters

• x (tf.Tensor) – Input Tensor of shape (n, p). The shape of this input tensor should be n
rows by p columns. Note that n need not equal m (the number of rows in y).

• y (tf.Tensor) – Input Tensor of shape (m, p) The shape of this input tensor should be m
rows by p columns. Note that m need not equal n (the number of rows in x).

Returns Returns a tensor of shape (n, m), that is, n rows by m columns. Each i,j-th entry of this
output tensor is the inner product between the l2-normalized i-th row of the input tensor x and
the the l2-normalized j-th row of the output tensor y.

Return type tf.Tensor

3.22 Metrics

Metrics are one of the most important parts of machine learning. Unlike traditional software, in which algorithms either
work or don’t work, machine learning models work in degrees. That is, there’s a continuous range of “goodness” for a
model. “Metrics” are functions which measure how well a model works. There are many different choices of metrics
depending on the type of model at hand.

3.22.1 Metric Utilities

Metric utility functions allow for some common manipulations such as switching to/from one-hot representations.

to_one_hot(y: numpy.ndarray, n_classes: int = 2)→ numpy.ndarray
Transforms label vector into one-hot encoding.

Turns y into vector of shape (N, n_classes) with a one-hot encoding. Assumes that y takes values from 0 to
n_classes - 1.

Parameters

• y (np.ndarray) – A vector of shape (N,) or (N, 1)

• n_classes (int, default 2) – If specified use this as the number of classes. Else
will try to impute it as n_classes = max(y) + 1 for arrays and as n_classes=2 for the case of
scalars. Note this parameter only has value if mode==”classification”

Returns A numpy array of shape (N, n_classes).

Return type np.ndarray
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from_one_hot(y: numpy.ndarray, axis: int = 1)→ numpy.ndarray
Transforms label vector from one-hot encoding.

Parameters

• y (np.ndarray) – A vector of shape (n_samples, num_classes)

• axis (int, optional (default 1)) – The axis with one-hot encodings to reduce
on.

Returns A numpy array of shape (n_samples,)

Return type np.ndarray

3.22.2 Metric Shape Handling

One of the trickiest parts of handling metrics correctly is making sure the shapes of input weights, predictions and
labels and processed correctly. This is challenging in particular since DeepChem supports multitask, multiclass models
which means that shapes must be handled with care to prevent errors. DeepChem maintains the following utility
functions which attempt to facilitate shape handling for you.

normalize_weight_shape(w: Optional[numpy.ndarray], n_samples: int, n_tasks: int) →
numpy.ndarray

A utility function to correct the shape of the weight array.

This utility function is used to normalize the shapes of a given weight array.

Parameters

• w (np.ndarray) – w can be None or a scalar or a np.ndarray of shape (n_samples,) or
of shape (n_samples, n_tasks). If w is a scalar, it’s assumed to be the same weight for all
samples/tasks.

• n_samples (int) – The number of samples in the dataset. If w is not None, we should
have n_samples = w.shape[0] if w is a ndarray

• n_tasks (int) – The number of tasks. If w is 2d ndarray, then we should have w.shape[1]
== n_tasks.

Examples

>>> import numpy as np
>>> w_out = normalize_weight_shape(None, n_samples=10, n_tasks=1)
>>> (w_out == np.ones((10, 1))).all()
True

Returns w_out – Array of shape (n_samples, n_tasks)

Return type np.ndarray

normalize_labels_shape(y: numpy.ndarray, mode: Optional[str] = None, n_tasks: Optional[int] =
None, n_classes: Optional[int] = None)→ numpy.ndarray

A utility function to correct the shape of the labels.

Parameters

• y (np.ndarray) – y is an array of shape (N,) or (N, n_tasks) or (N, n_tasks, 1).

• mode (str, default None) – If mode is “classification” or “regression”, attempts to
apply data transformations.
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• n_tasks (int, default None) – The number of tasks this class is expected to han-
dle.

• n_classes (int, default None) – If specified use this as the number of classes.
Else will try to impute it as n_classes = max(y) + 1 for arrays and as n_classes=2 for the
case of scalars. Note this parameter only has value if mode==”classification”

Returns y_out – If mode==”classification”, y_out is an array of shape (N, n_tasks, n_classes). If
mode==”regression”, y_out is an array of shape (N, n_tasks).

Return type np.ndarray

normalize_prediction_shape(y: numpy.ndarray, mode: Optional[str] = None, n_tasks: Op-
tional[int] = None, n_classes: Optional[int] = None)

A utility function to correct the shape of provided predictions.

The metric computation classes expect that inputs for classification have the uniform shape (N, n_tasks,
n_classes) and inputs for regression have the uniform shape (N, n_tasks). This function normalizes the pro-
vided input array to have the desired shape.

Examples

>>> import numpy as np
>>> y = np.random.rand(10)
>>> y_out = normalize_prediction_shape(y, "regression", n_tasks=1)
>>> y_out.shape
(10, 1)

Parameters

• y (np.ndarray) – If mode==”classification”, y is an array of shape (N,) or (N, n_tasks)
or (N, n_tasks, n_classes). If mode==”regression”, y is an array of shape (N,) or (N,
n_tasks)`or `(N, n_tasks, 1).

• mode (str, default None) – If mode is “classification” or “regression”, attempts to
apply data transformations.

• n_tasks (int, default None) – The number of tasks this class is expected to han-
dle.

• n_classes (int, default None) – If specified use this as the number of classes.
Else will try to impute it as n_classes = max(y) + 1 for arrays and as n_classes=2 for the
case of scalars. Note this parameter only has value if mode==”classification”

Returns y_out – If mode==”classification”, y_out is an array of shape (N, n_tasks, n_classes). If
mode==”regression”, y_out is an array of shape (N, n_tasks).

Return type np.ndarray

handle_classification_mode(y: numpy.ndarray, classification_handling_mode: Optional[str] =
None, threshold_value: Optional[float] = None)→ numpy.ndarray

Handle classification mode.

Transform predictions so that they have the correct classification mode.

Parameters

• y (np.ndarray) – Must be of shape (N, n_tasks, n_classes)
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• classification_handling_mode (str, default None) – DeepChem models
by default predict class probabilities for classification problems. This means that for a given
singletask prediction, after shape normalization, the DeepChem prediction will be a numpy
array of shape (N, n_classes) with class probabilities. classification_handling_mode is a
string that instructs this method how to handle transforming these probabilities. It can take
on the following values: - None: default value. Pass in y_pred directy into self.metric. -
“threshold”: Use threshold_predictions to threshold y_pred. Use

threshold_value as the desired threshold.

– ”threshold-one-hot”: Use threshold_predictions to threshold y_pred using thresh-
old_values, then apply to_one_hot to output.

• threshold_value (float, default None) – If set, and classifica-
tion_handling_mode is “threshold” or “threshold-one-hot” apply a thresholding operation
to values with this threshold. This option isj only sensible on binary classification tasks. If
float, this will be applied as a binary classification value.

Returns y_out – If classification_handling_mode is None, then of shape (N, n_tasks, n_classes).
If classification_handling_mode is “threshold”, then of shape (N, n_tasks). If `classifica-
tion_handling_mode is “threshold-one-hot”, then of shape `(N, n_tasks, n_classes)”

Return type np.ndarray

3.22.3 Metric Functions

DeepChem has a variety of different metrics which are useful for measuring model performance. A number (but not
all) of these metrics are directly sourced from sklearn.

matthews_corrcoef(y_true, y_pred, *, sample_weight=None)
Compute the Matthews correlation coefficient (MCC).

The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary and
multiclass classifications. It takes into account true and false positives and negatives and is generally regarded
as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a
correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average
random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source:
Wikipedia]

Binary and multiclass labels are supported. Only in the binary case does this relate to information about true
and false positives and negatives. See references below.

Read more in the User Guide.

Parameters

• y_true (array, shape = [n_samples]) – Ground truth (correct) target values.

• y_pred (array, shape = [n_samples]) – Estimated targets as returned by a clas-
sifier.

• sample_weight (array-like of shape (n_samples,), default=None)
– Sample weights.

New in version 0.18.

Returns mcc – The Matthews correlation coefficient (+1 represents a perfect prediction, 0 an aver-
age random prediction and -1 and inverse prediction).

Return type float

302 Chapter 3. About Us



deepchem, Release 2.5.0

References

Examples

>>> from sklearn.metrics import matthews_corrcoef
>>> y_true = [+1, +1, +1, -1]
>>> y_pred = [+1, -1, +1, +1]
>>> matthews_corrcoef(y_true, y_pred)
-0.33...

recall_score(y_true, y_pred, *, labels=None, pos_label=1, average='binary', sample_weight=None,
zero_division='warn')

Compute the recall.

The recall is the ratio tp / (tp + fn) where tp is the number of true positives and fn the number of false
negatives. The recall is intuitively the ability of the classifier to find all the positive samples.

The best value is 1 and the worst value is 0.

Read more in the User Guide.

Parameters

• y_true (1d array-like, or label indicator array / sparse
matrix) – Ground truth (correct) target values.

• y_pred (1d array-like, or label indicator array / sparse
matrix) – Estimated targets as returned by a classifier.

• labels (array-like, default=None) – The set of labels to include when
average != 'binary', and their order if average is None. Labels present in
the data can be excluded, for example to calculate a multiclass average ignoring a majority
negative class, while labels not present in the data will result in 0 components in a macro
average. For multilabel targets, labels are column indices. By default, all labels in y_true
and y_pred are used in sorted order.

Changed in version 0.17: Parameter labels improved for multiclass problem.

• pos_label (str or int, default=1) – The class to report if
average='binary' and the data is binary. If the data are multiclass or multilabel, this
will be ignored; setting labels=[pos_label] and average != 'binary' will
report scores for that label only.

• average ({'micro', 'macro', 'samples', 'weighted', 'binary'}
default='binary') – This parameter is required for multiclass/multilabel targets.
If None, the scores for each class are returned. Otherwise, this determines the type of
averaging performed on the data:

'binary': Only report results for the class specified by pos_label. This is applicable
only if targets (y_{true,pred}) are binary.

'micro': Calculate metrics globally by counting the total true positives, false negatives
and false positives.

'macro': Calculate metrics for each label, and find their unweighted mean. This does not
take label imbalance into account.

'weighted': Calculate metrics for each label, and find their average weighted by support
(the number of true instances for each label). This alters ‘macro’ to account for label
imbalance; it can result in an F-score that is not between precision and recall.
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'samples': Calculate metrics for each instance, and find their average (only meaningful
for multilabel classification where this differs from accuracy_score()).

• sample_weight (array-like of shape (n_samples,), default=None)
– Sample weights.

• zero_division ("warn", 0 or 1, default="warn") – Sets the value to re-
turn when there is a zero division. If set to “warn”, this acts as 0, but warnings are also
raised.

Returns recall – (n_unique_labels,) Recall of the positive class in binary classification or weighted
average of the recall of each class for the multiclass task.

Return type float (if average is not None) or array of float of shape

See also:

precision_recall_fscore_support, balanced_accuracy_score,
multilabel_confusion_matrix

Notes

When true positive + false negative == 0, recall returns 0 and raises
UndefinedMetricWarning. This behavior can be modified with zero_division.

Examples

>>> from sklearn.metrics import recall_score
>>> y_true = [0, 1, 2, 0, 1, 2]
>>> y_pred = [0, 2, 1, 0, 0, 1]
>>> recall_score(y_true, y_pred, average='macro')
0.33...
>>> recall_score(y_true, y_pred, average='micro')
0.33...
>>> recall_score(y_true, y_pred, average='weighted')
0.33...
>>> recall_score(y_true, y_pred, average=None)
array([1., 0., 0.])
>>> y_true = [0, 0, 0, 0, 0, 0]
>>> recall_score(y_true, y_pred, average=None)
array([0.5, 0. , 0. ])
>>> recall_score(y_true, y_pred, average=None, zero_division=1)
array([0.5, 1. , 1. ])

r2_score(y_true, y_pred, *, sample_weight=None, multioutput='uniform_average')
R^2 (coefficient of determination) regression score function.

Best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model
that always predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Read more in the User Guide.

Parameters

• y_true (array-like of shape (n_samples,) or (n_samples,
n_outputs)) – Ground truth (correct) target values.

• y_pred (array-like of shape (n_samples,) or (n_samples,
n_outputs)) – Estimated target values.
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• sample_weight (array-like of shape (n_samples,), default=None)
– Sample weights.

• multioutput ({'raw_values', 'uniform_average',
'variance_weighted'}, array-like of shape (n_outputs,) or
None, default='uniform_average') – Defines aggregating of multiple output
scores. Array-like value defines weights used to average scores. Default is “uni-
form_average”.

’raw_values’ : Returns a full set of scores in case of multioutput input.

’uniform_average’ : Scores of all outputs are averaged with uniform weight.

’variance_weighted’ : Scores of all outputs are averaged, weighted by the variances of
each individual output.

Changed in version 0.19: Default value of multioutput is ‘uniform_average’.

Returns z – The R^2 score or ndarray of scores if ‘multioutput’ is ‘raw_values’.

Return type float or ndarray of floats

Notes

This is not a symmetric function.

Unlike most other scores, R^2 score may be negative (it need not actually be the square of a quantity R).

This metric is not well-defined for single samples and will return a NaN value if n_samples is less than two.

References

Examples

>>> from sklearn.metrics import r2_score
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> r2_score(y_true, y_pred)
0.948...
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> r2_score(y_true, y_pred,
... multioutput='variance_weighted')
0.938...
>>> y_true = [1, 2, 3]
>>> y_pred = [1, 2, 3]
>>> r2_score(y_true, y_pred)
1.0
>>> y_true = [1, 2, 3]
>>> y_pred = [2, 2, 2]
>>> r2_score(y_true, y_pred)
0.0
>>> y_true = [1, 2, 3]
>>> y_pred = [3, 2, 1]
>>> r2_score(y_true, y_pred)
-3.0
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mean_squared_error(y_true, y_pred, *, sample_weight=None, multioutput='uniform_average',
squared=True)

Mean squared error regression loss.

Read more in the User Guide.

Parameters

• y_true (array-like of shape (n_samples,) or (n_samples,
n_outputs)) – Ground truth (correct) target values.

• y_pred (array-like of shape (n_samples,) or (n_samples,
n_outputs)) – Estimated target values.

• sample_weight (array-like of shape (n_samples,), default=None)
– Sample weights.

• multioutput ({'raw_values', 'uniform_average'} or array-like
of shape (n_outputs,), default='uniform_average') – Defines ag-
gregating of multiple output values. Array-like value defines weights used to average
errors.

’raw_values’ : Returns a full set of errors in case of multioutput input.

’uniform_average’ : Errors of all outputs are averaged with uniform weight.

• squared (bool, default=True) – If True returns MSE value, if False returns RMSE
value.

Returns loss – A non-negative floating point value (the best value is 0.0), or an array of floating
point values, one for each individual target.

Return type float or ndarray of floats

Examples

>>> from sklearn.metrics import mean_squared_error
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> mean_squared_error(y_true, y_pred)
0.375
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> mean_squared_error(y_true, y_pred, squared=False)
0.612...
>>> y_true = [[0.5, 1],[-1, 1],[7, -6]]
>>> y_pred = [[0, 2],[-1, 2],[8, -5]]
>>> mean_squared_error(y_true, y_pred)
0.708...
>>> mean_squared_error(y_true, y_pred, squared=False)
0.822...
>>> mean_squared_error(y_true, y_pred, multioutput='raw_values')
array([0.41666667, 1. ])
>>> mean_squared_error(y_true, y_pred, multioutput=[0.3, 0.7])
0.825...

mean_absolute_error(y_true, y_pred, *, sample_weight=None, multioutput='uniform_average')
Mean absolute error regression loss.

Read more in the User Guide.
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Parameters

• y_true (array-like of shape (n_samples,) or (n_samples,
n_outputs)) – Ground truth (correct) target values.

• y_pred (array-like of shape (n_samples,) or (n_samples,
n_outputs)) – Estimated target values.

• sample_weight (array-like of shape (n_samples,), default=None)
– Sample weights.

• multioutput ({'raw_values', 'uniform_average'} or array-like
of shape (n_outputs,), default='uniform_average') – Defines ag-
gregating of multiple output values. Array-like value defines weights used to average
errors.

’raw_values’ : Returns a full set of errors in case of multioutput input.

’uniform_average’ : Errors of all outputs are averaged with uniform weight.

Returns

loss – If multioutput is ‘raw_values’, then mean absolute error is returned for each output sepa-
rately. If multioutput is ‘uniform_average’ or an ndarray of weights, then the weighted average
of all output errors is returned.

MAE output is non-negative floating point. The best value is 0.0.

Return type float or ndarray of floats

Examples

>>> from sklearn.metrics import mean_absolute_error
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> mean_absolute_error(y_true, y_pred)
0.5
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> mean_absolute_error(y_true, y_pred)
0.75
>>> mean_absolute_error(y_true, y_pred, multioutput='raw_values')
array([0.5, 1. ])
>>> mean_absolute_error(y_true, y_pred, multioutput=[0.3, 0.7])
0.85...

precision_score(y_true, y_pred, *, labels=None, pos_label=1, average='binary', sample_weight=None,
zero_division='warn')

Compute the precision.

The precision is the ratio tp / (tp + fp) where tp is the number of true positives and fp the number of
false positives. The precision is intuitively the ability of the classifier not to label as positive a sample that is
negative.

The best value is 1 and the worst value is 0.

Read more in the User Guide.

Parameters

• y_true (1d array-like, or label indicator array / sparse
matrix) – Ground truth (correct) target values.
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• y_pred (1d array-like, or label indicator array / sparse
matrix) – Estimated targets as returned by a classifier.

• labels (array-like, default=None) – The set of labels to include when
average != 'binary', and their order if average is None. Labels present in
the data can be excluded, for example to calculate a multiclass average ignoring a majority
negative class, while labels not present in the data will result in 0 components in a macro
average. For multilabel targets, labels are column indices. By default, all labels in y_true
and y_pred are used in sorted order.

Changed in version 0.17: Parameter labels improved for multiclass problem.

• pos_label (str or int, default=1) – The class to report if
average='binary' and the data is binary. If the data are multiclass or multilabel, this
will be ignored; setting labels=[pos_label] and average != 'binary' will
report scores for that label only.

• average ({'micro', 'macro', 'samples', 'weighted', 'binary'}
default='binary') – This parameter is required for multiclass/multilabel targets.
If None, the scores for each class are returned. Otherwise, this determines the type of
averaging performed on the data:

'binary': Only report results for the class specified by pos_label. This is applicable
only if targets (y_{true,pred}) are binary.

'micro': Calculate metrics globally by counting the total true positives, false negatives
and false positives.

'macro': Calculate metrics for each label, and find their unweighted mean. This does not
take label imbalance into account.

'weighted': Calculate metrics for each label, and find their average weighted by support
(the number of true instances for each label). This alters ‘macro’ to account for label
imbalance; it can result in an F-score that is not between precision and recall.

'samples': Calculate metrics for each instance, and find their average (only meaningful
for multilabel classification where this differs from accuracy_score()).

• sample_weight (array-like of shape (n_samples,), default=None)
– Sample weights.

• zero_division ("warn", 0 or 1, default="warn") – Sets the value to re-
turn when there is a zero division. If set to “warn”, this acts as 0, but warnings are also
raised.

Returns precision – (n_unique_labels,) Precision of the positive class in binary classification or
weighted average of the precision of each class for the multiclass task.

Return type float (if average is not None) or array of float of shape

See also:

precision_recall_fscore_support, multilabel_confusion_matrix
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Notes

When true positive + false positive == 0, precision returns 0 and raises
UndefinedMetricWarning. This behavior can be modified with zero_division.

Examples

>>> from sklearn.metrics import precision_score
>>> y_true = [0, 1, 2, 0, 1, 2]
>>> y_pred = [0, 2, 1, 0, 0, 1]
>>> precision_score(y_true, y_pred, average='macro')
0.22...
>>> precision_score(y_true, y_pred, average='micro')
0.33...
>>> precision_score(y_true, y_pred, average='weighted')
0.22...
>>> precision_score(y_true, y_pred, average=None)
array([0.66..., 0. , 0. ])
>>> y_pred = [0, 0, 0, 0, 0, 0]
>>> precision_score(y_true, y_pred, average=None)
array([0.33..., 0. , 0. ])
>>> precision_score(y_true, y_pred, average=None, zero_division=1)
array([0.33..., 1. , 1. ])

precision_recall_curve(y_true, probas_pred, *, pos_label=None, sample_weight=None)
Compute precision-recall pairs for different probability thresholds.

Note: this implementation is restricted to the binary classification task.

The precision is the ratio tp / (tp + fp) where tp is the number of true positives and fp the number of
false positives. The precision is intuitively the ability of the classifier not to label as positive a sample that is
negative.

The recall is the ratio tp / (tp + fn) where tp is the number of true positives and fn the number of false
negatives. The recall is intuitively the ability of the classifier to find all the positive samples.

The last precision and recall values are 1. and 0. respectively and do not have a corresponding threshold. This
ensures that the graph starts on the y axis.

Read more in the User Guide.

Parameters

• y_true (ndarray of shape (n_samples,)) – True binary labels. If labels are
not either {-1, 1} or {0, 1}, then pos_label should be explicitly given.

• probas_pred (ndarray of shape (n_samples,)) – Estimated probabilities or
output of a decision function.

• pos_label (int or str, default=None) – The label of the positive class. When
pos_label=None, if y_true is in {-1, 1} or {0, 1}, pos_label is set to 1, otherwise an
error will be raised.

• sample_weight (array-like of shape (n_samples,), default=None)
– Sample weights.

Returns

• precision (ndarray of shape (n_thresholds + 1,)) – Precision values such that element i is
the precision of predictions with score >= thresholds[i] and the last element is 1.
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• recall (ndarray of shape (n_thresholds + 1,)) – Decreasing recall values such that element i
is the recall of predictions with score >= thresholds[i] and the last element is 0.

• thresholds (ndarray of shape (n_thresholds,)) – Increasing thresholds on the decision func-
tion used to compute precision and recall. n_thresholds <= len(np.unique(probas_pred)).

See also:

plot_precision_recall_curve Plot Precision Recall Curve for binary classifiers.

PrecisionRecallDisplay Precision Recall visualization.

average_precision_score Compute average precision from prediction scores.

det_curve Compute error rates for different probability thresholds.

roc_curve Compute Receiver operating characteristic (ROC) curve.

Examples

>>> import numpy as np
>>> from sklearn.metrics import precision_recall_curve
>>> y_true = np.array([0, 0, 1, 1])
>>> y_scores = np.array([0.1, 0.4, 0.35, 0.8])
>>> precision, recall, thresholds = precision_recall_curve(
... y_true, y_scores)
>>> precision
array([0.66666667, 0.5 , 1. , 1. ])
>>> recall
array([1. , 0.5, 0.5, 0. ])
>>> thresholds
array([0.35, 0.4 , 0.8 ])

auc(x, y)
Compute Area Under the Curve (AUC) using the trapezoidal rule.

This is a general function, given points on a curve. For computing the area under the ROC-
curve, see roc_auc_score(). For an alternative way to summarize a precision-recall curve, see
average_precision_score().

Parameters

• x (ndarray of shape (n,)) – x coordinates. These must be either monotonic in-
creasing or monotonic decreasing.

• y (ndarray of shape, (n,)) – y coordinates.

Returns auc

Return type float

See also:

roc_auc_score Compute the area under the ROC curve.

average_precision_score Compute average precision from prediction scores.

precision_recall_curve Compute precision-recall pairs for different probability thresholds.
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Examples

>>> import numpy as np
>>> from sklearn import metrics
>>> y = np.array([1, 1, 2, 2])
>>> pred = np.array([0.1, 0.4, 0.35, 0.8])
>>> fpr, tpr, thresholds = metrics.roc_curve(y, pred, pos_label=2)
>>> metrics.auc(fpr, tpr)
0.75

jaccard_score(y_true, y_pred, *, labels=None, pos_label=1, average='binary', sample_weight=None,
zero_division='warn')

Jaccard similarity coefficient score.

The Jaccard index [1], or Jaccard similarity coefficient, defined as the size of the intersection divided by the size
of the union of two label sets, is used to compare set of predicted labels for a sample to the corresponding set of
labels in y_true.

Read more in the User Guide.

Parameters

• y_true (1d array-like, or label indicator array / sparse
matrix) – Ground truth (correct) labels.

• y_pred (1d array-like, or label indicator array / sparse
matrix) – Predicted labels, as returned by a classifier.

• labels (array-like of shape (n_classes,), default=None) – The set
of labels to include when average != 'binary', and their order if average is
None. Labels present in the data can be excluded, for example to calculate a multiclass
average ignoring a majority negative class, while labels not present in the data will result
in 0 components in a macro average. For multilabel targets, labels are column indices. By
default, all labels in y_true and y_pred are used in sorted order.

• pos_label (str or int, default=1) – The class to report if
average='binary' and the data is binary. If the data are multiclass or multilabel, this
will be ignored; setting labels=[pos_label] and average != 'binary' will
report scores for that label only.

• average ({None, 'micro', 'macro', 'samples', 'weighted',
'binary'}, default='binary') – If None, the scores for each class are
returned. Otherwise, this determines the type of averaging performed on the data:

'binary': Only report results for the class specified by pos_label. This is applicable
only if targets (y_{true,pred}) are binary.

'micro': Calculate metrics globally by counting the total true positives, false negatives
and false positives.

'macro': Calculate metrics for each label, and find their unweighted mean. This does not
take label imbalance into account.

'weighted': Calculate metrics for each label, and find their average, weighted by sup-
port (the number of true instances for each label). This alters ‘macro’ to account for label
imbalance.

'samples': Calculate metrics for each instance, and find their average (only meaningful
for multilabel classification).
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• sample_weight (array-like of shape (n_samples,), default=None)
– Sample weights.

• zero_division ("warn", {0.0, 1.0}, default="warn") – Sets the value to
return when there is a zero division, i.e. when there there are no negative values in predic-
tions and labels. If set to “warn”, this acts like 0, but a warning is also raised.

Returns score

Return type float (if average is not None) or array of floats, shape = [n_unique_labels]

See also:

accuracy_score, f_score, multilabel_confusion_matrix

Notes

jaccard_score() may be a poor metric if there are no positives for some samples or classes. Jaccard is
undefined if there are no true or predicted labels, and our implementation will return a score of 0 with a warning.

References

Examples

>>> import numpy as np
>>> from sklearn.metrics import jaccard_score
>>> y_true = np.array([[0, 1, 1],
... [1, 1, 0]])
>>> y_pred = np.array([[1, 1, 1],
... [1, 0, 0]])

In the binary case:

>>> jaccard_score(y_true[0], y_pred[0])
0.6666...

In the multilabel case:

>>> jaccard_score(y_true, y_pred, average='samples')
0.5833...
>>> jaccard_score(y_true, y_pred, average='macro')
0.6666...
>>> jaccard_score(y_true, y_pred, average=None)
array([0.5, 0.5, 1. ])

In the multiclass case:

>>> y_pred = [0, 2, 1, 2]
>>> y_true = [0, 1, 2, 2]
>>> jaccard_score(y_true, y_pred, average=None)
array([1. , 0. , 0.33...])

f1_score(y_true, y_pred, *, labels=None, pos_label=1, average='binary', sample_weight=None,
zero_division='warn')

Compute the F1 score, also known as balanced F-score or F-measure.
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The F1 score can be interpreted as a weighted average of the precision and recall, where an F1 score reaches its
best value at 1 and worst score at 0. The relative contribution of precision and recall to the F1 score are equal.
The formula for the F1 score is:

F1 = 2 * (precision * recall) / (precision + recall)

In the multi-class and multi-label case, this is the average of the F1 score of each class with weighting depending
on the average parameter.

Read more in the User Guide.

Parameters

• y_true (1d array-like, or label indicator array / sparse
matrix) – Ground truth (correct) target values.

• y_pred (1d array-like, or label indicator array / sparse
matrix) – Estimated targets as returned by a classifier.

• labels (array-like, default=None) – The set of labels to include when
average != 'binary', and their order if average is None. Labels present in
the data can be excluded, for example to calculate a multiclass average ignoring a majority
negative class, while labels not present in the data will result in 0 components in a macro
average. For multilabel targets, labels are column indices. By default, all labels in y_true
and y_pred are used in sorted order.

Changed in version 0.17: Parameter labels improved for multiclass problem.

• pos_label (str or int, default=1) – The class to report if
average='binary' and the data is binary. If the data are multiclass or multilabel, this
will be ignored; setting labels=[pos_label] and average != 'binary' will
report scores for that label only.

• average ({'micro', 'macro', 'samples','weighted', 'binary'}
or None, default='binary') – This parameter is required for multi-
class/multilabel targets. If None, the scores for each class are returned. Otherwise,
this determines the type of averaging performed on the data:

'binary': Only report results for the class specified by pos_label. This is applicable
only if targets (y_{true,pred}) are binary.

'micro': Calculate metrics globally by counting the total true positives, false negatives
and false positives.

'macro': Calculate metrics for each label, and find their unweighted mean. This does not
take label imbalance into account.

'weighted': Calculate metrics for each label, and find their average weighted by support
(the number of true instances for each label). This alters ‘macro’ to account for label
imbalance; it can result in an F-score that is not between precision and recall.

'samples': Calculate metrics for each instance, and find their average (only meaningful
for multilabel classification where this differs from accuracy_score()).

• sample_weight (array-like of shape (n_samples,), default=None)
– Sample weights.

• zero_division ("warn", 0 or 1, default="warn") – Sets the value to re-
turn when there is a zero division, i.e. when all predictions and labels are negative. If set to
“warn”, this acts as 0, but warnings are also raised.
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Returns f1_score – F1 score of the positive class in binary classification or weighted average of the
F1 scores of each class for the multiclass task.

Return type float or array of float, shape = [n_unique_labels]

See also:

fbeta_score, precision_recall_fscore_support, jaccard_score,
multilabel_confusion_matrix

References

Examples

>>> from sklearn.metrics import f1_score
>>> y_true = [0, 1, 2, 0, 1, 2]
>>> y_pred = [0, 2, 1, 0, 0, 1]
>>> f1_score(y_true, y_pred, average='macro')
0.26...
>>> f1_score(y_true, y_pred, average='micro')
0.33...
>>> f1_score(y_true, y_pred, average='weighted')
0.26...
>>> f1_score(y_true, y_pred, average=None)
array([0.8, 0. , 0. ])
>>> y_true = [0, 0, 0, 0, 0, 0]
>>> y_pred = [0, 0, 0, 0, 0, 0]
>>> f1_score(y_true, y_pred, zero_division=1)
1.0...

Notes

When true positive + false positive == 0, precision is undefined. When true positive
+ false negative == 0, recall is undefined. In such cases, by default the metric will be set to 0,
as will f-score, and UndefinedMetricWarning will be raised. This behavior can be modified with
zero_division.

roc_auc_score(y_true, y_score, *, average='macro', sample_weight=None, max_fpr=None,
multi_class='raise', labels=None)

Compute Area Under the Receiver Operating Characteristic Curve (ROC AUC) from prediction scores.

Note: this implementation can be used with binary, multiclass and multilabel classification, but some restrictions
apply (see Parameters).

Read more in the User Guide.

Parameters

• y_true (array-like of shape (n_samples,) or (n_samples,
n_classes)) – True labels or binary label indicators. The binary and multiclass
cases expect labels with shape (n_samples,) while the multilabel case expects binary label
indicators with shape (n_samples, n_classes).

• y_score (array-like of shape (n_samples,) or (n_samples,
n_classes)) – Target scores.
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– In the binary case, it corresponds to an array of shape (n_samples,). Both probability
estimates and non-thresholded decision values can be provided. The probability esti-
mates correspond to the probability of the class with the greater label, i.e. estima-
tor.classes_[1] and thus estimator.predict_proba(X, y)[:, 1]. The decision values corre-
sponds to the output of estimator.decision_function(X, y). See more information in the
User guide;

– In the multiclass case, it corresponds to an array of shape (n_samples, n_classes) of prob-
ability estimates provided by the predict_proba method. The probability estimates must
sum to 1 across the possible classes. In addition, the order of the class scores must cor-
respond to the order of labels, if provided, or else to the numerical or lexicographical
order of the labels in y_true. See more information in the User guide;

– In the multilabel case, it corresponds to an array of shape (n_samples, n_classes). Prob-
ability estimates are provided by the predict_proba method and the non-thresholded de-
cision values by the decision_function method. The probability estimates correspond to
the probability of the class with the greater label for each output of the classifier. See
more information in the User guide.

• average ({'micro', 'macro', 'samples', 'weighted'} or None,
default='macro') – If None, the scores for each class are returned. Otherwise, this
determines the type of averaging performed on the data: Note: multiclass ROC AUC
currently only handles the ‘macro’ and ‘weighted’ averages.

'micro': Calculate metrics globally by considering each element of the label indicator
matrix as a label.

'macro': Calculate metrics for each label, and find their unweighted mean. This does not
take label imbalance into account.

'weighted': Calculate metrics for each label, and find their average, weighted by sup-
port (the number of true instances for each label).

'samples': Calculate metrics for each instance, and find their average.

Will be ignored when y_true is binary.

• sample_weight (array-like of shape (n_samples,), default=None)
– Sample weights.

• max_fpr (float > 0 and <= 1, default=None) – If not None, the standard-
ized partial AUC [2]_ over the range [0, max_fpr] is returned. For the multiclass case,
max_fpr, should be either equal to None or 1.0 as AUC ROC partial computation cur-
rently is not supported for multiclass.

• multi_class ({'raise', 'ovr', 'ovo'}, default='raise') – Only used
for multiclass targets. Determines the type of configuration to use. The default value raises
an error, so either 'ovr' or 'ovo' must be passed explicitly.

'ovr': Stands for One-vs-rest. Computes the AUC of each class against the rest [3]_
[4]_. This treats the multiclass case in the same way as the multilabel case. Sensitive to
class imbalance even when average == 'macro', because class imbalance affects
the composition of each of the ‘rest’ groupings.

'ovo': Stands for One-vs-one. Computes the average AUC of all possible pairwise com-
binations of classes5. Insensitive to class imbalance when average == 'macro'.

5 Hand, D.J., Till, R.J. (2001). A Simple Generalisation of the Area Under the ROC Curve for Multiple Class Classification Problems. Machine
Learning, 45(2), 171-186.
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• labels (array-like of shape (n_classes,), default=None) – Only
used for multiclass targets. List of labels that index the classes in y_score. If None,
the numerical or lexicographical order of the labels in y_true is used.

Returns auc

Return type float

References

See also:

average_precision_score Area under the precision-recall curve.

roc_curve Compute Receiver operating characteristic (ROC) curve.

plot_roc_curve Plot Receiver operating characteristic (ROC) curve.

Examples

Binary case:

>>> from sklearn.datasets import load_breast_cancer
>>> from sklearn.linear_model import LogisticRegression
>>> from sklearn.metrics import roc_auc_score
>>> X, y = load_breast_cancer(return_X_y=True)
>>> clf = LogisticRegression(solver="liblinear", random_state=0).fit(X, y)
>>> roc_auc_score(y, clf.predict_proba(X)[:, 1])
0.99...
>>> roc_auc_score(y, clf.decision_function(X))
0.99...

Multiclass case:

>>> from sklearn.datasets import load_iris
>>> X, y = load_iris(return_X_y=True)
>>> clf = LogisticRegression(solver="liblinear").fit(X, y)
>>> roc_auc_score(y, clf.predict_proba(X), multi_class='ovr')
0.99...

Multilabel case:

>>> from sklearn.datasets import make_multilabel_classification
>>> from sklearn.multioutput import MultiOutputClassifier
>>> X, y = make_multilabel_classification(random_state=0)
>>> clf = MultiOutputClassifier(clf).fit(X, y)
>>> # get a list of n_output containing probability arrays of shape
>>> # (n_samples, n_classes)
>>> y_pred = clf.predict_proba(X)
>>> # extract the positive columns for each output
>>> y_pred = np.transpose([pred[:, 1] for pred in y_pred])
>>> roc_auc_score(y, y_pred, average=None)
array([0.82..., 0.86..., 0.94..., 0.85... , 0.94...])
>>> from sklearn.linear_model import RidgeClassifierCV
>>> clf = RidgeClassifierCV().fit(X, y)
>>> roc_auc_score(y, clf.decision_function(X), average=None)
array([0.81..., 0.84... , 0.93..., 0.87..., 0.94...])
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accuracy_score(y_true, y_pred, *, normalize=True, sample_weight=None)
Accuracy classification score.

In multilabel classification, this function computes subset accuracy: the set of labels predicted for a sample must
exactly match the corresponding set of labels in y_true.

Read more in the User Guide.

Parameters

• y_true (1d array-like, or label indicator array / sparse
matrix) – Ground truth (correct) labels.

• y_pred (1d array-like, or label indicator array / sparse
matrix) – Predicted labels, as returned by a classifier.

• normalize (bool, default=True) – If False, return the number of correctly clas-
sified samples. Otherwise, return the fraction of correctly classified samples.

• sample_weight (array-like of shape (n_samples,), default=None)
– Sample weights.

Returns

score – If normalize == True, return the fraction of correctly classified samples (float),
else returns the number of correctly classified samples (int).

The best performance is 1 with normalize == True and the number of samples with
normalize == False.

Return type float

See also:

jaccard_score, hamming_loss, zero_one_loss

Notes

In binary and multiclass classification, this function is equal to the jaccard_score function.

Examples

>>> from sklearn.metrics import accuracy_score
>>> y_pred = [0, 2, 1, 3]
>>> y_true = [0, 1, 2, 3]
>>> accuracy_score(y_true, y_pred)
0.5
>>> accuracy_score(y_true, y_pred, normalize=False)
2

In the multilabel case with binary label indicators:

>>> import numpy as np
>>> accuracy_score(np.array([[0, 1], [1, 1]]), np.ones((2, 2)))
0.5

balanced_accuracy_score(y_true, y_pred, *, sample_weight=None, adjusted=False)
Compute the balanced accuracy.
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The balanced accuracy in binary and multiclass classification problems to deal with imbalanced datasets. It is
defined as the average of recall obtained on each class.

The best value is 1 and the worst value is 0 when adjusted=False.

Read more in the User Guide.

New in version 0.20.

Parameters

• y_true (1d array-like) – Ground truth (correct) target values.

• y_pred (1d array-like) – Estimated targets as returned by a classifier.

• sample_weight (array-like of shape (n_samples,), default=None)
– Sample weights.

• adjusted (bool, default=False) – When true, the result is adjusted for chance, so
that random performance would score 0, and perfect performance scores 1.

Returns balanced_accuracy

Return type float

See also:

recall_score, roc_auc_score

Notes

Some literature promotes alternative definitions of balanced accuracy. Our definition is equivalent to
accuracy_score() with class-balanced sample weights, and shares desirable properties with the binary
case. See the User Guide.

References

Examples

>>> from sklearn.metrics import balanced_accuracy_score
>>> y_true = [0, 1, 0, 0, 1, 0]
>>> y_pred = [0, 1, 0, 0, 0, 1]
>>> balanced_accuracy_score(y_true, y_pred)
0.625

pearson_r2_score(y: numpy.ndarray, y_pred: numpy.ndarray)→ float
Computes Pearson R^2 (square of Pearson correlation).

Parameters

• y (np.ndarray) – ground truth array

• y_pred (np.ndarray) – predicted array

Returns The Pearson-R^2 score.

Return type float

jaccard_index(y: numpy.ndarray, y_pred: numpy.ndarray)→ float
Computes Jaccard Index which is the Intersection Over Union metric which is commonly used in image seg-
mentation tasks.
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DEPRECATED: WILL BE REMOVED IN A FUTURE VERSION OF DEEEPCHEM. USE jaccard_score
instead.

Parameters

• y (np.ndarray) – ground truth array

• y_pred (np.ndarray) – predicted array

Returns score – The jaccard index. A number between 0 and 1.

Return type float

pixel_error(y: numpy.ndarray, y_pred: numpy.ndarray)→ float
An error metric in case y, y_pred are images.

Defined as 1 - the maximal F-score of pixel similarity, or squared Euclidean distance between the original and
the result labels.

Parameters

• y (np.ndarray) – ground truth array

• y_pred (np.ndarray) – predicted array

Returns score – The pixel-error. A number between 0 and 1.

Return type float

prc_auc_score(y: numpy.ndarray, y_pred: numpy.ndarray)→ float
Compute area under precision-recall curve

Parameters

• y (np.ndarray) – A numpy array of shape (N, n_classes) or (N,) with true labels

• y_pred (np.ndarray) – Of shape (N, n_classes) with class probabilities.

Returns The area under the precision-recall curve. A number between 0 and 1.

Return type float

rms_score(y_true: numpy.ndarray, y_pred: numpy.ndarray)→ float
Computes RMS error.

mae_score(y_true: numpy.ndarray, y_pred: numpy.ndarray)→ float
Computes MAE.

kappa_score(y1, y2, *, labels=None, weights=None, sample_weight=None)
Cohen’s kappa: a statistic that measures inter-annotator agreement.

This function computes Cohen’s kappa [1]_, a score that expresses the level of agreement between two annota-
tors on a classification problem. It is defined as

𝜅 = (𝑝𝑜 − 𝑝𝑒)/(1− 𝑝𝑒)

where 𝑝𝑜 is the empirical probability of agreement on the label assigned to any sample (the observed agreement
ratio), and 𝑝𝑒 is the expected agreement when both annotators assign labels randomly. 𝑝𝑒 is estimated using a
per-annotator empirical prior over the class labels [2]_.

Read more in the User Guide.

Parameters

• y1 (array of shape (n_samples,)) – Labels assigned by the first annotator.
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• y2 (array of shape (n_samples,)) – Labels assigned by the second annotator.
The kappa statistic is symmetric, so swapping y1 and y2 doesn’t change the value.

• labels (array-like of shape (n_classes,), default=None) – List of
labels to index the matrix. This may be used to select a subset of labels. If None, all
labels that appear at least once in y1 or y2 are used.

• weights ({'linear', 'quadratic'}, default=None) – Weighting type to
calculate the score. None means no weighted; “linear” means linear weighted; “quadratic”
means quadratic weighted.

• sample_weight (array-like of shape (n_samples,), default=None)
– Sample weights.

Returns kappa – The kappa statistic, which is a number between -1 and 1. The maximum value
means complete agreement; zero or lower means chance agreement.

Return type float

References

bedroc_score(y_true: numpy.ndarray, y_pred: numpy.ndarray, alpha: float = 20.0)
Compute BEDROC metric.

BEDROC metric implemented according to Truchon and Bayley that modifies the ROC score by allowing for a
factor of early recognition. Please confirm details from [1]_.

Parameters

• y_true (np.ndarray) – Binary class labels. 1 for positive class, 0 otherwise

• y_pred (np.ndarray) – Predicted labels

• alpha (float, default 20.0) – Early recognition parameter

Returns Value in [0, 1] that indicates the degree of early recognition

Return type float

Notes

This function requires RDKit to be installed.

References

concordance_index(y_true: numpy.ndarray, y_pred: numpy.ndarray)→ float
Compute Concordance index.

Statistical metric indicates the quality of the predicted ranking. Please confirm details from [1]_.

Parameters

• y_true (np.ndarray) – continous value

• y_pred (np.ndarray) – Predicted value

Returns score between [0,1]

Return type float
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References

get_motif_scores(encoded_sequences: numpy.ndarray, motif_names: List[str], max_scores: Op-
tional[int] = None, return_positions: bool = False, GC_fraction: float = 0.4) →
numpy.ndarray

Computes pwm log odds.

Parameters

• encoded_sequences (np.ndarray) – A numpy array of shape (N_sequences,
N_letters, sequence_length, 1).

• motif_names (List[str]) – List of motif file names.

• max_scores (int, optional) – Get top max_scores scores.

• return_positions (bool, default False) – Whether to return postions or not.

• GC_fraction (float, default 0.4) – GC fraction in background sequence.

Returns A numpy array of complete score. The shape is (N_sequences, num_motifs, seq_length) by
default. If max_scores, the shape of score array is (N_sequences, num_motifs*max_scores). If
max_scores and return_positions, the shape of score array with max scores and their positions.
is (N_sequences, 2*num_motifs*max_scores).

Return type np.ndarray

Notes

This method requires simdna to be installed.

get_pssm_scores(encoded_sequences: numpy.ndarray, pssm: numpy.ndarray)→ numpy.ndarray
Convolves pssm and its reverse complement with encoded sequences and returns the maximum score at each
position of each sequence.

Parameters

• encoded_sequences (np.ndarray) – A numpy array of shape (N_sequences,
N_letters, sequence_length, 1).

• pssm (np.ndarray) – A numpy array of shape (4, pssm_length).

Returns scores – A numpy array of shape (N_sequences, sequence_length).

Return type np.ndarray

in_silico_mutagenesis(model: deepchem.models.models.Model, encoded_sequences:
numpy.ndarray)→ numpy.ndarray

Computes in-silico-mutagenesis scores

Parameters

• model (Model) – This can be any model that accepts inputs of the required shape and
produces an output of shape (N_sequences, N_tasks).

• encoded_sequences (np.ndarray) – A numpy array of shape (N_sequences,
N_letters, sequence_length, 1)

Returns A numpy array of ISM scores. The shape is (num_task, N_sequences, N_letters, se-
quence_length, 1).

Return type np.ndarray
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3.22.4 Metric Class

The dc.metrics.Metric class is a wrapper around metric functions which interoperates with DeepChem dc.
models.Model.

class Metric(metric: Callable[[. . . ], float], task_averager: Optional[Callable[[. . . ], Any]] = None,
name: Optional[str] = None, threshold: Optional[float] = None, mode: Optional[str] =
None, n_tasks: Optional[int] = None, classification_handling_mode: Optional[str] = None,
threshold_value: Optional[float] = None)

Wrapper class for computing user-defined metrics.

The Metric class provides a wrapper for standardizing the API around different classes of metrics that may be
useful for DeepChem models. The implementation provides a few non-standard conveniences such as built-in
support for multitask and multiclass metrics.

There are a variety of different metrics this class aims to support. Metrics for classification and regression that
assume that values to compare are scalars are supported.

At present, this class doesn’t support metric computation on models which don’t present scalar outputs. For
example, if you have a generative model which predicts images or molecules, you will need to write a custom
evaluation and metric setup.

__init__(metric: Callable[[. . . ], float], task_averager: Optional[Callable[[. . . ], Any]] = None,
name: Optional[str] = None, threshold: Optional[float] = None, mode: Optional[str] =
None, n_tasks: Optional[int] = None, classification_handling_mode: Optional[str] = None,
threshold_value: Optional[float] = None)

Parameters

• metric (function) – Function that takes args y_true, y_pred (in that order) and com-
putes desired score. If sample weights are to be considered, metric may take in an addi-
tional keyword argument sample_weight.

• task_averager (function, default None) – If not None, should be a function
that averages metrics across tasks.

• name (str, default None) – Name of this metric

• threshold (float, default None (DEPRECATED)) – Used for binary metrics
and is the threshold for the positive class.

• mode (str, default None) – Should usually be “classification” or “regression.”

• n_tasks (int, default None) – The number of tasks this class is expected to han-
dle.

• classification_handling_mode (str, default None) – DeepChem mod-
els by default predict class probabilities for classification problems. This means that
for a given singletask prediction, after shape normalization, the DeepChem prediction
will be a numpy array of shape (N, n_classes) with class probabilities. classifica-
tion_handling_mode is a string that instructs this method how to handle transforming these
probabilities. It can take on the following values: - None: default value. Pass in y_pred
directy into self.metric. - “threshold”: Use threshold_predictions to threshold y_pred. Use

threshold_value as the desired threshold.

– ”threshold-one-hot”: Use threshold_predictions to threshold y_pred using thresh-
old_values, then apply to_one_hot to output.

• threshold_value (float, default None) – If set, and classifica-
tion_handling_mode is “threshold” or “threshold-one-hot” apply a thresholding operation
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to values with this threshold. This option is only sensible on binary classification tasks. If
float, this will be applied as a binary classification value.

compute_metric(y_true: numpy.ndarray, y_pred: numpy.ndarray, w: Optional[numpy.ndarray] =
None, n_tasks: Optional[int] = None, n_classes: int = 2, per_task_metrics: bool =
False, use_sample_weights: bool = False, **kwargs)→ Any

Compute a performance metric for each task.

Parameters

• y_true (np.ndarray) – An np.ndarray containing true values for each task. Must be
of shape (N,) or (N, n_tasks) or (N, n_tasks, n_classes) if a classification metric. If of
shape (N, n_tasks) values can either be class-labels or probabilities of the positive class
for binary classification problems. If a regression problem, must be of shape (N,) or (N,
n_tasks) or (N, n_tasks, 1) if a regression metric.

• y_pred (np.ndarray) – An np.ndarray containing predicted values for each task.
Must be of shape (N, n_tasks, n_classes) if a classification metric, else must be of shape
(N, n_tasks) if a regression metric.

• w (np.ndarray, default None) – An np.ndarray containing weights for each dat-
apoint. If specified, must be of shape (N, n_tasks).

• n_tasks (int, default None) – The number of tasks this class is expected to han-
dle.

• n_classes (int, default 2) – Number of classes in data for classification tasks.

• per_task_metrics (bool, default False) – If true, return computed metric
for each task on multitask dataset.

• use_sample_weights (bool, default False) – If set, use per-sample weights
w.

• kwargs (dict) – Will be passed on to self.metric

Returns A numpy array containing metric values for each task.

Return type np.ndarray

compute_singletask_metric(y_true: numpy.ndarray, y_pred: numpy.ndarray, w: Op-
tional[numpy.ndarray] = None, n_samples: Optional[int] = None,
use_sample_weights: bool = False, **kwargs)→ float

Compute a metric value.

Parameters

• y_true (np.ndarray) – True values array. This array must be of shape (N, n_classes) if
classification and (N,) if regression.

• y_pred (np.ndarray) – Predictions array. This array must be of shape (N, n_classes) if
classification and (N,) if regression.

• w (np.ndarray, default None) – Sample weight array. This array must be of shape (N,)

• n_samples (int, default None (DEPRECATED)) – The number of samples in
the dataset. This is N. This argument is ignored.

• use_sample_weights (bool, default False) – If set, use per-sample weights
w.

• kwargs (dict) – Will be passed on to self.metric

Returns metric_value – The computed value of the metric.
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Return type float

3.23 Hyperparameter Tuning

One of the most important aspects of machine learning is hyperparameter tuning. Many machine learning models have
a number of hyperparameters that control aspects of the model. These hyperparameters typically cannot be learned
directly by the same learning algorithm used for the rest of learning and have to be set in an alternate fashion. The
dc.hyper module contains utilities for hyperparameter tuning.

DeepChem’s hyperparameter optimzation algorithms are simple and run in single-threaded fashion. They are not
intended to be production grade hyperparameter utilities, but rather useful first tools as you start exploring your pa-
rameter space. As the needs of your application grow, we recommend swapping to a more heavy duty hyperparameter
optimization library.

3.23.1 Hyperparameter Optimization API

class HyperparamOpt(model_builder: Callable[[. . . ], deepchem.models.models.Model])
Abstract superclass for hyperparameter search classes.

This class is an abstract base class for hyperparameter search classes in DeepChem. Hyperparameter search
is performed on dc.models.Model classes. Each hyperparameter object accepts a dc.models.Model class upon
construct. When the hyperparam_search class is invoked, this class is used to construct many different concrete
models which are trained on the specified training set and evaluated on a given validation set.

Different subclasses of HyperparamOpt differ in the choice of strategy for searching the hyperparameter evalu-
ation space. This class itself is an abstract superclass and should never be directly instantiated.

__init__(model_builder: Callable[[. . . ], deepchem.models.models.Model])
Initialize Hyperparameter Optimizer.

Note this is an abstract constructor which should only be used by subclasses.

Parameters model_builder (constructor function.) – This parameter must be
constructor function which returns an object which is an instance of dc.models.Model. This
function must accept two arguments, model_params of type dict and model_dir, a string
specifying a path to a model directory. See the example.

hyperparam_search(params_dict: Dict, train_dataset: deepchem.data.datasets.Dataset,
valid_dataset: deepchem.data.datasets.Dataset, met-
ric: deepchem.metrics.metric.Metric, output_transformers:
List[transformers.Transformer] = [], nb_epoch: int = 10, use_max:
bool = True, logdir: Optional[str] = None, **kwargs) → Tu-
ple[deepchem.models.models.Model, Dict, Dict]

Conduct Hyperparameter search.

This method defines the common API shared by all hyperparameter optimization subclasses. Different
classes will implement different search methods but they must all follow this common API.

Parameters

• params_dict (Dict) – Dictionary mapping strings to values. Note that the pre-
cise semantics of params_dict will change depending on the optimizer that you’re
using. Depending on the type of hyperparameter optimization, these values can be
ints/floats/strings/lists/etc. Read the documentation for the concrete hyperparameter op-
timization subclass you’re using to learn more about what’s expected.

• train_dataset (Dataset) – dataset used for training
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• valid_dataset (Dataset) – dataset used for validation(optimization on valid scores)

• metric (Metric) – metric used for evaluation

• output_transformers (list[Transformer]) – Transformers for evaluation.
This argument is needed since train_dataset and valid_dataset may have been transformed
for learning and need the transform to be inverted before the metric can be evaluated on a
model.

• nb_epoch (int, (default 10)) – Specifies the number of training epochs during
each iteration of optimization.

• use_max (bool, optional) – If True, return the model with the highest score. Else
return model with the minimum score.

• logdir (str, optional) – The directory in which to store created models. If not
set, will use a temporary directory.

Returns (best_model, best_hyperparams, all_scores) where best_model is an instance of
dc.models.Model, best_hyperparams is a dictionary of parameters, and all_scores is a dictio-
nary mapping string representations of hyperparameter sets to validation scores.

Return type Tuple[best_model, best_hyperparams, all_scores]

3.23.2 Grid Hyperparameter Optimization

This is the simplest form of hyperparameter optimization that simply involves iterating over a fixed grid of possible
values for hyperaparameters.

class GridHyperparamOpt(model_builder: Callable[[. . . ], deepchem.models.models.Model])
Provides simple grid hyperparameter search capabilities.

This class performs a grid hyperparameter search over the specified hyperparameter space. This implementation
is simple and simply does a direct iteration over all possible hyperparameters and doesn’t use parallelization to
speed up the search.

Examples

This example shows the type of constructor function expected.

>>> import sklearn
>>> import deepchem as dc
>>> optimizer = dc.hyper.GridHyperparamOpt(lambda **p: dc.models.
→˓GraphConvModel(**p))

Here’s a more sophisticated example that shows how to optimize only some parameters of a model. In this
case, we have some parameters we want to optimize, and others which we don’t. To handle this type of search,
we create a model_builder which hard codes some arguments (in this case, n_tasks and n_features which are
properties of a dataset and not hyperparameters to search over.)

>>> def model_builder(model_dir, **model_params):
... n_layers = model_params['layers']
... layer_width = model_params['width']
... dropout = model_params['dropout']
... return dc.models.MultitaskClassifier(
... n_tasks=5,
... n_features=100,

(continues on next page)
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(continued from previous page)

... layer_sizes=[layer_width]*n_layers,

... dropouts=dropout

... )
>>> optimizer = dc.hyper.GridHyperparamOpt(model_builder)

hyperparam_search(params_dict: Dict, train_dataset: deepchem.data.datasets.Dataset,
valid_dataset: deepchem.data.datasets.Dataset, met-
ric: deepchem.metrics.metric.Metric, output_transformers:
List[transformers.Transformer] = [], nb_epoch: int = 10, use_max: bool =
True, logdir: Optional[str] = None, **kwargs)

Perform hyperparams search according to params_dict.

Each key to hyperparams_dict is a model_param. The values should be a list of potential values for that
hyperparam.

Parameters

• params_dict (Dict) – Maps hyperparameter names (strings) to lists of possible pa-
rameter values.

• train_dataset (Dataset) – dataset used for training

• valid_dataset (Dataset) – dataset used for validation(optimization on valid scores)

• metric (Metric) – metric used for evaluation

• output_transformers (list[Transformer]) – Transformers for evaluation.
This argument is needed since train_dataset and valid_dataset may have been transformed
for learning and need the transform to be inverted before the metric can be evaluated on a
model.

• nb_epoch (int, (default 10)) – Specifies the number of training epochs during
each iteration of optimization. Not used by all model types.

• use_max (bool, optional) – If True, return the model with the highest score. Else
return model with the minimum score.

• logdir (str, optional) – The directory in which to store created models. If not
set, will use a temporary directory.

Returns (best_model, best_hyperparams, all_scores) where best_model is an instance of
dc.model.Model, best_hyperparams is a dictionary of parameters, and all_scores is a dic-
tionary mapping string representations of hyperparameter sets to validation scores.

Return type Tuple[best_model, best_hyperparams, all_scores]

3.23.3 Gaussian Process Hyperparameter Optimization

class GaussianProcessHyperparamOpt(model_builder: Callable[[. . . ],
deepchem.models.models.Model])

Gaussian Process Global Optimization(GPGO)

This class uses Gaussian Process optimization to select hyperparameters. Underneath the hood it uses pyGPGO
to optimize models. If you don’t have pyGPGO installed, you won’t be able to use this class.

Note that params_dict has a different semantics than for GridHyperparamOpt. param_dict[hp] must be an
int/float and is used as the center of a search range.
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Examples

This example shows the type of constructor function expected.

>>> import sklearn
>>> import deepchem as dc
>>> optimizer = dc.hyper.GaussianProcessHyperparamOpt(lambda **p: dc.models.
→˓GraphConvModel(n_tasks=1, **p))

Here’s a more sophisticated example that shows how to optimize only some parameters of a model. In this
case, we have some parameters we want to optimize, and others which we don’t. To handle this type of search,
we create a model_builder which hard codes some arguments (in this case, n_tasks and n_features which are
properties of a dataset and not hyperparameters to search over.)

>>> def model_builder(**model_params):
... n_layers = model_params['layers']
... layer_width = model_params['width']
... dropout = model_params['dropout']
... return dc.models.MultitaskClassifier(
... n_tasks=5,
... n_features=100,
... layer_sizes=[layer_width]*n_layers,
... dropouts=dropout
... )
>>> optimizer = dc.hyper.GaussianProcessHyperparamOpt(model_builder)

Notes

This class requires pyGPGO to be installed.

hyperparam_search(params_dict: Dict, train_dataset: deepchem.data.datasets.Dataset,
valid_dataset: deepchem.data.datasets.Dataset, met-
ric: deepchem.metrics.metric.Metric, output_transformers:
List[transformers.Transformer] = [], nb_epoch: int = 10, use_max: bool
= True, logdir: Optional[str] = None, max_iter: int = 20, search_range:
Union[int, float, Dict] = 4, logfile: Optional[str] = None, **kwargs)

Perform hyperparameter search using a gaussian process.

Parameters

• params_dict (Dict) – Maps hyperparameter names (strings) to possible param-
eter values. The semantics of this list are different than for GridHyperparamOpt.
params_dict[hp] must map to an int/float, which is used as the center of a search with
radius search_range since pyGPGO can only optimize numerical hyperparameters.

• train_dataset (Dataset) – dataset used for training

• valid_dataset (Dataset) – dataset used for validation(optimization on valid scores)

• metric (Metric) – metric used for evaluation

• output_transformers (list[Transformer]) – Transformers for evaluation.
This argument is needed since train_dataset and valid_dataset may have been transformed
for learning and need the transform to be inverted before the metric can be evaluated on a
model.

• nb_epoch (int, (default 10)) – Specifies the number of training epochs during
each iteration of optimization. Not used by all model types.
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• use_max (bool, (default True)) – Specifies whether to maximize or minimize
metric. maximization(True) or minimization(False)

• logdir (str, optional, (default None)) – The directory in which to store
created models. If not set, will use a temporary directory.

• max_iter (int, (default 20)) – number of optimization trials

• search_range (int/float/Dict (default 4)) – The search_range specifies
the range of parameter values to search for. If search_range is an int/float, it is used as the
global search range for parameters. This creates a search problem on the following space:

optimization on [initial value / search_range, initial value * search_range]

If search_range is a dict, it must contain the same keys as for params_dict. In this case,
search_range specifies a per-parameter search range. This is useful in case some param-
eters have a larger natural range than others. For a given hyperparameter hp this would
create the following search range:

optimization on hp on [initial value[hp] / search_range[hp], initial value[hp] *
search_range[hp]]

• logfile (str, optional (default None)) – Name of logfile to write results
to. If specified, this is must be a valid file. If not specified, results of hyperparameter
search will be written to logdir/.txt.

Returns (best_model, best_hyperparams, all_scores) where best_model is an instance of
dc.model.Model, best_hyperparams is a dictionary of parameters, and all_scores is a dic-
tionary mapping string representations of hyperparameter sets to validation scores.

Return type Tuple[best_model, best_hyperparams, all_scores]

3.24 Metalearning

One of the hardest challenges in scientific machine learning is lack of access of sufficient data. Sometimes experiments
are slow and expensive and there’s no easy way to gain access to more data. What do you do then?

This module contains a collection of techniques for doing low data learning. “Metalearning” traditionally refers to
techniques for “learning to learn” but here we take it to mean any technique which proves effective for learning with
low amounts of data.

3.24.1 MetaLearner

This is the abstract superclass for metalearning algorithms.

class MetaLearner
Model and data to which the MAML algorithm can be applied.

To use MAML, create a subclass of this defining the learning problem to solve. It consists of a model that can
be trained to perform many different tasks, and data for training it on a large (possibly infinite) set of different
tasks.

compute_model(inputs, variables, training)
Compute the model for a set of inputs and variables.

Parameters

• inputs (list of tensors) – the inputs to the model
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• variables (list of tensors) – the values to use for the model’s variables. This
might be the actual variables (as returned by the MetaLearner’s variables property), or
alternatively it might be the values of those variables after one or more steps of gradient
descent for the current task.

• training (bool) – indicates whether the model is being invoked for training or predic-
tion

Returns

• (loss, outputs) where loss is the value of the model’s loss function, and

• outputs is a list of the model’s outputs

property variables
Get the list of Tensorflow variables to train.

select_task()
Select a new task to train on.

If there is a fixed set of training tasks, this will typically cycle through them. If there are infinitely many
training tasks, this can simply select a new one each time it is called.

get_batch()
Get a batch of data for training.

This should return the data as a list of arrays, one for each of the model’s inputs. This will usually be called
twice for each task, and should return a different batch on each call.

3.24.2 MAML

class MAML(learner, learning_rate=0.001, optimization_steps=1, meta_batch_size=10, opti-
mizer=<deepchem.models.optimizers.Adam object>, model_dir=None)

Implements the Model-Agnostic Meta-Learning algorithm for low data learning.

The algorithm is described in Finn et al., “Model-Agnostic Meta-Learning for Fast Adaptation of Deep Net-
works” (https://arxiv.org/abs/1703.03400). It is used for training models that can perform a variety of tasks,
depending on what data they are trained on. It assumes you have training data for many tasks, but only a small
amount for each one. It performs “meta-learning” by looping over tasks and trying to minimize the loss on each
one after one or a few steps of gradient descent. That is, it does not try to create a model that can directly solve
the tasks, but rather tries to create a model that is very easy to train.

To use this class, create a subclass of MetaLearner that encapsulates the model and data for your learning
problem. Pass it to a MAML object and call fit(). You can then use train_on_current_task() to fine tune the
model for a particular task.

__init__(learner, learning_rate=0.001, optimization_steps=1, meta_batch_size=10, opti-
mizer=<deepchem.models.optimizers.Adam object>, model_dir=None)

Create an object for performing meta-optimization.

Parameters

• learner (MetaLearner) – defines the meta-learning problem

• learning_rate (float or Tensor) – the learning rate to use for optimizing each
task (not to be confused with the one used for meta-learning). This can optionally be made
a variable (represented as a Tensor), in which case the learning rate will itself be learnable.

• optimization_steps (int) – the number of steps of gradient descent to perform for
each task

• meta_batch_size (int) – the number of tasks to use for each step of meta-learning

3.24. Metalearning 329

https://arxiv.org/abs/1703.03400


deepchem, Release 2.5.0

• optimizer (Optimizer) – the optimizer to use for meta-learning (not to be confused
with the gradient descent optimization performed for each task)

• model_dir (str) – the directory in which the model will be saved. If None, a temporary
directory will be created.

fit(steps, max_checkpoints_to_keep=5, checkpoint_interval=600, restore=False)
Perform meta-learning to train the model.

Parameters

• steps (int) – the number of steps of meta-learning to perform

• max_checkpoints_to_keep (int) – the maximum number of checkpoint files to
keep. When this number is reached, older files are deleted.

• checkpoint_interval (float) – the time interval at which to save checkpoints,
measured in seconds

• restore (bool) – if True, restore the model from the most recent checkpoint before
training it further

restore()
Reload the model parameters from the most recent checkpoint file.

train_on_current_task(optimization_steps=1, restore=True)
Perform a few steps of gradient descent to fine tune the model on the current task.

Parameters

• optimization_steps (int) – the number of steps of gradient descent to perform

• restore (bool) – if True, restore the model from the most recent checkpoint before
optimizing

predict_on_batch(inputs)
Compute the model’s outputs for a batch of inputs.

Parameters inputs (list of arrays) – the inputs to the model

Returns

• (loss, outputs) where loss is the value of the model’s loss function, and

• outputs is a list of the model’s outputs

3.25 Reinforcement Learning

Reinforcement Learning is a powerful technique for learning when you have access to a simulator. That is, suppose
that you have a high fidelity way of predicting the outcome of an experiment. This is perhaps a physics engine, perhaps
a chemistry engine, or anything. And you’d like to solve some task within this engine. You can use reinforcement
learning for this purpose.
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3.25.1 Environments

class Environment(state_shape, n_actions=None, state_dtype=None, action_shape=None)
An environment in which an actor performs actions to accomplish a task.

An environment has a current state, which is represented as either a single NumPy array, or optionally a list of
NumPy arrays. When an action is taken, that causes the state to be updated. The environment also computes a
reward for each action, and reports when the task has been terminated (meaning that no more actions may be
taken).

Two types of actions are supported. For environments with discrete action spaces, the action is an integer
specifying the index of the action to perform (out of a fixed list of possible actions). For environments with
continuous action spaces, the action is a NumPy array.

Environment objects should be written to support pickle and deepcopy operations. Many algorithms involve cre-
ating multiple copies of the Environment, possibly running in different processes or even on different computers.

__init__(state_shape, n_actions=None, state_dtype=None, action_shape=None)
Subclasses should call the superclass constructor in addition to doing their own initialization.

A value should be provided for either n_actions (for discrete action spaces) or action_shape (for continuous
action spaces), but not both.

Parameters

• state_shape (tuple or list of tuples) – the shape(s) of the array(s) mak-
ing up the state

• n_actions (int) – the number of discrete actions that can be performed. If the action
space is continuous, this should be None.

• state_dtype (dtype or list of dtypes) – the type(s) of the array(s) making
up the state. If this is None, all arrays are assumed to be float32.

• action_shape (tuple) – the shape of the array describing an action. If the action
space is discrete, this should be none.

property state
The current state of the environment, represented as either a NumPy array or list of arrays.

If reset() has not yet been called at least once, this is undefined.

property terminated
Whether the task has reached its end.

If reset() has not yet been called at least once, this is undefined.

property state_shape
The shape of the arrays that describe a state.

If the state is a single array, this returns a tuple giving the shape of that array. If the state is a list of arrays,
this returns a list of tuples where each tuple is the shape of one array.

property state_dtype
The dtypes of the arrays that describe a state.

If the state is a single array, this returns the dtype of that array. If the state is a list of arrays, this returns a
list containing the dtypes of the arrays.

property n_actions
The number of possible actions that can be performed in this Environment.

If the environment uses a continuous action space, this returns None.
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property action_shape
The expected shape of NumPy arrays representing actions.

If the environment uses a discrete action space, this returns None.

reset()
Initialize the environment in preparation for doing calculations with it.

This must be called before calling step() or querying the state. You can call it again later to reset the
environment back to its original state.

step(action)
Take a time step by performing an action.

This causes the “state” and “terminated” properties to be updated.

Parameters action (object) – an object describing the action to take

Returns

• the reward earned by taking the action, represented as a floating point number

• (higher values are better)

class GymEnvironment(name)
This is a convenience class for working with environments from OpenAI Gym.

__init__(name)
Create an Environment wrapping the OpenAI Gym environment with a specified name.

reset()
Initialize the environment in preparation for doing calculations with it.

This must be called before calling step() or querying the state. You can call it again later to reset the
environment back to its original state.

step(action)
Take a time step by performing an action.

This causes the “state” and “terminated” properties to be updated.

Parameters action (object) – an object describing the action to take

Returns

• the reward earned by taking the action, represented as a floating point number

• (higher values are better)

3.25.2 Policies

class Policy(output_names, rnn_initial_states=[])
A policy for taking actions within an environment.

A policy is defined by a tf.keras.Model that takes the current state as input and performs the necessary calcu-
lations. There are many algorithms for reinforcement learning, and they differ in what values they require a
policy to compute. That makes it impossible to define a single interface allowing any policy to be optimized
with any algorithm. Instead, this interface just tries to be as flexible and generic as possible. Each algorithm
must document what values it expects the model to output.

Special handling is needed for models that include recurrent layers. In that case, the model has its own internal
state which the learning algorithm must be able to specify and query. To support this, the Policy must do three
things:
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1. The Model must take additional inputs that specify the initial states of all its recurrent layers. These will
be appended to the list of arrays specifying the environment state.

2. The Model must also return the final states of all its recurrent layers as outputs.

3. The constructor argument rnn_initial_states must be specified to define the states to use for the Model’s
recurrent layers at the start of a new rollout.

Policy objects should be written to support pickling. Many algorithms involve creating multiple copies of the
Policy, possibly running in different processes or even on different computers.

__init__(output_names, rnn_initial_states=[])
Subclasses should call the superclass constructor in addition to doing their own initialization.

Parameters

• output_names (list of strings) – the names of the Model’s outputs, in order.
It is up to each reinforcement learning algorithm to document what outputs it expects
policies to compute. Outputs that return the final states of recurrent layers should have the
name ‘rnn_state’.

• rnn_initial_states (list of NumPy arrays) – the initial states of the
Model’s recurrent layers at the start of a new rollout

create_model(**kwargs)
Construct and return a tf.keras.Model that computes the policy.

The inputs to the model consist of the arrays representing the current state of the environment, followed
by the initial states for all recurrent layers. Depending on the algorithm being used, other inputs might get
passed as well. It is up to each algorithm to document that.

3.25.3 A2C

class A2C(env, policy, max_rollout_length=20, discount_factor=0.99, advantage_lambda=0.98,
value_weight=1.0, entropy_weight=0.01, optimizer=None, model_dir=None,
use_hindsight=False)

Implements the Advantage Actor-Critic (A2C) algorithm for reinforcement learning.

The algorithm is described in Mnih et al, “Asynchronous Methods for Deep Reinforcement Learning” (https:
//arxiv.org/abs/1602.01783). This class supports environments with both discrete and continuous action spaces.
For discrete action spaces, the “action” argument passed to the environment is an integer giving the index of the
action to perform. The policy must output a vector called “action_prob” giving the probability of taking each
action. For continuous action spaces, the action is an array where each element is chosen independently from a
normal distribution. The policy must output two arrays of the same shape: “action_mean” gives the mean value
for each element, and “action_std” gives the standard deviation for each element. In either case, the policy must
also output a scalar called “value” which is an estimate of the value function for the current state.

The algorithm optimizes all outputs at once using a loss that is the sum of three terms:

1. The policy loss, which seeks to maximize the discounted reward for each action.

2. The value loss, which tries to make the value estimate match the actual discounted reward that was attained
at each step.

3. An entropy term to encourage exploration.

This class supports Generalized Advantage Estimation as described in Schulman et al., “High-Dimensional
Continuous Control Using Generalized Advantage Estimation” (https://arxiv.org/abs/1506.02438). This is a
method of trading off bias and variance in the advantage estimate, which can sometimes improve the rate of
convergance. Use the advantage_lambda parameter to adjust the tradeoff.
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This class supports Hindsight Experience Replay as described in Andrychowicz et al., “Hindsight Experience
Replay” (https://arxiv.org/abs/1707.01495). This is a method that can enormously accelerate learning when
rewards are very rare. It requires that the environment state contains information about the goal the agent is
trying to achieve. Each time it generates a rollout, it processes that rollout twice: once using the actual goal the
agent was pursuing while generating it, and again using the final state of that rollout as the goal. This guarantees
that half of all rollouts processed will be ones that achieved their goals, and hence received a reward.

To use this feature, specify use_hindsight=True to the constructor. The environment must have a method defined
as follows:

def apply_hindsight(self, states, actions, goal): . . . return new_states, rewards

The method receives the list of states generated during the rollout, the action taken for each one, and a new
goal state. It should generate a new list of states that are identical to the input ones, except specifying the new
goal. It should return that list of states, and the rewards that would have been received for taking the specified
actions from those states. The output arrays may be shorter than the input ones, if the modified rollout would
have terminated sooner.

Note: Using this class on continuous action spaces requires that tensorflow_probability be installed.

__init__(env, policy, max_rollout_length=20, discount_factor=0.99, advantage_lambda=0.98,
value_weight=1.0, entropy_weight=0.01, optimizer=None, model_dir=None,
use_hindsight=False)

Create an object for optimizing a policy.

Parameters

• env (Environment) – the Environment to interact with

• policy (Policy) – the Policy to optimize. It must have outputs with the names ‘ac-
tion_prob’ and ‘value’ (for discrete action spaces) or ‘action_mean’, ‘action_std’, and
‘value’ (for continuous action spaces)

• max_rollout_length (int) – the maximum length of rollouts to generate

• discount_factor (float) – the discount factor to use when computing rewards

• advantage_lambda (float) – the parameter for trading bias vs. variance in Gener-
alized Advantage Estimation

• value_weight (float) – a scale factor for the value loss term in the loss function

• entropy_weight (float) – a scale factor for the entropy term in the loss function

• optimizer (Optimizer) – the optimizer to use. If None, a default optimizer is used.

• model_dir (str) – the directory in which the model will be saved. If None, a temporary
directory will be created.

• use_hindsight (bool) – if True, use Hindsight Experience Replay

fit(total_steps, max_checkpoints_to_keep=5, checkpoint_interval=600, restore=False)
Train the policy.

Parameters

• total_steps (int) – the total number of time steps to perform on the environment,
across all rollouts on all threads

• max_checkpoints_to_keep (int) – the maximum number of checkpoint files to
keep. When this number is reached, older files are deleted.
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• checkpoint_interval (float) – the time interval at which to save checkpoints,
measured in seconds

• restore (bool) – if True, restore the model from the most recent checkpoint and con-
tinue training from there. If False, retrain the model from scratch.

predict(state, use_saved_states=True, save_states=True)
Compute the policy’s output predictions for a state.

If the policy involves recurrent layers, this method can preserve their internal states between calls. Use the
use_saved_states and save_states arguments to specify how it should behave.

Parameters

• state (array or list of arrays) – the state of the environment for which to
generate predictions

• use_saved_states (bool) – if True, the states most recently saved by a previous
call to predict() or select_action() will be used as the initial states. If False, the internal
states of all recurrent layers will be set to the initial values defined by the policy before
computing the predictions.

• save_states (bool) – if True, the internal states of all recurrent layers at the end of
the calculation will be saved, and any previously saved states will be discarded. If False,
the states at the end of the calculation will be discarded, and any previously saved states
will be kept.

Returns

Return type the array of action probabilities, and the estimated value function

select_action(state, deterministic=False, use_saved_states=True, save_states=True)
Select an action to perform based on the environment’s state.

If the policy involves recurrent layers, this method can preserve their internal states between calls. Use the
use_saved_states and save_states arguments to specify how it should behave.

Parameters

• state (array or list of arrays) – the state of the environment for which to
select an action

• deterministic (bool) – if True, always return the best action (that is, the one with
highest probability). If False, randomly select an action based on the computed probabili-
ties.

• use_saved_states (bool) – if True, the states most recently saved by a previous
call to predict() or select_action() will be used as the initial states. If False, the internal
states of all recurrent layers will be set to the initial values defined by the policy before
computing the predictions.

• save_states (bool) – if True, the internal states of all recurrent layers at the end of
the calculation will be saved, and any previously saved states will be discarded. If False,
the states at the end of the calculation will be discarded, and any previously saved states
will be kept.

Returns

Return type the index of the selected action

restore()
Reload the model parameters from the most recent checkpoint file.
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class A2CLossDiscrete(value_weight, entropy_weight, action_prob_index, value_index)
This class computes the loss function for A2C with discrete action spaces.

__init__(value_weight, entropy_weight, action_prob_index, value_index)
Initialize self. See help(type(self)) for accurate signature.

3.25.4 PPO

class PPO(env, policy, max_rollout_length=20, optimization_rollouts=8, optimization_epochs=4,
batch_size=64, clipping_width=0.2, discount_factor=0.99, advantage_lambda=0.98,
value_weight=1.0, entropy_weight=0.01, optimizer=None, model_dir=None,
use_hindsight=False)

Implements the Proximal Policy Optimization (PPO) algorithm for reinforcement learning.

The algorithm is described in Schulman et al, “Proximal Policy Optimization Algorithms” (https://
openai-public.s3-us-west-2.amazonaws.com/blog/2017-07/ppo/ppo-arxiv.pdf). This class requires the policy
to output two quantities: a vector giving the probability of taking each action, and an estimate of the value
function for the current state. It optimizes both outputs at once using a loss that is the sum of three terms:

1. The policy loss, which seeks to maximize the discounted reward for each action.

2. The value loss, which tries to make the value estimate match the actual discounted reward that was attained
at each step.

3. An entropy term to encourage exploration.

This class only supports environments with discrete action spaces, not continuous ones. The “action” argument
passed to the environment is an integer, giving the index of the action to perform.

This class supports Generalized Advantage Estimation as described in Schulman et al., “High-Dimensional
Continuous Control Using Generalized Advantage Estimation” (https://arxiv.org/abs/1506.02438). This is a
method of trading off bias and variance in the advantage estimate, which can sometimes improve the rate of
convergance. Use the advantage_lambda parameter to adjust the tradeoff.

This class supports Hindsight Experience Replay as described in Andrychowicz et al., “Hindsight Experience
Replay” (https://arxiv.org/abs/1707.01495). This is a method that can enormously accelerate learning when
rewards are very rare. It requires that the environment state contains information about the goal the agent is
trying to achieve. Each time it generates a rollout, it processes that rollout twice: once using the actual goal the
agent was pursuing while generating it, and again using the final state of that rollout as the goal. This guarantees
that half of all rollouts processed will be ones that achieved their goals, and hence received a reward.

To use this feature, specify use_hindsight=True to the constructor. The environment must have a method defined
as follows:

def apply_hindsight(self, states, actions, goal): . . . return new_states, rewards

The method receives the list of states generated during the rollout, the action taken for each one, and a new
goal state. It should generate a new list of states that are identical to the input ones, except specifying the new
goal. It should return that list of states, and the rewards that would have been received for taking the specified
actions from those states. The output arrays may be shorter than the input ones, if the modified rollout would
have terminated sooner.

__init__(env, policy, max_rollout_length=20, optimization_rollouts=8, optimization_epochs=4,
batch_size=64, clipping_width=0.2, discount_factor=0.99, advantage_lambda=0.98,
value_weight=1.0, entropy_weight=0.01, optimizer=None, model_dir=None,
use_hindsight=False)

Create an object for optimizing a policy.

Parameters
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• env (Environment) – the Environment to interact with

• policy (Policy) – the Policy to optimize. It must have outputs with the names ‘ac-
tion_prob’ and ‘value’, corresponding to the action probabilities and value estimate

• max_rollout_length (int) – the maximum length of rollouts to generate

• optimization_rollouts (int) – the number of rollouts to generate for each itera-
tion of optimization

• optimization_epochs (int) – the number of epochs of optimization to perform
within each iteration

• batch_size (int) – the batch size to use during optimization. If this is 0, each rollout
will be used as a separate batch.

• clipping_width (float) – in computing the PPO loss function, the probability ratio
is clipped to the range (1-clipping_width, 1+clipping_width)

• discount_factor (float) – the discount factor to use when computing rewards

• advantage_lambda (float) – the parameter for trading bias vs. variance in Gener-
alized Advantage Estimation

• value_weight (float) – a scale factor for the value loss term in the loss function

• entropy_weight (float) – a scale factor for the entropy term in the loss function

• optimizer (Optimizer) – the optimizer to use. If None, a default optimizer is used.

• model_dir (str) – the directory in which the model will be saved. If None, a temporary
directory will be created.

• use_hindsight (bool) – if True, use Hindsight Experience Replay

fit(total_steps, max_checkpoints_to_keep=5, checkpoint_interval=600, restore=False)
Train the policy.

Parameters

• total_steps (int) – the total number of time steps to perform on the environment,
across all rollouts on all threads

• max_checkpoints_to_keep (int) – the maximum number of checkpoint files to
keep. When this number is reached, older files are deleted.

• checkpoint_interval (float) – the time interval at which to save checkpoints,
measured in seconds

• restore (bool) – if True, restore the model from the most recent checkpoint and con-
tinue training from there. If False, retrain the model from scratch.

predict(state, use_saved_states=True, save_states=True)
Compute the policy’s output predictions for a state.

If the policy involves recurrent layers, this method can preserve their internal states between calls. Use the
use_saved_states and save_states arguments to specify how it should behave.

Parameters

• state (array or list of arrays) – the state of the environment for which to
generate predictions

• use_saved_states (bool) – if True, the states most recently saved by a previous
call to predict() or select_action() will be used as the initial states. If False, the internal
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states of all recurrent layers will be set to the initial values defined by the policy before
computing the predictions.

• save_states (bool) – if True, the internal states of all recurrent layers at the end of
the calculation will be saved, and any previously saved states will be discarded. If False,
the states at the end of the calculation will be discarded, and any previously saved states
will be kept.

Returns

Return type the array of action probabilities, and the estimated value function

select_action(state, deterministic=False, use_saved_states=True, save_states=True)
Select an action to perform based on the environment’s state.

If the policy involves recurrent layers, this method can preserve their internal states between calls. Use the
use_saved_states and save_states arguments to specify how it should behave.

Parameters

• state (array or list of arrays) – the state of the environment for which to
select an action

• deterministic (bool) – if True, always return the best action (that is, the one with
highest probability). If False, randomly select an action based on the computed probabili-
ties.

• use_saved_states (bool) – if True, the states most recently saved by a previous
call to predict() or select_action() will be used as the initial states. If False, the internal
states of all recurrent layers will be set to the initial values defined by the policy before
computing the predictions.

• save_states (bool) – if True, the internal states of all recurrent layers at the end of
the calculation will be saved, and any previously saved states will be discarded. If False,
the states at the end of the calculation will be discarded, and any previously saved states
will be kept.

Returns

Return type the index of the selected action

restore()
Reload the model parameters from the most recent checkpoint file.

class PPOLoss(value_weight, entropy_weight, clipping_width, action_prob_index, value_index)
This class computes the loss function for PPO.

__init__(value_weight, entropy_weight, clipping_width, action_prob_index, value_index)
Initialize self. See help(type(self)) for accurate signature.

3.26 Docking

Thanks to advances in biophysics, we are often able to find the structure of proteins from experimental techniques
like Cryo-EM or X-ray crystallography. These structures can be powerful aides in designing small molecules. The
technique of Molecular docking performs geometric calculations to find a “binding pose” with the small molecule
interacting with the protein in question in a suitable binding pocket (that is, a region on the protein which has a groove
in which the small molecule can rest). For more information about docking, check out the Autodock Vina paper:

Trott, Oleg, and Arthur J. Olson. “AutoDock Vina: improving the speed and accuracy of docking with a new scoring
function, efficient optimization, and multithreading.” Journal of computational chemistry 31.2 (2010): 455-461.
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3.26.1 Binding Pocket Discovery

DeepChem has some utilities to help find binding pockets on proteins automatically. For now, these utilities are simple,
but we will improve these in future versions of DeepChem.

class BindingPocketFinder
Abstract superclass for binding pocket detectors

Many times when working with a new protein or other macromolecule, it’s not clear what zones of the macro-
molecule may be good targets for potential ligands or other molecules to interact with. This abstract class
provides a template for child classes that algorithmically locate potential binding pockets that are good potential
interaction sites.

Note that potential interactions sites can be found by many different methods, and that this abstract class doesn’t
specify the technique to be used.

find_pockets(molecule: Any)
Finds potential binding pockets in proteins.

Parameters molecule (object) – Some representation of a molecule.

class ConvexHullPocketFinder(scoring_model: Optional[deepchem.models.models.Model] =
None, pad: float = 5.0)

Implementation that uses convex hull of protein to find pockets.

Based on https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4112621/pdf/1472-6807-14-18.pdf

__init__(scoring_model: Optional[deepchem.models.models.Model] = None, pad: float = 5.0)
Initialize the pocket finder.

Parameters

• scoring_model (Model, optional (default None)) – If specified, use this
model to prune pockets.

• pad (float, optional (default 5.0)) – The number of angstroms to pad
around a binding pocket’s atoms to get a binding pocket box.

find_all_pockets(protein_file: str)→ List[deepchem.utils.coordinate_box_utils.CoordinateBox]
Find list of binding pockets on protein.

Parameters protein_file (str) – Protein to load in.

Returns List of binding pockets on protein. Each pocket is a CoordinateBox

Return type List[CoordinateBox]

find_pockets(macromolecule_file: str)→ List[deepchem.utils.coordinate_box_utils.CoordinateBox]
Find list of suitable binding pockets on protein.

This function computes putative binding pockets on this protein. This class uses the ConvexHull to com-
pute binding pockets. Each face of the hull is converted into a coordinate box used for binding.

Parameters macromolecule_file (str) – Location of the macromolecule file to load

Returns List of pockets. Each pocket is a CoordinateBox

Return type List[CoordinateBox]
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3.26.2 Pose Generation

Pose generation is the task of finding a “pose”, that is a geometric configuration of a small molecule interacting with
a protein. Pose generation is a complex process, so for now DeepChem relies on external software to perform pose
generation. This software is invoked and installed under the hood.

class PoseGenerator
A Pose Generator computes low energy conformations for molecular complexes.

Many questions in structural biophysics reduce to that of computing the binding free energy of molecular com-
plexes. A key step towards computing the binding free energy of two complexes is to find low energy “poses”,
that is energetically favorable conformations of molecules with respect to each other. One application of this
technique is to find low energy poses for protein-ligand interactions.

generate_poses(molecular_complex: Tuple[str, str], centroid: Optional[numpy.ndarray] =
None, box_dims: Optional[numpy.ndarray] = None, exhaustiveness: int = 10,
num_modes: int = 9, num_pockets: Optional[int] = None, out_dir: Optional[str]
= None, generate_scores: bool = False)

Generates a list of low energy poses for molecular complex

Parameters

• molecular_complexes (Tuple[str, str]) – A representation of a molecular
complex. This tuple is (protein_file, ligand_file).

• centroid (np.ndarray, optional (default None)) – The centroid to dock
against. Is computed if not specified.

• box_dims (np.ndarray, optional (default None)) – A numpy array of
shape (3,) holding the size of the box to dock. If not specified is set to size of molec-
ular complex plus 5 angstroms.

• exhaustiveness (int, optional (default 10)) – Tells pose generator how
exhaustive it should be with pose generation.

• num_modes (int, optional (default 9)) – Tells pose generator how many
binding modes it should generate at each invocation.

• num_pockets (int, optional (default None)) – If specified,
self.pocket_finder must be set. Will only generate poses for the first num_pockets
returned by self.pocket_finder.

• out_dir (str, optional (default None)) – If specified, write generated
poses to this directory.

• generate_score (bool, optional (default False)) – If True, the pose
generator will return scores for complexes. This is used typically when invoking exter-
nal docking programs that compute scores.

Returns

Return type A list of molecular complexes in energetically favorable poses.

class VinaPoseGenerator(sixty_four_bits: bool = True, pocket_finder: Op-
tional[deepchem.dock.binding_pocket.BindingPocketFinder] = None)

Uses Autodock Vina to generate binding poses.

This class uses Autodock Vina to make make predictions of binding poses. It downloads the Autodock Vina ex-
ecutable for your system to your specified DEEPCHEM_DATA_DIR (remember this is an environment variable
you set) and invokes the executable to perform pose generation for you.
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Note: This class requires RDKit to be installed.

__init__(sixty_four_bits: bool = True, pocket_finder: Op-
tional[deepchem.dock.binding_pocket.BindingPocketFinder] = None)

Initializes Vina Pose Generator

Parameters

• sixty_four_bits (bool, optional (default True)) – Specifies whether
this is a 64-bit machine. Needed to download the correct executable.

• pocket_finder (BindingPocketFinder, optional (default None)) –
If specified should be an instance of dc.dock.BindingPocketFinder.

generate_poses(molecular_complex: Tuple[str, str], centroid: Optional[numpy.ndarray] =
None, box_dims: Optional[numpy.ndarray] = None, exhaustiveness: int = 10,
num_modes: int = 9, num_pockets: Optional[int] = None, out_dir: Optional[str] =
None, generate_scores: Optional[bool] = False)→ Union[Tuple[List[Tuple[Any,
Any]], List[float]], List[Tuple[Any, Any]]]

Generates the docked complex and outputs files for docked complex.

TODO: How can this work on Windows? We need to install a .msi file and invoke it correctly from Python
for this to work.

Parameters

• molecular_complexes (Tuple[str, str]) – A representation of a molecular
complex. This tuple is (protein_file, ligand_file). The protein should be a pdb file and the
ligand should be an sdf file.

• centroid (np.ndarray, optional) – The centroid to dock against. Is computed
if not specified.

• box_dims (np.ndarray, optional) – A numpy array of shape (3,) holding the
size of the box to dock. If not specified is set to size of molecular complex plus 5
angstroms.

• exhaustiveness (int, optional (default 10)) – Tells Autodock Vina how
exhaustive it should be with pose generation.

• num_modes (int, optional (default 9)) – Tells Autodock Vina how many
binding modes it should generate at each invocation.

• num_pockets (int, optional (default None)) – If specified,
self.pocket_finder must be set. Will only generate poses for the first num_pockets
returned by self.pocket_finder.

• out_dir (str, optional) – If specified, write generated poses to this directory.

• generate_score (bool, optional (default False)) – If True, the pose
generator will return scores for complexes. This is used typically when invoking exter-
nal docking programs that compute scores.

Returns Tuple of (docked_poses, scores) or docked_poses. docked_poses is a list of docked
molecular complexes. Each entry in this list contains a (protein_mol, ligand_mol) pair of
RDKit molecules. scores is a list of binding free energies predicted by Vina.

Return type Tuple[docked_poses, scores] or docked_poses

Raises ValueError –

3.26. Docking 341



deepchem, Release 2.5.0

class GninaPoseGenerator
Use GNINA to generate binding poses.

This class uses GNINA (a deep learning framework for molecular docking) to generate binding poses. It down-
loads the GNINA executable to DEEPCHEM_DATA_DIR (an environment variable you set) and invokes the
executable to perform pose generation.

GNINA uses pre-trained convolutional neural network (CNN) scoring functions to rank binding poses based on
learned representations of 3D protein-ligand interactions. It has been shown to outperform AutoDock Vina in
virtual screening applications [1]_.

If you use the GNINA molecular docking engine, please cite the relevant papers: https://github.com/gnina/
gnina#citation The primary citation for GNINA is [1]_.

References

“Protein–Ligand Scoring with Convolutional Neural Networks.” Journal of chemical information and modeling
(2017).

Note:

• GNINA currently only works on Linux operating systems.

• GNINA requires CUDA >= 10.1 for fast CNN scoring.

• Almost all dependencies are included in the most compatible way possible, which reduces performance.
Build GNINA from source for production use.

__init__()
Initialize GNINA pose generator.

generate_poses(molecular_complex: Tuple[str, str], centroid: Optional[numpy.ndarray] =
None, box_dims: Optional[numpy.ndarray] = None, exhaustiveness: int = 10,
num_modes: int = 9, num_pockets: Optional[int] = None, out_dir: Optional[str] =
None, generate_scores: bool = True, **kwargs) → Union[Tuple[List[Tuple[Any,
Any]], List[float]], List[Tuple[Any, Any]]]

Generates the docked complex and outputs files for docked complex.

Parameters

• molecular_complexes (Tuple[str, str]) – A representation of a molecular
complex. This tuple is (protein_file, ligand_file).

• centroid (np.ndarray, optional (default None)) – The centroid to dock
against. Is computed if not specified.

• box_dims (np.ndarray, optional (default None)) – A numpy array of
shape (3,) holding the size of the box to dock. If not specified is set to size of molec-
ular complex plus 4 angstroms.

• exhaustiveness (int (default 8)) – Tells GNINA how exhaustive it should be
with pose generation.

• num_modes (int (default 9)) – Tells GNINA how many binding modes it should
generate at each invocation.

• out_dir (str, optional) – If specified, write generated poses to this directory.
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• generate_scores (bool, optional (default True)) – If True, the pose
generator will return scores for complexes. This is used typically when invoking exter-
nal docking programs that compute scores.

• kwargs – Any args supported by GNINA as documented https://github.com/gnina/gnina#
usage

Returns Tuple of (docked_poses, scores) or docked_poses. docked_poses is a list of docked
molecular complexes. Each entry in this list contains a (protein_mol, ligand_mol) pair of
RDKit molecules. scores is an array of binding affinities (kcal/mol), CNN pose scores, and
CNN affinities predicted by GNINA.

Return type Tuple[docked_poses, scores] or docked_poses

3.26.3 Docking

The dc.dock.docking module provides a generic docking implementation that depends on provide pose genera-
tion and pose scoring utilities to perform docking. This implementation is generic.

class Docker(pose_generator: deepchem.dock.pose_generation.PoseGenerator, featurizer: Op-
tional[deepchem.feat.base_classes.ComplexFeaturizer] = None, scoring_model: Op-
tional[deepchem.models.models.Model] = None)

A generic molecular docking class

This class provides a docking engine which uses provided models for featurization, pose generation, and scoring.
Most pieces of docking software are command line tools that are invoked from the shell. The goal of this class
is to provide a python clean API for invoking molecular docking programmatically.

The implementation of this class is lightweight and generic. It’s expected that the majority of the heavy lifting
will be done by pose generation and scoring classes that are provided to this class.

__init__(pose_generator: deepchem.dock.pose_generation.PoseGenerator, featurizer: Op-
tional[deepchem.feat.base_classes.ComplexFeaturizer] = None, scoring_model: Op-
tional[deepchem.models.models.Model] = None)

Builds model.

Parameters

• pose_generator (PoseGenerator) – The pose generator to use for this model

• featurizer (ComplexFeaturizer, optional (default None)) – Featur-
izer associated with scoring_model

• scoring_model (Model, optional (default None)) – Should make predic-
tions on molecular complex.

dock(molecular_complex: Tuple[str, str], centroid: Optional[numpy.ndarray] = None, box_dims: Op-
tional[numpy.ndarray] = None, exhaustiveness: int = 10, num_modes: int = 9, num_pockets: Op-
tional[int] = None, out_dir: Optional[str] = None, use_pose_generator_scores: bool = False)→
Union[Generator[Tuple[Any, Any], None, None], Generator[Tuple[Tuple[Any, Any], float], None,
None]]

Generic docking function.

This docking function uses this object’s featurizer, pose generator, and scoring model to make docking
predictions. This function is written in generic style so

Parameters

• molecular_complex (Tuple[str, str]) – A representation of a molecular com-
plex. This tuple is (protein_file, ligand_file).
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• centroid (np.ndarray, optional (default None)) – The centroid to dock
against. Is computed if not specified.

• box_dims (np.ndarray, optional (default None)) – A numpy array of
shape (3,) holding the size of the box to dock. If not specified is set to size of molec-
ular complex plus 5 angstroms.

• exhaustiveness (int, optional (default 10)) – Tells pose generator how
exhaustive it should be with pose generation.

• num_modes (int, optional (default 9)) – Tells pose generator how many
binding modes it should generate at each invocation.

• num_pockets (int, optional (default None)) – If specified,
self.pocket_finder must be set. Will only generate poses for the first num_pockets
returned by self.pocket_finder.

• out_dir (str, optional (default None)) – If specified, write generated
poses to this directory.

• use_pose_generator_scores (bool, optional (default False)) – If
True, ask pose generator to generate scores. This cannot be True if self.featurizer and
self.scoring_model are set since those will be used to generate scores in that case.

Returns A generator. If use_pose_generator_scores==True or self.scoring_model is set, then
will yield tuples (posed_complex, score). Else will yield posed_complex.

Return type Generator[Tuple[posed_complex, score]] or Generator[posed_complex]

3.26.4 Pose Scoring

This module contains some utilities for computing docking scoring functions directly in Python. For now, support for
custom pose scoring is limited.

pairwise_distances(coords1: numpy.ndarray, coords2: numpy.ndarray)→ numpy.ndarray
Returns matrix of pairwise Euclidean distances.

Parameters

• coords1 (np.ndarray) – A numpy array of shape (N, 3)

• coords2 (np.ndarray) – A numpy array of shape (M, 3)

Returns A (N,M) array with pairwise distances.

Return type np.ndarray

cutoff_filter(d: numpy.ndarray, x: numpy.ndarray, cutoff=8.0)→ numpy.ndarray
Applies a cutoff filter on pairwise distances

Parameters

• d (np.ndarray) – Pairwise distances matrix. A numpy array of shape (N, M)

• x (np.ndarray) – Matrix of shape (N, M)

• cutoff (float, optional (default 8)) – Cutoff for selection in Angstroms

Returns A (N,M) array with values where distance is too large thresholded to 0.

Return type np.ndarray

vina_nonlinearity(c: numpy.ndarray, w: float, Nrot: int)→ numpy.ndarray
Computes non-linearity used in Vina.
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Parameters

• c (np.ndarray) – A numpy array of shape (N, M)

• w (float) – Weighting term

• Nrot (int) – Number of rotatable bonds in this molecule

Returns A (N, M) array with activations under a nonlinearity.

Return type np.ndarray

vina_repulsion(d: numpy.ndarray)→ numpy.ndarray
Computes Autodock Vina’s repulsion interaction term.

Parameters d (np.ndarray) – A numpy array of shape (N, M).

Returns A (N, M) array with repulsion terms.

Return type np.ndarray

vina_hydrophobic(d: numpy.ndarray)→ numpy.ndarray
Computes Autodock Vina’s hydrophobic interaction term.

Here, d is the set of surface distances as defined in [1]_

Parameters d (np.ndarray) – A numpy array of shape (N, M).

Returns A (N, M) array of hydrophoboic interactions in a piecewise linear curve.

Return type np.ndarray

References

vina_hbond(d: numpy.ndarray)→ numpy.ndarray
Computes Autodock Vina’s hydrogen bond interaction term.

Here, d is the set of surface distances as defined in [1]_

Parameters d (np.ndarray) – A numpy array of shape (N, M).

Returns A (N, M) array of hydrophoboic interactions in a piecewise linear curve.

Return type np.ndarray

References

vina_gaussian_first(d: numpy.ndarray)→ numpy.ndarray
Computes Autodock Vina’s first Gaussian interaction term.

Here, d is the set of surface distances as defined in [1]_

Parameters d (np.ndarray) – A numpy array of shape (N, M).

Returns A (N, M) array of gaussian interaction terms.

Return type np.ndarray
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References

vina_gaussian_second(d: numpy.ndarray)→ numpy.ndarray
Computes Autodock Vina’s second Gaussian interaction term.

Here, d is the set of surface distances as defined in [1]_

Parameters d (np.ndarray) – A numpy array of shape (N, M).

Returns A (N, M) array of gaussian interaction terms.

Return type np.ndarray

References

vina_energy_term(coords1: numpy.ndarray, coords2: numpy.ndarray, weights: numpy.ndarray, wrot:
float, Nrot: int)→ numpy.ndarray

Computes the Vina Energy function for two molecular conformations

Parameters

• coords1 (np.ndarray) – Molecular coordinates of shape (N, 3)

• coords2 (np.ndarray) – Molecular coordinates of shape (M, 3)

• weights (np.ndarray) – A numpy array of shape (5,). The 5 values are weights for
repulsion interaction term, hydrophobic interaction term, hydrogen bond interaction term,
first Gaussian interaction term and second Gaussian interaction term.

• wrot (float) – The scaling factor for nonlinearity

• Nrot (int) – Number of rotatable bonds in this calculation

Returns A scalar value with free energy

Return type np.ndarray

3.27 Utilities

DeepChem has a broad collection of utility functions. Many of these maybe be of independent interest to users since
they deal with some tricky aspects of processing scientific datatypes.

3.27.1 Data Utilities

Array Utilities

pad_array(x: numpy.ndarray, shape: Union[Tuple, int], fill: float = 0.0, both: bool = False) →
numpy.ndarray

Pad an array with a fill value.

Parameters

• x (np.ndarray) – A numpy array.

• shape (Tuple or int) – Desired shape. If int, all dimensions are padded to that size.

• fill (float, optional (default 0.0)) – The padded value.
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• both (bool, optional (default False)) – If True, split the padding on both
sides of each axis. If False, padding is applied to the end of each axis.

Returns A padded numpy array

Return type np.ndarray

Data Directory

The DeepChem data directory is where downloaded MoleculeNet datasets are stored.

get_data_dir()→ str
Get the DeepChem data directory.

Returns The default path to store DeepChem data. If you want to change this path, please set your
own path to DEEPCHEM_DATA_DIR as an environment variable.

Return type str

URL Handling

download_url(url: str, dest_dir: str = '/tmp', name: Optional[str] = None)
Download a file to disk.

Parameters

• url (str) – The URL to download from

• dest_dir (str) – The directory to save the file in

• name (str) – The file name to save it as. If omitted, it will try to extract a file name from
the URL

File Handling

untargz_file(file: str, dest_dir: str = '/tmp', name: Optional[str] = None)
Untar and unzip a .tar.gz file to disk.

Parameters

• file (str) – The filepath to decompress

• dest_dir (str) – The directory to save the file in

• name (str) – The file name to save it as. If omitted, it will use the file name

unzip_file(file: str, dest_dir: str = '/tmp', name: Optional[str] = None)
Unzip a .zip file to disk.

Parameters

• file (str) – The filepath to decompress

• dest_dir (str) – The directory to save the file in

• name (str) – The directory name to unzip it to. If omitted, it will use the file name

load_data(input_files: List[str], shard_size: Optional[int] = None)→ Iterator[Any]
Loads data from files.

Parameters
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• input_files (List[str]) – List of filenames.

• shard_size (int, default None) – Size of shard to yield

Returns Iterator which iterates over provided files.

Return type Iterator[Any]

Notes

The supported file types are SDF, CSV and Pickle.

load_sdf_files(input_files: List[str], clean_mols: bool = True, tasks: List[str] = [], shard_size: Op-
tional[int] = None)→ Iterator[pandas.core.frame.DataFrame]

Load SDF file into dataframe.

Parameters

• input_files (List[str]) – List of filenames

• clean_mols (bool, default True) – Whether to sanitize molecules.

• tasks (List[str], default []) – Each entry in tasks is treated as a property in the
SDF file and is retrieved with mol.GetProp(str(task)) where mol is the RDKit mol loaded
from a given SDF entry.

• shard_size (int, default None) – The shard size to yield at one time.

Returns Generator which yields the dataframe which is the same shard size.

Return type Iterator[pd.DataFrame]

Notes

This function requires RDKit to be installed.

load_csv_files(input_files: List[str], shard_size: Optional[int] = None) → Itera-
tor[pandas.core.frame.DataFrame]

Load data as pandas dataframe from CSV files.

Parameters

• input_files (List[str]) – List of filenames

• shard_size (int, default None) – The shard size to yield at one time.

Returns Generator which yields the dataframe which is the same shard size.

Return type Iterator[pd.DataFrame]

load_json_files(input_files: List[str], shard_size: Optional[int] = None) → Itera-
tor[pandas.core.frame.DataFrame]

Load data as pandas dataframe.

Parameters

• input_files (List[str]) – List of json filenames.

• shard_size (int, default None) – Chunksize for reading json files.

Returns Generator which yields the dataframe which is the same shard size.

Return type Iterator[pd.DataFrame]
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Notes

To load shards from a json file into a Pandas dataframe, the file must be originally saved with df.
to_json('filename.json', orient='records', lines=True)

load_pickle_files(input_files: List[str])→ Iterator[Any]
Load dataset from pickle files.

Parameters input_files (List[str]) – The list of filenames of pickle file. This function can
load from gzipped pickle file like XXXX.pkl.gz.

Returns Generator which yields the objects which is loaded from each pickle file.

Return type Iterator[Any]

load_from_disk(filename: str)→ Any
Load a dataset from file.

Parameters filename (str) – A filename you want to load data.

Returns A loaded object from file.

Return type Any

save_to_disk(dataset: Any, filename: str, compress: int = 3)
Save a dataset to file.

Parameters

• dataset (str) – A data saved

• filename (str) – Path to save data.

• compress (int, default 3) – The compress option when dumping joblib file.

load_dataset_from_disk(save_dir: str)→ Tuple[bool, Optional[Tuple[deepchem.data.datasets.DiskDataset,
deepchem.data.datasets.DiskDataset, deepchem.data.datasets.DiskDataset]],
List[transformers.Transformer]]

Loads MoleculeNet train/valid/test/transformers from disk.

Expects that data was saved using save_dataset_to_disk below. Expects the following directory structure for
save_dir: save_dir/

—> train_dir/ | —> valid_dir/ | —> test_dir/ | —> transformers.pkl

Parameters save_dir (str) – Directory name to load datasets.

Returns

• loaded (bool) – Whether the load succeeded

• all_dataset (Tuple[DiskDataset, DiskDataset, DiskDataset]) – The train, valid, test datasets

• transformers (Transformer) – The transformers used for this dataset

See also:

save_dataset_to_disk

save_dataset_to_disk(save_dir: str, train: deepchem.data.datasets.DiskDataset,
valid: deepchem.data.datasets.DiskDataset, test:
deepchem.data.datasets.DiskDataset, transformers:
List[transformers.Transformer])

Utility used by MoleculeNet to save train/valid/test datasets.
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This utility function saves a train/valid/test split of a dataset along with transformers in the same directory. The
saved datasets will take the following structure: save_dir/

—> train_dir/ | —> valid_dir/ | —> test_dir/ | —> transformers.pkl

Parameters

• save_dir (str) – Directory name to save datasets to.

• train (DiskDataset) – Training dataset to save.

• valid (DiskDataset) – Validation dataset to save.

• test (DiskDataset) – Test dataset to save.

• transformers (List[Transformer]) – List of transformers to save to disk.

See also:

load_dataset_from_disk

3.27.2 Molecular Utilities

class ConformerGenerator(max_conformers: int = 1, rmsd_threshold: float = 0.5, force_field: str =
'uff', pool_multiplier: int = 10)

Generate molecule conformers.

Notes

Procedure 1. Generate a pool of conformers. 2. Minimize conformers. 3. Prune conformers using an RMSD
threshold.

Note that pruning is done _after_ minimization, which differs from the protocol described in the references12.

References

Notes

This class requires RDKit to be installed.

__init__(max_conformers: int = 1, rmsd_threshold: float = 0.5, force_field: str = 'uff',
pool_multiplier: int = 10)

Parameters

• max_conformers (int, optional (default 1)) – Maximum number of con-
formers to generate (after pruning).

• rmsd_threshold (float, optional (default 0.5)) – RMSD threshold for
pruning conformers. If None or negative, no pruning is performed.

• force_field (str, optional (default 'uff')) – Force field to use for con-
former energy calculation and minimization. Options are ‘uff’, ‘mmff94’, and ‘mmff94s’.

1 http://rdkit.org/docs/GettingStartedInPython.html#working-with-3d-molecules
2 http://pubs.acs.org/doi/full/10.1021/ci2004658
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• pool_multiplier (int, optional (default 10)) – Factor to multiply by
max_conformers to generate the initial conformer pool. Since conformers are pruned after
energy minimization, increasing the size of the pool increases the chance of identifying
max_conformers unique conformers.

generate_conformers(mol: Any)→ Any
Generate conformers for a molecule.

This function returns a copy of the original molecule with embedded conformers.

Parameters mol (rdkit.Chem.rdchem.Mol) – RDKit Mol object

Returns mol – A new RDKit Mol object containing the chosen conformers, sorted by increasing
energy.

Return type rdkit.Chem.rdchem.Mol

embed_molecule(mol: Any)→ Any
Generate conformers, possibly with pruning.

Parameters mol (rdkit.Chem.rdchem.Mol) – RDKit Mol object

Returns mol – RDKit Mol object with embedded multiple conformers.

Return type rdkit.Chem.rdchem.Mol

get_molecule_force_field(mol: Any, conf_id: Optional[int] = None, **kwargs)→ Any
Get a force field for a molecule.

Parameters

• mol (rdkit.Chem.rdchem.Mol) – RDKit Mol object with embedded conformers.

• conf_id (int, optional) – ID of the conformer to associate with the force field.

• kwargs (dict, optional) – Keyword arguments for force field constructor.

Returns ff – RDKit force field instance for a molecule.

Return type rdkit.ForceField.rdForceField.ForceField

minimize_conformers(mol: Any)→ None
Minimize molecule conformers.

Parameters mol (rdkit.Chem.rdchem.Mol) – RDKit Mol object with embedded con-
formers.

get_conformer_energies(mol: Any)→ numpy.ndarray
Calculate conformer energies.

Parameters mol (rdkit.Chem.rdchem.Mol) – RDKit Mol object with embedded con-
formers.

Returns energies – Minimized conformer energies.

Return type np.ndarray

prune_conformers(mol: Any)→ Any
Prune conformers from a molecule using an RMSD threshold, starting with the lowest energy conformer.

Parameters mol (rdkit.Chem.rdchem.Mol) – RDKit Mol object

Returns new_mol – A new rdkit.Chem.rdchem.Mol containing the chosen conformers, sorted
by increasing energy.

Return type rdkit.Chem.rdchem.Mol
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static get_conformer_rmsd(mol: Any)→ numpy.ndarray
Calculate conformer-conformer RMSD.

Parameters mol (rdkit.Chem.rdchem.Mol) – RDKit Mol object

Returns rmsd – A conformer-conformer RMSD value. The shape is (NumConformers, Num-
Conformers)

Return type np.ndarray

class MoleculeLoadException(*args, **kwargs)

__init__(*args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

get_xyz_from_mol(mol)
Extracts a numpy array of coordinates from a molecules.

Returns a (N, 3) numpy array of 3d coords of given rdkit molecule

Parameters mol (rdkit Molecule) – Molecule to extract coordinates for

Returns

Return type Numpy ndarray of shape (N, 3) where N = mol.GetNumAtoms().

add_hydrogens_to_mol(mol, is_protein=False)
Add hydrogens to a molecule object

Parameters

• mol (Rdkit Mol) – Molecule to hydrogenate

• is_protein (bool, optional (default False)) – Whether this molecule is a
protein.

Returns

Return type Rdkit Mol

Note: This function requires RDKit and PDBFixer to be installed.

compute_charges(mol)
Attempt to compute Gasteiger Charges on Mol

This also has the side effect of calculating charges on mol. The mol passed into this function has to already have
been sanitized

Parameters mol (rdkit molecule) –

Returns

Return type No return since updates in place.

Note: This function requires RDKit to be installed.

load_molecule(molecule_file, add_hydrogens=True, calc_charges=True, sanitize=True,
is_protein=False)

Converts molecule file to (xyz-coords, obmol object)

Given molecule_file, returns a tuple of xyz coords of molecule and an rdkit object representing that molecule in
that order (xyz, rdkit_mol). This ordering convention is used in the code in a few places.
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Parameters

• molecule_file (str) – filename for molecule

• add_hydrogens (bool, optional (default True)) – If True, add hydrogens
via pdbfixer

• calc_charges (bool, optional (default True)) – If True, add charges via
rdkit

• sanitize (bool, optional (default False)) – If True, sanitize molecules via
rdkit

• is_protein (bool, optional (default False)) – If True`, this molecule is
loaded as a protein. This flag will affect some of the cleanup procedures applied.

Returns

• Tuple (xyz, mol) if file contains single molecule. Else returns a

• list of the tuples for the separate molecules in this list.

Note: This function requires RDKit to be installed.

write_molecule(mol, outfile, is_protein=False)
Write molecule to a file

This function writes a representation of the provided molecule to the specified outfile. Doesn’t return anything.

Parameters

• mol (rdkit Mol) – Molecule to write

• outfile (str) – Filename to write mol to

• is_protein (bool, optional) – Is this molecule a protein?

Note: This function requires RDKit to be installed.

Raises ValueError – if outfile isn’t of a supported format.:

3.27.3 Molecular Fragment Utilities

It’s often convenient to manipulate subsets of a molecule. The MolecularFragment class aids in such manipula-
tions.

class MolecularFragment(atoms: Sequence[Any], coords: numpy.ndarray)
A class that represents a fragment of a molecule.

It’s often convenient to represent a fragment of a molecule. For example, if two molecules form a molecular
complex, it may be useful to create two fragments which represent the subsets of each molecule that’s close to
the other molecule (in the contact region).

Ideally, we’d be able to do this in RDKit direct, but manipulating molecular fragments doesn’t seem to be
supported functionality.
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Examples

>>> import numpy as np
>>> from rdkit import Chem
>>> mol = Chem.MolFromSmiles("C")
>>> coords = np.array([[0.0, 0.0, 0.0]])
>>> atom = mol.GetAtoms()[0]
>>> fragment = MolecularFragment([atom], coords)

__init__(atoms: Sequence[Any], coords: numpy.ndarray)
Initialize this object.

Parameters

• atoms (Iterable[rdkit.Chem.rdchem.Atom]) – Each entry in this list should
be a RDKit Atom.

• coords (np.ndarray) – Array of locations for atoms of shape (N, 3) where N ==
len(atoms).

GetAtoms()→ List[deepchem.utils.fragment_utils.AtomShim]
Returns the list of atoms

Returns list of atoms in this fragment.

Return type List[AtomShim]

GetNumAtoms()→ int
Returns the number of atoms

Returns Number of atoms in this fragment.

Return type int

GetCoords()→ numpy.ndarray
Returns 3D coordinates for this fragment as numpy array.

Returns A numpy array of shape (N, 3) with coordinates for this fragment. Here, N is the
number of atoms.

Return type np.ndarray

class AtomShim(atomic_num: int, partial_charge: float, atom_coords: numpy.ndarray)
This is a shim object wrapping an atom.

We use this class instead of raw RDKit atoms since manipulating a large number of rdkit Atoms seems to result
in segfaults. Wrapping the basic information in an AtomShim seems to avoid issues.

__init__(atomic_num: int, partial_charge: float, atom_coords: numpy.ndarray)
Initialize this object

Parameters

• atomic_num (int) – Atomic number for this atom.

• partial_charge (float) – The partial Gasteiger charge for this atom

• atom_coords (np.ndarray) – Of shape (3,) with the coordinates of this atom

GetAtomicNum()→ int
Returns atomic number for this atom.

Returns Atomic number for this atom.

Return type int
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GetPartialCharge()→ float
Returns partial charge for this atom.

Returns A partial Gasteiger charge for this atom.

Return type float

GetCoords()→ numpy.ndarray
Returns 3D coordinates for this atom as numpy array.

Returns Numpy array of shape (3,) with coordinates for this atom.

Return type np.ndarray

strip_hydrogens(coords: numpy.ndarray, mol: Union[Any, deepchem.utils.fragment_utils.MolecularFragment])
→ Tuple[numpy.ndarray, deepchem.utils.fragment_utils.MolecularFragment]

Strip the hydrogens from input molecule

Parameters

• coords (np.ndarray) – The coords must be of shape (N, 3) and correspond to coordi-
nates of mol.

• mol (rdkit.Chem.rdchem.Mol or MolecularFragment) – The molecule to
strip

Returns A tuple of (coords, mol_frag) where coords is a numpy array of coordinates with hydrogen
coordinates. mol_frag is a MolecularFragment.

Return type Tuple[np.ndarray, MolecularFragment]

Notes

This function requires RDKit to be installed.

merge_molecular_fragments(molecules: List[deepchem.utils.fragment_utils.MolecularFragment])
→ Optional[deepchem.utils.fragment_utils.MolecularFragment]

Helper method to merge two molecular fragments.

Parameters molecules (List[MolecularFragment]) – List of MolecularFragment ob-
jects.

Returns Returns a merged MolecularFragment

Return type Optional[MolecularFragment]

get_contact_atom_indices(fragments: List[Tuple[numpy.ndarray, Any]], cutoff: float = 4.5) →
List[List[int]]

Compute that atoms close to contact region.

Molecular complexes can get very large. This can make it unwieldy to compute functions on them. To improve
memory usage, it can be very useful to trim out atoms that aren’t close to contact regions. This function computes
pairwise distances between all pairs of molecules in the molecular complex. If an atom is within cutoff distance
of any atom on another molecule in the complex, it is regarded as a contact atom. Otherwise it is trimmed.

Parameters

• fragments (List[Tuple[np.ndarray, rdkit.Chem.rdchem.Mol]]) – As
returned by rdkit_utils.load_complex, a list of tuples of (coords, mol) where coords is a
(N_atoms, 3) array and mol is the rdkit molecule object.

• cutoff (float, optional (default 4.5)) – The cutoff distance in angstroms.
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Returns A list of length len(molecular_complex). Each entry in this list is a list of atom indices
from that molecule which should be kept, in sorted order.

Return type List[List[int]]

reduce_molecular_complex_to_contacts(fragments: List[Tuple[numpy.ndarray, Any]], cut-
off: float = 4.5) → List[Tuple[numpy.ndarray,
deepchem.utils.fragment_utils.MolecularFragment]]

Reduce a molecular complex to only those atoms near a contact.

Molecular complexes can get very large. This can make it unwieldy to compute functions on them. To improve
memory usage, it can be very useful to trim out atoms that aren’t close to contact regions. This function takes
in a molecular complex and returns a new molecular complex representation that contains only contact atoms.
The contact atoms are computed by calling get_contact_atom_indices under the hood.

Parameters

• fragments (List[Tuple[np.ndarray, rdkit.Chem.rdchem.Mol]]) – As
returned by rdkit_utils.load_complex, a list of tuples of (coords, mol) where coords is a
(N_atoms, 3) array and mol is the rdkit molecule object.

• cutoff (float) – The cutoff distance in angstroms.

Returns A list of length len(molecular_complex). Each entry in this list is a tuple of (coords, Molec-
ularFragment). The coords is stripped down to (N_contact_atoms, 3) where N_contact_atoms
is the number of contact atoms for this complex. MolecularFragment is used since it’s tricky to
make a RDKit sub-molecule.

Return type List[Tuple[np.ndarray, MolecularFragment]]

3.27.4 Coordinate Box Utilities

class CoordinateBox(x_range: Tuple[float, float], y_range: Tuple[float, float], z_range: Tuple[float,
float])

A coordinate box that represents a block in space.

Molecular complexes are typically represented with atoms as coordinate points. Each complex is naturally
associated with a number of different box regions. For example, the bounding box is a box that contains all
atoms in the molecular complex. A binding pocket box is a box that focuses in on a binding region of a protein
to a ligand. A interface box is the region in which two proteins have a bulk interaction.

The CoordinateBox class is designed to represent such regions of space. It consists of the coordinates of the
box, and the collection of atoms that live in this box alongside their coordinates.

__init__(x_range: Tuple[float, float], y_range: Tuple[float, float], z_range: Tuple[float, float])
Initialize this box.

Parameters

• x_range (Tuple[float, float]) – A tuple of (x_min, x_max) with max and min
x-coordinates.

• y_range (Tuple[float, float]) – A tuple of (y_min, y_max) with max and min
y-coordinates.

• z_range (Tuple[float, float]) – A tuple of (z_min, z_max) with max and min
z-coordinates.

Raises ValueError –

__contains__(point: Sequence[float])→ bool
Check whether a point is in this box.
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Parameters point (Sequence[float]) – 3-tuple or list of length 3 or np.ndarray of shape
(3,). The (x, y, z) coordinates of a point in space.

Returns True if other is contained in this box.

Return type bool

center()→ Tuple[float, float, float]
Computes the center of this box.

Returns (x, y, z) the coordinates of the center of the box.

Return type Tuple[float, float, float]

Examples

>>> box = CoordinateBox((0, 1), (0, 1), (0, 1))
>>> box.center()
(0.5, 0.5, 0.5)

volume()→ float
Computes and returns the volume of this box.

Returns The volume of this box. Can be 0 if box is empty

Return type float

Examples

>>> box = CoordinateBox((0, 1), (0, 1), (0, 1))
>>> box.volume()
1

contains(other: deepchem.utils.coordinate_box_utils.CoordinateBox)→ bool
Test whether this box contains another.

This method checks whether other is contained in this box.

Parameters other (CoordinateBox) – The box to check is contained in this box.

Returns True if other is contained in this box.

Return type bool

Raises ValueError –

intersect_interval(interval1: Tuple[float, float], interval2: Tuple[float, float])→ Tuple[float, float]
Computes the intersection of two intervals.

Parameters

• interval1 (Tuple[float, float]) – Should be (x1_min, x1_max)

• interval2 (Tuple[float, float]) – Should be (x2_min, x2_max)

Returns x_intersect – Should be the intersection. If the intersection is empty returns (0, 0) to
represent the empty set. Otherwise is (max(x1_min, x2_min), min(x1_max, x2_max)).

Return type Tuple[float, float]
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union(box1: deepchem.utils.coordinate_box_utils.CoordinateBox, box2:
deepchem.utils.coordinate_box_utils.CoordinateBox)→ deepchem.utils.coordinate_box_utils.CoordinateBox

Merges provided boxes to find the smallest union box.

This method merges the two provided boxes.

Parameters

• box1 (CoordinateBox) – First box to merge in

• box2 (CoordinateBox) – Second box to merge into this box

Returns Smallest CoordinateBox that contains both box1 and box2

Return type CoordinateBox

merge_overlapping_boxes(boxes: List[deepchem.utils.coordinate_box_utils.CoordinateBox], thresh-
old: float = 0.8)→ List[deepchem.utils.coordinate_box_utils.CoordinateBox]

Merge boxes which have an overlap greater than threshold.

Parameters

• boxes (list[CoordinateBox]) – A list of CoordinateBox objects.

• threshold (float, default 0.8) – The volume fraction of the boxes that must
overlap for them to be merged together.

Returns List[CoordinateBox] of merged boxes. This list will have length less than or equal to the
length of boxes.

Return type List[CoordinateBox]

get_face_boxes(coords: numpy.ndarray, pad: float = 5.0) →
List[deepchem.utils.coordinate_box_utils.CoordinateBox]

For each face of the convex hull, compute a coordinate box around it.

The convex hull of a macromolecule will have a series of triangular faces. For each such triangular face, we
construct a bounding box around this triangle. Think of this box as attempting to capture some binding inter-
action region whose exterior is controlled by the box. Note that this box will likely be a crude approximation,
but the advantage of this technique is that it only uses simple geometry to provide some basic biological insight
into the molecule at hand.

The pad parameter is used to control the amount of padding around the face to be used for the coordinate box.

Parameters

• coords (np.ndarray) – A numpy array of shape (N, 3). The coordinates of a molecule.

• pad (float, optional (default 5.0)) – The number of angstroms to pad.

Returns boxes – List of CoordinateBox

Return type List[CoordinateBox]
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Examples

>>> coords = np.array([[0, 0, 0], [1, 0, 0], [0, 1, 0], [0, 0, 1]])
>>> boxes = get_face_boxes(coords, pad=5)

3.27.5 Evaluation Utils

class Evaluator(model, dataset: deepchem.data.datasets.Dataset, transformers:
List[transformers.Transformer])

Class that evaluates a model on a given dataset.

The evaluator class is used to evaluate a dc.models.Model class on a given dc.data.Dataset object. The evalu-
ator is aware of dc.trans.Transformer objects so will automatically undo any transformations which have been
applied.

Examples

Evaluators allow for a model to be evaluated directly on a Metric for sklearn. Let’s do a bit of setup constructing
our dataset and model.

>>> import deepchem as dc
>>> import numpy as np
>>> X = np.random.rand(10, 5)
>>> y = np.random.rand(10, 1)
>>> dataset = dc.data.NumpyDataset(X, y)
>>> model = dc.models.MultitaskRegressor(1, 5)
>>> transformers = []

Then you can evaluate this model as follows >>> import sklearn >>> evaluator = Evalua-
tor(model, dataset, transformers) >>> multitask_scores = evaluator.compute_model_performance( . . .
sklearn.metrics.mean_absolute_error)

Evaluators can also be used with dc.metrics.Metric objects as well in case you want to customize your metric
further.

>>> evaluator = Evaluator(model, dataset, transformers)
>>> metric = dc.metrics.Metric(dc.metrics.mae_score)
>>> multitask_scores = evaluator.compute_model_performance(metric)

__init__(model, dataset: deepchem.data.datasets.Dataset, transformers:
List[transformers.Transformer])

Initialize this evaluator

Parameters

• model (Model) – Model to evaluate. Note that this must be a regression or classification
model and not a generative model.

• dataset (Dataset) – Dataset object to evaluate model on.

• transformers (List[Transformer]) – List of dc.trans.Transformer objects.
These transformations must have been applied to dataset previously. The dataset will
be untransformed for metric evaluation.

output_statistics(scores: Dict[str, float], stats_out: str)
Write computed stats to file.
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Parameters

• scores (dict) – Dictionary mapping names of metrics to scores.

• stats_out (str) – Name of file to write scores to.

output_predictions(y_preds: numpy.ndarray, csv_out: str)
Writes predictions to file.

Writes predictions made on self.dataset to a specified file on disk. self.dataset.ids are used to format
predictions.

Parameters

• y_preds (np.ndarray) – Predictions to output

• csv_out (str) – Name of file to write predictions to.

compute_model_performance(metrics: Union[deepchem.metrics.metric.Metric, Callable[[. . . ],
Any], List[deepchem.metrics.metric.Metric], List[Callable[[. . . ],
Any]]], csv_out: Optional[str] = None, stats_out: Optional[str]
= None, per_task_metrics: bool = False, use_sample_weights:
bool = False, n_classes: int = 2) → Union[Dict[str, float], Tu-
ple[Dict[str, float], Dict[str, float]]]

Computes statistics of model on test data and saves results to csv.

Parameters

• metrics (dc.metrics.Metric/list[dc.metrics.Metric]/function) –
The set of metrics provided. This class attempts to do some intelligent handling of input. If
a single dc.metrics.Metric object is provided or a list is provided, it will evaluate self.model
on these metrics. If a function is provided, it is assumed to be a metric function that this
method will attempt to wrap in a dc.metrics.Metric object. A metric function must accept
two arguments, y_true, y_pred both of which are np.ndarray objects and return a floating
point score. The metric function may also accept a keyword argument sample_weight to
account for per-sample weights.

• csv_out (str, optional (DEPRECATED)) – Filename to write CSV of model
predictions.

• stats_out (str, optional (DEPRECATED)) – Filename to write computed
statistics.

• per_task_metrics (bool, optional) – If true, return computed metric for each
task on multitask dataset.

• use_sample_weights (bool, optional (default False)) – If set, use
per-sample weights w.

• n_classes (int, optional (default None)) – If specified, will use
n_classes as the number of unique classes in self.dataset. Note that this argument will
be ignored for regression metrics.

Returns

• multitask_scores (dict) – Dictionary mapping names of metrics to metric scores.

• all_task_scores (dict, optional) – If per_task_metrics == True, then returns a second
dictionary of scores for each task separately.

class GeneratorEvaluator(model, generator: Iterable[Tuple[Any, Any, Any]], transformers:
List[transformers.Transformer], labels: Optional[List] = None, weights:
Optional[List] = None)

Evaluate models on a stream of data.
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This class is a partner class to Evaluator. Instead of operating over datasets this class operates over a generator
which yields batches of data to feed into provided model.

Examples

>>> import deepchem as dc
>>> import numpy as np
>>> X = np.random.rand(10, 5)
>>> y = np.random.rand(10, 1)
>>> dataset = dc.data.NumpyDataset(X, y)
>>> model = dc.models.MultitaskRegressor(1, 5)
>>> generator = model.default_generator(dataset, pad_batches=False)
>>> transformers = []

Then you can evaluate this model as follows

>>> import sklearn
>>> evaluator = GeneratorEvaluator(model, generator, transformers)
>>> multitask_scores = evaluator.compute_model_performance(
... sklearn.metrics.mean_absolute_error)

Evaluators can also be used with dc.metrics.Metric objects as well in case you want to customize your metric
further. (Note that a given generator can only be used once so we have to redefine the generator here.)

>>> generator = model.default_generator(dataset, pad_batches=False)
>>> evaluator = GeneratorEvaluator(model, generator, transformers)
>>> metric = dc.metrics.Metric(dc.metrics.mae_score)
>>> multitask_scores = evaluator.compute_model_performance(metric)

__init__(model, generator: Iterable[Tuple[Any, Any, Any]], transformers:
List[transformers.Transformer], labels: Optional[List] = None, weights: Optional[List] =
None)

Parameters

• model (Model) – Model to evaluate.

• generator (generator) – Generator which yields batches to feed into the model. For
a KerasModel, it should be a tuple of the form (inputs, labels, weights). The “correct” way
to create this generator is to use model.default_generator as shown in the example above.

• transformers (List[Transformer]) – Tranformers to “undo” when applied to
the models outputs

• labels (list of Layer) – layers which are keys in the generator to compare to
outputs

• weights (list of Layer) – layers which are keys in the generator for weight ma-
trices

compute_model_performance(metrics: Union[deepchem.metrics.metric.Metric, Callable[[. . . ],
Any], List[deepchem.metrics.metric.Metric], List[Callable[[. . . ],
Any]]], per_task_metrics: bool = False, use_sample_weights:
bool = False, n_classes: int = 2) → Union[Dict[str, float], Tu-
ple[Dict[str, float], Dict[str, float]]]

Computes statistics of model on test data and saves results to csv.

Parameters
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• metrics (dc.metrics.Metric/list[dc.metrics.Metric]/function) –
The set of metrics provided. This class attempts to do some intelligent handling of input. If
a single dc.metrics.Metric object is provided or a list is provided, it will evaluate self.model
on these metrics. If a function is provided, it is assumed to be a metric function that this
method will attempt to wrap in a dc.metrics.Metric object. A metric function must accept
two arguments, y_true, y_pred both of which are np.ndarray objects and return a floating
point score.

• per_task_metrics (bool, optional) – If true, return computed metric for each
task on multitask dataset.

• use_sample_weights (bool, optional (default False)) – If set, use
per-sample weights w.

• n_classes (int, optional (default None)) – If specified, will assume that
all metrics are classification metrics and will use n_classes as the number of unique classes
in self.dataset.

Returns

• multitask_scores (dict) – Dictionary mapping names of metrics to metric scores.

• all_task_scores (dict, optional) – If per_task_metrics == True, then returns a second
dictionary of scores for each task separately.

relative_difference(x: numpy.ndarray, y: numpy.ndarray)→ numpy.ndarray
Compute the relative difference between x and y

The two argument arrays must have the same shape.

Parameters

• x (np.ndarray) – First input array

• y (np.ndarray) – Second input array

Returns z – We will have z == np.abs(x-y) / np.abs(max(x, y)).

Return type np.ndarray

3.27.6 Genomic Utilities

seq_one_hot_encode(sequences: Union[numpy.ndarray, Iterator[Iterable[str]]], letters: str =
'ATCGN')→ numpy.ndarray

One hot encodes list of genomic sequences.

Sequences encoded have shape (N_sequences, N_letters, sequence_length, 1). These sequences will be pro-
cessed as images with one color channel.

Parameters

• sequences (np.ndarray or Iterator[Bio.SeqRecord]) – Iterable object of
genetic sequences

• letters (str, optional (default "ATCGN")) – String with the set of possible
letters in the sequences.

Raises ValueError: – If sequences are of different lengths.

Returns A numpy array of shape (N_sequences, N_letters, sequence_length, 1).

Return type np.ndarray
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encode_bio_sequence(fname: str, file_type: str = 'fasta', letters: str = 'ATCGN')→ numpy.ndarray
Loads a sequence file and returns an array of one-hot sequences.

Parameters

• fname (str) – Filename of fasta file.

• file_type (str, optional (default "fasta")) – The type of file encoding
to process, e.g. fasta or fastq, this is passed to Biopython.SeqIO.parse.

• letters (str, optional (default "ATCGN")) – The set of letters that the se-
quences consist of, e.g. ATCG.

Returns A numpy array of shape (N_sequences, N_letters, sequence_length, 1).

Return type np.ndarray

Notes

This function requires BioPython to be installed.

3.27.7 Geometry Utilities

unit_vector(vector: numpy.ndarray)→ numpy.ndarray
Returns the unit vector of the vector.

Parameters vector (np.ndarray) – A numpy array of shape (3,), where 3 is (x,y,z).

Returns A numpy array of shape (3,). The unit vector of the input vector.

Return type np.ndarray

angle_between(vector_i: numpy.ndarray, vector_j: numpy.ndarray)→ float
Returns the angle in radians between vectors “vector_i” and “vector_j”

Note that this function always returns the smaller of the two angles between the vectors (value between 0 and
pi).

Parameters

• vector_i (np.ndarray) – A numpy array of shape (3,), where 3 is (x,y,z).

• vector_j (np.ndarray) – A numpy array of shape (3,), where 3 is (x,y,z).

Returns The angle in radians between the two vectors.

Return type np.ndarray

Examples

>>> print("%0.06f" % angle_between((1, 0, 0), (0, 1, 0)))
1.570796
>>> print("%0.06f" % angle_between((1, 0, 0), (1, 0, 0)))
0.000000
>>> print("%0.06f" % angle_between((1, 0, 0), (-1, 0, 0)))
3.141593

generate_random_unit_vector()→ numpy.ndarray
Generate a random unit vector on the sphere S^2.

Citation: http://mathworld.wolfram.com/SpherePointPicking.html
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Pseudocode:

a. Choose random theta element [0, 2*pi]

b. Choose random z element [-1, 1]

c. Compute output vector u: (x,y,z) = (sqrt(1-z^2)*cos(theta), sqrt(1-z^2)*sin(theta),z)

Returns u – A numpy array of shape (3,). u is an unit vector

Return type np.ndarray

generate_random_rotation_matrix()→ numpy.ndarray
Generates a random rotation matrix.

1. Generate a random unit vector u, randomly sampled from the unit sphere (see function gener-
ate_random_unit_vector() for details)

2. Generate a second random unit vector v

a. If absolute value of u dot v > 0.99, repeat. (This is important for numerical stability. Intuition: we want
them to be as linearly independent as possible or else the orthogonalized version of v will be much shorter
in magnitude compared to u. I assume in Stack they took this from Gram-Schmidt orthogonalization?)

b. v” = v - (u dot v)*u, i.e. subtract out the component of v that’s in u’s direction

c. normalize v” (this isn”t in Stack but I assume it must be done)

3. find w = u cross v”

4. u, v”, and w will form the columns of a rotation matrix, R. The intuition is that u, v” and w are, respectively,
what the standard basis vectors e1, e2, and e3 will be mapped to under the transformation.

Returns R – A numpy array of shape (3, 3). R is a rotation matrix.

Return type np.ndarray

is_angle_within_cutoff(vector_i: numpy.ndarray, vector_j: numpy.ndarray, angle_cutoff: float) →
bool

A utility function to compute whether two vectors are within a cutoff from 180 degrees apart.

Parameters

• vector_i (np.ndarray) – A numpy array of shape (3,)`, where 3 is (x,y,z).

• vector_j (np.ndarray) – A numpy array of shape (3,), where 3 is (x,y,z).

• cutoff (float) – The deviation from 180 (in degrees)

Returns Whether two vectors are within a cutoff from 180 degrees apart

Return type bool
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3.27.8 Hash Function Utilities

hash_ecfp(ecfp: str, size: int = 1024)→ int
Returns an int < size representing given ECFP fragment.

Input must be a string. This utility function is used for various ECFP based fingerprints.

Parameters

• ecfp (str) – String to hash. Usually an ECFP fragment.

• size (int, optional (default 1024)) – Hash to an int in range [0, size)

Returns ecfp_hash – An int < size representing given ECFP fragment

Return type int

hash_ecfp_pair(ecfp_pair: Tuple[str, str], size: int = 1024)→ int
Returns an int < size representing that ECFP pair.

Input must be a tuple of strings. This utility is primarily used for spatial contact featurizers. For example, if a
protein and ligand have close contact region, the first string could be the protein’s fragment and the second the
ligand’s fragment. The pair could be hashed together to achieve one hash value for this contact region.

Parameters

• ecfp_pair (Tuple[str, str]) – Pair of ECFP fragment strings

• size (int, optional (default 1024)) – Hash to an int in range [0, size)

Returns ecfp_hash – An int < size representing given ECFP pair.

Return type int

vectorize(hash_function: Callable[[Any, int], int], feature_dict: Optional[Dict[int, str]] = None, size: int
= 1024, feature_list: Optional[List] = None)→ numpy.ndarray

Helper function to vectorize a spatial description from a hash.

Hash functions are used to perform spatial featurizations in DeepChem. However, it’s necessary to convert
backwards from the hash function to feature vectors. This function aids in this conversion procedure. It creates
a vector of zeros of length size. It then loops through feature_dict, uses hash_function to hash the stored value
to an integer in range [0, size) and bumps that index.

Parameters

• hash_function (Function, Callable[[str, int], int]) – Should accept
two arguments, feature, and size and return a hashed integer. Here feature is the item to
hash, and size is an int. For example, if size=1024, then hashed values must fall in range [0,
1024).

• feature_dict (Dict, optional (default None)) – Maps unique keys to fea-
tures computed.

• size (int (default 1024)) – Length of generated bit vector

• feature_list (List, optional (default None)) – List of features.

Returns feature_vector – A numpy array of shape (size,)

Return type np.ndarray
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3.27.9 Voxel Utils

convert_atom_to_voxel(coordinates: numpy.ndarray, atom_index: int, box_width: float, voxel_width:
float)→ numpy.ndarray

Converts atom coordinates to an i,j,k grid index.

This function offsets molecular atom coordinates by (box_width/2, box_width/2, box_width/2) and then divides
by voxel_width to compute the voxel indices.

Parameters

• coordinates (np.ndarray) – Array with coordinates of all atoms in the molecule,
shape (N, 3).

• atom_index (int) – Index of an atom in the molecule.

• box_width (float) – Size of the box in Angstroms.

• voxel_width (float) – Size of a voxel in Angstroms

Returns indices – A 1D numpy array of length 3 with [i, j, k], the voxel coordinates of specified
atom.

Return type np.ndarray

convert_atom_pair_to_voxel(coordinates_tuple: Tuple[numpy.ndarray, numpy.ndarray],
atom_index_pair: Tuple[int, int], box_width: float, voxel_width:
float)→ numpy.ndarray

Converts a pair of atoms to i,j,k grid indexes.

Parameters

• coordinates_tuple (Tuple[np.ndarray, np.ndarray]) – A tuple contain-
ing two molecular coordinate arrays of shapes (N, 3) and (M, 3).

• atom_index_pair (Tuple[int, int]) – A tuple of indices for the atoms in the two
molecules.

• box_width (float) – Size of the box in Angstroms.

• voxel_width (float) – Size of a voxel in Angstroms

Returns indices_list – A numpy array of shape (2, 3), where 3 is [i, j, k] of the voxel coordinates of
specified atom.

Return type np.ndarray

voxelize(get_voxels: Callable[[. . . ], Any], coordinates: numpy.ndarray, box_width: float = 16.0,
voxel_width: float = 1.0, hash_function: Optional[Callable[[. . . ], Any]] = None, feature_dict:
Optional[Dict[Any, Any]] = None, feature_list: Optional[List[Union[int, Tuple[int]]]] = None,
nb_channel: int = 16, dtype: str = 'int')→ numpy.ndarray

Helper function to voxelize inputs.

This helper function helps convert a hash function which specifies spatial features of a molecular complex into
a voxel tensor. This utility is used by various featurizers that generate voxel grids.

Parameters

• get_voxels (Function) – Function that voxelizes inputs

• coordinates (np.ndarray) – Contains the 3D coordinates of a molecular system.

• box_width (float, optional (default 16.0)) – Size of a box in which voxel
features are calculated. Box is centered on a ligand centroid.
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• voxel_width (float, optional (default 1.0)) – Size of a 3D voxel in a grid
in Angstroms.

• hash_function (Function) – Used to map feature choices to voxel channels.

• feature_dict (Dict, optional (default None)) – Keys are atom indices or
tuples of atom indices, the values are computed features. If hash_function is not None, then
the values are hashed using the hash function into [0, nb_channels) and this channel at the
voxel for the given key is incremented by 1 for each dictionary entry. If hash_function is
None, then the value must be a vector of size (n_channels,) which is added to the existing
channel values at that voxel grid.

• feature_list (List, optional (default None)) – List of atom indices or
tuples of atom indices. This can only be used if nb_channel==1. Increments the voxels
corresponding to these indices by 1 for each entry.

• nb_channel (int, , optional (default 16)) – The number of feature chan-
nels computed per voxel. Should be a power of 2.

• dtype (str ('int' or 'float'), optional (default 'int')) – The
type of the numpy ndarray created to hold features.

Returns feature_tensor – The voxel of the input with the shape (voxels_per_edge, vox-
els_per_edge, voxels_per_edge, nb_channel).

Return type np.ndarray

3.27.10 Graph Convolution Utilities

one_hot_encode(val: Union[int, str], allowable_set: Union[List[str], List[int]], include_unknown_set:
bool = False)→ List[float]

One hot encoder for elements of a provided set.

Examples

>>> one_hot_encode("a", ["a", "b", "c"])
[1.0, 0.0, 0.0]
>>> one_hot_encode(2, [0, 1, 2])
[0.0, 0.0, 1.0]
>>> one_hot_encode(3, [0, 1, 2])
[0.0, 0.0, 0.0]
>>> one_hot_encode(3, [0, 1, 2], True)
[0.0, 0.0, 0.0, 1.0]

Parameters

• val (int or str) – The value must be present in allowable_set.

• allowable_set (List[int] or List[str]) – List of allowable quantities.

• include_unknown_set (bool, default False) – If true, the index of all values
not in allowable_set is len(allowable_set).

Returns An one-hot vector of val. If include_unknown_set is False, the length is len(allowable_set).
If include_unknown_set is True, the length is len(allowable_set) + 1.

Return type List[float]

Raises ValueError – If include_unknown_set is False and val is not in allowable_set.
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get_atom_type_one_hot(atom: Any, allowable_set: List[str] = ['C', 'N', 'O', 'F', 'P', 'S', 'Cl', 'Br', 'I'],
include_unknown_set: bool = True)→ List[float]

Get an one-hot feature of an atom type.

Parameters

• atom (rdkit.Chem.rdchem.Atom) – RDKit atom object

• allowable_set (List[str]) – The atom types to consider. The default set is [“C”,
“N”, “O”, “F”, “P”, “S”, “Cl”, “Br”, “I”].

• include_unknown_set (bool, default True) – If true, the index of all atom not
in allowable_set is len(allowable_set).

Returns An one-hot vector of atom types. If include_unknown_set is False, the length is
len(allowable_set). If include_unknown_set is True, the length is len(allowable_set) + 1.

Return type List[float]

construct_hydrogen_bonding_info(mol: Any)→ List[Tuple[int, str]]
Construct hydrogen bonding infos about a molecule.

Parameters mol (rdkit.Chem.rdchem.Mol) – RDKit mol object

Returns A list of tuple (atom_index, hydrogen_bonding_type). The hydrogen_bonding_type value
is “Acceptor” or “Donor”.

Return type List[Tuple[int, str]]

get_atom_hydrogen_bonding_one_hot(atom: Any, hydrogen_bonding: List[Tuple[int, str]]) →
List[float]

Get an one-hot feat about whether an atom accepts electrons or donates electrons.

Parameters

• atom (rdkit.Chem.rdchem.Atom) – RDKit atom object

• hydrogen_bonding (List[Tuple[int, str]]) – The return value of con-
struct_hydrogen_bonding_info. The value is a list of tuple (atom_index, hydrogen_bonding)
like (1, “Acceptor”).

Returns A one-hot vector of the ring size type. The first element indicates “Donor”, and the second
element indicates “Acceptor”.

Return type List[float]

get_atom_is_in_aromatic_one_hot(atom: Any)→ List[float]
Get ans one-hot feature about whether an atom is in aromatic system or not.

Parameters atom (rdkit.Chem.rdchem.Atom) – RDKit atom object

Returns A vector of whether an atom is in aromatic system or not.

Return type List[float]

get_atom_hybridization_one_hot(atom: Any, allowable_set: List[str] = ['SP', 'SP2', 'SP3'], in-
clude_unknown_set: bool = False)→ List[float]

Get an one-hot feature of hybridization type.

Parameters

• atom (rdkit.Chem.rdchem.Atom) – RDKit atom object

• allowable_set (List[str]) – The hybridization types to consider. The default set is
[“SP”, “SP2”, “SP3”]
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• include_unknown_set (bool, default False) – If true, the index of all types
not in allowable_set is len(allowable_set).

Returns An one-hot vector of the hybridization type. If include_unknown_set is False, the length is
len(allowable_set). If include_unknown_set is True, the length is len(allowable_set) + 1.

Return type List[float]

get_atom_total_num_Hs_one_hot(atom: Any, allowable_set: List[int] = [0, 1, 2, 3, 4], in-
clude_unknown_set: bool = True)→ List[float]

Get an one-hot feature of the number of hydrogens which an atom has.

Parameters

• atom (rdkit.Chem.rdchem.Atom) – RDKit atom object

• allowable_set (List[int]) – The number of hydrogens to consider. The default set
is [0, 1, . . . , 4]

• include_unknown_set (bool, default True) – If true, the index of all types
not in allowable_set is len(allowable_set).

Returns A one-hot vector of the number of hydrogens which an atom has. If include_unknown_set
is False, the length is len(allowable_set). If include_unknown_set is True, the length is
len(allowable_set) + 1.

Return type List[float]

get_atom_chirality_one_hot(atom: Any)→ List[float]
Get an one-hot feature about an atom chirality type.

Parameters atom (rdkit.Chem.rdchem.Atom) – RDKit atom object

Returns A one-hot vector of the chirality type. The first element indicates “R”, and the second
element indicates “S”.

Return type List[float]

get_atom_formal_charge(atom: Any)→ List[float]
Get a formal charge of an atom.

Parameters atom (rdkit.Chem.rdchem.Atom) – RDKit atom object

Returns A vector of the formal charge.

Return type List[float]

get_atom_partial_charge(atom: Any)→ List[float]
Get a partial charge of an atom.

Parameters atom (rdkit.Chem.rdchem.Atom) – RDKit atom object

Returns A vector of the parital charge.

Return type List[float]
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Notes

Before using this function, you must calculate GasteigerCharge like AllChem.ComputeGasteigerCharges(mol).

get_atom_total_degree_one_hot(atom: Any, allowable_set: List[int] = [0, 1, 2, 3, 4, 5], in-
clude_unknown_set: bool = True)→ List[float]

Get an one-hot feature of the degree which an atom has.

Parameters

• atom (rdkit.Chem.rdchem.Atom) – RDKit atom object

• allowable_set (List[int]) – The degree to consider. The default set is [0, 1, . . . , 5]

• include_unknown_set (bool, default True) – If true, the index of all types
not in allowable_set is len(allowable_set).

Returns A one-hot vector of the degree which an atom has. If include_unknown_set is False, the
length is len(allowable_set). If include_unknown_set is True, the length is len(allowable_set) +
1.

Return type List[float]

get_bond_type_one_hot(bond: Any, allowable_set: List[str] = ['SINGLE', 'DOUBLE', 'TRIPLE', 'ARO-
MATIC'], include_unknown_set: bool = False)→ List[float]

Get an one-hot feature of bond type.

Parameters

• bond (rdkit.Chem.rdchem.Bond) – RDKit bond object

• allowable_set (List[str]) – The bond types to consider. The default set is [“SIN-
GLE”, “DOUBLE”, “TRIPLE”, “AROMATIC”].

• include_unknown_set (bool, default False) – If true, the index of all types
not in allowable_set is len(allowable_set).

Returns A one-hot vector of the bond type. If include_unknown_set is False, the length is
len(allowable_set). If include_unknown_set is True, the length is len(allowable_set) + 1.

Return type List[float]

get_bond_is_in_same_ring_one_hot(bond: Any)→ List[float]
Get an one-hot feature about whether atoms of a bond is in the same ring or not.

Parameters bond (rdkit.Chem.rdchem.Bond) – RDKit bond object

Returns A one-hot vector of whether a bond is in the same ring or not.

Return type List[float]

get_bond_is_conjugated_one_hot(bond: Any)→ List[float]
Get an one-hot feature about whether a bond is conjugated or not.

Parameters bond (rdkit.Chem.rdchem.Bond) – RDKit bond object

Returns A one-hot vector of whether a bond is conjugated or not.

Return type List[float]

get_bond_stereo_one_hot(bond: Any, allowable_set: List[str] = ['STEREONONE', 'STEREOANY',
'STEREOZ', 'STEREOE'], include_unknown_set: bool = True) →
List[float]

Get an one-hot feature of the stereo configuration of a bond.

Parameters

370 Chapter 3. About Us



deepchem, Release 2.5.0

• bond (rdkit.Chem.rdchem.Bond) – RDKit bond object

• allowable_set (List[str]) – The stereo configuration types to consider. The default
set is [“STEREONONE”, “STEREOANY”, “STEREOZ”, “STEREOE”].

• include_unknown_set (bool, default True) – If true, the index of all types
not in allowable_set is len(allowable_set).

Returns A one-hot vector of the stereo configuration of a bond. If include_unknown_set is False, the
length is len(allowable_set). If include_unknown_set is True, the length is len(allowable_set) +
1.

Return type List[float]

get_bond_graph_distance_one_hot(bond: Any, graph_dist_matrix: numpy.ndarray, allowable_set:
List[int] = [1, 2, 3, 4, 5, 6, 7], include_unknown_set: bool =
True)→ List[float]

Get an one-hot feature of graph distance.

Parameters

• bond (rdkit.Chem.rdchem.Bond) – RDKit bond object

• graph_dist_matrix (np.ndarray) – The return value of
Chem.GetDistanceMatrix(mol). The shape is (num_atoms, num_atoms).

• allowable_set (List[int]) – The graph distance types to consider. The default set
is [1, 2, . . . , 7].

• include_unknown_set (bool, default False) – If true, the index of all types
not in allowable_set is len(allowable_set).

Returns A one-hot vector of the graph distance. If include_unknown_set is False, the length is
len(allowable_set). If include_unknown_set is True, the length is len(allowable_set) + 1.

Return type List[float]

3.27.11 Debug Utilities

3.27.12 Docking Utilities

These utilities assist in file preparation and processing for molecular docking.

write_vina_conf(protein_filename: str, ligand_filename: str, centroid: numpy.ndarray, box_dims:
numpy.ndarray, conf_filename: str, num_modes: int = 9, exhaustiveness: Optional[int]
= None)→ None

Writes Vina configuration file to disk.

Autodock Vina accepts a configuration file which provides options under which Vina is invoked. This utility
function writes a vina configuration file which directs Autodock vina to perform docking under the provided
options.

Parameters

• protein_filename (str) – Filename for protein

• ligand_filename (str) – Filename for the ligand

• centroid (np.ndarray) – A numpy array with shape (3,) holding centroid of system

• box_dims (np.ndarray) – A numpy array of shape (3,) holding the size of the box to
dock
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• conf_filename (str) – Filename to write Autodock Vina configuration to.

• num_modes (int, optional (default 9)) – The number of binding modes
Autodock Vina should find

• exhaustiveness (int, optional) – The exhaustiveness of the search to be per-
formed by Vina

write_gnina_conf(protein_filename: str, ligand_filename: str, conf_filename: str, num_modes: int = 9,
exhaustiveness: Optional[int] = None, **kwargs)→ None

Writes GNINA configuration file to disk.

GNINA accepts a configuration file which provides options under which GNINA is invoked. This utility function
writes a configuration file which directs GNINA to perform docking under the provided options.

Parameters

• protein_filename (str) – Filename for protein

• ligand_filename (str) – Filename for the ligand

• conf_filename (str) – Filename to write Autodock Vina configuration to.

• num_modes (int, optional (default 9)) – The number of binding modes GN-
INA should find

• exhaustiveness (int, optional) – The exhaustiveness of the search to be per-
formed by GNINA

• kwargs – Args supported by GNINA documented here https://github.com/gnina/gnina#
usage

load_docked_ligands(pdbqt_output: str)→ Tuple[List[Any], List[float]]
This function loads ligands docked by autodock vina.

Autodock vina writes outputs to disk in a PDBQT file format. This PDBQT file can contain multiple docked
“poses”. Recall that a pose is an energetically favorable 3D conformation of a molecule. This utility function
reads and loads the structures for multiple poses from vina’s output file.

Parameters pdbqt_output (str) – Should be the filename of a file generated by autodock vina’s
docking software.

Returns Tuple of molecules, scores. molecules is a list of rdkit molecules with 3D information.
scores is the associated vina score.

Return type Tuple[List[rdkit.Chem.rdchem.Mol], List[float]]

Notes

This function requires RDKit to be installed.

prepare_inputs(protein: str, ligand: str, replace_nonstandard_residues: bool = True, re-
move_heterogens: bool = True, remove_water: bool = True, add_hydrogens: bool =
True, pH: float = 7.0, optimize_ligand: bool = True, pdb_name: Optional[str] = None)
→ Tuple[Any, Any]

This prepares protein-ligand complexes for docking.

Autodock Vina requires PDB files for proteins and ligands with sensible inputs. This function uses PDBFixer
and RDKit to ensure that inputs are reasonable and ready for docking. Default values are given for convenience,
but fixing PDB files is complicated and human judgement is required to produce protein structures suitable for
docking. Always inspect the results carefully before trying to perform docking.

Parameters
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• protein (str) – Filename for protein PDB file or a PDBID.

• ligand (str) – Either a filename for a ligand PDB file or a SMILES string.

• replace_nonstandard_residues (bool (default True)) – Replace non-
standard residues with standard residues.

• remove_heterogens (bool (default True)) – Removes residues that are not
standard amino acids or nucleotides.

• remove_water (bool (default True)) – Remove water molecules.

• add_hydrogens (bool (default True)) – Add missing hydrogens at the protona-
tion state given by pH.

• pH (float (default 7.0)) – Most common form of each residue at given pH value
is used.

• optimize_ligand (bool (default True)) – If True, optimize ligand with RD-
Kit. Required for SMILES inputs.

• pdb_name (Optional[str]) – If given, write sanitized protein and ligand to files called
“pdb_name.pdb” and “ligand_pdb_name.pdb”

Returns Tuple of protein_molecule, ligand_molecule with 3D information.

Return type Tuple[RDKitMol, RDKitMol]

Note: This function requires RDKit and OpenMM to be installed. Read more about PDBFixer here: https:
//github.com/openmm/pdbfixer.

Examples

>>> p, m = prepare_inputs('3cyx', 'CCC')
>>> p.GetNumAtoms()
1415
>>> m.GetNumAtoms()
11

>>> p, m = prepare_inputs('3cyx', 'CCC', remove_heterogens=False)
>>> p.GetNumAtoms()
1720

read_gnina_log(log_file: str)→ numpy.array
Read GNINA logfile and get docking scores.

GNINA writes computed binding affinities to a logfile.

Parameters log_file (str) – Filename of logfile generated by GNINA.

Returns scores – Array of binding affinity (kcal/mol), CNN pose score, and CNN affinity for each
binding mode.

Return type np.array, dimension (num_modes, 3)
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Print Threshold

The printing threshold controls how many dataset elements are printed when dc.data.Dataset objects are con-
verted to strings or represnted in the IPython repl.

get_print_threshold()→ int
Return the printing threshold for datasets.

The print threshold is the number of elements from ids/tasks to print when printing representations of Dataset
objects.

Returns threshold – Number of elements that will be printed

Return type int

set_print_threshold(threshold: int)
Set print threshold

The print threshold is the number of elements from ids/tasks to print when printing representations of Dataset
objects.

Parameters threshold (int) – Number of elements to print.

get_max_print_size()→ int
Return the max print size for a dataset.

If a dataset is large, printing self.ids as part of a string representation can be very slow. This field controls the
maximum size for a dataset before ids are no longer printed.

Returns max_print_size – Maximum length of a dataset for ids to be printed in string representa-
tion.

Return type int

set_max_print_size(max_print_size: int)
Set max_print_size

If a dataset is large, printing self.ids as part of a string representation can be very slow. This field controls the
maximum size for a dataset before ids are no longer printed.

Parameters max_print_size (int) – Maximum length of a dataset for ids to be printed in
string representation.
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CoulombMatrix (class in deepchem.feat), 108
CoulombMatrixEig (class in deepchem.feat), 109
create_dataset() (CSVLoader method), 45
create_dataset() (DataLoader method), 61
create_dataset() (DiskDataset static method), 32
create_dataset() (FASTALoader method), 50
create_dataset() (ImageLoader method), 47
create_dataset() (InMemoryLoader method), 52
create_dataset() (JsonLoader method), 49
create_dataset() (SDFLoader method), 50
create_dataset() (UserCSVLoader method), 46
create_discriminator() (GAN method), 236
create_discriminator_loss() (GAN method),

236
create_discriminator_loss() (WGAN

method), 238
create_generator() (GAN method), 236
create_generator_loss() (GAN method), 236
create_generator_loss() (WGAN method), 238
create_model() (Policy method), 333
create_nll() (NormalizingFlowModel method), 247
CSVLoader (class in deepchem.data), 44
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cutoff_filter() (in module
deepchem.dock.pose_scoring), 344

D
DAGGather (class in deepchem.models.layers), 295
DAGLayer (class in deepchem.models.layers), 294
DAGModel (class in deepchem.models), 228
DAGTransformer (class in deepchem.trans), 189
data_dir (DiskDataset attribute), 31
DataLoader (class in deepchem.data), 60
Dataset (class in deepchem.data), 56
default_generator() (AtomicConvModel

method), 243
default_generator() (ChemCeption method), 246
default_generator() (CNN method), 240
default_generator() (DAGModel method), 229
default_generator() (DTNNModel method), 228
default_generator() (GraphConvModel method),

230
default_generator() (KerasModel method), 211
default_generator() (MPNNModel method), 231
default_generator() (MultitaskClassifier

method), 217
default_generator() (MultitaskFitTransformRe-

gressor method), 215
default_generator() (MultitaskRegressor

method), 214
default_generator() (RobustMultitaskClassifier

method), 219
default_generator() (RobustMultitaskRegressor

method), 220
default_generator() (ScScoreModel method),

232
default_generator() (Smiles2Vec method), 244
default_generator() (TextCNNModel method),

241
default_generator() (TorchModel method), 253
default_generator() (WeaveModel method), 227
defeaturize() (MolGanFeaturizer method), 97
descriptors (MordredDescriptors attribute), 107
descriptors (RDKitDescriptors attribute), 106
DiskDataset (class in deepchem.data), 30
distance_cutoff() (ANIFeat method), 284
distance_cutoff() (ANITransformer method), 191
distance_matrix() (ANIFeat method), 284
distance_matrix() (ANITransformer method), 191
distance_matrix() (AtomicConvolution method),

282
distance_tensor() (AtomicConvolution method),

281
dock() (Docker method), 343
Docker (class in deepchem.dock.docking), 343
download_url() (in module

deepchem.utils.data_utils), 347

DTNNEmbedding (class in deepchem.models.layers),
292

DTNNGather (class in deepchem.models.layers), 293
DTNNModel (class in deepchem.models), 227
DTNNStep (class in deepchem.models.layers), 292
DuplicateBalancingTransformer (class in

deepchem.trans), 178

E
edge_features (GraphData attribute), 54
edge_index (GraphData attribute), 54
EdgeNetwork (class in deepchem.models.layers), 296
ElementPropertyFingerprint (class in

deepchem.feat), 117
ElemNetFeaturizer (class in deepchem.feat), 118
embed_molecule() (ConformerGenerator method),

351
encode_bio_sequence() (in module

deepchem.utils.genomics_utils), 362
Environment (class in deepchem.rl), 331
evaluate() (Model method), 197
evaluate_generator() (KerasModel method), 210
evaluate_generator() (TorchModel method), 253
Evaluator (class in deepchem.utils.evaluate), 359
expand() (CoulombFitTransformer method), 185
ExponentialDecay (class in

deepchem.models.optimizers), 203

F
f1_score() (in module deepchem.metrics), 312
FASTALoader (class in deepchem.data), 50
features_to_id() (in module

deepchem.feat.graph_features), 101
FeaturizationTransformer (class in

deepchem.trans), 182
featurize() (AtomicConvFeaturizer method), 117
featurize() (AtomicCoordinates method), 111
featurize() (BindingPocketFeaturizer method), 127
featurize() (BPSymmetryFunctionInput method),

111
featurize() (CGCNNFeaturizer method), 121
featurize() (CircularFingerprint method), 105
featurize() (ComplexFeaturizer method), 130
featurize() (ConvMolFeaturizer method), 95
featurize() (CoulombMatrix method), 109
featurize() (CoulombMatrixEig method), 110
featurize() (DataLoader method), 61
featurize() (ElementPropertyFingerprint method),

118
featurize() (Featurizer method), 128
featurize() (LCNNFeaturizer method), 123
featurize() (MaterialCompositionFeaturizer

method), 129
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featurize() (MaterialStructureFeaturizer method),
130

featurize() (Mol2VecFingerprint method), 106
featurize() (MolecularFeaturizer method), 129
featurize() (MolGanFeaturizer method), 97
featurize() (MolGraphConvFeaturizer method), 99
featurize() (MordredDescriptors method), 107
featurize() (OneHotFeaturizer method), 114
featurize() (RawFeaturizer method), 114
featurize() (RDKitDescriptors method), 106
featurize() (RdkitGridFeaturizer method), 116
featurize() (SineCoulombMatrix method), 120
featurize() (SmilesToImage method), 113
featurize() (SmilesToSeq method), 112
featurize() (UserDefinedFeaturizer method), 128
featurize() (WeaveFeaturizer method), 96
Featurizer (class in deepchem.feat), 128
find_all_pockets() (ConvexHullPocketFinder

method), 339
find_distance() (in module

deepchem.feat.graph_features), 102
find_pockets() (BindingPocketFinder method), 339
find_pockets() (ConvexHullPocketFinder method),

339
FingerprintSplitter (class in deepchem.splits),

158
fit() (A2C method), 334
fit() (GBDTModel method), 199
fit() (KerasModel method), 206
fit() (MAML method), 330
fit() (Model method), 196
fit() (PPO method), 337
fit() (ProgressiveMultitaskRegressor method), 223
fit() (SklearnModel method), 198
fit() (TorchModel method), 249
fit_gan() (GAN method), 237
fit_generator() (KerasModel method), 207
fit_generator() (TorchModel method), 250
fit_on_batch() (KerasModel method), 207
fit_on_batch() (Model method), 196
fit_on_batch() (TorchModel method), 250
fit_sequences() (SeqToSeq method), 234
fit_task() (ProgressiveMultitaskRegressor method),

223
fit_with_eval() (GBDTModel method), 199
from_dataframe() (Dataset static method), 59
from_dataframe() (DiskDataset static method), 39
from_dataframe() (ImageDataset static method),

42
from_dataframe() (NumpyDataset static method),

28
from_DiskDataset() (NumpyDataset static

method), 28
from_json() (NumpyDataset static method), 28

from_numpy() (DiskDataset static method), 35
from_one_hot() (in module deepchem.metrics), 299

G
GAN (class in deepchem.models), 235
GatedRecurrentUnit (class in

deepchem.models.layers), 296
GATModel (class in deepchem.models), 256
gaussian_distance_matrix() (AtomicConvolu-

tion method), 281
gaussian_first() (VinaFreeEnergy method), 278
gaussian_histogram() (WeaveGather method),

291
gaussian_second() (VinaFreeEnergy method), 278
GaussianProcessHyperparamOpt (class in

deepchem.hyper), 326
GBDTModel (class in deepchem.models), 199
GCNModel (class in deepchem.models), 258
generate_conformers() (ConformerGenerator

method), 351
generate_poses() (GninaPoseGenerator method),

342
generate_poses() (PoseGenerator method), 340
generate_poses() (VinaPoseGenerator method),

341
generate_random_rotation_matrix() (in

module deepchem.utils.geometry_utils), 364
generate_random_unit_vector() (in module

deepchem.utils.geometry_utils), 363
generate_scaffolds() (ScaffoldSplitter method),

148
GeneratorEvaluator (class in

deepchem.utils.evaluate), 360
get_adjacency_list() (ConvMol method), 53
get_atom_chirality_one_hot() (in module

deepchem.utils.molecule_feature_utils), 369
get_atom_features() (ConvMol method), 53
get_atom_features() (MultiConvMol method), 54
get_atom_features() (WeaveMol method), 54
get_atom_formal_charge() (in module

deepchem.utils.molecule_feature_utils), 369
get_atom_hybridization_one_hot() (in mod-

ule deepchem.utils.molecule_feature_utils),
368

get_atom_hydrogen_bonding_one_hot() (in
module deepchem.utils.molecule_feature_utils),
368

get_atom_is_in_aromatic_one_hot() (in
module deepchem.utils.molecule_feature_utils),
368

get_atom_partial_charge() (in module
deepchem.utils.molecule_feature_utils), 369

get_atom_total_degree_one_hot() (in mod-
ule deepchem.utils.molecule_feature_utils),
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370
get_atom_total_num_Hs_one_hot() (in mod-

ule deepchem.utils.molecule_feature_utils),
369

get_atom_type_one_hot() (in module
deepchem.utils.molecule_feature_utils), 368

get_atoms_in_nbrs() (NeighborList method), 279
get_atoms_with_deg() (ConvMol method), 53
get_batch() (MetaLearner method), 329
get_bond_graph_distance_one_hot() (in

module deepchem.utils.molecule_feature_utils),
371

get_bond_is_conjugated_one_hot() (in mod-
ule deepchem.utils.molecule_feature_utils),
370

get_bond_is_in_same_ring_one_hot() (in
module deepchem.utils.molecule_feature_utils),
370

get_bond_stereo_one_hot() (in module
deepchem.utils.molecule_feature_utils), 370

get_bond_type_one_hot() (in module
deepchem.utils.molecule_feature_utils), 370

get_cells() (NeighborList method), 280
get_cells_for_atoms() (NeighborList method),

279
get_checkpoints() (KerasModel method), 211
get_checkpoints() (TorchModel method), 254
get_closest_atoms() (NeighborList method), 279
get_conditional_input_shapes() (GAN

method), 236
get_config() (AlphaShareLayer method), 282
get_config() (ANIFeat method), 284
get_config() (AtomicConvolution method), 280
get_config() (AttnLSTMEmbedding method), 273
get_config() (BetaShare method), 283
get_config() (CombineMeanStd method), 276
get_config() (DAGGather method), 295
get_config() (DAGLayer method), 294
get_config() (DTNNEmbedding method), 292
get_config() (DTNNGather method), 293
get_config() (DTNNStep method), 293
get_config() (EdgeNetwork method), 296
get_config() (GatedRecurrentUnit method), 297
get_config() (GraphCNN method), 286
get_config() (GraphConv method), 265
get_config() (GraphEmbedPoolLayer method), 284
get_config() (GraphGather method), 267
get_config() (GraphPool method), 266
get_config() (Highway method), 286
get_config() (InteratomicL2Distances method), 264
get_config() (IterRefLSTMEmbedding method), 274
get_config() (LSTMStep method), 272
get_config() (MessagePassing method), 295

get_config() (MolGANAggregationLayer method),
270

get_config() (MolGANConvolutionLayer method),
268

get_config() (MolGANEncoderLayer method), 272
get_config() (MolGANMultiConvolutionLayer

method), 271
get_config() (NeighborList method), 278
get_config() (SetGather method), 297
get_config() (SluiceLoss method), 283
get_config() (Stack method), 277
get_config() (SwitchedDropout method), 275
get_config() (VinaFreeEnergy method), 277
get_config() (WeaveGather method), 291
get_config() (WeaveLayer method), 289
get_config() (WeightedLinearCombo method), 275
get_conformer_energies() (ConformerGenera-

tor method), 351
get_conformer_rmsd() (ConformerGenerator

static method), 351
get_contact_atom_indices() (in module

deepchem.utils.fragment_utils), 355
get_data_dir() (in module

deepchem.utils.data_utils), 347
get_data_input_shapes() (GAN method), 235
get_data_shape() (DiskDataset method), 33
get_deg_adjacency_lists() (ConvMol method),

53
get_deg_adjacency_lists() (MultiConvMol

method), 54
get_deg_slice() (ConvMol method), 53
get_face_boxes() (in module

deepchem.utils.coordinate_box_utils), 358
get_feature_list() (in module

deepchem.feat.graph_features), 101
get_global_step() (KerasModel method), 212
get_global_step() (TorchModel method), 254
get_interatomic_distances() (CoulombMa-

trix static method), 109
get_interatomic_distances() (CoulombMa-

trixEig static method), 110
get_intervals() (in module

deepchem.feat.graph_features), 100
get_label_means() (DiskDataset method), 39
get_label_stds() (DiskDataset method), 39
get_max_print_size() (in module

deepchem.utils.debug_utils), 374
get_model_filename() (Model static method), 196
get_molecule_force_field() (ConformerGen-

erator method), 351
get_motif_scores() (in module

deepchem.metrics.genomic_metrics), 321
get_neighbor_cells() (NeighborList method),

279
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get_noise_batch() (GAN method), 236
get_noise_input_shape() (GAN method), 235
get_null_mol() (ConvMol static method), 53
get_num_atoms() (MultiConvMol method), 54
get_num_atoms() (WeaveMol method), 54
get_num_atoms_with_deg() (ConvMol method),

53
get_num_features() (WeaveMol method), 54
get_num_molecules() (MultiConvMol method), 54
get_num_tasks() (Model method), 197
get_number_shards() (DiskDataset method), 33
get_pair_edges() (WeaveMol method), 54
get_pair_features() (WeaveMol method), 54
get_params_filename() (Model static method),

196
get_print_threshold() (in module

deepchem.utils.debug_utils), 374
get_pssm_scores() (in module

deepchem.metrics.genomic_metrics), 321
get_shape() (Dataset method), 56
get_shape() (DiskDataset method), 38
get_shape() (ImageDataset method), 41
get_shape() (NumpyDataset method), 26
get_shard() (DiskDataset method), 37
get_shard_ids() (DiskDataset method), 37
get_shard_size() (DiskDataset method), 33
get_shard_w() (DiskDataset method), 37
get_shard_y() (DiskDataset method), 37
get_statistics() (Dataset method), 58
get_statistics() (DiskDataset method), 39
get_statistics() (ImageDataset method), 43
get_statistics() (NumpyDataset method), 29
get_task_names() (Dataset method), 56
get_task_names() (DiskDataset method), 33
get_task_names() (ImageDataset method), 41
get_task_names() (NumpyDataset method), 26
get_task_type() (Model method), 197
get_vector() (ElemNetFeaturizer method), 119
get_xyz_from_mol() (in module

deepchem.utils.rdkit_utils), 352
GetAtomicNum() (AtomShim method), 354
GetAtoms() (MolecularFragment method), 354
GetCoords() (AtomShim method), 355
GetCoords() (MolecularFragment method), 354
GetNumAtoms() (MolecularFragment method), 354
GetPartialCharge() (AtomShim method), 354
GninaPoseGenerator (class in

deepchem.dock.pose_generation), 341
GradientDescent (class in

deepchem.models.optimizers), 203
GraphCNN (class in deepchem.models.layers), 285
GraphConv (class in deepchem.models.layers), 264
GraphConvConstants (class in

deepchem.feat.graph_features), 99

GraphConvModel (class in deepchem.models), 229
GraphData (class in deepchem.feat.graph_data), 54
GraphEmbedPoolLayer (class in

deepchem.models.layers), 284
GraphGather (class in deepchem.models.layers), 266
GraphPool (class in deepchem.models.layers), 265
GridHyperparamOpt (class in deepchem.hyper), 325
GymEnvironment (class in deepchem.rl), 332

H
handle_classification_mode() (in module

deepchem.metrics), 301
hash_ecfp() (in module deepchem.utils.hash_utils),

365
hash_ecfp_pair() (in module

deepchem.utils.hash_utils), 365
Highway (class in deepchem.models.layers), 286
HingeLoss (class in deepchem.models.losses), 200
hydrogen_bond() (VinaFreeEnergy method), 278
hydrophobic() (VinaFreeEnergy method), 278
hyperparam_search() (GaussianProcessHyper-

paramOpt method), 327
hyperparam_search() (GridHyperparamOpt

method), 326
hyperparam_search() (HyperparamOpt method),

324
HyperparamOpt (class in deepchem.hyper), 324

I
id_to_features() (in module

deepchem.feat.graph_features), 102
ids() (Dataset property), 57
ids() (DiskDataset property), 38
ids() (ImageDataset property), 41
ids() (NumpyDataset property), 26
ImageDataset (class in deepchem.data), 40
ImageLoader (class in deepchem.data), 47
ImageTransformer (class in deepchem.trans), 181
in_silico_mutagenesis() (in module

deepchem.metrics.genomic_metrics), 321
IndexSplitter (class in deepchem.splits), 142
InMemoryLoader (class in deepchem.data), 51
InteratomicL2Distances (class in

deepchem.models.layers), 264
intersect_interval() (in module

deepchem.utils.coordinate_box_utils), 357
intervals (GraphConvConstants attribute), 100
IRVTransformer (class in deepchem.trans), 186
is_angle_within_cutoff() (in module

deepchem.utils.geometry_utils), 364
iterbatches() (Dataset method), 57
iterbatches() (DiskDataset method), 34
iterbatches() (ImageDataset method), 41
iterbatches() (NumpyDataset method), 26
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IterRefLSTMEmbedding (class in
deepchem.models.layers), 274

itersamples() (Dataset method), 58
itersamples() (DiskDataset method), 34
itersamples() (ImageDataset method), 41
itersamples() (NumpyDataset method), 27
itershards() (DiskDataset method), 34

J
jaccard_index() (in module deepchem.metrics),

318
jaccard_score() (in module deepchem.metrics),

311
JsonLoader (class in deepchem.data), 48

K
k_fold_split() (ButinaSplitter method), 156
k_fold_split() (FingerprintSplitter method), 159
k_fold_split() (IndexSplitter method), 143
k_fold_split() (MaxMinSplitter method), 154
k_fold_split() (MolecularWeightSplitter method),

152
k_fold_split() (RandomGroupSplitter method),

135
k_fold_split() (RandomSplitter method), 133
k_fold_split() (RandomStratifiedSplitter method),

138
k_fold_split() (ScaffoldSplitter method), 149
k_fold_split() (SingletaskStratifiedSplitter

method), 139
k_fold_split() (SpecifiedSplitter method), 145
k_fold_split() (Splitter method), 161
k_fold_split() (TaskSplitter method), 147
kappa_score() (in module deepchem.metrics), 319
KerasModel (class in deepchem.models), 204

L
L1Loss (class in deepchem.models.losses), 200
L2Loss (class in deepchem.models.losses), 200
LCNNFeaturizer (class in deepchem.feat), 121
LCNNModel (class in deepchem.models), 262
LearningRateSchedule (class in

deepchem.models.optimizers), 202
legacy_metadata (DiskDataset attribute), 31
LinearCosineDecay (class in

deepchem.models.optimizers), 204
load_bace_classification() (in module

deepchem.molnet), 62
load_bace_regression() (in module

deepchem.molnet), 63
load_bandgap() (in module deepchem.molnet), 73
load_bbbc001() (in module deepchem.molnet), 63
load_bbbc002() (in module deepchem.molnet), 64
load_bbbp() (in module deepchem.molnet), 64

load_cell_counting() (in module
deepchem.molnet), 65

load_chembl() (in module deepchem.molnet), 66
load_chembl25() (in module deepchem.molnet), 66
load_clearance() (in module deepchem.molnet), 67
load_clintox() (in module deepchem.molnet), 67
load_csv_files() (in module

deepchem.utils.data_utils), 348
load_data() (in module deepchem.utils.data_utils),

347
load_dataset_from_disk() (in module

deepchem.utils.data_utils), 349
load_delaney() (in module deepchem.molnet), 68
load_docked_ligands() (in module

deepchem.utils.docking_utils), 372
load_factors() (in module deepchem.molnet), 69
load_from_disk() (in module

deepchem.utils.data_utils), 349
load_from_pretrained() (KerasModel method),

212
load_from_pretrained() (TorchModel method),

254
load_hiv() (in module deepchem.molnet), 70
load_hopv() (in module deepchem.molnet), 70
load_hppb() (in module deepchem.molnet), 71
load_json_files() (in module

deepchem.utils.data_utils), 348
load_kaggle() (in module deepchem.molnet), 72
load_kinase() (in module deepchem.molnet), 72
load_lipo() (in module deepchem.molnet), 73
load_metadata() (DiskDataset method), 32
load_molecule() (in module

deepchem.utils.rdkit_utils), 352
load_mp_formation_energy() (in module

deepchem.molnet), 75
load_mp_metallicity() (in module

deepchem.molnet), 76
load_muv() (in module deepchem.molnet), 78
load_nci() (in module deepchem.molnet), 78
load_pcba() (in module deepchem.molnet), 79
load_pdbbind() (in module deepchem.molnet), 80
load_perovskite() (in module deepchem.molnet),

74
load_pickle_files() (in module

deepchem.utils.data_utils), 349
load_Platinum_Adsorption() (in module

deepchem.molnet), 91
load_ppb() (in module deepchem.molnet), 81
load_qm7() (in module deepchem.molnet), 81
load_qm8() (in module deepchem.molnet), 82
load_qm9() (in module deepchem.molnet), 84
load_sampl() (in module deepchem.molnet), 85
load_sdf_files() (in module

deepchem.utils.data_utils), 348
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load_sider() (in module deepchem.molnet), 86
load_thermosol() (in module deepchem.molnet), 87
load_tox21() (in module deepchem.molnet), 87
load_toxcast() (in module deepchem.molnet), 88
load_uspto() (in module deepchem.molnet), 89
load_uv() (in module deepchem.molnet), 89
load_zinc15() (in module deepchem.molnet), 90
LogTransformer (class in deepchem.trans), 170
Loss (class in deepchem.models.losses), 200
LSTMStep (class in deepchem.models.layers), 272

M
MACCSKeysFingerprint (class in deepchem.feat),

104
mae_score() (in module deepchem.metrics), 319
make_pytorch_dataset() (Dataset method), 59
make_pytorch_dataset() (DiskDataset method),

35
make_pytorch_dataset() (ImageDataset

method), 42
make_pytorch_dataset() (NumpyDataset

method), 28
make_tf_dataset() (Dataset method), 58
make_tf_dataset() (DiskDataset method), 39
make_tf_dataset() (ImageDataset method), 43
make_tf_dataset() (NumpyDataset method), 29
MAML (class in deepchem.metalearning), 329
MaterialCompositionFeaturizer (class in

deepchem.feat), 129
MaterialStructureFeaturizer (class in

deepchem.feat), 130
matrix_mul() (IRVTransformer static method), 188
matthews_corrcoef() (in module

deepchem.metrics), 302
MaxMinSplitter (class in deepchem.splits), 153
mean_absolute_error() (in module

deepchem.metrics), 306
mean_squared_error() (in module

deepchem.metrics), 305
memory_cache_size() (DiskDataset property), 38
merge() (DiskDataset static method), 35
merge() (NumpyDataset static method), 28
merge_molecular_fragments() (in module

deepchem.utils.fragment_utils), 355
merge_overlapping_boxes() (in module

deepchem.utils.coordinate_box_utils), 358
MessagePassing (class in deepchem.models.layers),

295
metadata_df (DiskDataset attribute), 31
MetaLearner (class in deepchem.metalearning), 328
Metric (class in deepchem.metrics), 322
minimize_conformers() (ConformerGenerator

method), 351
MinMaxTransformer (class in deepchem.trans), 166

Model (class in deepchem.models), 196
Mol2VecFingerprint (class in deepchem.feat), 105
MolecularFeaturizer (class in deepchem.feat),

129
MolecularFragment (class in

deepchem.utils.fragment_utils), 353
MolecularWeightSplitter (class in

deepchem.splits), 151
MoleculeLoadException (class in

deepchem.utils.rdkit_utils), 352
MolGANAggregationLayer (class in

deepchem.models.layers), 268
MolGANConvolutionLayer (class in

deepchem.models.layers), 267
MolGANEncoderLayer (class in

deepchem.models.layers), 271
MolGanFeaturizer (class in deepchem.feat), 97
MolGANMultiConvolutionLayer (class in

deepchem.models.layers), 270
MolGraphConvFeaturizer (class in

deepchem.feat), 98
MordredDescriptors (class in deepchem.feat), 107
move() (DiskDataset method), 33
MPNNModel (class in deepchem.models), 230
MPNNModel (class in deepchem.models.torch_models),

261
MultiConvMol (class in deepchem.feat.mol_graphs),

53
MultitaskClassifier (class in deepchem.models),

216
MultitaskFitTransformRegressor (class in

deepchem.models), 214
MultitaskRegressor (class in deepchem.models),

213

N
n_actions() (Environment property), 331
NeighborList (class in deepchem.models.layers), 278
node_features (GraphData attribute), 54
node_pos_features (GraphData attribute), 54
nonlinearity() (VinaFreeEnergy method), 278
NormalizationTransformer (class in

deepchem.trans), 163
normalize() (CoulombFitTransformer method), 185
normalize_labels_shape() (in module

deepchem.metrics), 300
normalize_prediction_shape() (in module

deepchem.metrics), 301
normalize_weight_shape() (in module

deepchem.metrics), 300
NormalizingFlowModel (class in

deepchem.models.normalizing_flows), 246
num_edges (GraphData attribute), 55
num_edges_features (GraphData attribute), 55
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num_node_features (GraphData attribute), 55
num_nodes (GraphData attribute), 55
NumpyDataset (class in deepchem.data), 26

O
one_hot_encode() (in module

deepchem.utils.molecule_feature_utils), 367
one_of_k_encoding() (in module

deepchem.feat.graph_features), 100
one_of_k_encoding_unk() (in module

deepchem.feat.graph_features), 100
OneHotFeaturizer (class in deepchem.feat), 113
Optimizer (class in deepchem.models.optimizers), 202
output_predictions() (Evaluator method), 360
output_statistics() (Evaluator method), 359

P
pad_array() (in module deepchem.utils.data_utils),

346
pad_smile() (OneHotFeaturizer method), 114
pair_features() (in module

deepchem.feat.graph_features), 103
pairwise_distances() (in module

deepchem.dock.pose_scoring), 344
pearson_r2_score() (in module

deepchem.metrics), 318
pixel_error() (in module deepchem.metrics), 319
Policy (class in deepchem.rl), 332
PolynomialDecay (class in

deepchem.models.optimizers), 203
PoseGenerator (class in

deepchem.dock.pose_generation), 340
possible_atom_list (GraphConvConstants at-

tribute), 99
possible_bond_stereo (GraphConvConstants at-

tribute), 100
possible_chirality_list (GraphConvCon-

stants attribute), 99
possible_formal_charge_list (GraphCon-

vConstants attribute), 99
possible_hybridization_list (GraphCon-

vConstants attribute), 99
possible_number_radical_e_list (Graph-

ConvConstants attribute), 99
possible_numH_list (GraphConvConstants at-

tribute), 99
possible_valence_list (GraphConvConstants

attribute), 99
PowerTransformer (class in deepchem.trans), 174
PPO (class in deepchem.rl.ppo), 336
PPOLoss (class in deepchem.rl.ppo), 338
prc_auc_score() (in module deepchem.metrics),

319

precision_recall_curve() (in module
deepchem.metrics), 309

precision_score() (in module deepchem.metrics),
307

predict() (A2C method), 335
predict() (KerasModel method), 209
predict() (Model method), 196
predict() (PPO method), 337
predict() (SklearnModel method), 198
predict() (TorchModel method), 252
predict_embedding() (KerasModel method), 210
predict_embedding() (TorchModel method), 252
predict_embeddings() (SeqToSeq method), 234
predict_from_embeddings() (SeqToSeq

method), 234
predict_from_sequences() (SeqToSeq method),

234
predict_gan_generator() (GAN method), 237
predict_on_batch() (KerasModel method), 208
predict_on_batch() (MAML method), 330
predict_on_batch() (Model method), 196
predict_on_batch() (SklearnModel method), 198
predict_on_batch() (TorchModel method), 251
predict_on_generator() (KerasModel method),

208
predict_on_generator() (MultitaskFitTrans-

formRegressor method), 215
predict_on_generator() (TorchModel method),

251
predict_uncertainty() (KerasModel method),

210
predict_uncertainty() (TorchModel method),

252
predict_uncertainty_on_batch() (Keras-

Model method), 209
predict_uncertainty_on_batch() (Torch-

Model method), 251
prepare_inputs() (in module

deepchem.utils.docking_utils), 372
ProgressiveMultitaskClassifier (class in

deepchem.models), 221
ProgressiveMultitaskRegressor (class in

deepchem.models), 222
prune_conformers() (ConformerGenerator

method), 351
PubChemFingerprint (class in deepchem.feat), 105

R
r2_score() (in module deepchem.metrics), 304
radial_cutoff() (AtomicConvolution method), 281
radial_symmetry() (ANIFeat method), 284
radial_symmetry() (ANITransformer method), 191
radial_symmetry_function() (AtomicConvolu-

tion method), 281
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RandomGroupSplitter (class in deepchem.splits),
134

randomize_coulomb_matrix() (CoulombMatrix
method), 108

randomize_coulomb_matrix() (CoulombMatrix-
Eig method), 110

RandomSplitter (class in deepchem.splits), 132
RandomStratifiedSplitter (class in

deepchem.splits), 137
RawFeaturizer (class in deepchem.feat), 114
RDKitDescriptors (class in deepchem.feat), 106
RdkitGridFeaturizer (class in deepchem.feat),

115
read_gnina_log() (in module

deepchem.utils.docking_utils), 373
realize() (CoulombFitTransformer method), 185
realize() (IRVTransformer method), 187
recall_score() (in module deepchem.metrics), 303
reduce_molecular_complex_to_contacts()

(in module deepchem.utils.fragment_utils), 356
reference_lists (GraphConvConstants attribute),

99
relative_difference() (in module

deepchem.utils.evaluate), 362
reload() (Model method), 196
reload() (NormalizingFlowModel method), 247
reload() (SklearnModel method), 199
remove_pad() (SmilesToSeq method), 112
repulsion() (VinaFreeEnergy method), 278
reset() (Environment method), 332
reset() (GymEnvironment method), 332
reshard() (DiskDataset method), 33
restore() (A2C method), 335
restore() (KerasModel method), 211
restore() (MAML method), 330
restore() (PPO method), 338
restore() (TorchModel method), 254
rms_score() (in module deepchem.metrics), 319
RMSProp (class in deepchem.models.optimizers), 203
RobustMultitaskClassifier (class in

deepchem.models), 218
RobustMultitaskRegressor (class in

deepchem.models), 219
roc_auc_score() (in module deepchem.metrics),

314

S
safe_index() (in module

deepchem.feat.graph_features), 101
save() (Model method), 196
save() (NormalizingFlowModel method), 247
save() (SklearnModel method), 199
save_checkpoint() (KerasModel method), 211
save_checkpoint() (TorchModel method), 254

save_dataset_to_disk() (in module
deepchem.utils.data_utils), 349

save_to_disk() (DiskDataset method), 32
save_to_disk() (in module

deepchem.utils.data_utils), 349
save_vocabulary() (SmilesTokenizer method), 126
ScaffoldSplitter (class in deepchem.splits), 148
ScScoreModel (class in deepchem.models), 232
SDFLoader (class in deepchem.data), 49
select() (Dataset method), 58
select() (DiskDataset method), 38
select() (ImageDataset method), 42
select() (NumpyDataset method), 27
select_action() (A2C method), 335
select_action() (PPO method), 338
select_task() (MetaLearner method), 329
seq_one_hot_encode() (in module

deepchem.utils.genomics_utils), 362
SeqToSeq (class in deepchem.models), 233
set_max_print_size() (in module

deepchem.utils.debug_utils), 374
set_print_threshold() (in module

deepchem.utils.debug_utils), 374
set_shard() (DiskDataset method), 37
SetGather (class in deepchem.models.layers), 297
ShannonEntropy (class in deepchem.models.losses),

201
shuffle_each_shard() (DiskDataset method), 36
shuffle_shards() (DiskDataset method), 37
SigmoidCrossEntropy (class in

deepchem.models.losses), 200
SineCoulombMatrix (class in deepchem.feat), 119
SingletaskStratifiedSplitter (class in

deepchem.splits), 139
SklearnModel (class in deepchem.models), 198
SluiceLoss (class in deepchem.models.layers), 283
Smiles2Vec (class in deepchem.models), 244
smiles_from_seq() (SmilesToSeq method), 112
smiles_to_seq() (TextCNNModel method), 242
smiles_to_seq_batch() (TextCNNModel

method), 241
SmilesToImage (class in deepchem.feat), 113
SmilesTokenizer (class in deepchem.feat), 124
SmilesToSeq (class in deepchem.feat), 112
SoftmaxCrossEntropy (class in

deepchem.models.losses), 200
sparse_shuffle() (DiskDataset method), 36
SparseSoftmaxCrossEntropy (class in

deepchem.models.losses), 200
SpecifiedSplitter (class in deepchem.splits), 144
split() (ButinaSplitter method), 156
split() (FingerprintSplitter method), 158
split() (IndexSplitter method), 142
split() (MaxMinSplitter method), 153
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split() (MolecularWeightSplitter method), 151
split() (RandomGroupSplitter method), 135
split() (RandomSplitter method), 132
split() (RandomStratifiedSplitter method), 137
split() (ScaffoldSplitter method), 148
split() (SingletaskStratifiedSplitter method), 140
split() (SpecifiedSplitter method), 144
split() (Splitter method), 162
split() (TaskSplitter method), 147
Splitter (class in deepchem.splits), 161
Stack (class in deepchem.models.layers), 277
state() (Environment property), 331
state_dtype() (Environment property), 331
state_shape() (Environment property), 331
step() (Environment method), 332
step() (GymEnvironment method), 332
strip_hydrogens() (in module

deepchem.utils.fragment_utils), 355
subset() (DiskDataset method), 36
sum_neigh() (GraphConv method), 265
SwitchedDropout (class in

deepchem.models.layers), 275

T
TaskSplitter (class in deepchem.splits), 146
TensorflowMultitaskIRVClassifier (class in

deepchem.models), 217
terminated() (Environment property), 331
TextCNNModel (class in deepchem.models), 241
to_dataframe() (Dataset method), 59
to_dataframe() (DiskDataset method), 40
to_dataframe() (ImageDataset method), 43
to_dataframe() (NumpyDataset method), 30
to_dgl_graph() (GraphData method), 55
to_json() (NumpyDataset static method), 28
to_one_hot() (in module deepchem.metrics), 299
to_pyg_graph() (GraphData method), 55
to_seq() (SmilesToSeq method), 112
tokenize() (BasicSmilesTokenizer method), 127
TorchModel (class in deepchem.models), 247
train_on_current_task() (MAML method), 330
train_test_split() (ButinaSplitter method), 157
train_test_split() (FingerprintSplitter method),

159
train_test_split() (IndexSplitter method), 143
train_test_split() (MaxMinSplitter method),

154
train_test_split() (MolecularWeightSplitter

method), 152
train_test_split() (RandomGroupSplitter

method), 135
train_test_split() (RandomSplitter method),

133

train_test_split() (RandomStratifiedSplitter
method), 138

train_test_split() (ScaffoldSplitter method), 149
train_test_split() (SingletaskStratifiedSplitter

method), 140
train_test_split() (SpecifiedSplitter method),

145
train_test_split() (Splitter method), 162
train_test_split() (TaskSplitter method), 147
train_valid_test_split() (ButinaSplitter

method), 157
train_valid_test_split() (FingerprintSplitter

method), 160
train_valid_test_split() (IndexSplitter

method), 143
train_valid_test_split() (MaxMinSplitter

method), 155
train_valid_test_split() (MolecularWeight-

Splitter method), 152
train_valid_test_split() (RandomGroup-

Splitter method), 136
train_valid_test_split() (RandomSplitter

method), 133
train_valid_test_split() (RandomStratified-

Splitter method), 138
train_valid_test_split() (ScaffoldSplitter

method), 150
train_valid_test_split() (SingletaskStrati-

fiedSplitter method), 141
train_valid_test_split() (SpecifiedSplitter

method), 145
train_valid_test_split() (Splitter method),

161
train_valid_test_split() (TaskSplitter

method), 146
transform() (ANITransformer method), 191
transform() (BalancingTransformer method), 177
transform() (CDFTransformer method), 173
transform() (ClippingTransformer method), 169
transform() (CoulombFitTransformer method), 186
transform() (DAGTransformer method), 190
transform() (Dataset method), 58
transform() (DiskDataset method), 34
transform() (DuplicateBalancingTransformer

method), 180
transform() (FeaturizationTransformer method), 183
transform() (ImageDataset method), 41
transform() (ImageTransformer method), 181
transform() (IRVTransformer method), 188
transform() (LogTransformer method), 171
transform() (MinMaxTransformer method), 167
transform() (NormalizationTransformer method),

165
transform() (NumpyDataset method), 27
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transform() (PowerTransformer method), 175
transform() (Transformer method), 193
transform_array() (ANITransformer method), 191
transform_array() (BalancingTransformer

method), 177
transform_array() (CDFTransformer method),

172
transform_array() (ClippingTransformer method),

168
transform_array() (CoulombFitTransformer

method), 185
transform_array() (DAGTransformer method),

189
transform_array() (DuplicateBalancingTrans-

former method), 180
transform_array() (FeaturizationTransformer

method), 183
transform_array() (ImageTransformer method),

181
transform_array() (IRVTransformer method), 188
transform_array() (LogTransformer method), 170
transform_array() (MinMaxTransformer method),

166
transform_array() (NormalizationTransformer

method), 164
transform_array() (PowerTransformer method),

175
transform_array() (Transformer method), 193
transform_on_array() (ANITransformer method),

192
transform_on_array() (BalancingTransformer

method), 178
transform_on_array() (CDFTransformer

method), 173
transform_on_array() (ClippingTransformer

method), 169
transform_on_array() (CoulombFitTransformer

method), 186
transform_on_array() (DAGTransformer

method), 190
transform_on_array() (DuplicateBalancing-

Transformer method), 180
transform_on_array() (FeaturizationTransformer

method), 184
transform_on_array() (ImageTransformer

method), 182
transform_on_array() (IRVTransformer method),

188
transform_on_array() (LogTransformer method),

171
transform_on_array() (MinMaxTransformer

method), 167
transform_on_array() (NormalizationTrans-

former method), 165

transform_on_array() (PowerTransformer
method), 175

transform_on_array() (Transformer method), 194
Transformer (class in deepchem.trans), 192

U
UG_to_DAG() (DAGTransformer method), 190
union() (in module

deepchem.utils.coordinate_box_utils), 357
unit_vector() (in module

deepchem.utils.geometry_utils), 363
untargz_file() (in module

deepchem.utils.data_utils), 347
untransform() (ANITransformer method), 191
untransform() (BalancingTransformer method), 178
untransform() (CDFTransformer method), 173
untransform() (ClippingTransformer method), 169
untransform() (CoulombFitTransformer method),

185
untransform() (DAGTransformer method), 190
untransform() (DuplicateBalancingTransformer

method), 181
untransform() (FeaturizationTransformer method),

184
untransform() (ImageTransformer method), 182
untransform() (IRVTransformer method), 188
untransform() (LogTransformer method), 171
untransform() (MinMaxTransformer method), 167
untransform() (NormalizationTransformer method),

164
untransform() (OneHotFeaturizer method), 114
untransform() (PowerTransformer method), 175
untransform() (Transformer method), 194
untransform_grad() (NormalizationTransformer

method), 165
unzip_file() (in module deepchem.utils.data_utils),

347
UserCSVLoader (class in deepchem.data), 45
UserDefinedFeaturizer (class in deepchem.feat),

128

V
VAE_ELBO (class in deepchem.models.losses), 200
VAE_KLDivergence (class in

deepchem.models.losses), 201
variables() (MetaLearner property), 329
vectorize() (in module deepchem.utils.hash_utils),

365
vina_energy_term() (in module

deepchem.dock.pose_scoring), 346
vina_gaussian_first() (in module

deepchem.dock.pose_scoring), 345
vina_gaussian_second() (in module

deepchem.dock.pose_scoring), 346
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vina_hbond() (in module
deepchem.dock.pose_scoring), 345

vina_hydrophobic() (in module
deepchem.dock.pose_scoring), 345

vina_nonlinearity() (in module
deepchem.dock.pose_scoring), 344

vina_repulsion() (in module
deepchem.dock.pose_scoring), 345

VinaFreeEnergy (class in deepchem.models.layers),
277

VinaPoseGenerator (class in
deepchem.dock.pose_generation), 340

vocab_size() (SmilesTokenizer property), 125
volume() (CoordinateBox method), 357
voxelize() (in module deepchem.utils.voxel_utils),

366

W
w() (Dataset property), 57
w() (DiskDataset property), 38
w() (ImageDataset property), 41
w() (NumpyDataset property), 26
WeaveFeaturizer (class in deepchem.feat), 96
WeaveGather (class in deepchem.models.layers), 290
WeaveLayer (class in deepchem.models.layers), 287
WeaveModel (class in deepchem.models), 224
WeaveMol (class in deepchem.feat.mol_graphs), 54
WeightedLinearCombo (class in

deepchem.models.layers), 275
WGAN (class in deepchem.models), 238
write_data_to_disk() (DiskDataset static

method), 32
write_gnina_conf() (in module

deepchem.utils.docking_utils), 372
write_molecule() (in module

deepchem.utils.rdkit_utils), 353
write_vina_conf() (in module

deepchem.utils.docking_utils), 371

X
X() (Dataset property), 56
X() (DiskDataset property), 38
X() (ImageDataset property), 41
X() (NumpyDataset property), 26
X_transform() (CoulombFitTransformer method),

185
X_transform() (IRVTransformer method), 187

Y
y() (Dataset property), 57
y() (DiskDataset property), 38
y() (ImageDataset property), 41
y() (NumpyDataset property), 26
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